WorldWideScience

Sample records for control hardware human

  1. Hardware Development Process for Human Research Facility Applications

    Science.gov (United States)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. The source of hardware requirements is the science community and HRF program. The HRF Science Working Group, consisting of SCientists from various medical disciplines, defined a basic set of equipment with functional requirements. This established the performance requirements of the hardware. HRF program requirements focus on making the hardware safe and operational in a space environment. This includes structural, thermal, human factors, and material requirements. Science and HRF program requirements are defined in a hardware requirements document which includes verification methods. Once the hardware is fabricated, requirements are verified by inspection, test, analysis, or demonstration. All data is compiled and reviewed to certify the hardware for flight. Obviously, the basis for all hardware development activities is requirement definition. Full and complete requirement definition is ideal prior to initiating the hardware development. However, this is generally not the case, but the hardware team typically has functional inputs as a guide. The first step is for engineers to conduct market research based on the functional inputs provided by scientists. CommerCially available products are evaluated against the science requirements as

  2. Human Centered Hardware Modeling and Collaboration

    Science.gov (United States)

    Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena

    2013-01-01

    In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.

  3. ZEUS hardware control system

    Science.gov (United States)

    Loveless, R.; Erhard, P.; Ficenec, J.; Gather, K.; Heath, G.; Iacovacci, M.; Kehres, J.; Mobayyen, M.; Notz, D.; Orr, R.; Orr, R.; Sephton, A.; Stroili, R.; Tokushuku, K.; Vogel, W.; Whitmore, J.; Wiggers, L.

    1989-12-01

    The ZEUS collaboration is building a system to monitor, control and document the hardware of the ZEUS detector. This system is based on a network of VAX computers and microprocessors connected via ethernet. The database for the hardware values will be ADAMO tables; the ethernet connection will be DECNET, TCP/IP, or RPC. Most of the documentation will also be kept in ADAMO tables for easy access by users.

  4. ZEUS hardware control system

    International Nuclear Information System (INIS)

    Loveless, R.; Erhard, P.; Ficenec, J.; Gather, K.; Heath, G.; Iacovacci, M.; Kehres, J.; Mobayyen, M.; Notz, D.; Orr, R.; Sephton, A.; Stroili, R.; Tokushuku, K.; Vogel, W.; Whitmore, J.; Wiggers, L.

    1989-01-01

    The ZEUS collaboration is building a system to monitor, control and document the hardware of the ZEUS detector. This system is based on a network of VAX computers and microprocessors connected via ethernet. The database for the hardware values will be ADAMO tables; the ethernet connection will be DECNET, TCP/IP, or RPC. Most of the documentation will also be kept in ADAMO tables for easy access by users. (orig.)

  5. Functional modelling for integration of human-software-hardware in complex physical systems

    International Nuclear Information System (INIS)

    Modarres, M.

    1996-01-01

    A framework describing the properties of complex physical systems composed of human-software-hardware interactions in terms of their functions is described. It is argued that such a framework is domain-general, so that functional primitives present a language that is more general than most other modeling methods such as mathematical simulation. The characteristics and types of functional models are described. Examples of uses of the framework in modeling physical systems composed of human-software-hardware (hereby we refer to them as only physical systems) are presented. It is concluded that a function-centered model of a physical system provides a capability for generating a high-level simulation of the system for intelligent diagnostic, control or other similar applications

  6. Human performance interfaces in air traffic control.

    Science.gov (United States)

    Chang, Yu-Hern; Yeh, Chung-Hsing

    2010-01-01

    This paper examines how human performance factors in air traffic control (ATC) affect each other through their mutual interactions. The paper extends the conceptual SHEL model of ergonomics to describe the ATC system as human performance interfaces in which the air traffic controllers interact with other human performance factors including other controllers, software, hardware, environment, and organisation. New research hypotheses about the relationships between human performance interfaces of the system are developed and tested on data collected from air traffic controllers, using structural equation modelling. The research result suggests that organisation influences play a more significant role than individual differences or peer influences on how the controllers interact with the software, hardware, and environment of the ATC system. There are mutual influences between the controller-software, controller-hardware, controller-environment, and controller-organisation interfaces of the ATC system, with the exception of the controller-controller interface. Research findings of this study provide practical insights in managing human performance interfaces of the ATC system in the face of internal or external change, particularly in understanding its possible consequences in relation to the interactions between human performance factors.

  7. Hardware controls for the STAR experiment at RHIC

    International Nuclear Information System (INIS)

    Reichhold, D.; Bieser, F.; Bordua, M.; Cherney, M.; Chrin, J.; Dunlop, J.C.; Ferguson, M.I.; Ghazikhanian, V.; Gross, J.; Harper, G.; Howe, M.; Jacobson, S.; Klein, S.R.; Kravtsov, P.; Lewis, S.; Lin, J.; Lionberger, C.; LoCurto, G.; McParland, C.; McShane, T.; Meier, J.; Sakrejda, I.; Sandler, Z.; Schambach, J.; Shi, Y.; Willson, R.; Yamamoto, E.; Zhang, W.

    2003-01-01

    The STAR detector sits in a high radiation area when operating normally; therefore it was necessary to develop a robust system to remotely control all hardware. The STAR hardware controls system monitors and controls approximately 14,000 parameters in the STAR detector. Voltages, currents, temperatures, and other parameters are monitored. Effort has been minimized by the adoption of experiment-wide standards and the use of pre-packaged software tools. The system is based on the Experimental Physics and Industrial Control System (EPICS) . VME processors communicate with subsystem-based sensors over a variety of field busses, with High-level Data Link Control (HDLC) being the most prevalent. Other features of the system include interfaces to accelerator and magnet control systems, a web-based archiver, and C++-based communication between STAR online, run control and hardware controls and their associated databases. The system has been designed for easy expansion as new detector elements are installed in STAR

  8. HiCAT Software Infrastructure: Safe hardware control with object oriented Python

    Science.gov (United States)

    Moriarty, Christopher; Brooks, Keira; Soummer, Remi

    2018-01-01

    High contrast imaging for Complex Aperture Telescopes (HiCAT) is a testbed designed to demonstrate coronagraphy and wavefront control for segmented on-axis space telescopes such as envisioned for LUVOIR. To limit the air movements in the testbed room, software interfaces for several different hardware components were developed to completely automate operations. When developing software interfaces for many different pieces of hardware, unhandled errors are commonplace and can prevent the software from properly closing a hardware resource. Some fragile components (e.g. deformable mirrors) can be permanently damaged because of this. We present an object oriented Python-based infrastructure to safely automate hardware control and optical experiments. Specifically, conducting high-contrast imaging experiments while monitoring humidity and power status along with graceful shutdown processes even for unexpected errors. Python contains a construct called a “context manager” that allows you define code to run when a resource is opened or closed. Context managers ensure that a resource is properly closed, even when unhandled errors occur. Harnessing the context manager design, we also use Python’s multiprocessing library to monitor humidity and power status without interrupting the experiment. Upon detecting a safety problem, the master process sends an event to the child process that triggers the context managers to gracefully close any open resources. This infrastructure allows us to queue up several experiments and safely operate the testbed without a human in the loop.

  9. MFTF supervisory control and diagnostics system hardware

    International Nuclear Information System (INIS)

    Butner, D.N.

    1979-01-01

    The Supervisory Control and Diagnostics System (SCDS) for the Mirror Fusion Test Facility (MFTF) is a multiprocessor minicomputer system designed so that for most single-point failures, the hardware may be quickly reconfigured to provide continued operation of the experiment. The system is made up of nine Perkin-Elmer computers - a mixture of 8/32's and 7/32's. Each computer has ports on a shared memory system consisting of two independent shared memory modules. Each processor can signal other processors through hardware external to the shared memory. The system communicates with the Local Control and Instrumentation System, which consists of approximately 65 microprocessors. Each of the six system processors has facilities for communicating with a group of microprocessors; the groups consist of from four to 24 microprocessors. There are hardware switches so that if an SCDS processor communicating with a group of microprocessors fails, another SCDS processor takes over the communication

  10. A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems

    Science.gov (United States)

    Zinnecker, Alicia M.; Culley, Dennis E.; Aretskin-Hariton, Eliot D.

    2015-01-01

    Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a SimulinkR library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.

  11. Optimized hardware design for the divertor remote handling control system

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, Hannu [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland)], E-mail: hannu.saarinen@tut.fi; Tiitinen, Juha; Aha, Liisa; Muhammad, Ali; Mattila, Jouni; Siuko, Mikko; Vilenius, Matti [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Jaervenpaeae, Jorma [VTT Systems Engineering, Tekniikankatu 1, 33720 Tampere (Finland); Irving, Mike; Damiani, Carlo; Semeraro, Luigi [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2009-06-15

    A key ITER maintenance activity is the exchange of the divertor cassettes. One of the major focuses of the EU Remote Handling (RH) programme has been the study and development of the remote handling equipment necessary for divertor exchange. The current major step in this programme involves the construction of a full scale physical test facility, namely DTP2 (Divertor Test Platform 2), in which to demonstrate and refine the RH equipment designs for ITER using prototypes. The major objective of the DTP2 project is the proof of concept studies of various RH devices, but is also important to define principles for standardizing control hardware and methods around the ITER maintenance equipment. This paper focuses on describing the control system hardware design optimization that is taking place at DTP2. Here there will be two RH movers, namely the Cassette Multifuctional Mover (CMM), Cassette Toroidal Mover (CTM) and assisting water hydraulic force feedback manipulators (WHMAN) located aboard each Mover. The idea here is to use common Real Time Operating Systems (RTOS), measurement and control IO-cards etc. for all maintenance devices and to standardize sensors and control components as much as possible. In this paper, new optimized DTP2 control system hardware design and some initial experimentation with the new DTP2 RH control system platform are presented. The proposed new approach is able to fulfil the functional requirements for both Mover and Manipulator control systems. Since the new control system hardware design has reduced architecture there are a number of benefits compared to the old approach. The simplified hardware solution enables the use of a single software development environment and a single communication protocol. This will result in easier maintainability of the software and hardware, less dependence on trained personnel, easier training of operators and hence reduced the development costs of ITER RH.

  12. X-Window for process control in a mixed hardware environment

    International Nuclear Information System (INIS)

    Clausen, M.; Rehlich, K.

    1992-01-01

    X-Window is a common standard for display purposes on the current workstations. The possibility to create more than one window on a single screen enables the operators to gain more information about the process. Multiple windows from different control systems using mixed hardware is one of the problems this paper will describe. The experience shows that X-Window is a standard per definition, but not in any case. But it is an excellent tool to separate data-acquisition and display from each other over long distances using different types of hardware and software for communications and display. Our experience with X-Window displays for the cryogenic control system and the vacuum control system at HERA on DEC and SUN hardware will be described. (author)

  13. The hardware control system for WEAVE at the William Herschel telescope

    NARCIS (Netherlands)

    Delgado Hernandez, Jose M.; Rodríguez-Ramos, Luis F.; Cano Infantes, Diego; Martin, Carlos; Bevil, Craige; Picó, Sergio; Dee, Kevin M.; Abrams, Don Carlos; Lewis, Ian J.; Pragt, Johan; Stuik, Remko; Tromp, Niels; Dalton, Gavin; L. Aguerri, J. Alfonso; Bonifacio, Piercarlo; Middleton, Kevin F.; Trager, Scott C.

    This work describes the hardware control system of the Prime Focus Corrector (PFC) and the Spectrograph, two of the main parts of WEAVE, a multi-object fiber spectrograph for the WHT Telescope. The PFC and Spectrograph control system hardware is based on the Allen Bradley's Programmable Automation

  14. Environmental Control System Software & Hardware Development

    Science.gov (United States)

    Vargas, Daniel Eduardo

    2017-01-01

    ECS hardware: (1) Provides controlled purge to SLS Rocket and Orion spacecraft. (2) Provide mission-focused engineering products and services. ECS software: (1) NASA requires Compact Unique Identifiers (CUIs); fixed-length identifier used to identify information items. (2) CUI structure; composed of nine semantic fields that aid the user in recognizing its purpose.

  15. Hardware control system using modular software under RSX-11D

    International Nuclear Information System (INIS)

    Kittell, R.S.; Helland, J.A.

    1978-01-01

    A modular software system used to control extensive hardware is described. The development, operation, and experience with this software are discussed. Included are the methods employed to implement this system while taking advantage of the Real-Time features of RSX-11D. Comparisons are made between this system and an earlier nonmodular system. The controlled hardware includes magnet power supplies, stepping motors, DVM's, and multiplexors, and is interfaced through CAMAC. 4 figures

  16. Software-Controlled Dynamically Swappable Hardware Design in Partially Reconfigurable Systems

    Directory of Open Access Journals (Sweden)

    Huang Chun-Hsian

    2008-01-01

    Full Text Available Abstract We propose two basic wrapper designs and an enhanced wrapper design for arbitrary digital hardware circuit designs such that they can be enhanced with the capability for dynamic swapping controlled by software. A hardware design with either of the proposed wrappers can thus be swapped out of the partially reconfigurable logic at runtime in some intermediate state of computation and then swapped in when required to continue from that state. The context data is saved to a buffer in the wrapper at interruptible states, and then the wrapper takes care of saving the hardware context to communication memory through a peripheral bus, and later restoring the hardware context after the design is swapped in. The overheads of the hardware standardization and the wrapper in terms of additional reconfigurable logic resources and the time for context switching are small and generally acceptable. With the capability for dynamic swapping, high priority hardware tasks can interrupt low-priority tasks in real-time embedded systems so that the utilization of hardware space per unit time is increased.

  17. An Interview with Joe McMann: Lessons Learned from Fifty Years of Observing Hardware and Human Behavior

    Science.gov (United States)

    McMann, Joe

    2011-01-01

    Pica Kahn conducted "An Interview with Joe McMann: Lessons Learned in Human and Hardware Behavior" on August 16, 2011. With more than 40 years of experience in the aerospace industry, McMann has gained a wealth of knowledge. This presentation focused on lessons learned in human and hardware behavior. During his many years in the industry, McMann observed that the hardware development process was intertwined with human influences, which impacted the outcome of the product.

  18. Hardware-in-the-Loop Simulation for the Automatic Power Control System of Research Reactors

    International Nuclear Information System (INIS)

    Fikry, R.M.; Shehata, S.A.; Elaraby, S.M.; Mahmoud, M.I.; Elbardini, M.M.

