WorldWideScience

Sample records for control performance model

  1. New model performance index for engineering design of control systems

    Science.gov (United States)

    1970-01-01

    Performance index includes a model representing linear control-system design specifications. Based on a geometric criterion for approximation of the model by the actual system, the index can be interpreted directly in terms of the desired system response model without actually having the model's time response.

  2. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...

  3. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...... reference tracking and disturbance rejection in an economically optimal way. The performance function is chosen as a mixture of the `1-norm and a linear weighting to model the economics of the system. Simulations show a significant improvement of the performance of the MPC compared to the current...

  4. Performance and robustness of hybrid model predictive control for controllable dampers in building models

    Science.gov (United States)

    Johnson, Erik A.; Elhaddad, Wael M.; Wojtkiewicz, Steven F.

    2016-04-01

    A variety of strategies have been developed over the past few decades to determine controllable damping device forces to mitigate the response of structures and mechanical systems to natural hazards and other excitations. These "smart" damping devices produce forces through passive means but have properties that can be controlled in real time, based on sensor measurements of response across the structure, to dramatically reduce structural motion by exploiting more than the local "information" that is available to purely passive devices. A common strategy is to design optimal damping forces using active control approaches and then try to reproduce those forces with the smart damper. However, these design forces, for some structures and performance objectives, may achieve high performance by selectively adding energy, which cannot be replicated by a controllable damping device, causing the smart damper performance to fall far short of what an active system would provide. The authors have recently demonstrated that a model predictive control strategy using hybrid system models, which utilize both continuous and binary states (the latter to capture the switching behavior between dissipative and non-dissipative forces), can provide reductions in structural response on the order of 50% relative to the conventional clipped-optimal design strategy. This paper explores the robustness of this newly proposed control strategy through evaluating controllable damper performance when the structure model differs from the nominal one used to design the damping strategy. Results from the application to a two-degree-of-freedom structure model confirms the robustness of the proposed strategy.

  5. Job Demands-Control-Support model and employee safety performance.

    Science.gov (United States)

    Turner, Nick; Stride, Chris B; Carter, Angela J; McCaughey, Deirdre; Carroll, Anthony E

    2012-03-01

    The aim of this study was to explore whether work characteristics (job demands, job control, social support) comprising Karasek and Theorell's (1990) Job Demands-Control-Support framework predict employee safety performance (safety compliance and safety participation; Neal and Griffin, 2006). We used cross-sectional data of self-reported work characteristics and employee safety performance from 280 healthcare staff (doctors, nurses, and administrative staff) from Emergency Departments of seven hospitals in the United Kingdom. We analyzed these data using a structural equation model that simultaneously regressed safety compliance and safety participation on the main effects of each of the aforementioned work characteristics, their two-way interactions, and the three-way interaction among them, while controlling for demographic, occupational, and organizational characteristics. Social support was positively related to safety compliance, and both job control and the two-way interaction between job control and social support were positively related to safety participation. How work design is related to employee safety performance remains an important area for research and provides insight into how organizations can improve workplace safety. The current findings emphasize the importance of the co-worker in promoting both safety compliance and safety participation. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  6. An integrated control-oriented modelling for HVAC performance benchmarking

    NARCIS (Netherlands)

    Satyavada, Harish; Baldi, S.

    2016-01-01

    Energy efficiency in building heating, ventilating and air conditioning (HVAC) equipment requires the development of accurate models for testing HVAC control strategies and corresponding energy consumption. In order to make the HVAC control synthesis computationally affordable, such

  7. Desiccant wheel thermal performance modeling for indoor humidity optimal control

    International Nuclear Information System (INIS)

    Wang, Nan; Zhang, Jiangfeng; Xia, Xiaohua

    2013-01-01

    Highlights: • An optimal humidity control model is formulated to control the indoor humidity. • MPC strategy is used to implement the optimal operation solution. • Practical applications of the MPC strategy is illustrated by the case study. - Abstract: Thermal comfort is an important concern in the energy efficiency improvement of commercial buildings. Thermal comfort research focuses mostly on temperature control, but humidity control is an important aspect to maintain indoor comfort too. In this paper, an optimal humidity control model (OHCM) is presented. Model predictive control (MPC) strategy is applied to implement the optimal operation of the desiccant wheel during working hours of a commercial building. The OHCM is revised to apply the MPC strategy. A case is studied to illustrate the practical applications of the MPC strategy

  8. Modelling and performance assessment of an antenna-control system

    Science.gov (United States)

    Burrows, C. R.

    1982-03-01

    An assessment is made of a surveillance-radar control system designed to provide a sector-search capability and continuous control of antenna speed without unwanted torque-reaction on the supporting mast. These objectives are attained by utilizing regenerative braking, and control is exercised through Perbury CVTs. A detailed analysis of the system is given. The models derived for the Perbury CVTs supplement the qualitative data contained in earlier papers. Some results from a computer simulation are presented. Although the paper is concerned with a particular problem, the analysis of the CVTs, and the concept of using energy transfer to control large inertial loads, are of more general interest.

  9. Wavefront control performance modeling with WFIRST shaped pupil coronagraph testbed

    Science.gov (United States)

    Zhou, Hanying; Nemati, Bijian; Krist, John; Cady, Eric; Kern, Brian; Poberezhskiy, Ilya

    2017-09-01

    NASA's WFIRST mission includes a coronagraph instrument (CGI) for direct imaging of exoplanets. Significant improvement in CGI model fidelity has been made recently, alongside a testbed high contrast demonstration in a simulated dynamic environment at JPL. We present our modeling method and results of comparisons to testbed's high order wavefront correction performance for the shaped pupil coronagraph. Agreement between model prediction and testbed result at better than a factor of 2 has been consistently achieved in raw contrast (contrast floor, chromaticity, and convergence), and with that comes good agreement in contrast sensitivity to wavefront perturbations and mask lateral shear.

  10. Algorithms and Methods for High-Performance Model Predictive Control

    DEFF Research Database (Denmark)

    Frison, Gianluca

    routines employed in the numerical tests. The main focus of this thesis is on linear MPC problems. In this thesis, both the algorithms and their implementation are equally important. About the implementation, a novel implementation strategy for the dense linear algebra routines in embedded optimization...... is proposed, aiming at improving the computational performance in case of small matrices. About the algorithms, they are built on top of the proposed linear algebra, and they are tailored to exploit the high-level structure of the MPC problems, with special care on reducing the computational complexity....

  11. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-09-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms.

  12. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    International Nuclear Information System (INIS)

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-01-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (1) the estimation of human error associated with advanced control room equipment and configurations, (2) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (3) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms

  13. Wind farms providing secondary frequency regulation: evaluating the performance of model-based receding horizon control

    Directory of Open Access Journals (Sweden)

    C. R. Shapiro

    2018-01-01

    Full Text Available This paper is an extended version of our paper presented at the 2016 TORQUE conference (Shapiro et al., 2016. We investigate the use of wind farms to provide secondary frequency regulation for a power grid using a model-based receding horizon control framework. In order to enable real-time implementation, the control actions are computed based on a time-varying one-dimensional wake model. This model describes wake advection and wake interactions, both of which play an important role in wind farm power production. In order to test the control strategy, it is implemented in a large-eddy simulation (LES model of an 84-turbine wind farm using the actuator disk turbine representation. Rotor-averaged velocity measurements at each turbine are used to provide feedback for error correction. The importance of including the dynamics of wake advection in the underlying wake model is tested by comparing the performance of this dynamic-model control approach to a comparable static-model control approach that relies on a modified Jensen model. We compare the performance of both control approaches using two types of regulation signals, RegA and RegD, which are used by PJM, an independent system operator in the eastern United States. The poor performance of the static-model control relative to the dynamic-model control demonstrates that modeling the dynamics of wake advection is key to providing the proposed type of model-based coordinated control of large wind farms. We further explore the performance of the dynamic-model control via composite performance scores used by PJM to qualify plants for regulation services or markets. Our results demonstrate that the dynamic-model-controlled wind farm consistently performs well, passing the qualification threshold for all fast-acting RegD signals. For the RegA signal, which changes over slower timescales, the dynamic-model control leads to average performance that surpasses the qualification threshold, but further

  14. Evaluating Internal Model Strength and Performance of Myoelectric Prosthesis Control Strategies.

    Science.gov (United States)

    Shehata, Ahmed W; Scheme, Erik J; Sensinger, Jonathon W

    2018-05-01

    On-going developments in myoelectric prosthesis control have provided prosthesis users with an assortment of control strategies that vary in reliability and performance. Many studies have focused on improving performance by providing feedback to the user but have overlooked the effect of this feedback on internal model development, which is key to improve long-term performance. In this paper, the strength of internal models developed for two commonly used myoelectric control strategies: raw control with raw feedback (using a regression-based approach) and filtered control with filtered feedback (using a classifier-based approach), were evaluated using two psychometric measures: trial-by-trial adaptation and just-noticeable difference. The performance of both strategies was also evaluated using Schmidt's style target acquisition task. Results obtained from 24 able-bodied subjects showed that although filtered control with filtered feedback had better short-term performance in path efficiency ( ), raw control with raw feedback resulted in stronger internal model development ( ), which may lead to better long-term performance. Despite inherent noise in the control signals of the regression controller, these findings suggest that rich feedback associated with regression control may be used to improve human understanding of the myoelectric control system.

  15. Wind farms providing secondary frequency regulation: Evaluating the performance of model-based receding horizon control

    International Nuclear Information System (INIS)

    Shapiro, Carl R.; Meneveau, Charles; Gayme, Dennice F.; Meyers, Johan

    2016-01-01

    We investigate the use of wind farms to provide secondary frequency regulation for a power grid. Our approach uses model-based receding horizon control of a wind farm that is tested using a large eddy simulation (LES) framework. In order to enable real-time implementation, the control actions are computed based on a time-varying one-dimensional wake model. This model describes wake advection and interactions, both of which play an important role in wind farm power production. This controller is implemented in an LES model of an 84-turbine wind farm represented by actuator disk turbine models. Differences between the velocities at each turbine predicted by the wake model and measured in LES are used for closed-loop feedback. The controller is tested on two types of regulation signals, “RegA” and “RegD”, obtained from PJM, an independent system operator in the eastern United States. Composite performance scores, which are used by PJM to qualify plants for regulation, are used to evaluate the performance of the controlled wind farm. Our results demonstrate that the controlled wind farm consistently performs well, passing the qualification threshold for all fastacting RegD signals. For the RegA signal, which changes over slower time scales, the controlled wind farm's average performance surpasses the threshold, but further work is needed to enable the controlled system to achieve qualifying performance all of the time. (paper)

  16. The Performance of Structure-Controller Coupled Systems Analysis Using Probabilistic Evaluation and Identification Model Approach

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2017-01-01

    Full Text Available This study evaluates the performance of passively controlled steel frame building under dynamic loads using time series analysis. A novel application is utilized for the time and frequency domains evaluation to analyze the behavior of controlling systems. In addition, the autoregressive moving average (ARMA neural networks are employed to identify the performance of the controller system. Three passive vibration control devices are utilized in this study, namely, tuned mass damper (TMD, tuned liquid damper (TLD, and tuned liquid column damper (TLCD. The results show that the TMD control system is a more reliable controller than TLD and TLCD systems in terms of vibration mitigation. The probabilistic evaluation and identification model showed that the probability analysis and ARMA neural network model are suitable to evaluate and predict the response of coupled building-controller systems.

  17. A robust model predictive control strategy for improving the control performance of air-conditioning systems

    International Nuclear Information System (INIS)

    Huang Gongsheng; Wang Shengwei; Xu Xinhua

    2009-01-01

    This paper presents a robust model predictive control strategy for improving the supply air temperature control of air-handling units by dealing with the associated uncertainties and constraints directly. This strategy uses a first-order plus time-delay model with uncertain time-delay and system gain to describe air-conditioning process of an air-handling unit usually operating at various weather conditions. The uncertainties of the time-delay and system gain, which imply the nonlinearities and the variable dynamic characteristics, are formulated using an uncertainty polytope. Based on this uncertainty formulation, an offline LMI-based robust model predictive control algorithm is employed to design a robust controller for air-handling units which can guarantee a good robustness subject to uncertainties and constraints. The proposed robust strategy is evaluated in a dynamic simulation environment of a variable air volume air-conditioning system in various operation conditions by comparing with a conventional PI control strategy. The robustness analysis of both strategies under different weather conditions is also presented.

  18. Performance Guaranteed Inertia Emulation forDiesel-Wind System Feed Microgrid via ModelReference Control

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [ORNL; Zhang, Yichen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Djouadi, Seddik [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Olama, Mohammed M. [ORNL

    2017-04-01

    In this paper, a model reference control based inertia emulation strategy is proposed. Desired inertia can be precisely emulated through this control strategy so that guaranteed performance is ensured. A typical frequency response model with parametrical inertia is set to be the reference model. A measurement at a specific location delivers the information of disturbance acting on the diesel-wind system to the referencemodel. The objective is for the speed of the diesel-wind system to track the reference model. Since active power variation is dominantly governed by mechanical dynamics and modes, only mechanical dynamics and states, i.e., a swing-engine-governor system plus a reduced-order wind turbine generator, are involved in the feedback control design. The controller is implemented in a three-phase diesel-wind system feed microgrid. The results show exact synthetic inertia is emulated, leading to guaranteed performance and safety bounds.

  19. Application of ANN-SCE model on the evaluation of automatic generation control performance

    Energy Technology Data Exchange (ETDEWEB)

    Chang-Chien, L.R.; Lo, C.S.; Lee, K.S. [National Cheng Kung Univ., Tainan, Taiwan (China)

    2005-07-01

    An accurate evaluation of load frequency control (LFC) performance is needed to balance minute-to-minute electricity generation and demand. In this study, an artificial neural network-based system control error (ANN-SCE) model was used to assess the performance of automatic generation controls (AGC). The model was used to identify system dynamics for control references in supplementing AGC logic. The artificial neural network control error model was used to track a single area's LFC dynamics in Taiwan. The model was used to gauge the impacts of regulation control. Results of the training, evaluating, and projecting processes showed that the ANN-SCE model could be algebraically decomposed into components corresponding to different impact factors. The SCE information obtained from testing of various AGC gains provided data for the creation of a new control approach. The ANN-SCE model was used in conjunction with load forecasting and scheduled generation data to create an ANN-SCE identifier. The model successfully simulated SCE dynamics. 13 refs., 10 figs.

  20. Control system design for electrical stimulation in upper limb rehabilitation modelling, identification and robust performance

    CERN Document Server

    Freeman, Chris

    2016-01-01

    This book presents a comprehensive framework for model-based electrical stimulation (ES) controller design, covering the whole process needed to develop a system for helping people with physical impairments perform functional upper limb tasks such as eating, grasping and manipulating objects. The book first demonstrates procedures for modelling and identifying biomechanical models of the response of ES, covering a wide variety of aspects including mechanical support structures, kinematics, electrode placement, tasks, and sensor locations. It then goes on to demonstrate how complex functional activities of daily living can be captured in the form of optimisation problems, and extends ES control design to address this case. It then lays out a design methodology, stability conditions, and robust performance criteria that enable control schemes to be developed systematically and transparently, ensuring that they can operate effectively in the presence of realistic modelling uncertainty, physiological variation an...

  1. Intercalated Injection, Target Model Construction and H 2 Performance of Retrospective Cost Adaptive Control

    Science.gov (United States)

    Rahman, Yousaf

    This dissertation extends retrospective cost adaptive control (RCAC) by devel- oping a novel interpretation of RCAC, wherein the retrospective cost minimization uses intercalated injection between the controller numerator and denominator to fit a specific closed-loop transfer function to a target model. The target model thus incor- porates the modeling information required by RCAC. To demonstrate the effect of the target model on closed-loop performance, RCAC is applied to a collection of problems that demonstrate adaptive pole placement, where the target model is used to place closed-loop poles; adaptive PID control, where RCAC adaptively tunes PID gains; and LQG cost minimization, where the optimality and closed-loop frequency response of RCAC is compared with the performance of discrete-time LQG controllers. Next, RCAC is applied to plants that are difficult to control using fixed gain con- trollers, including an aircraft lateral dynamics model that has an unknown transition from minimum-phase to nonminimum-phase (NMP) dynamics, as well as plants with severely limited achievable gain and delay margin. xvi. Methods are developed to control NMP plants without knowledge of the NMP zero. Specifically, a decentralized feedback-feedforward architecture as well as quasi- FIR controllers are considered, where the FIR controller operates in parallel with an internal model controller in order to follow commands for NMP plants without knowledge of the NMP zeros. Next, the following question is considered: Are all full-order dynamic compen- sators observer-based? It is shown that the only case where a dynamic compensator is not observer-based is the case where n is odd and the closed-loop spectrum has no real eigenvalues. Since this is the case, such controllers are necessarily suboptimal in the sense of LQG. This question is relevant to understanding the closed-loop pole locations arising from full-order RCAC compensators. Finally, retrospective cost model refinement (RCMR

  2. Dynamic modeling and performance evaluation of axial flux PMSG based wind turbine system with MPPT control

    Directory of Open Access Journals (Sweden)

    Vahid Behjat

    2014-12-01

    Full Text Available This research work develops dynamic model of a gearless small scale wind power generation system based on a direct driven single sided outer rotor AFPMSG with coreless armature winding. Dynamic modeling of the AFPMSG based wind turbine requires machine parameters. To this end, a 3D FEM model of the generator is developed and from magnetostatic and transient analysis of the FEM model, machine parameters are calculated and utilized in dynamic modeling of the system. A maximum power point tracking (MPPT-based FOC control approach is used to obtain maximum power from the variable wind speed. The simulation results show the proper performance of the developed dynamic model of the AFPMSG, control approach and power generation system.

  3. Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation

    Energy Technology Data Exchange (ETDEWEB)

    Melicio, R.; Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)

    2010-10-15

    This paper presents new integrated model for variable-speed wind energy conversion systems, considering a more accurate dynamic of the wind turbine, rotor, generator, power converter and filter. Pulse width modulation by space vector modulation associated with sliding mode is used for controlling the power converters. Also, power factor control is introduced at the output of the power converters. Comprehensive performance simulation studies are carried out with matrix, two-level and multilevel power converter topologies in order to adequately assert the system performance. Conclusions are duly drawn. (author)

  4. Performance-based parameter tuning method of model-driven PID control systems.

    Science.gov (United States)

    Zhao, Y M; Xie, W F; Tu, X W

    2012-05-01

    In this paper, performance-based parameter tuning method of model-driven Two-Degree-of-Freedom PID (MD TDOF PID) control system has been proposed to enhance the control performances of a process. Known for its ability of stabilizing the unstable processes, fast tracking to the change of set points and rejecting disturbance, the MD TDOF PID has gained research interest recently. The tuning methods for the reported MD TDOF PID are based on internal model control (IMC) method instead of optimizing the performance indices. In this paper, an Integral of Time Absolute Error (ITAE) zero-position-error optimal tuning and noise effect minimizing method is proposed for tuning two parameters in MD TDOF PID control system to achieve the desired regulating and disturbance rejection performance. The comparison with Two-Degree-of-Freedom control scheme by modified smith predictor (TDOF CS MSP) and the designed MD TDOF PID tuned by the IMC tuning method demonstrates the effectiveness of the proposed tuning method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  5. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    Science.gov (United States)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  6. Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs

    DEFF Research Database (Denmark)

    Jeppsson, Ulf; Rosen, Christian; Alex, Jens

    2006-01-01

    The COST/IWA benchmark simulation model has been available for seven years. Its primary purpose has been to create a platform for control strategy benchmarking of activated sludge processes. The fact that the benchmark has resulted in more than 100 publications, not only in Europe but also...... worldwide, demonstrates the interest in such a tool within the research community In this paper, an extension of the benchmark simulation model no 1 (BSM1) is proposed. This extension aims at facilitating control strategy development and performance evaluation at a plant-wide level and, consequently...... the changes, the evaluation period has been extended to one year. A prolonged evaluation period allows for long-term control strategies to be assessed and enables the use of control handles that cannot be evaluated in a realistic fashion in the one-week BSM1 evaluation period. In the paper, the extended plant...

  7. Assess and Predict Automatic Generation Control Performances for Thermal Power Generation Units Based on Modeling Techniques

    Science.gov (United States)

    Zhao, Yan; Yang, Zijiang; Gao, Song; Liu, Jinbiao

    2018-02-01

    Automatic generation control(AGC) is a key technology to maintain real time power generation and load balance, and to ensure the quality of power supply. Power grids require each power generation unit to have a satisfactory AGC performance, being specified in two detailed rules. The two rules provide a set of indices to measure the AGC performance of power generation unit. However, the commonly-used method to calculate these indices is based on particular data samples from AGC responses and will lead to incorrect results in practice. This paper proposes a new method to estimate the AGC performance indices via system identification techniques. In addition, a nonlinear regression model between performance indices and load command is built in order to predict the AGC performance indices. The effectiveness of the proposed method is validated through industrial case studies.

  8. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  9. Performance Evaluation of a PID and a Fuzzy PID Controllers Designed for Controlling a Simulated Quadcopter Rotational Dynamics Model

    Directory of Open Access Journals (Sweden)

    Laith Jasim Saud

    2017-07-01

    Full Text Available This work is concerned with designing two types of controllers, a PID and a Fuzzy PID, to be used for flying and stabilizing a quadcopter. The designed controllers have been tuned, tested, and compared using two performance indices which are the Integral Square Error (ISE and the Integral Absolute Error (IAE, and also some response characteristics like the rise time, overshoot, settling time, and the steady state error. To try and test the controllers, a quadcopter mathematical model has been developed. The model concentrated on the rotational dynamics of the quadcopter, i.e. the roll, pitch, and yaw variables. The work has been simulated with “MATLAB”. To make testing the simulated model and the controllers more realistic, the testing signals have been applied by a user through a joystick interfaced to the computer. The results obtained indicated a general superiority in performance for the Fuzzy PID controller over the PID controller used in this work. This conclusion is based by the following figures:lesser ISA for the roll, pitch, and yaw consequently, lesser IAE for the roll, pitch, and yaw consequently, lesser rise time and settling time for the roll and pitch consequently, and lesser settling time for the yaw. Moreover, the FPID gave zero overshoot versus and in the PID case for the roll, pitch, and yaw consequently. Both controllers gave zero steady state error with close rise times for the yaw. This superiority of the FPID controller is gained as the fuzzy part of it continuously and online adapts the parameters of the PID part.

  10. A Family of High-Performance Solvers for Linear Model Predictive Control

    DEFF Research Database (Denmark)

    Frison, Gianluca; Sokoler, Leo Emil; Jørgensen, John Bagterp

    2014-01-01

    In Model Predictive Control (MPC), an optimization problem has to be solved at each sampling time, and this has traditionally limited the use of MPC to systems with slow dynamic. In this paper, we propose an e_cient solution strategy for the unconstrained sub-problems that give the search......-direction in Interior-Point (IP) methods for MPC, and that usually are the computational bottle-neck. This strategy combines a Riccati-like solver with the use of high-performance computing techniques: in particular, in this paper we explore the performance boost given by the use of single precision computation...

  11. On the use of musculoskeletal models to interpret motor control strategies from performance data

    Science.gov (United States)

    Cheng, Ernest J.; Loeb, Gerald E.

    2008-06-01

    The intrinsic viscoelastic properties of muscle are central to many theories of motor control. Much of the debate over these theories hinges on varying interpretations of these muscle properties. In the present study, we describe methods whereby a comprehensive musculoskeletal model can be used to make inferences about motor control strategies that would account for behavioral data. Muscle activity and kinematic data from a monkey were recorded while the animal performed a single degree-of-freedom pointing task in the presence of pseudo-random torque perturbations. The monkey's movements were simulated by a musculoskeletal model with accurate representations of musculotendon morphometry and contractile properties. The model was used to quantify the impedance of the limb while moving rapidly, the differential action of synergistic muscles, the relative contribution of reflexes to task performance and the completeness of recorded EMG signals. Current methods to address these issues in the absence of musculoskeletal models were compared with the methods used in the present study. We conclude that musculoskeletal models and kinetic analysis can improve the interpretation of kinematic and electrophysiological data, in some cases by illuminating shortcomings of the experimental methods or underlying assumptions that may otherwise escape notice.

  12. Representing Microbial Dormancy in Soil Decomposition Models Improves Model Performance and Reveals Key Ecosystem Controls on Microbial Activity

    Science.gov (United States)

    He, Y.; Yang, J.; Zhuang, Q.; Wang, G.; Liu, Y.

    2014-12-01

    Climate feedbacks from soils can result from environmental change and subsequent responses of plant and microbial communities and nutrient cycling. Explicit consideration of microbial life history traits and strategy may be necessary to predict climate feedbacks due to microbial physiology and community changes and their associated effect on carbon cycling. In this study, we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of dormancy at six temperate forest sites with observed soil efflux ranged from 4 to 10 years across different forest types. We then extrapolated the model to all temperate forests in the Northern Hemisphere (25-50°N) to investigate spatial controls on microbial and soil C dynamics. Both models captured the observed soil heterotrophic respiration (RH), yet no-dormancy model consistently exhibited large seasonal amplitude and overestimation in microbial biomass. Spatially, the total RH from temperate forests based on dormancy model amounts to 6.88PgC/yr, and 7.99PgC/yr based on no-dormancy model. However, no-dormancy model notably overestimated the ratio of microbial biomass to SOC. Spatial correlation analysis revealed key controls of soil C:N ratio on the active proportion of microbial biomass, whereas local dormancy is primarily controlled by soil moisture and temperature, indicating scale-dependent environmental and biotic controls on microbial and SOC dynamics. These developments should provide essential support to modeling future soil carbon dynamics and enhance the avenue for collaboration between empirical soil experiment and modeling in the sense that more microbial physiological measurements are needed to better constrain and evaluate the models.

  13. The development and use of plant models to assist with both the commissioning and performance optimisation of plant control systems

    International Nuclear Information System (INIS)

    Conner, A.S.; Region, S.E.

    1984-01-01

    Successful engagement of cascade control systems used to control complex nuclear plant often present control engineers with difficulties when trying to obtain early automatic operation of these systems. These difficulties often arise because prior to the start of live plant operation, control equipment performance can only be assessed using open loop techniques. By simulating simple models of plant on a computer and linking it to the site control equipment, the performance of the system can be examined and optimised prior to live plant operation. This significantly reduces the plant down time required to correct control equipment performance faults during live plant operation

  14. Performance of grid connected DFIG during recurring symmetrical faults using Internal Model Controller based Enhanced Field Oriented Control

    Directory of Open Access Journals (Sweden)

    D.V.N.Ananth

    2016-06-01

    Full Text Available The modern grid rules forces DFIG to withstand and operate during single as well as multiple low voltage grid faults. The system must not lose synchronism during any type of fault for a given time period. This withstanding capacity is called low voltage ride through (LVRT. To improve performance during LVRT, enhanced field oriented control (EFOC method is adopted in rotor side converter. This method helps in improving power transfer capability during steady state and better dynamic and transient stability during abnormal conditions. In this technique, rotor flux reference change from synchronous speed to some smaller speed or zero during the fault for injecting current at the rotor slip frequency. In this process, DC-Offset component of flux is controlled beyond decomposing to a lower value during faults and maintaining it. This offset decomposition of flux will be oscillatory in conventional FOC, whereas in EFOC with internal model controller, flux can damp quickly not only for single fault but during multiple faults. This strategy can regulate stator and rotor current waveform to sinusoidal without distortion during and after fault. It has better damped torque oscillations, control in rotor speed and generator flux during and after fault. The fluctuations in DC bus voltage across capacitor are also controlled using proposed EFOC technique. The system performance with under-voltage grid fault of 30% and 60% of the rated voltage occurring at the point of common coupling during 1 to 1.25 and another fault between 1.6 to 1.85 seconds are analyzed using simulation studies.

  15. Formulation of advanced consumables management models: Environmental control and electrical power system performance models requirements

    Science.gov (United States)

    Daly, J. K.; Torian, J. G.

    1979-01-01

    Software design specifications for developing environmental control and life support system (ECLSS) and electrical power system (EPS) programs into interactive computer programs are presented. Specifications for the ECLSS program are at the detail design level with respect to modification of an existing batch mode program. The FORTRAN environmental analysis routines (FEAR) are the subject batch mode program. The characteristics of the FEAR program are included for use in modifying batch mode programs to form interactive programs. The EPS program specifications are at the preliminary design level. Emphasis is on top-down structuring in the development of an interactive program.

  16. Pitch control for ships with diesel mechanical and hybrid propulsion: Modelling, validation and performance quantification

    OpenAIRE

    Geertsma, R.D.; Negenborn, R.R.; Visser, K.; Loonstijn, M.A.; Hopman, J.J.

    2017-01-01

    Ships, in particular service vessels, need to reduce fuel consumption, emissions and cavitation noise while maintaining manoeuvrability and preventing engine overloading. Diesel mechanical propulsion with controllable pitch propellers can provide high fuel efficiency with good manoeuvrability. However, the conventional control strategy with fixed combinator curves limits control freedom in trading-off performance characteristics. In order to evaluate performance of current state-of-the-art an...

  17. An outlook on robust model predictive control algorithms : Reflections on performance and computational aspects

    NARCIS (Netherlands)

    Saltik, M.B.; Özkan, L.; Ludlage, J.H.A.; Weiland, S.; Van den Hof, P.M.J.

    2018-01-01

    In this paper, we discuss the model predictive control algorithms that are tailored for uncertain systems. Robustness notions with respect to both deterministic (or set based) and stochastic uncertainties are discussed and contributions are reviewed in the model predictive control literature. We

  18. Embedded Sensors and Controls to Improve Component Performance and Reliability - System Dynamics Modeling and Control System Design

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-10-01

    This report documents the current status of the modeling, control design, and embedded control research for the magnetic bearing canned rotor pump being used as a demonstration platform for deeply integrating instrumentation and controls (I{\\&}C) into nuclear power plant components. This pump is a highly inter-connected thermo/electro/mechanical system that requires an active control system to operate. Magnetic bearings are inherently unstable system and without active, moment by moment control, the rotor would contact fixed surfaces in the pump causing physical damage. This report details the modeling of the pump rotordynamics, fluid forces, electromagnetic properties of the protective cans, active magnetic bearings, power electronics, and interactions between different dynamical models. The system stability of the unforced and controlled rotor are investigated analytically. Additionally, controllers are designed using proportional derivative (PD) control, proportional integral derivative (PID) control, voltage control, and linear quadratic regulator (LQR) control. Finally, a design optimization problem that joins the electrical, mechanical, magnetic, and control system design into one problem to balance the opposing needs of various design criteria using the embedded system approach is presented.

  19. Mathematic Modeling and Performance Analysis of an Adaptive Congestion Control in Intelligent Transportation Systems

    OpenAIRE

    Naja, Rola; Université de Versailles

    2015-01-01

    In this paper, we develop a preventive congestion control mechanism applied at highway entrances and devised for Intelligent Transportation Systems (ITS). The proposed mechanism provides a vehicular admission control, regulates input traffic and performs vehicular traffic shaping. Our congestion control mechanism includes two classes of vehicles and is based on a specific priority ticket pool scheme with queue-length threshold scheduling policy, tailored to vehicular networks. In an attempt t...

  20. A hybrid condenser model for real-time applications in performance monitoring, control and optimization

    International Nuclear Information System (INIS)

    Ding Xudong; Cai Wenjian; Jia Lei; Wen Changyun; Zhang Guiqing

    2009-01-01

    In this paper, a simple, yet accurate hybrid modeling technique for condensers is presented. The method starts with fundamental physical principles but captures only few key operational characteristic parameters to predict the system performances. The advantages of the methods lie that linear or non-linear least-squares methods can be directly used to determine no more than four key operational characteristic parameters in the model, which can significantly reduce the computational burden. The developed model is verified with the experimental data taken from a pilot system. The testing results confirm that the proposed model can predict accurately the performance of the real-time operating condenser with the maximum error of less than ±10%. The model technique proposed will have wide applications not only in condenser operating optimization, but also in performance assessment and fault detection and diagnosis.

  1. Modeling and identification for high-performance robot control : an RRR-robotic arm case study

    NARCIS (Netherlands)

    Kostic, D.; Jager, de A.G.; Steinbuch, M.; Hensen, R.H.A.

    2004-01-01

    We explain a procedure for getting models of robot kinematics and dynamics that are appropriate for robot control design. The procedure consists of the following steps: (i) derivation of robot kinematic and dynamic models and establishing correctness of their structures; (ii) experimental estimation

  2. Loss Performance Modeling for Hierarchical Heterogeneous Wireless Networks With Speed-Sensitive Call Admission Control

    DEFF Research Database (Denmark)

    Huang, Qian; Huang, Yue-Cai; Ko, King-Tim

    2011-01-01

    . This approach avoids unnecessary and frequent handoff between cells and reduces signaling overheads. An approximation model with guaranteed accuracy and low computational complexity is presented for the loss performance of multiservice traffic. The accuracy of numerical results is validated by comparing......A hierarchical overlay structure is an alternative solution that integrates existing and future heterogeneous wireless networks to provide subscribers with better mobile broadband services. Traffic loss performance in such integrated heterogeneous networks is necessary for an operator's network...

  3. State-Space Modeling and Performance Analysis of Variable-Speed Wind Turbine Based on a Model Predictive Control Approach

    Directory of Open Access Journals (Sweden)

    H. Bassi

    2017-04-01

    Full Text Available Advancements in wind energy technologies have led wind turbines from fixed speed to variable speed operation. This paper introduces an innovative version of a variable-speed wind turbine based on a model predictive control (MPC approach. The proposed approach provides maximum power point tracking (MPPT, whose main objective is to capture the maximum wind energy in spite of the variable nature of the wind’s speed. The proposed MPC approach also reduces the constraints of the two main functional parts of the wind turbine: the full load and partial load segments. The pitch angle for full load and the rotating force for the partial load have been fixed concurrently in order to balance power generation as well as to reduce the operations of the pitch angle. A mathematical analysis of the proposed system using state-space approach is introduced. The simulation results using MATLAB/SIMULINK show that the performance of the wind turbine with the MPC approach is improved compared to the traditional PID controller in both low and high wind speeds.

  4. Improving Performance of LVRT Capability in Single-phase Grid-tied PV Inverters by a Model Predictive Controller

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2018-01-01

    dynamic response and stability. To fill in this gap, this paper presents a fast and robust current controller based on a Model-Predictive Control (MPC) for single-phase PV inverters in other to deal with the LVRT operation. In order to confirm the effectiveness of the proposed controller, results...... the voltage sag period is short, a fast dynamic performance along with a soft behavior of the controller is the most important issue in the LVRT duration. Recently, some methods like Proportional Resonant (PR) controllers, have been presented to control the single phase PV systems in LVRT mode. However......, these methods have had uncertainties in respect their contribution in LVRT mode. In PR controllers, a fast dynamic response can be obtained by tuning the gains of PR controllers for a high bandwidth, but typically the phase margin is decreased. Therefore, the design of PR controllers needs a tradeoff between...

  5. An evidence accumulation model for conflict detection performance in a simulated air traffic control task.

    Science.gov (United States)

    Neal, Andrew; Kwantes, Peter J

    2009-04-01

    The aim of this article is to develop a formal model of conflict detection performance. Our model assumes that participants iteratively sample evidence regarding the state of the world and accumulate it over time. A decision is made when the evidence reaches a threshold that changes over time in response to the increasing urgency of the task. Two experiments were conducted to examine the effects of conflict geometry and timing on response proportions and response time. The model is able to predict the observed pattern of response times, including a nonmonotonic relationship between distance at point of closest approach and response time, as well as effects of angle of approach and relative velocity. The results demonstrate that evidence accumulation models provide a good account of performance on a conflict detection task. Evidence accumulation models are a form of dynamic signal detection theory, allowing for the analysis of response times as well as response proportions, and can be used for simulating human performance on dynamic decision tasks.

  6. A set-theoretic model reference adaptive control architecture for disturbance rejection and uncertainty suppression with strict performance guarantees

    Science.gov (United States)

    Arabi, Ehsan; Gruenwald, Benjamin C.; Yucelen, Tansel; Nguyen, Nhan T.

    2018-05-01

    Research in adaptive control algorithms for safety-critical applications is primarily motivated by the fact that these algorithms have the capability to suppress the effects of adverse conditions resulting from exogenous disturbances, imperfect dynamical system modelling, degraded modes of operation, and changes in system dynamics. Although government and industry agree on the potential of these algorithms in providing safety and reducing vehicle development costs, a major issue is the inability to achieve a-priori, user-defined performance guarantees with adaptive control algorithms. In this paper, a new model reference adaptive control architecture for uncertain dynamical systems is presented to address disturbance rejection and uncertainty suppression. The proposed framework is predicated on a set-theoretic adaptive controller construction using generalised restricted potential functions.The key feature of this framework allows the system error bound between the state of an uncertain dynamical system and the state of a reference model, which captures a desired closed-loop system performance, to be less than a-priori, user-defined worst-case performance bound, and hence, it has the capability to enforce strict performance guarantees. Examples are provided to demonstrate the efficacy of the proposed set-theoretic model reference adaptive control architecture.

  7. Performance measurement, modeling, and evaluation of integrated concurrency control and recovery algorithms in distributed data base systems

    Energy Technology Data Exchange (ETDEWEB)

    Jenq, B.C.

    1986-01-01

    The performance evaluation of integrated concurrency-control and recovery mechanisms for distributed data base systems is studied using a distributed testbed system. In addition, a queueing network model was developed to analyze the two phase locking scheme in the distributed testbed system. The combination of testbed measurement and analytical modeling provides an effective tool for understanding the performance of integrated concurrency control and recovery algorithms in distributed database systems. The design and implementation of the distributed testbed system, CARAT, are presented. The concurrency control and recovery algorithms implemented in CARAT include: a two phase locking scheme with distributed deadlock detection, a distributed version of optimistic approach, before-image and after-image journaling mechanisms for transaction recovery, and a two-phase commit protocol. Many performance measurements were conducted using a variety of workloads. A queueing network model is developed to analyze the performance of the CARAT system using the two-phase locking scheme with before-image journaling. The combination of testbed measurements and analytical modeling provides significant improvements in understanding the performance impacts of the concurrency control and recovery algorithms in distributed database systems.

  8. The model of flood control using servqual method and importance performance analysis in Surakarta City – Indonesia

    Science.gov (United States)

    Titi Purwantini, V.; Sutanto, Yusuf

    2018-05-01

    This research is to create a model of flood control in the city of Surakarta using Servqual method and Importance Performance Analysis. Service quality is generally defined as the overall assessment of a service by the customersor the extent to which a service meets customer’s needs or expectations. The purpose of this study is to find the first model of flood control that is appropriate to the condition of the community. Surakarta This means looking for a model that can provide satisfactory service for the people of Surakarta who are in the location of the flood. The second is to find the right model to improve service performance of Surakarta City Government in serving the people in flood location. The method used to determine the satisfaction of the public on the quality of service is to see the difference in the quality of service expected by the community with the reality. This method is Servqual Method While to assess the performance of city government officials is by comparing the actual performance with the quality of services provided, this method is This means looking for a model that can provide satisfactory service for the people of Surakarta who are in the location of the flood.The second is to find the right model to improve service performance of Surakarta City Government in serving the people in flood location. The method used to determine the satisfaction of the public on the quality of service is to see the difference in the quality of service expected by the community with the reality. This method is Servqual Method While to assess the performance of city government officials is by comparing the actual performance with the quality of services provided, this method is Importance Performance Analysis. Samples were people living in flooded areas in the city of Surakarta. Result this research is Satisfaction = Responsiveness+ Realibility + Assurance + Empathy+ Tangible (Servqual Model) and Importance Performance Analysis is From Cartesian diagram

  9. Determining the energy performance of manually controlled solar shades: A stochastic model based co-simulation analysis

    International Nuclear Information System (INIS)

    Yao, Jian

    2014-01-01

    Highlights: • Driving factor for adjustment of manually controlled solar shades was determined. • A stochastic model for manual solar shades was constructed using Markov method. • Co-simulation with Energyplus was carried out in BCVTB. • External shading even manually controlled should be used prior to LOW-E windows. • Previous studies on manual solar shades may overestimate energy savings. - Abstract: Solar shading devices play a significant role in reducing building energy consumption and maintaining a comfortable indoor condition. In this paper, a typical office building with internal roller shades in hot summer and cold winter zone was selected to determine the driving factor of control behavior of manual solar shades. Solar radiation was determined as the major factor in driving solar shading adjustment based on field measurements and logit analysis and then a stochastic model for manually adjusted solar shades was constructed by using Markov method. This model was used in BCVTB for further co-simulation with Energyplus to determine the impact of the control behavior of solar shades on energy performance. The results show that manually adjusted solar shades, whatever located inside or outside, have a relatively high energy saving performance than clear-pane windows while only external shades perform better than regularly used LOW-E windows. Simulation also indicates that using an ideal assumption of solar shade adjustment as most studies do in building simulation may lead to an overestimation of energy saving by about 16–30%. There is a need to improve occupants’ actions on shades to more effectively respond to outdoor conditions in order to lower energy consumption, and this improvement can be easily achieved by using simple strategies as a guide to control manual solar shades

  10. Performance of target-controlled infusion of propofol using two different pharmacokinetic models in open heart surgery - a randomised controlled study.

    Science.gov (United States)

    Mathew, P J; Sailam, S; Sivasailam, R; Thingnum, S K S; Puri, G D

    2016-01-01

    We compared the performance of a propofol target-controlled infusion (TCI) using Marsh versus PGIMER models in patients undergoing open heart surgery, in terms of measured plasma levels of propofol and objective pharmacodynamic effect. Twenty-three, ASA II/III adult patients aged 18-65 years and scheduled for elective open heart surgery received Marsh or PGIMER (Postgraduate Institute of Medical Education and Research) pharmacokinetic models of TCI for the induction and maintenance of anaesthesia with propofol in a randomized, active-controlled, non-inferiority trial. The plasma levels of propofol were measured at specified time points before, during and after bypass. The performances of both the models were similar, as determined by the error (%) in maintaining the target plasma concentrations: MDPE of -5.0 (-12.0, 5.0) in the PGIMER group vs -6.4 (-7.7 to 0.5) in the Marsh group and MDAPE of 9.1 (5, 15) in the PGIMER group vs 8 (6.7, 10.1) in the Marsh group. These values indicate that both models over-predicted the plasma propofol concentration. The new pharmacokinetic model based on data from Indian patients is comparable in performance to the commercially available Marsh pharmacokinetic model. © The Author(s) 2015.

  11. Pitch control for ships with diesel mechanical and hybrid propulsion : Modelling, validation and performance quantification

    NARCIS (Netherlands)

    Geertsma, R.D.; Negenborn, R.R.; Visser, K.; Loonstijn, M.A.; Hopman, J.J.

    2017-01-01

    Ships, in particular service vessels, need to reduce fuel consumption, emissions and cavitation noise while maintaining manoeuvrability and preventing engine overloading. Diesel mechanical propulsion with controllable pitch propellers can provide high fuel efficiency with good manoeuvrability.

  12. Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based Combustion Control

    NARCIS (Netherlands)

    Leskens, M.

    2013-01-01

    The combustion of municipal solid waste (MSW) is used for its inertisation, reduction of its volume and the conversion of its energy content into heat and/or electricity. Operation and control of modern large scale MSW combustion (MSWC) plants is determined by economic and environmental objectives

  13. Results of studies performed on the model of the MFTF Supervisory Control and Diagnostics System (SCDS)

    International Nuclear Information System (INIS)

    Wyman, R.H.

    1979-01-01

    The design and implementation of the SCDS is a relatively complex problem involving a nine-computer network coupled with a unique color graphics control console system, 50 local control minicomputers, and the usual array of drives, printers, magnetic tapes, etc. Four million bytes of data are to be collected on each MFTF cycle with a repetition rate of five minutes per shot, and the associated data processing and storing load is a major concern. Crude paper studies were made initially to try to size the various components of the system and various configurations were proposed and analyzed prior to the solicitation for the computer system. However, once the hardware was purchased and a preliminary software design was completed, it became essential and feasible to do an analysis of the system to considerably greater depth in order to identify bottlenecks and other system problems and to verify those parts of the design that met the MFTF requirements

  14. Control-Oriented Models for SO Fuel Cells from the Angle of V&V: Analysis, Simplification Possibilities, Performance

    Directory of Open Access Journals (Sweden)

    Ekaterina Auer

    2017-12-01

    Full Text Available In this paper, we take a look at the analysis and parameter identification for control-oriented, dynamic models for the thermal subsystem of solid oxide fuel cells (SOFC from the systematized point of view of verification and validation (V&V. First, we give a possible classification of models according to their verification degree which depends, for example, on the kind of arithmetic used for both formulation and simulation. Typical SOFC models, consisting of several coupled differential equations for gas preheaters and the temperature distribution in the stack module, do not have analytical solutions because of spatial nonlinearity. Therefore, in the next part of the paper, we describe in detail two possible ways to simplify such models so that the underlying differential equations can be solved analytically while still being sufficiently accurate to serve as the basis for control synthesis. The simplifying assumption is to approximate the heat capacities of the gases by zero-order polynomials (or first-oder polynomials, respectively in the temperature. In the last, application-oriented part of the paper, we identify the parameters of these models as well as compare their performance and their ability to reflect the reality with the corresponding characteristics of models in which the heat capacities are represented by quadratic polynomials (the usual case. For this purpose, the framework UniVerMeC (Unified Framework for Verified GeoMetric Computations is used, which allows us to employ different kinds of arithmetics including the interval one. This latter possibility ensures a high level of reliability of simulations and of the subsequent validation. Besides, it helps to take into account bounded uncertainty in measurements.

  15. THE MEASURABILITY OF CONTROLLING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    V. Laval

    2017-04-01

    Full Text Available The urge to increase the performance of company processes is ongoing. Surveys indicate however, that many companies do not measure the controlling performance with a defined set of key performance indicators. This paper will analyze three categories of controlling key performance indicators based on their degree of measurability and their impact on the financial performance of a company. Potential measures to optimize the performance of the controlling department will be outlined and put in a logical order. The aligning of the controlling activity with the respective management expectation will be discussed as a key success factor of this improvement project.

  16. Performance and Internal Control

    OpenAIRE

    Mifti, Sri; Lestariyo, Nugroho Budi; Kowanda, Anacostia

    2009-01-01

    The objective of this study is to measure the influence of internal auditing on performance. Research object is Inspectorate General Department of Home Affairs staffs. As research instrument, questionnaire was developed and distributed to respondents. Closed type questionnaire was developed with five (5) choices to measure the two (2) research variables. Internal auditing is measured using six (6) dimensions, and performance is measured using three (3) dimensions. As the two variables are lat...

  17. Well performance model

    International Nuclear Information System (INIS)

    Thomas, L.K.; Evans, C.E.; Pierson, R.G.; Scott, S.L.

    1992-01-01

    This paper describes the development and application of a comprehensive oil or gas well performance model. The model contains six distinct sections: stimulation design, tubing and/or casing flow, reservoir and near-wellbore calculations, production forecasting, wellbore heat transmission, and economics. These calculations may be performed separately or in an integrated fashion with data and results shared among the different sections. The model analysis allows evaluation of all aspects of well completion design, including the effects on future production and overall well economics

  18. NIF capsule performance modeling

    Directory of Open Access Journals (Sweden)

    Weber S.

    2013-11-01

    Full Text Available Post-shot modeling of NIF capsule implosions was performed in order to validate our physical and numerical models. Cryogenic layered target implosions and experiments with surrogate targets produce an abundance of capsule performance data including implosion velocity, remaining ablator mass, times of peak x-ray and neutron emission, core image size, core symmetry, neutron yield, and x-ray spectra. We have attempted to match the integrated data set with capsule-only simulations by adjusting the drive and other physics parameters within expected uncertainties. The simulations include interface roughness, time-dependent symmetry, and a model of mix. We were able to match many of the measured performance parameters for a selection of shots.

  19. Ion thruster performance model

    International Nuclear Information System (INIS)

    Brophy, J.R.

    1984-01-01

    A model of ion thruster performance is developed for high flux density cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr, and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature

  20. Base Station Performance Model

    OpenAIRE

    Walsh, Barbara; Farrell, Ronan

    2005-01-01

    At present the testing of power amplifiers within base station transmitters is limited to testing at component level as opposed to testing at the system level. While the detection of catastrophic failure is possible, that of performance degradation is not. This paper proposes a base station model with respect to transmitter output power with the aim of introducing system level monitoring of the power amplifier behaviour within the base station. Our model reflects the expe...