    2009-01-01

    Designing and testing digital control system for any nuclear research reactor can be costly and time consuming. In this paper, a rapid, low-cost proto typing and testing procedure for digital controller design is proposed using the concept of Hardware-In- The-Loop (HIL). Some of the control loop components are real hardware components and thc others are simulated. First, the whole system is modeled and tested by Real- Time Simulation (RTS) using conventional simulation techniques such as MATLAB / SIMULINK. Second the Hardware-in-the-Ioop simulation is tested using Real-Time Windows Target in MATLAB and Visual C++. The control parts are included as hardware components which are the reactor control rod and its drivers. Two kinds of controllers are studied, Proportional derivative (PD) and Fuzzy controller, An experimental setup for the hardware used in HIL concept for the control of the nuclear research reactor has been realized. Experimental results are obtained and compared with the simulation results. The experimental results indicate the validation of HIL method in this domain

  19. Control/interlock/display system for EBT-P using commercially-available hardware and firmware

    International Nuclear Information System (INIS)

    Schmitt, R.J.

    1983-01-01

    For the EBT-P project, alternative commercially-available hardware, software and firmware have been employed for control, interlock and data display functions. This paper describes the criteria and rationale used to select that commercial equipment and discusses the important features of the equipment chosen, especially programmable controllers. Additional discussion is centered on interface problems which are encountered upon attempts to integrate equipment from several vendors. Some solutions to these problems are discussed. Details of software and hardware performance during tests are presented. The extent to which the EBT-P hardware and software configuration addresses and resolves various issues is discussed. Several areas have been uncovered in which relatively slight improvements/modifications of commercial programmable controller firmware would significantly improve the capability of this type of hardware in fusion control applications. These improvements are discussed in detail

  20. A Heterogeneous Multi-core Architecture with a Hardware Kernel for Control Systems

    DEFF Research Database (Denmark)

    Li, Gang; Guan, Wei; Sierszecki, Krzysztof

    2012-01-01

    Rapid industrialisation has resulted in a demand for improved embedded control systems with features such as predictability, high processing performance and low power consumption. Software kernel implementation on a single processor is becoming more difficult to satisfy those constraints....... This paper presents a multi-core architecture incorporating a hardware kernel on FPGAs, intended for high performance applications in control engineering domain. First, the hardware kernel is investigated on the basis of a component-based real-time kernel HARTEX (Hard Real-Time Executive for Control Systems...

  1. PCI hardware support in LIA-2 control system

    International Nuclear Information System (INIS)

    Bolkhovityanov, D.; Cheblakov, P.

    2012-01-01

    The control system of the LIA-2 accelerator is built on cPCI crates with *86- compatible processor boards running Linux. Slow electronics is connected via CAN-bus, while fast electronics (4 MHz and 200 MHz fast ADCs and 200 MHz timers) are implemented as cPCI/PMC modules. Several ways to drive PCI control electronics in Linux were examined. Finally a user-space drivers approach was chosen. These drivers communicate with hardware via a small kernel module, which provides access to PCI BARs and to interrupt handling. This module was named USPCI (User-Space PCI access). This approach dramatically simplifies creation of drivers, as opposed to kernel drivers, and provides high reliability (because only a tiny and thoroughly-debugged piece of code runs in kernel). LIA-2 accelerator was successfully commissioned, and the solution chosen has proven adequate and very easy to use. Besides, USPCI turned out to be a handy tool for examination and debugging of PCI devices direct from command-line. In this paper available approaches to work with PCI control hardware in Linux are considered, and USPCI architecture is described. (authors)

  2. The Application of Hardware in the Loop Testing for Distributed Engine Control

    Science.gov (United States)

    Thomas, George L.; Culley, Dennis E.; Brand, Alex

    2016-01-01

    The essence of a distributed control system is the modular partitioning of control function across a hardware implementation. This type of control architecture requires embedding electronics in a multitude of control element nodes for the execution of those functions, and their integration as a unified system. As the field of distributed aeropropulsion control moves toward reality, questions about building and validating these systems remain. This paper focuses on the development of hardware-in-the-loop (HIL) test techniques for distributed aero engine control, and the application of HIL testing as it pertains to potential advanced engine control applications that may now be possible due to the intelligent capability embedded in the nodes.

  3. Hardware detection and parameter tuning method for speed control system of PMSM

    Science.gov (United States)

    Song, Zhengqiang; Yang, Huiling

    2018-03-01

    In this paper, the development of permanent magnet synchronous motor AC speed control system is taken as an example, aiming to expound the principle and parameter setting method of the system hardware, and puts forward the method of using software or hardware to eliminate the problem.

  4. Real-Time Hardware-in-the-Loop Testing for Digital Controllers

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Kwon, Park In; Wu, Qiuwei

    2012-01-01

    of the power electronics hardware are not included in the RTDS. Instead, the control algorithms are coded using the native C code and downloaded to the dedicated digital signal processor (DSP)/microcontrollers. The two experimental applications illustrate the effectiveness of the HIL controller testing...

  5. Development of a hardware-in-loop attitude control simulator for a CubeSat satellite

    Science.gov (United States)

    Tapsawat, Wittawat; Sangpet, Teerawat; Kuntanapreeda, Suwat

    2018-01-01

    Attitude control is an important part in satellite on-orbit operation. It greatly affects the performance of satellites. Testing of an attitude determination and control subsystem (ADCS) is very challenging since it might require attitude dynamics and space environment in the orbit. This paper develops a low-cost hardware-in-loop (HIL) simulator for testing an ADCS of a CubeSat satellite. The simulator consists of a numerical simulation part, a hardware part, and a HIL interface hardware unit. The numerical simulation part includes orbital dynamics, attitude dynamics and Earth’s magnetic field. The hardware part is the real ADCS board of the satellite. The simulation part outputs satellite’s angular velocity and geomagnetic field information to the HIL interface hardware. Then, based on this information, the HIL interface hardware generates I2C signals mimicking the signals of the on-board rate-gyros and magnetometers and consequently outputs the signals to the ADCS board. The ADCS board reads the rate-gyro and magnetometer signals, calculates control signals, and drives the attitude actuators which are three magnetic torquers (MTQs). The responses of the MTQs sensed by a separated magnetometer are feedback to the numerical simulation part completing the HIL simulation loop. Experimental studies are conducted to demonstrate the feasibility and effectiveness of the simulator.

  6. FY1995 evolvable hardware chip; 1995 nendo shinkasuru hardware chip

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This project aims at the development of 'Evolvable Hardware' (EHW) which can adapt its hardware structure to the environment to attain better hardware performance, under the control of genetic algorithms. EHW is a key technology to explore the new application area requiring real-time performance and on-line adaptation. 1. Development of EHW-LSI for function level hardware evolution, which includes 15 DSPs in one chip. 2. Application of the EHW to the practical industrial applications such as data compression, ATM control, digital mobile communication. 3. Two patents : (1) the architecture and the processing method for programmable EHW-LSI. (2) The method of data compression for loss-less data, using EHW. 4. The first international conference for evolvable hardware was held by authors: Intl. Conf. on Evolvable Systems (ICES96). It was determined at ICES96 that ICES will be held every two years between Japan and Europe. So the new society has been established by us. (NEDO)

  7. FY1995 evolvable hardware chip; 1995 nendo shinkasuru hardware chip

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This project aims at the development of 'Evolvable Hardware' (EHW) which can adapt its hardware structure to the environment to attain better hardware performance, under the control of genetic algorithms. EHW is a key technology to explore the new application area requiring real-time performance and on-line adaptation. 1. Development of EHW-LSI for function level hardware evolution, which includes 15 DSPs in one chip. 2. Application of the EHW to the practical industrial applications such as data compression, ATM control, digital mobile communication. 3. Two patents : (1) the architecture and the processing method for programmable EHW-LSI. (2) The method of data compression for loss-less data, using EHW. 4. The first international conference for evolvable hardware was held by authors: Intl. Conf. on Evolvable Systems (ICES96). It was determined at ICES96 that ICES will be held every two years between Japan and Europe. So the new society has been established by us. (NEDO)

  8. Reconfigurable ATCA hardware for plasma control and data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, B.B., E-mail: bernardo@ipfn.ist.utl.p [Associacao EURATOM/IST Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Batista, A.J.N.; Correia, M.; Neto, A.; Fernandes, H.; Goncalves, B.; Sousa, J. [Associacao EURATOM/IST Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2010-07-15

    The IST/EURATOM Association is developing a new generation of control and data acquisition hardware for fusion experiments based on the ATCA architecture. This emerging open standard offers a significantly higher data throughput over a reliable High Availability (HA) mechanical and electrical platform. One of this ATCA boards has 32 galvanically isolated ADC channels (18 bit) each mounted on a swappable plug-in card, 8 DAC channels (16 bit), 8 digital I/O channels and embeds a high performance XILINX Virtex 4 family field programmable gate array (FPGA). The specific modular and configurable hardware design enables adaptable utilization of the board in dissimilar applications. The first configuration, specially developed for tokamak plasma Vertical Stabilization, consists of a Multiple-Input-Multiple-Output (MIMO) controller that is capable of feedback loops faster than 1 ms using a multitude of input signals fed from different boards communicating through the Aurora{sup TM} point-to-point protocol. Massive parallel algorithms can be implemented on the FPGA either with programmed digital logic, using a HDL hardware description language, or within its internal silicon PowerPC{sup TM} running a full fledged real-time operating system. The second board configuration is dedicated for transient recording of the entire 32 channels at 2 MSamples/s to the on-board 512 MB DDR2 memory. Signal data retrieval is accelerated by a DMA-driven PCI Express{sup TM} x1 Interface to the ATCA system controller, providing an overall throughput in excess of 100 MB/s. This paper illustrates these developments and discusses possible configurations for foreseen applications.

  9. Conceptual Design Approach to Implementing Hardware-based Security Controls in Data Communication Systems

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad Salah; Jung, Jaecheon

    2016-01-01

    In the Korean Advanced Power Reactor (APR1400), safety control systems network is electrically isolated and physically separated from non-safety systems data network. Unidirectional gateways, include data diode fiber-optic cabling and computer-based servers, transmit the plant safety critical parameters to the main control room (MCR) for control and monitoring processes. The data transmission is only one-way from safety to non-safety. Reverse communication is blocked so that safety systems network is protected from potential cyberattacks or intrusions from non-safety side. Most of commercials off-the-shelf (COTS) security devices are software-based solutions that require operating systems and processors to perform its functions. Field Programmable Gate Arrays (FPGAs) offer digital hardware solutions to implement security controls such as data packet filtering and deep data packet inspection. This paper presents a conceptual design to implement hardware-based network security controls for maintaining the availability of gateway servers. A conceptual design of hardware-based network security controls was discussed in this paper. The proposed design is aiming at utilizing the hardware-based capabilities of FPGAs together with filtering and DPI functions of COTS software-based firewalls and intrusion detection and prevention systems (IDPS). The proposed design implemented a network security perimeter between the DCN-I zone and gateway servers zone. Security control functions are to protect the gateway servers from potential DoS attacks that could affect the data availability and integrity

  10. Conceptual Design Approach to Implementing Hardware-based Security Controls in Data Communication Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Ahmad Salah; Jung, Jaecheon [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    In the Korean Advanced Power Reactor (APR1400), safety control systems network is electrically isolated and physically separated from non-safety systems data network. Unidirectional gateways, include data diode fiber-optic cabling and computer-based servers, transmit the plant safety critical parameters to the main control room (MCR) for control and monitoring processes. The data transmission is only one-way from safety to non-safety. Reverse communication is blocked so that safety systems network is protected from potential cyberattacks or intrusions from non-safety side. Most of commercials off-the-shelf (COTS) security devices are software-based solutions that require operating systems and processors to perform its functions. Field Programmable Gate Arrays (FPGAs) offer digital hardware solutions to implement security controls such as data packet filtering and deep data packet inspection. This paper presents a conceptual design to implement hardware-based network security controls for maintaining the availability of gateway servers. A conceptual design of hardware-based network security controls was discussed in this paper. The proposed design is aiming at utilizing the hardware-based capabilities of FPGAs together with filtering and DPI functions of COTS software-based firewalls and intrusion detection and prevention systems (IDPS). The proposed design implemented a network security perimeter between the DCN-I zone and gateway servers zone. Security control functions are to protect the gateway servers from potential DoS attacks that could affect the data availability and integrity.

  11. Intrinsic Hardware Evolution for the Design and Reconfiguration of Analog Speed Controllers for a DC Motor

    Science.gov (United States)

    Gwaltney, David A.; Ferguson, Michael I.

    2003-01-01

    Evolvable hardware provides the capability to evolve analog circuits to produce amplifier and filter functions. Conventional analog controller designs employ these same functions. Analog controllers for the control of the shaft speed of a DC motor are evolved on an evolvable hardware platform utilizing a second generation Field Programmable Transistor Array (FPTA2). The performance of an evolved controller is compared to that of a conventional proportional-integral (PI) controller. It is shown that hardware evolution is able to create a compact design that provides good performance, while using considerably less functional electronic components than the conventional design. Additionally, the use of hardware evolution to provide fault tolerance by reconfiguring the design is explored. Experimental results are presented showing that significant recovery of capability can be made in the face of damaging induced faults.

  12. The NUCLARR databank: Human reliability and hardware failure data for the nuclear power industry

    International Nuclear Information System (INIS)

    Reece, W.J.

    1993-01-01

    Under the sponsorship of the US Nuclear Regulatory Commission (NRC), the Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) was developed to provide human reliability and hardware failure data to analysts in the nuclear power industry. This IBM-compatible databank is contained on a set of floppy diskettes which include data files and a menu-driven system for locating, reviewing, sorting, and retrieving the data. NUCLARR contains over 2500 individual data records, drawn from more, than 60 sources. The system is upgraded annually, to include additional human error and hardware component failure data and programming enhancements (i.e., increased user-friendliness). NUCLARR is available from the NRC through project staff at the INEL

  13. Wetware, Hardware, or Software Incapacitation: Observational Methods to Determine When Autonomy Should Assume Control

    Science.gov (United States)

    Trujillo, Anna C.; Gregory, Irene M.

    2014-01-01

    Control-theoretic modeling of human operator's dynamic behavior in manual control tasks has a long, rich history. There has been significant work on techniques used to identify the pilot model of a given structure. This research attempts to go beyond pilot identification based on experimental data to develop a predictor of pilot behavior. Two methods for pre-dicting pilot stick input during changing aircraft dynamics and deducing changes in pilot behavior are presented This approach may also have the capability to detect a change in a subject due to workload, engagement, etc., or the effects of changes in vehicle dynamics on the pilot. With this ability to detect changes in piloting behavior, the possibility now exists to mediate human adverse behaviors, hardware failures, and software anomalies with autono-my that may ameliorate these undesirable effects. However, appropriate timing of when au-tonomy should assume control is dependent on criticality of actions to safety, sensitivity of methods to accurately detect these adverse changes, and effects of changes in levels of auto-mation of the system as a whole.

  14. Survey of hardware supported by the Control System at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Coulter, K.J.; Nawrocki, G.J.

    1993-01-01

    The Experimental Physics and Industrial control System (EPICS) has been under development at Los Alamos and Argonne National Laboratories for over six years. A wide variety of instrumentation is now supported. This presentation will give an overview of the types of hardware and subsystems which are currently supported and will discuss future plans for addressing additional hardware requirements at the APS. Supported systems to be discussed include: motion control, vacuum pump control and system monitoring, standard laboratory instrumentation (ADCs, DVMs, pulse generators, etc.), image processing, discrete binary and analog I/O, and standard temperature, pressure and flow monitoring

  15. Hardware for soft computing and soft computing for hardware

    CERN Document Server

    Nedjah, Nadia

    2014-01-01

    Single and Multi-Objective Evolutionary Computation (MOEA),  Genetic Algorithms (GAs), Artificial Neural Networks (ANNs), Fuzzy Controllers (FCs), Particle Swarm Optimization (PSO) and Ant colony Optimization (ACO) are becoming omnipresent in almost every intelligent system design. Unfortunately, the application of the majority of these techniques is complex and so requires a huge computational effort to yield useful and practical results. Therefore, dedicated hardware for evolutionary, neural and fuzzy computation is a key issue for designers. With the spread of reconfigurable hardware such as FPGAs, digital as well as analog hardware implementations of such computation become cost-effective. The idea behind this book is to offer a variety of hardware designs for soft computing techniques that can be embedded in any final product. Also, to introduce the successful application of soft computing technique to solve many hard problem encountered during the design of embedded hardware designs. Reconfigurable em...

  16. A Heterogeneous Multi-core Architecture with a Hardware Kernel for Control Systems

    DEFF Research Database (Denmark)

    Li, Gang; Guan, Wei; Sierszecki, Krzysztof

    2012-01-01

    Rapid industrialisation has resulted in a demand for improved embedded control systems with features such as predictability, high processing performance and low power consumption. Software kernel implementation on a single processor is becoming more difficult to satisfy those constraints. This pa......Rapid industrialisation has resulted in a demand for improved embedded control systems with features such as predictability, high processing performance and low power consumption. Software kernel implementation on a single processor is becoming more difficult to satisfy those constraints......). Second, a heterogeneous multi-core architecture is investigated, focusing on its performance in relation to hard real-time constraints and predictable behavior. Third, the hardware implementation of HARTEX is designated to support the heterogeneous multi-core architecture. This hardware kernel has...... several advantages over a similar kernel implemented in software: higher-speed processing capability, parallel computation, and separation between the kernel itself and the applications being run. A microbenchmark has been used to compare the hardware kernel with the software kernel, and compare...

  17. Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center

    Science.gov (United States)

    Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki

    2012-01-01

    The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.

  18. Accelerating epistasis analysis in human genetics with consumer graphics hardware

    Directory of Open Access Journals (Sweden)

    Cancare Fabio

    2009-07-01

    Full Text Available Abstract Background Human geneticists are now capable of measuring more than one million DNA sequence variations from across the human genome. The new challenge is to develop computationally feasible methods capable of analyzing these data for associations with common human disease, particularly in the context of epistasis. Epistasis describes the situation where multiple genes interact in a complex non-linear manner to determine an individual's disease risk and is thought to be ubiquitous for common diseases. Multifactor Dimensionality Reduction (MDR is an algorithm capable of detecting epistasis. An exhaustive analysis with MDR is often computationally expensive, particularly for high order interactions. This challenge has previously been met with parallel computation and expensive hardware. The option we examine here exploits commodity hardware designed for computer graphics. In modern computers Graphics Processing Units (GPUs have more memory bandwidth and computational capability than Central Processing Units (CPUs and are well suited to this problem. Advances in the video game industry have led to an economy of scale creating a situation where these powerful components are readily available at very low cost. Here we implement and evaluate the performance of the MDR algorithm on GPUs. Of primary interest are the time required for an epistasis analysis and the price to performance ratio of available solutions. Findings We found that using MDR on GPUs consistently increased performance per machine over both a feature rich Java software package and a C++ cluster implementation. The performance of a GPU workstation running a GPU implementation reduces computation time by a factor of 160 compared to an 8-core workstation running the Java implementation on CPUs. This GPU workstation performs similarly to 150 cores running an optimized C++ implementation on a Beowulf cluster. Furthermore this GPU system provides extremely cost effective

  19. Accelerating epistasis analysis in human genetics with consumer graphics hardware.

    Science.gov (United States)

    Sinnott-Armstrong, Nicholas A; Greene, Casey S; Cancare, Fabio; Moore, Jason H

    2009-07-24

    Human geneticists are now capable of measuring more than one million DNA sequence variations from across the human genome. The new challenge is to develop computationally feasible methods capable of analyzing these data for associations with common human disease, particularly in the context of epistasis. Epistasis describes the situation where multiple genes interact in a complex non-linear manner to determine an individual's disease risk and is thought to be ubiquitous for common diseases. Multifactor Dimensionality Reduction (MDR) is an algorithm capable of detecting epistasis. An exhaustive analysis with MDR is often computationally expensive, particularly for high order interactions. This challenge has previously been met with parallel computation and expensive hardware. The option we examine here exploits commodity hardware designed for computer graphics. In modern computers Graphics Processing Units (GPUs) have more memory bandwidth and computational capability than Central Processing Units (CPUs) and are well suited to this problem. Advances in the video game industry have led to an economy of scale creating a situation where these powerful components are readily available at very low cost. Here we implement and evaluate the performance of the MDR algorithm on GPUs. Of primary interest are the time required for an epistasis analysis and the price to performance ratio of available solutions. We found that using MDR on GPUs consistently increased performance per machine over both a feature rich Java software package and a C++ cluster implementation. The performance of a GPU workstation running a GPU implementation reduces computation time by a factor of 160 compared to an 8-core workstation running the Java implementation on CPUs. This GPU workstation performs similarly to 150 cores running an optimized C++ implementation on a Beowulf cluster. Furthermore this GPU system provides extremely cost effective performance while leaving the CPU available for other

  20. Re-configurable ATCA Hardware for Plasma Control and Data Acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, B.; Batista, A.; Correia, M.; Fernandes, H.; Sousa, J. [Instituto de Plasmas e Fusao Nuclear - Instituto Superior Tecnico, Lisbon (Portugal)

    2009-07-01

    The IST/EURATOM Association is developing a new generation of control and data acquisition hardware for fusion experiments based on the ATCA architecture. This emerging open standard offers a significantly higher data throughput over a reliable High Availability (HA) mechanical and electrical platform. One of this ATCA boards, has 32 galvanic isolated ADC channels (18 bit) each mounted on a exchangeable plug-in card, 8 DAC channels (16 bit), 8 digital I/O channels and embeds a high performance XILINX Virtex 4 family field programmable gate array (FPGA). The specific modular hardware design enables adaptable utilization of the board in dissimilar applications. The first configuration, specially developed for tokamak plasma Vertical Stabilization, consists of a Multiple-Input-Multiple-Output (MIMO) controller that is capable of feedback loops faster than 1 ms, using a multitude of input signals fed from different boards communicating through the Aurora point-to-point protocol. Massive parallel algorithms can be implemented inside the FPGA either with programmed digital logic, using a HDL hardware description language, or inside the two included silicon PowerPCs running a full fledged real-time operating system. The second board configuration is dedicated for transient recording of the entire 32 channels at 2 MSamples/s to the built-in 512 MBDDR2 memory. Signal data retrieval is accelerated by a DMA-driven PCI Express-x1 Interface to the ATCA system controller providing an overall throughput in excess of 250 MB/s. This paper illustrates these developments and discusses possible configurations for foreseen applications. (authors)

  1. Digital Controller Development Methodology Based on Real-Time Simulations with LabVIEW FPGA Hardware-Software Toolset

    Directory of Open Access Journals (Sweden)

    Tommaso Caldognetto

    2013-12-01

    Full Text Available In this paper, we exemplify the use of NI Lab-VIEW FPGA as a rapid prototyping environment for digital controllers. In our power electronics laboratory, it has been successfully employed in the development, debugging, and test of different power converter controllers for microgrid applications.The paper shows how this high level programming language,together with its target hardware platforms, including CompactRIO and Single Board RIO systems, allows researchers and students to develop even complex applications in reasonable times. The availability of efficient drivers for the considered hardware platforms frees the users from the burden of low level programming. At the same time, the high level programming approach facilitates software re-utilization, allowing the laboratory know-how to steadily grow along time. Furthermore, it allows hardware-in-the-loop real-time simulation, that proved to be effective, and safe, in debugging even complex hardware and software co-designed controllers. To illustrate the effectiveness of these hardware-software toolsets and of the methodology based upon them, two case studies are

  2. Hardware interface unit for control of shuttle RMS vibrations

    Science.gov (United States)

    Lindsay, Thomas S.; Hansen, Joseph M.; Manouchehri, Davoud; Forouhar, Kamran

    1994-01-01

    Vibration of the Shuttle Remote Manipulator System (RMS) increases the time for task completion and reduces task safety for manipulator-assisted operations. If the dynamics of the manipulator and the payload can be physically isolated, performance should improve. Rockwell has developed a self contained hardware unit which interfaces between a manipulator arm and payload. The End Point Control Unit (EPCU) is built and is being tested at Rockwell and at the Langley/Marshall Coupled, Multibody Spacecraft Control Research Facility in NASA's Marshall Space Flight Center in Huntsville, Alabama.

  3. Hardware for dynamic quantum computing.

    Science.gov (United States)

    Ryan, Colm A; Johnson, Blake R; Ristè, Diego; Donovan, Brian; Ohki, Thomas A

    2017-10-01

    We describe the hardware, gateware, and software developed at Raytheon BBN Technologies for dynamic quantum information processing experiments on superconducting qubits. In dynamic experiments, real-time qubit state information is fed back or fed forward within a fraction of the qubits' coherence time to dynamically change the implemented sequence. The hardware presented here covers both control and readout of superconducting qubits. For readout, we created a custom signal processing gateware and software stack on commercial hardware to convert pulses in a heterodyne receiver into qubit state assignments with minimal latency, alongside data taking capability. For control, we developed custom hardware with gateware and software for pulse sequencing and steering information distribution that is capable of arbitrary control flow in a fraction of superconducting qubit coherence times. Both readout and control platforms make extensive use of field programmable gate arrays to enable tailored qubit control systems in a reconfigurable fabric suitable for iterative development.

  4. Incorporating Traffic Control and Safety Hardware Performance Functions into Risk-based Highway Safety Analysis

    Directory of Open Access Journals (Sweden)

    Zongzhi Li

    2017-04-01

    Full Text Available Traffic control and safety hardware such as traffic signs, lighting, signals, pavement markings, guardrails, barriers, and crash cushions form an important and inseparable part of highway infrastructure affecting safety performance. Significant progress has been made in recent decades to develop safety performance functions and crash modification factors for site-specific crash predictions. However, the existing models and methods lack rigorous treatments of safety impacts of time-deteriorating conditions of traffic control and safety hardware. This study introduces a refined method for computing the Safety Index (SI as a means of crash predictions for a highway segment that incorporates traffic control and safety hardware performance functions into the analysis. The proposed method is applied in a computation experiment using five-year data on nearly two hundred rural and urban highway segments. The root-mean square error (RMSE, Chi-square, Spearman’s rank correlation, and Mann-Whitney U tests are employed for validation.

  5. Open Hardware for CERN's accelerator control systems

    International Nuclear Information System (INIS)

    Bij, E van der; Serrano, J; Wlostowski, T; Cattin, M; Gousiou, E; Sanchez, P Alvarez; Boccardi, A; Voumard, N; Penacoba, G

    2012-01-01

    The accelerator control systems at CERN will be upgraded and many electronics modules such as analog and digital I/O, level converters and repeaters, serial links and timing modules are being redesigned. The new developments are based on the FPGA Mezzanine Card, PCI Express and VME64x standards while the Wishbone specification is used as a system on a chip bus. To attract partners, the projects are developed in an 'Open' fashion. Within this Open Hardware project new ways of working with industry are being evaluated and it has been proven that industry can be involved at all stages, from design to production and support.

  6. Hardware and Software Integration in Project Development of Automated Controller System Using LABVIEW FPGA

    International Nuclear Information System (INIS)

    Mohd Khairulezwan Abd Manan; Mohd Sabri Minhat; Izhar Abu Hussin

    2014-01-01

    The Field-Programmable Gate Array (FPGA) is a semiconductor device that can be programmed after manufacturing. Instead of being restricted to any predetermined hardware function, an FPGA allows user to program product features and functions, adapt to new standards, and reconfigure hardware for specific applications even after the product has been installed in the field, hence the name field-programmable. This project developed a control system using LabVIEW FPGA. LabVIEW FPGA is easier where it is programmed by using drag and drop icon. Then it will be integrated with the hardware input and output. (author)

  7. Simple Approach For Induction Motor Control Using Reconfigurable Hardware

    Directory of Open Access Journals (Sweden)

    József VÁSÁRHELYI

    2002-12-01

    Full Text Available The paper deals with rotor-field-oriented vector control structures for the induction motor drives fed by the so-called tandem frequency converter. It is composed of two different types of DC-link converters connected in parallel arrangement. The larger-power one has current-source character and is operating synchronized in time and in amplitude with the stator currents. The other one has voltage-source character and it is the actuator of the motor control system. The drive is able to run also with partial-failed tandem converter, if the control strategy corresponds to the actual operating mode. A reconfigurable hardware implemented in configurable logic cells ensures the changing of the vector-control structure. The proposed control schemes were tested by simulation based on Matlab-Simulink model.