  1. Internal service quality by integrated approach Performance Control Matrix (PCM & Importance-Satisfaction Model (Studied in Yazd Regional Power Company

    Directory of Open Access Journals (Sweden)

    Saeid Peirow

    2016-02-01

    Full Text Available Today, the internal service quality as one of the most important factors affecting the recruitment and retention of staff is considered. The present study sought to examine the internal service quality of Yazd Regional Electric, finally, select appropriate strategies to improve the quality of local services in the organization. The application of this study is base on survey method.Data were collected from questionnaires to evaluate the 26 components of internal service quality of Yazd Regional Electric, has been used. Research community is the staff of the organisation.Also, the sample size, the initial questionnaire was distributed according to Cochran's formula is calculated.In order to analyze research data, the model is important - satisfaction and performance control matrix to identify those components that are used need to be improved.Also, in order to prioritize measures to improve employee satisfaction index is used. Data analysis using above tools show, 8 criteria are in improvment area. So, these criteria are prioritized with ESI.

  2. Performance modeling of Beamlet

    International Nuclear Information System (INIS)

    Auerbach, J.M.; Lawson, J.K.; Rotter, M.D.; Sacks, R.A.; Van Wonterghem, B.W.; Williams, W.H.

    1995-01-01

    Detailed modeling of beam propagation in Beamlet has been made to predict system performance. New software allows extensive use of optical component characteristics. This inclusion of real optical component characteristics has resulted in close agreement between calculated and measured beam distributions

  3. Human performance interfaces in air traffic control.

    Science.gov (United States)

    Chang, Yu-Hern; Yeh, Chung-Hsing

    2010-01-01

    This paper examines how human performance factors in air traffic control (ATC) affect each other through their mutual interactions. The paper extends the conceptual SHEL model of ergonomics to describe the ATC system as human performance interfaces in which the air traffic controllers interact with other human performance factors including other controllers, software, hardware, environment, and organisation. New research hypotheses about the relationships between human performance interfaces of the system are developed and tested on data collected from air traffic controllers, using structural equation modelling. The research result suggests that organisation influences play a more significant role than individual differences or peer influences on how the controllers interact with the software, hardware, and environment of the ATC system. There are mutual influences between the controller-software, controller-hardware, controller-environment, and controller-organisation interfaces of the ATC system, with the exception of the controller-controller interface. Research findings of this study provide practical insights in managing human performance interfaces of the ATC system in the face of internal or external change, particularly in understanding its possible consequences in relation to the interactions between human performance factors.

  4. When tight blood pressure control is not for everyone: a new model for performance measurement in hypertension.

    Science.gov (United States)

    Steinman, Michael A; Goldstein, Mary K

    2010-04-01

    Many patients with hypertension have legitimate reasons to forego standard blood pressure targets yet are nonetheless included in performance measurement systems. An approach to performance measurement incorporating clinical reasoning was developed to determine which patients to include in a performance measure. A 10-member multispecialty advisory panel refined a taxonomy of situations in which the balance of benefits and harms of anti-hypertensive treatment does not clearly favor tight blood pressure control (measurement for blood pressure control. These included (1) patients who have suffered adverse effects from multiple classes of antihypertensive medications; (2) patients already taking four or more antihypertensive medications; (3) patients with terminal disease, moderate to severe dementia, or other conditions that overwhelmingly dominate the patient's clinical status; and (4) other patient factors, including comfort care orientation and poor medication adherence despite attempts to remedy adherence difficulties. Several general principles also emerged. Performance measurement should focus on patients for whom the benefits of treatment clearly outweigh the harms and should incorporate a longitudinal approach. In addition, the criteria for exempting a patient from performance measurement should be more strict in patients at higher risk of adverse health outcomes from hypertension and more lenient for patients at lower risk. Incorporating "real world" clinical principles and judgment into performance measurement systems may improve targeting of care and, by accounting for patient case mix, allow for better comparison of performance between institutions.

  5. ATR performance modeling concepts

    Science.gov (United States)

    Ross, Timothy D.; Baker, Hyatt B.; Nolan, Adam R.; McGinnis, Ryan E.; Paulson, Christopher R.

    2016-05-01

    Performance models are needed for automatic target recognition (ATR) development and use. ATRs consume sensor data and produce decisions about the scene observed. ATR performance models (APMs) on the other hand consume operating conditions (OCs) and produce probabilities about what the ATR will produce. APMs are needed for many modeling roles of many kinds of ATRs (each with different sensing modality and exploitation functionality combinations); moreover, there are different approaches to constructing the APMs. Therefore, although many APMs have been developed, there is rarely one that fits a particular need. Clarified APM concepts may allow us to recognize new uses of existing APMs and identify new APM technologies and components that better support coverage of the needed APMs. The concepts begin with thinking of ATRs as mapping OCs of the real scene (including the sensor data) to reports. An APM is then a mapping from explicit quantized OCs (represented with less resolution than the real OCs) and latent OC distributions to report distributions. The roles of APMs can be distinguished by the explicit OCs they consume. APMs used in simulations consume the true state that the ATR is attempting to report. APMs used online with the exploitation consume the sensor signal and derivatives, such as match scores. APMs used in sensor management consume neither of those, but estimate performance from other OCs. This paper will summarize the major building blocks for APMs, including knowledge sources, OC models, look-up tables, analytical and learned mappings, and tools for signal synthesis and exploitation.

  6. Performance Improvement of Sensorless Vector Control for Induction Motor Drives Fed by Matrix Converter Using Nonlinear Model and Disturbance Observer

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2004-01-01

    This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with a non-linearity compensation and disturbance observer. The nonlinear voltage distortion that is caused by communication delay and on-state voltage drop in switching...

  7. Modelling and controlling hydropower plants

    CERN Document Server

    Munoz-Hernandez, German Ardul; Jones, Dewi Ieuan

    2013-01-01

    Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance.  Modelling and Controlling Hydropower Plants discusses practical and well-documented cases of modelling and controlling hydropower station modelling and control, focussing on a pumped storage scheme based in Dinorwig, North Wales.  Single-input-single-output and multiple-input-multiple-output models, which cover the linear and nonlinear characteristics of pump-storage hydroelectric power stations, are reviewed. The most important dynamic features are discussed, and the verification of these models by hardware in the loop simulation is described. To show how the performance of a pump-storage hydroelectric power station can be improved, classical and modern controllers are applied to simulated models of the Dinorwig power plant. These include PID, fuzzy approximation, feed-forward and model-based predictive control with linear and hybrid prediction models. Mod...

  8. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik

    1999-07-01

    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  9. Mitigating SDN controller performance bottlenecks

    DEFF Research Database (Denmark)

    Caba, Cosmin Marius; Soler, José

    2015-01-01

    The centralization of the control plane decision logic in Software Defined Networking (SDN) has raised concerns regarding the performance of the SDN Controller (SDNC) when the network scales up. A number of solutions have been proposed in the literature to address these concerns. This paper...... proposes a new approach for addressing the performance bottlenecks that arise from limited computational resources at the SDNC. The proposed approach is based on optimally configuring the operating parameters of the components residing inside the SDNC (network control functions such as monitoring, routing...

  10. Modelling of the controlled melt flow in a glass melting space – Its melting performance and heat losses

    Czech Academy of Sciences Publication Activity Database

    Jebavá, Marcela; Dyrčíková, Petra; Němec, Lubomír

    2015-01-01

    Roč. 430, DEC 15 (2015), s. 52-63 ISSN 0022-3093 Institutional support: RVO:67985891 Keywords : glass melt flow * mathematical modelling * energy distribution * space utilizatios * melting performance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  11. Parameter optimization through performance analysis of model based control of a batch heat treatment furnace with low NO x radiant tube burner

    International Nuclear Information System (INIS)

    Tiwari, Manish Kumar; Mukhopadhyay, Achintya; Sanyal, Dipankar

    2005-01-01

    A model based control structure for heat treating a 0.5% C steel slab in a batch furnace with low NO x radiant tube burner is designed and tested for performance to yield optimal parameter values using the model developed in the companion paper. Combustion is considered in a highly preheated and product gas diluted mode. Controlled combustion with a proposed arrangement for preheating and diluting the air by recirculating the exhaust gas that can be retrofitted with an existing burner yields satisfactory performance and emission characteristics. Finally, the effect of variable property considerations are presented and critically analyzed

  12. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    DEFF Research Database (Denmark)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NOx emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone...... experimental data from two MAN B&W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can...

  13. Dynamic performance of a high-temperature PEM (proton exchange membrane) fuel cell – Modelling and fuzzy control of purging process

    International Nuclear Information System (INIS)

    Zhang, Caizhi; Liu, Zhitao; Zhang, Xiongwen; Chan, Siew Hwa; Wang, Youyi

    2016-01-01

    To improve fuel utilization of HT-PEMFC (high-temperature proton exchange membrane fuel cell), which normally operates under dead-end mode, with properly periodical purging to flush out the accumulated water vapour in the anode flow-field is necessary, otherwise the performance of HT-PEMFC would drop gradually. In this paper, a semi-empirical dynamic voltage model of HT-PEMFC is developed for controller design purpose via fitting the experimental data and validated with experimental results. Then, a fuzzy controller is designed to schedule the purging based on the obtained model. According to the result, the developed model well reflects transient characteristics of HT-PEMFC voltage and the fuzzy controller offers good performance for purging scheduling under uncertain load demands. - Highlights: • A semi-empirical dynamic voltage model of HT-PEMFC is developed for control design. • The model is developed via fitting and validated with experimental results. • A fuzzy controller is designed to schedule the purging based on the obtained model.

  14. ACCESS: Detector Control and Performance

    Science.gov (United States)

    Morris, Matthew J.; Kaiser, M.; McCandliss, S. R.; Rauscher, B. J.; Kimble, R. A.; Kruk, J. W.; Wright, E. L.; Bohlin, R.; Kurucz, R. L.; Riess, A. G.; Pelton, R.; Deustua, S. E.; Dixon, W. V.; Sahnow, D. J.; Mott, D. B.; Wen, Y.; Benford, D. J.; Gardner, J. P.; Feldman, P. D.; Moos, H. W.; Lampton, M.; Perlmutter, S.; Woodgate, B. E.

    2014-01-01

    ACCESS, Absolute Color Calibration Experiment for Standard Stars, is a series of rocket-borne sub-orbital missions and ground-based experiments that will enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 to 1.7 micron bandpass (companion poster, Kaiser et al.). The flight detector and detector spare have been selected and integrated with their electronics and flight mount. The controller electronics have been flight qualified. Vibration testing to launch loads and thermal vacuum testing of the detector, mount, and housing have been successfully performed. Further improvements to the flight controller housing have been made. A cryogenic ground test system has been built. Dark current and read noise tests have been performed, yielding results consistent with the initial characterization tests of the detector performed by Goddard Space Flight Center’s Detector Characterization Lab (DCL). Detector control software has been developed and implemented for ground testing. Performance and integration of the detector and controller with the flight software will be presented. NASA APRA sounding rocket grant NNX08AI65G supports this work.

  15. Modelling and Control of TCV

    International Nuclear Information System (INIS)

    Sharma, A.S.; Limebeer, D.J.N.; Jaimoukha, I.M.; Lister, J.B.

    2001-11-01

    A new approach to the modelling and control of tokamak fusion reactors is presented. A nonlinear model is derived using the classical arguments of Hamiltonian mechanics and a low-order linear model is derived from it. The modelling process used here addresses flux and energy conservation issues explicitly and self-consistently. The model is of particular value, because it shows the relationship between the initial modelling assumptions and the resulting predictions. The mechanisms behind the creation of uncontrollable modes in tokamak models are discussed. A normalised coprime factorisation controller is developed for the TCV tokamak using the verified linear model. Recent theory is applied to reduce the controller order significantly whilst guaranteeing a priori bounds on the robust stability and performance. The controller is shown to track successfully reference signals that dictate the plasma's shape, position and current. The tests used to verify this were carried out on linear and nonlinear models. (author)

  16. Modelling and Control of TCV

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.S.; Limebeer, D.J.N.; Jaimoukha, I.M.; Lister, J.B

    2001-11-01

    A new approach to the modelling and control of tokamak fusion reactors is presented. A nonlinear model is derived using the classical arguments of Hamiltonian mechanics and a low-order linear model is derived from it. The modelling process used here addresses flux and energy conservation issues explicitly and self-consistently. The model is of particular value, because it shows the relationship between the initial modelling assumptions and the resulting predictions. The mechanisms behind the creation of uncontrollable modes in tokamak models are discussed. A normalised coprime factorisation controller is developed for the TCV tokamak using the verified linear model. Recent theory is applied to reduce the controller order significantly whilst guaranteeing a priori bounds on the robust stability and performance. The controller is shown to track successfully reference signals that dictate the plasma's shape, position and current. The tests used to verify this were carried out on linear and nonlinear models. (author)

  17. Improved Transient Performance of a Fuzzy Modified Model Reference Adaptive Controller for an Interacting Coupled Tank System Using Real-Coded Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Asan Mohideen Khansadurai

    2014-01-01

    Full Text Available The main objective of the paper is to design a model reference adaptive controller (MRAC with improved transient performance. A modification to the standard direct MRAC called fuzzy modified MRAC (FMRAC is used in the paper. The FMRAC uses a proportional control based Mamdani-type fuzzy logic controller (MFLC to improve the transient performance of a direct MRAC. The paper proposes the application of real-coded genetic algorithm (RGA to tune the membership function parameters of the proposed FMRAC offline so that the transient performance of the FMRAC is improved further. In this study, a GA based modified MRAC (GAMMRAC, an FMRAC, and a GA based FMRAC (GAFMRAC are designed for a coupled tank setup in a hybrid tank process and their transient performances are compared. The results show that the proposed GAFMRAC gives a better transient performance than the GAMMRAC or the FMRAC. It is concluded that the proposed controller can be used to obtain very good transient performance for the control of nonlinear processes.

  18. Assessment of Energy Performance and Emission Control Using Alternative Fuels in Cement Industry through a Process Model

    Directory of Open Access Journals (Sweden)

    Azad Rahman

    2017-12-01

    Full Text Available Cement manufacturing is one of the most energy intensive processes and is accountable for substantial pollutant emissions. Increasing energy costs compel stakeholders and researchers to search for alternative options to improve energy performance and reduce CO2 emissions. Alternative fuels offer a realistic solution towards the reduction of the usage of fossil fuels and the mitigation of pollutant emissions. This paper developed a process model of a precalciner kiln system in the cement industry using Aspen Plus software to simulate the effect of five alternative fuels on pollutant emissions and energy performance. The alternatives fuels used were tyre, municipal solid waste (MSW, meat and bone meal (MBM, plastic waste and sugarcane bagasse. The model was developed on the basis of energy and mass balance of the system and was validated against data from a reference cement plant. This study also investigated the effect of these alternative fuels on the quality of the clinker. The results indicated that up to a 4.4% reduction in CO2 emissions and up to a 6.4% reduction in thermal energy requirement could be achieved using these alternative fuels with 20% mix in coal. It was also found that the alternative fuels had minimum influence on the clinker quality except in the case of MSW. Overall, MBM was found to be a better option as it is capable on reducing energy requirement and CO2 emissions more than others. The outcomes of the study offer better understanding of the effects of solid alternative fuels to achieve higher energy performance and on mitigating pollutant emissions in cement industry.

  19. Modeling and Control for Microgrids

    Science.gov (United States)

    Steenis, Joel

    Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain scheduled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.

  20. Active control of the tip vortex: an experimental investigation on the performance characteristics of a model turbine

    International Nuclear Information System (INIS)

    Anik, E; Abdulrahim, A; Ostovan, Y; Mercan, B; Uzol, O

    2014-01-01

    This study is part of an on-going experimental research campaign that focuses on the active control of the tip leakage/vortex characteristics of a model horizontal axis wind turbine rotor using tip injection. This paper presents both baseline (no-injection) data as well as data with tip injection, concentrating on the effects of tip injection on power and thrust variations with the Tip Speed Ratio (TSR). The experiments are conducted by placing a specially designed 3-bladed model wind turbine rotor at the exit of a 1.7 m diameter open-jet wind tunnel. The rotor blades are non-linearly twisted and tapered with NREL S826 airfoil profile all along the span. The nacelle, hub and the blades are specifically designed to allow pressurized air to pass through and get injected from the blade tips while the rotor is rotating. Baseline results show that the general trends are as expected for a small wind turbine and the maximum power coefficient is reached at around TSR=4.5. Results with injection show that the tip injection has significant effect on the power and thrust coefficients in comparison to the baseline data, especially at TSR values higher than the max C P TSR value. Both coefficients seem to be significantly increased due to tip injection and the max C P TSR value also gets shifted to a slightly higher TSR value. Tip injection seems to have no significant effect for TSR values less than 3.5

  1. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.

    Science.gov (United States)

    Ao, Di; Song, Rong; Gao, JinWu

    2017-08-01

    Although the merits of electromyography (EMG)-based control of powered assistive systems have been certified, the factors that affect the performance of EMG-based human-robot cooperation, which are very important, have received little attention. This study investigates whether a more physiologically appropriate model could improve the performance of human-robot cooperation control for an ankle power-assist exoskeleton robot. To achieve the goal, an EMG-driven Hill-type neuromusculoskeletal model (HNM) and a linear proportional model (LPM) were developed and calibrated through maximum isometric voluntary dorsiflexion (MIVD). The two control models could estimate the real-time ankle joint torque, and HNM is more accurate and can account for the change of the joint angle and muscle dynamics. Then, eight healthy volunteers were recruited to wear the ankle exoskeleton robot and complete a series of sinusoidal tracking tasks in the vertical plane. With the various levels of assist based on the two calibrated models, the subjects were instructed to track the target displayed on the screen as accurately as possible by performing ankle dorsiflexion and plantarflexion. Two measurements, the root mean square error (RMSE) and root mean square jerk (RMSJ), were derived from the assistant torque and kinematic signals to characterize the movement performances, whereas the amplitudes of the recorded EMG signals from the tibialis anterior (TA) and the gastrocnemius (GAS) were obtained to reflect the muscular efforts. The results demonstrated that the muscular effort and smoothness of tracking movements decreased with an increase in the assistant ratio. Compared with LPM, subjects made lower physical efforts and generated smoother movements when using HNM, which implied that a more physiologically appropriate model could enable more natural and human-like human-robot cooperation and has potential value for improvement of human-exoskeleton interaction in future applications.

  2. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    International Nuclear Information System (INIS)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik; Andreasen, Anders; Larsen, Ulrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NO x emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone combustion model using ideal gas law equations over a complete crank cycle. The combustion process is divided into intervals, and the product composition and flame temperature are calculated in each interval. The NO x emissions are predicted using the extended Zeldovich mechanism. The model is validated using experimental data from two MAN B and W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can predict specific fuel oil consumption and NO x emissions within the 95% confidence intervals given by the experimental measurements. The second validation confirms the capability of the model to match measured engine output parameters based on measured engine input parameters with a maximum 5% deviation. - Highlights: ► A fast realistic model of a marine two-stroke low speed diesel engine was derived. ► The model is fast and accurate enough for future complex energy systems analysis. ► The effects of engine tuning were validated with experimental tests. ► The model was validated while constrained by experimental input and output data.

  3. Integrated plasma control for high performance tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Deranian, R.D.; Ferron, J.R.; Johnson, R.D.; LaHaye, R.J.; Leuer, J.A.; Penaflor, B.G.; Walker, M.L.; Welander, A.S.; Jayakumar, R.J.; Makowski, M.A.; Khayrutdinov, R.R.

    2005-01-01

    Sustaining high performance in a tokamak requires controlling many equilibrium shape and profile characteristics simultaneously with high accuracy and reliability, while suppressing a variety of MHD instabilities. Integrated plasma control, the process of designing high-performance tokamak controllers based on validated system response models and confirming their performance in detailed simulations, provides a systematic method for achieving and ensuring good control performance. For present-day devices, this approach can greatly reduce the need for machine time traditionally dedicated to control optimization, and can allow determination of high-reliability controllers prior to ever producing the target equilibrium experimentally. A full set of tools needed for this approach has recently been completed and applied to present-day devices including DIII-D, NSTX and MAST. This approach has proven essential in the design of several next-generation devices including KSTAR, EAST, JT-60SC, and ITER. We describe the method, results of design and simulation tool development, and recent research producing novel approaches to equilibrium and MHD control in DIII-D. (author)

  4. Predictive performance models and multiple task performance

    Science.gov (United States)

    Wickens, Christopher D.; Larish, Inge; Contorer, Aaron

    1989-01-01

    Five models that predict how performance of multiple tasks will interact in complex task scenarios are discussed. The models are shown in terms of the assumptions they make about human operator divided attention. The different assumptions about attention are then empirically validated in a multitask helicopter flight simulation. It is concluded from this simulation that the most important assumption relates to the coding of demand level of different component tasks.

  5. Clustering the mediators between the sales control systems and the sales performance using the AMO model: A narrative systematic literature review

    Directory of Open Access Journals (Sweden)

    Alejandro Benet-Zepf

    2018-05-01

    Originality/value: As academic result, the review highlights that all three groups from the AMO model evidence positive impacts on sales performance when a behavioral control system (mostly from the capability part is in use, by enhancing salesperson’s skills, motivation, and organizational conditions and support, fostering as a result, a salesperson relational approach and a customer orientation, which generate the best outcomes in the long term. These findings suggest as a managerial contribution, that coaching and leading -rather than commanding- to be a more appropriate control attitude, especially when the salesperson is younger or unexperienced.

  6. Microbial Performance of Food Safety Control and Assurance Activities in a Fresh Produce Processing Sector Measured Using a Microbial Assessment Scheme and Statistical Modeling

    DEFF Research Database (Denmark)

    Njage, Patrick Murigu Kamau; Sawe, Chemutai Tonui; Onyango, Cecilia Moraa

    2017-01-01

    assessment scheme and statistical modeling were used to systematically assess the microbial performance of core control and assurance activities in five Kenyan fresh produce processing and export companies. Generalized linear mixed models and correlated random-effects joint models for multivariate clustered...... the maximum safety level for environmental samples. Escherichia coli was detected in five of the six CSLs, including the final product. Among the processing-environment samples, the hand or glove swabs of personnel revealed a higher level of predicted contamination with E. coli, and 80% of the factories were...... of contamination with coliforms in water at the inlet than in the final rinse water. Four (80%) of the five assessed processors had poor to unacceptable counts of Enterobacteriaceae on processing surfaces. Personnel-, equipment-, and product-related hygiene measures to improve the performance of preventive...

  7. Party Control, Party Competition and Public Service Performance

    OpenAIRE

    Boyne, George Alexander; James, O.; John, P.; Petrovsky, Nicolai

    2012-01-01

    This article assesses party effects on the performance of public services. A policy-seeking model, hypothesizing that left and right party control affects performance, and an instrumental model, where all parties strive to raise performance, are presented. The framework also suggests a mixed model in which party effects are contingent on party competition, with parties raising performance as increasing party competition places their control of government at increasing risk. These models are t...

  8. Data harmonization and model performance

    Science.gov (United States)

    The Joint Committee on Urban Storm Drainage of the International Association for Hydraulic Research (IAHR) and International Association on Water Pollution Research and Control (IAWPRC) was formed in 1982. The current committee members are (no more than two from a country): B. C. Yen, Chairman (USA); P. Harremoes, Vice Chairman (Denmark); R. K. Price, Secretary (UK); P. J. Colyer (UK), M. Desbordes (France), W. C. Huber (USA), K. Krauth (FRG), A. Sjoberg (Sweden), and T. Sueishi (Japan).The IAHR/IAWPRC Joint Committee is forming a Task Group on Data Harmonization and Model Performance. One objective is to promote international urban drainage data harmonization for easy data and information exchange. Another objective is to publicize available models and data internationally. Comments and suggestions concerning the formation and charge of the Task Group are welcome and should be sent to: B. C. Yen, Dept. of Civil Engineering, Univ. of Illinois, 208 N. Romine St., Urbana, IL 61801.

  9. The robust model predictive control based on mixed H2/H∞ approach with separated performance formulations and its ISpS analysis

    Science.gov (United States)

    Li, Dewei; Li, Jiwei; Xi, Yugeng; Gao, Furong

    2017-12-01

    In practical applications, systems are always influenced by parameter uncertainties and external disturbance. Both the H2 performance and the H∞ performance are important for the real applications. For a constrained system, the previous designs of mixed H2/H∞ robust model predictive control (RMPC) optimise one performance with the other performance requirement as a constraint. But the two performances cannot be optimised at the same time. In this paper, an improved design of mixed H2/H∞ RMPC for polytopic uncertain systems with external disturbances is proposed to optimise them simultaneously. In the proposed design, the original uncertain system is decomposed into two subsystems by the additive character of linear systems. Two different Lyapunov functions are used to separately formulate the two performance indices for the two subsystems. Then, the proposed RMPC is designed to optimise both the two performances by the weighting method with the satisfaction of the H∞ performance requirement. Meanwhile, to make the design more practical, a simplified design is also developed. The recursive feasible conditions of the proposed RMPC are discussed and the closed-loop input state practical stable is proven. The numerical examples reflect the enlarged feasible region and the improved performance of the proposed design.

  10. Optimum Application of Thermal Factors to Artificial Neural Network Models for Improvement of Control Performance in Double Skin-Enveloped Buildings

    Directory of Open Access Journals (Sweden)

    Kyung-Il Chin

    2013-08-01

    Full Text Available This study proposes an artificial neural network (ANN-based thermal control method for buildings with double skin envelopes that has rational relationships between the ANN model input and output. The relationship between the indoor air temperature and surrounding environmental factors was investigated based on field measurement data from an actual building. The results imply that the indoor temperature was not significantly influenced by vertical solar irradiance, but by the outdoor and cavity temperature. Accordingly, a new ANN model developed in this study excluded solar irradiance as an input variable for predicting the future indoor temperature. The structure and learning method of this new ANN model was optimized, followed by the performance tests of a variety of internal and external envelope opening strategies for the heating and cooling seasons. The performance tests revealed that the optimized ANN-based logic yielded better temperature conditions than the non-ANN based logic. This ANN-based logic increased overall comfortable periods and decreased the frequency of overshoots and undershoots out of the thermal comfort range. The ANN model proved that it has the potential to be successfully applied in the temperature control logic for double skin-enveloped buildings. The ANN model, which was proposed in this study, effectively predicted future indoor temperatures for the diverse opening strategies. The ANN-based logic optimally determined the operation of heating and cooling systems as well as opening conditions for the double skin envelopes.

  11. Model Process Control Language

    Data.gov (United States)

    National Aeronautics and Space Administration — The MPC (Model Process Control) language enables the capture, communication and preservation of a simulation instance, with sufficient detail that it can be...

  12. Stochastic Control - External Models

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    2005-01-01

    This note is devoted to control of stochastic systems described in discrete time. We are concerned with external descriptions or transfer function model, where we have a dynamic model for the input output relation only (i.e.. no direct internal information). The methods are based on LTI systems...

  13. Aeroservoelasticity modeling and control

    CERN Document Server

    Tewari, Ashish

    2015-01-01

    This monograph presents the state of the art in aeroservoelastic (ASE) modeling and analysis and develops a systematic theoretical and computational framework for use by researchers and practicing engineers. It is the first book to focus on the mathematical modeling of structural dynamics, unsteady aerodynamics, and control systems to evolve a generic procedure to be applied for ASE synthesis. Existing robust, nonlinear, and adaptive control methodology is applied and extended to some interesting ASE problems, such as transonic flutter and buffet, post-stall buffet and maneuvers, and flapping flexible wing. The author derives a general aeroservoelastic plant via the finite-element structural dynamic model, unsteady aerodynamic models for various regimes in the frequency domain, and the associated state-space model by rational function approximations. For more advanced models, the full-potential, Euler, and Navier-Stokes methods for treating transonic and separated flows are also briefly addressed. Essential A...

  14. Fuzzy Control Teaching Models

    Directory of Open Access Journals (Sweden)

    Klaus-Dietrich Kramer

    2016-05-01

    Full Text Available Many degree courses at technical universities include the subject of control systems engineering. As an addition to conventional approaches Fuzzy Control can be used to easily find control solutions for systems, even if they include nonlinearities. To support further educational training, models which represent a technical system to be controlled are required. These models have to represent the system in a transparent and easy cognizable manner. Furthermore, a programming tool is required that supports an easy Fuzzy Control development process, including the option to verify the results and tune the system behavior. In order to support the development process a graphical user interface is needed to display the fuzzy terms under real time conditions, especially with a debug system and trace functionality. The experiences with such a programming tool, the Fuzzy Control Design Tool (FHFCE Tool, and four fuzzy teaching models will be presented in this paper. The methodical and didactical objective in the utilization of these teaching models is to develop solution strategies using Computational Intelligence (CI applications for Fuzzy Controllers in order to analyze different algorithms of inference or defuzzyfication and to verify and tune those systems efficiently.

  15. Performing instrumentation and controls upgrades

    International Nuclear Information System (INIS)

    Kessler, F. M.; Connell, T. J.; Ryan, M. P.

    1992-01-01

    I and C upgrades are comprised of a varying range of content, complexity, expansiveness, and criticality. There are common threads in all upgrades which can be simplified by the development of a long term I and C upgrade plan. The development of a such a plan can establish effective ground rules for upgrades, large and small. It can be the basis from which to begin an upgrade evaluation and the standard which is used to compare the degree of compliance of any upgrade regarding the plan or to define the differences from the plan and an individual upgrade. Primary motivation for I and C upgrades are obsolescence and unavailability of spare parts. Numerous other areas of consideration are also involved in an upgrade. Today's technology results in most upgrades largely or totally utilizing digital equipment. The use of digital equipment is fairly new in many I and C applications and requires an elaborate evaluation from functional, qualification, operational, and licensing perspectives as well as others. A well defined upgrade plan developed as a basis for I and C upgrades is a significant start to ensuring an effective upgrade process. Properly developed and implemented, the plan will support I and C upgrade efforts to ensure that the intricacies associated with such tasks eliminate the existing problems which require the upgrade to be performed. The upgrade plan also results in ensuring the maximum benefit from all perspectives of the plant enhancements being carried out and considered for future implementation. Instrumentation and controls aging and replacement are issues of growing importance due to the potential for significant impact on plant operation and efficiency. Obsolescence and unavailability of spare parts are major drivers towards evaluating the cost benefits of upgrading current equipment. In addition to these two primary factors, the advantages of utilizing digital equipment have also become of prime importance when evaluating instrumentation and

  16. Principles of Sonar Performance Modeling

    NARCIS (Netherlands)

    Ainslie, M.A.

    2010-01-01

    Sonar performance modelling (SPM) is concerned with the prediction of quantitative measures of sonar performance, such as probability of detection. It is a multidisciplinary subject, requiring knowledge and expertise in the disparate fields of underwater acoustics, acoustical oceanography, sonar

  17. Model-free control

    Science.gov (United States)

    Fliess, Michel; Join, Cédric

    2013-12-01

    'Model-free control'and the corresponding 'intelligent' PID controllers (iPIDs), which already had many successful concrete applications, are presented here for the first time in an unified manner, where the new advances are taken into account. The basics of model-free control is now employing some old functional analysis and some elementary differential algebra. The estimation techniques become quite straightforward via a recent online parameter identification approach. The importance of iPIs and especially of iPs is deduced from the presence of friction. The strange industrial ubiquity of classic PIDs and the great difficulty for tuning them in complex situations is deduced, via an elementary sampling, from their connections with iPIDs. Several numerical simulations are presented which include some infinite-dimensional systems. They demonstrate not only the power of our intelligent controllers but also the great simplicity for tuning them.

  18. Characterising performance of environmental models

    NARCIS (Netherlands)

    Bennett, N.D.; Croke, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newham, L.T.H.; Norton, J.; Perrin, C.; Pierce, S.; Robson, B.; Seppelt, R.; Voinov, A.; Fath, B.D.; Andreassian, V.

    2013-01-01

    In order to use environmental models effectively for management and decision-making, it is vital to establish an appropriate level of confidence in their performance. This paper reviews techniques available across various fields for characterising the performance of environmental models with focus

  19. Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments

    International Nuclear Information System (INIS)

    Ahn, Jonghoon; Cho, Soolyeon

    2017-01-01

    Highlights: •Integrated energy control model improves thermal comfort and mitigates an increase of energy consumption. •Communication between heating and cooling, thermal comfort, and decision making models optimizes energy supply. •PMV model effectively rectifies set-point temperature to reduce thermal dissatisfaction in various conditions. •Five-step decision making model properly responds to abnormal situations derived from human anti-logic or common sense. •Integrated model can be extended for managing risks caused by fire or disasters. -- Abstract: In spite of the remarkable development of technology, most studies for building energy controls to evaluate or estimate the energy performance have not accurately reflected actual building’s energy consumption patterns. For this issue, several techniques, such as simulation and calibration, comprehensive survey system, smart metering, and commissioning, have been attempted. However, in most studies, some factors in thermal systems derived from occupant behavior were perceived as fixed objects, and the factors were converted into simple numbers as parts of inputs into simulation templates. There was lack of studies on considerations that unpredictable responses derived from human anti-logic or common sense could deteriorate energy efficiency in theoretical analyses even though the systems were properly operated. This research proposes integrated energy supply models based on artificial intelligence responding to anti-logic or common sense that can reduce machine’s energy saving effects. By use of design scenarios assuming some unusual situations, a decision making model determines the extent to which the cause of the abnormal situations are associated with the occupant behavior. After the five-step phases in the decision making model, the actual outputs of the energy supply model for the buildings are determined, and the reciprocal communication between the thermal and decision making models mitigates

  20. The integrated environmental control model

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Berkenpas, M.B.; Kalagnanam, J.R. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-11-01

    The capability to estimate the performance and cost of emission control systems is critical to a variety of planning and analysis requirements faced by utilities, regulators, researchers and analysts in the public and private sectors. The computer model described in this paper has been developed for DOe to provide an up-to-date capability for analyzing a variety of pre-combustion, combustion, and post-combustion options in an integrated framework. A unique capability allows performance and costs to be modeled probabilistically, which allows explicit characterization of uncertainties and risks.

  1. Multiprocessor performance modeling with ADAS

    Science.gov (United States)

    Hayes, Paul J.; Andrews, Asa M.

    1989-01-01

    A graph managing strategy referred to as the Algorithm to Architecture Mapping Model (ATAMM) appears useful for the time-optimized execution of application algorithm graphs in embedded multiprocessors and for the performance prediction of graph designs. This paper reports the modeling of ATAMM in the Architecture Design and Assessment System (ADAS) to make an independent verification of ATAMM's performance prediction capability and to provide a user framework for the evaluation of arbitrary algorithm graphs. Following an overview of ATAMM and its major functional rules are descriptions of the ADAS model of ATAMM, methods to enter an arbitrary graph into the model, and techniques to analyze the simulation results. The performance of a 7-node graph example is evaluated using the ADAS model and verifies the ATAMM concept by substantiating previously published performance results.

  2. Advanced CFD modeling techniques for improved predictions of SNCR performance for NO{sub x} control in utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, M.A.; Montgomery, C.J.; Swensen, D.A.; Wang, D.H.; Heap, M.P.

    2000-07-01

    Conditions for the selective noncatalytic reduction (SNCR) of NO to N{sub 2} by ammonia in the presence of excess oxygen were first identified by Lyon nearly twenty-five years ago. Since that time, researchers have investigated the effectiveness of other reagents, such as urea and cyanuric acid and effects of process parameters such as temperature, residence time, normalized stoichiometric ratio (NSR), equivalence ratio, initial NOx level, and various additives on SNCR performance. In practical combustion systems, NOx reduction efficiencies are primarily dependent on three factors: (1) mixing, (2) temperature, and (3) residence time. Efficiencies increase when all three act in concert so that the reagent is fully mixed with the flue gas at optimum temperatures over a sufficient time. In practical combustion system, severe design constraints are placed on the reagent injection system that must disperse the reagent throughout the entire combustion product stream while the gases are within the appropriate temperature window. Thus, the design of an SNCR injection system requires an analysis capability that takes into account the nonlinear coupling between these physical processes. In particular, it is critical to (1) couple robust finite-rate SNCR chemistry to the flow field computations, and (2) reduce the time associated with the analysis so that the CFD-based analysis remains feasible for design purposes. This paper addresses these 2 issues.

  3. Dutch elm disease control: performance and costs

    Science.gov (United States)

    William N., Jr. Cannon; David P. Worley

    1980-01-01

    Municipal programs to suppress Dutch elm disease have had highly variable results. Performance as measured by tree mortality was unrelated to control strategies. Costs for control programs were 37 to 76 percent less than costs without control programs in the 15-year time-span of the study. Only those municipalities that conducted a high-performance program could be...

  4. Modeling and identification for robot motion control

    NARCIS (Netherlands)

    Kostic, D.; Jager, de A.G.; Steinbuch, M.; Kurfess, T.R.

    2004-01-01

    This chapter deals with the problems of robot modelling and identification for high-performance model-based motion control. A derivation of robot kinematic and dynamic models was explained. Modelling of friction effects was also discussed. Use of a writing task to establish correctness of the models

  5. Robust high-performance control for robotic manipulators

    Science.gov (United States)

    Seraji, Homayoun (Inventor)

    1991-01-01

    Model-based and performance-based control techniques are combined for an electrical robotic control system. Thus, two distinct and separate design philosophies have been merged into a single control system having a control law formulation including two distinct and separate components, each of which yields a respective signal component that is combined into a total command signal for the system. Those two separate system components include a feedforward controller and a feedback controller. The feedforward controller is model-based and contains any known part of the manipulator dynamics that can be used for on-line control to produce a nominal feedforward component of the system's control signal. The feedback controller is performance-based and consists of a simple adaptive PID controller which generates an adaptive control signal to complement the nominal feedforward signal.

  6. Development and implementation of a dynamic TES dispatch control component in a PV-CSP techno-economic performance modelling tool

    Science.gov (United States)

    Hansson, Linus; Guédez, Rafael; Larchet, Kevin; Laumert, Bjorn

    2017-06-01

    The dispatchability offered by thermal energy storage (TES) in concentrated solar power (CSP) and solar hybrid plants based on such technology presents the most important difference compared to power generation based only on photovoltaics (PV). This has also been one reason for recent hybridization efforts of the two technologies and the creation of Power Purchase Agreement (PPA) payment schemes based on offering higher payment multiples during daily hours of higher (peak or priority) demand. Recent studies involving plant-level thermal energy storage control strategies are however to a large extent based on pre-determined approaches, thereby not taking into account the actual dynamics of thermal energy storage system operation. In this study, the implementation of a dynamic dispatch strategy in the form of a TRNSYS controller for hybrid PV-CSP plants in the power-plant modelling tool DYESOPT is presented. In doing this it was attempted to gauge the benefits of incorporating a day-ahead approach to dispatch control compared to a fully pre-determined approach determining hourly dispatch only once prior to annual simulation. By implementing a dynamic strategy, it was found possible to enhance technical and economic performance for CSP-only plants designed for peaking operation and featuring low values of the solar multiple. This was achieved by enhancing dispatch control, primarily by taking storage levels at the beginning of every simulation day into account. The sequential prediction of the TES level could therefore be improved, notably for evaluated plants without integrated PV, for which the predicted storage levels deviated less than when PV was present in the design. While also featuring dispatch performance gains, optimal plant configurations for hybrid PV-CSP was found to present a trade-off in economic performance in the form of an increase in break-even electricity price when using the dynamic strategy which was offset to some extent by a reduction in

  7. Control switching in high performance and fault tolerant control

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2010-01-01

    The problem of reliability in high performance control and in fault tolerant control is considered in this paper. A feedback controller architecture for high performance and fault tolerance is considered. The architecture is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization. By usi...

  8. Performability Modelling Tools, Evaluation Techniques and Applications

    NARCIS (Netherlands)

    Haverkort, Boudewijn R.H.M.

    1990-01-01

    This thesis deals with three aspects of quantitative evaluation of fault-tolerant and distributed computer and communication systems: performability evaluation techniques, performability modelling tools, and performability modelling applications. Performability modelling is a relatively new

  9. A discrete control model of PLANT

    Science.gov (United States)

    Mitchell, C. M.

    1985-01-01

    A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.

  10. Welding process modelling and control

    Science.gov (United States)

    Romine, Peter L.; Adenwala, Jinen A.

    1993-01-01

    The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control.

  11. Performance modeling, stochastic networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi R

    2013-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the importan

  12. Can better modelling improve tokamak control?

    International Nuclear Information System (INIS)

    Lister, J.B.; Vyas, P.; Ward, D.J.; Albanese, R.; Ambrosino, G.; Ariola, M.; Villone, F.; Coutlis, A.; Limebeer, D.J.N.; Wainwright, J.P.

    1997-01-01

    The control of present day tokamaks usually relies upon primitive modelling and TCV is used to illustrate this. A counter example is provided by the successful implementation of high order SISO controllers on COMPASS-D. Suitable models of tokamaks are required to exploit the potential of modern control techniques. A physics based MIMO model of TCV is presented and validated with experimental closed loop responses. A system identified open loop model is also presented. An enhanced controller based on these models is designed and the performance improvements discussed. (author) 5 figs., 9 refs

  13. Critical review of glass performance modeling

    International Nuclear Information System (INIS)

    Bourcier, W.L.

    1994-07-01

    Borosilicate glass is to be used for permanent disposal of high-level nuclear waste in a geologic repository. Mechanistic chemical models are used to predict the rate at which radionuclides will be released from the glass under repository conditions. The most successful and useful of these models link reaction path geochemical modeling programs with a glass dissolution rate law that is consistent with transition state theory. These models have been used to simulate several types of short-term laboratory tests of glass dissolution and to predict the long-term performance of the glass in a repository. Although mechanistically based, the current models are limited by a lack of unambiguous experimental support for some of their assumptions. The most severe problem of this type is the lack of an existing validated mechanism that controls long-term glass dissolution rates. Current models can be improved by performing carefully designed experiments and using the experimental results to validate the rate-controlling mechanisms implicit in the models. These models should be supported with long-term experiments to be used for model validation. The mechanistic basis of the models should be explored by using modern molecular simulations such as molecular orbital and molecular dynamics to investigate both the glass structure and its dissolution process

  14. Critical review of glass performance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States)

    1994-07-01

    Borosilicate glass is to be used for permanent disposal of high-level nuclear waste in a geologic repository. Mechanistic chemical models are used to predict the rate at which radionuclides will be released from the glass under repository conditions. The most successful and useful of these models link reaction path geochemical modeling programs with a glass dissolution rate law that is consistent with transition state theory. These models have been used to simulate several types of short-term laboratory tests of glass dissolution and to predict the long-term performance of the glass in a repository. Although mechanistically based, the current models are limited by a lack of unambiguous experimental support for some of their assumptions. The most severe problem of this type is the lack of an existing validated mechanism that controls long-term glass dissolution rates. Current models can be improved by performing carefully designed experiments and using the experimental results to validate the rate-controlling mechanisms implicit in the models. These models should be supported with long-term experiments to be used for model validation. The mechanistic basis of the models should be explored by using modern molecular simulations such as molecular orbital and molecular dynamics to investigate both the glass structure and its dissolution process.

  15. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending,a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models...

  16. Data management system performance modeling

    Science.gov (United States)

    Kiser, Larry M.

    1993-01-01

    This paper discusses analytical techniques that have been used to gain a better understanding of the Space Station Freedom's (SSF's) Data Management System (DMS). The DMS is a complex, distributed, real-time computer system that has been redesigned numerous times. The implications of these redesigns have not been fully analyzed. This paper discusses the advantages and disadvantages for static analytical techniques such as Rate Monotonic Analysis (RMA) and also provides a rationale for dynamic modeling. Factors such as system architecture, processor utilization, bus architecture, queuing, etc. are well suited for analysis with a dynamic model. The significance of performance measures for a real-time system are discussed.

  17. Performance estimates for personnel access control systems

    International Nuclear Information System (INIS)

    Bradley, R.G.

    1980-10-01

    Current performance estimates for personnel access control systems use estimates of Type I and Type II verification errors. A system performance equation which addresses normal operation, the insider, and outside adversary attack is developed. Examination of this equation reveals the inadequacy of classical Type I and II error evaluations which require detailed knowledge of the adversary threat scenario for each specific installation. Consequently, new performance measures which are consistent with the performance equation and independent of the threat are developed as an aid in selecting personnel access control systems

  18. Controlling chaos in Internet congestion control model

    International Nuclear Information System (INIS)

    Chen Liang; Wang Xiaofan; Han Zhengzhi

    2004-01-01

    The TCP end-to-end congestion control plus RED router queue management can be modeled as a discrete-time dynamical system, which may create complex bifurcating and chaotic behavior. Based on the basic features of the TCP-RED model, we propose a time-dependent delayed feedback control algorithm to control chaos in the system by perturbing the accessible RED parameter p max . This method is able to stabilized a router queue occupancy at a level without knowing the exact knowledge of the network. Further, we study the situation of the presence of the UDP traffic

  19. Controlling chaos in Internet congestion control model

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liang E-mail: chenmoon110@yahoo.com.cn; Wang Xiaofan; Han Zhengzhi

    2004-07-01

    The TCP end-to-end congestion control plus RED router queue management can be modeled as a discrete-time dynamical system, which may create complex bifurcating and chaotic behavior. Based on the basic features of the TCP-RED model, we propose a time-dependent delayed feedback control algorithm to control chaos in the system by perturbing the accessible RED parameter p{sub max}. This method is able to stabilized a router queue occupancy at a level without knowing the exact knowledge of the network. Further, we study the situation of the presence of the UDP traffic.

  20. Utilities for high performance dispersion model PHYSIC

    International Nuclear Information System (INIS)

    Yamazawa, Hiromi

    1992-09-01

    The description and usage of the utilities for the dispersion calculation model PHYSIC were summarized. The model was developed in the study of developing high performance SPEEDI with the purpose of introducing meteorological forecast function into the environmental emergency response system. The procedure of PHYSIC calculation consists of three steps; preparation of relevant files, creation and submission of JCL, and graphic output of results. A user can carry out the above procedure with the help of the Geographical Data Processing Utility, the Model Control Utility, and the Graphic Output Utility. (author)

  1. Performance analysis of LMFBR control rods

    International Nuclear Information System (INIS)

    Pitner, A.L.; Birney, K.R.

    1975-01-01

    Control rods in the FFTF and LMFBR's will consist of pin bundles of stainless steel-clad boron carbide pellets. In the FFTF reference design, sixty-one pins of 0.474-inch diameter each containing a 36-inch stack of 0.362-inch diameter boron carbide pellets comprise a control rod. Reactivity control is provided by the 10 B (n,α) 7 Li reaction in the boron carbide. This reaction is accompanied by an energy release of 2.8 MeV, and heating from this reaction typically approaches 100 watts/cm 3 for natural boron carbide pellets in an LMFBR flux. Performance analysis of LMFBR control rods must include an assessment of the thermal performance of control pins. In addition, irradiation performance with regard to helium release, pellet swelling, and reactivity worth depletion as a function of service time must be evaluated

  2. Internal Control Good Cooperative Governance And Performance

    Directory of Open Access Journals (Sweden)

    Andry Arifian Rachman

    2017-11-01

    Full Text Available This study aims to examine the influence of internal control and good cooperative governance partially and simultaneously to the performance of cooperatives in West Java Province. The research method used in this research is descriptive and verification. The sample in this research is 22 boards as manager of cooperative in West Java Province. The data used in the research is the primary data through questionnaire collection. Validity and reliability testing is performed before hypothesis testing. This research uses multiple regression analysis technique. Based on hypothesis testing obtained 1 internal control has no significant effect on performance 2 good cooperative governance has a significant effect on performance and 3 internal control and good cooperative governance have a significant effect on performance.

  3. Modeling and control of greenhouse crop growth

    CERN Document Server

    Rodríguez, Francisco; Guzmán, José Luis; Ramírez-Arias, Armando

    2015-01-01

    A discussion of challenges related to the modeling and control of greenhouse crop growth, this book presents state-of-the-art answers to those challenges. The authors model the subsystems involved in successful greenhouse control using different techniques and show how the models obtained can be exploited for simulation or control design; they suggest ideas for the development of physical and/or black-box models for this purpose. Strategies for the control of climate- and irrigation-related variables are brought forward. The uses of PID control and feedforward compensators, both widely used in commercial tools, are summarized. The benefits of advanced control techniques—event-based, robust, and predictive control, for example—are used to improve on the performance of those basic methods. A hierarchical control architecture is developed governed by a high-level multiobjective optimization approach rather than traditional constrained optimization and artificial intelligence techniques.  Reference trajector...