  8. Environmental Control and Life Support (ECLS) Hardware Commonality for Exploration Vehicles

    Science.gov (United States)

    Carrasquillo, Robyn; Anderson, Molly

    2012-01-01

    In August 2011, the Environmental Control and Life Support Systems (ECLSS) technical community, along with associated stakeholders, held a workshop to review NASA s plans for Exploration missions and vehicles with two objectives: revisit the Exploration Atmospheres Working Group (EAWG) findings from 2006, and discuss preliminary ECLSS architecture concepts and technology choices for Exploration vehicles, identifying areas for potential common hardware or technologies to be utilized. Key considerations for selection of vehicle design total pressure and percent oxygen include operational concepts for extravehicular activity (EVA) and prebreathe protocols, materials flammability, and controllability within pressure and oxygen ranges. New data for these areas since the 2006 study were presented and discussed, and the community reached consensus on conclusions and recommendations for target design pressures for each Exploration vehicle concept. For the commonality study, the workshop identified many areas of potential commonality across the Exploration vehicles as well as with heritage International Space Station (ISS) and Shuttle hardware. Of the 36 ECLSS functions reviewed, 16 were considered to have strong potential for commonality, 13 were considered to have some potential commonality, and 7 were considered to have limited potential for commonality due to unique requirements or lack of sufficient heritage hardware. These findings, which will be utilized in architecture studies and budget exercises going forward, are presented in detail.

  9. Using EPICS enabled industrial hardware for upgrading control systems

    International Nuclear Information System (INIS)

    Bjorkland, Eric A.; Veeramani, Arun; Debelle, Thierry

    2009-01-01

    Los Alamos National Laboratory has been working with National Instruments (NI) and Cosy lab to implement EPICS Input Output Controller (IOC) software that runs directly on NI CompactRIO Real Time Controller (RTC) and communicates with NI LabVIEW through a shared memory interface. In this presentation, we will discuss our current progress in upgrading the control system at the Los Alamos Neutron Science Centre (LANSCE) and what we have learned about integrating CompactRIO into large experimental physics facilities. We will also discuss the implications of using Channel Access Server for LabVIEW which will enable more commercial hardware platforms to be used in upgrading existing facilities or in commissioning new ones.

  10. Open Hardware For CERN's Accelerator Control Systems

    CERN Document Server

    van der Bij, E; Ayass, M; Boccardi, A; Cattin, M; Gil Soriano, C; Gousiou, E; Iglesias Gonsálvez, S; Penacoba Fernandez, G; Serrano, J; Voumard, N; Wlostowski, T

    2011-01-01

    The accelerator control systems at CERN will be renovated and many electronics modules will be redesigned as the modules they will replace cannot be bought anymore or use obsolete components. The modules used in the control systems are diverse: analog and digital I/O, level converters and repeaters, serial links and timing modules. Overall around 120 modules are supported that are used in systems such as beam instrumentation, cryogenics and power converters. Only a small percentage of the currently used modules are commercially available, while most of them had been specifically designed at CERN. The new developments are based on VITA and PCI-SIG standards such as FMC (FPGA Mezzanine Card), PCI Express and VME64x using transition modules. As system-on-chip interconnect, the public domain Wishbone specification is used. For the renovation, it is considered imperative to have for each board access to the full hardware design and its firmware so that problems could quickly be resolved by CERN engineers or its ...

  11. Hardware-in-the-Loop environment for testing and commissioning of space controllers; Hardware-in-the-Loop Umgebung zum Test und zur Inbetriebnahme von Raumreglern

    Energy Technology Data Exchange (ETDEWEB)

    Adlhoch, Alexander; Becker, Martin [Hochschule Biberach (Germany). Inst. fuer Gebaeude- und Energiesysteme

    2012-07-01

    The energy-efficient and optimal functioning of room controllers in terms of indoor air climates is influenced mainly by the control algorithm and the optimal adjustment of the parameters of controllers used in terms of space requirements. In the practical operation, deficits in the function or parameters of the controller are hardly or only with great effort metrological detectable, but have a significant impact on the energy consumption and / or the indoor climate comfort. In a hardware-in-the-loop (HIL) environment, room controllers can be examined in terms of the function under defined conditions, and different controllers can be evaluated comparatively. It is also possible to adjust the parameters of the controller before the commissioning. The HiL environment presented in the contribution under consideration consists of a model of the controlled system, a hardware coupler and a real controller to be tested. Among the spatial models, it can be selected from a plurality of different types of space which in turn can be assigned by means of different spatial parameters and environmental models. These combinations enable a replication of a test scenario corresponding to the later application. The hardware coupler provides a selection of physical inputs and outputs as well as interfaces to different bus systems (for example KNX, LON, EnOcean) for connecting different types of controllers. The construction and operation of a HIL test stand for space controller is presented based on first practical control tests. At this, the focus is on the suitability of this test environment for a variety of different controllers as well as development assistance and assistance for the adjustment of parameters. The HiL environments developed in the joint research project HiL RHK1 for the testing of space controllers, controllers for HVAC systems and refrigeration technology controllers have been developed so that the HiL environments can be coupled to a multi-HIL environment. This

  12. Simulation and RTDS Hardware Implementation of SHAF for Mitigation of Current Harmonics with p-q and Id-Iq Control Strategies Using PI Controller

    Directory of Open Access Journals (Sweden)

    A. K. Panda

    2011-06-01

    Full Text Available Control strategies for extracting the three-phase reference currents for shunt active power filters are compared, evaluating their performance under different source conditions in MATLAB/Simulink environment and also with Real Time Digital Simulator (RTDS Hardware. When the supply voltages are balanced and sinusoidal, the two control strategies are converging to the same compensation characteristics but when the supply voltages are distorted and/or un-balanced sinusoidal, these control strategies result in different degrees of compensation in harmonics. The p-q control strategy is unable to yield an adequate solution when source voltages are not ideal. Extensive Simulations are carried out with PI controller for both p-q and Id-Iq control strategies for different voltage conditions and adequate results were presented. The 3-ph 4-wire SHAF system is also implemented on RTDS Hardware to further verify its effectiveness. The detailed simulation and RTDS Hardware results are included.

  13. Development of a hardware-in- loop simulation platform for NPP main control systems

    Directory of Open Access Journals (Sweden)

    Liu Pengfei

    2017-01-01

    Full Text Available The simulation technology of the nuclear power plant are gradually applying to the nuclear power industry. However, most of the research on nuclear power plant simulation system only focus on pure computerized simulation at present, and it is difficult to fully display the characteristics of the simulating objects. In order to simulate the response characteristics of control system more really, a hardware-in-loop simulation platform of main control systems in the nuclear power plant has been developed in this paper. This simulation platform consists of thermal-hydraulic model, control and protection system model, physical DCS system and real-time interactive database. A physical industrial DCS system has been coupled to this platform to simulate the main control systems in the NPP, which makes the simulation result much closer to the actual control systems. The devoloped simulation platform has been validated by some steady and transient cases in this paper. This hardware-in-loop simulation platform can be used in the simulation and optimal design of NPP control systems. Furthermore, it can be used in the failure mode and effect analysis of the instrumentation and control systems in the nuclear power plant.

  14. Design and Control of Compliant Tensegrity Robots Through Simulation and Hardware Validation

    Science.gov (United States)

    Caluwaerts, Ken; Despraz, Jeremie; Iscen, Atil; Sabelhaus, Andrew P.; Bruce, Jonathan; Schrauwen, Benjamin; Sunspiral, Vytas

    2014-01-01

    To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center has developed and validated two different software environments for the analysis, simulation, and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ("tensile-integrity") structures have unique physical properties which make them ideal for interaction with uncertain environments. Yet these characteristics, such as variable structural compliance, and global multi-path load distribution through the tension network, make design and control of bio-inspired tensegrity robots extremely challenging. This work presents the progress in using these two tools in tackling the design and control challenges. The results of this analysis includes multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures. The current hardware prototype of a six-bar tensegrity, code-named ReCTeR, is presented in the context of this validation.

  15. Hardware replacements and software tools for digital control computers

    International Nuclear Information System (INIS)

    Walker, R.A.P.; Wang, B-C.; Fung, J.

    1996-01-01

    Technological obsolescence is an on-going challenge for all computer use. By design, and to some extent good fortune, AECL has had a good track record with respect to the march of obsolescence in CANDU digital control computer technology. Recognizing obsolescence as a fact of life, AECL has undertaken a program of supporting the digital control technology of existing CANDU plants. Other AECL groups are developing complete replacement systems for the digital control computers, and more advanced systems for the digital control computers of the future CANDU reactors. This paper presents the results of the efforts of AECL's DCC service support group to replace obsolete digital control computer and related components and to provide friendlier software technology related to the maintenance and use of digital control computers in CANDU. These efforts are expected to extend the current lifespan of existing digital control computers through their mandated life. This group applied two simple rules; the product, whether new or replacement should have a generic basis, and the products should be applicable to both existing CANDU plants and to 'repeat' plant designs built using current design guidelines. While some exceptions do apply, the rules have been met. The generic requirement dictates that the product should not be dependent on any brand technology, and should back-fit to and interface with any such technology which remains in the control design. The application requirement dictates that the product should have universal use and be user friendly to the greatest extent possible. Furthermore, both requirements were designed to anticipate user involvement, modifications and alternate user defined applications. The replacements for hardware components such as paper tape reader/punch, moving arm disk, contact scanner and Ramtek are discussed. The development of these hardware replacements coincide with the development of a gateway system for selected CANDU digital control

  16. Real time hardware-in-loop simulation of ESMO satellite attitude control system

    Directory of Open Access Journals (Sweden)

    Rune Finnset

    2006-04-01

    Full Text Available This paper studies attitude control of the ESMO satellite using six reaction thrusters. Bang-bang control with dead-zone and Pulse-Width Modulation (PWM for the modulation of the on-time of the thrusters are treated. Closed loop hardware-in-loop simulations, using themicrocontroller unit (MCU Microchip PIC18F452 for implementation of attitude control and MatLab in a standard PC for simulating satellite dynamics, are carried out. Results for real time simulation are compared with autonomous simulations. The controller gives a satisfactory performance in the real time environment.

  17. Precision Time Protocol support hardware for ATCA control and data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Miguel, E-mail: miguelfc@ipfn.ist.utl.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Sousa, Jorge; Carvalho, Bernardo B.; Santos, Bruno; Carvalho, Paulo F.; Rodrigues, António P.; Combo, Álvaro M.; Pereira, Rita C. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Correia, Carlos M.B.A. [Centro de Instrumentação, Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Gonçalves, Bruno [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • ATCA based control and data acquisition subsystem has been developed at IPFN. • PTP and time stamping were implemented with VHDL and PTP daemon (PTPd) codes. • The RTM (…) provides PTP synchronization with an external GMC. • The main advantage is that timestamps are generated closer to the Physical Layer at the GMII. • IPFN's upgrade consistently exhibited jitter values below 25 ns RMS. - Abstract: An in-house, Advanced Telecom Computing Architecture (ATCA) based control and data acquisition (C&DAQ) subsystem has been developed at Instituto de Plasmas e Fusão Nuclear (IPFN), aiming for compliance with the ITER Fast Plant System Controller (FPSC). Timing and synchronization for the ATCA modules connects to ITER Control, Data Access and Communication (CODAC) through the Timing Communication Network (TCN), which uses IEEE 1588-2008 Precision Time Protocol (PTP) to synchronize devices to a Grand Master Clock (GMC). The TCN infrastructure was tested for an RMS jitter under the limit of 50 ns. Therefore, IPFN's hardware, namely the ATCA-PTSW-AMC4 hub-module, which is in charge of timing and synchronization distribution for all subsystem endpoints, shall also perform within this jitter limit. This paper describes a relevant upgrade, applied to the ATCA-PTSW-AMC4 hardware, to comply with these requirements – in particular, the integration of an add-on module “RMC-TMG-1588” on its Rear Transition Module (RTM). This add-on is based on a commercial FPGA-based module from Trenz Electronic, using the ZHAW “PTP VHDL code for timestamping unit and clock”, which features clock offset and drift correction and hardware-assisted time stamping. The main advantage is that timestamps are generated closer to the Physical Layer, at the Gigabit Ethernet Media Independent Interface (GMII), avoiding the timing uncertainties accumulated through the upper layers. PTP code and user software run in a MicroBlaze™ soft-core CPU with Linux in the

  18. Precision Time Protocol support hardware for ATCA control and data acquisition system

    International Nuclear Information System (INIS)

    Correia, Miguel; Sousa, Jorge; Carvalho, Bernardo B.; Santos, Bruno; Carvalho, Paulo F.; Rodrigues, António P.; Combo, Álvaro M.; Pereira, Rita C.; Correia, Carlos M.B.A.; Gonçalves, Bruno

    2015-01-01

    Highlights: • ATCA based control and data acquisition subsystem has been developed at IPFN. • PTP and time stamping were implemented with VHDL and PTP daemon (PTPd) codes. • The RTM (…) provides PTP synchronization with an external GMC. • The main advantage is that timestamps are generated closer to the Physical Layer at the GMII. • IPFN's upgrade consistently exhibited jitter values below 25 ns RMS. - Abstract: An in-house, Advanced Telecom Computing Architecture (ATCA) based control and data acquisition (C&DAQ) subsystem has been developed at Instituto de Plasmas e Fusão Nuclear (IPFN), aiming for compliance with the ITER Fast Plant System Controller (FPSC). Timing and synchronization for the ATCA modules connects to ITER Control, Data Access and Communication (CODAC) through the Timing Communication Network (TCN), which uses IEEE 1588-2008 Precision Time Protocol (PTP) to synchronize devices to a Grand Master Clock (GMC). The TCN infrastructure was tested for an RMS jitter under the limit of 50 ns. Therefore, IPFN's hardware, namely the ATCA-PTSW-AMC4 hub-module, which is in charge of timing and synchronization distribution for all subsystem endpoints, shall also perform within this jitter limit. This paper describes a relevant upgrade, applied to the ATCA-PTSW-AMC4 hardware, to comply with these requirements – in particular, the integration of an add-on module “RMC-TMG-1588” on its Rear Transition Module (RTM). This add-on is based on a commercial FPGA-based module from Trenz Electronic, using the ZHAW “PTP VHDL code for timestamping unit and clock”, which features clock offset and drift correction and hardware-assisted time stamping. The main advantage is that timestamps are generated closer to the Physical Layer, at the Gigabit Ethernet Media Independent Interface (GMII), avoiding the timing uncertainties accumulated through the upper layers. PTP code and user software run in a MicroBlaze™ soft-core CPU with Linux in the same FPGA

  19. Object and Facial Recognition in Augmented and Virtual Reality: Investigation into Software, Hardware and Potential Uses

    Science.gov (United States)

    Schulte, Erin

    2017-01-01

    As augmented and virtual reality grows in popularity, and more researchers focus on its development, other fields of technology have grown in the hopes of integrating with the up-and-coming hardware currently on the market. Namely, there has been a focus on how to make an intuitive, hands-free human-computer interaction (HCI) utilizing AR and VR that allows users to control their technology with little to no physical interaction with hardware. Computer vision, which is utilized in devices such as the Microsoft Kinect, webcams and other similar hardware has shown potential in assisting with the development of a HCI system that requires next to no human interaction with computing hardware and software. Object and facial recognition are two subsets of computer vision, both of which can be applied to HCI systems in the fields of medicine, security, industrial development and other similar areas.