  4. Path modeling and process control

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar; Rodionova, O.; Pomerantsev, A.

    2007-01-01

    and having three or more stages. The methods are applied to a process control of a multi-stage production process having 25 variables and one output variable. When moving along the process, variables change their roles. It is shown how the methods of path modeling can be applied to estimate variables...... be performed regarding the foreseeable output property y, and with respect to an admissible range of correcting actions for the parameters of the next stage. In this paper the basic principles of path modeling is presented. The mathematics is presented for processes having only one stage, having two stages...... of the next stage with the purpose of obtaining optimal or almost optimal quality of the output variable. An important aspect of the methods presented is the possibility of extensive graphic analysis of data that can provide the engineer with a detailed view of the multi-variate variation in data....

  5. Introduction to control system performance measurements

    CERN Document Server

    Garner, K C

    1968-01-01

    Introduction to Control System Performance Measurements presents the methods of dynamic measurements, specifically as they apply to control system and component testing. This book provides an introduction to the concepts of statistical measurement methods.Organized into nine chapters, this book begins with an overview of the applications of automatic control systems that pervade almost every area of activity ranging from servomechanisms to electrical power distribution networks. This text then discusses the common measurement transducer functions. Other chapters consider the basic wave

  6. Performance control of Chinese investment funds

    NARCIS (Netherlands)

    Cao, X.

    2002-01-01

    The performance control of investment funds has long been a discussed focal point by both academics and practitioners because of the ready availability of fund data and the importance of fund performance in attracting investors. Unfortunately, this area was still an almost blank space in the Chinese

  7. Off gas condenser performance modelling

    International Nuclear Information System (INIS)

    Cains, P.W.; Hills, K.M.; Waring, S.; Pratchett, A.G.

    1989-12-01

    A suite of three programmes has been developed to model the ruthenium decontamination performance of a vitrification plant off-gas condenser. The stages of the model are: condensation of water vapour, NO x absorption in the condensate, RuO 4 absorption in the condensate. Juxtaposition of these stages gives a package that may be run on an IBM-compatible desktop PC. Experimental work indicates that the criterion [HNO 2 ] > 10 [RuO 4 ] used to determine RuO 4 destruction in solution is probably realistic under condenser conditions. Vapour pressures of RuO 4 over aqueous solutions at 70 o -90 o C are slightly lower than the values given by extrapolating the ln K p vs. T -1 relation derived from lower temperature data. (author)

  8. An Agent-Based Model for Analyzing Control Policies and the Dynamic Service-Time Performance of a Capacity-Constrained Air Traffic Management Facility

    Science.gov (United States)

    Conway, Sheila R.

    2006-01-01

    Simple agent-based models may be useful for investigating air traffic control strategies as a precursory screening for more costly, higher fidelity simulation. Of concern is the ability of the models to capture the essence of the system and provide insight into system behavior in a timely manner and without breaking the bank. The method is put to the test with the development of a model to address situations where capacity is overburdened and potential for propagation of the resultant delay though later flights is possible via flight dependencies. The resultant model includes primitive representations of principal air traffic system attributes, namely system capacity, demand, airline schedules and strategy, and aircraft capability. It affords a venue to explore their interdependence in a time-dependent, dynamic system simulation. The scope of the research question and the carefully-chosen modeling fidelity did allow for the development of an agent-based model in short order. The model predicted non-linear behavior given certain initial conditions and system control strategies. Additionally, a combination of the model and dimensionless techniques borrowed from fluid systems was demonstrated that can predict the system s dynamic behavior across a wide range of parametric settings.

  9. Application of the Performance Validation Tool for the Evaluation of NSSS Control System Performance

    International Nuclear Information System (INIS)

    Sohn, Suk-whun

    2011-01-01

    When a control system is supplied to nuclear power plant (NPP) under construction, static tests and dynamic tests are typically performed for evaluating its performance. The dynamic test is not realistic for validating the performance of the replaced hardware in operating NPPs because of potential risks and economic burden. We have, therefore, developed a performance validation tool which can evaluate the dynamic performances of the control system without undertaking real plant tests. The window-based nuclear plant performance analyzer (Win-NPA) is used as a virtual NPP in the developed tool and provides appropriate control loads to the target control system via hardwired cables in a manner that the interfaces are identical to the field wiring. The outputs from the control system are used as the simulation inputs of the plant model within the Win-NPA. With this closed-loop configuration, major transient events were simulated to check the performance of the implemented control system by comparing it with that of the control system model of the Win-NPA and that of the old hardware. The developed tool and the methodology were successfully applied to the hardware replacement project for Yonggwang (YGN) 3 and 4 feedwater control system (FWCS) in 2008. Several errors in the implemented control system were fixed through the performance validation tests and the operability tests. As a result, the control system of the YGN 3 and 4 has demonstrated an excellent control performance since then. On the basis of YGN 3 and 4 project experiences, we are performing a similar project in Ulchin (UCN) 3 and 4. This methodology can also be applied to other NPPs under construction as a tool for pre-operational dynamic tests. These performance tests before performing power ascension tests (PATs) are conducive to preventing unnecessary plant transients or unwanted reactor trips caused by hidden errors of control systems during PATs. (author)

  10. The COMPASS Tokamak Plasma Control Software Performance

    Science.gov (United States)

    Valcarcel, Daniel F.; Neto, André; Carvalho, Ivo S.; Carvalho, Bernardo B.; Fernandes, Horácio; Sousa, Jorge; Janky, Filip; Havlicek, Josef; Beno, Radek; Horacek, Jan; Hron, Martin; Panek, Radomir

    2011-08-01

    The COMPASS tokamak has began operation at the IPP Prague in December 2008. A new control system has been built using an ATCA-based real-time system developed at IST Lisbon. The control software is implemented on top of the MARTe real-time framework attaining control cycles as short as 50 μs, with a jitter of less than 1 μs. The controlled parameters, important for the plasma performance, are the plasma current, position of the plasma current center, boundary shape and horizontal and vertical velocities. These are divided in two control cycles: slow at 500 μs and fast at 50 μs. The project has two phases. First, the software implements a digital controller, similar to the analog one used during the COMPASS-D operation in Culham. In the slow cycle, the plasma current and position are measured and controlled with PID and feedforward controllers, respectively, the shaping magnetic field is preprogrammed. The vertical instability and horizontal equilibrium are controlled with the faster 50-μs cycle PID controllers. The second phase will implement a plasma-shape reconstruction algorithm and controller, aiming at optimized plasma performance. The system was designed to be as modular as possible by breaking the functional requirements of the control system into several independent and specialized modules. This splitting enabled tuning the execution of each system part and to use the modules in a variety of applications with different time constraints. This paper presents the design and overall performance of the COMPASS control software.

  11. Engine Modelling for Control Applications

    DEFF Research Database (Denmark)

    Hendricks, Elbert

    1997-01-01

    In earlier work published by the author and co-authors, a dynamic engine model called a Mean Value Engine Model (MVEM) was developed. This model is physically based and is intended mainly for control applications. In its newer form, it is easy to fit to many different engines and requires little...... engine data for this purpose. It is especially well suited to embedded model applications in engine controllers, such as nonlinear observer based air/fuel ratio and advanced idle speed control. After a brief review of this model, it will be compared with other similar models which can be found...

  12. The SNS Resonance Control Cooling System Control Valve Upgrade Performance

    International Nuclear Information System (INIS)

    Williams, Derrick C.; Schubert, James Phillip; Tang, Johnny Y.

    2008-01-01

    The normal-conducting linac of the Spallation Neutron Source (SNS) uses 10 separate Resonance Control Cooling System (RCCS) water skids to control the resonance of 6 Drift Tube Linac (DTL) and 4 Coupled Cavity Linac (CCL) accelerating structures. The RCCS water skids use 2 control valves; one to regulate the chilled water flow and the other to bypass water to a chilled water heat exchanger. These valves have hydraulic actuators that provide position and feedback to the control system. Frequency oscillations occur using these hydraulic actuators due to their coarse movement and control of the valves. New pneumatic actuator and control positioners have been installed on the DTL3 RCCS water skid to give finer control and regulation of DTL3 cavity temperature. This paper shows a comparison of resonance control performance for the two valve configurations.

  13. Fully Closed-Loop Multiple Model Probabilistic Predictive Controller Artificial Pancreas Performance in Adolescents and Adults in a Supervised Hotel Setting.

    Science.gov (United States)

    Forlenza, Gregory P; Cameron, Faye M; Ly, Trang T; Lam, David; Howsmon, Daniel P; Baysal, Nihat; Kulina, Georgia; Messer, Laurel; Clinton, Paula; Levister, Camilla; Patek, Stephen D; Levy, Carol J; Wadwa, R Paul; Maahs, David M; Bequette, B Wayne; Buckingham, Bruce A

    2018-05-01

    Initial Food and Drug Administration-approved artificial pancreas (AP) systems will be hybrid closed-loop systems that require prandial meal announcements and will not eliminate the burden of premeal insulin dosing. Multiple model probabilistic predictive control (MMPPC) is a fully closed-loop system that uses probabilistic estimation of meals to allow for automated meal detection. In this study, we describe the safety and performance of the MMPPC system with announced and unannounced meals in a supervised hotel setting. The Android phone-based AP system with remote monitoring was tested for 72 h in six adults and four adolescents across three clinical sites with daily exercise and meal challenges involving both three announced (manual bolus by patient) and six unannounced (no bolus by patient) meals. Safety criteria were predefined. Controller aggressiveness was adapted daily based on prior hypoglycemic events. Mean 24-h continuous glucose monitor (CGM) was 157.4 ± 14.4 mg/dL, with 63.6 ± 9.2% of readings between 70 and 180 mg/dL, 2.9 ± 2.3% of readings 250 mg/dL. Moderate hyperglycemia was relatively common with 24.6 ± 6.2% of readings between 180 and 250 mg/dL, primarily within 3 h after a meal. Overnight mean CGM was 139.6 ± 27.6 mg/dL, with 77.9 ± 16.4% between 70 and 180 mg/dL, 3.0 ± 4.5% 250 mg/dL. Postprandial hyperglycemia was more common for unannounced meals compared with announced meals (4-h postmeal CGM 197.8 ± 44.1 vs. 140.6 ± 35.0 mg/dL; P < 0.001). No participants met safety stopping criteria. MMPPC was safe in a supervised setting despite meal and exercise challenges. Further studies are needed in a less supervised environment.

  14. Modeling, Control and Coordination of Helicopter Systems

    CERN Document Server

    Ren, Beibei; Chen, Chang; Fua, Cheng-Heng; Lee, Tong Heng

    2012-01-01

    Modeling, Control and Coordination of Helicopter Systems provides a comprehensive treatment of helicopter systems, ranging from related nonlinear flight dynamic modeling and stability analysis to advanced control design for single helicopter systems, and also covers issues related to the coordination and formation control of multiple helicopter systems to achieve high performance tasks. Ensuring stability in helicopter flight is a challenging problem for nonlinear control design and development. This book is a valuable reference on modeling, control and coordination of helicopter systems,providing readers with practical solutions for the problems that still plague helicopter system design and implementation. Readers will gain a complete picture of helicopters at the systems level, as well as a better understanding of the technical intricacies involved. This book also: Presents a complete picture of modeling, control and coordination for helicopter systems Provides a modeling platform for a general class of ro...

  15. Design of an Internal Model Control strategy for single-phase grid-connected PWM inverters and its performance analysis with a non-linear local load and weak grid.

    Science.gov (United States)

    Chaves, Eric N; Coelho, Ernane A A; Carvalho, Henrique T M; Freitas, Luiz C G; Júnior, João B V; Freitas, Luiz C

    2016-09-01

    This paper presents the design of a controller based on Internal Model Control (IMC) applied to a grid-connected single-phase PWM inverter. The mathematical modeling of the inverter and the LCL output filter, used to project the 1-DOF IMC controller, is presented and the decoupling of grid voltage by a Feedforward strategy is analyzed. A Proportional - Resonant Controller (P+Res) was used for the control of the same plant in the running of experimental results, thus moving towards the discussion of differences regarding IMC and P+Res performances, which arrived at the evaluation of the proposed control strategy. The results are presented for typical conditions, for weak-grid and for non-linear local load, in order to verify the behavior of the controller against such situations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Behavior model for performance assessment

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S. A.

    1999-01-01

    Every individual channels information differently based on their preference of the sensory modality or representational system (visual auditory or kinesthetic) we tend to favor most (our primary representational system (PRS)). Therefore, some of us access and store our information primarily visually first, some auditorily, and others kinesthetically (through feel and touch); which in turn establishes our information processing patterns and strategies and external to internal (and subsequently vice versa) experiential language representation. Because of the different ways we channel our information, each of us will respond differently to a task--the way we gather and process the external information (input), our response time (process), and the outcome (behavior). Traditional human models of decision making and response time focus on perception, cognitive and motor systems stimulated and influenced by the three sensory modalities, visual, auditory and kinesthetic. For us, these are the building blocks to knowing how someone is thinking. Being aware of what is taking place and how to ask questions is essential in assessing performance toward reducing human errors. Existing models give predications based on time values or response times for a particular event, and may be summed and averaged for a generalization of behavior(s). However, by our not establishing a basic understanding of the foundation of how the behavior was predicated through a decision making strategy process, predicative models are overall inefficient in their analysis of the means by which behavior was generated. What is seen is the end result

  17. Behavior model for performance assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Borwn-VanHoozer, S. A.

    1999-07-23

    Every individual channels information differently based on their preference of the sensory modality or representational system (visual auditory or kinesthetic) we tend to favor most (our primary representational system (PRS)). Therefore, some of us access and store our information primarily visually first, some auditorily, and others kinesthetically (through feel and touch); which in turn establishes our information processing patterns and strategies and external to internal (and subsequently vice versa) experiential language representation. Because of the different ways we channel our information, each of us will respond differently to a task--the way we gather and process the external information (input), our response time (process), and the outcome (behavior). Traditional human models of decision making and response time focus on perception, cognitive and motor systems stimulated and influenced by the three sensory modalities, visual, auditory and kinesthetic. For us, these are the building blocks to knowing how someone is thinking. Being aware of what is taking place and how to ask questions is essential in assessing performance toward reducing human errors. Existing models give predications based on time values or response times for a particular event, and may be summed and averaged for a generalization of behavior(s). However, by our not establishing a basic understanding of the foundation of how the behavior was predicated through a decision making strategy process, predicative models are overall inefficient in their analysis of the means by which behavior was generated. What is seen is the end result.

  18. Model-Based Power Plant Master Control

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Katarina; Thomas, Jean; Funkquist, Jonas

    2010-08-15

    The main goal of the project has been to evaluate the potential of a coordinated master control for a solid fuel power plant in terms of tracking capability, stability and robustness. The control strategy has been model-based predictive control (MPC) and the plant used in the case study has been the Vattenfall power plant Idbaecken in Nykoeping. A dynamic plant model based on nonlinear physical models was used to imitate the true plant in MATLAB/SIMULINK simulations. The basis for this model was already developed in previous Vattenfall internal projects, along with a simulation model of the existing control implementation with traditional PID controllers. The existing PID control is used as a reference performance, and it has been thoroughly studied and tuned in these previous Vattenfall internal projects. A turbine model was developed with characteristics based on the results of steady-state simulations of the plant using the software EBSILON. Using the derived model as a representative for the actual process, an MPC control strategy was developed using linearization and gain-scheduling. The control signal constraints (rate of change) and constraints on outputs were implemented to comply with plant constraints. After tuning the MPC control parameters, a number of simulation scenarios were performed to compare the MPC strategy with the existing PID control structure. The simulation scenarios also included cases highlighting the robustness properties of the MPC strategy. From the study, the main conclusions are: - The proposed Master MPC controller shows excellent set-point tracking performance even though the plant has strong interactions and non-linearity, and the controls and their rate of change are bounded. - The proposed Master MPC controller is robust, stable in the presence of disturbances and parameter variations. Even though the current study only considered a very small number of the possible disturbances and modelling errors, the considered cases are

  19. Model predictive control classical, robust and stochastic

    CERN Document Server

    Kouvaritakis, Basil

    2016-01-01

    For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplic...

  20. ECONOMIC MODELING STOCKS CONTROL SYSTEM: SIMULATION MODEL

    OpenAIRE

    Климак, М.С.; Войтко, С.В.

    2016-01-01

    Considered theoretical and applied aspects of the development of simulation models to predictthe optimal development and production systems that create tangible products andservices. It isproved that theprocessof inventory control needs of economicandmathematical modeling in viewof thecomplexity of theoretical studies. A simulation model of stocks control that allows make managementdecisions with production logistics

  1. Control Performance Management in Industrial Automation Assessment, Diagnosis and Improvement of Control Loop Performance

    CERN Document Server

    Jelali, Mohieddine

    2013-01-01

    Control Performance Management in Industrial Automation provides a coherent and self-contained treatment of a group of methods and applications of burgeoning importance to the detection and solution of problems with control loops that are vital in maintaining product quality, operational safety, and efficiency of material and energy consumption in the process industries. The monograph deals with all aspects of control performance management (CPM), from controller assessment (minimum-variance-control-based and advanced methods), to detection and diagnosis of control loop problems (process non-linearities, oscillations, actuator faults), to the improvement of control performance (maintenance, re-design of loop components, automatic controller re-tuning). It provides a contribution towards the development and application of completely self-contained and automatic methodologies in the field. Moreover, within this work, many CPM tools have been developed that goes far beyond available CPM packages. Control Perform...

  2. Performance model for a CCTV-MTI

    International Nuclear Information System (INIS)

    Dunn, D.R.; Dunbar, D.L.

    1978-01-01

    CCTV-MTI (closed circuit television--moving target indicator) monitors represent typical components of access control systems, as for example in a material control and accounting (MC and A) safeguards system. This report describes a performance model for a CCTV-MTI monitor. The performance of a human in an MTI role is a separate problem and is not addressed here. This work was done in conjunction with the NRC sponsored LLL assessment procedure for MC and A systems which is presently under development. We develop a noise model for a generic camera system and a model for the detection mechanism for a postulated MTI design. These models are then translated into an overall performance model. Measures of performance are probabilities of detection and false alarm as a function of intruder-induced grey level changes in the protected area. Sensor responsivity, lens F-number, source illumination and spectral response were treated as design parameters. Some specific results are illustrated for a postulated design employing a camera with a Si-target vidicon. Reflectance or light level changes in excess of 10% due to an intruder will be detected with a very high probability for the portion of the visible spectrum with wavelengths above 500 nm. The resulting false alarm rate was less than one per year. We did not address sources of nuisance alarms due to adverse environments, reliability, resistance to tampering, nor did we examine the effects of the spatial frequency response of the optics. All of these are important and will influence overall system detection performance

  3. Performance characteristics for advanced control systems

    International Nuclear Information System (INIS)

    Kisner, R.A.

    1989-01-01

    A growing collection of control techniques is becoming available to the design engineer. This make selection of the most appropriate technique for a given application a difficult task. A systematic approach to evaluating alternative control schemes is needed. The approach discussed in this paper expands the traditional concepts of quantitative performance analysis to include other relevant factors such as robustness of the technique, resource requirements, and effects on operators and other personnel. This collection of factors, termed measures of utility, may be used as qualitative and quantitative means of evaluating and comparing properties of alternative control system designs. This paper, although not an in-depth study, serves to outline several measures of utility and suggests a general structure for control system development. This method of comparing the usefulness of alternative control system will prove valuable to the ORNL Advanced Controls Program (ACTO) for optimizing compatibility with actual systems and equipment

  4. MODEL PREDICTIVE CONTROL FUNDAMENTALS

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... signal based on a process model, coping with constraints on inputs and ... paper, we will present an introduction to the theory and application of MPC with Matlab codes ... section 5 presents the simulation results and section 6.

  5. Model Performance Evaluation and Scenario Analysis (MPESA)

    Science.gov (United States)

    Model Performance Evaluation and Scenario Analysis (MPESA) assesses the performance with which models predict time series data. The tool was developed Hydrological Simulation Program-Fortran (HSPF) and the Stormwater Management Model (SWMM)

  6. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  7. Frequency control modelling - basics

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Sørensen, Poul Ejnar; Zeni, Lorenzo

    2016-01-01

    The purpose of this report is to provide an introduction on how the system balance in an island system can be maintained by controlling the frequency. The power balance differential equation, which is fundamental in understanding the effect on the system frequency of the unbalance between...

  8. Performance Analysis: Control of Hazardous Energy

    Energy Technology Data Exchange (ETDEWEB)

    De Grange, Connie E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Freeman, Jeff W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kerr, Christine E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-10-06

    LLNL experienced 26 occurrences related to the control of hazardous energy from January 1, 2008 through August 2010. These occurrences were 17% of the total number of reported occurrences during this 32-month period. The Performance Analysis and Reporting Section of the Contractor Assurance Office (CAO) routinely analyzes reported occurrences and issues looking for patterns that may indicate changes in LLNL’s performance and early indications of performance trends. It became apparent through these analyses that LLNL might have experienced a change in the control of hazardous energy and that these occurrences should be analyzed in more detail to determine if the perceived change in performance was real, whether that change is significant and if the causes of the occurrences are similar. This report documents the results of this more detailed analysis.

  9. Inclusion control in high-performance steels

    International Nuclear Information System (INIS)

    Holappa, L.E.K.; Helle, A.S.

    1995-01-01

    Progress of clean steel production, fundamentals of oxide and sulphide inclusions as well as inclusion morphology in normal and calcium treated steels are described. Effects of cleanliness and inclusion control on steel properties are discussed. In many damaging constructional and engineering applications the nonmetallic inclusions have a quite decisive role in steel performance. An example of combination of good mechanical properties and superior machinability by applying inclusion control is presented. (author)

  10. An evaluation of the control rod modelling approach used in VSOP by comparing its results to the experiments performed in the ASTRA critical facility

    International Nuclear Information System (INIS)

    Reitsma, F.; Naidoo, D.; Karriem, Z.

    2002-01-01

    The modelling of strong absorber regions in diffusion theory is a well-known problem and many methods have been developed to accommodate the transport effects in diffusion theory. In this work the method of equivalent cross sections is evaluated for the ASTRA critical facility at the Russian Research Centre - Kurchatov Institute in Moscow. The measured reactivity worths of the control rods situated in the side reflector, are compared with the calculated values making use of equivalent diffusion parameters in VSOP. Favourable results were obtained for the control rods positioned within the first ring of reflector blocks with larger errors obtained for control rods positioned further from the core. Furthermore, the use of an equivalent boron concentration to represent the absorber regions was also investigated and shown to be useful if applied correctly and with care. However, the practical difficulties and restrictions imposed by the two approaches make the investigation of an alternative method, which should remove these shortcomings, attractive. (author)

  11. Wave and Wind Model Performance Metrics Tools

    Science.gov (United States)

    Choi, J. K.; Wang, D. W.

    2016-02-01

    Continual improvements and upgrades of Navy ocean wave and wind models are essential to the assurance of battlespace environment predictability of ocean surface wave and surf conditions in support of Naval global operations. Thus, constant verification and validation of model performance is equally essential to assure the progress of model developments and maintain confidence in the predictions. Global and regional scale model evaluations may require large areas and long periods of time. For observational data to compare against, altimeter winds and waves along the tracks from past and current operational satellites as well as moored/drifting buoys can be used for global and regional coverage. Using data and model runs in previous trials such as the planned experiment, the Dynamics of the Adriatic in Real Time (DART), we demonstrated the use of accumulated altimeter wind and wave data over several years to obtain an objective evaluation of the performance the SWAN (Simulating Waves Nearshore) model running in the Adriatic Sea. The assessment provided detailed performance of wind and wave models by using cell-averaged statistical variables maps with spatial statistics including slope, correlation, and scatter index to summarize model performance. Such a methodology is easily generalized to other regions and at global scales. Operational technology currently used by subject matter experts evaluating the Navy Coastal Ocean Model and the Hybrid Coordinate Ocean Model can be expanded to evaluate wave and wind models using tools developed for ArcMAP, a GIS application developed by ESRI. Recent inclusion of altimeter and buoy data into a format through the Naval Oceanographic Office's (NAVOCEANO) quality control system and the netCDF standards applicable to all model output makes it possible for the fusion of these data and direct model verification. Also, procedures were developed for the accumulation of match-ups of modelled and observed parameters to form a data base

  12. Network performance for graphical control systems

    International Nuclear Information System (INIS)

    Clout, P.; Geib, M.; Westervelt, R.

    1992-01-01

    Vsystem is a toolbox for building graphically-based control systems. The real-tiem database component, Vaccess, includes all the networking support necessary to build multi-computer control systems. Vaccess has two modes of database access, synchronous and asynchronous. Vdraw is another component of Vsystem that allows developers and users to develop control screens and windows by drawing rather than programming. Based on X-windows, Vsystem provides the possibility of running Vdraw either on the workstation with the graphics or on the computer with the database. We have made some measurements on the cpu loading, elapsed time and the network loading to give some guidance in system configuration performance. It will be seen that asynchronous network access gives large performance increases and that the network database change notification protocol can be either more or less efficient than the X-window network protocol, depending on the graphical representation of the data. (author)

  13. Assessing The Performance of Hydrological Models

    Science.gov (United States)

    van der Knijff, Johan

    The performance of hydrological models is often characterized using the coefficient of efficiency, E. The sensitivity of E to extreme streamflow values, and the difficulty of deciding what value of E should be used as a threshold to identify 'good' models or model parameterizations, have proven to be serious shortcomings of this index. This paper reviews some alternative performance indices that have appeared in the litera- ture. Legates and McCabe (1999) suggested a more generalized form of E, E'(j,B). Here, j is a parameter that controls how much emphasis is put on extreme streamflow values, and B defines a benchmark or 'null hypothesis' against which the results of the model are tested. E'(j,B) was used to evaluate a large number of parameterizations of a conceptual rainfall-runoff model, using 6 different combinations of j and B. First, the effect of j and B is explained. Second, it is demonstrated how the index can be used to explicitly test hypotheses about the model and the data. This approach appears to be particularly attractive if the index is used as a likelihood measure within a GLUE-type analysis.

  14. Feedforward/feedback control synthesis for performance and robustness

    Science.gov (United States)

    Wie, Bong; Liu, Qiang

    1990-01-01

    Both feedforward and feedback control approaches for uncertain dynamical systems are investigated. The control design objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant modeling uncertainty. Preshapong of an ideal, time-optimal control input using a 'tapped-delay' filter is shown to provide a rapid maneuver with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. The proposed feedforward/feedback control approach is robust for a certain class of uncertain dynamical systems, since the control input command computed for a given desired output does not depend on the plant parameters.

  15. Diabetes: Models, Signals and control

    Science.gov (United States)

    Cobelli, C.

    2010-07-01

    Diabetes and its complications impose significant economic consequences on individuals, families, health systems, and countries. The control of diabetes is an interdisciplinary endeavor, which includes significant components of modeling, signal processing and control. Models: first, I will discuss the minimal (coarse) models which describe the key components of the system functionality and are capable of measuring crucial processes of glucose metabolism and insulin control in health and diabetes; then, the maximal (fine-grain) models which include comprehensively all available knowledge about system functionality and are capable to simulate the glucose-insulin system in diabetes, thus making it possible to create simulation scenarios whereby cost effective experiments can be conducted in silico to assess the efficacy of various treatment strategies - in particular I will focus on the first in silico simulation model accepted by FDA as a substitute to animal trials in the quest for optimal diabetes control. Signals: I will review metabolic monitoring, with a particular emphasis on the new continuous glucose sensors, on the crucial role of models to enhance the interpretation of their time-series signals, and on the opportunities that they present for automation of diabetes control. Control: I will review control strategies that have been successfully employed in vivo or in silico, presenting a promise for the development of a future artificial pancreas and, in particular, I will discuss a modular architecture for building closed-loop control systems, including insulin delivery and patient safety supervision layers.

  16. Influence of discretization method on the digital control system performance

    Directory of Open Access Journals (Sweden)

    Futás József

    2003-12-01

    Full Text Available The design of control system can be divided into two steps. First the process or plant have to be convert into mathematical model form, so that its behavior can be analyzed. Then an appropriate controller have to be design in order to get the desired response of the controlled system. In the continuous time domain the system is represented by differential equations. Replacing a continuous system into discrete time form is always an approximation of the continuous system. The different discretization methods give different digital controller performance. The methods presented on the paper are Step Invariant or Zero Order Hold (ZOH Method, Matched Pole-Zero Method, Backward difference Method and Bilinear transformation. The above mentioned discretization methods are used in developing PI position controller of a dc motor. The motor model was converted by the ZOH method. The performances of the different methods are compared and the results are presented.

  17. Frequency Control Performance Measurement and Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Illian, Howard F.

    2010-12-20

    Frequency control is an essential requirement of reliable electric power system operations. Determination of frequency control depends on frequency measurement and the practices based on these measurements that dictate acceptable frequency management. This report chronicles the evolution of these measurements and practices. As technology progresses from analog to digital for calculation, communication, and control, the technical basis for frequency control measurement and practices to determine acceptable performance continues to improve. Before the introduction of digital computing, practices were determined largely by prior experience. In anticipation of mandatory reliability rules, practices evolved from a focus primarily on commercial and equity issues to an increased focus on reliability. This evolution is expected to continue and place increased requirements for more precise measurements and a stronger scientific basis for future frequency management practices in support of reliability.

  18. High performance computing in linear control

    International Nuclear Information System (INIS)

    Datta, B.N.

    1993-01-01

    Remarkable progress has been made in both theory and applications of all important areas of control. The theory is rich and very sophisticated. Some beautiful applications of control theory are presently being made in aerospace, biomedical engineering, industrial engineering, robotics, economics, power systems, etc. Unfortunately, the same assessment of progress does not hold in general for computations in control theory. Control Theory is lagging behind other areas of science and engineering in this respect. Nowadays there is a revolution going on in the world of high performance scientific computing. Many powerful computers with vector and parallel processing have been built and have been available in recent years. These supercomputers offer very high speed in computations. Highly efficient software, based on powerful algorithms, has been developed to use on these advanced computers, and has also contributed to increased performance. While workers in many areas of science and engineering have taken great advantage of these hardware and software developments, control scientists and engineers, unfortunately, have not been able to take much advantage of these developments

  19. Parametric uncertainty modeling for robust control

    DEFF Research Database (Denmark)

    Rasmussen, K.H.; Jørgensen, Sten Bay

    1999-01-01

    The dynamic behaviour of a non-linear process can often be approximated with a time-varying linear model. In the presented methodology the dynamics is modeled non-conservatively as parametric uncertainty in linear lime invariant models. The obtained uncertainty description makes it possible...... to perform robustness analysis on a control system using the structured singular value. The idea behind the proposed method is to fit a rational function to the parameter variation. The parameter variation can then be expressed as a linear fractional transformation (LFT), It is discussed how the proposed...... point changes. It is shown that a diagonal PI control structure provides robust performance towards variations in feed flow rate or feed concentrations. However including both liquid and vapor flow delays robust performance specifications cannot be satisfied with this simple diagonal control structure...

  20. Calibration of PMIS pavement performance prediction models.

    Science.gov (United States)

    2012-02-01

    Improve the accuracy of TxDOTs existing pavement performance prediction models through calibrating these models using actual field data obtained from the Pavement Management Information System (PMIS). : Ensure logical performance superiority patte...

  1. Control Valve Stiction Identification, Modelling, Quantification and Control - A Review

    Directory of Open Access Journals (Sweden)

    Srinivasan Arumugam

    2011-09-01

    Full Text Available Most of the processes found in process industries exhibit undesirable nonlinearity due to backlash, saturation, hysteresis, stiction (friction, dead-zone and stuck-fault existing in control valves. The control valve is the actuator for most process control loops and, as the only moving part in the loop, its function is to implement the control action. If the control valve malfunctions, the performance of the control loop is likely to deteriorate, no matter how good the controller is. Commonly encountered control valve problems include nonlinear responses to the demand signal caused by effects such as stiction, dead-band or saturation. Because of these problems, the control loop may be oscillatory, which in turn may cause oscillations in many process variables causing a range of operational problems including increased valve wear. Understanding nonlinear behaviour of control valves in order to maintain the quality of the end products in the industry, this review article surveys the identification, modelling, estimation and design of dynamic models of stiction nonlinearity and providing appropriate controller to obtain optimum responses of the process. The primary objective of this work is to present state-of-art-review of common nonlinear problems associated with mechanical and chemical processes for encouraging researchers, practicing engineers working in this field, so that readers can invent their goals for future research work on nonlinear systems identification and control.

  2. Model Predictive Control for Load Frequency Control with Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2015-01-01

    Full Text Available Reliable load frequency (LFC control is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-area interconnected power system with wind turbines, this paper presents a distributed model predictive control (DMPC based on coordination scheme. The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The scheme incorporates the two critical nonlinear constraints, for example, the generation rate constraint (GRC and the valve limit, into convex optimization problems. Furthermore, the algorithm reduces the impact on the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and that without the participation of the wind turbines is carried out. Good performance is obtained in the presence of power system nonlinearities due to the governors and turbines constraints and load change disturbances.

  3. Simple Models for Process Control

    Czech Academy of Sciences Publication Activity Database

    Gorez, R.; Klán, Petr

    2011-01-01

    Roč. 22, č. 2 (2011), s. 58-62 ISSN 0929-2268 Institutional research plan: CEZ:AV0Z10300504 Keywords : process model s * PID control * second order dynamics Subject RIV: JB - Sensors, Measurment, Regulation

  4. Modelling supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A; Bindner, H; Lundsager, P [Risoe National Lab., Roskilde (Denmark); Jannerup, O [Technical Univ. of Denmark, Dept. of Automation, Lyngby (Denmark)

    1999-03-01

    Supervisory controllers are important to achieve optimal operation of hybrid power systems. The performance and economics of such systems depend mainly on the control strategy for switching on/off components. The modular concept described in this paper is an attempt to design standard supervisory controllers that could be used in different applications, such as village power and telecommunication applications. This paper presents some basic aspects of modelling and design of modular supervisory controllers using the object-oriented modelling technique. The functional abstraction hierarchy technique is used to formulate the control requirements and identify the functions of the control system. The modular algorithm is generic and flexible enough to be used with any system configuration and several goals (different applications). The modularity includes accepting modification of system configuration and goals during operation with minor or no changes in the supervisory controller. (au)

  5. Statistical learning methods: Basics, control and performance

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)]. E-mail: zimmerm@mppmu.mpg.de

    2006-04-01

    The basics of statistical learning are reviewed with a special emphasis on general principles and problems for all different types of learning methods. Different aspects of controlling these methods in a physically adequate way will be discussed. All principles and guidelines will be exercised on examples for statistical learning methods in high energy and astrophysics. These examples prove in addition that statistical learning methods very often lead to a remarkable performance gain compared to the competing classical algorithms.

  6. Statistical learning methods: Basics, control and performance

    International Nuclear Information System (INIS)

    Zimmermann, J.

    2006-01-01

    The basics of statistical learning are reviewed with a special emphasis on general principles and problems for all different types of learning methods. Different aspects of controlling these methods in a physically adequate way will be discussed. All principles and guidelines will be exercised on examples for statistical learning methods in high energy and astrophysics. These examples prove in addition that statistical learning methods very often lead to a remarkable performance gain compared to the competing classical algorithms

  7. Integrated identification, modeling and control with applications

    Science.gov (United States)

    Shi, Guojun

    This thesis deals with the integration of system design, identification, modeling and control. In particular, six interdisciplinary engineering problems are addressed and investigated. Theoretical results are established and applied to structural vibration reduction and engine control problems. First, the data-based LQG control problem is formulated and solved. It is shown that a state space model is not necessary to solve this problem; rather a finite sequence from the impulse response is the only model data required to synthesize an optimal controller. The new theory avoids unnecessary reliance on a model, required in the conventional design procedure. The infinite horizon model predictive control problem is addressed for multivariable systems. The basic properties of the receding horizon implementation strategy is investigated and the complete framework for solving the problem is established. The new theory allows the accommodation of hard input constraints and time delays. The developed control algorithms guarantee the closed loop stability. A closed loop identification and infinite horizon model predictive control design procedure is established for engine speed regulation. The developed algorithms are tested on the Cummins Engine Simulator and desired results are obtained. A finite signal-to-noise ratio model is considered for noise signals. An information quality index is introduced which measures the essential information precision required for stabilization. The problems of minimum variance control and covariance control are formulated and investigated. Convergent algorithms are developed for solving the problems of interest. The problem of the integrated passive and active control design is addressed in order to improve the overall system performance. A design algorithm is developed, which simultaneously finds: (i) the optimal values of the stiffness and damping ratios for the structure, and (ii) an optimal output variance constrained stabilizing

  8. Stress, performance, and control room operations

    International Nuclear Information System (INIS)

    Fontaine, C.W.

    1990-01-01

    The notion of control room operator performance being detrimentally affected by stress has long been the focus of considerable conjecture. It is important to gain a better understanding of the validity of this concern for the development of effective severe-accident management approaches. This paper illustrates the undeniable negative impact of stress on a wide variety of tasks. A computer-controlled simulated work environment was designed in which both male and female operators were closely monitored during the course of the study for both stress level (using the excretion of the urine catecholamines epinephrine and norepinephrine as an index) and job performance. The experimental parameters employed by the study when coupled with the subsequent statistical analyses of the results allow one to make some rather striking comments with respect to how a given operator might respond to a situation that he or she perceives to be psychologically stressful (whether the stress be externally or internally generated). The findings of this study clearly indicated that stress does impact operator performance on tasks similar in nature to those conducted by control room operators and hence should be seriously considered in the development of severe-accident management strategies

  9. Performance expectations of measurement control programs

    International Nuclear Information System (INIS)

    Hammond, G.A.

    1985-01-01

    The principal index for designing and assessing the effectiveness of safeguards is the sensitivity and reliability of gauging the true status of material balances involving material flows, transfers, inventories, and process holdup. The measurement system must not only be capable of characterizing the material for gradation or intensity of protection, but also be responsive to needs for detection and localization of losses, provide confirmation that no diversion has occurred, and help meet requirements for process control, health and safety. Consequently, the judicious application of a measurement control and quality assurance program is vital to a complete understanding of the capabilities and limitations of the measurement system including systematic and random components of error for weight, volume, sampling, chemical, isotopic, and nondestructive determinations of material quantities in each material balance area. This paper describes performance expectations or criteria for a measurement control program in terms of ''what'' is desired and ''why'', relative to safeguards and security objectives

  10. Performance of Personal Workspace Controls Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, Francis; Kiliccote, Sila; Loffeld, John; Pettler,Pete; Snook, Joel

    2004-12-01

    One of the key deliverables for the DOE-funded controls research at LBNL for FY04 was the development of a prototype Personal Workspace Control system. The successful development of this system is a critical milestone for the LBNL Lighting Controls Research effort because this system demonstrates how IBECS can add value to today's Task Ambient lighting systems. LBNL has argued that by providing both the occupant and the facilities manager with the ability to precisely control the operation of overhead lighting and all task lighting in a coordinated manner, that task ambient lighting can optimize energy performance and occupant comfort simultaneously [Reference Task Ambient Foundation Document]. The Personal Workspace Control system is the application of IBECS to this important lighting problem. This report discusses the development of the Personal Workspace Control to date including descriptions of the different fixture types that have been converted to IBECS operation and a detailed description of the operation of PWC Scene Controller, which provides the end user with precise control of his task ambient lighting system. The objective, from the Annual Plan, is to demonstrate improvements in efficiency, lighting quality and occupant comfort realized using Personal Workspace Controls (PWC) designed to optimize the delivery of lighting to the individual's workstation regardless of which task-ambient lighting solution is chosen. The PWC will be capable of controlling floor-mounted, desk lamps, furniture-mounted and overhead lighting fixtures from a personal computer and handheld remote. The PWC will use an environmental sensor to automatically monitor illuminance, temperature and occupancy and to appropriately modulate ambient lighting according to daylight availability and to switch off task lighting according to local occupancy. [Adding occupancy control to the system would blunt the historical criticism of occupant-controlled lighting - the tendency of the

  11. Attitude Control Performance of IRVE-3

    Science.gov (United States)

    Dillman, Robert A.; Gsell, Valerie T.; Bowden, Ernest L.

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility and successfully performed its mission, demonstrating both the survivability of a hypersonic inflatable aerodynamic decelerator in the reentry heating environment and the effect of an offset center of gravity on the aeroshell's flight L/D. The reentry vehicle separated from the launch vehicle, released and inflated its aeroshell, reoriented for atmospheric entry, and mechanically shifted its center of gravity before reaching atmospheric interface. Performance data from the entire mission was telemetered to the ground for analysis. This paper discusses the IRVE-3 mission scenario, reentry vehicle design, and as-flown performance of the attitude control system in the different phases of the mission.

  12. Performance Modelling of Steam Turbine Performance using Fuzzy ...

    African Journals Online (AJOL)

    Performance Modelling of Steam Turbine Performance using Fuzzy Logic ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES. Journal of Applied Sciences and Environmental Management ... A Fuzzy Inference System for predicting the performance of steam turbine

  13. Multiple model adaptive control with mixing

    Science.gov (United States)

    Kuipers, Matthew

    Despite the remarkable theoretical accomplishments and successful applications of adaptive control, the field is not sufficiently mature to solve challenging control problems requiring strict performance and safety guarantees. Towards addressing these issues, a novel deterministic multiple-model adaptive control approach called adaptive mixing control is proposed. In this approach, adaptation comes from a high-level system called the supervisor that mixes into feedback a number of candidate controllers, each finely-tuned to a subset of the parameter space. The mixing signal, the supervisor's output, is generated by estimating the unknown parameters and, at every instant of time, calculating the contribution level of each candidate controller based on certainty equivalence. The proposed architecture provides two characteristics relevant to solving stringent, performance-driven applications. First, the full-suite of linear time invariant control tools is available. A disadvantage of conventional adaptive control is its restriction to utilizing only those control laws whose solutions can be feasibly computed in real-time, such as model reference and pole-placement type controllers. Because its candidate controllers are computed off line, the proposed approach suffers no such restriction. Second, the supervisor's output is smooth and does not necessarily depend on explicit a priori knowledge of the disturbance model. These characteristics can lead to improved performance by avoiding the unnecessary switching and chattering behaviors associated with some other multiple adaptive control approaches. The stability and robustness properties of the adaptive scheme are analyzed. It is shown that the mean-square regulation error is of the order of the modeling error. And when the parameter estimate converges to its true value, which is guaranteed if a persistence of excitation condition is satisfied, the adaptive closed-loop system converges exponentially fast to a closed

  14. Nonlinear Control of Heartbeat Models

    Directory of Open Access Journals (Sweden)

    Witt Thanom

    2011-02-01

    Full Text Available This paper presents a novel application of nonlinear control theory to heartbeat models. Existing heartbeat models are investigated and modified by incorporating the control input as a pacemaker to provide the control channel. A nonlinear feedback linearization technique is applied to force the output of the systems to generate artificial electrocardiogram (ECG signal using discrete data as the reference inputs. The synthetic ECG may serve as a flexible signal source to assess the effectiveness of a diagnostic ECG signal-processing device.

  15. Simplified ejector model for control and optimization

    International Nuclear Information System (INIS)

    Zhu Yinhai; Cai Wenjian; Wen Changyun; Li Yanzhong

    2008-01-01

    In this paper, a simple yet effective ejector model for a real time control and optimization of an ejector system is proposed. Firstly, a fundamental model for calculation of ejector entrainment ratio at critical working conditions is derived by one-dimensional analysis and the shock circle model. Then, based on thermodynamic principles and the lumped parameter method, the fundamental ejector model is simplified to result in a hybrid ejector model. The model is very simple, which only requires two or three parameters and measurement of two variables to determine the ejector performance. Furthermore, the procedures for on line identification of the model parameters using linear and non-linear least squares methods are also presented. Compared with existing ejector models, the solution of the proposed model is much easier without coupled equations and iterative computations. Finally, the effectiveness of the proposed model is validated by published experimental data. Results show that the model is accurate and robust and gives a better match to the real performances of ejectors over the entire operating range than the existing models. This model is expected to have wide applications in real time control and optimization of ejector systems

  16. Modelling and control of refrigerant circuits

    Energy Technology Data Exchange (ETDEWEB)

    Gruhle, W D; Isermann, R

    1987-01-01

    Conventional evaporator control systems involving a thermostatic expansion valve often to not work satisfactorily in terms of stability and evaporator utilization. To improve this, the author first studies the cause of this behaviour by means of theoretic modelling which is greatly determined by processes occurring within the evaporator and by structural combinations. After verification of the simulated model by means of measurements performed on a pilot plant, the results obtained are used to build up a new control system. Various experiments reveal a clearly improved evaporator utilization at greater control stability. (orig.).

  17. Wind Farms: Modeling and Control

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam

    2012-01-01

    is minimized. The controller is practically feasible. Yet, the results on load reduction in this approach are not very significant. In the second strategy, the wind farm control problem has been divided into below rated and above rated wind speed conditions. In the above rated wind speed pitch angle and power....... Distributed controller design commences with formulating the problem, where a structured matrix approach has been put in to practice. Afterwards, an H2 control problem is implemented to obtain the controller dynamics for a wind farm such that the structural loads on wind turbines are minimized.......The primary purpose of this work is to develop control algorithms for wind farms to optimize the power production and augment the lifetime of wind turbines in wind farms. In this regard, a dynamical model for wind farms was required to be the basis of the controller design. In the first stage...

  18. Distributed control software of high-performance control-loop algorithm

    CERN Document Server

    Blanc, D

    1999-01-01

    The majority of industrial cooling and ventilation plants require the control of complex processes. All these processes are highly important for the operation of the machines. The stability and reliability of these processes are leading factors identifying the quality of the service provided. The control system architecture and software structure, as well, are required to have high dynamical performance and robust behaviour. The intelligent systems based on PID or RST controllers are used for their high level of stability and accuracy. The design and tuning of these complex controllers require the dynamic model of the plant to be known (generally obtained by identification) and the desired performance of the various control loops to be specified for achieving good performances. The concept of having a distributed control algorithm software provides full automation facilities with well-adapted functionality and good performances, giving methodology, means and tools to master the dynamic process optimization an...

  19. Reflexion and control mathematical models

    CERN Document Server

    Novikov, Dmitry A

    2014-01-01

    This book is dedicated to modern approaches to mathematical modeling of reflexive processes in control. The authors consider reflexive games that describe the gametheoretical interaction of agents making decisions based on a hierarchy of beliefs regarding (1) essential parameters (informational reflexion), (2) decision principles used by opponents (strategic reflexion), (3) beliefs about beliefs, and so on. Informational and reflexive equilibria in reflexive games generalize a series of well-known equilibrium concepts in noncooperative games and models of collective behavior. These models allow posing and solving the problems of informational and reflexive control in organizational, economic, social and other systems, in military applications, etc. (the interested reader will find in the book over 30 examples of possible applications in these fields) and describing uniformly many psychological/sociological phenomena connected with reflexion, viz., implicit control, informational control via the mass media, re...

  20. Global nuclear material control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.A.

    1996-01-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material

  1. Hybrid Modeling Improves Health and Performance Monitoring

    Science.gov (United States)

    2007-01-01

    Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.

  2. Performance Estimation for Embedded Systems with Data and Control Dependencies

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2000-01-01

    In this paper we present an approach to performance estimation for hard real-time systems. We consider architectures consisting of multiple processors. The scheduling policy is based on a preemptive strategy with static priorities. Our model of the system captures both data and control dependencies...

  3. In-flight performance optimization for rotorcraft with redundant controls

    Science.gov (United States)

    Ozdemir, Gurbuz Taha

    A conventional helicopter has limits on performance at high speeds because of the limitations of main rotor, such as compressibility issues on advancing side or stall issues on retreating side. Auxiliary lift and thrust components have been suggested to improve performance of the helicopter substantially by reducing the loading on the main rotor. Such a configuration is called the compound rotorcraft. Rotor speed can also be varied to improve helicopter performance. In addition to improved performance, compound rotorcraft and variable RPM can provide a much larger degree of control redundancy. This additional redundancy gives the opportunity to further enhance performance and handling qualities. A flight control system is designed to perform in-flight optimization of redundant control effectors on a compound rotorcraft in order to minimize power required and extend range. This "Fly to Optimal" (FTO) control law is tested in simulation using the GENHEL model. A model of the UH-60, a compound version of the UH-60A with lifting wing and vectored thrust ducted propeller (VTDP), and a generic compound version of the UH-60A with lifting wing and propeller were developed and tested in simulation. A model following dynamic inversion controller is implemented for inner loop control of roll, pitch, yaw, heave, and rotor RPM. An outer loop controller regulates airspeed and flight path during optimization. A Golden Section search method was used to find optimal rotor RPM on a conventional helicopter, where the single redundant control effector is rotor RPM. The FTO builds off of the Adaptive Performance Optimization (APO) method of Gilyard by performing low frequency sweeps on a redundant control for a fixed wing aircraft. A method based on the APO method was used to optimize trim on a compound rotorcraft with several redundant control effectors. The controller can be used to optimize rotor RPM and compound control effectors through flight test or simulations in order to

  4. NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    SILVA R. G.

    1999-01-01

    Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.