  20. RF control hardware design for CYCIAE-100 cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhiguo, E-mail: bitbearAT@hotmail.com; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan

    2015-11-21

    The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.

  1. Development of a Hardware-In-Loop (HIL Simulator for Spacecraft Attitude Control Using Momentum Wheels

    Directory of Open Access Journals (Sweden)

    Dohee Kim

    2008-12-01

    Full Text Available In this paper, a Hardware-In-the-Loop simulator to simulate attitude control of spacecraft using momentum wheels is developed. The simulator consists of a spherical air bearing system allowing rotation and tilt in all three axes, three momentum wheels for actuation, and an AHRS (Attitude Heading Reference System. The simulator processes various types of data in PC104 and wirelessly communicates with a host PC using TCP/IP protocol. A simple low-cost momentum wheel assembly set and its drive electronics are also developed. Several experiments are performed to test the performance of the momentum wheels. For the control performance test of the simulator, a PID controller is implemented. The results of experimental demonstrations confirm the feasibility and validity of the Hardware-In-the-Loop simulator developed in the current study.

  2. Hardware simulation of automatic braking system based on fuzzy logic control

    Directory of Open Access Journals (Sweden)

    Noor Cholis Basjaruddin

    2016-07-01

    Full Text Available In certain situations, a moving or stationary object can be a barrier for a vehicle. People and vehicles crossing could potentially get hit by a vehicle. Objects around roads as sidewalks, road separator, power poles, and railroad gates are also a potential source of danger when the driver is inattentive in driving the vehicle. A device that can help the driver to brake automatically is known as Automatic Braking System (ABS. ABS is a part of the Advanced Driver Assistance Systems (ADAS, which is a device designed to assist the driver in driving the process. This device was developed to reduce human error that is a major cause of traffic accidents. This paper presents the design of ABS based on fuzzy logic which is simulated in hardware by using a remote control car. The inputs of fuzzy logic are the speed and distance of the object in front of the vehicle, while the output of fuzzy logic is the intensity of braking. The test results on the three variations of speed: slow-speed, medium-speed, and high-speed shows that the design of ABS can work according to design.

  3. Automation Hardware & Software for the STELLA Robotic Telescope

    Science.gov (United States)

    Weber, M.; Granzer, Th.; Strassmeier, K. G.

    The STELLA telescope (a joint project of the AIP, Hamburger Sternwarte and the IAC) is to operate in fully robotic mode, with no human interaction necessary for regular operation. Thus, the hardware must be kept as simple as possible to avoid unnecessary failures, and the environmental conditions must be monitored accurately to protect the telescope in case of bad weather. All computers are standard PCs running Linux, and communication with specialized hardware is done via a RS232/RS485 bus system. The high level (java based) control software consists of independent modules to ease bug-tracking and to allow the system to be extended without changing existing modules. Any command cycle consists of three messages, the actual command sent from the central node to the operating device, an immediate acknowledge, and a final done message, both sent back from the receiving device to the central node. This reply-splitting allows a direct distinction between communication problems (no acknowledge message) and hardware problems (no or a delayed done message). To avoid bug-prone packing of all the sensor-analyzing software into a single package, each sensor-reading and interaction with other sensors is done within a self-contained thread. Weather-decision making is therefore totally decoupled from the core control software to avoid dead-locks in the core module.

  4. Hardware And Software Architectures For Reconfigurable Time-Critical Control Tasks

    Directory of Open Access Journals (Sweden)

    Adam Piłat

    2007-01-01

    Full Text Available The most popular configuration of the controlled laboratory test-rigs is the personalcomputer (PC equipped with the I/O board. The dedicated software components allowsto conduct a wide range of user-defined tasks. The typical configuration functionality canbe customized by PC hardware components and their programmable reconfiguration. Thenext step in the automatic control system design is the embedded solution. Usually, thedesign process of the embedded control system is supported by the high-level software. Thededicated programming tools support multitasking property of the microcontroller by selectionof different sampling frequencies of algorithm blocks. In this case the multi-layer andmultitasking control strategy can be realized on the chip. The proposed solutions implementrapid prototyping approach. The available toolkits and device drivers integrate system-leveldesign environment and the real-time application software, transferring the functionality ofMATLAB/Simulink programs to PCs or microcontrolers application environment.

  5. Hardware-in-the-loop simulation of the EAST PF converter for PF control system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaojiao, E-mail: chenxj@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Science (ASIPP), P.O. Box 1126, Hefei, Anhui Province 230031 (China); Chinese University of Science and Technology, Hefei, Anhui Province 230022 (China); Fu, Peng [Institute of Plasma Physics, Chinese Academy of Science (ASIPP), P.O. Box 1126, Hefei, Anhui Province 230031 (China); Chinese University of Science and Technology, Hefei, Anhui Province 230022 (China); Huang, Liansheng, E-mail: huangls@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Science (ASIPP), P.O. Box 1126, Hefei, Anhui Province 230031 (China); Gao, Ge; He, Shiying [Institute of Plasma Physics, Chinese Academy of Science (ASIPP), P.O. Box 1126, Hefei, Anhui Province 230031 (China)

    2016-11-15

    Highlights: • The hardware in the loop simulation of the EAST PF system is presented. • The control functions and the protection logic have been tested and verified. • The major faults could be avoided and commissioning time could be saved on site. - Abstract: The EAST poloidal field (PF) control system was upgraded in 2015 and the new system has been in use for the 2015 EAST campaign. This paper presents the implementation of a hardware-in-the-loop (HIL) simulation platform of the EAST PF converter system based on the RT-LAB simulation environment, which was used to improve and evaluate the performance of the real controller. The EAST PF power supply system and its operational modes are presented in this paper. The experiments on HIL simulation platform show that the control algorithms and the over current protection of the controller meet the design requirements well. In addition, the effectiveness of the designed control system has been verified by actual application during the EAST campaign at 2015 for six months.

  6. Hardware-in-the-loop simulation of the EAST PF converter for PF control system upgrade

    International Nuclear Information System (INIS)

    Chen, Xiaojiao; Fu, Peng; Huang, Liansheng; Gao, Ge; He, Shiying

    2016-01-01

    Highlights: • The hardware in the loop simulation of the EAST PF system is presented. • The control functions and the protection logic have been tested and verified. • The major faults could be avoided and commissioning time could be saved on site. - Abstract: The EAST poloidal field (PF) control system was upgraded in 2015 and the new system has been in use for the 2015 EAST campaign. This paper presents the implementation of a hardware-in-the-loop (HIL) simulation platform of the EAST PF converter system based on the RT-LAB simulation environment, which was used to improve and evaluate the performance of the real controller. The EAST PF power supply system and its operational modes are presented in this paper. The experiments on HIL simulation platform show that the control algorithms and the over current protection of the controller meet the design requirements well. In addition, the effectiveness of the designed control system has been verified by actual application during the EAST campaign at 2015 for six months.

  7. Systematic development of industrial control systems using Software/Hardware Engineering

    NARCIS (Netherlands)

    Voeten, J.P.M.; van der Putten, P.H.A.; Stevens, M.P.J.; Milligan, P.; Corr, P.

    1997-01-01

    SHE (Software/Hardware Engineering) is a new object-oriented analysis, specification and design method for complex reactive hardware/software systems. SHE is based on the formal specification language POOSL and a design framework guiding analysis and design activities. This paper reports on the

  8. Integrated application of human factors to a power plant control room information system

    International Nuclear Information System (INIS)

    Fish, H.C. Jr.; Gutierrez, R.

    1988-01-01

    The human factors plan was developed as a methodology to apply human factors from the conceptual design of the EPIC system to the functional verification conducted at the plant. An integral part of the Human Factors Plan was the Functional Verification Plan. Developed in parallel, this second plan and its resultant programs verified functional appropriateness of the SPDS display, NSSS displays, EOP displays, man-machine interfaces (MMI), and workstation designs. The functional verification process was performed at the hardware/software developer's factory and at the JAFNPP, following installation of the EPIC system. Because the EPIC system replaces existing control room equipment, it is important that human factors be applied in a systematic manner consistent with other control room displays and controls. To ensure that this goal was met, a human factors plan was developed

  9. Hardware support for software controlled fast reconfiguration of performance counters

    Science.gov (United States)

    Salapura, Valentina; Wisniewski, Robert W.

    2013-06-18

    Hardware support for software controlled reconfiguration of performance counters may include a plurality of performance counters collecting one or more counts of one or more selected activities. A storage element stores data value representing a time interval, and a timer element reads the data value and detects expiration of the time interval based on the data value and generates a signal. A plurality of configuration registers stores a set of performance counter configurations. A state machine receives the signal and selects a configuration register from the plurality of configuration registers for reconfiguring the one or more performance counters.

  10. IPbus A flexible Ethernet-based control system for xTCA hardware

    CERN Document Server

    Williams, Thomas Stephen

    2014-01-01

    The ATCA and uTCA standards include industry-standard data pathway technologies such as Gigabit Ethernet which can be used for control communication, but no specific hardware control protocol is defined. The IPbus suite of software and firmware implements a reliable high-performance control link for particle physics electronics, and has successfully replaced VME control in several large projects. In this paper, we outline the IPbus system architecture, and describe recent developments in the reliability, scalability and performance of IPbus systems, carried out in preparation for deployment of uTCA-based CMS upgrades before the LHC 2015 run. We also discuss plans for future development of the IPbus suite.SUMMARY IPbus will be used for controlling the uTCA electronics in the CMS HCAL, TCDS, Pixel and Level-1 trigger upgrades. IPbus control has already been extensively used in the work of these upgrade projects so far, and final uTCA systems will be deployed in the experiment starting from Autumn 2014. IPbus is...

  11. Hardware-in-the-loop-based development methods for mechatronic light control; Hardware-in-the-loop basierte Entwicklungsmethodik fuer eine mechatronische Leuchtweiteregelung

    Energy Technology Data Exchange (ETDEWEB)

    Opgen-Rhein, P.

    2005-07-01

    A hardware-in-the-loop solution is presented which in the system integration phase takes account of the process of functional property validation of mechatronic light control systems. The method is not tested on the road but on a test rig with defined boundary conditions. This test stand, combined with objective assessment criteria developed for the specific requirements, helps to minimize the number of costly road tests still required. Using the example of an adaptive filter of a light control system, the author shows how filter paramaters are applied on the test stand, and how the subjective judgement of the driver is taken into account as well in the evaluations. (orig.)

  12. High Performance Motion-Planner Architecture for Hardware-In-the-Loop System Based on Position-Based-Admittance-Control

    OpenAIRE

    Francesco La Mura; Giovanni Todeschini; Hermes Giberti

    2018-01-01

    This article focuses on a Hardware-In-the-Loop application developed from the advanced energy field project LIFES50+. The aim is to replicate, inside a wind gallery test facility, the combined effect of aerodynamic and hydrodynamic loads on a floating wind turbine model for offshore energy production, using a force controlled robotic device, emulating floating substructure’s behaviour. In addition to well known real-time Hardware-In-the-Loop (HIL) issues, the particular application presented ...

  13. Hardware standardization for embedded systems

    International Nuclear Information System (INIS)

    Sharma, M.K.; Kalra, Mohit; Patil, M.B.; Mohanty, Ashutos; Ganesh, G.; Biswas, B.B.

    2010-01-01

    Reactor Control Division (RCnD) has been one of the main designers of safety and safety related systems for power reactors. These systems have been built using in-house developed hardware. Since the present set of hardware was designed long ago, a need was felt to design a new family of hardware boards. A Working Group on Electronics Hardware Standardization (WG-EHS) was formed with an objective to develop a family of boards, which is general purpose enough to meet the requirements of the system designers/end users. RCnD undertook the responsibility of design, fabrication and testing of boards for embedded systems. VME and a proprietary I/O bus were selected as the two system buses. The boards have been designed based on present day technology and components. The intelligence of these boards has been implemented on FPGA/CPLD using VHDL. This paper outlines the various boards that have been developed with a brief description. (author)

  14. Hardware descriptions of the I and C systems for NPP

    International Nuclear Information System (INIS)

    Lee, Cheol Kwon; Oh, In Suk; Park, Joo Hyun; Kim, Dong Hoon; Han, Jae Bok; Shin, Jae Whal; Kim, Young Bak

    2003-09-01

    The hardware specifications for I and C Systems of SNPP(Standard Nuclear Power Plant) are reviewed in order to acquire the hardware requirement and specification of KNICS (Korea Nuclear Instrumentation and Control System). In the study, we investigated hardware requirements, hardware configuration, hardware specifications, man-machine hardware requirements, interface requirements with the other system, and data communication requirements that are applicable to SNP. We reviewed those things of control systems, protection systems, monitoring systems, information systems, and process instrumentation systems. Through the study, we described the requirements and specifications of digital systems focusing on a microprocessor and a communication interface, and repeated it for analog systems focusing on the manufacturing companies. It is expected that the experience acquired from this research will provide vital input for the development of the KNICS

  15. National Spherical Torus Experiment Real Time Plasma Control Data Acquisition Hardware

    International Nuclear Information System (INIS)

    R.J. Marsala; J. Schneider

    2002-01-01

    The National Spherical Torus Experiment (NSTX) is currently providing researchers data on low aspect-ratio toroidal plasmas. NSTX's Plasma Control System adjusts the firing angles of thyristor rectifier power supplies, in real time, to control plasma position, shape and density. A Data Acquisition system comprised of off-the-shelf and custom hardware provides the magnetic diagnostics data required in calculating firing angles. This VERSAmodule Eurocard (VME) bus-based system utilizes Front Panel Data Port (FPDP) for high-speed data transfer. Data coming from physically different locations is referenced to several different ground potentials necessitating the need for a custom FPDP multiplexer. This paper discusses the data acquisition system configuration, the in-house designed 4-to-1 FPDP Input Multiplexing Module (FIMM), and future expansion plans

  16. Expert System analysis of non-fuel assembly hardware and spent fuel disassembly hardware: Its generation and recommended disposal

    International Nuclear Information System (INIS)

    Williamson, D.A.