  5. A high performance architecture for accelerator controls

    International Nuclear Information System (INIS)

    Allen, M.; Hunt, S.M; Lue, H.; Saltmarsh, C.G.; Parker, C.R.C.B.

    1991-01-01

    The demands placed on the Superconducting Super Collider (SSC) control system due to large distances, high bandwidth and fast response time required for operation will require a fresh approach to the data communications architecture of the accelerator. The prototype design effort aims at providing deterministic communication across the accelerator complex with a response time of < 100 ms and total bandwidth of 2 Gbits/sec. It will offer a consistent interface for a large number of equipment types, from vacuum pumps to beam position monitors, providing appropriate communications performance for each equipment type. It will consist of highly parallel links to all equipment: those with computing resources, non-intelligent direct control interfaces, and data concentrators. This system will give each piece of equipment a dedicated link of fixed bandwidth to the control system. Application programs will have access to all accelerator devices which will be memory mapped into a global virtual addressing scheme. Links to devices in the same geographical area will be multiplexed using commercial Time Division Multiplexing equipment. Low-level access will use reflective memory techniques, eliminating processing overhead and complexity of traditional data communication protocols. The use of commercial standards and equipment will enable a high performance system to be built at low cost

  6. A high performance architecture for accelerator controls

    International Nuclear Information System (INIS)

    Allen, M.; Hunt, S.M.; Lue, H.; Saltmarsh, C.G.; Parker, C.R.C.B.

    1991-03-01

    The demands placed on the Superconducting Super Collider (SSC) control system due to large distances, high bandwidth and fast response time required for operation will require a fresh approach to the data communications architecture of the accelerator. The prototype design effort aims at providing deterministic communication across the accelerator complex with a response time of <100 ms and total bandwidth of 2 Gbits/sec. It will offer a consistent interface for a large number of equipment types, from vacuum pumps to beam position monitors, providing appropriate communications performance for each equipment type. It will consist of highly parallel links to all equipments: those with computing resources, non-intelligent direct control interfaces, and data concentrators. This system will give each piece of equipment a dedicated link of fixed bandwidth to the control system. Application programs will have access to all accelerator devices which will be memory mapped into a global virtual addressing scheme. Links to devices in the same geographical area will be multiplexed using commercial Time Division Multiplexing equipment. Low-level access will use reflective memory techniques, eliminating processing overhead and complexity of traditional data communication protocols. The use of commercial standards and equipment will enable a high performance system to be built at low cost. 1 fig

  7. Modelling and control of a flotation process

    International Nuclear Information System (INIS)

    Ding, L.; Gustafsson, T.

    1999-01-01

    A general description of a flotation process is given. The dynamic model of a MIMO nonlinear subprocess in flotation, i. e. the pulp levels in five compartments in series is developed and the model is verified with real data from a production plant. In order to reject constant disturbances five extra states are introduced and the model is modified. An exact linearization has been made for the non-linear model and a linear quadratic gaussian controller is proposed based on the linearized model. The simulation result shows an improved performance of the pulp level control when the set points are changed or a disturbance occur. In future the controller will be tested in production. (author)

  8. Photovoltaic array performance simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D. F.

    1986-09-15

    The experience of the solar industry confirms that, despite recent cost reductions, the profitability of photovoltaic (PV) systems is often marginal and the configuration and sizing of a system is a critical problem for the design engineer. Construction and evaluation of experimental systems are expensive and seldom justifiable. A mathematical model or computer-simulation program is a desirable alternative, provided reliable results can be obtained. Sandia National Laboratories, Albuquerque (SNLA), has been studying PV-system modeling techniques in an effort to develop an effective tool to be used by engineers and architects in the design of cost-effective PV systems. This paper reviews two of the sources of error found in previous PV modeling programs, presents the remedies developed to correct these errors, and describes a new program that incorporates these improvements.

  9. Maintenance Personnel Performance Simulation (MAPPS) model

    International Nuclear Information System (INIS)

    Siegel, A.I.; Bartter, W.D.; Wolf, J.J.; Knee, H.E.; Haas, P.M.

    1984-01-01

    A stochastic computer model for simulating the actions and behavior of nuclear power plant maintenance personnel is described. The model considers personnel, environmental, and motivational variables to yield predictions of maintenance performance quality and time to perform. The mode has been fully developed and sensitivity tested. Additional evaluation of the model is now taking place

  10. Comparison Analysis of Model Predictive Controller with Classical PID Controller For pH Control Process

    Directory of Open Access Journals (Sweden)

    V. Balaji

    2016-12-01

    Full Text Available pH control plays a important role in any chemical plant and process industries. For the past four decades the classical PID controller has been occupied by the industries. Due to the faster computing   technology in the industry demands a tighter advanced control strategy. To fulfill the needs and requirements Model Predictive Control (MPC is the best among all the advanced control algorithms available in the present scenario. The study and analysis has been done for First Order plus Delay Time (FOPDT model controlled by Proportional Integral Derivative (PID and MPC using the Matlab software. This paper explores the capability of the MPC strategy, analyze and compare the control effects with conventional control strategy in pH control. A comparison results between the PID and MPC is plotted using the software. The results clearly show that MPC provide better performance than the classical controller.

  11. Cognitive performance modeling based on general systems performance theory.

    Science.gov (United States)

    Kondraske, George V

    2010-01-01

    General Systems Performance Theory (GSPT) was initially motivated by problems associated with quantifying different aspects of human performance. It has proved to be invaluable for measurement development and understanding quantitative relationships between human subsystem capacities and performance in complex tasks. It is now desired to bring focus to the application of GSPT to modeling of cognitive system performance. Previous studies involving two complex tasks (i.e., driving and performing laparoscopic surgery) and incorporating measures that are clearly related to cognitive performance (information processing speed and short-term memory capacity) were revisited. A GSPT-derived method of task analysis and performance prediction termed Nonlinear Causal Resource Analysis (NCRA) was employed to determine the demand on basic cognitive performance resources required to support different levels of complex task performance. This approach is presented as a means to determine a cognitive workload profile and the subsequent computation of a single number measure of cognitive workload (CW). Computation of CW may be a viable alternative to measuring it. Various possible "more basic" performance resources that contribute to cognitive system performance are discussed. It is concluded from this preliminary exploration that a GSPT-based approach can contribute to defining cognitive performance models that are useful for both individual subjects and specific groups (e.g., military pilots).

  12. Stability and performance of propulsion control systems with distributed control architectures and failures

    Science.gov (United States)

    Belapurkar, Rohit K.

    Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.

  13. Assembly line performance and modeling

    Science.gov (United States)

    Rane, Arun B.; Sunnapwar, Vivek K.

    2017-09-01

    Automobile sector forms the backbone of manufacturing sector. Vehicle assembly line is important section in automobile plant where repetitive tasks are performed one after another at different workstations. In this thesis, a methodology is proposed to reduce cycle time and time loss due to important factors like equipment failure, shortage of inventory, absenteeism, set-up, material handling, rejection and fatigue to improve output within given cost constraints. Various relationships between these factors, corresponding cost and output are established by scientific approach. This methodology is validated in three different vehicle assembly plants. Proposed methodology may help practitioners to optimize the assembly line using lean techniques.

  14. Model based design of electronic throttle control

    Science.gov (United States)

    Cherian, Fenin; Ranjan, Ashish; Bhowmick, Pathikrit; Rammohan, A.

    2017-11-01

    With the advent of torque based Engine Management Systems, the precise control and robust performance of the throttle body becomes a key factor in the overall performance of the vehicle. Electronic Throttle Control provides benefits such as improved air-fuel ratio for improving the vehicle performance and lower exhausts emissions to meet the stringent emission norms. Modern vehicles facilitate various features such as Cruise Control, Traction Control, Electronic Stability Program and Pre-crash systems. These systems require control over engine power without driver intervention, which is not possible with conventional mechanical throttle system. Thus these systems are integrated to function with the electronic throttle control. However, due to inherent non-linearities in the throttle body, the control becomes a difficult task. In order to eliminate the influence of this hysteresis at the initial operation of the butterfly valve, a control to compensate the shortage must be added to the duty required for starting throttle operation when the initial operation is detected. Therefore, a lot of work is being done in this field to incorporate the various nonlinearities to achieve robust control. In our present work, the ETB was tested to verify the working of the system. Calibration of the TPS sensors was carried out in order to acquire accurate throttle opening angle. The response of the calibrated system was then plotted against a step input signal. A linear model of the ETB was prepared using Simulink and its response was compared with the experimental data to find out the initial deviation of the model from the actual system. To reduce this deviation, non-linearities from existing literature were introduced to the system and a response analysis was performed to check the deviation from the actual system. Based on this investigation, an introduction of a new nonlinearity parameter can be used in future to reduce the deviation further making the control of the ETB more

  15. Performance analysis of SS7 congestion controls under sustained overload

    Science.gov (United States)

    Manfield, David R.; Millsteed, Gregory K.; Zukerman, Moshe

    1994-04-01

    Congestion controls are a key factor in achieving the robust performance required of common channel signaling (CCS) networks in the face of partial network failures and extreme traffic loads, especially as networks become large and carry high traffic volume. The CCITT recommendations define a number of types of congestion control, and the parameters of the controls must be well set in order to ensure their efficacy under transient and sustained signalling network overload. The objective of this paper is to present a modeling approach to the determination of the network parameters that govern the performance of the SS7 congestion controls under sustained overload. Results of the investigation by simulation are presented and discussed.

  16. Integrated flight/propulsion control - Subsystem specifications for performance

    Science.gov (United States)

    Neighbors, W. K.; Rock, Stephen M.

    1993-01-01

    A procedure is presented for calculating multiple subsystem specifications given a number of performance requirements on the integrated system. This procedure applies to problems where the control design must be performed in a partitioned manner. It is based on a structured singular value analysis, and generates specifications as magnitude bounds on subsystem uncertainties. The performance requirements should be provided in the form of bounds on transfer functions of the integrated system. This form allows the expression of model following, command tracking, and disturbance rejection requirements. The procedure is demonstrated on a STOVL aircraft design.

  17. Control System Design for Cylindrical Tank Process Using Neural Model Predictive Control Technique

    Directory of Open Access Journals (Sweden)

    M. Sridevi

    2010-10-01

    Full Text Available Chemical manufacturing and process industry requires innovative technologies for process identification. This paper deals with model identification and control of cylindrical process. Model identification of the process was done using ARMAX technique. A neural model predictive controller was designed for the identified model. The performance of the controllers was evaluated using MATLAB software. The performance of NMPC controller was compared with Smith Predictor controller and IMC controller based on rise time, settling time, overshoot and ISE and it was found that the NMPC controller is better suited for this process.

  18. Wind turbine control with constraint handling: a model predictive control approach

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Hansen, Morten Hartvig; Poulsen, Niels Kjølstad

    2012-01-01

    on model predictive control, a control method well suited for constraint handling. The performance of the presented controller during an extreme operating gust is compared to that of a proportional-integral controller with integrator anti-windup. Furthermore, the presented controller-s capability...

  19. Nonlinear model predictive control theory and algorithms

    CERN Document Server

    Grüne, Lars

    2017-01-01

    This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...

  20. Control performance of pneumatic artificial muscle

    Science.gov (United States)

    Saga, Norihiko; Chonan, Seiji

    2007-01-01

    The robot in the future will be lightened and, in addition, the complex tasks will be done by the consumption of less energy. To achieve this, the development of an artificial muscle actuator which is as soft as a human-being becomes indispensable. At present, the artificial muscle actuator used is the McKibben type, but the heat and mechanical loss of this actuator are large because of the friction caused by the expansion and contraction of the sleeve. Therefore, we developed the artificial muscle tube where the Carbon fiber of the high intensity had been built into the silicon tube. In this report, the results of the examined the mechanical property of silicone rubber is reported, and the shrinking characteristics, response characteristics, and control performance as a pneumatic actuator are reported.

  1. An Industrial Model Based Disturbance Feedback Control Scheme

    DEFF Research Database (Denmark)

    Kawai, Fukiko; Nakazawa, Chikashi; Vinther, Kasper

    2014-01-01

    This paper presents a model based disturbance feedback control scheme. Industrial process systems have been traditionally controlled by using relay and PID controller. However these controllers are affected by disturbances and model errors and these effects degrade control performance. The authors...... propose a new control method that can decrease the negative impact of disturbance and model errors. The control method is motivated by industrial practice by Fuji Electric. Simulation tests are examined with a conventional PID controller and the disturbance feedback control. The simulation results...

  2. Work domain constraints for modelling surgical performance.

    Science.gov (United States)

    Morineau, Thierry; Riffaud, Laurent; Morandi, Xavier; Villain, Jonathan; Jannin, Pierre

    2015-10-01

    Three main approaches can be identified for modelling surgical performance: a competency-based approach, a task-based approach, both largely explored in the literature, and a less known work domain-based approach. The work domain-based approach first describes the work domain properties that constrain the agent's actions and shape the performance. This paper presents a work domain-based approach for modelling performance during cervical spine surgery, based on the idea that anatomical structures delineate the surgical performance. This model was evaluated through an analysis of junior and senior surgeons' actions. Twenty-four cervical spine surgeries performed by two junior and two senior surgeons were recorded in real time by an expert surgeon. According to a work domain-based model describing an optimal progression through anatomical structures, the degree of adjustment of each surgical procedure to a statistical polynomial function was assessed. Each surgical procedure showed a significant suitability with the model and regression coefficient values around 0.9. However, the surgeries performed by senior surgeons fitted this model significantly better than those performed by junior surgeons. Analysis of the relative frequencies of actions on anatomical structures showed that some specific anatomical structures discriminate senior from junior performances. The work domain-based modelling approach can provide an overall statistical indicator of surgical performance, but in particular, it can highlight specific points of interest among anatomical structures that the surgeons dwelled on according to their level of expertise.

  3. Model Predictive Control based on Finite Impulse Response Models

    DEFF Research Database (Denmark)

    Prasath, Guru; Jørgensen, John Bagterp

    2008-01-01

    We develop a regularized l2 finite impulse response (FIR) predictive controller with input and input-rate constraints. Feedback is based on a simple constant output disturbance filter. The performance of the predictive controller in the face of plant-model mismatch is investigated by simulations...... and related to the uncertainty of the impulse response coefficients. The simulations can be used to benchmark l2 MPC against FIR based robust MPC as well as to estimate the maximum performance improvements by robust MPC....

  4. Constrained bayesian inference of project performance models

    OpenAIRE

    Sunmola, Funlade

    2013-01-01

    Project performance models play an important role in the management of project success. When used for monitoring projects, they can offer predictive ability such as indications of possible delivery problems. Approaches for monitoring project performance relies on available project information including restrictions imposed on the project, particularly the constraints of cost, quality, scope and time. We study in this paper a Bayesian inference methodology for project performance modelling in ...

  5. Transmutation Fuel Performance Code Thermal Model Verification

    Energy Technology Data Exchange (ETDEWEB)

    Gregory K. Miller; Pavel G. Medvedev

    2007-09-01

    FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.

  6. Performance evaluation on vibration control of MR landing gear

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D Y; Nam, Y J; Park, M K [Graduate School, Pusan National University, Busan 609-735 (Korea, Republic of); Yamane, R [Kokushikan University, 4-28-1 Setagaya, Setagaya-ku, Tokyo 154-8515 (Japan)], E-mail: ldy5577@yahoo.co.kr, E-mail: mkpark1@pusan.ac.kr

    2009-02-01

    This paper is concerned with the applicability of the developed MR damper to the landing gear system for the attenuating undesired shock and vibration in the landing and taxing phases. First of all, the experimental model of the MR damper is derived based on the results of performance evaluations. Next, a simplified skyhook controller, which is one of the most straightforward, but effective approaches for improving ride comport in vehicles with active suspensions, is formulated. Then, the vibration control performances of the landing gear system using the MR damper are theoretically evaluated in the landing phase of the aircraft. A series of simulation analyses show that the proposed MR damper with the skyhook controller is effective for suppressing undesired vibration of the aircraft body. Finally, the effectiveness of the simulation results are additionally verified via HILS (Hardware-in-the-loop-simulation) method.

  7. Performance Comparison of Relational and Native-XML Databases using the Semantics of the Land Command and Control Information Exchange Data Model (LC2IEDM)

    National Research Council Canada - National Science Library

    Denny, Ian M; Jahn, Dieter

    2005-01-01

    .... The majority of messaging systems store information in a document-centric free-text format that makes it difficult for command and control systems, relational databases, software agents and web...

  8. Model performance analysis and model validation in logistic regression

    Directory of Open Access Journals (Sweden)

    Rosa Arboretti Giancristofaro

    2007-10-01

    Full Text Available In this paper a new model validation procedure for a logistic regression model is presented. At first, we illustrate a brief review of different techniques of model validation. Next, we define a number of properties required for a model to be considered "good", and a number of quantitative performance measures. Lastly, we describe a methodology for the assessment of the performance of a given model by using an example taken from a management study.

  9. Optimization control of LNG regasification plant using Model Predictive Control

    Science.gov (United States)

    Wahid, A.; Adicandra, F. F.

    2018-03-01

    Optimization of liquified natural gas (LNG) regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to choose optimum LNG regasification plant design and maintaining the optimum operating conditions through the implementation of model predictive control (MPC). Optimal tuning parameter for MPC such as P (prediction horizon), M (control of the horizon) and T (sampling time) are achieved by using fine-tuning method. The optimal criterion for design is the minimum amount of energy used and for control is integral of square error (ISE). As a result, the optimum design is scheme 2 which is developed by Devold with an energy savings of 40%. To maintain the optimum conditions, required MPC with P, M and T as follows: tank storage pressure: 90, 2, 1; product pressure: 95, 2, 1; temperature vaporizer: 65, 2, 2; and temperature heater: 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6%, 63.5%, 3.1% and 58.2% compared to PI controller performance. The energy savings that MPC controllers can make when there is a disturbance in temperature rise 1°C of sea water is 0.02 MW.

  10. Multiple Model Approaches to Modelling and Control,

    DEFF Research Database (Denmark)

    on the ease with which prior knowledge can be incorporated. It is interesting to note that researchers in Control Theory, Neural Networks,Statistics, Artificial Intelligence and Fuzzy Logic have more or less independently developed very similar modelling methods, calling them Local ModelNetworks, Operating......, and allows direct incorporation of high-level and qualitative plant knowledge into themodel. These advantages have proven to be very appealing for industrial applications, and the practical, intuitively appealing nature of the framework isdemonstrated in chapters describing applications of local methods...... to problems in the process industries, biomedical applications and autonomoussystems. The successful application of the ideas to demanding problems is already encouraging, but creative development of the basic framework isneeded to better allow the integration of human knowledge with automated learning...

  11. Control system modelling for superconducting accelerator

    International Nuclear Information System (INIS)

    Czarski, T.; Pozniak, K.; Romaniuk, R.

    2006-01-01

    A digital control of superconducting cavities for a linear accelerator is presented. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. FPGA based controller supported by MATLAB system was developed to investigate the novel firmware implementation. Algebraic model in complex domain is proposed for the system analyzing. Calibration procedure of a signal path is considered for a multi-channel control. Identification of the system parameters is carried out by the least squares method application. Control tables: Feed-Forward and Set- Point are determined for the required cavity performance, according to the recognized process. Feedback loop is tuned by fitting a complex gain of a corrector unit. Adaptive control algorithm is applied for feed-forward and feedback modes. Experimental results are presented for a cavity representative operation. (orig.)

  12. Explicit MPC design and performance-based tuning of an Adaptive Cruise Control Stop-&-Go

    NARCIS (Netherlands)

    Naus, G.J.L.; Ploeg, J.; Molengraft, M.J.G. van de; Steinbuch, M.

    2008-01-01

    This paper presents the synthesis, the implementation and the performance-based tuning of an Adaptive Cruise Control (ACC) Stop-&-Go (S&G) design. A Model Predictive Control (MPC) framework is adopted to design the controller. Performance of the controller is evaluated, distinguishing between

  13. Generalized internal model robust control for active front steering intervention

    Science.gov (United States)

    Wu, Jian; Zhao, Youqun; Ji, Xuewu; Liu, Yahui; Zhang, Lipeng

    2015-03-01

    Because of the tire nonlinearity and vehicle's parameters' uncertainties, robust control methods based on the worst cases, such as H ∞, µ synthesis, have been widely used in active front steering control, however, in order to guarantee the stability of active front steering system (AFS) controller, the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control. In this paper, a generalized internal model robust control (GIMC) that can overcome the contradiction between performance and stability is used in the AFS control. In GIMC, the Youla parameterization is used in an improved way. And GIMC controller includes two sections: a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters' uncertainties and some external disturbances. Simulations of double lane change (DLC) maneuver and that of braking on split- µ road are conducted to compare the performance and stability of the GIMC control, the nominal performance PID controller and the H ∞ controller. Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations, H ∞ controller is conservative so that the performance is a little low, and only the GIMC controller overcomes the contradiction between performance and robustness, which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller. Therefore, the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system, that is, can solve the instability of PID or LQP control methods and the low performance of the standard H ∞ controller.

  14. Performance, Stability, and Control Investigation at Mach Numbers from 0.60 to 1.05 of a Model of the "Swallow" with Outer Wing Panels Swept 75 degree with and without Power Simulations

    Science.gov (United States)

    Schmeer, James W.; Cassetti, Marlowe D.

    1960-01-01

    An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model with the outer wing panels swept 75 deg. has been conducted in the Langley 16-foot transonic tunnel. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. The engine nacelles incorporated swept lateral and vertical fins for aerodynamic stability and control. Jet-off data were obtained with flow-through nacelles, simulating inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained at Mach numbers from 0.60 to 1.05 through a range of angles of attack and angles of side-slip. Control characteristics were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control. The results indicate that the basic wing-body configuration becomes neutrally stable or unstable at a lift coefficient of 0.15; addition of nacelles with fins delayed instability to a lift coefficient of 0.30. Addition of nacelles to the wing-body configuration increased minimum drag from 0.0058 to 0.0100 at a Mach number of 0.60 and from 0.0080 to 0.0190 at a Mach number of 1.05 with corresponding reductions in maximum lift-drag ratio of 12 percent and 33 percent, respectively. The nacelle-fin combinations were ineffective as longitudinal controls but were adequate as directional and lateral controls. The model with nacelles and fins was directionally and laterally stable; the stability generally increased with increasing lift. Jet interference effects on stability and control characteristics were small but the adverse effects on drag were greater than would be expected for isolated nacelles.

  15. Photovoltaic performance models - A report card

    Science.gov (United States)

    Smith, J. H.; Reiter, L. R.

    1985-01-01

    Models for the analysis of photovoltaic (PV) systems' designs, implementation policies, and economic performance, have proliferated while keeping pace with rapid changes in basic PV technology and extensive empirical data compiled for such systems' performance. Attention is presently given to the results of a comparative assessment of ten well documented and widely used models, which range in complexity from first-order approximations of PV system performance to in-depth, circuit-level characterizations. The comparisons were made on the basis of the performance of their subsystem, as well as system, elements. The models fall into three categories in light of their degree of aggregation into subsystems: (1) simplified models for first-order calculation of system performance, with easily met input requirements but limited capability to address more than a small variety of design considerations; (2) models simulating PV systems in greater detail, encompassing types primarily intended for either concentrator-incorporating or flat plate collector PV systems; and (3) models not specifically designed for PV system performance modeling, but applicable to aspects of electrical system design. Models ignoring subsystem failure or degradation are noted to exclude operating and maintenance characteristics as well.

  16. A Perspective on Computational Human Performance Models as Design Tools

    Science.gov (United States)

    Jones, Patricia M.

    2010-01-01

    The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.

  17. Activity-Based Costing Model for Assessing Economic Performance.

    Science.gov (United States)

    DeHayes, Daniel W.; Lovrinic, Joseph G.

    1994-01-01

    An economic model for evaluating the cost performance of academic and administrative programs in higher education is described. Examples from its application at Indiana University-Purdue University Indianapolis are used to illustrate how the model has been used to control costs and reengineer processes. (Author/MSE)

  18. Modeling and Performance Analysis of Manufacturing Systems in ...

    African Journals Online (AJOL)

    Modeling and Performance Analysis of Manufacturing Systems in Footwear Industry. ... researcher to experiment with different variables and controls the manufacturing process ... In this study Arena simulation software is employed to model and measure ... for Authors · for Policy Makers · about Open Access · Journal Quality.

  19. Performance of different radiotherapy workload models

    International Nuclear Information System (INIS)

    Barbera, Lisa; Jackson, Lynda D.; Schulze, Karleen; Groome, Patti A.; Foroudi, Farshad; Delaney, Geoff P.; Mackillop, William J.

    2003-01-01

    Purpose: The purpose of this study was to evaluate the performance of different radiotherapy workload models using a prospectively collected dataset of patient and treatment information from a single center. Methods and Materials: Information about all individual radiotherapy treatments was collected for 2 weeks from the three linear accelerators (linacs) in our department. This information included diagnosis code, treatment site, treatment unit, treatment time, fields per fraction, technique, beam type, blocks, wedges, junctions, port films, and Eastern Cooperative Oncology Group (ECOG) performance status. We evaluated the accuracy and precision of the original and revised basic treatment equivalent (BTE) model, the simple and complex Addenbrooke models, the equivalent simple treatment visit (ESTV) model, fields per hour, and two local standards of workload measurement. Results: Data were collected for 2 weeks in June 2001. During this time, 151 patients were treated with 857 fractions. The revised BTE model performed better than the other models with a mean vertical bar observed - predicted vertical bar of 2.62 (2.44-2.80). It estimated 88.0% of treatment times within 5 min, which is similar to the previously reported accuracy of the model. Conclusion: The revised BTE model had similar accuracy and precision for data collected in our center as it did for the original dataset and performed the best of the models assessed. This model would have uses for patient scheduling, and describing workloads and case complexity

  20. Automatic Flight Controller With Model Inversion

    Science.gov (United States)

    Meyer, George; Smith, G. Allan

    1992-01-01

    Automatic digital electronic control system based on inverse-model-follower concept being developed for proposed vertical-attitude-takeoff-and-landing airplane. Inverse-model-follower control places inverse mathematical model of dynamics of controlled plant in series with control actuators of controlled plant so response of combination of model and plant to command is unity. System includes feedback to compensate for uncertainties in mathematical model and disturbances imposed from without.

  1. Model based control of refrigeration systems

    Energy Technology Data Exchange (ETDEWEB)

    Sloth Larsen, L.F.

    2005-11-15

    The subject for this Ph.D. thesis is model based control of refrigeration systems. Model based control covers a variety of different types of controls, that incorporates mathematical models. In this thesis the main subject therefore has been restricted to deal with system optimizing control. The optimizing control is divided into two layers, where the system oriented top layers deals with set-point optimizing control and the lower layer deals with dynamical optimizing control in the subsystems. The thesis has two main contributions, i.e. a novel approach for set-point optimization and a novel approach for desynchronization based on dynamical optimization. The focus in the development of the proposed set-point optimizing control has been on deriving a simple and general method, that with ease can be applied on various compositions of the same class of systems, such as refrigeration systems. The method is based on a set of parameter depended static equations describing the considered process. By adapting the parameters to the given process, predict the steady state and computing a steady state gradient of the cost function, the process can be driven continuously towards zero gradient, i.e. the optimum (if the cost function is convex). The method furthermore deals with system constrains by introducing barrier functions, hereby the best possible performance taking the given constrains in to account can be obtained, e.g. under extreme operational conditions. The proposed method has been applied on a test refrigeration system, placed at Aalborg University, for minimization of the energy consumption. Here it was proved that by using general static parameter depended system equations it was possible drive the set-points close to the optimum and thus reduce the power consumption with up to 20%. In the dynamical optimizing layer the idea is to optimize the operation of the subsystem or the groupings of subsystems, that limits the obtainable system performance. In systems

  2. Control loop design and control performance study on direct internal reforming solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.; Weng, S.; Su, M. [Key Laboratory of Power Machinery and Engineering of the Education Ministry, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2009-10-15

    A solid oxide fuel cell (SOFC) stack is a complicated nonlinear power system. Its system model includes a set of partial differential equations that describe species, mass, momentum and energy conservation, as well as the electrochemical reaction models. The validation and verification of the control system by experiment is very expensive and difficult. Based on the distributed and lumped model of a one-dimensional SOFC, the dynamic performance with different control loops for SOFC is investigated. The simulation result proves that the control system is appropriate and feasible, and can effectively satisfy the requirement of variable load power demand. This simulation model not only can prevent some latent dangers of the fuel cell system but also predict the distributed parameters' characteristics inside the SOFC system. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  3. Iowa calibration of MEPDG performance prediction models.

    Science.gov (United States)

    2013-06-01

    This study aims to improve the accuracy of AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) pavement : performance predictions for Iowa pavement systems through local calibration of MEPDG prediction models. A total of 130 : representative p...

  4. Model predictive control of a wind turbine modelled in Simpack

    International Nuclear Information System (INIS)

    Jassmann, U; Matzke, D; Reiter, M; Abel, D; Berroth, J; Schelenz, R; Jacobs, G

    2014-01-01

    Wind turbines (WT) are steadily growing in size to increase their power production, which also causes increasing loads acting on the turbine's components. At the same time large structures, such as the blades and the tower get more flexible. To minimize this impact, the classical control loops for keeping the power production in an optimum state are more and more extended by load alleviation strategies. These additional control loops can be unified by a multiple-input multiple-output (MIMO) controller to achieve better balancing of tuning parameters. An example for MIMO control, which has been paid more attention to recently by wind industry, is Model Predictive Control (MPC). In a MPC framework a simplified model of the WT is used to predict its controlled outputs. Based on a user-defined cost function an online optimization calculates the optimal control sequence. Thereby MPC can intrinsically incorporate constraints e.g. of actuators. Turbine models used for calculation within the MPC are typically simplified. For testing and verification usually multi body simulations, such as FAST, BLADED or FLEX5 are used to model system dynamics, but they are still limited in the number of degrees of freedom (DOF). Detailed information about load distribution (e.g. inside the gearbox) cannot be provided by such models. In this paper a Model Predictive Controller is presented and tested in a co-simulation with SlMPACK, a multi body system (MBS) simulation framework used for detailed load analysis. The analysis are performed on the basis of the IME6.0 MBS WT model, described in this paper. It is based on the rotor of the NREL 5MW WT and consists of a detailed representation of the drive train. This takes into account a flexible main shaft and its main bearings with a planetary gearbox, where all components are modelled flexible, as well as a supporting flexible main frame. The wind loads are simulated using the NREL AERODYN v13 code which has been implemented as a routine

  5. Model predictive control of a wind turbine modelled in Simpack

    Science.gov (United States)

    Jassmann, U.; Berroth, J.; Matzke, D.; Schelenz, R.; Reiter, M.; Jacobs, G.; Abel, D.

    2014-06-01

    Wind turbines (WT) are steadily growing in size to increase their power production, which also causes increasing loads acting on the turbine's components. At the same time large structures, such as the blades and the tower get more flexible. To minimize this impact, the classical control loops for keeping the power production in an optimum state are more and more extended by load alleviation strategies. These additional control loops can be unified by a multiple-input multiple-output (MIMO) controller to achieve better balancing of tuning parameters. An example for MIMO control, which has been paid more attention to recently by wind industry, is Model Predictive Control (MPC). In a MPC framework a simplified model of the WT is used to predict its controlled outputs. Based on a user-defined cost function an online optimization calculates the optimal control sequence. Thereby MPC can intrinsically incorporate constraints e.g. of actuators. Turbine models used for calculation within the MPC are typically simplified. For testing and verification usually multi body simulations, such as FAST, BLADED or FLEX5 are used to model system dynamics, but they are still limited in the number of degrees of freedom (DOF). Detailed information about load distribution (e.g. inside the gearbox) cannot be provided by such models. In this paper a Model Predictive Controller is presented and tested in a co-simulation with SlMPACK, a multi body system (MBS) simulation framework used for detailed load analysis. The analysis are performed on the basis of the IME6.0 MBS WT model, described in this paper. It is based on the rotor of the NREL 5MW WT and consists of a detailed representation of the drive train. This takes into account a flexible main shaft and its main bearings with a planetary gearbox, where all components are modelled flexible, as well as a supporting flexible main frame. The wind loads are simulated using the NREL AERODYN v13 code which has been implemented as a routine to

  6. A Model of Controlled Growth

    Science.gov (United States)

    Bressan, Alberto; Lewicka, Marta

    2018-03-01

    We consider a free boundary problem for a system of PDEs, modeling the growth of a biological tissue. A morphogen, controlling volume growth, is produced by specific cells and then diffused and absorbed throughout the domain. The geometric shape of the growing tissue is determined by the instantaneous minimization of an elastic deformation energy, subject to a constraint on the volumetric growth. For an initial domain with C}^{2,α boundary, our main result establishes the local existence and uniqueness of a classical solution, up to a rigid motion.

  7. Cost and Performance Model for Photovoltaic Systems

    Science.gov (United States)

    Borden, C. S.; Smith, J. H.; Davisson, M. C.; Reiter, L. J.

    1986-01-01

    Lifetime cost and performance (LCP) model assists in assessment of design options for photovoltaic systems. LCP is simulation of performance, cost, and revenue streams associated with photovoltaic power systems connected to electric-utility grid. LCP provides user with substantial flexibility in specifying technical and economic environment of application.

  8. Assessing Ecosystem Model Performance in Semiarid Systems

    Science.gov (United States)

    Thomas, A.; Dietze, M.; Scott, R. L.; Biederman, J. A.

    2017-12-01

    In ecosystem process modelling, comparing outputs to benchmark datasets observed in the field is an important way to validate models, allowing the modelling community to track model performance over time and compare models at specific sites. Multi-model comparison projects as well as models themselves have largely been focused on temperate forests and similar biomes. Semiarid regions, on the other hand, are underrepresented in land surface and ecosystem modelling efforts, and yet will be disproportionately impacted by disturbances such as climate change due to their sensitivity to changes in the water balance. Benchmarking models at semiarid sites is an important step in assessing and improving models' suitability for predicting the impact of disturbance on semiarid ecosystems. In this study, several ecosystem models were compared at a semiarid grassland in southwestern Arizona using PEcAn, or the Predictive Ecosystem Analyzer, an open-source eco-informatics toolbox ideal for creating the repeatable model workflows necessary for benchmarking. Models included SIPNET, DALEC, JULES, ED2, GDAY, LPJ-GUESS, MAESPA, CLM, CABLE, and FATES. Comparison between model output and benchmarks such as net ecosystem exchange (NEE) tended to produce high root mean square error and low correlation coefficients, reflecting poor simulation of seasonality and the tendency for models to create much higher carbon sources than observed. These results indicate that ecosystem models do not currently adequately represent semiarid ecosystem processes.

  9. Profile control simulations and experiments on TCV : A controller test environment and results using a model-based predictive controller

    NARCIS (Netherlands)

    Maljaars, E.; Felici, F.; Blanken, T.C.; Galperti, C.; Sauter, O.; de Baar, M.R.; Carpanese, F.; Goodman, T.P.; Kim, D.; Kim, S.H.; Kong, M.G.; Mavkov, B.; Merle, A.; Moret, J.M.; Nouailletas, R.; Scheffer, M.; Teplukhina, A.A.; Vu, N.M.T.

    2017-01-01

    The successful performance of a model predictive profile controller is demonstrated in simulations and experiments on the TCV tokamak, employing a profile controller test environment. Stable high-performance tokamak operation in hybrid and advanced plasma scenarios requires control over the safety

  10. Profile control simulations and experiments on TCV: a controller test environment and results using a model-based predictive controller

    NARCIS (Netherlands)

    Maljaars, B.; Felici, F.; Blanken, T. C.; Galperti, C.; Sauter, O.; de Baar, M. R.; Carpanese, F.; Goodman, T. P.; Kim, D.; Kim, S. H.; Kong, M.; Mavkov, B.; Merle, A.; Moret, J.; Nouailletas, R.; Scheffer, M.; Teplukhina, A.; Vu, T.

    2017-01-01

    The successful performance of a model predictive profile controller is demonstrated in simulations and experiments on the TCV tokamak, employing a profile controller test environment. Stable high-performance tokamak operation in hybrid and advanced plasma scenarios requires control over the safety

  11. Driver Performance Model: 1. Conceptual Framework

    National Research Council Canada - National Science Library

    Heimerl, Joseph

    2001-01-01

    ...'. At the present time, no such comprehensive model exists. This report discusses a conceptual framework designed to encompass the relationships, conditions, and constraints related to direct, indirect, and remote modes of driving and thus provides a guide or 'road map' for the construction and creation of a comprehensive driver performance model.

  12. Performance engineering in the community atmosphere model

    International Nuclear Information System (INIS)

    Worley, P; Mirin, A; Drake, J; Sawyer, W

    2006-01-01

    The Community Atmosphere Model (CAM) is the atmospheric component of the Community Climate System Model (CCSM) and is the primary consumer of computer resources in typical CCSM simulations. Performance engineering has been an important aspect of CAM development throughout its existence. This paper briefly summarizes these efforts and their impacts over the past five years

  13. Performance of hedging strategies in interval models

    NARCIS (Netherlands)

    Roorda, Berend; Engwerda, Jacob; Schumacher, J.M.

    2005-01-01

    For a proper assessment of risks associated with the trading of derivatives, the performance of hedging strategies should be evaluated not only in the context of the idealized model that has served as the basis of strategy development, but also in the context of other models. In this paper we

  14. Performability assessment by model checking of Markov reward models

    NARCIS (Netherlands)

    Baier, Christel; Cloth, L.; Haverkort, Boudewijn R.H.M.; Hermanns, H.; Katoen, Joost P.

    2010-01-01

    This paper describes efficient procedures for model checking Markov reward models, that allow us to evaluate, among others, the performability of computer-communication systems. We present the logic CSRL (Continuous Stochastic Reward Logic) to specify performability measures. It provides flexibility

  15. Analysing the temporal dynamics of model performance for hydrological models

    NARCIS (Netherlands)

    Reusser, D.E.; Blume, T.; Schaefli, B.; Zehe, E.

    2009-01-01

    The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or

  16. Identifying the connective strength between model parameters and performance criteria

    Directory of Open Access Journals (Sweden)

    B. Guse

    2017-11-01

    Full Text Available In hydrological models, parameters are used to represent the time-invariant characteristics of catchments and to capture different aspects of hydrological response. Hence, model parameters need to be identified based on their role in controlling the hydrological behaviour. For the identification of meaningful parameter values, multiple and complementary performance criteria are used that compare modelled and measured discharge time series. The reliability of the identification of hydrologically meaningful model parameter values depends on how distinctly a model parameter can be assigned to one of the performance criteria. To investigate this, we introduce the new concept of connective strength between model parameters and performance criteria. The connective strength assesses the intensity in the interrelationship between model parameters and performance criteria in a bijective way. In our analysis of connective strength, model simulations are carried out based on a latin hypercube sampling. Ten performance criteria including Nash–Sutcliffe efficiency (NSE, Kling–Gupta efficiency (KGE and its three components (alpha, beta and r as well as RSR (the ratio of the root mean square error to the standard deviation for different segments of the flow duration curve (FDC are calculated. With a joint analysis of two regression tree (RT approaches, we derive how a model parameter is connected to different performance criteria. At first, RTs are constructed using each performance criterion as the target variable to detect the most relevant model parameters for each performance criterion. Secondly, RTs are constructed using each parameter as the target variable to detect which performance criteria are impacted by changes in the values of one distinct model parameter. Based on this, appropriate performance criteria are identified for each model parameter. In this study, a high bijective connective strength between model parameters and performance criteria

  17. Performance, Stability, and Control Investigation at Mach Numbers from 0.4 to 0.9 of a Model of the "Swallow" with Outer Wing Panels Swept 25 degree with and without Power Simulation

    Science.gov (United States)

    Runckel, Jack F.; Schmeer, James W.; Cassetti, Marlowe D.

    1960-01-01

    An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model (the "Swallow") with the outer wing panels swept 25 deg has been conducted in the Langley 16-foot transonic tunnel. The wing was uncambered and untwisted and had RAE 102 airfoil sections with a thickness-to-chord ratio of 0.14 normal to the leading edge. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. A pair of swept lateral fins and a single vertical fin were mounted on each engine nacelle to provide aerodynamic stability and control. Jets-off data were obtained with flow-through nacelles, stimulating the effects of inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained through a Mach number range of 0.40 to 0.90 at angles of attack and angles of sideslip from 0 deg to 15 deg. Longitudinal, directional, and lateral control were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control.

  18. Analytical performance modeling for computer systems

    CERN Document Server

    Tay, Y C

    2013-01-01

    This book is an introduction to analytical performance modeling for computer systems, i.e., writing equations to describe their performance behavior. It is accessible to readers who have taken college-level courses in calculus and probability, networking and operating systems. This is not a training manual for becoming an expert performance analyst. Rather, the objective is to help the reader construct simple models for analyzing and understanding the systems that they are interested in.Describing a complicated system abstractly with mathematical equations requires a careful choice of assumpti

  19. Modeling the Aneuploidy Control of Cancer

    Directory of Open Access Journals (Sweden)

    Wang Zhong

    2010-07-01

    Full Text Available Abstract Background Aneuploidy has long been recognized to be associated with cancer. A growing body of evidence suggests that tumorigenesis, the formation of new tumors, can be attributed to some extent to errors occurring at the mitotic checkpoint, a major cell cycle control mechanism that acts to prevent chromosome missegregation. However, so far no statistical model has been available quantify the role aneuploidy plays in determining cancer. Methods We develop a statistical model for testing the association between aneuploidy loci and cancer risk in a genome-wide association study. The model incorporates quantitative genetic principles into a mixture-model framework in which various genetic effects, including additive, dominant, imprinting, and their interactions, are estimated by implementing the EM algorithm. Results Under the new model, a series of hypotheses tests are formulated to explain the pattern of the genetic control of cancer through aneuploid loci. Simulation studies were performed to investigate the statistical behavior of the model. Conclusions The model will provide a tool for estimating the effects of genetic loci on aneuploidy abnormality in genome-wide studies of cancer cells.

  20. Performance modeling, loss networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi

    2009-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of understanding the phenomenon of statistical multiplexing. The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in performance measures. Also presented are recent ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. I

  1. Nonlinear Multivariate Spline-Based Control Allocation for High-Performance Aircraft

    OpenAIRE

    Tol, H.J.; De Visser, C.C.; Van Kampen, E.; Chu, Q.P.

    2014-01-01

    High performance flight control systems based on the nonlinear dynamic inversion (NDI) principle require highly accurate models of aircraft aerodynamics. In general, the accuracy of the internal model determines to what degree the system nonlinearities can be canceled; the more accurate the model, the better the cancellation, and with that, the higher the performance of the controller. In this paper a new control system is presented that combines NDI with multivariate simplex spline based con...

  2. Neutron density optimal control of A-1 reactor analoque model

    International Nuclear Information System (INIS)

    Grof, V.

    1975-01-01

    Two applications are described of the optimal control of a reactor analog model. Both cases consider the control of neutron density. Control loops containing the on-line controlled process, the reactor of the first Czechoslovak nuclear power plant A-1, are simulated on an analog computer. Two versions of the optimal control algorithm are derived using modern control theory (Pontryagin's maximum principle, the calculus of variations, and Kalman's estimation theory), the minimum time performance index, and the quadratic performance index. The results of the optimal control analysis are compared with the A-1 reactor conventional control. (author)

  3. Shock circle model for ejector performance evaluation

    International Nuclear Information System (INIS)

    Zhu, Yinhai; Cai, Wenjian; Wen, Changyun; Li, Yanzhong

    2007-01-01

    In this paper, a novel shock circle model for the prediction of ejector performance at the critical mode operation is proposed. By introducing the 'shock circle' at the entrance of the constant area chamber, a 2D exponential expression for velocity distribution is adopted to approximate the viscosity flow near the ejector inner wall. The advantage of the 'shock circle' analysis is that the calculation of ejector performance is independent of the flows in the constant area chamber and diffuser. Consequently, the calculation is even simpler than many 1D modeling methods and can predict the performance of critical mode operation ejectors much more accurately. The effectiveness of the method is validated by two experimental results reported earlier. The proposed modeling method using two coefficients is shown to produce entrainment ratio, efficiency and coefficient of performance (COP) accurately and much closer to experimental results than those of 1D analysis methods

  4. Advances in HTGR fuel performance models

    International Nuclear Information System (INIS)

    Stansfield, O.M.; Goodin, D.T.; Hanson, D.L.; Turner, R.F.

    1985-01-01

    Advances in HTGR fuel performance models have improved the agreement between observed and predicted performance and contributed to an enhanced position of the HTGR with regard to investment risk and passive safety. Heavy metal contamination is the source of about 55% of the circulating activity in the HTGR during normal operation, and the remainder comes primarily from particles which failed because of defective or missing buffer coatings. These failed particles make up about 5 x 10 -4 fraction of the total core inventory. In addition to prediction of fuel performance during normal operation, the models are used to determine fuel failure and fission product release during core heat-up accident conditions. The mechanistic nature of the models, which incorporate all important failure modes, permits the prediction of performance from the relatively modest accident temperatures of a passively safe HTGR to the much more severe accident conditions of the larger 2240-MW/t HTGR. (author)

  5. Performance Evaluation Model for Application Layer Firewalls.

    Science.gov (United States)

    Xuan, Shichang; Yang, Wu; Dong, Hui; Zhang, Jiangchuan

    2016-01-01

    Application layer firewalls protect the trusted area network against information security risks. However, firewall performance may affect user experience. Therefore, performance analysis plays a significant role in the evaluation of application layer firewalls. This paper presents an analytic model of the application layer firewall, based on a system analysis to evaluate the capability of the firewall. In order to enable users to improve the performance of the application layer firewall with limited resources, resource allocation was evaluated to obtain the optimal resource allocation scheme in terms of throughput, delay, and packet loss rate. The proposed model employs the Erlangian queuing model to analyze the performance parameters of the system with regard to the three layers (network, transport, and application layers). Then, the analysis results of all the layers are combined to obtain the overall system performance indicators. A discrete event simulation method was used to evaluate the proposed model. Finally, limited service desk resources were allocated to obtain the values of the performance indicators under different resource allocation scenarios in order to determine the optimal allocation scheme. Under limited resource allocation, this scheme enables users to maximize the performance of the application layer firewall.

  6. Performance Evaluation Model for Application Layer Firewalls.

    Directory of Open Access Journals (Sweden)

    Shichang Xuan

    Full Text Available Application layer firewalls protect the trusted area network against information security risks. However, firewall performance may affect user experience. Therefore, performance analysis plays a significant role in the evaluation of application layer firewalls. This paper presents an analytic model of the application layer firewall, based on a system analysis to evaluate the capability of the firewall. In order to enable users to improve the performance of the application layer firewall with limited resources, resource allocation was evaluated to obtain the optimal resource allocation scheme in terms of throughput, delay, and packet loss rate. The proposed model employs the Erlangian queuing model to analyze the performance parameters of the system with regard to the three layers (network, transport, and application layers. Then, the analysis results of all the layers are combined to obtain the overall system performance indicators. A discrete event simulation method was used to evaluate the proposed model. Finally, limited service desk resources were allocated to obtain the values of the performance indicators under different resource allocation scenarios in order to determine the optimal allocation scheme. Under limited resource allocation, this scheme enables users to maximize the performance of the application layer firewall.

  7. Tailored model abstraction in performance assessments

    International Nuclear Information System (INIS)

    Kessler, J.H.