    1991-01-01

    Almost all of the effort being expended on radioactive waste disposal in the United States is being focused on the disposal of spent Nuclear Fuel, with little consideration for other areas that will have to be disposed of in the same facilities. one area of radioactive waste that has not been addressed adequately because it is considered a secondary part of the waste issue is the disposal of the various Non-Fuel Bearing Components of the reactor core. These hardware components fall somewhat arbitrarily into two categories: Non-Fuel Assembly (NFA) hardware and Spent Fuel Disassembly (SFD) hardware. This work provides a detailed examination of the generation and disposal of NFA hardware and SFD hardware by the nuclear utilities of the United States as it relates to the Civilian Radioactive Waste Management Program. All available sources of data on NFA and SFD hardware are analyzed with particular emphasis given to the Characteristics Data Base developed by Oak Ridge National Laboratory and the characterization work performed by Pacific Northwest Laboratories and Rochester Gas ampersand Electric. An Expert System developed as a portion of this work is used to assist in the prediction of quantities of NFA hardware and SFD hardware that will be generated by the United States' utilities. Finally, the hardware waste management practices of the United Kingdom, France, Germany, Sweden, and Japan are studied for possible application to the disposal of domestic hardware wastes. As a result of this work, a general classification scheme for NFA and SFD hardware was developed. Only NFA and SFD hardware constructed of zircaloy and experiencing a burnup of less than 70,000 MWD/MTIHM and PWR control rods constructed of stainless steel are considered Low-Level Waste. All other hardware is classified as Greater-ThanClass-C waste

  17. ATCA digital controller hardware for vertical stabilization of plasmas in tokamaks

    International Nuclear Information System (INIS)

    Batista, A. J. N.; Sousa, J.; Varandas, C. A. F.

    2006-01-01

    The efficient vertical stabilization (VS) of plasmas in tokamaks requires a fast reaction of the VS controller, for example, after detection of edge localized modes (ELM). For controlling the effects of very large ELMs a new digital control hardware, based on the Advanced Telecommunications Computing Architecture trade mark sign (ATCA), is being developed aiming to reduce the VS digital control loop cycle (down to an optimal value of 10 μs) and improve the algorithm performance. The system has 1 ATCA trade mark sign processor module and up to 12 ATCA trade mark sign control modules, each one with 32 analog input channels (12 bit resolution), 4 analog output channels (12 bit resolution), and 8 digital input/output channels. The Aurora trade mark sign and PCI Express trade mark sign communication protocols will be used for data transport, between modules, with expected latencies below 2 μs. Control algorithms are implemented on a ix86 based processor with 6 Gflops and on field programmable gate arrays with 80 GMACS, interconnected by serial gigabit links in a full mesh topology

  18. System Function Evaluation due to Hardware Failure of NSSS Control Systems in the APR1400

    International Nuclear Information System (INIS)

    Kim, Juyoung; Ahn, Myunghoon; Kim, Woogoon; Yim, Hyeongsoon

    2016-01-01

    As the performance and failure modes of the control systems may affect the plant response to accidents or disturbances, an evaluation is done to identify potential control system failure modes resulting from single hardware failures. These failure modes are for use in the analytical evaluations that will be performed to assess the plant responses to various disturbances from the viewpoint of postulated system malfunctions. Failure modes that fall into any of the above categories will affect the performance of the control system and should be considered in the analytical evaluation of the NSSS responses to disturbances. An evaluation was performed to identify the failure modes of the NSSS Control Systems, caused by a hardware component, a common sensing device, and a common power supply. The multiple failure modes across the NSSS control Systems are limited by the improved design features, redundancy within each systems, and segmentation between systems. Also, the effects from the failure modes are expected to be acceptably terminated by the Plant Protection System. The failure modes derived through this evaluation will be further considered in the analytical evaluation of the NSSS responses to disturbances in order to identify the single failures which could create the most adverse conditions during a given transient

  19. Hardware-in-the-loop (HIL) Test of Demand as Frequency Controlled Reserve (DFR)

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Zimmermann, K.; Østergaard, Jacob

    2016-01-01

    This paper presents the hardware-in-the-loop (HIL) test of the demand as frequency controlled reserve (DFR). The HIL test refers to a test in which parts of a pure simulation have been replaced by actual physical components. It is used to understand the behavior of a new device or controller....... The DFR has been tested by offline simulations to illustrate the efficacy of this technology. The DFR control logics have been implemented in the SmartBox. The HIL was conducted by having the SmartBox connected to the real time simulations and the performance of the SmartBox was tested with difference...

  20. Hardware Resource Allocation for Hardware/Software Partitioning in the LYCOS System

    DEFF Research Database (Denmark)

    Grode, Jesper Nicolai Riis; Knudsen, Peter Voigt; Madsen, Jan

    1998-01-01

    as a designer's/design tool's aid to generate good hardware allocations for use in hardware/software partitioning. The algorithm has been implemented in a tool under the LYCOS system. The results show that the allocations produced by the algorithm come close to the best allocations obtained by exhaustive search.......This paper presents a novel hardware resource allocation technique for hardware/software partitioning. It allocates hardware resources to the hardware data-path using information such as data-dependencies between operations in the application, and profiling information. The algorithm is useful...

  1. High Performance Motion-Planner Architecture for Hardware-In-the-Loop System Based on Position-Based-Admittance-Control

    Directory of Open Access Journals (Sweden)

    Francesco La Mura

    2018-02-01

    Full Text Available This article focuses on a Hardware-In-the-Loop application developed from the advanced energy field project LIFES50+. The aim is to replicate, inside a wind gallery test facility, the combined effect of aerodynamic and hydrodynamic loads on a floating wind turbine model for offshore energy production, using a force controlled robotic device, emulating floating substructure’s behaviour. In addition to well known real-time Hardware-In-the-Loop (HIL issues, the particular application presented has stringent safety requirements of the HIL equipment and difficult to predict operating conditions, so that extra computational efforts have to be spent running specific safety algorithms and achieving desired performance. To meet project requirements, a high performance software architecture based on Position-Based-Admittance-Control (PBAC is presented, combining low level motion interpolation techniques, efficient motion planning, based on buffer management and Time-base control, and advanced high level safety algorithms, implemented in a rapid real-time control architecture.

  2. Interplay between requirements, software architecture, and hardware constraints in the development of a home control user interface

    DEFF Research Database (Denmark)

    Loft, M.S.; Nielsen, S.S.; Nørskov, Kim

    2012-01-01

    is to propose the hardware platform as a third Twin Peaks element that must be given attention in projects such as the one described in this paper. Specifically, we discuss how the presence of severe hardware constraints exacerbates making trade-offs between requirements and architecture.......We have developed a new graphical user interface for a home control device for a large industrial customer. In this industrial case study, we first present our approaches to requirements engineering and to software architecture; we also describe the given hardware platform. Then we make two...... contributions. Our first contribution is to provide a specific example of a real-world project in which a Twin Peaks-compliant approach to software development has been used, and to describe and discuss three examples of interplay between requirements and software architecture decisions. Our second contribution...

  3. Aplicación de las técnicas de hardware reconfigurable en un sistema digital de control dinámico. Aplicación práctica Parte II; Application of Programmable Hardware Techniques of Digital Control System Development. Workable Application. Second Part

    Directory of Open Access Journals (Sweden)

    Dennis Arce López

    2011-02-01

    Full Text Available Se presenta la aplicación práctica del diseño electrónico en el desarrollo de un sistema de control dinámicode un servomotor lo cual es una novedad científico-técnica en el campo de la energética y en la defensanacional. En el trabajo se expone la funcionalidad y estructura del hardware programable, así como losresultados parciales de la simulación. This paper describes the design of a dynamic control system for servomotor making use of new electronicdevelopment techniques, and represents a novelty on energetic field and national defence. Also describesstructure and functionality of programmable hardware, and partial results of simulation.

  4. Human factors engineering evaluation of the Advanced Test Reactor Control Room

    International Nuclear Information System (INIS)

    Boone, M.P.; Banks, W.W.

    1980-12-01

    The information presented here represents preliminary findings related to an ongoing human engineering evaluation of the Advanced Test Reactor (ATR) Control Room. Although many of the problems examined in this report have been previously noted by ATR operations personnel, the systematic approach used in this investigation produced many new insights. While many violations of Human Engineering military standards (MIL-STD) are noted, and numerous recommendations made, the recommendations should be examined cautiously. The reason for our suggested caution lies in the fact that many ATR operators have well over 10-years experience in operating the controls, meters, etc. Hence, it is assumed adaptation to the existing system is quite developed and the introduction of hardware/control changes, even though the changes enhance the system, may cause short-term (or long-term, depending upon the amount of operator experience and training) adjustment problems for operators adapting to the new controls/meters and physical layout

  5. Fuel cell hardware-in-loop

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.M.; Randolf, G.; Virji, M. [University of Hawaii, Hawaii Natural Energy Institute (United States); Hauer, K.H. [Xcellvision (Germany)

    2006-11-08

    Hardware-in-loop (HiL) methodology is well established in the automotive industry. One typical application is the development and validation of control algorithms for drive systems by simulating the vehicle plus the vehicle environment in combination with specific control hardware as the HiL component. This paper introduces the use of a fuel cell HiL methodology for fuel cell and fuel cell system design and evaluation-where the fuel cell (or stack) is the unique HiL component that requires evaluation and development within the context of a fuel cell system designed for a specific application (e.g., a fuel cell vehicle) in a typical use pattern (e.g., a standard drive cycle). Initial experimental results are presented for the example of a fuel cell within a fuel cell vehicle simulation under a dynamic drive cycle. (author)

  6. Introduction to Hardware Security

    Directory of Open Access Journals (Sweden)

    Yier Jin

    2015-10-01

    Full Text Available Hardware security has become a hot topic recently with more and more researchers from related research domains joining this area. However, the understanding of hardware security is often mixed with cybersecurity and cryptography, especially cryptographic hardware. For the same reason, the research scope of hardware security has never been clearly defined. To help researchers who have recently joined in this area better understand the challenges and tasks within the hardware security domain and to help both academia and industry investigate countermeasures and solutions to solve hardware security problems, we will introduce the key concepts of hardware security as well as its relations to related research topics in this survey paper. Emerging hardware security topics will also be clearly depicted through which the future trend will be elaborated, making this survey paper a good reference for the continuing research efforts in this area.

  7. Remote hardware-reconfigurable robotic camera

    Science.gov (United States)

    Arias-Estrada, Miguel; Torres-Huitzil, Cesar; Maya-Rueda, Selene E.

    2001-10-01

    In this work, a camera with integrated image processing capabilities is discussed. The camera is based on an imager coupled to an FPGA device (Field Programmable Gate Array) which contains an architecture for real-time computer vision low-level processing. The architecture can be reprogrammed remotely for application specific purposes. The system is intended for rapid modification and adaptation for inspection and recognition applications, with the flexibility of hardware and software reprogrammability. FPGA reconfiguration allows the same ease of upgrade in hardware as a software upgrade process. The camera is composed of a digital imager coupled to an FPGA device, two memory banks, and a microcontroller. The microcontroller is used for communication tasks and FPGA programming. The system implements a software architecture to handle multiple FPGA architectures in the device, and the possibility to download a software/hardware object from the host computer into its internal context memory. System advantages are: small size, low power consumption, and a library of hardware/software functionalities that can be exchanged during run time. The system has been validated with an edge detection and a motion processing architecture, which will be presented in the paper. Applications targeted are in robotics, mobile robotics, and vision based quality control.

  8. Hardware-in-the-Loop Simulation of a Distribution System with Air Conditioners under Model Predictive Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, Bethany F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ruth, Mark F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnamurthy, Dheepak [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pratt, Annabelle [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lunacek, Monte S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jones, Wesley B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wu, Hongyu [Kansas State University; Mittal, Saurabh [Mitre Corporation; Marks, Jesse [University of Missouri

    2017-08-01

    Many have proposed that responsive load provided by distributed energy resources (DERs) and demand response (DR) are an option to provide flexibility to the grid and especially to distribution feeders. However, because responsive load involves a complex interplay between tariffs and DER and DR technologies, it is challenging to test and evaluate options without negatively impacting customers. This paper describes a hardware-in-the-loop (HIL) simulation system that has been developed to reduce the cost of evaluating the impact of advanced controllers (e.g., model predictive controllers) and technologies (e.g., responsive appliances). The HIL simulation system combines large-scale software simulation with a small set of representative building equipment hardware. It is used to perform HIL simulation of a distribution feeder and the loads on it under various tariff structures. In the reported HIL simulation, loads include many simulated air conditioners and one physical air conditioner. Independent model predictive controllers manage operations of all air conditioners under a time-of-use tariff. Results from this HIL simulation and a discussion of future development work of the system are presented.

  9. The human factors of CRT displays for nuclear power plant control

    International Nuclear Information System (INIS)

    Danchak, M.M.

    1984-01-01

    This chapter attempts to show how the Cathode Ray Tube (CRT) can be used to effectively present information to the operator rather than just data. The capabilities of the human as a sensing and information processing subsystem are discussed with CRT displays in mind. The display system is described in terms of its hardware and functioning. The interface between the two is examined by providing substantive guidelines for the effective design of CRT displays for nuclear power plant control. Alphanumeric displays, graphic displays, and representational displays are treated. The design of CRT displays for nuclear power plant control requires an extensive knowledge of cognitive psychology, computer display systems and the process being controlled

  10. Research on control technology of hardware parallelism for marine controlled source electromagnetic transmitter

    Science.gov (United States)

    Wang, Meng; Deng, Ming; Luo, Xianhu; Zhao, Qingxian; Chen, Kai; Jing, Jianen

    2018-02-01

    The marine controlled source electromagnetic (CSEM) method has been recognized as an effective exploration method of shallow hydrocarbons around the world. We developed our own underwater marine CSEM transmitter that consisted of many functional modules with various response times. We previously adopted a centralized software-control technology to design the transmitter circuit topological structure. That structure probably generated a control disorder or malfunction. These undesirable conditions could lead to repeated recovery and deployment of the transmitter, which not only consumed time but also affected data continuity and establishment of stable and continuous CSEM field. We developed an instrument design concept named ‘control technology of hardware parallelism’. In this design, a noteworthy innovation of our new technology is to solve the above-mentioned problems at the physical and fundamental levels. We used several self-contained control-units to simultaneously accomplish the predetermined functions of the transmitter. The new solution relies on two technologies: multi-core embedded technology and multi-channel parallel optical-fiber data transmission technology. The first technology depends on many independent microcontrollers. Every microcontroller is only used to achieve a customized function. The second one relies on several multiple optical-fiber transmission channels realized by a complex programmable logic device and two optical-fiber conversion devices, which are used to establish a communication link between the shipboard monitoring and control-unit and underwater transmitter. We have conducted some marine experiments to verify the reliability and stability of the new method. In particular, the new technology used in the transmitter system could help us obtain more useful measured data in a limited time, improve real-time efficiency, and support the establishment of a stable CSEM field.