    1995-01-01

    Total System Performance Assessments (TSPAs) are likely to be one of the most significant parts of making safety cases for the continued development and licensing of geologic repositories for the disposal of spent fuel and HLW. Thus, it is critical that the TSPA model capture the 'essence' of the physical processes relevant to demonstrating the appropriate regulation is met. But how much detail about the physical processes must be modeled and understood before there is enough confidence that the appropriate essence has been captured? In this summary the level of model abstraction that is required is discussed. Approaches for subsystem and total system performance analyses are outlined, and the role of best estimate models is examined. It is concluded that a conservative approach for repository performance, based on limited amount of field and laboratory data, can provide sufficient confidence for a regulatory decision

  8. Multileaf collimator performance monitoring and improvement using semiautomated quality control testing and statistical process control

    International Nuclear Information System (INIS)

    Létourneau, Daniel; McNiven, Andrea; Keller, Harald; Wang, An; Amin, Md Nurul; Pearce, Jim; Norrlinger, Bernhard; Jaffray, David A.

    2014-01-01

    Purpose: High-quality radiation therapy using highly conformal dose distributions and image-guided techniques requires optimum machine delivery performance. In this work, a monitoring system for multileaf collimator (MLC) performance, integrating semiautomated MLC quality control (QC) tests and statistical process control tools, was developed. The MLC performance monitoring system was used for almost a year on two commercially available MLC models. Control charts were used to establish MLC performance and assess test frequency required to achieve a given level of performance. MLC-related interlocks and servicing events were recorded during the monitoring period and were investigated as indicators of MLC performance variations. Methods: The QC test developed as part of the MLC performance monitoring system uses 2D megavoltage images (acquired using an electronic portal imaging device) of 23 fields to determine the location of the leaves with respect to the radiation isocenter. The precision of the MLC performance monitoring QC test and the MLC itself was assessed by detecting the MLC leaf positions on 127 megavoltage images of a static field. After initial calibration, the MLC performance monitoring QC test was performed 3–4 times/week over a period of 10–11 months to monitor positional accuracy of individual leaves for two different MLC models. Analysis of test results was performed using individuals control charts per leaf with control limits computed based on the measurements as well as two sets of specifications of ±0.5 and ±1 mm. Out-of-specification and out-of-control leaves were automatically flagged by the monitoring system and reviewed monthly by physicists. MLC-related interlocks reported by the linear accelerator and servicing events were recorded to help identify potential causes of nonrandom MLC leaf positioning variations. Results: The precision of the MLC performance monitoring QC test and the MLC itself was within ±0.22 mm for most MLC leaves

  9. Multileaf collimator performance monitoring and improvement using semiautomated quality control testing and statistical process control.

    Science.gov (United States)

    Létourneau, Daniel; Wang, An; Amin, Md Nurul; Pearce, Jim; McNiven, Andrea; Keller, Harald; Norrlinger, Bernhard; Jaffray, David A

    2014-12-01

    High-quality radiation therapy using highly conformal dose distributions and image-guided techniques requires optimum machine delivery performance. In this work, a monitoring system for multileaf collimator (MLC) performance, integrating semiautomated MLC quality control (QC) tests and statistical process control tools, was developed. The MLC performance monitoring system was used for almost a year on two commercially available MLC models. Control charts were used to establish MLC performance and assess test frequency required to achieve a given level of performance. MLC-related interlocks and servicing events were recorded during the monitoring period and were investigated as indicators of MLC performance variations. The QC test developed as part of the MLC performance monitoring system uses 2D megavoltage images (acquired using an electronic portal imaging device) of 23 fields to determine the location of the leaves with respect to the radiation isocenter. The precision of the MLC performance monitoring QC test and the MLC itself was assessed by detecting the MLC leaf positions on 127 megavoltage images of a static field. After initial calibration, the MLC performance monitoring QC test was performed 3-4 times/week over a period of 10-11 months to monitor positional accuracy of individual leaves for two different MLC models. Analysis of test results was performed using individuals control charts per leaf with control limits computed based on the measurements as well as two sets of specifications of ± 0.5 and ± 1 mm. Out-of-specification and out-of-control leaves were automatically flagged by the monitoring system and reviewed monthly by physicists. MLC-related interlocks reported by the linear accelerator and servicing events were recorded to help identify potential causes of nonrandom MLC leaf positioning variations. The precision of the MLC performance monitoring QC test and the MLC itself was within ± 0.22 mm for most MLC leaves and the majority of the

  10. Modelling and Multi-Variable Control of Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Slot; Holm, J. R.

    2003-01-01

    In this paper a dynamic model of a 1:1 refrigeration system is presented. The main modelling effort has been concentrated on a lumped parameter model of a shell and tube condenser. The model has shown good resemblance with experimental data from a test rig, regarding as well the static as the dyn......In this paper a dynamic model of a 1:1 refrigeration system is presented. The main modelling effort has been concentrated on a lumped parameter model of a shell and tube condenser. The model has shown good resemblance with experimental data from a test rig, regarding as well the static...... as the dynamic behavior. Based on this model the effects of the cross couplings has been examined. The influence of the cross couplings on the achievable control performance has been investigated. A MIMO controller is designed and the performance is compared with the control performance achieved by using...

  11. Nonlinear Model Predictive Control for Cooperative Control and Estimation

    Science.gov (United States)

    Ru, Pengkai

    Recent advances in computational power have made it possible to do expensive online computations for control systems. It is becoming more realistic to perform computationally intensive optimization schemes online on systems that are not intrinsically stable and/or have very small time constants. Being one of the most important optimization based control approaches, model predictive control (MPC) has attracted a lot of interest from the research community due to its natural ability to incorporate constraints into its control formulation. Linear MPC has been well researched and its stability can be guaranteed in the majority of its application scenarios. However, one issue that still remains with linear MPC is that it completely ignores the system's inherent nonlinearities thus giving a sub-optimal solution. On the other hand, if achievable, nonlinear MPC, would naturally yield a globally optimal solution and take into account all the innate nonlinear characteristics. While an exact solution to a nonlinear MPC problem remains extremely computationally intensive, if not impossible, one might wonder if there is a middle ground between the two. We tried to strike a balance in this dissertation by employing a state representation technique, namely, the state dependent coefficient (SDC) representation. This new technique would render an improved performance in terms of optimality compared to linear MPC while still keeping the problem tractable. In fact, the computational power required is bounded only by a constant factor of the completely linearized MPC. The purpose of this research is to provide a theoretical framework for the design of a specific kind of nonlinear MPC controller and its extension into a general cooperative scheme. The controller is designed and implemented on quadcopter systems.

  12. Training Attentional Control Improves Cognitive and Motor Task Performance.

    Science.gov (United States)

    Ducrocq, Emmanuel; Wilson, Mark; Vine, Sam; Derakshan, Nazanin

    2016-10-01

    Attentional control is a necessary function for the regulation of goal-directed behavior. In three experiments we investigated whether training inhibitory control using a visual search task could improve task-specific measures of attentional control and performance. In Experiment 1 results revealed that training elicited a near-transfer effect, improving performance on a cognitive (antisaccade) task assessing inhibitory control. In Experiment 2 an initial far-transfer effect of training was observed on an index of attentional control validated for tennis. The principal aim of Experiment 3 was to expand on these findings by assessing objective gaze measures of inhibitory control during the performance of a tennis task. Training improved inhibitory control and performance when pressure was elevated, confirming the mechanisms by which cognitive anxiety impacts performance. These results suggest that attentional control training can improve inhibition and reduce taskspecific distractibility with promise of transfer to more efficient sporting performance in competitive contexts.

  13. Adaptive Control with Reference Model Modification

    Science.gov (United States)

    Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    This paper presents a modification of the conventional model reference adaptive control (MRAC) architecture in order to improve transient performance of the input and output signals of uncertain systems. A simple modification of the reference model is proposed by feeding back the tracking error signal. It is shown that the proposed approach guarantees tracking of the given reference command and the reference control signal (one that would be designed if the system were known) not only asymptotically but also in transient. Moreover, it prevents generation of high frequency oscillations, which are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference commands of any magnitude from any initial position without re-tuning. The benefits of the method are demonstrated with a simulation example

  14. Dynamics and control of quadcopter using linear model predictive control approach

    Science.gov (United States)

    Islam, M.; Okasha, M.; Idres, M. M.

    2017-12-01

    This paper investigates the dynamics and control of a quadcopter using the Model Predictive Control (MPC) approach. The dynamic model is of high fidelity and nonlinear, with six degrees of freedom that include disturbances and model uncertainties. The control approach is developed based on MPC to track different reference trajectories ranging from simple ones such as circular to complex helical trajectories. In this control technique, a linearized model is derived and the receding horizon method is applied to generate the optimal control sequence. Although MPC is computer expensive, it is highly effective to deal with the different types of nonlinearities and constraints such as actuators’ saturation and model uncertainties. The MPC parameters (control and prediction horizons) are selected by trial-and-error approach. Several simulation scenarios are performed to examine and evaluate the performance of the proposed control approach using MATLAB and Simulink environment. Simulation results show that this control approach is highly effective to track a given reference trajectory.

  15. A statistical model for predicting muscle performance

    Science.gov (United States)

    Byerly, Diane Leslie De Caix

    The objective of these studies was to develop a capability for predicting muscle performance and fatigue to be utilized for both space- and ground-based applications. To develop this predictive model, healthy test subjects performed a defined, repetitive dynamic exercise to failure using a Lordex spinal machine. Throughout the exercise, surface electromyography (SEMG) data were collected from the erector spinae using a Mega Electronics ME3000 muscle tester and surface electrodes placed on both sides of the back muscle. These data were analyzed using a 5th order Autoregressive (AR) model and statistical regression analysis. It was determined that an AR derived parameter, the mean average magnitude of AR poles, significantly correlated with the maximum number of repetitions (designated Rmax) that a test subject was able to perform. Using the mean average magnitude of AR poles, a test subject's performance to failure could be predicted as early as the sixth repetition of the exercise. This predictive model has the potential to provide a basis for improving post-space flight recovery, monitoring muscle atrophy in astronauts and assessing the effectiveness of countermeasures, monitoring astronaut performance and fatigue during Extravehicular Activity (EVA) operations, providing pre-flight assessment of the ability of an EVA crewmember to perform a given task, improving the design of training protocols and simulations for strenuous International Space Station assembly EVA, and enabling EVA work task sequences to be planned enhancing astronaut performance and safety. Potential ground-based, medical applications of the predictive model include monitoring muscle deterioration and performance resulting from illness, establishing safety guidelines in the industry for repetitive tasks, monitoring the stages of rehabilitation for muscle-related injuries sustained in sports and accidents, and enhancing athletic performance through improved training protocols while reducing

  16. Performance, Career Dynamics, and Span of Control

    DEFF Research Database (Denmark)

    Smeets, Valerie Anne Rolande; Waldman, Michael; Warzynski, Frederic Michel Patrick

    that higher ability managers should supervise more subordinates, or equivalently, have a larger span of control. And although some of this theory’s predictions have been empirically investigated, there has been little systematic investigation of the theory’s predictions concerning span of control....... In this paper we first extend the theoretical literature on the scale-of-operations effect to allow firms’ beliefs concerning a manager’s ability to evolve over the manager’s career, where much of our focus is the determinants of span of control. We then empirically investigate testable predictions from......There is an extensive theoretical literature based on what is called the scale-of-operations effect, i.e., the idea that the return to managerial ability is higher the more resources the manager influences with his or her decisions. This idea leads to various testable predictions including...

  17. High pressure common rail injection system modeling and control.

    Science.gov (United States)

    Wang, H P; Zheng, D; Tian, Y

    2016-07-01

    In this paper modeling and common-rail pressure control of high pressure common rail injection system (HPCRIS) is presented. The proposed mathematical model of high pressure common rail injection system which contains three sub-systems: high pressure pump sub-model, common rail sub-model and injector sub-model is a relative complicated nonlinear system. The mathematical model is validated by the software Matlab and a virtual detailed simulation environment. For the considered HPCRIS, an effective model free controller which is called Extended State Observer - based intelligent Proportional Integral (ESO-based iPI) controller is designed. And this proposed method is composed mainly of the referred ESO observer, and a time delay estimation based iPI controller. Finally, to demonstrate the performances of the proposed controller, the proposed ESO-based iPI controller is compared with a conventional PID controller and ADRC. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Model-based Control of a Bottom Fired Marine Boiler

    DEFF Research Database (Denmark)

    Solberg, Brian; Karstensen, Claus M. S.; Andersen, Palle

    2005-01-01

    This paper focuses on applying model based MIMO control to minimize variations in water level for a specific boiler type. A first principles model is put up. The model is linearized and an LQG controller is designed. Furthermore the benefit of using a steam °ow measurement is compared to a strategy...... relying on estimates of the disturbance. Preliminary tests at the boiler system show that the designed controller is able to control the boiler process. Furthermore it can be concluded that relying on estimates of the steam flow in the control strategy does not decrease the controller performance...

  19. Model-based Control of a Bottom Fired Marine Boiler

    DEFF Research Database (Denmark)

    Solberg, Brian; Karstensen, Claus M. S.; Andersen, Palle

    This paper focuses on applying model based MIMO control to minimize variations in water level for a specific boiler type. A first principles model is put up. The model is linearized and an LQG controller is designed. Furthermore the benefit of using a steam °ow measurement is compared to a strategy...... relying on estimates of the disturbance. Preliminary tests at the boiler system show that the designed controller is able to control the boiler process. Furthermore it can be concluded that relying on estimates of the steam flow in the control strategy does not decrease the controller performance...

  20. Integrated soft sensor model for flow control.

    Science.gov (United States)

    Aijälä, G; Lumley, D

    2006-01-01

    Tighter discharge permits often require wastewater treatment plants to maximize utilization of available facilities in order to cost-effectively reach these goals. Important aspects are minimizing internal disturbances and using available information in a smart way to improve plant performance. In this study, flow control throughout a large highly automated wastewater treatment plant (WWTP) was implemented in order to reduce internal disturbances and to provide a firm foundation for more advanced process control. A modular flow control system was constructed based on existing instrumentation and soft sensor flow models. Modules were constructed for every unit process in water treatment and integrated into a plant-wide model. The flow control system is used to automatically control recirculation flows and bypass flows at the plant. The system was also successful in making accurate flow estimations at points in the plant where it is not possible to have conventional flow meter instrumentation. The system provides fault detection for physical flow measuring devices. The module construction allows easy adaptation for new unit processes added to the treatment plant.

  1. Locus of Control and Performance: Widening Applicabilities

    Science.gov (United States)

    Manichander, T.

    2014-01-01

    In an attempt to explain the evidence which indicates that internal perception of control is positively related to academic achievement, this paper suggests that mediating motivational and cognitive reactions, which differentiate internals from externals, may account for this relationship. Furthermore, on the basis of data which suggest that the…

  2. Wind turbine control and model predictive control for uncertain systems

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz

    as disturbance models for controller design. The theoretical study deals with Model Predictive Control (MPC). MPC is an optimal control method which is characterized by the use of a receding prediction horizon. MPC has risen in popularity due to its inherent ability to systematically account for time...

  3. Generating Performance Models for Irregular Applications

    Energy Technology Data Exchange (ETDEWEB)

    Friese, Ryan D.; Tallent, Nathan R.; Vishnu, Abhinav; Kerbyson, Darren J.; Hoisie, Adolfy

    2017-05-30

    Many applications have irregular behavior --- non-uniform input data, input-dependent solvers, irregular memory accesses, unbiased branches --- that cannot be captured using today's automated performance modeling techniques. We describe new hierarchical critical path analyses for the \\Palm model generation tool. To create a model's structure, we capture tasks along representative MPI critical paths. We create a histogram of critical tasks with parameterized task arguments and instance counts. To model each task, we identify hot instruction-level sub-paths and model each sub-path based on data flow, instruction scheduling, and data locality. We describe application models that generate accurate predictions for strong scaling when varying CPU speed, cache speed, memory speed, and architecture. We present results for the Sweep3D neutron transport benchmark; Page Rank on multiple graphs; Support Vector Machine with pruning; and PFLOTRAN's reactive flow/transport solver with domain-induced load imbalance.

  4. Measurement-based reliability/performability models

    Science.gov (United States)

    Hsueh, Mei-Chen

    1987-01-01

    Measurement-based models based on real error-data collected on a multiprocessor system are described. Model development from the raw error-data to the estimation of cumulative reward is also described. A workload/reliability model is developed based on low-level error and resource usage data collected on an IBM 3081 system during its normal operation in order to evaluate the resource usage/error/recovery process in a large mainframe system. Thus, both normal and erroneous behavior of the system are modeled. The results provide an understanding of the different types of errors and recovery processes. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A sensitivity analysis is performed to investigate the significance of using a semi-Markov process, as opposed to a Markov process, to model the measured system.

  5. Performance-based maintenance of gas turbines for reliable control of degraded power systems

    Science.gov (United States)

    Mo, Huadong; Sansavini, Giovanni; Xie, Min

    2018-03-01

    Maintenance actions are necessary for ensuring proper operations of control systems under component degradation. However, current condition-based maintenance (CBM) models based on component health indices are not suitable for degraded control systems. Indeed, failures of control systems are only determined by the controller outputs, and the feedback mechanism compensates the control performance loss caused by the component deterioration. Thus, control systems may still operate normally even if the component health indices exceed failure thresholds. This work investigates the CBM model of control systems and employs the reduced control performance as a direct degradation measure for deciding maintenance activities. The reduced control performance depends on the underlying component degradation modelled as a Wiener process and the feedback mechanism. To this aim, the controller features are quantified by developing a dynamic and stochastic control block diagram-based simulation model, consisting of the degraded components and the control mechanism. At each inspection, the system receives a maintenance action if the control performance deterioration exceeds its preventive-maintenance or failure thresholds. Inspired by realistic cases, the component degradation model considers random start time and unit-to-unit variability. The cost analysis of maintenance model is conducted via Monte Carlo simulation. Optimal maintenance strategies are investigated to minimize the expected maintenance costs, which is a direct consequence of the control performance. The proposed framework is able to design preventive maintenance actions on a gas power plant, to ensuring required load frequency control performance against a sudden load increase. The optimization results identify the trade-off between system downtime and maintenance costs as a function of preventive maintenance thresholds and inspection frequency. Finally, the control performance-based maintenance model can reduce

  6. Performance Measurement Model A TarBase model with ...

    Indian Academy of Sciences (India)

    rohit

    Model A 8.0 2.0 94.52% 88.46% 76 108 12 12 0.86 0.91 0.78 0.94. Model B 2.0 2.0 93.18% 89.33% 64 95 10 9 0.88 0.90 0.75 0.98. The above results for TEST – 1 show details for our two models (Model A and Model B).Performance of Model A after adding of 32 negative dataset of MiRTif on our testing set(MiRecords) ...

  7. A Procurement Performance Model for Construction Frameworks

    Directory of Open Access Journals (Sweden)

    Terence Y M Lam

    2015-07-01

    Full Text Available Collaborative construction frameworks have been developed in the United Kingdom (UK to create longer term relationships between clients and suppliers in order to improve project outcomes. Research undertaken into highways maintenance set within a major county council has confirmed that such collaborative procurement methods can improve time, cost and quality of construction projects. Building upon this and examining the same single case, this research aims to develop a performance model through identification of performance drivers in the whole project delivery process including pre and post contract phases. A priori performance model based on operational and sociological constructs was proposed and then checked by a pilot study. Factor analysis and central tendency statistics from the questionnaires as well as content analysis from the interview transcripts were conducted. It was confirmed that long term relationships, financial and non-financial incentives and stronger communication are the sociological behaviour factors driving performance. The interviews also established that key performance indicators (KPIs can be used as an operational measure to improve performance. With the posteriori performance model, client project managers can effectively collaboratively manage contractor performance through procurement measures including use of longer term and KPIs for the contract so that the expected project outcomes can be achieved. The findings also make significant contribution to construction framework procurement theory by identifying the interrelated sociological and operational performance drivers. This study is set predominantly in the field of highways civil engineering. It is suggested that building based projects or other projects that share characteristics are grouped together and used for further research of the phenomena discovered.

  8. Models for Automated Tube Performance Calculations

    International Nuclear Information System (INIS)

    Brunkhorst, C.

    2002-01-01

    High power radio-frequency systems, as typically used in fusion research devices, utilize vacuum tubes. Evaluation of vacuum tube performance involves data taken from tube operating curves. The acquisition of data from such graphical sources is a tedious process. A simple modeling method is presented that will provide values of tube currents for a given set of element voltages. These models may be used as subroutines in iterative solutions of amplifier operating conditions for a specific loading impedance

  9. Design of disturbances control model at automotive company

    Science.gov (United States)

    Marie, I. A.; Sari, D. K.; Astuti, P.; Teorema, M.

    2017-12-01

    The discussion was conducted at PT. XYZ which produces automotive components and motorcycle products. The company produced X123 type cylinder head which is a motor vehicle forming component. The disturbances in the production system has affected the company performance in achieving the target of Key Performance Indicator (KPI). Currently, the determination of the percentage of safety stock of cylinder head products is not in accordance to the control limits set by the company (60% - 80%), and tends to exceed the control limits that cause increasing the inventory wastage in the company. This study aims to identify the production system disturbances that occurs in the production process of manufacturing components of X123 type cylinder head products and design the control model of disturbance to obtain control action and determine the safety stock policy in accordance with the needs of the company. The design stage has been done based on the Disturbance Control Model which already existing and customized with the company need in controlling the production system disturbances at the company. The design of the disturbances control model consists of sub-model of the risk level of the disturbance, sub-model of action status, sub-model action control of the disturbance, and sub-model of determining the safety stock. The model can assist the automotive company in taking the decision to perform the disturbances control action in production system cylinder head while controlling the percentage of the safety stock.

  10. Model predictive control using fuzzy decision functions

    NARCIS (Netherlands)

    Kaymak, U.; Costa Sousa, da J.M.

    2001-01-01

    Fuzzy predictive control integrates conventional model predictive control with techniques from fuzzy multicriteria decision making, translating the goals and the constraints to predictive control in a transparent way. The information regarding the (fuzzy) goals and the (fuzzy) constraints of the

  11. Concurrently adjusting interrelated control parameters to achieve optimal engine performance

    Science.gov (United States)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-12-01

    Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.

  12. Performance Evaluation and Modelling of Container Terminals

    Science.gov (United States)

    Venkatasubbaiah, K.; Rao, K. Narayana; Rao, M. Malleswara; Challa, Suresh

    2018-02-01

    The present paper evaluates and analyzes the performance of 28 container terminals of south East Asia through data envelopment analysis (DEA), principal component analysis (PCA) and hybrid method of DEA-PCA. DEA technique is utilized to identify efficient decision making unit (DMU)s and to rank DMUs in a peer appraisal mode. PCA is a multivariate statistical method to evaluate the performance of container terminals. In hybrid method, DEA is integrated with PCA to arrive the ranking of container terminals. Based on the composite ranking, performance modelling and optimization of container terminals is carried out through response surface methodology (RSM).

  13. PERFORMANCE IN INTERNAL CONTROL AND RISK MANAGEMENT

    OpenAIRE

    JELER (POPA) IOANA; FOCŞAN ELEONORA IONELA; CORICI MARIAN CĂTĂLIN

    2017-01-01

    The purpose of this article is to highlight the importance of internal control and risk management. In practice, economic entities meet a variety of risks that have the origins from the internal environment or the external one. Although there are different of views on addressing the concept of risk - threats or opportunities, event or action, accordingly uncertain, proposed by specialists in risk management in this article we try to present these issues and identify techniques to ...

  14. Multiplicity Control in Structural Equation Modeling

    Science.gov (United States)

    Cribbie, Robert A.

    2007-01-01

    Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…

  15. HANDOVER MANAGEABILITY AND PERFORMANCE MODELING IN

    African Journals Online (AJOL)

    SOFTLINKS DIGITAL

    and Corporate Information Systems: A Proactive Mitigation. Response Model. 1 ... known malware variants, and more than ... has defined authentication as the process of identifying ... providing protection via Access Controls,. Encryption and ... to use their technical prowess to teach .... Developing and distributing approved.

  16. Model predictive control based on reduced order models applied to belt conveyor system.

    Science.gov (United States)

    Chen, Wei; Li, Xin

    2016-11-01

    In the paper, a model predictive controller based on reduced order model is proposed to control belt conveyor system, which is an electro-mechanics complex system with long visco-elastic body. Firstly, in order to design low-degree controller, the balanced truncation method is used for belt conveyor model reduction. Secondly, MPC algorithm based on reduced order model for belt conveyor system is presented. Because of the error bound between the full-order model and reduced order model, two Kalman state estimators are applied in the control scheme to achieve better system performance. Finally, the simulation experiments are shown that balanced truncation method can significantly reduce the model order with high-accuracy and model predictive control based on reduced-model performs well in controlling the belt conveyor system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Locus of Control and Neuropsychological Performance in Chronic Alcoholics.

    Science.gov (United States)

    Shelton, M. D.; And Others

    1982-01-01

    Examined correlated neuropsychological performance in male chronic alcoholics and non-alcoholic controls. Results showed external locus of control (LOC-E) scores to predict performance on neuropsychological tests in alcoholics but not in controls. Suggests the LOC-E variables cannot account for the widespread differences between the groups on…

  18. On optimal feedforward and ILC : the role of feedback for optimal performance and inferential control

    NARCIS (Netherlands)

    van Zundert, J.C.D.; Oomen, T.A.E

    2017-01-01

    The combination of feedback control with inverse model feedforward control or iterative learning control is known to yield high performance. The aim of this paper is to clarify the role of feedback in the design of feedforward controllers, with specific attention to the inferential situation. Recent

  19. High Performance, Robust Control of Flexible Space Structures: MSFC Center Director's Discretionary Fund

    Science.gov (United States)

    Whorton, M. S.

    1998-01-01

    Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed H2/H(infinity) optimization to synthesize a set of controllers explicitly trading between nominal performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H2/H(infinity) design method than either H2 or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures.

  20. Strong stabilization servo controller with optimization of performance criteria.

    Science.gov (United States)

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2011-07-01

    Synthesis of a simple robust controller with a pole placement technique and a H(∞) metrics is the method used for control of a servo mechanism with BLDC and BDC electric motors. The method includes solving a polynomial equation on the basis of the chosen characteristic polynomial using the Manabe standard polynomial form and parametric solutions. Parametric solutions are introduced directly into the structure of the servo controller. On the basis of the chosen parametric solutions the robustness of a closed-loop system is assessed through uncertainty models and assessment of the norm ‖•‖(∞). The design procedure and the optimization are performed with a genetic algorithm differential evolution - DE. The DE optimization method determines a suboptimal solution throughout the optimization on the basis of a spectrally square polynomial and Šiljak's absolute stability test. The stability of the designed controller during the optimization is being checked with Lipatov's stability condition. Both utilized approaches: Šiljak's test and Lipatov's condition, check the robustness and stability characteristics on the basis of the polynomial's coefficients, and are very convenient for automated design of closed-loop control and for application in optimization algorithms such as DE. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Model-Based Development of Control Systems for Forestry Cranes

    Directory of Open Access Journals (Sweden)

    Pedro La Hera

    2015-01-01

    Full Text Available Model-based methods are used in industry for prototyping concepts based on mathematical models. With our forest industry partners, we have established a model-based workflow for rapid development of motion control systems for forestry cranes. Applying this working method, we can verify control algorithms, both theoretically and practically. This paper is an example of this workflow and presents four topics related to the application of nonlinear control theory. The first topic presents the system of differential equations describing the motion dynamics. The second topic presents nonlinear control laws formulated according to sliding mode control theory. The third topic presents a procedure for model calibration and control tuning that are a prerequisite to realize experimental tests. The fourth topic presents the results of tests performed on an experimental crane specifically equipped for these tasks. Results of these studies show the advantages and disadvantages of these control algorithms, and they highlight their performance in terms of robustness and smoothness.

  2. The COMPASS Tokamak Plasma Control Software Performance

    Czech Academy of Sciences Publication Activity Database

    Valcárcel, D.F.; Neto, A.; Carvalho, I.S.; Carvalho, B.B.; Fernandes, H.; Sousa, J.; Janky, F.; Havlíček, Josef; Beňo, R.; Horáček, Jan; Hron, Martin; Pánek, Radomír

    2011-01-01

    Roč. 58, č. 4 (2011), s. 1490-1496 ISSN 0018-9499. [Real Time Conference, RT10/17th./. Lisboa, 24.05.2010-28.05.2010] R&D Projects: GA MŠk 7G09042; GA ČR GD202/08/H057 Institutional research plan: CEZ:AV0Z20430508 Keywords : Real-Time * ATCA * Data Acquisition * Plasma Control Software Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.447, year: 2011 http://dx.doi.org/10.1109/TNS.2011.2143726

  3. A practical model for sustainable operational performance

    International Nuclear Information System (INIS)

    Vlek, C.A.J.; Steg, E.M.; Feenstra, D.; Gerbens-Leenis, W.; Lindenberg, S.; Moll, H.; Schoot Uiterkamp, A.; Sijtsma, F.; Van Witteloostuijn, A.

    2002-01-01

    By means of a concrete model for sustainable operational performance enterprises can report uniformly on the sustainability of their contributions to the economy, welfare and the environment. The development and design of a three-dimensional monitoring system is presented and discussed [nl

  4. Functional Dual Adaptive Control with Recursive Gaussian Process Model

    International Nuclear Information System (INIS)

    Prüher, Jakub; Král, Ladislav

    2015-01-01

    The paper deals with dual adaptive control problem, where the functional uncertainties in the system description are modelled by a non-parametric Gaussian process regression model. Current approaches to adaptive control based on Gaussian process models are severely limited in their practical applicability, because the model is re-adjusted using all the currently available data, which keeps growing with every time step. We propose the use of recursive Gaussian process regression algorithm for significant reduction in computational requirements, thus bringing the Gaussian process-based adaptive controllers closer to their practical applicability. In this work, we design a bi-criterial dual controller based on recursive Gaussian process model for discrete-time stochastic dynamic systems given in an affine-in-control form. Using Monte Carlo simulations, we show that the proposed controller achieves comparable performance with the full Gaussian process-based controller in terms of control quality while keeping the computational demands bounded. (paper)

  5. Data Model Performance in Data Warehousing

    Science.gov (United States)

    Rorimpandey, G. C.; Sangkop, F. I.; Rantung, V. P.; Zwart, J. P.; Liando, O. E. S.; Mewengkang, A.

    2018-02-01

    Data Warehouses have increasingly become important in organizations that have large amount of data. It is not a product but a part of a solution for the decision support system in those organizations. Data model is the starting point for designing and developing of data warehouses architectures. Thus, the data model needs stable interfaces and consistent for a longer period of time. The aim of this research is to know which data model in data warehousing has the best performance. The research method is descriptive analysis, which has 3 main tasks, such as data collection and organization, analysis of data and interpretation of data. The result of this research is discussed in a statistic analysis method, represents that there is no statistical difference among data models used in data warehousing. The organization can utilize four data model proposed when designing and developing data warehouse.

  6. Performance and quality control of scintillation cameras

    International Nuclear Information System (INIS)

    Moretti, J.L.; Iachetti, D.

    1983-01-01

    Acceptance testing, quality and control assurance of gamma-cameras are a part of diagnostic quality in clinical practice. Several parameters are required to achieve a good diagnostic reliability: intrinsic spatial resolution, spatial linearity, uniformities, energy resolution, count-rate characteristics, multiple window spatial analysis. Each parameter was measured and also estimated by a test easy to implement in routine practice. Material required was a 4028 multichannel analyzer linked to a microcomputeur, mini-computers and a set of phantoms (parallel slits, diffusing phantom, orthogonal hole transmission pattern). Gamma-cameras on study were:CGR 3400, CGR 3420, G.E.4000. Siemens ZLC 75 and large field Philips. Several tests proposed by N.E.M.A. and W.H.O. have to be improved concerning too punctual spatial determinations during distortion measurements with multiple window. Contrast control of image need to be monitored with high counting rate. This study shows the need to avoid punctual determinations and the interest to give sets of values of the same parameter on the whole field and to report mean values with their standard variation [fr

  7. Model complexity control for hydrologic prediction

    NARCIS (Netherlands)

    Schoups, G.; Van de Giesen, N.C.; Savenije, H.H.G.

    2008-01-01

    A common concern in hydrologic modeling is overparameterization of complex models given limited and noisy data. This leads to problems of parameter nonuniqueness and equifinality, which may negatively affect prediction uncertainties. A systematic way of controlling model complexity is therefore

  8. PERFORMANCE IN INTERNAL CONTROL AND RISK MANAGEMENT

    Directory of Open Access Journals (Sweden)

    JELER (POPA IOANA

    2017-06-01

    Full Text Available The purpose of this article is to highlight the importance of internal control and risk management. In practice, economic entities meet a variety of risks that have the origins from the internal environment or the external one. Although there are different of views on addressing the concept of risk - threats or opportunities, event or action, accordingly uncertain, proposed by specialists in risk management in this article we try to present these issues and identify techniques to counter risks occurrence. In this article we present also means managing risk and why needs to be implemented at institutional level a risk management. The paper concludes by highlight the role of efficient risk management in the company’s management and company's activities.

  9. Frequency domain performance analysis of nonlinearly controlled motion systems

    NARCIS (Netherlands)

    Pavlov, A.V.; Wouw, van de N.; Pogromski, A.Y.; Heertjes, M.F.; Nijmeijer, H.

    2007-01-01

    At the heart of the performance analysis of linear motion control systems lie essential frequency domain characteristics such as sensitivity and complementary sensitivity functions. For a class of nonlinear motion control systems called convergent systems, generalized versions of these sensitivity

  10. Belief Control Practices and Organizational Performances: A Survey ...

    African Journals Online (AJOL)

    Belief Control Practices and Organizational Performances: A Survey of Sugar Industry in Kenya. ... employees in the company core values and design of strategic control systems to cope with changing internal and external operating business ...

  11. A performance requirements analysis of the SSC control system

    International Nuclear Information System (INIS)

    Hunt, S.M.; Low, K.

    1992-01-01

    This paper presents the results of analysis of the performance requirements of the Superconducting Super Collider Control System. We quantify the performance requirements of the system in terms of response time, throughput and reliability. We then examine the effect of distance and traffic patterns on control system performance and examine how these factors influence the implementation of the control network architecture and compare the proposed system against those criteria. (author)

  12. Mathemetical performance analysis of a temperature controlled bulk storage room

    NARCIS (Netherlands)

    Mourik, van S.; Ploegaert, J.P.M.; Zwart, H.; Keesman, K.J.

    2007-01-01

    Usually, control design takes place after the plant has been designed. However, the performance of the plant connected to the controller might be improved by simultaneous design of the plant and the controller. In this paper, expressions are deduced that describe the dynamics of a controlled plant

  13. Modelling primate control of grasping for robotics applications

    CSIR Research Space (South Africa)

    Kleinhans, A

    2014-09-01

    Full Text Available The neural circuits that control grasping and perform related visual processing have been studied extensively in Macaque monkeys. We are developing a computational model of this system, in order to better understand its function, and to explore...

  14. Model predictive control for a thermostatic controlled system

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob

    2013-01-01

    This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff temperat......This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff...

  15. Nonlinear adaptive inverse control via the unified model neural network

    Science.gov (United States)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  16. Discrete Model Reference Adaptive Control System for Automatic Profiling Machine

    Directory of Open Access Journals (Sweden)

    Peng Song

    2012-01-01

    Full Text Available Automatic profiling machine is a movement system that has a high degree of parameter variation and high frequency of transient process, and it requires an accurate control in time. In this paper, the discrete model reference adaptive control system of automatic profiling machine is discussed. Firstly, the model of automatic profiling machine is presented according to the parameters of DC motor. Then the design of the discrete model reference adaptive control is proposed, and the control rules are proven. The results of simulation show that adaptive control system has favorable dynamic performances.

  17. Stochastic models, estimation, and control

    CERN Document Server

    Maybeck, Peter S

    1982-01-01

    This volume builds upon the foundations set in Volumes 1 and 2. Chapter 13 introduces the basic concepts of stochastic control and dynamic programming as the fundamental means of synthesizing optimal stochastic control laws.

  18. Robust control design verification using the modular modeling system

    International Nuclear Information System (INIS)

    Edwards, R.M.; Ben-Abdennour, A.; Lee, K.Y.

    1991-01-01

    The Modular Modeling System (B ampersand W MMS) is being used as a design tool to verify robust controller designs for improving power plant performance while also providing fault-accommodating capabilities. These controllers are designed based on optimal control theory and are thus model based controllers which are targeted for implementation in a computer based digital control environment. The MMS is being successfully used to verify that the controllers are tolerant of uncertainties between the plant model employed in the controller and the actual plant; i.e., that they are robust. The two areas in which the MMS is being used for this purpose is in the design of (1) a reactor power controller with improved reactor temperature response, and (2) the design of a multiple input multiple output (MIMO) robust fault-accommodating controller for a deaerator level and pressure control problem

  19. Longitudinal Control for Mengshi Autonomous Vehicle via Gauss Cloud Model

    Directory of Open Access Journals (Sweden)

    Hongbo Gao

    2017-12-01

    Full Text Available Dynamic robustness and stability control is a requirement for self-driving of autonomous vehicle. Longitudinal control technique of autonomous vehicle is basic theory and one key complex technique which must have the reliability and precision of vehicle controller. The longitudinal control technique is one of the foundations of the safety and stability of autonomous vehicle control. In our paper, we present a longitudinal control algorithm based on cloud model for Mengshi autonomous vehicle to ensure the dynamic stability and tracking performance of Mengshi autonomous vehicle. The longitudinal control algorithm mainly uses cloud model generator to control the acceleration of the autonomous vehicle to achieve the goal that controls the speed of Mengshi autonomous vehicle. The proposed longitudinal control algorithm based on cloud model is verified by real experiments on Highway driving scene. The experiments results of the acceleration and speed show that the algorithm is validity and stability.

  20. Perturbing engine performance measurements to determine optimal engine control settings

    Science.gov (United States)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-12-30

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.

  1. Real-Time Application Performance Steering and Adaptive Control

    National Research Council Canada - National Science Library

    Reed, Daniel

    2002-01-01

    .... The objective of the Real-time Application Performance Steering and Adaptive Control project is to replace ad hoc, post-mortem performance optimization with an extensible, portable, and distributed...

  2. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Janine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Whitmore, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kaffine, Leah [National Renewable Energy Lab. (NREL), Golden, CO (United States); Blair, Nate [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  3. Performance of the TRISTAN computer control network

    International Nuclear Information System (INIS)

    Koiso, H.; Abe, K.; Akiyama, A.; Katoh, T.; Kikutani, E.; Kurihara, N.; Kurokawa, S.; Oide, K.; Shinomoto, M.

    1985-01-01

    An N-to-N token ring network of twenty-four minicomputers controls the TRISTAN accelerator complex. The computers are linked by optical fiber cables with 10 Mbps transmission speed. The software system is based on the NODAL, a multi-computer interpreter language developed at CERN SPS. Typical messages exchanged between computers are NODAL programs and NODAL variables transmitted by the EXEC and the REMIT commands. These messages are exchanged as a cluster of packets whose maximum size is 512 bytes. At present, eleven minicomputers are connected to the network and the total length of the ring is 1.5 km. In this condition, the maximum attainable throughput is 980 kbytes/s. The response of a pair of an EXEC and a REMIT transactions which transmit a NODAL array A and one line of program 'REMIT A' and immediately remit the A is measured to be 95+0.039/chi/ ms, where /chi/ is the array size in byte. In ordinary accelerator operations, the maximum channel utilization is 2%, the average packet length is 96 bytes and the transmission rate is 10 kbytes/s

  4. Tube Model Predictive Control with an Auxiliary Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Miodrag Spasic

    2016-07-01

    Full Text Available This paper studies Tube Model Predictive Control (MPC with a Sliding Mode Controller (SMC as an auxiliary controller. It is shown how to calculate the tube widths under SMC control, and thus how much the constraints of the nominal MPC have to be tightened in order to achieve robust stability and constraint fulfillment. The analysis avoids the assumption of infinitely fast switching in the SMC controller.

  5. Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds

    OpenAIRE

    Yun-Su Kim; Il-Yop Chung; Seung-Il Moon

    2015-01-01

    This paper presents a method to seek the PI controller parameters of a PMSG wind turbine to improve control performance. Since operating conditions vary with the wind speed, therefore the PI controller parameters should be determined as a function of the wind speed. Small-signal modeling of a PMSG WT is implemented to analyze the stability under various operating conditions and with eigenvalues obtained from the small-signal model of the PMSG WT, which are coordinated by adjusting the PI con...

  6. Model Predictive Control of Buoy Type Wave Energy Converter

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Sichani, Mahdi Teimouri; Mirzaei, Mahmood

    2014-01-01

    by forcing this condition. In the paper the theoretical framework for this principal is shown. The optimal controller requires information of the sea state for infinite horizon which is not applicable. Model Predictive Controllers (MPC) can have finite horizon which crosses out this requirement....... This approach is then taken into account and an MPC controller is designed for a model WEC and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....

  7. Model Predictive Control of Buoy Type Wave Energy Converter

    DEFF Research Database (Denmark)

    Soltani, Mohsen N.; Sichani, Mahdi T.; Mirzaei, Mahmood

    2014-01-01

    by forcing this condition. In the paper the theoretical framework for this principal is shown. The optimal controller requires information of the sea state for infinite horizon which is not applicable. Model Predictive Controllers (MPC) can have finite horizon which crosses out this requirement....... This approach is then taken into account and an MPC controller is designed for a model wave energy converter and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....

  8. Longitudinal Control for Mengshi Autonomous Vehicle via Cloud Model

    Science.gov (United States)

    Gao, H. B.; Zhang, X. Y.; Li, D. Y.; Liu, Y. C.

    2018-03-01

    Dynamic robustness and stability control is a requirement for self-driving of autonomous vehicle. Longitudinal control method of autonomous is a key technique which has drawn the attention of industry and academe. In this paper, we present a longitudinal control algorithm based on cloud model for Mengshi autonomous vehicle to ensure the dynamic stability and tracking performance of Mengshi autonomous vehicle. An experiments is applied to test the implementation of the longitudinal control algorithm. Empirical results show that if the longitudinal control algorithm based Gauss cloud model are applied to calculate the acceleration, and the vehicles drive at different speeds, a stable longitudinal control effect is achieved.

  9. Performance modeling of network data services

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, R.A.; Pierson, L.G.

    1997-01-01

    Networks at major computational organizations are becoming increasingly complex. The introduction of large massively parallel computers and supercomputers with gigabyte memories are requiring greater and greater bandwidth for network data transfers to widely dispersed clients. For networks to provide adequate data transfer services to high performance computers and remote users connected to them, the networking components must be optimized from a combination of internal and external performance criteria. This paper describes research done at Sandia National Laboratories to model network data services and to visualize the flow of data from source to sink when using the data services.

  10. Probabilistic Radiological Performance Assessment Modeling and Uncertainty

    Science.gov (United States)

    Tauxe, J.

    2004-12-01

    A generic probabilistic radiological Performance Assessment (PA) model is presented. The model, built using the GoldSim systems simulation software platform, concerns contaminant transport and dose estimation in support of decision making with uncertainty. Both the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE) require assessments of potential future risk to human receptors of disposal of LLW. Commercially operated LLW disposal facilities are licensed by the NRC (or agreement states), and the DOE operates such facilities for disposal of DOE-generated LLW. The type of PA model presented is probabilistic in nature, and hence reflects the current state of knowledge about the site by using probability distributions to capture what is expected (central tendency or average) and the uncertainty (e.g., standard deviation) associated with input parameters, and propagating through the model to arrive at output distributions that reflect expected performance and the overall uncertainty in the system. Estimates of contaminant release rates, concentrations in environmental media, and resulting doses to human receptors well into the future are made by running the model in Monte Carlo fashion, with each realization representing a possible combination of input parameter values. Statistical summaries of the results can be compared to regulatory performance objectives, and decision makers are better informed of the inherently uncertain aspects of the model which supports their decision-making. While this information may make some regulators uncomfortable, they must realize that uncertainties which were hidden in a deterministic analysis are revealed in a probabilistic analysis, and the chance of making a correct decision is now known rather than hoped for. The model includes many typical features and processes that would be part of a PA, but is entirely fictitious. This does not represent any particular site and is meant to be a generic example. A

  11. How motivation affects academic performance: a structural equation modelling analysis.

    Science.gov (United States)

    Kusurkar, R A; Ten Cate, Th J; Vos, C M P; Westers, P; Croiset, G

    2013-03-01

    Few studies in medical education have studied effect of quality of motivation on performance. Self-Determination Theory based on quality of motivation differentiates between Autonomous Motivation (AM) that originates within an individual and Controlled Motivation (CM) that originates from external sources. To determine whether Relative Autonomous Motivation (RAM, a measure of the balance between AM and CM) affects academic performance through good study strategy and higher study effort and compare this model between subgroups: males and females; students selected via two different systems namely qualitative and weighted lottery selection. Data on motivation, study strategy and effort was collected from 383 medical students of VU University Medical Center Amsterdam and their academic performance results were obtained from the student administration. Structural Equation Modelling analysis technique was used to test a hypothesized model in which high RAM would positively affect Good Study Strategy (GSS) and study effort, which in turn would positively affect academic performance in the form of grade point averages. This model fit well with the data, Chi square = 1.095, df = 3, p = 0.778, RMSEA model fit = 0.000. This model also fitted well for all tested subgroups of students. Differences were found in the strength of relationships between the variables for the different subgroups as expected. In conclusion, RAM positively correlated with academic performance through deep strategy towards study and higher study effort. This model seems valid in medical education in subgroups such as males, females, students selected by qualitative and weighted lottery selection.

  12. Power probability density function control and performance assessment of a nuclear research reactor

    International Nuclear Information System (INIS)

    Abharian, Amir Esmaeili; Fadaei, Amir Hosein

    2014-01-01

    Highlights: • In this paper, the performance assessment of static PDF control system is discussed. • The reactor PDF model is set up based on the B-spline functions. • Acquaints of Nu, and Th-h. equations solve concurrently by reformed Hansen’s method. • A principle of performance assessment is put forward for the PDF of the NR control. - Abstract: One of the main issues in controlling a system is to keep track of the conditions of the system function. The performance condition of the system should be inspected continuously, to keep the system in reliable working condition. In this study, the nuclear reactor is considered as a complicated system and a principle of performance assessment is used for analyzing the performance of the power probability density function (PDF) of the nuclear research reactor control. First, the model of the power PDF is set up, then the controller is designed to make the power PDF for tracing the given shape, that make the reactor to be a closed-loop system. The operating data of the closed-loop reactor are used to assess the control performance with the performance assessment criteria. The modeling, controller design and the performance assessment of the power PDF are all applied to the control of Tehran Research Reactor (TRR) power in a nuclear process. In this paper, the performance assessment of the static PDF control system is discussed, the efficacy and efficiency of the proposed method are investigated, and finally its reliability is proven

  13. Performance assessment modeling of pyrometallurgical process wasteforms

    International Nuclear Information System (INIS)

    Nutt, W.M.; Hill, R.N.; Bullen, D.B.

    1995-01-01

    Performance assessment analyses have been completed to estimate the behavior of high-level nuclear wasteforms generated from the pyrometallurgical processing of liquid metal reactor (LMR) and light water reactor (LWR) spent nuclear fuel. Waste emplaced in the proposed repository at Yucca Mountain is investigated as the basis for the study. The resulting cumulative actinide and fission product releases to the accessible environment within a 100,000 year period from the various pyrometallurgical process wasteforms are compared to those of directly disposed LWR spent fuel using the same total repository system model. The impact of differing radionuclide transport models on the overall release characteristics is investigated

  14. Modeling, robust and distributed model predictive control for freeway networks

    NARCIS (Netherlands)

    Liu, S.

    2016-01-01

    In Model Predictive Control (MPC) for traffic networks, traffic models are crucial since they are used as prediction models for determining the optimal control actions. In order to reduce the computational complexity of MPC for traffic networks, macroscopic traffic models are often used instead of

  15. A Practical Model to Perform Comprehensive Cybersecurity Audits

    Directory of Open Access Journals (Sweden)

    Regner Sabillon

    2018-03-01

    Full Text Available These days organizations are continually facing being targets of cyberattacks and cyberthreats; the sophistication and complexity of modern cyberattacks and the modus operandi of cybercriminals including Techniques, Tactics and Procedures (TTP keep growing at unprecedented rates. Cybercriminals are always adopting new strategies to plan and launch cyberattacks based on existing cybersecurity vulnerabilities and exploiting end users by using social engineering techniques. Cybersecurity audits are extremely important to verify that information security controls are in place and to detect weaknesses of inexistent cybersecurity or obsolete controls. This article presents an innovative and comprehensive cybersecurity audit model. The CyberSecurity Audit Model (CSAM can be implemented to perform internal or external cybersecurity audits. This model can be used to perform single cybersecurity audits or can be part of any corporate audit program to improve cybersecurity controls. Any information security or cybersecurity audit team has either the options to perform a full audit for all cybersecurity domains or by selecting specific domains to audit certain areas that need control verification and hardening. The CSAM has 18 domains; Domain 1 is specific for Nation States and Domains 2-18 can be implemented at any organization. The organization can be any small, medium or large enterprise, the model is also applicable to any Non-Profit Organization (NPO.