  11. 8-channel, FPGA based, DSP integrated cavity simulator and controller for VUV-FEL. SIMCON 3.0 Ver. 3.0. rev. 1, 06.2005 - Hardware manual

    International Nuclear Information System (INIS)

    Pozniak, K.T.; Czarski, T.; Koprek, W.; Giergusiewicz, W.; Romaniuk, R.S.

    2005-01-01

    The note describes integrated, eight channel system of hardware controller and simulator of the resonant superconducting, narrowband niobium cavity, originally considered for the TTF and TESLA in DESY, Hamburg (now tested for the VUV FEL and developed for X-Ray FEL). The controller bases on a programmable circuit Xilinx VirtexII V4000. The solution uses DSP EMBEDDED BOARD module positioned on a Modular LLRF Control Platform. The algorithm and FPGA circuit configuration was done in the VHDL language. The internal hardware multiplication components, present in Virtex II chips, were used, to improve the floating point calculation efficiency. The implementation was achieved of a device working in the real time, according to the demands of the LLRF control system for the TESLA Test Facility (now associated with the VUV FEL machine). The device under consideration will be referred to as superconducting cavity (SCCav) SIMCON throughout this work. The manual describes hardware features of SIMCON, ver. 3.0 in modular solution. The following components are described here in detail: functional layer, parameter programming, foundations of control of particular blocks and monitoring of the real time processes. This note is accompanied by the one describing the multichannel DOOCS interface for the described hardware system. The interface was prepared in DOOCS for Solaris and in Windows. The hardware and software of 8-channel SIMCON was tested in CHECIA and ACC1 module of VUV FEL linac. The measurements results are presented. While giving all necessary technical details required to understand the work of the integrated hardware controller and simulator and to enable its practical copying, this document is a unity with other TESLA technical notes published by the same team on the subject. Thus, some modeling and other subjects were omitted, as they were addressed in detail in the quoted references. Keywords: Super conducting cavity, cavity simulator, CAVITIES CONTROLLER, SIMCON

  12. Improving plasma shaping accuracy through consolidation of control model maintenance, diagnostic calibration, and hardware change control

    International Nuclear Information System (INIS)

    Baggest, D.S.; Rothweil, D.A.; Pang, S.

    1995-12-01

    With the advent of more sophisticated techniques for control of tokamak plasmas comes the requirement for increasingly more accurate models of plasma processes and tokamak systems. Development of accurate models for DIII-D power systems, vessel, and poloidal coils is already complete, while work continues in development of general plasma response modeling techniques. Increased accuracy in estimates of parameters to be controlled is also required. It is important to ensure that errors in supporting systems such as diagnostic and command circuits do not limit the accuracy of plasma parameter estimates or inhibit the ability to derive accurate plasma/tokamak system models. To address this issue, we have developed more formal power systems change control and power system/magnetic diagnostics calibration procedures. This paper discusses our approach to consolidating the tasks in these closely related areas. This includes, for example, defining criteria for when diagnostics should be re-calibrated along with required calibration tolerances, and implementing methods for tracking power systems hardware modifications and the resultant changes to control models

  13. Advanced Photovoltaic Inverter Control Development and Validation in a Controller-Hardware-in-the-Loop Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Prabakar, Kumaraguru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shirazi, Mariko [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Singh, Akanksha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-07

    Penetration levels of solar photovoltaic (PV) generation on the electric grid have increased in recent years. In the past, most PV installations have not included grid-support functionalities. But today, standards such as the upcoming revisions to IEEE 1547 recommend grid support and anti-islanding functions-including volt-var, frequency-watt, volt-watt, frequency/voltage ride-through, and other inverter functions. These functions allow for the standardized interconnection of distributed energy resources into the grid. This paper develops and tests low-level inverter current control and high-level grid support functions. The controller was developed to integrate advanced inverter functions in a systematic approach, thus avoiding conflict among the different control objectives. The algorithms were then programmed on an off-the-shelf, embedded controller with a dual-core computer processing unit and field-programmable gate array (FPGA). This programmed controller was tested using a controller-hardware-in-the-loop (CHIL) test bed setup using an FPGA-based real-time simulator. The CHIL was run at a time step of 500 ns to accommodate the 20-kHz switching frequency of the developed controller. The details of the advanced control function and CHIL test bed provided here will aide future researchers when designing, implementing, and testing advanced functions of PV inverters.

  14. Utilization of a hardware-in-the-loop-system for controlling the speed of an eddy current brake

    International Nuclear Information System (INIS)

    Kramer, V; Brauneis, P; Schmidt, K; Mishra, R

    2012-01-01

    Rapid prototyping with a hardware-in-the-loop (HiL) system significantly reduces the development time for controller-type testing and is widely used in various fields of engineering. In this discussion, a controller is developed for a speed control application utilizing a magnetic brake. A mathematical model is presented first that has been implemented in Matlab/ Simulink. The controller development steps are described that will form the basis of a control system for a wind turbine. A test is carried out that simulates the wind turbine inertial load.

  15. Structural Design Requirements and Factors of Safety for Spaceflight Hardware: For Human Spaceflight. Revision A

    Science.gov (United States)

    Bernstein, Karen S.; Kujala, Rod; Fogt, Vince; Romine, Paul

    2011-01-01

    This document establishes the structural requirements for human-rated spaceflight hardware including launch vehicles, spacecraft and payloads. These requirements are applicable to Government Furnished Equipment activities as well as all related contractor, subcontractor and commercial efforts. These requirements are not imposed on systems other than human-rated spacecraft, such as ground test articles, but may be tailored for use in specific cases where it is prudent to do so such as for personnel safety or when assets are at risk. The requirements in this document are focused on design rather than verification. Implementation of the requirements is expected to be described in a Structural Verification Plan (SVP), which should describe the verification of each structural item for the applicable requirements. The SVP may also document unique verifications that meet or exceed these requirements with NASA Technical Authority approval.

  16. Diseño hardware de una tarjeta de control y comunicaciones

    OpenAIRE

    Sánchez Salvador, David

    2017-01-01

    En la actualidad convivimos con infinidad de sistemas electrónicos, desde pequeños weareables como las pulseras inteligentes a grandes equipos como radares, pasando por equipos sin ningún tipo de lógica programada como una radio. Estos dispositivos electrónicos se desarrollan en base a un software generalmente, obviando la diferencia de complejidad según la aplicación, pero todos ellos se crean sobre un hardware. Dicho hardware puede ser una PCB sencilla con algunos componentes o un conjunto ...

  17. A hardware-in-the-loop simulation platform for prototyping and testing of wind generator controllers

    Energy Technology Data Exchange (ETDEWEB)

    Paquin, J.N.; Dufour, C.; Belanger, J. [OPAL-RT Technologies Inc., Montreal, PQ (Canada)

    2008-07-01

    Engineers from different specialized fields need to be involved in meeting the growing demand for integrated renewable energy sources into existing power grids. The integration of distributed generation (DG) sources significantly changes the characteristics of an entire network and requires analysis of power quality, transient response to fault occurrences, protection coordination studies and controller interaction studies. Power electronic converters are a considerable challenge. Accurately simulating fast switching devices requires the use of very small time steps to solve the system's equations. Off-line simulation is often used in the field. However, it is time consuming if no precision compromise has been made on models. In addition, off-line simulation tools do not offer the wide range of possibilities available with state-of-the-art distributed real-time simulators that combine the efforts of control engineers and specialists from wind turbine manufacturers, who need to test their controllers using hardware-in-the-loop (HIL), together with those of network planning engineers from public utilities, who will conduct interconnection, interaction and protection studies. This paper focused on the prototyping and testing of DG controllers using hardware-in-the-loop simulation. The model was described and consisted of a 10-turbine wind farm connected to a single feeder, simulated using an eMEGAsim real-time simulator equipped with 8-processor cores. One of the wind turbines was controlled using an externally emulated controller. It was modeled and simulated using a dual-processor core real-time simulator, which interacted with the plant model via analog and fast digital inputs and outputs. The effectiveness of the technology was demonstrated by comparing fully numerical simulation results with an HIL-connected DFIG controller simulation. The sampling effect of the digital simulator was correctly compensated for. The simulator could be driven directly by real

  18. A hardware-software system for the automation of verification and calibration of oil metering units secondary equipment

    Science.gov (United States)

    Boyarnikov, A. V.; Boyarnikova, L. V.; Kozhushko, A. A.; Sekachev, A. F.

    2017-08-01

    In the article the process of verification (calibration) of oil metering units secondary equipment is considered. The purpose of the work is to increase the reliability and reduce the complexity of this process by developing a software and hardware system that provides automated verification and calibration. The hardware part of this complex carries out the commutation of the measuring channels of the verified controller and the reference channels of the calibrator in accordance with the introduced algorithm. The developed software allows controlling the commutation of channels, setting values on the calibrator, reading the measured data from the controller, calculating errors and compiling protocols. This system can be used for checking the controllers of the secondary equipment of the oil metering units in the automatic verification mode (with the open communication protocol) or in the semi-automatic verification mode (without it). The peculiar feature of the approach used is the development of a universal signal switch operating under software control, which can be configured for various verification methods (calibration), which allows to cover the entire range of controllers of metering units secondary equipment. The use of automatic verification with the help of a hardware and software system allows to shorten the verification time by 5-10 times and to increase the reliability of measurements, excluding the influence of the human factor.

  19. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    International Nuclear Information System (INIS)

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors

  20. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  1. HARDWARE ENVIRONMENT FACTOR FOR CONTROL SIGNAL TRANSFER TO A PLANT IN THE SYNTHESIS PROBLEM OF DISCRETE SYSTEMS

    Directory of Open Access Journals (Sweden)

    O. S. Nuyya

    2015-07-01

    Full Text Available The paper attempts to revise certain provisions of the existing theory of discrete systems in the organization of hardware environment control signal transmission to a technical plant. It is known that the formation of a digital signal in discrete control problem of continuous plant is carried out by microcontroller or micro-computer and is represented by a parallel code, which dimension is determined by the hardware used. The parallel code for a digital clock cycle of the designed system is transmitted to the terminal device of a technical continuous plant, where the digital-to-analog conversion takes place. This kind of control signal transmission to the technical plant asserts its implementation by means of parallel buses. It is known that the length of a parallel bus is limited to an amount not exceeding half a meter due to the existing interference environment with modern standards of length. Thus, if the placement of the control signal and control plant is such that their connecting bus length exceeds more than half a meter, there is the inevitable transition from the parallel control signal to an allotted serial. The paper deals with the system factors arising in the transition from the parallel control signal to the serial by modern interfaces. Provisions of the paper are illustrated by an example. This paper is intended for system analytics and channel specialists. The resulting algorithm is applicable for control of plants (electric drive, in particular in the large industrial factories.

  2. Benchmarking Model Variants in Development of a Hardware-in-the-Loop Simulation System

    Science.gov (United States)

    Aretskin-Hariton, Eliot D.; Zinnecker, Alicia M.; Kratz, Jonathan L.; Culley, Dennis E.; Thomas, George L.

    2016-01-01

    Distributed engine control architecture presents a significant increase in complexity over traditional implementations when viewed from the perspective of system simulation and hardware design and test. Even if the overall function of the control scheme remains the same, the hardware implementation can have a significant effect on the overall system performance due to differences in the creation and flow of data between control elements. A Hardware-in-the-Loop (HIL) simulation system is under development at NASA Glenn Research Center that enables the exploration of these hardware dependent issues. The system is based on, but not limited to, the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). This paper describes the step-by-step conversion from the self-contained baseline model to the hardware in the loop model, and the validation of each step. As the control model hardware fidelity was improved during HIL system development, benchmarking simulations were performed to verify that engine system performance characteristics remained the same. The results demonstrate the goal of the effort; the new HIL configurations have similar functionality and performance compared to the baseline C-MAPSS40k system.

  3. Communication and synchronization aspects of a mixed hardware control and data acquisition system

    International Nuclear Information System (INIS)

    Schmidt, V.; Flor, G.; Luchetta, A.; Manduchi, G.; Piacentini, I.E.; Vitturi, S.; Hemming, O.N.

    1989-01-01

    The paper deals with some specific aspects of the control and data acquisition system of the RFX nuclear fusion experiment, at present under construction in Padova, Italy. This system is built around a local area network which connects programmable controllers, minicomputers with CAMAC front-end, and personal computers as operator consoles. These three types of nodes use compatible software which contain a set of low level routines according to levels one to four of the ISO OSI recommendations. The paper describes in detail how the overall system synchronization is achieved. Another aspect described in the paper is the proposed solution for the precision timing and waveform generation (which uses commercial CAMAC hardware) and its integration with the overall system synchronization

  4. Software and Hardware control of a hybrid robot for switching between leg-type and wheel-type modes

    OpenAIRE

    Botelho, Wagner Tanaka; Okada, Tokuji; Mahmoud, Abeer; Shimizu, Toshimi

    2011-01-01

    One of the objectives of the paper is to describe the hybrid robot PEOPLER-II (Perpendicularly Oriented Planetary Legged Robot) with regard to switching between leg-type and wheel-type. Our robot has an easier design and control system than other hybrid robots. The software and hardware control in the process of performing five robot tasks are considered. These are the walking, rolling, switching, turning and spinning. In the switching task, we show the control method based on minimization of...

  5. Qualification of software and hardware

    International Nuclear Information System (INIS)

    Gossner, S.; Schueller, H.; Gloee, G.