  16. Modelling and Control of a Mobile Robot

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    1998-01-01

    In order to control a mobile robot, kinematic odels as well as dynamic models are required. This parer describes these basic models for an experimental mobile robot under construction at the Department of Control and Engineering Design. A description of a set of trajectory control rules is given...

  17. Predictor-Based Model Reference Adaptive Control

    Science.gov (United States)

    Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.

    2010-01-01

    This paper is devoted to the design and analysis of a predictor-based model reference adaptive control. Stable adaptive laws are derived using Lyapunov framework. The proposed architecture is compared with the now classical model reference adaptive control. A simulation example is presented in which numerical evidence indicates that the proposed controller yields improved transient characteristics.

  18. Basic Research on Adaptive Model Algorithmic Control

    Science.gov (United States)

    1985-12-01

    Control Conference. Richalet, J., A. Rault, J.L. Testud and J. Papon (1978). Model predictive heuristic control: applications to industrial...pp.977-982. Richalet, J., A. Rault, J. L. Testud and J. Papon (1978). Model predictive heuristic control: applications to industrial processes

  19. A LIDAR-assisted model predictive controller added on a traditional wind turbine controller

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Hansen, Morten Hartvig

    2016-01-01

    control and opens the market of retrofitting existing wind turbines with the new technology. In this paper, we suggest a model predictive controller (MPC) that is added to the basic gain scheduled PI controller of a WT to enhance the performance of the closed loop system using LIDAR measurements...

  20. Efficient speed control of induction motor using RBF based model reference adaptive control method

    OpenAIRE

    Kilic, Erdal; Ozcalik, Hasan Riza; Yilmaz, Saban

    2017-01-01

    This paper proposes a model reference adaptive speed controller based on artificial neural network for induction motor drives. The performance of traditional feedback controllers has been insufficient in speed control of induction motors due to nonlinear structure of the system, changing environmental conditions, and disturbance input effects. A successful speed control of induction motor requires a nonlinear control system. On the other hand, in recent years, it has been demonstrated that ar...

  1. Modeling and prediction of flotation performance using support vector regression

    Directory of Open Access Journals (Sweden)

    Despotović Vladimir

    2017-01-01

    Full Text Available Continuous efforts have been made in recent year to improve the process of paper recycling, as it is of critical importance for saving the wood, water and energy resources. Flotation deinking is considered to be one of the key methods for separation of ink particles from the cellulose fibres. Attempts to model the flotation deinking process have often resulted in complex models that are difficult to implement and use. In this paper a model for prediction of flotation performance based on Support Vector Regression (SVR, is presented. Representative data samples were created in laboratory, under a variety of practical control variables for the flotation deinking process, including different reagents, pH values and flotation residence time. Predictive model was created that was trained on these data samples, and the flotation performance was assessed showing that Support Vector Regression is a promising method even when dataset used for training the model is limited.

  2. Scramjet Isolator Modeling and Control

    Science.gov (United States)

    2011-12-01

    Layer Interactions,” (NATO) AGARD CP 193, May 1976. 17. Cox, C., Lewis, C., Pap, R., Glover, C., Priddy, K., Edwards, J., and McCarty, D., “Prediction...Static Polynomial Model . . . . . . . . . . . . . . . . . . 73 5.2 Continuous Linear Model with Static Polynomial Input . 75 5.3 ARX Models with Static...Vector of NARX model regression values . . . . . . . . . . 70 Nr Number of samples for a run . . . . . . . . . . . . . . . . 73 ΘNL Vector of

  3. Model description and evaluation of model performance: DOSDIM model

    International Nuclear Information System (INIS)

    Lewyckyj, N.; Zeevaert, T.

    1996-01-01

    DOSDIM was developed to assess the impact to man from routine and accidental atmospheric releases. It is a compartmental, deterministic, radiological model. For an accidental release, dynamic transfer are used in opposition to a routine release for which equilibrium transfer factors are used. Parameters values were chosen to be conservative. Transfer between compartments are described by first-order differential equations. 2 figs

  4. Low-order feedforward controllers: Optimal performance and practical considerations

    OpenAIRE

    Hast, Martin; Hägglund, Tore

    2014-01-01

    Feedforward control from measurable disturbances can significantly improve the performance in control loops. However, tuning rules for such controllers are scarce. In this paper design rules for how to choose optimal low-order feedforward controller parameter are presented. The parameters are chosen so that the integrated squared error, when the system is subject to a step disturbance, is minimized. The approach utilizes a controller structure that decouples the feedforward and the feedback c...

  5. Modelling and evaluation of surgical performance using hidden Markov models.

    Science.gov (United States)

    Megali, Giuseppe; Sinigaglia, Stefano; Tonet, Oliver; Dario, Paolo

    2006-10-01

    Minimally invasive surgery has become very widespread in the last ten years. Since surgeons experience difficulties in learning and mastering minimally invasive techniques, the development of training methods is of great importance. While the introduction of virtual reality-based simulators has introduced a new paradigm in surgical training, skill evaluation methods are far from being objective. This paper proposes a method for defining a model of surgical expertise and an objective metric to evaluate performance in laparoscopic surgery. Our approach is based on the processing of kinematic data describing movements of surgical instruments. We use hidden Markov model theory to define an expert model that describes expert surgical gesture. The model is trained on kinematic data related to exercises performed on a surgical simulator by experienced surgeons. Subsequently, we use this expert model as a reference model in the definition of an objective metric to evaluate performance of surgeons with different abilities. Preliminary results show that, using different topologies for the expert model, the method can be efficiently used both for the discrimination between experienced and novice surgeons, and for the quantitative assessment of surgical ability.

  6. Modelling and control of systems with flow

    NARCIS (Netherlands)

    van Mourik, S.

    2008-01-01

    In practice, feedback control design consists of three steps: modelling, model reduction and controller design for the reduced model. Systems with flow are often complicated, and there is yet no standard algorithm that integrates these steps. In this thesis we make a modest effort by considering two

  7. Nonlinear control of the Salnikov model reaction

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1999-01-01

    This paper explores different nonlinear control schemes, applied to a simple model reaction. The model is the Salnikov model, consisting of two ordinary differential equations. The control strategies investigated are I/O-linearisation, Exact linearisation, exact linearisation combined with LQR...

  8. A Control Variate Method for Probabilistic Performance Assessment. Improved Estimates for Mean Performance Quantities of Interest

    Energy Technology Data Exchange (ETDEWEB)

    MacKinnon, Robert J.; Kuhlman, Kristopher L

    2016-05-01

    We present a method of control variates for calculating improved estimates for mean performance quantities of interest, E(PQI) , computed from Monte Carlo probabilistic simulations. An example of a PQI is the concentration of a contaminant at a particular location in a problem domain computed from simulations of transport in porous media. To simplify the presentation, the method is described in the setting of a one- dimensional elliptical model problem involving a single uncertain parameter represented by a probability distribution. The approach can be easily implemented for more complex problems involving multiple uncertain parameters and in particular for application to probabilistic performance assessment of deep geologic nuclear waste repository systems. Numerical results indicate the method can produce estimates of E(PQI)having superior accuracy on coarser meshes and reduce the required number of simulations needed to achieve an acceptable estimate.

  9. Performance maps for the control of thermal energy storage

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Zeiler, Wim

    2017-01-01

    Predictive control in building energy systems requires the integration of the building, building system, and component dynamics. The prediction accuracy of these dynamics is crucial for practical applications. This paper introduces performance maps for the control of water tanks, phase change mat...... material tanks, and thermochemical material tanks. The results show that these performance maps can fully account for the dynamics of thermal energy storage tanks.......Predictive control in building energy systems requires the integration of the building, building system, and component dynamics. The prediction accuracy of these dynamics is crucial for practical applications. This paper introduces performance maps for the control of water tanks, phase change...

  10. Performance and quality control of nuclear medicine instrumentation

    International Nuclear Information System (INIS)

    Paras, P.

    1981-01-01

    The status and the recent developments of nuclear medicine instrumentation performance, with an emphasis on gamma-camera performance, are discussed as the basis for quality control. New phantoms and techniques for the measurement of gamma-camera performance parameters are introduced and their usefulness for quality control is discussed. Tests and procedures for dose calibrator quality control are included. Also, the principles of quality control, tests, equipment and procedures for each type of instrument are reviewed, and minimum requirements for an effective quality assurance programme for nuclear medicine instrumentation are suggested. (author)

  11. Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms.

    Science.gov (United States)

    Asgharnia, Amirhossein; Shahnazi, Reza; Jamali, Ali

    2018-05-11

    The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Performance effect of multiple control forms in a Lean organization

    DEFF Research Database (Denmark)

    Kristensen, Thomas Borup; Israelsen, Poul

    2012-01-01

    Over the last decades Lean has developed into a prominent management philosophy reaching beyond shop floor tools. However, substantial support of performance effects from Lean is still scarce and at best with mixed results. Recently, research has turned its focus towards perceiving Lean...... as a control package. In this paper we present statistical support for enhanced performance coming from Lean. Furthermore, our results strongly support the perception of Lean as a set of multiple control forms (output, behavioral, and social controls) that complement each other. Therefore, performance...... is increased if the average level of control forms is increased, and performance is further increased if the control forms are balanced at the same level representing a complementary effect between them. Our data are archival data spanning multiple years in a strong Lean organization. The dependent performance...

  13. Control room human engineering influences on operator performance

    International Nuclear Information System (INIS)

    Finlayson, F.C.

    1977-01-01

    Three general groups of factors influence operator performance in fulfilling their responsibilities in the control room: (1) control room and control system design, informational data displays (operator inputs) as well as control board design (for operator output); (2) operator characteristics, including those skills, mental, physical, and emotional qualities which are functions of operator selection, training, and motivation; (3) job performance guides, the prescribed operating procedures for normal and emergency operations. This paper presents some of the major results of an evaluation of the effect of human engineering on operator performance in the control room. Primary attention is given to discussion of control room and control system design influence on the operator. Brief observations on the influences of operator characteristics and job performance guides (operating procedures) on performance in the control room are also given. Under the objectives of the study, special emphasis was placed on the evaluation of the control room-operator relationships for severe emergency conditions in the power plant. Consequently, this presentation is restricted largely to material related to emergency conditions in the control room, though it is recognized that human engineering of control systems is of equal (or greater) importance for many other aspects of plant operation

  14. Modeling Control Situations in Power System Operations

    DEFF Research Database (Denmark)

    Saleem, Arshad; Lind, Morten; Singh, Sri Niwas

    2010-01-01

    for intelligent operation and control must represent system features, so that information from measurements can be related to possible system states and to control actions. These general modeling requirements are well understood, but it is, in general, difficult to translate them into a model because of the lack...... of explicit principles for model construction. This paper presents a work on using explicit means-ends model based reasoning about complex control situations which results in maintaining consistent perspectives and selecting appropriate control action for goal driven agents. An example of power system......Increased interconnection and loading of the power system along with deregulation has brought new challenges for electric power system operation, control and automation. Traditional power system models used in intelligent operation and control are highly dependent on the task purpose. Thus, a model...

  15. Multilevel Modeling of the Performance Variance

    Directory of Open Access Journals (Sweden)

    Alexandre Teixeira Dias

    2012-12-01

    Full Text Available Focusing on the identification of the role played by Industry on the relations between Corporate Strategic Factors and Performance, the hierarchical multilevel modeling method was adopted when measuring and analyzing the relations between the variables that comprise each level of analysis. The adequacy of the multilevel perspective to the study of the proposed relations was identified and the relative importance analysis point out to the lower relevance of industry as a moderator of the effects of corporate strategic factors on performance, when the latter was measured by means of return on assets, and that industry don‟t moderates the relations between corporate strategic factors and Tobin‟s Q. The main conclusions of the research are that the organizations choices in terms of corporate strategy presents a considerable influence and plays a key role on the determination of performance level, but that industry should be considered when analyzing the performance variation despite its role as a moderator or not of the relations between corporate strategic factors and performance.

  16. Modelling fuel cell performance using artificial intelligence

    Science.gov (United States)

    Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.

  17. Modelling fuel cell performance using artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Ogaji, S.O.T.; Singh, R.; Pilidis, P.; Diacakis, M. [Power Propulsion and Aerospace Engineering Department, Centre for Diagnostics and Life Cycle Costs, Cranfield University (United Kingdom)

    2006-03-09

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed. (author)

  18. Applying model predictive control to power system frequency control

    OpenAIRE

    Ersdal, AM; Imsland, L; Cecilio, IM; Fabozzi, D; Thornhill, NF

    2013-01-01

    16.07.14 KB Ok to add accepted version to Spiral Model predictive control (MPC) is investigated as a control method which may offer advantages in frequency control of power systems than the control methods applied today, especially in presence of increased renewable energy penetration. The MPC includes constraints on both generation amount and generation rate of change, and it is tested on a one-area system. The proposed MPC is tested against a conventional proportional-integral (PI) cont...

  19. Proficient brain for optimal performance: the MAP model perspective.

    Science.gov (United States)

    Bertollo, Maurizio; di Fronso, Selenia; Filho, Edson; Conforto, Silvia; Schmid, Maurizio; Bortoli, Laura; Comani, Silvia; Robazza, Claudio

    2016-01-01

    Background. The main goal of the present study was to explore theta and alpha event-related desynchronization/synchronization (ERD/ERS) activity during shooting performance. We adopted the idiosyncratic framework of the multi-action plan (MAP) model to investigate different processing modes underpinning four types of performance. In particular, we were interested in examining the neural activity associated with optimal-automated (Type 1) and optimal-controlled (Type 2) performances. Methods. Ten elite shooters (6 male and 4 female) with extensive international experience participated in the study. ERD/ERS analysis was used to investigate cortical dynamics during performance. A 4 × 3 (performance types × time) repeated measures analysis of variance was performed to test the differences among the four types of performance during the three seconds preceding the shots for theta, low alpha, and high alpha frequency bands. The dependent variables were the ERD/ERS percentages in each frequency band (i.e., theta, low alpha, high alpha) for each electrode site across the scalp. This analysis was conducted on 120 shots for each participant in three different frequency bands and the individual data were then averaged. Results. We found ERS to be mainly associated with optimal-automatic performance, in agreement with the "neural efficiency hypothesis." We also observed more ERD as related to optimal-controlled performance in conditions of "neural adaptability" and proficient use of cortical resources. Discussion. These findings are congruent with the MAP conceptualization of four performance states, in which unique psychophysiological states underlie distinct performance-related experiences. From an applied point of view, our findings suggest that the MAP model can be used as a framework to develop performance enhancement strategies based on cognitive and neurofeedback techniques.

  20. Proficient brain for optimal performance: the MAP model perspective

    Directory of Open Access Journals (Sweden)

    Maurizio Bertollo

    2016-05-01

    Full Text Available Background. The main goal of the present study was to explore theta and alpha event-related desynchronization/synchronization (ERD/ERS activity during shooting performance. We adopted the idiosyncratic framework of the multi-action plan (MAP model to investigate different processing modes underpinning four types of performance. In particular, we were interested in examining the neural activity associated with optimal-automated (Type 1 and optimal-controlled (Type 2 performances. Methods. Ten elite shooters (6 male and 4 female with extensive international experience participated in the study. ERD/ERS analysis was used to investigate cortical dynamics during performance. A 4 × 3 (performance types × time repeated measures analysis of variance was performed to test the differences among the four types of performance during the three seconds preceding the shots for theta, low alpha, and high alpha frequency bands. The dependent variables were the ERD/ERS percentages in each frequency band (i.e., theta, low alpha, high alpha for each electrode site across the scalp. This analysis was conducted on 120 shots for each participant in three different frequency bands and the individual data were then averaged. Results. We found ERS to be mainly associated with optimal-automatic performance, in agreement with the “neural efficiency hypothesis.” We also observed more ERD as related to optimal-controlled performance in conditions of “neural adaptability” and proficient use of cortical resources. Discussion. These findings are congruent with the MAP conceptualization of four performance states, in which unique psychophysiological states underlie distinct performance-related experiences. From an applied point of view, our findings suggest that the MAP model can be used as a framework to develop performance enhancement strategies based on cognitive and neurofeedback techniques.

  1. Evaluating the Impact of Communication Network Performance on Supervisory Supermarket Control

    DEFF Research Database (Denmark)

    Madsen, Jacob Theilgaard; Minko, Tomasz; Madsen, Tatiana Kozlova

    2017-01-01

    This paper addresses the evaluation of the impact of non-ideal communication networks on system performance of hierarchical control systems. It develops a stepwise evaluation approach that is applied to the example scenario of a supervisory controller for supermarket temperature control, addressing...... of communication network performance on the supermarket refrigeration control and resulting energy costs using simulation models. The results show that the controller is resilient to downstream information delays, however upstream delays or up- and downstream information loss can cause significant performance...

  2. Predicting timing performance of advanced mechatronics control systems

    NARCIS (Netherlands)

    Voeten, J.P.M.; Hendriks, T.; Theelen, B.D.; Schuddemat, J.; Tabingh Suermondt, W.; Gemei, J.; Kotterink, C.; Huet, van J.; Eichler, G.; Kuepper, A.; Schau, V.; Fouchal, H.; Unger, H.

    2011-01-01

    Embedded control is a key product technology differentiator for many high-tech industries, including ASML. The strong increase in complexity of embedded control systems, combined with the occurrence of late changes in control requirements, results in many timing performance problems showing up only

  3. EPR: High load variation performances with the 'Tmode' core control

    International Nuclear Information System (INIS)

    Grossetete, A.

    2008-01-01

    The load variation performances on a PWR are directly linked to the core control design. This design is mainly characterized by the definition of the control rod banks and the way to both perform the banks movements and to modify the core boron concentration by injection of boric acid or water. The following paper presents the principles of the T mode, the new fully automatic core control mode for the EPR which provides high performance in terms of maneuverability and optimizes the effluents. First, the paper describes the division of the control rods into two control banks (Pbank for temperature and Hbank for power distribution). Then typical movements of these banks during power changes are shown. Then, the principle of the 3 control loops (Tave, AO, Pmax), used to obtain these desired control rod movements, is given. Finally, a load following transient simulation is presented. (authors)

  4. EPR: high load variation performances with the 'TMODE' core control

    International Nuclear Information System (INIS)

    Pairot, Frederic

    2008-01-01

    The load variation performances on a PWR are directly linked to the core control design. This design is mainly characterized by the definition of the control rod banks and the way to both perform the banks movements and to modify the core boron concentration by injection of boric acid or water. The following paper presents the principles of the T mode, the new fully automatic core control mode for the EPR which provides high performance in terms of maneuverability and optimizes the effluents. First, the paper describes the division of the control rods into two control banks (Pbank for temperature and Hbank for power distribution). Then typical movements of these banks during power changes are shown. Then, the principle of the 3 control loops (Tave, AO, Pmax), used to obtain these desired control rod movements, is given. Finally, a load following transient simulation is presented. (author)

  5. Fractional Order Models of Industrial Pneumatic Controllers

    Directory of Open Access Journals (Sweden)

    Abolhassan Razminia

    2014-01-01

    Full Text Available This paper addresses a new approach for modeling of versatile controllers in industrial automation and process control systems such as pneumatic controllers. Some fractional order dynamical models are developed for pressure and pneumatic systems with bellows-nozzle-flapper configuration. In the light of fractional calculus, a fractional order derivative-derivative (FrDD controller and integral-derivative (FrID are remodeled. Numerical simulations illustrate the application of the obtained theoretical results in simple examples.

  6. A Bibliometric Analysis and Review on Performance Modeling Literature

    Directory of Open Access Journals (Sweden)

    Barbara Livieri

    2015-04-01

    Full Text Available In management practice, performance indicators are considered as a prerequisite to make informed decisions in line with the organization’s goals. On the other hand, indicators summarizes compound phenomena in a few digits, which can induce to inadequate decisions, biased by information loss and conflicting values. Model driven approaches in enterprise engineering can be very effective to avoid these pitfalls, or to take it under control. For that reason, “performance modeling” has the numbers to play a primary role in the “model driven enterprise” scenario, together with process, information and other enterprise-related aspects. In this perspective, we propose a systematic review of the literature on performance modeling in order to retrieve, classify, and summarize existing research, identify the core authors and define areas and opportunities for future research.

  7. Performance comparison of renewable incentive schemes using optimal control

    International Nuclear Information System (INIS)

    Oak, Neeraj; Lawson, Daniel; Champneys, Alan

    2014-01-01

    Many governments worldwide have instituted incentive schemes for renewable electricity producers in order to meet carbon emissions targets. These schemes aim to boost investment and hence growth in renewable energy industries. This paper examines four such schemes: premium feed-in tariffs, fixed feed-in tariffs, feed-in tariffs with contract for difference and the renewable obligations scheme. A generalised mathematical model of industry growth is presented and fitted with data from the UK onshore wind industry. The model responds to subsidy from each of the four incentive schemes. A utility or ‘fitness’ function that maximises installed capacity at some fixed time in the future while minimising total cost of subsidy is postulated. Using this function, the optimal strategy for provision and timing of subsidy for each scheme is calculated. Finally, a comparison of the performance of each scheme, given that they use their optimal control strategy, is presented. This model indicates that the premium feed-in tariff and renewable obligation scheme produce the joint best results. - Highlights: • Stochastic differential equation model of renewable energy industry growth and prices, using UK onshore wind data 1992–2010. • Cost of production reduces as cumulative installed capacity of wind energy increases, consistent with the theory of learning. • Studies the effect of subsidy using feed-in tariff schemes, and the ‘renewable obligations’ scheme. • We determine the optimal timing and quantity of subsidy required to maximise industry growth and minimise costs. • The premium feed-in tariff scheme and the renewable obligations scheme produce the best results under optimal control

  8. Plant control using embedded predictive models

    International Nuclear Information System (INIS)

    Godbole, S.S.; Gabler, W.E.; Eschbach, S.L.

    1990-01-01

    B and W recently undertook the design of an advanced light water reactor control system. A concept new to nuclear steam system (NSS) control was developed. The concept, which is called the Predictor-Corrector, uses mathematical models of portions of the controlled NSS to calculate, at various levels within the system, demand and control element position signals necessary to satisfy electrical demand. The models give the control system the ability to reduce overcooling and undercooling of the reactor coolant system during transients and upsets. Two types of mathematical models were developed for use in designing and testing the control system. One model was a conventional, comprehensive NSS model that responds to control system outputs and calculates the resultant changes in plant variables that are then used as inputs to the control system. Two other models, embedded in the control system, were less conventional, inverse models. These models accept as inputs plant variables, equipment states, and demand signals and predict plant operating conditions and control element states that will satisfy the demands. This paper reports preliminary results of closed-loop Reactor Coolant (RC) pump trip and normal load reduction testing of the advanced concept. Results of additional transient testing, and of open and closed loop stability analyses will be reported as they are available

  9. A New Performance Improvement Model: Adding Benchmarking to the Analysis of Performance Indicator Data.

    Science.gov (United States)

    Al-Kuwaiti, Ahmed; Homa, Karen; Maruthamuthu, Thennarasu

    2016-01-01

    A performance improvement model was developed that focuses on the analysis and interpretation of performance indicator (PI) data using statistical process control and benchmarking. PIs are suitable for comparison with benchmarks only if the data fall within the statistically accepted limit-that is, show only random variation. Specifically, if there is no significant special-cause variation over a period of time, then the data are ready to be benchmarked. The proposed Define, Measure, Control, Internal Threshold, and Benchmark model is adapted from the Define, Measure, Analyze, Improve, Control (DMAIC) model. The model consists of the following five steps: Step 1. Define the process; Step 2. Monitor and measure the variation over the period of time; Step 3. Check the variation of the process; if stable (no significant variation), go to Step 4; otherwise, control variation with the help of an action plan; Step 4. Develop an internal threshold and compare the process with it; Step 5.1. Compare the process with an internal benchmark; and Step 5.2. Compare the process with an external benchmark. The steps are illustrated through the use of health care-associated infection (HAI) data collected for 2013 and 2014 from the Infection Control Unit, King Fahd Hospital, University of Dammam, Saudi Arabia. Monitoring variation is an important strategy in understanding and learning about a process. In the example, HAI was monitored for variation in 2013, and the need to have a more predictable process prompted the need to control variation by an action plan. The action plan was successful, as noted by the shift in the 2014 data, compared to the historical average, and, in addition, the variation was reduced. The model is subject to limitations: For example, it cannot be used without benchmarks, which need to be calculated the same way with similar patient populations, and it focuses only on the "Analyze" part of the DMAIC model.

  10. Nuclear material control and accountancy planning and performance testing

    International Nuclear Information System (INIS)

    Mike Enhinger; Dennis Wilkey; Rod Martin; Ken Byers; Brian Smith

    1999-01-01

    An overview of performance testing as used at U.S. Department of Energy facilities is provided. Performance tests are performed on specific aspects of the regulations or site policy. The key issues in establishing a performance testing program are: identifying what needs to be tested; determining how to test; establishing criteria to evaluate test results. The program elements of performance testing program consist of: planning; coordination; conduct; evaluation. A performance test may be conducted of personnel or equipment. The DOE orders for nuclear material control and accountancy are divided into three functional areas: program administration, material accounting, and material control. Examples performance tests may be conducted on program administration, accounting, measurement and measurement control, inventory, and containment [ru

  11. The Robust Control Mixer Method for Reconfigurable Control Design By Using Model Matching Strategy

    DEFF Research Database (Denmark)

    Yang, Z.; Blanke, Mogens; Verhagen, M.

    2001-01-01

    This paper proposes a robust reconfigurable control synthesis method based on the combination of the control mixer method and robust H1 con- trol techniques through the model-matching strategy. The control mixer modules are extended from the conventional matrix-form into the LTI sys- tem form....... By regarding the nominal control system as the desired model, an augmented control system is constructed through the model-matching formulation, such that the current robust control techniques can be usedto synthesize these dynamical modules. One extension of this method with respect to the performance...... recovery besides the functionality recovery is also discussed under this framework. Comparing with the conventional control mixer method, the proposed method considers the recon gured system's stability, performance and robustness simultaneously. Finally, the proposed method is illustrated by a case study...

  12. Towards an adaptive model for greenhouse control

    NARCIS (Netherlands)

    Speetjens, S.L.; Stigter, J.D.; Straten, van G.

    2009-01-01

    Application of advanced controllers in horticultural practice requires detailed models. Even highly sophisticated models require regular attention from the user due to changing circumstances like plant growth, changing material properties and modifications in greenhouse design and layout. Moreover,

  13. Modelling the predictive performance of credit scoring

    Directory of Open Access Journals (Sweden)

    Shi-Wei Shen

    2013-07-01

    Research purpose: The purpose of this empirical paper was to examine the predictive performance of credit scoring systems in Taiwan. Motivation for the study: Corporate lending remains a major business line for financial institutions. However, in light of the recent global financial crises, it has become extremely important for financial institutions to implement rigorous means of assessing clients seeking access to credit facilities. Research design, approach and method: Using a data sample of 10 349 observations drawn between 1992 and 2010, logistic regression models were utilised to examine the predictive performance of credit scoring systems. Main findings: A test of Goodness of fit demonstrated that credit scoring models that incorporated the Taiwan Corporate Credit Risk Index (TCRI, micro- and also macroeconomic variables possessed greater predictive power. This suggests that macroeconomic variables do have explanatory power for default credit risk. Practical/managerial implications: The originality in the study was that three models were developed to predict corporate firms’ defaults based on different microeconomic and macroeconomic factors such as the TCRI, asset growth rates, stock index and gross domestic product. Contribution/value-add: The study utilises different goodness of fits and receiver operator characteristics during the examination of the robustness of the predictive power of these factors.

  14. Improving Employee Satisfaction Priority through Performance Control Matrix

    Directory of Open Access Journals (Sweden)

    Shun-Hsing Chen

    2014-11-01

    Full Text Available The study addresses Performance Control Matrix (PCM to determine service quality items of priority for improvement. Most businesses focus on customer satisfaction when undertaking surveys of satisfaction and dissatisfaction, while generally neglecting employee satisfaction. Therefore, this study develops an integrated model to improve service quality in Taiwanese finance industry employees. A questionnaire is designed to determine the priority of improvement objectives derived from certain questionnaire items that fall into the improvement zone of the PCM. Ten items are found to fall into the improvement zone of the PCM. The present results show that the finance industry employees surveyed in Taiwan were dissatisfied with their job security, salaries, annual bonus, and fair distribution of operational profits. The ten improvement items mostly belong to two dimensions - ‘Pay and Benefits’ and ‘Motivation’. The managers of the financial institutions should seek to improve these quality attributes by devoting more resources to these items, thus promoting employee satisfaction.

  15. Parental involvement and academic performance: Less control and more communication.

    Science.gov (United States)

    Fernández-Alonso, Rubén; Álvarez-Díaz, Marcos; Woitschach, Pamela; Suárez-Álvarez, Javier; Cuesta, Marcelino

    2017-11-01

    Parental involvement in the educational process is desirable, although more involvement does not guarantee better results. The aim of this research is to explore the relationship between styles of parental involvement at home and academic performance. A random sample of 26,543 Spanish students was used, with a mean age of 14.4 (SD = 0.75). Two thirds (66.2%) attended a publicly funded school; 49.7% were girls; 87.8% had Spanish nationality; and 73.5% were in the school year corresponding to their age. Different three-level hierarchical-linear models were fitted: student, school, and region (autonomous community). Students whose parents exhibited a more distal or indirect profile of family involvement tended to demonstrate better results than those from homes with a more controlling style. Parental involvement styles have an effect on achievement at an individual and school level, even after accounting for the effect of context or background variables. Given the importance of parental involvement in academic performance, schools should consider it in their family information and training policies. Schools which have more communicative family profiles tend to demonstrate lower levels of intra-school differences in students’ academic performance.

  16. Model-predictive control based on Takagi-Sugeno fuzzy model for electrical vehicles delayed model

    DEFF Research Database (Denmark)

    Khooban, Mohammad-Hassan; Vafamand, Navid; Niknam, Taher

    2017-01-01

    Electric vehicles (EVs) play a significant role in different applications, such as commuter vehicles and short distance transport applications. This study presents a new structure of model-predictive control based on the Takagi-Sugeno fuzzy model, linear matrix inequalities, and a non......-quadratic Lyapunov function for the speed control of EVs including time-delay states and parameter uncertainty. Experimental data, using the Federal Test Procedure (FTP-75), is applied to test the performance and robustness of the suggested controller in the presence of time-varying parameters. Besides, a comparison...... is made between the results of the suggested robust strategy and those obtained from some of the most recent studies on the same topic, to assess the efficiency of the suggested controller. Finally, the experimental results based on a TMS320F28335 DSP are performed on a direct current motor. Simulation...

  17. Development of NSSS Control System Performance Verification Tool

    International Nuclear Information System (INIS)

    Sohn, Suk Whun; Song, Myung Jun

    2007-01-01

    Thanks to many control systems and control components, the nuclear power plant can be operated safely and efficiently under the transient condition as well as the steady state condition. If a fault or an error exists in control systems, the nuclear power plant should experience the unwanted and unexpected transient condition. Therefore, the performance of these control systems and control components should be completely verified through power ascension tests of startup period. However, there are many needs to replace control components or to modify control logic or to change its setpoint. It is important to verify the performance of changed control system without redoing power ascension tests in order to perform these changes. Up to now, a simulation method with computer codes which has been used for design of nuclear power plants was commonly used to verify its performance. But, if hardware characteristics of control system are changed or the software in control system has an unexpected fault or error, this simulation method is not effective to verify the performance of changed control system. Many tests related to V and V (Verification and Validation) are performed in the factory as well as in the plant to eliminate these errors which might be generated in hardware manufacturing or software coding. It reveals that these field tests and the simulation method are insufficient to guaranty the performance of changed control system. Two unexpected transients occurred in YGN 5 and 6 startup period are good examples to show this fact. One occurred at 50% reactor power and caused reactor trip. The other occurred during 70% loss of main feedwater pump test and caused the excess turbine runback

  18. Quality control of CT units - methodology of performance I

    International Nuclear Information System (INIS)

    Prlic, I.; Radalj, Z.

    1996-01-01

    Increasing use of x-ray computed tomography systems (CT scanners) in the diagnostic requires an efficient means of evaluating the performance of them. Therefore, this paper presents the way to measure (Quality Control procedure-Q/C) and define the CT scanner performance through a special phantom which is based on the recommendation of the American association of Physicists in Medicine (AAPM). The performance parameters measurable with the phantom represent the capability, so periodical evaluation of the parameters enable the users to recognize the stability of the CT scanner no matter on the manufacturer, model or software option of the scanner. There are five important performance parameters which are to be measured: Noise, Contrast scale, Nominal tomographic section thickness, High and Low contrast resolution (MTF). The sixth parameter is, of course the dose per scan and slice which gives the patient dose for the certain diagnostic procedure. The last but not the least parameter is the final image quality which is given through the image processing device connected to the scanner. This is the final medical information needed for the good medical practice according to the Quality Assurance (Q/A) procedures in diagnostic radiology. We have to assure the results of the performance evaluation without environmental influences (the measurements are to be made under the certain conditions according Q/A). This paper will give no detailed methodology recipe but will show on the one example; the system noise measurements and linearity; the need and relevant results of the measurements.1 The rest of the methodology is to be published. (author)

  19. Software life cycle dynamic simulation model: The organizational performance submodel

    Science.gov (United States)

    Tausworthe, Robert C.

    1985-01-01

    The submodel structure of a software life cycle dynamic simulation model is described. The software process is divided into seven phases, each with product, staff, and funding flows. The model is subdivided into an organizational response submodel, a management submodel, a management influence interface, and a model analyst interface. The concentration here is on the organizational response model, which simulates the performance characteristics of a software development subject to external and internal influences. These influences emanate from two sources: the model analyst interface, which configures the model to simulate the response of an implementing organization subject to its own internal influences, and the management submodel that exerts external dynamic control over the production process. A complete characterization is given of the organizational response submodel in the form of parameterized differential equations governing product, staffing, and funding levels. The parameter values and functions are allocated to the two interfaces.

  20. Model for RHIC ramp controls

    International Nuclear Information System (INIS)

    Kewisch, J.; Mane, V.; Clifford, T.; Hartmann, H.; Kahn, T.; Oerter, B.; Peggs, S.

    1994-01-01

    This paper introduces the hardware and software concepts for the implementation of the ramp controls. The hardware part of the ramp controls consists of a number of multi-purpose Wave Form Generators (WFGS) which control the settings of accelerator hardware directly or indirectly by controlling their WFG. A Real Time Data Link (RTDL) data transfer system connects the WFGs in a three layer architecture. To the usual two layers which generate an independent timing signal and dependent set points, respectively, an intermediate layer is added which produces accelerator parameters such as the magnet strength. The task of the bottom layer is therefore reduced to the function of implementing those parameters. This architecture de-couples two independent functions which axe normally folded together. The function of the hardware becomes modular and easily maintainable. The ramp control software is layered in the same way. Between the top layer (the ramp procedure application program) and the bottom layer (the hardware interface) an additional layer of ''manager'' programs allow operation of accelerator subsystems

  1. Modeling and Modern Control of Wind Power

    DEFF Research Database (Denmark)

    This book covers the modeling of wind power and application of modern control methods to the wind power control—specifically the models of type 3 and type 4 wind turbines. The modeling aspects will help readers to streamline the wind turbine and wind power plant modeling, and reduce the burden...... of power system simulations to investigate the impact of wind power on power systems. The use of modern control methods will help technology development, especially from the perspective of manufactures....

  2. Transcranial extracellular impedance control (tEIC modulates behavioral performances.

    Directory of Open Access Journals (Sweden)

    Ayumu Matani

    Full Text Available Electric brain stimulations such as transcranial direct current stimulation (tDCS, transcranial random noise stimulation (tRNS, and transcranial alternating current stimulation (tACS electrophysiologically modulate brain activity and as a result sometimes modulate behavioral performances. These stimulations can be viewed from an engineering standpoint as involving an artificial electric source (DC, noise, or AC attached to an impedance branch of a distributed parameter circuit. The distributed parameter circuit is an approximation of the brain and includes electric sources (neurons and impedances (volume conductors. Such a brain model is linear, as is often the case with the electroencephalogram (EEG forward model. Thus, the above-mentioned current stimulations change the current distribution in the brain depending on the locations of the electric sources in the brain. Now, if the attached artificial electric source were to be replaced with a resistor, or even a negative resistor, the resistor would also change the current distribution in the brain. In light of the superposition theorem, which holds for any linear electric circuit, attaching an electric source is different from attaching a resistor; the resistor affects each active electric source in the brain so as to increase (or decrease in some cases of a negative resistor the current flowing out from each source. From an electrophysiological standpoint, the attached resistor can only control the extracellular impedance and never causes forced stimulation; we call this technique transcranial extracellular impedance control (tEIC. We conducted a behavioral experiment to evaluate tEIC and found evidence that it had real-time enhancement and depression effects on EEGs and a real-time facilitation effect on reaction times. Thus, tEIC could be another technique to modulate behavioral performance.

  3. CASTOR detector. Model, objectives and simulated performance

    International Nuclear Information System (INIS)

    Angelis, A. L. S.; Mavromanolakis, G.; Panagiotou, A. D.; Aslanoglou, X.; Nicolis, N.; Lobanov, M.; Erine, S.; Kharlov, Y. V.; Bogolyubsky, M. Y.; Kurepin, A. B.; Chileev, K.; Wlodarczyk, Z.

    2001-01-01

    It is presented a phenomenological model describing the formation and evolution of a Centauro fireball in the baryon-rich region in nucleus-nucleus interactions in the upper atmosphere and at the LHC. The small particle multiplicity and imbalance of electromagnetic and hadronic content characterizing a Centauro event and also the strongly penetrating particles (assumed to be strangelets) frequently accompanying them can be naturally explained. It is described the CASTOR calorimeter, a sub detector of the ALICE experiment dedicated to the search for Centauro in the very forward, baryon-rich region of central Pb+Pb collisions at the LHC. The basic characteristics and simulated performance of the calorimeter are presented

  4. Control design and performance analysis of a 6 MW wind turbine-generator

    Science.gov (United States)

    Murdoch, A.; Winkelman, J. R.; Javid, S. H.; Barton, R. S.

    1983-01-01

    This paper discusses an approach to the modeling and performance for the preliminary design phase of a large (6.2 MW) horizontal axis wind turbine generator (WTG). Two control philosophies are presented, both of which are based on linearized models of the WT mechanical and electrical systems. The control designs are compared by showing the performance through detailed non-linear time simulation. The disturbances considered are wind gusts, and electrical faults near the WT terminals.

  5. THE INTERNAL CONTROL MODELS IN ROMANIA

    Directory of Open Access Journals (Sweden)

    TEODORESCU CRISTIAN DRAGOȘ

    2015-06-01

    Full Text Available Internal control is indissolubly linked to business and accounting. Throughout history, domestic and international trade has grown exponentially, which has led to an increasing complexity of internal control, to new methods and techniques to control the business. The literature has presented the first models of internal control in the Sumerian period (3600 - 3200 BC, and the emergence and development of internal control in Egypt, Persia, Greek and Roman Empire, in the Middle Ages till modern times. The purpose of this article is to present the models of internal control in Romania, starting from the principles of the classical model of internal control (COSO model. For a better understanding of the implication of internal control in terms of public and private sector, I have structured the article in the following parts: (a the definition of internal control in the literature; (b the presentation of the COSO model; (c internal control and internal audit in public institutions; (d internal control issues in accounting regulations on the individual and consolidated annual financial statements; (e internal / managerial control; (f conclusions.

  6. Modeling and Control of a teletruck using electronic load sensing

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Iversen, Asger Malte; Jensen, Mads Schmidt

    2010-01-01

    system is most commonly controlled using a hydro-mechanical control scheme called Hydraulic Load Sensing (HLS). However, with the demands for increased efficiency and controllability the HLS solutions are reaching their limits. Motivated by availability of electronic controllable fluid power...... components and the potential of increased dynamic performance and efficiency, this paper investigates how HLS can be replaced with electronic control, i.e. Electronic Load Sensing (ELS). The investigation is performed by taking a specific application, a teletruck, and replace the HLS control with ELS. To aid...... the controller design for the ELS system, a complete model of the teletruck’s articulated arm and fluid power system is developed. To show the feasibility, a preliminary control structure for the ELS system is developed. The controller is tested on the machine, validating that features such as pump pressure...

  7. Human manual control performance in hyper-gravity.

    Science.gov (United States)

    Clark, Torin K; Newman, Michael C; Merfeld, Daniel M; Oman, Charles M; Young, Laurence R

    2015-05-01

    Hyper-gravity provides a unique environment to study how misperceptions impact control of orientation relative to gravity. Previous studies have found that static and dynamic roll tilts are perceptually overestimated in hyper-gravity. The current investigation quantifies how this influences control of orientation. We utilized a long-radius centrifuge to study manual control performance in hyper-gravity. In the dark, subjects were tasked with nulling out a pseudo-random roll disturbance on the cab of the centrifuge using a rotational hand controller to command their roll rate in order to remain perceptually upright. The task was performed in 1, 1.5, and 2 G's of net gravito-inertial acceleration. Initial performance, in terms of root-mean-square deviation from upright, degraded in hyper-gravity relative to 1 G performance levels. In 1.5 G, initial performance degraded by 26 % and in 2 G, by 45 %. With practice, however, performance in hyper-gravity improved to near the 1 G performance level over several minutes. Finally, pre-exposure to one hyper-gravity level reduced initial performance decrements in a different, novel, hyper-gravity level. Perceptual overestimation of roll tilts in hyper-gravity leads to manual control performance errors, which are reduced both with practice and with pre-exposure to alternate hyper-gravity stimuli.

  8. PI controller based model reference adaptive control for nonlinear

    African Journals Online (AJOL)

    user

    Keywords: Model Reference Adaptive Controller (MRAC), Artificial Neural ... attention, and many new approaches have been applied to practical process .... effectiveness of proposed method, it is compared with the simulation results of the ...

  9. Fault Tolerant Control Using Gaussian Processes and Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Yang Xiaoke

    2015-03-01

    Full Text Available Essential ingredients for fault-tolerant control are the ability to represent system behaviour following the occurrence of a fault, and the ability to exploit this representation for deciding control actions. Gaussian processes seem to be very promising candidates for the first of these, and model predictive control has a proven capability for the second. We therefore propose to use the two together to obtain fault-tolerant control functionality. Our proposal is illustrated by several reasonably realistic examples drawn from flight control.

  10. An Integrated Model of Cognitive Control in Task Switching

    Science.gov (United States)

    Altmann, Erik M.; Gray, Wayne D.

    2008-01-01

    A model of cognitive control in task switching is developed in which controlled performance depends on the system maintaining access to a code in episodic memory representing the most recently cued task. The main constraint on access to the current task code is proactive interference from old task codes. This interference and the mechanisms that…

  11. Modeling and Velocity Tracking Control for Tape Drive System ...

    African Journals Online (AJOL)

    Modeling and Velocity Tracking Control for Tape Drive System. ... Journal of Applied Sciences and Environmental Management ... The result of the study revealed that 7.07, 8 and 10 of koln values met the design goal and also resulted in optimal control performance with the following characteristics 7.31%,7.71% , 9.41% ...

  12. Nonlinear Multivariate Spline-Based Control Allocation for High-Performance Aircraft

    NARCIS (Netherlands)

    Tol, H.J.; De Visser, C.C.; Van Kampen, E.; Chu, Q.P.

    2014-01-01

    High performance flight control systems based on the nonlinear dynamic inversion (NDI) principle require highly accurate models of aircraft aerodynamics. In general, the accuracy of the internal model determines to what degree the system nonlinearities can be canceled; the more accurate the model,

  13. Fuzzy Approximate Model for Distributed Thermal Solar Collectors Control

    KAUST Repository

    Elmetennani, Shahrazed

    2014-07-01

    This paper deals with the problem of controlling concentrated solar collectors where the objective consists of making the outlet temperature of the collector tracking a desired reference. The performance of the novel approximate model based on fuzzy theory, which has been introduced by the authors in [1], is evaluated comparing to other methods in the literature. The proposed approximation is a low order state representation derived from the physical distributed model. It reproduces the temperature transfer dynamics through the collectors accurately and allows the simplification of the control design. Simulation results show interesting performance of the proposed controller.

  14. Temporal diagnostic analysis of the SWAT model to detect dominant periods of poor model performance

    Science.gov (United States)

    Guse, Björn; Reusser, Dominik E.; Fohrer, Nicola

    2013-04-01

    Hydrological models generally include thresholds and non-linearities, such as snow-rain-temperature thresholds, non-linear reservoirs, infiltration thresholds and the like. When relating observed variables to modelling results, formal methods often calculate performance metrics over long periods, reporting model performance with only few numbers. Such approaches are not well suited to compare dominating processes between reality and model and to better understand when thresholds and non-linearities are driving model results. We present a combination of two temporally resolved model diagnostic tools to answer when a model is performing (not so) well and what the dominant processes are during these periods. We look at the temporal dynamics of parameter sensitivities and model performance to answer this question. For this, the eco-hydrological SWAT model is applied in the Treene lowland catchment in Northern Germany. As a first step, temporal dynamics of parameter sensitivities are analyzed using the Fourier Amplitude Sensitivity test (FAST). The sensitivities of the eight model parameters investigated show strong temporal variations. High sensitivities were detected for two groundwater (GW_DELAY, ALPHA_BF) and one evaporation parameters (ESCO) most of the time. The periods of high parameter sensitivity can be related to different phases of the hydrograph with dominances of the groundwater parameters in the recession phases and of ESCO in baseflow and resaturation periods. Surface runoff parameters show high parameter sensitivities in phases of a precipitation event in combination with high soil water contents. The dominant parameters give indication for the controlling processes during a given period for the hydrological catchment. The second step included the temporal analysis of model performance. For each time step, model performance was characterized with a "finger print" consisting of a large set of performance measures. These finger prints were clustered into

  15. Flexible AC transmission systems modelling and control

    CERN Document Server

    Zhang, Xiao-Ping; Pal, Bikash

    2012-01-01

    The extended and revised second edition of this successful monograph presents advanced modeling, analysis and control techniques of Flexible AC Transmission Systems (FACTS). The book covers comprehensively a range of power-system control problems: from steady-state voltage and power flow control, to voltage and reactive power control, to voltage stability control, to small signal stability control using FACTS controllers. In the six years since the first edition of the book has been published research on the FACTS has continued to flourish while renewable energy has developed into a mature and

  16. System performance modeling of extreme ultraviolet lithographic thermal issues

    International Nuclear Information System (INIS)

    Spence, P. A.; Gianoulakis, S. E.; Moen, C. D.; Kanouff, M. P.; Fisher, A.; Ray-Chaudhuri, A. K.

    1999-01-01

    Numerical simulation is used in the development of an extreme ultraviolet lithography Engineering Test Stand. Extensive modeling was applied to predict the impact of thermal loads on key lithographic parameters such as image placement error, focal shift, and loss of CD control. We show that thermal issues can be effectively managed to ensure that their impact on lithographic performance is maintained within design error budgets. (c) 1999 American Vacuum Society

  17. Fuzzy Adaptive Model Following Speed Control for Vector Controlled Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Baghdad BELABES

    2008-12-01

    Full Text Available In this paper a hybrid controller combining a linear model following controller (LMFC and fuzzy logic control (FLC for speed vector controlled permanent magnet synchronous motor (PMSM is described on this study. The FLC is introduced at the adaptive mechanism level. First, an LMFC system is designed to allow the plant states to be controlled to follow the states produced by a reference model. In the nominal conditions, the model following is perfect and the adaptive mechanism based on the fuzzy logic is idle. Secondly, when parameter variations or external disturbances occur, an augmented signal will be generated by FLC mechanism to preserve the desired model following control performance. The effectiveness and robustness of the proposed controller is demonstrated by some simulation results.

  18. Unreachable Setpoints in Model Predictive Control

    DEFF Research Database (Denmark)

    Rawlings, James B.; Bonné, Dennis; Jørgensen, John Bagterp

    2008-01-01

    In this work, a new model predictive controller is developed that handles unreachable setpoints better than traditional model predictive control methods. The new controller induces an interesting fast/slow asymmetry in the tracking response of the system. Nominal asymptotic stability of the optimal...... steady state is established for terminal constraint model predictive control (MPC). The region of attraction is the steerable set. Existing analysis methods for closed-loop properties of MPC are not applicable to this new formulation, and a new analysis method is developed. It is shown how to extend...

  19. Performance of Control System Using Microcontroller for Sea Water Circulation

    Science.gov (United States)

    Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.

    2018-02-01

    Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.

  20. Development of Power Controller System based on Model Reference Adaptive Control for a Nuclear Reactor

    International Nuclear Information System (INIS)

    Mohd Sabri Minhat; Izhar Abu Hussin; Ridzuan Abdul Mutalib

    2014-01-01

    The Reactor TRIGA PUSPATI (RTP)-type TRIGA Mark II was installed in the year 1982. The Power Controller System (PCS) or Automated Power Controller System (APCS) is very important for reactor operation and safety reasons. It is a function of controlled reactivity and reactor power. The existing power controller system is under development and due to slow response, low accuracy and low stability on reactor power control affecting the reactor safety. The nuclear reactor is a nonlinear system in nature, and it is power increases continuously with time. The reactor parameters vary as a function of power, fuel burnup and control rod worth. The output power value given by the power control system is not exactly as real value of reactor power. Therefore, controller system design is very important, an adaptive controller seems to be inevitable. The method chooses is a linear controller by using feedback linearization, for example Model Reference Adaptive Control. The developed APCS for RTP will be design by using Model Reference Adaptive Control (MRAC). The structured of RTP model to produce the dynamic behaviour of RTP on entire operating power range from 0 to 1MWatt. The dynamic behavior of RTP model is produced by coupling of neutronic and thermal-hydraulics. It will be developed by using software MATLAB/Simulink and hardware module card to handle analog input signal. A new algorithm for APCS is developed to control the movement of control rods with uniformity and orderly for RTP. Before APCS test to real plant, simulation results shall be obtained from RTP model on reactor power, reactivity, period, control rod positions, fuel and coolant temperatures. Those data are comparable with the real data for validation. After completing the RTP model, APCS will be tested to real plant on power control system performance by using real signal from RTP including fail-safe operation, system reliable, fast response, stability and accuracy. The new algorithm shall be a satisfied

  1. Modelling and control of an upper extremity exoskeleton for rehabilitation

    Science.gov (United States)

    Taha, Zahari; Majeed, Anwar P. P. Abdul; Tze, Mohd Yashim Wong Paul; Abdo Hashem, Mohammed; Mohd Khairuddin, Ismail; Azraai Mohd Razman, Mohd

    2016-02-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton for rehabilitation. The Lagrangian formulation was employed to obtain the dynamic modelling of both the anthropometric based human upper limb as well as the exoskeleton that comprises of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed to investigate its efficacy performing a joint task trajectory tracking in performing flexion/extension on the elbow joint as well as the forward adduction/abduction on the shoulder joint. An active force control (AFC) algorithm is also incorporated into the aforementioned controller to examine its effectiveness in compensating disturbances. It was found from the study that the AFC-PD performed well against the disturbances introduced into the system without compromising its tracking performances as compared to the conventional PD control architecture.

  2. Modelling and control of an upper extremity exoskeleton for rehabilitation

    International Nuclear Information System (INIS)

    Taha, Zahari; Majeed, Anwar P.P. Abdul; Tze, Mohd Yashim Wong Paul; Hashem, Mohammed Abdo; Khairuddin, Ismail Mohd; Razman, Mohd Azraai Mohd

    2016-01-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton for rehabilitation. The Lagrangian formulation was employed to obtain the dynamic modelling of both the anthropometric based human upper limb as well as the exoskeleton that comprises of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed to investigate its efficacy performing a joint task trajectory tracking in performing flexion/extension on the elbow joint as well as the forward adduction/abduction on the shoulder joint. An active force control (AFC) algorithm is also incorporated into the aforementioned controller to examine its effectiveness in compensating disturbances. It was found from the study that the AFC-PD performed well against the disturbances introduced into the system without compromising its tracking performances as compared to the conventional PD control architecture. (paper)

  3. The COD Model: Simulating Workgroup Performance

    Science.gov (United States)

    Biggiero, Lucio; Sevi, Enrico

    Though the question of the determinants of workgroup performance is one of the most central in organization science, precise theoretical frameworks and formal demonstrations are still missing. In order to fill in this gap the COD agent-based simulation model is here presented and used to study the effects of task interdependence and bounded rationality on workgroup performance. The first relevant finding is an algorithmic demonstration of the ordering of interdependencies in terms of complexity, showing that the parallel mode is the most simplex, followed by the sequential and then by the reciprocal. This result is far from being new in organization science, but what is remarkable is that now it has the strength of an algorithmic demonstration instead of being based on the authoritativeness of some scholar or on some episodic empirical finding. The second important result is that the progressive introduction of realistic limits to agents' rationality dramatically reduces workgroup performance and addresses to a rather interesting result: when agents' rationality is severely bounded simple norms work better than complex norms. The third main finding is that when the complexity of interdependence is high, then the appropriate coordination mechanism is agents' direct and active collaboration, which means teamwork.

  4. Adaptive PID and Model Reference Adaptive Control Switch Controller for Nonlinear Hydraulic Actuator

    Directory of Open Access Journals (Sweden)

    Xin Zuo

    2017-01-01

    Full Text Available Nonlinear systems are modeled as piecewise linear systems at multiple operating points, where the operating points are modeled as switches between constituent linearized systems. In this paper, adaptive piecewise linear switch controller is proposed for improving the response time and tracking performance of the hydraulic actuator control system, which is essentially piecewise linear. The controller composed of PID and Model Reference Adaptive Control (MRAC adaptively chooses the proportion of these two components and makes the designed system have faster response time at the transient phase and better tracking performance, simultaneously. Then, their stability and tracking performance are analyzed and evaluated by the hydraulic actuator control system, the hydraulic actuator is controlled by the electrohydraulic system, and its model is built, which has piecewise linear characteristic. Then the controller results are compared between PID and MRAC and the switch controller designed in this paper is applied to the hydraulic actuator; it is obvious that adaptive switch controller has better effects both on response time and on tracking performance.

  5. Modeling and control simulation of the China CLEAR-IB

    International Nuclear Information System (INIS)

    Yan, Shoujun; Wan, Jiashuang; Wang, Pengfei; Fang, Huawei; Sun, Changyi; Zhao, Fuyu

    2014-01-01

    Highlights: • A model for the reactor for CLEAR-IB was developed. • A PI controller was designed to control the power. • A control strategy was adopted to control the water enthalpy of air cooler. • Dynamic simulation of the whole system was performed. - Abstract: To investigate the dynamic and control characteristics of the plant, a model for the main components of the reactor and the most relevant interactions among them is developed. The system comprises of the primary system with lead bismuth eutectic (LBE) as the coolant, the secondary circuit with steam water mixture as the coolant and the associated air cooling system for an effective rejection of thermal power to the environment as a final heat sink. A Proportional-Integral (PI) controller is designed to keep the power following the set value as quickly as possible. To keep outlet coolant of air coolers and inlet coolant of HXs being saturated water, a control strategy based on a simultaneous feed-forward and feedback scheme has been adopted. Based on the developed model and control strategy, dynamic simulation of the whole system in the cases of step changes of external source and load is performed. The simulation results show that the proposed model is accurate enough to describe the dynamic behaviors of the plant in spite of its simplicity. It has also been demonstrated that the developed controllers for the CLEAR-IB can provide superior reactor control capabilities due to the efficiency of the control strategy adopted

  6. Maintenance Personnel Performance Simulation (MAPPS) model: description of model content, structure, and sensitivity testing. Volume 2

    International Nuclear Information System (INIS)

    Siegel, A.I.; Bartter, W.D.; Wolf, J.J.; Knee, H.E.

    1984-12-01

    This volume of NUREG/CR-3626 presents details of the content, structure, and sensitivity testing of the Maintenance Personnel Performance Simulation (MAPPS) model that was described in summary in volume one of this report. The MAPPS model is a generalized stochastic computer simulation model developed to simulate the performance of maintenance personnel in nuclear power plants. The MAPPS model considers workplace, maintenance technician, motivation, human factors, and task oriented variables to yield predictive information about the effects of these variables on successful maintenance task performance. All major model variables are discussed in detail and their implementation and interactive effects are outlined. The model was examined for disqualifying defects from a number of viewpoints, including sensitivity testing. This examination led to the identification of some minor recalibration efforts which were carried out. These positive results indicate that MAPPS is ready for initial and controlled applications which are in conformity with its purposes

  7. Model based development of engine control algorithms

    NARCIS (Netherlands)

    Dekker, H.J.; Sturm, W.L.

    1996-01-01

    Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed

  8. Group performance and group learning at dynamic system control tasks

    International Nuclear Information System (INIS)

    Drewes, Sylvana

    2013-01-01

    Proper management of dynamic systems (e.g. cooling systems of nuclear power plants or production and warehousing) is important to ensure public safety and economic success. So far, research has provided broad evidence for systematic shortcomings in individuals' control performance of dynamic systems. This research aims to investigate whether groups manifest synergy (Larson, 2010) and outperform individuals and if so, what processes lead to these performance advantages. In three experiments - including simulations of a nuclear power plant and a business setting - I compare the control performance of three-person-groups to the average individual performance and to nominal groups (N = 105 groups per experiment). The nominal group condition captures the statistical advantage of aggregated group judgements not due to social interaction. First, results show a superior performance of groups compared to individuals. Second, a meta-analysis across all three experiments shows interaction-based process gains in dynamic control tasks: Interacting groups outperform the average individual performance as well as the nominal group performance. Third, group interaction leads to stable individual improvements of group members that exceed practice effects. In sum, these results provide the first unequivocal evidence for interaction-based performance gains of groups in dynamic control tasks and imply that employers should rely on groups to provide opportunities for individual learning and to foster dynamic system control at its best.

  9. Application of controllable unit approach (CUA) to performance-criterion-based nuclear material control and accounting

    International Nuclear Information System (INIS)

    Foster, K.W.; Rogers, D.R.

    1979-01-01

    The Nuclear Regulatory Commission is considering the use of maximum-loss performance criteria as a means of controlling SNM in nuclear plants. The Controllable Unit Approach to material control and accounting (CUA) was developed by Mound to determine the feasibility of controlling a plant to a performance criterion. The concept was tested with the proposed Anderson, SC, mixed-oxide plant, and it was shown that CUA is indeed a feasible method for controlling a complex process to a performance criterion. The application of CUA to an actual low-enrichment plant to assist the NRC in establishing performance criteria for uranium processes is discussed. 5 refs

  10. Model predictive Controller for Mobile Robot

    OpenAIRE

    Alireza Rezaee

    2017-01-01

    This paper proposes a Model Predictive Controller (MPC) for control of a P2AT mobile robot. MPC refers to a group of controllers that employ a distinctly identical model of process to predict its future behavior over an extended prediction horizon. The design of a MPC is formulated as an optimal control problem. Then this problem is considered as linear quadratic equation (LQR) and is solved by making use of Ricatti equation. To show the effectiveness of the proposed method this controller is...

  11. Pilot-model analysis and simulation study of effect of control task desired control response

    Science.gov (United States)

    Adams, J. J.; Gera, J.; Jaudon, J. B.

    1978-01-01

    A pilot model analysis was performed that relates pilot control compensation, pilot aircraft system response, and aircraft response characteristics for longitudinal control. The results show that a higher aircraft short period frequency is required to achieve superior pilot aircraft system response in an altitude control task than is required in an attitude control task. These results were confirmed by a simulation study of target tracking. It was concluded that the pilot model analysis provides a theoretical basis for determining the effect of control task on pilot opinions.

  12. Composite control for raymond mill based on model predictive control and disturbance observer

    Directory of Open Access Journals (Sweden)

    Dan Niu

    2016-03-01

    Full Text Available In the raymond mill grinding process, precise control of operating load is vital for the high product quality. However, strong external disturbances, such as variations of ore size and ore hardness, usually cause great performance degradation. It is not easy to control the current of raymond mill constant. Several control strategies have been proposed. However, most of them (such as proportional–integral–derivative and model predictive control reject disturbances just through feedback regulation, which may lead to poor control performance in the presence of strong disturbances. For improving disturbance rejection, a control method based on model predictive control and disturbance observer is put forward in this article. The scheme employs disturbance observer as feedforward compensation and model predictive control controller as feedback regulation. The test results illustrate that compared with model predictive control method, the proposed disturbance observer–model predictive control method can obtain significant superiority in disturbance rejection, such as shorter settling time and smaller peak overshoot under strong disturbances.

  13. Performance ratings and personality factors in radar controllers.

    Science.gov (United States)

    1970-09-01

    The purpose of the study was to determine whether primary or second-order personality questionnaire factors were related to job performance ratings on the Employee Appraisal Record in a sample of 264 radar controllers. A Pearson correlation matrix wa...

  14. Modeling Supermarket Refrigeration Systems for Supervisory Control in Smart Grid

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob

    2013-01-01

    A modular modeling approach of supermarket refrigeration systems (SRS) which is appropriate for smart grid control purposes is presented in this paper. Modeling and identification are performed by just knowing the system configuration and measured data disregarding the physical details. So...

  15. Job control and coworker support improve employee job performance.

    Science.gov (United States)

    Nagami, Makiko; Tsutsumi, Akizumi; Tsuchiya, Masao; Morimoto, Kanehisa

    2010-01-01

    We examined the prospective association of psychosocial job characteristics with employee job performance among 777 full-time employees at a manufacturing company in Japan, using data from a one-year follow-up survey. Psychosocial job characteristics were measured by the Job Content Questionnaire in 2008; job performance was evaluated using the item from the World Mental Health Survey Instrument in 2008 and 2009. The association between psychosocial job characteristics and job performance was tested using multiple regression analysis, controlling for demographic variables, work status, average working hours per day, job type and job performance in 2008. Job control and coworker support in 2008 were positively related to job performance in 2009. Stratified analyses revealed that job control for staff and coworker support for managers were positively related to job performance in 2009. These associations were prominent among men; however, supervisor support in 2008 was negatively related to job performance in 2009 among men. Job demand was not significantly related to job performance. Our findings suggest that it is worthwhile to enhance employees' job control and provide a mutually supportive environment to ensure positive employee job performance.

  16. Performance Assessment of Aggregation Control Services for Demand Response

    DEFF Research Database (Denmark)

    Bondy, Daniel Esteban Morales; Costanzo, Giuseppe Tommaso; Heussen, Kai

    2014-01-01

    Aggregation algorithms that provide services to the grid via demand side management are moving from research ideas to the market. With the diversity of the technology delivering such services, it becomes essential to establish transparent performance standards from a service delivery perspective...... of the quality of service provided by an aggregation control algorithm. By a detailed case study we present and an application of the index, comparing the performance of two different control architectures for demand side management delivering a distribution grid service....

  17. Model predictive controller design of hydrocracker reactors

    OpenAIRE

    GÖKÇE, Dila

    2011-01-01

    This study summarizes the design of a Model Predictive Controller (MPC) in Tüpraş, İzmit Refinery Hydrocracker Unit Reactors. Hydrocracking process, in which heavy vacuum gasoil is converted into lighter and valuable products at high temperature and pressure is described briefly. Controller design description, identification and modeling studies are examined and the model variables are presented. WABT (Weighted Average Bed Temperature) equalization and conversion increase are simulate...

  18. Intelligent control of HVAC systems. Part I: Modeling and synthesis

    Directory of Open Access Journals (Sweden)

    Adrian TOADER

    2013-03-01

    Full Text Available This is the first part of a work on intelligent type control of Heating, Ventilating and Air-Conditioning (HVAC systems. The study is performed from the perspective of giving a unitary control method to ensure high energy efficiency and air quality improving. To illustrate the proposed HVAC control technique, in this first part it is considered as benchmark problem a single thermal space HVAC system. The construction of the mathematical model is performed only with a view to obtain a framework of HVAC intelligent control validation by numerical simulations. The latter will be reported in a second part of the study.

  19. Understanding and control of optical performance from ceramic materials

    International Nuclear Information System (INIS)

    Barbour, J.C.; Knapp, J.A.; Potter, B.G.; Jennison, D.R.; Verdozzi, C.A.; Follstaedt, D.M.; Bendale, R.D.; Simmons, J.H.

    1998-06-01

    This report summarizes a two-year Laboratory-Directed Research and Development (LDRD) program to gain understanding and control of the important parameters which govern the optical performance of rare-earth (RE) doped ceramics. This LDRD developed the capability to determine stable atomic arrangements in RE doped alumina using local density functional theory, and to model the luminescence from RE-doped alumina using molecular dynamic simulations combined with crystal-field calculations. Local structural features for different phases of alumina were examined experimentally by comparing their photoluminescence spectra and the atomic arrangement of the amorphous phase was determined to be similar to that of the gamma phase. The luminescence lifetimes were correlated to these differences in the local structure. The design of both high and low-phonon energy host materials was demonstrated through the growth of Er-doped aluminum oxide and lanthanum oxide. Multicomponent structures of rare-earth doped telluride glass in an alumina and silica matrix were also prepared. Finally, the optical performance of Er-doped alumina was determined as a function of hydrogen content in the host matrix. This LDRD is the groundwork for future experimentation to understand the effects of ionizing radiation on the optical properties of RE-doped ceramic materials used in space and other radiation environments

  20. Emission and thermal performance upgrade through advanced control backfit

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, A.K. [Stone & Webster Engineering Corporation, Boston, MA (United States)

    1994-12-31

    Reducing emission and improving thermal performance of currently operating power plants is a high priority. A majority of these power plants are over 20 years old with old control systems. Upgrading the existing control systems with the latest technology has many benefits, the most cost beneficial are the reduction of emission and improving thermal performance. The payback period is usually less than two years. Virginia Power is installing Stone & Webster`s NO{sub x} Emissions Advisor and Advanced Steam Temperature Control systems on Possum Point Units 3 and 4 to achieve near term NO{sub x} reductions while maintaining high thermal performance. Testing has demonstrated NO{sub x} reductions of greater than 20 percent through the application of NO{sub x} Emissions Advisor on these units. The Advanced Steam Temperature Control system which has been operational at Virginia Power`s Mt. Storm Unit 1 has demonstrated a signification improvement in unit thermal performance and controllability. These control systems are being combined at Units 3 and 4 to reduce NO{sub x} emissions and achieve improved unit thermal performance and control response with the existing combustion hardware. Installation has been initiated and is expected to be completed by the spring of 1995. Possum Point Power Station Units 3 and 4 are pulverized coal, tangentially fired boilers producing 107 and 232 MW and have a distributed control system and a PC based performance monitoring system. The installation of the advanced control and automation system will utilize existing control equipment requiring the addition of several PCs and PLC.

  1. PHARAO laser source flight model: Design and performances

    Energy Technology Data Exchange (ETDEWEB)

    Lévèque, T., E-mail: thomas.leveque@cnes.fr; Faure, B.; Esnault, F. X.; Delaroche, C.; Massonnet, D.; Grosjean, O.; Buffe, F.; Torresi, P. [Centre National d’Etudes Spatiales, 18 avenue Edouard Belin, 31400 Toulouse (France); Bomer, T.; Pichon, A.; Béraud, P.; Lelay, J. P.; Thomin, S. [Sodern, 20 Avenue Descartes, 94451 Limeil-Brévannes (France); Laurent, Ph. [LNE-SYRTE, CNRS, UPMC, Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris (France)

    2015-03-15

    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature, and a vacuum environment. We describe the main functions of the laser source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.

  2. Model for measuring complex performance in an aviation environment

    International Nuclear Information System (INIS)

    Hahn, H.A.

    1988-01-01

    An experiment was conducted to identify models of pilot performance through the attainment and analysis of concurrent verbal protocols. Sixteen models were identified. Novice and expert pilots differed with respect to the models they used. Models were correlated to performance, particularly in the case of expert subjects. Models were not correlated to performance shaping factors (i.e. workload). 3 refs., 1 tab

  3. Fuzzy Universal Model Approximator for Distributed Solar Collector Field Control

    KAUST Repository

    Elmetennani, Shahrazed

    2014-07-01

    This paper deals with the control of concentrating parabolic solar collectors by forcing the outlet oil temperature to track a set reference. A fuzzy universal approximate model is introduced in order to accurately reproduce the behavior of the system dynamics. The proposed model is a low order state space representation derived from the partial differential equation describing the oil temperature evolution using fuzzy transform theory. The resulting set of ordinary differential equations simplifies the system analysis and the control law design and is suitable for real time control implementation. Simulation results show good performance of the proposed model.

  4. Modern control technology for improved nuclear reactor performance

    International Nuclear Information System (INIS)

    Oakes, L.C.

    1986-01-01

    One of the main complaints leveled at reactor control systems by utility spokesmen is complexity. One only has to look inside a power reactor control room to appreciate this viewpoint. The high reliability and versatility of modern microprocessors makes possible distributed control systems with only performance data and abnormal conditions being relayed to the control room. In a sense, this emulates the human-body control system where routine repetitive actions are handled in an involuntary manner. The significance of expert systems to the nuclear reactor control and safety systems is their ability to capture human and other expertise and make it available, upon demand, and under almost all circumstances. Thus, human problem-solving skills acquired by the learning process over a long period of time can be captured and employed with the reliability inherent in computers. This is especially important in nuclear plants when human operators are burdened by stress and emotional factors that have a dramatic effect on performance level

  5. Wind power electric systems modeling, simulation and control

    CERN Document Server

    Rekioua, Djamila

    2014-01-01

    The book helps readers understand key concepts in standalone and grid connected wind energy systems and features analysis into the modeling and optimization of commonly used configurations through the implementation of different control strategies.Utilizing several electrical machinery control approaches, such as vector control and direct torque control 'Wind Power Electric Systems' equips readers with the means to understand, assess and develop their own wind energy systems and to evaluate the performance of such systems.Mathematical models are provided for each system and a corresponding MAT

  6. Performance Characteristics of an Armature Voltage Controlled D.C. ...

    African Journals Online (AJOL)

    In this paper, the performance study of a separately excited d. c. motor whose speed is controlled by armature voltage variation is presented. Both the open loop and the closed loop steady state and transient characteristics are reported. The speed controllers considered in the closed loop mode are the proportional and the ...

  7. Distributed dynamic simulations of networked control and building performance applications

    NARCIS (Netherlands)

    Yahiaoui, Azzedine

    2018-01-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the

  8. Impact of Scheduling Policies on Control System Performance

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Ravn, Anders Peter; Nielsen, Jens Frederik Dalsgaard

    2003-01-01

    It is well known that jitter has an impact on control system performance, and this is often used as an argument for static scheduling policies, e.g. a time triggered architecture. However, it is only completion jitter that seriously disturbs standard linear control algorithms in a way similar to ...

  9. Mitigating the controller performance bottlenecks in Software Defined Networks

    DEFF Research Database (Denmark)

    Caba, Cosmin Marius; Soler, José

    2016-01-01

    The centralization of the control plane decision logic in Software Defined Networking (SDN) has raised concerns regarding the performance of the SDN Controller (SDNC) when the network scales up. A number of solutions have been proposed in the literature to address these concerns. This paper...

  10. Centralized motion control of a linear tooth belt drive: Analysis of the performance and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, M.

    2010-07-01

    A centralized robust position control for an electrical driven tooth belt drive is designed in this doctoral thesis. Both a cascaded control structure and a PID based position controller are discussed. The performance and the limitations of the system are analyzed and design principles for the mechanical structure and the control design are given. These design principles are also suitable for most of the motion control applications, where mechanical resonance frequencies and control loop delays are present. One of the major challenges in the design of a controller for machinery applications is that the values of the parameters in the system model (parameter uncertainty) or the system model it self (non-parametric uncertainty) are seldom known accurately in advance. In this thesis a systematic analysis of the parameter uncertainty of the linear tooth beltdrive model is presented and the effect of the variation of a single parameter on the performance of the total system is shown. The total variation of the model parameters is taken into account in the control design phase using a Quantitative Feedback Theory (QFT). The thesis also introduces a new method to analyze reference feedforward controllers applying the QFT. The performance of the designed controllers is verified by experimental measurements. The measurements confirm the control design principles that are given in this thesis. (orig.)

  11. Mathematical Ship Modeling for Control Applications

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens

    2002-01-01

    In this report, we review the models for describing the motion of a ship in four degrees of freedom suitable for control applications. We present the hydrodynamic models of two ships: a container and a multi-role naval vessel. The models are based on experimental results in the four degrees...

  12. Numerical modeling capabilities to predict repository performance

    International Nuclear Information System (INIS)

    1979-09-01

    This report presents a summary of current numerical modeling capabilities that are applicable to the design and performance evaluation of underground repositories for the storage of nuclear waste. The report includes codes that are available in-house, within Golder Associates and Lawrence Livermore Laboratories; as well as those that are generally available within the industry and universities. The first listing of programs are in-house codes in the subject areas of hydrology, solute transport, thermal and mechanical stress analysis, and structural geology. The second listing of programs are divided by subject into the following categories: site selection, structural geology, mine structural design, mine ventilation, hydrology, and mine design/construction/operation. These programs are not specifically designed for use in the design and evaluation of an underground repository for nuclear waste; but several or most of them may be so used

  13. Robust Control for the Segway with Unknown Control Coefficient and Model Uncertainties

    Directory of Open Access Journals (Sweden)

    Byung Woo Kim

    2016-06-01

    Full Text Available The Segway, which is a popular vehicle nowadays, is an uncertain nonlinear system and has an unknown time-varying control coefficient. Thus, we should consider the unknown time-varying control coefficient and model uncertainties to design the controller. Motivated by this observation, we propose a robust control for the Segway with unknown control coefficient and model uncertainties. To deal with the time-varying unknown control coefficient, we employ the Nussbaum gain technique. We introduce an auxiliary variable to solve the underactuated problem. Due to the prescribed performance control technique, the proposed controller does not require the adaptive technique, neural network, and fuzzy logic to compensate the uncertainties. Therefore, it can be simple. From the Lyapunov stability theory, we prove that all signals in the closed-loop system are bounded. Finally, we provide the simulation results to demonstrate the effectiveness of the proposed control scheme.

  14. Frequency-Domain Robust Performance Condition for Controller Uncertainty in SISO LTI Systems: A Geometric Approach

    Directory of Open Access Journals (Sweden)

    Vahid Raissi Dehkordi

    2009-01-01

    Full Text Available This paper deals with the robust performance problem of a linear time-invariant control system in the presence of robust controller uncertainty. Assuming that plant uncertainty is modeled as an additive perturbation, a geometrical approach is followed in order to find a necessary and sufficient condition for robust performance in the form of a bound on the magnitude of controller uncertainty. This frequency domain bound is derived by converting the problem into an optimization problem, whose solution is shown to be more time-efficient than a conventional structured singular value calculation. The bound on controller uncertainty can be used in controller order reduction and implementation problems.

  15. Flexible AC transmission systems. Modelling and control

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Ping [Birmingham Univ. (United Kingdom); Rehtanz, Christian [Technische Univ. Dortmund (Germany); Pal, Bikash [Imperial College, London (United Kingdom)

    2012-11-01

    This monograph presents advanced modelling, analysis and control techniques of FACTS. These topics reflect the recent research and development of FACTS controllers, and anticipate the future applications of FACTS in power systems. The book covers comprehensively a range of power-system control problems: from steady-state voltage and power flow control, to voltage and reactive power control, to voltage stability control, to small signal stability control using FACTS controllers. The book presents the modelling of the latest FACTS controllers for power flow control, compensation and power quality (IPFC, GUPF, VSC HVDC and M-VSCHVDC, etc.) in power system analysis. The selection is evaluated by the actual and likely future practical relevance of each. The material is derived mainly from the research and industrial development in which the authors have been heavily involved. The book is timely and of great value to power engineering engineers and students of modelling, simulations and control design of FACTS for a broad practical range of power system operation, planning and control problems.

  16. Control Design of VSIs to Enhance Transient Performance in Microgrids

    DEFF Research Database (Denmark)

    Federico, de Bosio; Antonio DeSouza Ribeiro, Luiz; Savaghebi, Mehdi

    2016-01-01

    This paper discusses the control design for an islanded microgrid in order to ensure acceptable performance in terms of voltage quality and load sharing by focusing on transient conditions. To this aim, state feedback decoupling approach has been applied. Experimental tests have been performed...

  17. Self-Control and Academic Performance in Engineering

    Science.gov (United States)

    Honken, Nora; Ralston, Patricia A.; Tretter, Thomas R.

    2016-01-01

    Self-control has been related to positive student outcomes including academic performance of college students. Because of the critical nature of the first semester academic performance for engineering students in terms of retention and persistence in pursuing an engineering degree, this study investigated the relationship between freshmen…

  18. Parametric Analysis of Flexible Logic Control Model

    Directory of Open Access Journals (Sweden)

    Lihua Fu

    2013-01-01

    Full Text Available Based on deep analysis about the essential relation between two input variables of normal two-dimensional fuzzy controller, we used universal combinatorial operation model to describe the logic relationship and gave a flexible logic control method to realize the effective control for complex system. In practical control application, how to determine the general correlation coefficient of flexible logic control model is a problem for further studies. First, the conventional universal combinatorial operation model has been limited in the interval [0,1]. Consequently, this paper studies a kind of universal combinatorial operation model based on the interval [a,b]. And some important theorems are given and proved, which provide a foundation for the flexible logic control method. For dealing reasonably with the complex relations of every factor in complex system, a kind of universal combinatorial operation model with unequal weights is put forward. Then, this paper has carried out the parametric analysis of flexible logic control model. And some research results have been given, which have important directive to determine the values of the general correlation coefficients in practical control application.

  19. Model for determining and optimizing delivery performance in industrial systems

    Directory of Open Access Journals (Sweden)

    Fechete Flavia

    2017-01-01

    Full Text Available Performance means achieving organizational objectives regardless of their nature and variety, and even overcoming them. Improving performance is one of the major goals of any company. Achieving the global performance means not only obtaining the economic performance, it is a must to take into account other functions like: function of quality, delivery, costs and even the employees satisfaction. This paper aims to improve the delivery performance of an industrial system due to their very low results. The delivery performance took into account all categories of performance indicators, such as on time delivery, backlog efficiency or transport efficiency. The research was focused on optimizing the delivery performance of the industrial system, using linear programming. Modeling the delivery function using linear programming led to obtaining precise quantities to be produced and delivered each month by the industrial system in order to minimize their transport cost, satisfying their customers orders and to control their stock. The optimization led to a substantial improvement in all four performance indicators that concern deliveries.

  20. Monitoring the Performance of a Neuro-Adaptive Controller

    Science.gov (United States)

    Schumann, Johann; Gupta, Pramod

    2004-01-01

    Traditional control has proven to be ineffective to deal with catastrophic changes or slow degradation of complex, highly nonlinear systems like aircraft or spacecraft, robotics, or flexible manufacturing systems. Control systems which can adapt toward changes in the plant have been proposed as they offer many advantages (e.g., better performance, controllability of aircraft despite of a damaged wing). In the last few years, use of neural networks in adaptive controllers (neuro-adaptive control) has been studied actively. Neural networks of various architectures have been used successfully for online learning adaptive controllers. In such a typical control architecture, the neural network receives as an input the current deviation between desired and actual plant behavior and, by on-line training, tries to minimize this discrepancy (e.g.; by producing a control augmentation signal). Even though neuro-adaptive controllers offer many advantages, they have not been used in mission- or safety-critical applications, because performance and safety guarantees cannot b e provided at development time-a major prerequisite for safety certification (e.g., by the FAA or NASA). Verification and Validation (V&V) of an adaptive controller requires the development of new analysis techniques which can demonstrate that the control system behaves safely under all operating conditions. Because of the requirement to adapt toward unforeseen changes during operation, i.e., in real time, design-time V&V is not sufficient.

  1. Memory H ∞ performance control of a class T-S fuzzy system

    Science.gov (United States)

    Wang, Yanhua; He, Xiqin; Wu, Zhihua; Kang, Xiulan; Xiu, Wei

    2018-03-01

    For much nonlinear system in the control system, both the stability of the system and certain performance indicators are required. The characteristics of T-S model in fuzzy system make it possible to illustrate a great amount of nonlinear system efficiently. First and foremost, the T-S model with uncertainties and external disturbance is utilized to interpret nonlinear system so as to implement H∞ performance control by means of fuzzy control theory. Meantime, owing to the tremendous existence of time delay phenomenon in the controlled, feedback controller with memory fuzzy state is fabricated. On the basis of Lyapunov Stability Theory, the closed-loop system becomes stable by establishing Lyapunov function. Gain matrix of the memory state feedback controller is obtained by applying linear matrix inequality methodology. And simultaneously it makes the system meet the requirement of the H∞ performance indicator. Ultimately, the efficiency of the above-mentioned method is exemplified by the numerical computation.

  2. Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control

    KAUST Repository

    Domínguez, Luis F.

    2011-01-19

    In this paper we present recent advances in multiparametric nonlinear programming (mp-NLP) algorithms for explicit nonlinear model predictive control (mp-NMPC). Three mp-NLP algorithms for NMPC are discussed, based on which novel mp-NMPC controllers are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.

  3. Model tracking dual stochastic controller design under irregular internal noises

    International Nuclear Information System (INIS)

    Lee, Jong Bok; Heo, Hoon; Cho, Yun Hyun; Ji, Tae Young

    2006-01-01

    Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and l/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation

  4. Modelling saline intrusion for repository performance assessment

    International Nuclear Information System (INIS)

    Jackson, C.P.

    1989-04-01

    UK Nirex Ltd are currently considering the possibility of disposal of radioactive waste by burial in deep underground repositories. The natural pathway for radionuclides from such a repository to return to Man's immediate environment (the biosphere) is via groundwater. Thus analyses of the groundwater flow in the neighbourhood of a possible repository, and consequent radionuclide transport form an important part of a performance assessment for a repository. Some of the areas in the UK that might be considered as possible locations for a repository are near the coast. If a repository is located in a coastal region seawater may intrude into the groundwater flow system. As seawater is denser than fresh water buoyancy forces acting on the intruding saline water may have significant effects on the groundwater flow system, and consequently on the time for radionuclides to return to the biosphere. Further, the chemistry of the repository near-field may be strongly influenced by the salinity of the groundwater. It is therefore important for Nirex to have a capability for reliably modelling saline intrusion to an appropriate degree of accuracy in order to make performance assessments for a repository in a coastal region. This report describes work undertaken in the Nirex Research programme to provide such a capability. (author)

  5. Model based design introduction: modeling game controllers to microprocessor architectures

    Science.gov (United States)

    Jungwirth, Patrick; Badawy, Abdel-Hameed

    2017-04-01

    We present an introduction to model based design. Model based design is a visual representation, generally a block diagram, to model and incrementally develop a complex system. Model based design is a commonly used design methodology for digital signal processing, control systems, and embedded systems. Model based design's philosophy is: to solve a problem - a step at a time. The approach can be compared to a series of steps to converge to a solution. A block diagram simulation tool allows a design to be simulated with real world measurement data. For example, if an analog control system is being upgraded to a digital control system, the analog sensor input signals can be recorded. The digital control algorithm can be simulated with the real world sensor data. The output from the simulated digital control system can then be compared to the old analog based control system. Model based design can compared to Agile software develop. The Agile software development goal is to develop working software in incremental steps. Progress is measured in completed and tested code units. Progress is measured in model based design by completed and tested blocks. We present a concept for a video game controller and then use model based design to iterate the design towards a working system. We will also describe a model based design effort to develop an OS Friendly Microprocessor Architecture based on the RISC-V.

  6. High-performance phase-field modeling

    KAUST Repository

    Vignal, Philippe

    2015-04-27

    Many processes in engineering and sciences involve the evolution of interfaces. Among the mathematical frameworks developed to model these types of problems, the phase-field method has emerged as a possible solution. Phase-fields nonetheless lead to complex nonlinear, high-order partial differential equations, whose solution poses mathematical and computational challenges. Guaranteeing some of the physical properties of the equations has lead to the development of efficient algorithms and discretizations capable of recovering said properties by construction [2, 5]. This work builds-up on these ideas, and proposes novel discretization strategies that guarantee numerical energy dissipation for both conserved and non-conserved phase-field models. The temporal discretization is based on a novel method which relies on Taylor series and ensures strong energy stability. It is second-order accurate, and can also be rendered linear to speed-up the solution process [4]. The spatial discretization relies on Isogeometric Analysis, a finite element method that possesses the k-refinement technology and enables the generation of high-order, high-continuity basis functions. These basis functions are well suited to handle the high-order operators present in phase-field models. Two-dimensional and three dimensional results of the Allen-Cahn, Cahn-Hilliard, Swift-Hohenberg and phase-field crystal equation will be presented, which corroborate the theoretical findings, and illustrate the robustness of the method. Results related to more challenging examples, namely the Navier-Stokes Cahn-Hilliard and a diusion-reaction Cahn-Hilliard system, will also be presented. The implementation was done in PetIGA and PetIGA-MF, high-performance Isogeometric Analysis frameworks [1, 3], designed to handle non-linear, time-dependent problems.

  7. Wind farm models and control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Hansen, Anca D.; Iov, F.; Blaabjerg, F.; Donovan, M.H.

    2005-08-01

    This report describes models and control strategies for 3 different concepts of wind farms. Initially, the potential in improvement of grid integration, structural loads and energy production is investigated in a survey of opportunities. Then simulation models are described, including wind turbine models for a fixed speed wind turbine with active stall control and a variable speed wind turbine with doubly-fed induction generator. After that, the 3 wind farm concepts and control strategies are described. The 3 concepts are AC connected doubly fed turbines, AC connected active stall turbines and DC connected active stall turbines. Finally, some simulation examples and conclusions are presented. (au)

  8. Performance of static var compensator control type thyristor controlled reactor and thyristor switched capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Josias M. de; Yung, Chou Shaw; Rose, Eber H; Pantoja, Antonio L.A. [ELETRONORTE, Belem, PA (Brazil); Fouesnant, Thomas; Boissier, Luc

    1994-12-31

    This paper has the objective of presenting the philosophy of Static Var Compensator (SVC) Control as well the necessary adjustments in the project of control system to guarantee suitable performance under different operating conditions. The verification on the performance of the SVC control has been done by Transient Network Analyzer (TNA/CEPEL) studies, commissioning tests and a factory tests. The SVC is the type of Thyristor Controlled Reactor (TCR) and Thyristor Switched Capacitor (TSC). (author) 3 refs., 12 figs.

  9. Robust nonlinear control of nuclear reactors under model uncertainty

    International Nuclear Information System (INIS)

    Park, Moon Ghu

    1993-02-01

    A nonlinear model-based control method is developed for the robust control of a nuclear reactor. The nonlinear plant model is used to design a unique control law which covers a wide operating range. The robustness is a crucial factor for the fully automatic control of reactor power due to time-varying, uncertain parameters, and state estimation error, or unmodeled dynamics. A variable structure control (VSC) method is introduced which consists of an adaptive performance specification (fime control) after the tracking error reaches the narrow boundary-layer by a time-optimal control (coarse control). Variable structure control is a powerful method for nonlinear system controller design which has inherent robustness to parameter variations or external disturbances using the known uncertainty bounds, and it requires very low computational efforts. In spite of its desirable properties, conventional VSC presents several important drawbacks that limit its practical applicability. One of the most undesirable phenomena is chattering, which implies extremely high control activity and may excite high-frequency unmodeled dynamics. This problem is due to the neglected actuator time-delay or sampling effects. The problem was partially remedied by replacing chattering control by a smooth control inter-polation in a boundary layer neighnboring a time-varying sliding surface. But, for the nuclear reactor systems which has very fast dynamic response, the sampling effect may destroy the narrow boundary layer when a large uncertainty bound is used. Due to the very short neutron life time, large uncertainty bound leads to the high gain in feedback control. To resolve this problem, a derivative feedback is introduced that gives excellent performance by reducing the uncertainty bound. The stability of tracking error dynamics is guaranteed by the second method of Lyapunov using the two-level uncertainty bounds that are obtained from the knowledge of uncertainty bound and the estimated

  10. Crew Exploration Vehicle Launch Abort Controller Performance Analysis

    Science.gov (United States)

    Sparks, Dean W., Jr.; Raney, David L.

    2007-01-01

    This paper covers the simulation and evaluation of a controller design for the Crew Module (CM) Launch Abort System (LAS), to measure its ability to meet the abort performance requirements. The controller used in this study is a hybrid design, including features developed by the Government and the Contractor. Testing is done using two separate 6-degree-of-freedom (DOF) computer simulation implementations of the LAS/CM throughout the ascent trajectory: 1) executing a series of abort simulations along a nominal trajectory for the nominal LAS/CM system; and 2) using a series of Monte Carlo runs with perturbed initial flight conditions and perturbed system parameters. The performance of the controller is evaluated against a set of criteria, which is based upon the current functional requirements of the LAS. Preliminary analysis indicates that the performance of the present controller meets (with the exception of a few cases) the evaluation criteria mentioned above.

  11. Control Management and Business Performances: The Malaysian Family SMEs Perspectives

    Directory of Open Access Journals (Sweden)

    Edward Wong Sek Khin

    2015-06-01

    Full Text Available This study examined the relationship between control management and family business performance in the Malaysian context. It has two objectives, the first being to determine the relationship of organizational credit control policy and procedures, employee development and motivation, and intelligence collection systems to subsequent collection reports in Malaysian family SMEs. The second objective is to investigate the moderating effect of participation in decision-making and work effort towards innovation and business performance. This is a descriptive study involving 90 senior executives employed in 90 Malaysian family SMEs/firms. A correlation analysis from this study confirmed previous researchers’ observations that high-level organizational commitment to credit control management is linked to improvements in business performance. The results suggest that three components – credit policy, employee development, and intelligence collection systems – are the most important predictors for the efficiency and effectiveness of credit control management.    

  12. An Instrumented Glove for Control Audiovisual Elements in Performing Arts

    Directory of Open Access Journals (Sweden)

    Rafael Tavares

    2018-02-01

    Full Text Available The use of cutting-edge technologies such as wearable devices to control reactive audiovisual systems are rarely applied in more conventional stage performances, such as opera performances. This work reports a cross-disciplinary approach for the research and development of the WMTSensorGlove, a data-glove used in an opera performance to control audiovisual elements on stage through gestural movements. A system architecture of the interaction between the wireless wearable device and the different audiovisual systems is presented, taking advantage of the Open Sound Control (OSC protocol. The developed wearable system was used as audiovisual controller in “As sete mulheres de Jeremias Epicentro”, a portuguese opera by Quarteto Contratempus, which was premiered in September 2017.

  13. Contrast Gain Control Model Fits Masking Data

    Science.gov (United States)

    Watson, Andrew B.; Solomon, Joshua A.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    We studied the fit of a contrast gain control model to data of Foley (JOSA 1994), consisting of thresholds for a Gabor patch masked by gratings of various orientations, or by compounds of two orientations. Our general model includes models of Foley and Teo & Heeger (IEEE 1994). Our specific model used a bank of Gabor filters with octave bandwidths at 8 orientations. Excitatory and inhibitory nonlinearities were power functions with exponents of 2.4 and 2. Inhibitory pooling was broad in orientation, but narrow in spatial frequency and space. Minkowski pooling used an exponent of 4. All of the data for observer KMF were well fit by the model. We have developed a contrast gain control model that fits masking data. Unlike Foley's, our model accepts images as inputs. Unlike Teo & Heeger's, our model did not require multiple channels for different dynamic ranges.

  14. Developments in model-based optimization and control distributed control and industrial applications

    CERN Document Server

    Grancharova, Alexandra; Pereira, Fernando

    2015-01-01

    This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and desi...

  15. Performance of Globally Linearized Controller and Two Region Fuzzy Logic Controller on a Nonlinear Process

    Directory of Open Access Journals (Sweden)

    N. Jaya

    2008-10-01

    Full Text Available In this work, a design and implementation of a Conventional PI controller, single region fuzzy logic controller, two region fuzzy logic controller and Globally Linearized Controller (GLC for a two capacity interacting nonlinear process is carried out. The performance of this process using single region FLC, two region FLC and GLC are compared with the performance of conventional PI controller about an operating point of 50 %. It has been observed that GLC and two region FLC provides better performance. Further, this procedure is also validated by real time experimentation using dSPACE.

  16. ANS main control complex three-dimensional computer model development

    International Nuclear Information System (INIS)

    Cleaves, J.E.; Fletcher, W.M.

    1993-01-01

    A three-dimensional (3-D) computer model of the Advanced Neutron Source (ANS) main control complex is being developed. The main control complex includes the main control room, the technical support center, the materials irradiation control room, computer equipment rooms, communications equipment rooms, cable-spreading rooms, and some support offices and breakroom facilities. The model will be used to provide facility designers and operations personnel with capabilities for fit-up/interference analysis, visual ''walk-throughs'' for optimizing maintain-ability, and human factors and operability analyses. It will be used to determine performance design characteristics, to generate construction drawings, and to integrate control room layout, equipment mounting, grounding equipment, electrical cabling, and utility services into ANS building designs. This paper describes the development of the initial phase of the 3-D computer model for the ANS main control complex and plans for its development and use

  17. Selection of References in Wind Turbine Model Predictive Control Design

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Hovgaard, Tobias

    2015-01-01

    a model predictive controller for a wind turbine. One of the important aspects for a tracking control problem is how to setup the optimal reference tracking problem, as it might be relevant to track, e.g., the three concurrent references: optimal pitch angle, optimal rotational speed, and optimal power......Lowering the cost of energy is one of the major focus areas in the wind turbine industry. Recent research has indicated that wind turbine controllers based on model predictive control methods can be useful in obtaining this objective. A number of design considerations have to be made when designing....... The importance if the individual references differ depending in particular on the wind speed. In this paper we investigate the performance of a reference tracking model predictive controller with two different setups of the used optimal reference signals. The controllers are evaluated using an industrial high...

  18. On the performance of shared access control strategy for femtocells

    KAUST Repository

    Magableh, Amer M.; Radaydeh, Redha Mahmoud; Alouini, Mohamed-Slim

    2013-01-01

    access protocol (SAP), to enable the unauthorized macrocell user equipment to communicate with partially closed-access femtocell base station to improve and enhance the system performance. The system model considers a femtocell that is equipped with a

  19. High Performance Low Cost Digitally Controlled Power Conversion Technology

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes

    2008-01-01

    in order to reduce the power consumption of servers and datacenters. The work presented in this thesis includes digital control methods for switch-mode converters implemented in microcontrollers, digital signal controllers and field programmable gate arrays. Microcontrollers are cheap devices that can...... be used for real-time control of switch-mode converters. Software design in the assembly language of the microcontroller is important because of the limited resources of the microcontroller. Microcontrollers are best suited for power electronics applications with low bandwidth requirements because...... the execution time of the software algorithm that realises the digital control law will constitute a considerable delay in the control loop. Digital signal controllers are powerful devices capable of performing arithmetic functions much faster than a microcontroller can. Digital signal controllers are well...

  20. Automatic performance estimation of conceptual temperature control system design for rapid development of real system

    International Nuclear Information System (INIS)

    Jang, Yu Jin

    2013-01-01

    This paper presents an automatic performance estimation scheme of conceptual temperature control system with multi-heater configuration prior to constructing the physical system for achieving rapid validation of the conceptual design. An appropriate low-order discrete-time model, which will be used in the controller design, is constructed after determining several basic factors including the geometric shape of controlled object and heaters, material properties, heater arrangement, etc. The proposed temperature controller, which adopts the multivariable GPC (generalized predictive control) scheme with scale factors, is then constructed automatically based on the above model. The performance of the conceptual temperature control system is evaluated by using a FEM (finite element method) simulation combined with the controller.

  1. Automatic performance estimation of conceptual temperature control system design for rapid development of real system

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yu Jin [Dongguk University, GyeongJu (Korea, Republic of)

    2013-07-15

    This paper presents an automatic performance estimation scheme of conceptual temperature control system with multi-heater configuration prior to constructing the physical system for achieving rapid validation of the conceptual design. An appropriate low-order discrete-time model, which will be used in the controller design, is constructed after determining several basic factors including the geometric shape of controlled object and heaters, material properties, heater arrangement, etc. The proposed temperature controller, which adopts the multivariable GPC (generalized predictive control) scheme with scale factors, is then constructed automatically based on the above model. The performance of the conceptual temperature control system is evaluated by using a FEM (finite element method) simulation combined with the controller.

  2. Hybrid Force and Position Control Strategy of Robonaut Performing Object Transfer Task

    Directory of Open Access Journals (Sweden)

    Chen Gang

    2018-01-01

    Full Text Available This paper proposes a coordinated hybrid force/position control strategy of robonaut performing object transfer operation. Firstly, the constraint relationships between robonaut and object are presented. Base on them, the unified dynamic model of the robonaut and object is established to design the hybrid force/position control method. The movement, the internal force and the external constraint force of the object are considered as the control targets of the control system. Finally, a MATLAB simulation of the robonaut performing object transfer task verifies the correctness and effectiveness of the proposed method. The results show that all the targets can be control accurately by using the method proposed in this paper. The presented control method can control both internal and external forces while maintaining control accuracy, which is a common control strategy.

  3. Modelling and control of large cryogenic refrigerator

    International Nuclear Information System (INIS)

    Bonne, Francois

    2014-01-01

    This manuscript is concern with both the modeling and the derivation of control schemes for large cryogenic refrigerators. The particular case of those which are submitted to highly variable pulsed heat load is studied. A model of each object that normally compose a large cryo-refrigerator is proposed. The methodology to gather objects model into the model of a subsystem is presented. The manuscript also shows how to obtain a linear equivalent model of the subsystem. Based on the derived models, advances control scheme are proposed. Precisely, a linear quadratic controller for warm compression station working with both two and three pressures state is derived, and a predictive constrained one for the cold-box is obtained. The particularity of those control schemes is that they fit the computing and data storage capabilities of Programmable Logic Controllers (PLC) with are well used in industry. The open loop model prediction capability is assessed using experimental data. Developed control schemes are validated in simulation and experimentally on the 400W1.8K SBT's cryogenic test facility and on the CERN's LHC warm compression station. (author) [fr

  4. Model-based control for automotive applications

    NARCIS (Netherlands)

    Naus, G.J.L.

    2010-01-01

    The number of distributed control systems in modern vehicles has increased exponentially over the past decades. Today’s performance improvements and innovations in the automotive industry are often resolved using embedded control systems. As a result, a modern vehicle can be regarded as a complex

  5. Modeling and Control of Multivariable Process Using Intelligent Techniques

    Directory of Open Access Journals (Sweden)

    Subathra Balasubramanian

    2010-10-01

    Full Text Available For nonlinear dynamic systems, the first principles based modeling and control is difficult to implement. In this study, a fuzzy controller and recurrent fuzzy controller are developed for MIMO process. Fuzzy logic controller is a model free controller designed based on the knowledge about the process. In fuzzy controller there are two types of rule-based fuzzy models are available: one the linguistic (Mamdani model and the other is Takagi–Sugeno model. Of these two, Takagi-Sugeno model (TS has attracted most attention. The fuzzy controller application is limited to static processes due to their feedforward structure. But, most of the real-time processes are dynamic and they require the history of input/output data. In order to store the past values a memory unit is needed, which is introduced by the recurrent structure. The proposed recurrent fuzzy structure is used to develop a controller for the two tank heating process. Both controllers are designed and implemented in a real time environment and their performance is compared.

  6. Performance assessment of static lead-lag feedforward controllers for disturbance rejection in PID control loops.

    Science.gov (United States)

    Yu, Zhenpeng; Wang, Jiandong

    2016-09-01

    This paper assesses the performance of feedforward controllers for disturbance rejection in univariate feedback plus feedforward control loops. The structures of feedback and feedforward controllers are confined to proportional-integral-derivative and static-lead-lag forms, respectively, and the effects of feedback controllers are not considered. The integral squared error (ISE) and total squared variation (TSV) are used as performance metrics. A performance index is formulated by comparing the current ISE and TSV metrics to their own lower bounds as performance benchmarks. A controller performance assessment (CPA) method is proposed to calculate the performance index from measurements. The proposed CPA method resolves two critical limitations in the existing CPA methods, in order to be consistent with industrial scenarios. Numerical and experimental examples illustrate the effectiveness of the obtained results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. A review of performance measurement’s maturity models

    Directory of Open Access Journals (Sweden)

    María Paula Bertolli

    2017-01-01

    Full Text Available Introduction: In a context as dynamic as today, SMEs need performance measurement systems (PMS that are able to generate useful, relevant and reliable information to manage. Measuring the maturity of PMS is an essential step to achieve its evolution to an ideal state that allows a better control of the results and to act consequently, improving management and decision making. Objective: To develop a bibliographic review to identify and characterize PMS maturity models, recognizing between them the most feasible models to apply in SMEs, in order to generate a contribution for the strengthening of such systems, facilitating effective and timely decision making in organizations. Methodology: The research question defined is: which existing PMS maturity model can be used by industrial SMEs? Google Scholar database was consulted for searching information, using certain search parameters. Based on a previous criteria definition, the selected models are compared. Finally, the conclusions about these models are elaborated. Results: From the results obtained through the bibliographic search in Google Scholar, different criteria were used to select the models to be characterized and compared. The four models selected were the proposed by Wettstein and Kueng, Van Aken, Tangen and Aho. Conclusions: The models considered most adequate are those proposed by Wettstein and Kueng (2002 and Aho (2012, due to their easy application and the low requirement of resource use. However, as such models do not have an evaluation tool, it has to be defined by the company.

  8. Aspects of modelling and control of bioprocesses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiachang

    1996-12-31

    The modelling and control of bioprocesses are the main subjects in this thesis. Different modelling approaches are proposed for different purposes in various bioprocesses. A conventional global model was constructed for a very complex mammalian cell culture process. A new concept of functional state and a multiple model (local models) approach were used for modelling the fed-batch baker`s yeast process for monitoring and control purposes. Finally, a combination of conventional electrical and biological models was used to simulate and to control a microbial fuel cell process. In the thesis, a yeast growth process was taken as an example to demonstrate the usefulness of the functional state concept and local models. The functional states were first defined according to the yeast metabolism. The process was then described by a set of simple local models. In different functional states, different local models were used. On the other hand, the on-line estimation of functional state and biomass of the process was discussed for process control purpose. As a consequence, both the functional state concept and the multiple model approach were applied for fuzzy logic control of yeast growth process. A fuzzy factor was calculated on the basis of a knowledge-based expert system and fuzzy logic rules. The factor was used to correct an ideal substrate feed rate. In the last part of the thesis, microbial fuel cell processes were studied. A microbial fuel cell is a device for direct conversion of chemical energy to electrical energy by using micro-organisms as catalysts. A combined model including conventional electrical and biological models was constructed for the process based on the biological and electrochemical phenomena

  9. Aspects of modelling and control of bioprocesses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiachang

    1995-12-31

    The modelling and control of bioprocesses are the main subjects in this thesis. Different modelling approaches are proposed for different purposes in various bioprocesses. A conventional global model was constructed for a very complex mammalian cell culture process. A new concept of functional state and a multiple model (local models) approach were used for modelling the fed-batch baker`s yeast process for monitoring and control purposes. Finally, a combination of conventional electrical and biological models was used to simulate and to control a microbial fuel cell process. In the thesis, a yeast growth process was taken as an example to demonstrate the usefulness of the functional state concept and local models. The functional states were first defined according to the yeast metabolism. The process was then described by a set of simple local models. In different functional states, different local models were used. On the other hand, the on-line estimation of functional state and biomass of the process was discussed for process control purpose. As a consequence, both the functional state concept and the multiple model approach were applied for fuzzy logic control of yeast growth process. A fuzzy factor was calculated on the basis of a knowledge-based expert system and fuzzy logic rules. The factor was used to correct an ideal substrate feed rate. In the last part of the thesis, microbial fuel cell processes were studied. A microbial fuel cell is a device for direct conversion of chemical energy to electrical energy by using micro-organisms as catalysts. A combined model including conventional electrical and biological models was constructed for the process based on the biological and electrochemical phenomena

  10. Modeling Human Error Mechanism for Soft Control in Advanced Control Rooms (ACRs)

    International Nuclear Information System (INIS)

    Aljneibi, Hanan Salah Ali; Ha, Jun Su; Kang, Seongkeun; Seong, Poong Hyun

    2015-01-01

    To achieve the switch from conventional analog-based design to digital design in ACRs, a large number of manual operating controls and switches have to be replaced by a few common multi-function devices which is called soft control system. The soft controls in APR-1400 ACRs are classified into safety-grade and non-safety-grade soft controls; each was designed using different and independent input devices in ACRs. The operations using soft controls require operators to perform new tasks which were not necessary in conventional controls such as navigating computerized displays to monitor plant information and control devices. These kinds of computerized displays and soft controls may make operations more convenient but they might cause new types of human error. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or human errors) during NPP operation. The developed model would contribute to a lot of applications to improve human performance (or reduce human errors), HMI designs, and operators' training program in ACRs. The developed model of human error mechanism for the soft control is based on assumptions that a human operator has certain amount of capacity in cognitive resources and if resources required by operating tasks are greater than resources invested by the operator, human error (or poor human performance) is likely to occur (especially in 'slip'); good HMI (Human-machine Interface) design decreases the required resources; operator's skillfulness decreases the required resources; and high vigilance increases the invested resources. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or reduction of human errors) during NPP operation

  11. Modeling Human Error Mechanism for Soft Control in Advanced Control Rooms (ACRs)

    Energy Technology Data Exchange (ETDEWEB)

    Aljneibi, Hanan Salah Ali [Khalifa Univ., Abu Dhabi (United Arab Emirates); Ha, Jun Su; Kang, Seongkeun; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    To achieve the switch from conventional analog-based design to digital design in ACRs, a large number of manual operating controls and switches have to be replaced by a few common multi-function devices which is called soft control system. The soft controls in APR-1400 ACRs are classified into safety-grade and non-safety-grade soft controls; each was designed using different and independent input devices in ACRs. The operations using soft controls require operators to perform new tasks which were not necessary in conventional controls such as navigating computerized displays to monitor plant information and control devices. These kinds of computerized displays and soft controls may make operations more convenient but they might cause new types of human error. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or human errors) during NPP operation. The developed model would contribute to a lot of applications to improve human performance (or reduce human errors), HMI designs, and operators' training program in ACRs. The developed model of human error mechanism for the soft control is based on assumptions that a human operator has certain amount of capacity in cognitive resources and if resources required by operating tasks are greater than resources invested by the operator, human error (or poor human performance) is likely to occur (especially in 'slip'); good HMI (Human-machine Interface) design decreases the required resources; operator's skillfulness decreases the required resources; and high vigilance increases the invested resources. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or reduction of human errors) during NPP operation.

  12. Altitude control performance improvement via preview controller for unmanned airplane for radiation monitoring system

    International Nuclear Information System (INIS)

    Sato, Masayuki; Muraoka, Koji; Hozumi, Koki; Sanada, Yukihisa; Yamada, Tsutomu; Torii, Tatsuo

    2017-01-01

    This paper is concerned with the design problem of preview altitude controller for Unmanned Airplane for Radiation Monitoring System (UARMS) to improve its control performance. UARMS has been developed for radiation monitoring around Fukushima Dai-ichi nuclear power plant which spread radiation contaminant due to the huge tsunamis caused by the Great East Japan Earthquake. The monitoring area contains flat as well as mountain areas. The basic flight controller has been confirmed to have satisfactory performance with respect to altitude holding; however, the control performance for variable altitude commands is not sufficient for practical use in mountain areas. We therefore design preview altitude controller with only proportional gains by considering the practicality and the strong requirement of safety for UARMS. Control performance of the designed preview controller was evaluated by flight tests conducted around Fukushima Sky Park. (author)

  13. Model-based dynamic control and optimization of gas networks

    Energy Technology Data Exchange (ETDEWEB)

    Hofsten, Kai

    2001-07-01

    This work contributes to the research on control, optimization and simulation of gas transmission systems to support the dispatch personnel at gas control centres for the decision makings in the daily operation of the natural gas transportation systems. Different control and optimization strategies have been studied. The focus is on the operation of long distance natural gas transportation systems. Stationary optimization in conjunction with linear model predictive control using state space models is proposed for supply security, the control of quality parameters and minimization of transportation costs for networks offering transportation services. The result from the stationary optimization together with a reformulation of a simplified fluid flow model formulates a linear dynamic optimization model. This model is used in a finite time control and state constrained linear model predictive controller. The deviation from the control and the state reference determined from the stationary optimization is penalized quadratically. Because of the time varying status of infrastructure, the control space is also generally time varying. When the average load is expected to change considerably, a new stationary optimization is performed, giving a new state and control reference together with a new dynamic model that is used for both optimization and state estimation. Another proposed control strategy is a control and output constrained nonlinear model predictive controller for the operation of gas transmission systems. Here, the objective is also the security of the supply, quality control and minimization of transportation costs. An output vector is defined, which together with a control vector are both penalized quadratically from their respective references in the objective function. The nonlinear model predictive controller can be combined with a stationary optimization. At each sampling instant, a non convex nonlinear programming problem is solved giving a local minimum

  14. Mob control models of threshold collective behavior

    CERN Document Server

    Breer, Vladimir V; Rogatkin, Andrey D

    2017-01-01

    This book presents mathematical models of mob control with threshold (conformity) collective decision-making of the agents. Based on the results of analysis of the interconnection between the micro- and macromodels of active network structures, it considers the static (deterministic, stochastic and game-theoretic) and dynamic (discrete- and continuous-time) models of mob control, and highlights models of informational confrontation. Many of the results are applicable not only to mob control problems, but also to control problems arising in social groups, online social networks, etc. Aimed at researchers and practitioners, it is also a valuable resource for undergraduate and postgraduate students as well as doctoral candidates specializing in the field of collective behavior modeling.

  15. DETRA: Model description and evaluation of model performance

    International Nuclear Information System (INIS)

    Suolanen, V.

    1996-01-01

    The computer code DETRA is a generic tool for environmental transfer analyses of radioactive or stable substances. The code has been applied for various purposes, mainly problems related to the biospheric transfer of radionuclides both in safety analyses of disposal of nuclear wastes and in consideration of foodchain exposure pathways in the analyses of off-site consequences of reactor accidents. For each specific application an individually tailored conceptual model can be developed. The biospheric transfer analyses performed by the code are typically carried out for terrestrial, aquatic and food chain applications. 21 refs, 35 figs, 15 tabs

  16. Enhanced pid vs model predictive control applied to bldc motor

    Science.gov (United States)

    Gaya, M. S.; Muhammad, Auwal; Aliyu Abdulkadir, Rabiu; Salim, S. N. S.; Madugu, I. S.; Tijjani, Aminu; Aminu Yusuf, Lukman; Dauda Umar, Ibrahim; Khairi, M. T. M.

    2018-01-01

    BrushLess Direct Current (BLDC) motor is a multivariable and highly complex nonlinear system. Variation of internal parameter values with environment or reference signal increases the difficulty in controlling the BLDC effectively. Advanced control strategies (like model predictive control) often have to be integrated to satisfy the control desires. Enhancing or proper tuning of a conventional algorithm results in achieving the desired performance. This paper presents a performance comparison of Enhanced PID and Model Predictive Control (MPC) applied to brushless direct current motor. The simulation results demonstrated that the PSO-PID is slightly better than the PID and MPC in tracking the trajectory of the reference signal. The proposed scheme could be useful algorithms for the system.

  17. Hardware support for software controlled fast reconfiguration of performance counters

    Science.gov (United States)

    Salapura, Valentina; Wisniewski, Robert W.

    2013-06-18

    Hardware support for software controlled reconfiguration of performance counters may include a plurality of performance counters collecting one or more counts of one or more selected activities. A storage element stores data value representing a time interval, and a timer element reads the data value and detects expiration of the time interval based on the data value and generates a signal. A plurality of configuration registers stores a set of performance counter configurations. A state machine receives the signal and selects a configuration register from the plurality of configuration registers for reconfiguring the one or more performance counters.

  18. Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions

    Science.gov (United States)

    Miller, Christopher J.

    2011-01-01

    A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.

  19. Performance Analysis of Fuzzy-PID Controller for Blood Glucose Regulation in Type-1 Diabetic Patients.

    Science.gov (United States)

    Yadav, Jyoti; Rani, Asha; Singh, Vijander

    2016-12-01

    This paper presents Fuzzy-PID (FPID) control scheme for a blood glucose control of type 1 diabetic subjects. A new metaheuristic Cuckoo Search Algorithm (CSA) is utilized to optimize the gains of FPID controller. CSA provides fast convergence and is capable of handling global optimization of continuous nonlinear systems. The proposed controller is an amalgamation of fuzzy logic and optimization which may provide an efficient solution for complex problems like blood glucose control. The task is to maintain normal glucose levels in the shortest possible time with minimum insulin dose. The glucose control is achieved by tuning the PID (Proportional Integral Derivative) and FPID controller with the help of Genetic Algorithm and CSA for comparative analysis. The designed controllers are tested on Bergman minimal model to control the blood glucose level in the facets of parameter uncertainties, meal disturbances and sensor noise. The results reveal that the performance of CSA-FPID controller is superior as compared to other designed controllers.

  20. Fuzzy Logic Based Set-Point Weighting Controller Tuning for an Internal Model Control Based PID Controller

    Directory of Open Access Journals (Sweden)

    Maruthai Suresh

    2009-10-01

    Full Text Available Controller tuning is the process of adjusting the parameters of the selected controller to achieve optimum response for the controlled process. For many of the control problems, a satisfactory performance is obtained by using PID controllers. One of the main problems with mathematical models of physical systems is that the parameters used in the models cannot be determined with absolute accuracy. The values of the parameters may change with time or various effects. In these cases, conventional controller tuning methods suffer when trying a lot to produce optimum response. In order to overcome these difficulties a fuzzy logic based Set- Point weighting controller tuning method is proposed. The effectiveness of the proposed scheme is analyzed through computer simulation using SIMULINK software and the results are presented. The fuzzy logic based simulation results are compared with Cohen-Coon (CC, Ziegler- Nichols (ZN, Ziegler – Nichols with Set- Point weighting (ZN-SPW, Internal Model Control (IMC and Internal model based PID controller responses (IMC-PID. The effects of process modeling errors and the importance of controller tuning have been brought out using the proposed control scheme.

  1. Fault Tolerance Automotive Air-Ratio Control Using Extreme Learning Machine Model Predictive Controller

    OpenAIRE

    Pak Kin Wong; Hang Cheong Wong; Chi Man Vong; Tong Meng Iong; Ka In Wong; Xianghui Gao

    2015-01-01

    Effective air-ratio control is desirable to maintain the best engine performance. However, traditional air-ratio control assumes the lambda sensor located at the tail pipe works properly and relies strongly on the air-ratio feedback signal measured by the lambda sensor. When the sensor is warming up during cold start or under failure, the traditional air-ratio control no longer works. To address this issue, this paper utilizes an advanced modelling technique, kernel extreme learning machine (...

  2. Mosaic model for sensorimotor learning and control.

    Science.gov (United States)

    Haruno, M; Wolpert, D M; Kawato, M

    2001-10-01

    Humans demonstrate a remarkable ability to generate accurate and appropriate motor behavior under many different and often uncertain environmental conditions. We previously proposed a new modular architecture, the modular selection and identification for control (MOSAIC) model, for motor learning and control based on multiple pairs of forward (predictor) and inverse (controller) models. The architecture simultaneously learns the multiple inverse models necessary for control as well as how to select the set of inverse models appropriate for a given environment. It combines both feedforward and feedback sensorimotor information so that the controllers can be selected both prior to movement and subsequently during movement. This article extends and evaluates the MOSAIC architecture in the following respects. The learning in the architecture was implemented by both the original gradient-descent method and the expectation-maximization (EM) algorithm. Unlike gradient descent, the newly derived EM algorithm is robust to the initial starting conditions and learning parameters. Second, simulations of an object manipulation task prove that the architecture can learn to manipulate multiple objects and switch between them appropriately. Moreover, after learning, the model shows generalization to novel objects whose dynamics lie within the polyhedra of already learned dynamics. Finally, when each of the dynamics is associated with a particular object shape, the model is able to select the appropriate controller before movement execution. When presented with a novel shape-dynamic pairing, inappropriate activation of modules is observed followed by on-line correction.

  3. Effect of Using Extreme Years in Hydrologic Model Calibration Performance

    Science.gov (United States)

    Goktas, R. K.; Tezel, U.; Kargi, P. G.; Ayvaz, T.; Tezyapar, I.; Mesta, B.; Kentel, E.

    2017-12-01

    Hydrological models are useful in predicting and developing management strategies for controlling the system behaviour. Specifically they can be used for evaluating streamflow at ungaged catchments, effect of climate change, best management practices on water resources, or identification of pollution sources in a watershed. This study is a part of a TUBITAK project named "Development of a geographical information system based decision-making tool for water quality management of Ergene Watershed using pollutant fingerprints". Within the scope of this project, first water resources in Ergene Watershed is studied. Streamgages found in the basin are identified and daily streamflow measurements are obtained from State Hydraulic Works of Turkey. Streamflow data is analysed using box-whisker plots, hydrographs and flow-duration curves focusing on identification of extreme periods, dry or wet. Then a hydrological model is developed for Ergene Watershed using HEC-HMS in the Watershed Modeling System (WMS) environment. The model is calibrated for various time periods including dry and wet ones and the performance of calibration is evaluated using Nash-Sutcliffe Efficiency (NSE), correlation coefficient, percent bias (PBIAS) and root mean square error. It is observed that calibration period affects the model performance, and the main purpose of the development of the hydrological model should guide calibration period selection. Acknowledgement: This study is funded by The Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 115Y064.

  4. Modeling and (adaptive) control of greenhouse climates

    NARCIS (Netherlands)

    Udink ten Cate, A.J.

    1983-01-01

    The material presented in this thesis can be grouped around four themes, system concepts, modeling, control and adaptive control. In this summary these themes will be treated separately.

    System concepts

    In Chapters 1 and 2 an overview of the problem formulation

  5. Cognition and procedure representational requirements for predictive human performance models

    Science.gov (United States)

    Corker, K.

    1992-01-01

    Models and modeling environments for human performance are becoming significant contributors to early system design and analysis procedures. Issues of levels of automation, physical environment, informational environment, and manning requirements are being addressed by such man/machine analysis systems. The research reported here investigates the close interaction between models of human cognition and models that described procedural performance. We describe a methodology for the decomposition of aircrew procedures that supports interaction with models of cognition on the basis of procedures observed; that serves to identify cockpit/avionics information sources and crew information requirements; and that provides the structure to support methods for function allocation among crew and aiding systems. Our approach is to develop an object-oriented, modular, executable software representation of the aircrew, the aircraft, and the procedures necessary to satisfy flight-phase goals. We then encode in a time-based language, taxonomies of the conceptual, relational, and procedural constraints among the cockpit avionics and control system and the aircrew. We have designed and implemented a goals/procedures hierarchic representation sufficient to describe procedural flow in the cockpit. We then execute the procedural representation in simulation software and calculate the values of the flight instruments, aircraft state variables and crew resources using the constraints available from the relationship taxonomies. The system provides a flexible, extensible, manipulative and executable representation of aircrew and procedures that is generally applicable to crew/procedure task-analysis. The representation supports developed methods of intent inference, and is extensible to include issues of information requirements and functional allocation. We are attempting to link the procedural representation to models of cognitive functions to establish several intent inference methods

  6. A Water Treatment Case Study for Quantifying Model Performance with Multilevel Flow Modelling

    DEFF Research Database (Denmark)

    Nielsen, Emil Krabbe; Bram, Mads Valentin; Frutiger, Jerome

    2018-01-01

    Decision support systems are a key focus of research on developing control rooms to aid operators in making reliable decisions, and reducing incidents caused by human errors. For this purpose, models of complex systems can be developed to diagnose causes or consequences for specific alarms. Models...... during operation, this work aims to synthesize a procedure to measure model performance according to diagnostic requirements. A simple procedure is proposed for validating and evaluating the concept of Multilevel Flow Modelling. For this purpose, expert statements, dynamic process simulations, and pilot...

  7. Controller Synthesis using Qualitative Models and Constraints

    OpenAIRE

    Ramamoorthy, Subramanian; Kuipers, Benjamin J

    2004-01-01

    Many engineering systems require the synthesis of global behaviors in nonlinear dynamical systems. Multiple model approaches to control design make it possible to synthesize robust and optimal versions of such global behaviors. We propose a methodology called Qualitative Heterogeneous Control that enables this type of control design. This methodology is based on a separation of concerns between qualitative correctness and quantitative optimization. Qualitative sufficient conditions are derive...

  8. Baking oven improvement by performance modelling

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The first phase of the project included both the derivation of an oven model and the development of a portable, rapid-response heat-flux sensor. Heat flux (defined as the instantaneous rate of heat flow per unit at the surface of the baking biscuit and expressed in W/cm[sup 2]) has been shown to be a more useful measure of oven performance than temperature alone. Fixed-point heat-flux sensors have already been developed and marketed, but a need was expressed at the start of this project for a travelling sensor which could be used to construct a more detailed picture of heat-flux variation in an oven. The travelling monitor developed can be used to measure variations in the heat flux experienced at the surface of products being baked in a travelling oven, both when oven conditions are fixed and when they are varied. It can also be used to identify the optimum locations within an oven for fixed heat-flux probes. It has been used effectively throughout the project for both purposes. Fuel savings of 18% and 21%, respectively, were achieved with two ovens. (author)

  9. Performance of diagonal control structures at different operating conditions for polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Maria; Husar, Attila; Feroldi, Diego; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya, Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2006-08-25

    This work is focused on the selection of operating conditions in polymer electrolyte membrane fuel cells. It analyses efficiency and controllability aspects, which change from one operating point to another. Specifically, several operating points that deliver the same amount of net power are compared, and the comparison is done at different net power levels. The study is based on a complex non-linear model, which has been linearised at the selected operating points. Different linear analysis tools are applied to the linear models and results show important controllability differences between operating points. The performance of diagonal control structures with PI controllers at different operating points is also studied. A method for the tuning of the controllers is proposed and applied. The behaviour of the controlled system is simulated with the non-linear model. Conclusions indicate a possible trade-off between controllability and optimisation of hydrogen consumption. (author)

  10. Performance Analysis of Novel Overload Control with Threshold Mechanism

    Directory of Open Access Journals (Sweden)

    Doo Il Choi

    2016-01-01

    Full Text Available We propose a novel overload control method with hysteresis property; that is, we analyze the M/G/1/K queueing system where the service and arrival rates are varied depending on the queue-length. We use two threshold values: L1(≤L2 and L2(≤K. When the queue-length increases by an amount between L1 and L2, we apply one of the following two strategies to reduce the queue-length, either we decrease the mean service time or we decrease the arrival rate. If the queue-length exceeds L2 with one strategy, we apply the other; thus, there are two models that depend on the method that was applied first. We derive the queue-length distribution at departure and at arbitrary epochs using the embedded Markov chain method and the supplementary variable method. We investigate performance measures including the loss probability and mean waiting time using various numerical examples.

  11. A high-performance digital control system for TCV

    International Nuclear Information System (INIS)

    Lister, J.B.; Dutch, M.J.; Milne, P.G.; Means, R.W.

    1997-10-01

    The TCV hybrid analogue-digital plasma control system has been superseded by a high performance Digital Plasma Control System, DPCS, made possible by recent advances in off the shelf technology. We discuss the basic requirements for such a control system and present the design and specifications which were laid down. The nominal and final performances are presented and the complete design is given in detail. The integration of the new system into the current operation of the TCV tokamak is described. The procurement of this system has required close collaboration between the end-users and two commercial suppliers with one of the latter taking full responsibility for the system integration. The impact of this approach on the design and commissioning costs for the TCV project is presented. New possibilities offered by this new system are discussed, including possible work relevant to ITER plasma control development. (author) 3 figs., 5 refs

  12. Messaging Performance of FIPA Interaction Protocols in Networked Embedded Controllers

    Directory of Open Access Journals (Sweden)

    García JoséAPérez

    2008-01-01

    Full Text Available Abstract Agent-based technologies in production control systems could facilitate seamless reconfiguration and integration of mechatronic devices/modules into systems. Advances in embedded controllers which are continuously improving computational capabilities allow for software modularization and distribution of decisions. Agent platforms running on embedded controllers could hide the complexity of bootstrap and communication. Therefore, it is important to investigate the messaging performance of the agents whose main motivation is the resource allocation in manufacturing systems (i.e., conveyor system. The tests were implemented using the FIPA-compliant JADE-LEAP agent platform. Agent containers were distributed through networked embedded controllers, and agents were communicating using request and contract-net FIPA interaction protocols. The test scenarios are organized in intercontainer and intracontainer communications. The work shows the messaging performance for the different test scenarios using both interaction protocols.

  13. Messaging Performance of FIPA Interaction Protocols in Networked Embedded Controllers

    Directory of Open Access Journals (Sweden)

    Omar Jehovani López Orozco

    2007-12-01

    Full Text Available Agent-based technologies in production control systems could facilitate seamless reconfiguration and integration of mechatronic devices/modules into systems. Advances in embedded controllers which are continuously improving computational capabilities allow for software modularization and distribution of decisions. Agent platforms running on embedded controllers could hide the complexity of bootstrap and communication. Therefore, it is important to investigate the messaging performance of the agents whose main motivation is the resource allocation in manufacturing systems (i.e., conveyor system. The tests were implemented using the FIPA-compliant JADE-LEAP agent platform. Agent containers were distributed through networked embedded controllers, and agents were communicating using request and contract-net FIPA interaction protocols. The test scenarios are organized in intercontainer and intracontainer communications. The work shows the messaging performance for the different test scenarios using both interaction protocols.

  14. A high-performance digital control system for TCV

    Energy Technology Data Exchange (ETDEWEB)

    Lister, J.B.; Dutch, M.J. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Milne, P.G. [Pentland System Ltd., Livingstone (United Kingdom); Means, R.W. [HNC Software Inc., San Diego, CA (United States)

    1997-10-01

    The TCV hybrid analogue-digital plasma control system has been superseded by a high performance Digital Plasma Control System, DPCS, made possible by recent advances in off the shelf technology. We discuss the basic requirements for such a control system and present the design and specifications which were laid down. The nominal and final performances are presented and the complete design is given in detail. The integration of the new system into the current operation of the TCV tokamak is described. The procurement of this system has required close collaboration between the end-users and two commercial suppliers with one of the latter taking full responsibility for the system integration. The impact of this approach on the design and commissioning costs for the TCV project is presented. New possibilities offered by this new system are discussed, including possible work relevant to ITER plasma control development. (author) 3 figs., 5 refs.

  15. Distributed dynamic simulations of networked control and building performance applications.

    Science.gov (United States)

    Yahiaoui, Azzedine

    2018-02-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.

  16. Performance prediction for a magnetostrictive actuator using a simplified model

    Science.gov (United States)

    Yoo, Jin-Hyeong; Jones, Nicholas J.

    2018-03-01

    Iron-Gallium alloys (Galfenol) are promising transducer materials that combine high magnetostriction, desirable mechanical properties, high permeability, and a wide operational temperature range. Most of all, the material is capable of operating under tensile stress, and is relatively resistant to shock. These materials are generally characterized using a solid, cylindrically-shaped specimen under controlled compressive stress and magnetization conditions. Because the magnetostriction strongly depends on both the applied stress and magnetization, the characterization of the material is usually conducted under controlled conditions so each parameter is varied independently of the other. However, in a real application the applied stress and magnetization will not be maintained constant during operation. Even though the controlled characterization measurement gives insight into standard material properties, usage of this data in an application, while possible, is not straight forward. This study presents an engineering modeling methodology for magnetostrictive materials based on a piezo-electric governing equation. This model suggests phenomenological, nonlinear, three-dimensional functions for strain and magnetic flux density responses as functions of applied stress and magnetic field. Load line performances as a function of maximum magnetic field input were simulated based on the model. To verify the modeling performance, a polycrystalline magnetostrictive rod (Fe-Ga alloy, Galfenol) was characterized under compressive loads using a dead-weight test setup, with strain gages on the rod and a magnetic field driving coil around the sample. The magnetic flux density through the Galfenol rod was measured with a sensing coil; the compressive loads were measured using a load cell on the bottom of the Galfenol rod. The experimental results are compared with the simulation results using the suggested model, showing good agreement.

  17. Development of a robust model-based reactivity control system

    International Nuclear Information System (INIS)

    Rovere, L.A.; Otaduy, P.J.; Brittain, C.R.

    1990-01-01

    This paper describes the development and implementation of a digital model-based reactivity control system that incorporates a knowledge of the plant physics into the control algorithm to improve system performance. This controller is composed of a model-based module and modified proportional-integral-derivative (PID) module. The model-based module has an estimation component to synthesize unmeasurable process variables that are necessary for the control action computation. These estimated variables, besides being used within the control algorithm, will be used for diagnostic purposes by a supervisory control system under development. The PID module compensates for inaccuracies in model coefficients by supplementing the model-based output with a correction term that eliminates any demand tracking or steady state errors. This control algorithm has been applied to develop controllers for a simulation of liquid metal reactors in a multimodular plant. It has shown its capability to track demands in neutron power much more accurately than conventional controllers, reducing overshoots to almost negligible value while providing a good degree of robustness to unmodeled dynamics. 10 refs., 4 figs

  18. Model tests on dynamic performance of RC shear walls

    International Nuclear Information System (INIS)

    Nagashima, Toshio; Shibata, Akenori; Inoue, Norio; Muroi, Kazuo.

    1991-01-01

    For the inelastic dynamic response analysis of a reactor building subjected to earthquakes, it is essentially important to properly evaluate its restoring force characteristics under dynamic loading condition and its damping performance. Reinforced concrete shear walls are the main structural members of a reactor building, and dominate its seismic behavior. In order to obtain the basic information on the dynamic restoring force characteristics and damping performance of shear walls, the dynamic test using a large shaking table, static displacement control test and the pseudo-dynamic test on the models of a shear wall were conducted. In the dynamic test, four specimens were tested on a large shaking table. In the static test, four specimens were tested, and in the pseudo-dynamic test, three specimens were tested. These tests are outlined. The results of these tests were compared, placing emphasis on the restoring force characteristics and damping performance of the RC wall models. The strength was higher in the dynamic test models than in the static test models mainly due to the effect of loading rate. (K.I.)

  19. The Performance Implications of Fit among Environment, Strategy, Structure, Control System and Social Performance

    Directory of Open Access Journals (Sweden)

    Hasan Fauzi

    2009-12-01

    domain will be contingent upon strategic behaviors, which are behaviors of members in an organization. The paper integrates the contextual variables including business environment, strategy, organization structure, and control system with corporate performance by using corporate social performance as moderating variable by means of a recent literatures study from strategic management and accounting field.

  20. Design and performance of the Stanford Linear Collider Control System

    International Nuclear Information System (INIS)

    Melen, R.E.

    1984-10-01

    The success of the Stanford Linear Collider (SLC) will be dependent upon the implementation of a very large advanced computer-based instrumentation and control system. This paper describes the architectural design of this system as well as a critique of its performance. This critique is based on experience obtained from its use in the control and monitoring of 1/3 of the SLAC linac and in support of an expensive experimental machine physics experimental program. 11 references, 3 figures

  1. Mechatronic Model Based Computed Torque Control of a Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2008-11-01

    Full Text Available With high speed and accuracy the parallel manipulators have wide application in the industry, but there still exist many difficulties in the actual control process because of the time-varying and coupling. Unfortunately, the present-day commercial controlles cannot provide satisfying performance for its single axis linear control only. Therefore, aimed at a novel 2-DOF (Degree of Freedom parallel manipulator called Diamond 600, a motor-mechanism coupling dynamic model based control scheme employing the computed torque control algorithm are presented in this paper. First, the integrated dynamic coupling model is deduced, according to equivalent torques between the mechanical structure and the PM (Permanent Magnetism servomotor. Second, computed torque controller is described in detail for the above proposed model. At last, a series of numerical simulations and experiments are carried out to test the effectiveness of the system, and the results verify the favourable tracking ability and robustness.

  2. Mechatronic Model Based Computed Torque Control of a Parallel Manipulator

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2008-03-01

    Full Text Available With high speed and accuracy the parallel manipulators have wide application in the industry, but there still exist many difficulties in the actual control process because of the time-varying and coupling. Unfortunately, the present-day commercial controlles cannot provide satisfying performance for its single axis linear control only. Therefore, aimed at a novel 2-DOF (Degree of Freedom parallel manipulator called Diamond 600, a motor-mechanism coupling dynamic model based control scheme employing the computed torque control algorithm are presented in this paper. First, the integrated dynamic coupling model is deduced, according to equivalent torques between the mechanical structure and the PM (Permanent Magnetism servomotor. Second, computed torque controller is described in detail for the above proposed model. At last, a series of numerical simulations and experiments are carried out to test the effectiveness of the system, and the results verify the favourable tracking ability and robustness.

  3. Model Based Control of Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth

    for automation of these procedures, that is to incorporate some "intelligence" in the control system, this project was started up. The main emphasis of this work has been on model based methods for system optimizing control in supermarket refrigeration systems. The idea of implementing a system optimizing...... control is to let an optimization procedure take over the task of operating the refrigeration system and thereby replace the role of the operator in the traditional control structure. In the context of refrigeration systems, the idea is to divide the optimizing control structure into two parts: A part...... optimizing the steady state operation "set-point optimizing control" and a part optimizing dynamic behaviour of the system "dynamical optimizing control". A novel approach for set-point optimization will be presented. The general idea is to use a prediction of the steady state, for computation of the cost...

  4. Distributed model predictive control made easy

    CERN Document Server

    Negenborn, Rudy

    2014-01-01

    The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems.   This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those ...

  5. Rotor-Flying Manipulator: Modeling, Analysis, and Control

    Directory of Open Access Journals (Sweden)

    Bin Yang

    2014-01-01

    Full Text Available Equipping multijoint manipulators on a mobile robot is a typical redesign scheme to make the latter be able to actively influence the surroundings and has been extensively used for many ground robots, underwater robots, and space robotic systems. However, the rotor-flying robot (RFR is difficult to be made such redesign. This is mainly because the motion of the manipulator will bring heavy coupling between itself and the RFR system, which makes the system model highly complicated and the controller design difficult. Thus, in this paper, the modeling, analysis, and control of the combined system, called rotor-flying multijoint manipulator (RF-MJM, are conducted. Firstly, the detailed dynamics model is constructed and analyzed. Subsequently, a full-state feedback linear quadratic regulator (LQR controller is designed through obtaining linearized model near steady state. Finally, simulations are conducted and the results are analyzed to show the basic control performance.

  6. Discrete Model Reference Adaptive Control for Gimbal Servosystem of Control Moment Gyro with Harmonic Drive

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2013-01-01

    Full Text Available The double-gimbal control moment gyro (DGCMG demands that the gimbal servosystem should have fast response and small overshoot. But due to the low and nonlinear torsional stiffness of harmonic drive, the gimbal servo-system has poor dynamic performance with large overshoot and low bandwidth. In order to improve the dynamic performance of gimbal servo-system, a model reference adaptive control (MRAC law is introduced in this paper. The model of DGCMG gimbal servo-system with harmonic drive is established, and the adaptive control law based on POPOV super stable theory is designed. The MATLAB simulation results are provided to verify the effectiveness of the proposed control algorithm. The experimental results indicate that the MRAC could increase the bandwidth of gimbal servo-system to 3 Hz and improve the dynamic performance with small overshoot.

  7. Robust Control Mixer Method for Reconfigurable Control Design Using Model Matching Strategy

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Blanke, Mogens; Verhagen, Michel

    2007-01-01

    A novel control mixer method for recon¯gurable control designs is developed. The proposed method extends the matrix-form of the conventional control mixer concept into a LTI dynamic system-form. The H_inf control technique is employed for these dynamic module designs after an augmented control...... system is constructed through a model-matching strategy. The stability, performance and robustness of the reconfigured system can be guaranteed when some conditions are satisfied. To illustrate the effectiveness of the proposed method, a robot system subjected to failures is used to demonstrate...

  8. Performance of FFTF reference fuel and control assemblies

    International Nuclear Information System (INIS)

    Leggett, R.D.; Weber, E.T.

    1984-11-01

    This paper describes the performance of the reference fuel and control assemblies used in FFTF through the first four cycles of irradiation (446 equivalent full power days, EFPD). These assemblies performed flawlessly through the rigors of the Startup Testing Program, STP, (beginning in late 1979) with its cyclic operation and continued to do so throughout Cycles 1, 2, 3 and 4, the latter ending in April 1984

  9. Intelligent Mechatronic Systems Modeling, Control and Diagnosis

    CERN Document Server

    Merzouki, Rochdi; Pathak, Pushparaj Mani; Ould Bouamama, Belkacem

    2013-01-01

    Acting as a support resource for practitioners and professionals looking to advance their understanding of complex mechatronic systems, Intelligent Mechatronic Systems explains their design and recent developments from first principles to practical applications. Detailed descriptions of the mathematical models of complex mechatronic systems, developed from fundamental physical relationships, are built on to develop innovative solutions with particular emphasis on physical model-based control strategies. Following a concurrent engineering approach, supported by industrial case studies, and drawing on the practical experience of the authors, Intelligent Mechatronic Systems covers range of topic and includes:  • An explanation of a common graphical tool for integrated design and its uses from modeling and simulation to the control synthesis • Introductions to key concepts such as different means of achieving fault tolerance, robust overwhelming control and force and impedance control • Dedicated chapters ...

  10. Robust Adaptive Neural Control of Morphing Aircraft with Prescribed Performance

    Directory of Open Access Journals (Sweden)

    Zhonghua Wu

    2017-01-01

    Full Text Available This study proposes a low-computational composite adaptive neural control scheme for the longitudinal dynamics of a swept-back wing aircraft subject to parameter uncertainties. To efficiently release the constraint often existing in conventional neural designs, whose closed-loop stability analysis always necessitates that neural networks (NNs be confined in the active regions, a smooth switching function is presented to conquer this issue. By integrating minimal learning parameter (MLP technique, prescribed performance control, and a kind of smooth switching strategy into back-stepping design, a new composite switching adaptive neural prescribed performance control scheme is proposed and a new type of adaptive laws is constructed for the altitude subsystem. Compared with previous neural control scheme for flight vehicle, the remarkable feature is that the proposed controller not only achieves the prescribed performance including transient and steady property but also addresses the constraint on NN. Two comparative simulations are presented to verify the effectiveness of the proposed controller.

  11. Performance comparison of control schemes for variable-speed wind turbines

    Science.gov (United States)

    Bottasso, C. L.; Croce, A.; Savini, B.

    2007-07-01

    We analyze the performance of different control schemes when applied to the regulation problem of a variable-speed representative wind turbine. In particular, we formulate and compare a wind-scheduled PID, a LQR controller and a novel adaptive non-linear model predictive controller, equipped with observers of the tower states and wind. The simulations include gusts and turbulent winds of varying intensity in nominal as well as off-design operating conditions. The experiments highlight the possible advantages of model-based non-linear control strategies.

  12. Performance comparison of control schemes for variable-speed wind turbines

    International Nuclear Information System (INIS)

    Bottasso, C L; Croce, A; Savini, B

    2007-01-01

    We analyze the performance of different control schemes when applied to the regulation problem of a variable-speed representative wind turbine. In particular, we formulate and compare a wind-scheduled PID, a LQR controller and a novel adaptive non-linear model predictive controller, equipped with observers of the tower states and wind. The simulations include gusts and turbulent winds of varying intensity in nominal as well as off-design operating conditions. The experiments highlight the possible advantages of model-based non-linear control strategies

  13. Application of H∞ control theory to power control of a nonlinear reactor model

    International Nuclear Information System (INIS)

    Suzuki, Katsuo; Shimazaki, Junya; Shinohara, Yoshikuni

    1993-01-01

    The H∞ control theory is applied to the compensator design of a nonlinear nuclear reactor model, and the results are compared with standard linear quadratic Gaussian (LQG) control. The reactor model is assumed to be provided with a control rod drive system having the compensation of rod position feedback. The nonlinearity of the reactor model exerts a great influence on the stability of the control system, and hence, it is desirable for a power control system of a nuclear reactor to achieve robust stability and to improve the sensitivity of the feedback control system. A computer simulation based on a power control system synthesized by LQG control was performed revealing that the control system has some stationary offset and less stability. Therefore, here, attention is given to the development of a methodology for robust control that can withstand exogenous disturbances and nonlinearity in view of system parameter changes. The developed methodology adopts H∞ control theory in the feedback system and shows interesting features of robustness. The results of the computer simulation indicate that the feedback control system constructed by the developed H∞ compensator possesses sufficient robustness of control on the stability and disturbance attenuation, which are essential for the safe operation of a nuclear reactor

  14. Discriminative training of self-structuring hidden control neural models

    DEFF Research Database (Denmark)

    Sørensen, Helge Bjarup Dissing; Hartmann, Uwe; Hunnerup, Preben

    1995-01-01

    This paper presents a new training algorithm for self-structuring hidden control neural (SHC) models. The SHC models were trained non-discriminatively for speech recognition applications. Better recognition performance can generally be achieved, if discriminative training is applied instead. Thus...... we developed a discriminative training algorithm for SHC models, where each SHC model for a specific speech pattern is trained with utterances of the pattern to be recognized and with other utterances. The discriminative training of SHC neural models has been tested on the TIDIGITS database...

  15. Class Anxiety in Secondary Education: Exploring Structural Relations with Perceived Control, Engagement, Disaffection, and Performance.

    Science.gov (United States)

    González, Antonio; Faílde Garrido, José María; Rodríguez Castro, Yolanda; Carrera Rodríguez, María Victoria

    2015-09-14

    The aim of this study was to assess the relationships between class-related anxiety with perceived control, teacher-reported behavioral engagement, behavioral disaffection, and academic performance. Participants were 355 compulsory secondary students (9th and 10th grades; Mean age = 15.2 years; SD = 1.8 years). Structural equation models revealed performance was predicted by perceived control, anxiety, disaffection, and engagement. Perceived control predicted anxiety, disaffection, and engagement. Anxiety predicted disaffection and engagement, and partially mediated the effects from control on disaffection (β = -.277, p anxiety and performance was mediated by engagement and disaffection (β = -.295, p Anxiety, engagement, and disaffection mediated the effects of control on performance (β = .352, p < .003; CI = .279, .440). The implications of these results are discussed in the light of current theory and educational interventions.

  16. Modeling and control of magnetorheological fluid dampers using neural networks

    Science.gov (United States)

    Wang, D. H.; Liao, W. H.

    2005-02-01

    Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.

  17. Two stage neural network modelling for robust model predictive control.

    Science.gov (United States)

    Patan, Krzysztof

    2018-01-01

    The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Review of Methods Related to Assessing Human Performance in Nuclear Power Plant Control Room Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Katya L Le Blanc; Ronald L Boring; David I Gertman

    2001-11-01

    With the increased use of digital systems in Nuclear Power Plant (NPP) control rooms comes a need to thoroughly understand the human performance issues associated with digital systems. A common way to evaluate human performance is to test operators and crews in NPP control room simulators. However, it is often challenging to characterize human performance in meaningful ways when measuring performance in NPP control room simulations. A review of the literature in NPP simulator studies reveals a variety of ways to measure human performance in NPP control room simulations including direct observation, automated computer logging, recordings from physiological equipment, self-report techniques, protocol analysis and structured debriefs, and application of model-based evaluation. These methods and the particular measures used are summarized and evaluated.

  19. QLab 3 show control projects for live performances & installations

    CERN Document Server

    Hopgood, Jeromy

    2013-01-01

    Used from Broadway to Britain's West End, QLab software is the tool of choice for many of the world's most prominent sound, projection, and integrated media designers. QLab 3 Show Control: Projects for Live Performances & Installations is a project-based book on QLab software covering sound, video, and show control. With information on both sound and video system basics and the more advanced functions of QLab such as MIDI show control, new OSC capabilities, networking, video effects, and microphone integration, each chapter's specific projects will allow you to learn the software's capabilitie

  20. Aiding operator performance at low power feedwater control

    International Nuclear Information System (INIS)

    Woods, D.D.

    1986-01-01

    Control of the feedwater system during low power operations (approximately 2% to 30% power) is a difficult task where poor performance (excessive trips) has a high cost to utilities. This paper describes several efforts in the human factors aspects of this task that are underway to improve feedwater control. A variety of knowledge acquisition techniques have been used to understand the details of what makes feedwater control at low power difficult and what knowledge and skill distinguishes expert operators at this task from less experienced ones. The results indicate that there are multiple factors that contribute to task difficulty