    1987-01-01

    The qualification of on-line process control equipment is subdivided into three areas: 1) materials and structural elements; 2) on-line process-control components and devices; 3) electrical systems (reactor protection and confinement system). Microprocessor-aided process-control equipment are difficult to verify for failure-free function owing to the complexity of the functional structures of the hardware and to the variety of the software feasible for microprocessors. Hence, qualification will make great demands on the inspecting expert. (DG) [de

  6. Hardware description languages

    Science.gov (United States)

    Tucker, Jerry H.

    1994-01-01

    Hardware description languages are special purpose programming languages. They are primarily used to specify the behavior of digital systems and are rapidly replacing traditional digital system design techniques. This is because they allow the designer to concentrate on how the system should operate rather than on implementation details. Hardware description languages allow a digital system to be described with a wide range of abstraction, and they support top down design techniques. A key feature of any hardware description language environment is its ability to simulate the modeled system. The two most important hardware description languages are Verilog and VHDL. Verilog has been the dominant language for the design of application specific integrated circuits (ASIC's). However, VHDL is rapidly gaining in popularity.

  7. Hardware packet pacing using a DMA in a parallel computer

    Science.gov (United States)

    Chen, Dong; Heidelberger, Phillip; Vranas, Pavlos

    2013-08-13

    Method and system for hardware packet pacing using a direct memory access controller in a parallel computer which, in one aspect, keeps track of a total number of bytes put on the network as a result of a remote get operation, using a hardware token counter.

  8. A video imaging system and related control hardware for nuclear safeguards surveillance applications

    International Nuclear Information System (INIS)

    Whichello, J.V.

    1987-03-01

    A novel video surveillance system has been developed for safeguards applications in nuclear installations. The hardware was tested at a small experimental enrichment facility located at the Lucas Heights Research Laboratories. The system uses digital video techniques to store, encode and transmit still television pictures over the public telephone network to a receiver located in the Australian Safeguards Office at Kings Cross, Sydney. A decoded, reconstructed picture is then obtained using a second video frame store. A computer-controlled video cassette recorder is used automatically to archive the surveillance pictures. The design of the surveillance system is described with examples of its operation

  9. Versatile synchronized real-time MEG hardware controller for large-scale fast data acquisition

    Science.gov (United States)

    Sun, Limin; Han, Menglai; Pratt, Kevin; Paulson, Douglas; Dinh, Christoph; Esch, Lorenz; Okada, Yoshio; Hämäläinen, Matti

    2017-05-01

    Versatile controllers for accurate, fast, and real-time synchronized acquisition of large-scale data are useful in many areas of science, engineering, and technology. Here, we describe the development of a controller software based on a technique called queued state machine for controlling the data acquisition (DAQ) hardware, continuously acquiring a large amount of data synchronized across a large number of channels (>400) at a fast rate (up to 20 kHz/channel) in real time, and interfacing with applications for real-time data analysis and display of electrophysiological data. This DAQ controller was developed specifically for a 384-channel pediatric whole-head magnetoencephalography (MEG) system, but its architecture is useful for wide applications. This controller running in a LabVIEW environment interfaces with microprocessors in the MEG sensor electronics to control their real-time operation. It also interfaces with a real-time MEG analysis software via transmission control protocol/internet protocol, to control the synchronous acquisition and transfer of the data in real time from >400 channels to acquisition and analysis workstations. The successful implementation of this controller for an MEG system with a large number of channels demonstrates the feasibility of employing the present architecture in several other applications.

  10. An automated approach for generating and checking control logic for reversible hardware description language-based designs

    DEFF Research Database (Denmark)

    Wille, Robert; Keszocze, Oliver; Othmer, Lars

    2017-01-01

    to significantly different design challenges to be addressed. In this work, we consider problems that occur when describing a reversible control flow using Hardware Description Languages (HDLs). Here, the commonly used conditional statements must, in addition to the established if-condition for forward computation......, be provided with an additional fi-condition for backward computation. Unfortunately, deriving correct and consistent fi-conditions is often not obvious. Moreover, HDL descriptions exist which may not be realized with a reversible control flow at all. In this work, we propose automatic solutions, which...

  11. Floating-point-based hardware accelerator of a beam phase-magnitude detector and filter for a beam phase control system in a heavy-ion synchrotron application

    International Nuclear Information System (INIS)

    Samman, F.A.; Pongyupinpanich Surapong; Spies, C.; Glesner, M.

    2012-01-01

    A hardware implementation of an adaptive phase and magnitude detector and filter of a beam-phase control system in a heavy ion synchrotron application is presented in this paper. The main components of the hardware are adaptive LMS (Least-Mean-Square) filters and phase and magnitude detectors. The phase detectors are implemented by using a CORDIC (Coordinate Rotation Digital Computer) algorithm based on 32-bit binary floating-point arithmetic data formats. The floating-point-based hardware is designed to improve the precision of the past hardware implementation that were based on fixed-point arithmetics. The hardware of the detector and the adaptive LMS filter have been implemented on a programmable logic device (FPGA) for hardware acceleration purpose. The ideal Matlab/Simulink model of the hardware and the VHDL model of the adaptive LMS filter and the phase and magnitude detector are compared. The comparison result shows that the output signal of the floating-point based adaptive FIR filter as well as the phase and magnitude detector agree with the expected output signal of the ideal Matlab/Simulink model. (authors)

  12. Strategy and Evaluation of Vehicle Collision Avoidance Control via Hardware-in-the-Loop Platform

    Directory of Open Access Journals (Sweden)

    Sin-Li Chen

    2016-11-01

    Full Text Available This paper proposes a novel control approach for vehicle collision avoidance of urban vehicles. For safe driving in urban environments, this paper presents both one-dimensional and two-dimensional solutions, which can be applied to the collision avoidance via steering assistance, automatic braking, and warning of collision. Strategies are verified under the software CarSim, and the experimental evaluations are carried out under the combination of CarSim with a hardware-in-the-loop platform. The results show the feasibility and effectiveness of the proposed algorithm on vehicle collision avoidance.

  13. A hybrid intelligent controller for a twin rotor MIMO system and its hardware implementation.

    Science.gov (United States)

    Juang, Jih-Gau; Liu, Wen-Kai; Lin, Ren-Wei

    2011-10-01

    This paper presents a fuzzy PID control scheme with a real-valued genetic algorithm (RGA) to a setpoint control problem. The objective of this paper is to control a twin rotor MIMO system (TRMS) to move quickly and accurately to the desired attitudes, both the pitch angle and the azimuth angle in a cross-coupled condition. A fuzzy compensator is applied to the PID controller. The proposed control structure includes four PID controllers with independent inputs in 2-DOF. In order to reduce total error and control energy, all parameters of the controller are obtained by a RGA with the system performance index as a fitness function. The system performance index utilized the integral of time multiplied by the square error criterion (ITSE) to build a suitable fitness function in the RGA. A new method for RGA to solve more than 10 parameters in the control scheme is investigated. For real-time control, Xilinx Spartan II SP200 FPGA (Field Programmable Gate Array) is employed to construct a hardware-in-the-loop system through writing VHDL on this FPGA. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Foundations of hardware IP protection

    CERN Document Server

    Torres, Lionel

    2017-01-01

    This book provides a comprehensive and up-to-date guide to the design of security-hardened, hardware intellectual property (IP). Readers will learn how IP can be threatened, as well as protected, by using means such as hardware obfuscation/camouflaging, watermarking, fingerprinting (PUF), functional locking, remote activation, hidden transmission of data, hardware Trojan detection, protection against hardware Trojan, use of secure element, ultra-lightweight cryptography, and digital rights management. This book serves as a single-source reference to design space exploration of hardware security and IP protection. · Provides readers with a comprehensive overview of hardware intellectual property (IP) security, describing threat models and presenting means of protection, from integrated circuit layout to digital rights management of IP; · Enables readers to transpose techniques fundamental to digital rights management (DRM) to the realm of hardware IP security; · Introduce designers to the concept of salutar...

  15. A Cost-Effective Approach to Hardware-in-the-Loop Simulation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Hansen, M. R.; Ballebye, M.

    2012-01-01

    This paper presents an approach for developing cost effective hardware-in-the- loop (HIL) simulation platforms for the use in controller software test and development. The approach is aimed at the many smaller manufacturers of e.g. mobile hydraulic machinery, which often do not have very advanced...... testing facilities at their disposal. A case study is presented where a HIL simulation platform is developed for the controller of a truck mounted loader crane. The total expenses in hardware and software is less than 10.000$....

  16. Hardware stream cipher with controllable chaos generator for colour image encryption

    KAUST Repository

    Barakat, Mohamed L.

    2014-01-01

    This study presents hardware realisation of chaos-based stream cipher utilised for image encryption applications. A third-order chaotic system with signum non-linearity is implemented and a new post processing technique is proposed to eliminate the bias from the original chaotic sequence. The proposed stream cipher utilises the processed chaotic output to mask and diffuse input pixels through several stages of XORing and bit permutations. The performance of the cipher is tested with several input images and compared with previously reported systems showing superior security and higher hardware efficiency. The system is experimentally verified on XilinxVirtex 4 field programmable gate array (FPGA) achieving small area utilisation and a throughput of 3.62 Gb/s. © The Institution of Engineering and Technology 2013.

  17. Open hardware for open science

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Inspired by the open source software movement, the Open Hardware Repository was created to enable hardware developers to share the results of their R&D activities. The recently published CERN Open Hardware Licence offers the legal framework to support this knowledge and technology exchange.   Two years ago, a group of electronics designers led by Javier Serrano, a CERN engineer, working in experimental physics laboratories created the Open Hardware Repository (OHR). This project was initiated in order to facilitate the exchange of hardware designs across the community in line with the ideals of “open science”. The main objectives include avoiding duplication of effort by sharing results across different teams that might be working on the same need. “For hardware developers, the advantages of open hardware are numerous. For example, it is a great learning tool for technologies some developers would not otherwise master, and it avoids unnecessary work if someone ha...

  18. High exposure rate hardware ALARA plan

    International Nuclear Information System (INIS)

    Nellesen, A.L.

    1996-10-01

    This as low as reasonably achievable review provides a description of the engineering and administrative controls used to manage personnel exposure and to control contamination levels and airborne radioactivity concentrations. HERH waste is hardware found in the N-Fuel Storage Basin, which has a contact dose rate greater than 1 R/hr and used filters. This waste will be collected in the fuel baskets at various locations in the basins

  19. Open Hardware Business Models

    OpenAIRE

    Edy Ferreira

    2008-01-01

    In the September issue of the Open Source Business Resource, Patrick McNamara, president of the Open Hardware Foundation, gave a comprehensive introduction to the concept of open hardware, including some insights about the potential benefits for both companies and users. In this article, we present the topic from a different perspective, providing a classification of market offers from companies that are making money with open hardware.

  20. Open Hardware Business Models

    Directory of Open Access Journals (Sweden)

    Edy Ferreira

    2008-04-01

    Full Text Available In the September issue of the Open Source Business Resource, Patrick McNamara, president of the Open Hardware Foundation, gave a comprehensive introduction to the concept of open hardware, including some insights about the potential benefits for both companies and users. In this article, we present the topic from a different perspective, providing a classification of market offers from companies that are making money with open hardware.

  1. Hardware Approach for Real Time Machine Stereo Vision

    Directory of Open Access Journals (Sweden)

    Michael Tornow

    2006-02-01

    Full Text Available Image processing is an effective tool for the analysis of optical sensor information for driver assistance systems and controlling of autonomous robots. Algorithms for image processing are often very complex and costly in terms of computation. In robotics and driver assistance systems, real-time processing is necessary. Signal processing algorithms must often be drastically modified so they can be implemented in the hardware. This task is especially difficult for continuous real-time processing at high speeds. This article describes a hardware-software co-design for a multi-object position sensor based on a stereophotogrammetric measuring method. In order to cover a large measuring area, an optimized algorithm based on an image pyramid is implemented in an FPGA as a parallel hardware solution for depth map calculation. Object recognition and tracking are then executed in real-time in a processor with help of software. For this task a statistical cluster method is used. Stabilization of the tracking is realized through use of a Kalman filter. Keywords: stereophotogrammetry, hardware-software co-design, FPGA, 3-d image analysis, real-time, clustering and tracking.

  2. Hardware stream cipher with controllable chaos generator for colour image encryption

    KAUST Repository

    Barakat, Mohamed L.; Mansingka, Abhinav S.; Radwan, Ahmed Gomaa; Salama, Khaled N.

    2014-01-01

    This study presents hardware realisation of chaos-based stream cipher utilised for image encryption applications. A third-order chaotic system with signum non-linearity is implemented and a new post processing technique is proposed to eliminate

  3. Computer hardware for radiologists: Part I

    International Nuclear Information System (INIS)

    Indrajit, IK; Alam, A

    2010-01-01

    Computers are an integral part of modern radiology practice. They are used in different radiology modalities to acquire, process, and postprocess imaging data. They have had a dramatic influence on contemporary radiology practice. Their impact has extended further with the emergence of Digital Imaging and Communications in Medicine (DICOM), Picture Archiving and Communication System (PACS), Radiology information system (RIS) technology, and Teleradiology. A basic overview of computer hardware relevant to radiology practice is presented here. The key hardware components in a computer are the motherboard, central processor unit (CPU), the chipset, the random access memory (RAM), the memory modules, bus, storage drives, and ports. The personnel computer (PC) has a rectangular case that contains important components called hardware, many of which are integrated circuits (ICs). The fiberglass motherboard is the main printed circuit board and has a variety of important hardware mounted on it, which are connected by electrical pathways called “buses”. The CPU is the largest IC on the motherboard and contains millions of transistors. Its principal function is to execute “programs”. A Pentium ® 4 CPU has transistors that execute a billion instructions per second. The chipset is completely different from the CPU in design and function; it controls data and interaction of buses between the motherboard and the CPU. Memory (RAM) is fundamentally semiconductor chips storing data and instructions for access by a CPU. RAM is classified by storage capacity, access speed, data rate, and configuration

  4. Computer hardware for radiologists: Part I

    Directory of Open Access Journals (Sweden)

    Indrajit I

    2010-01-01

    Full Text Available Computers are an integral part of modern radiology practice. They are used in different radiology modalities to acquire, process, and postprocess imaging data. They have had a dramatic influence on contemporary radiology practice. Their impact has extended further with the emergence of Digital Imaging and Communications in Medicine (DICOM, Picture Archiving and Communication System (PACS, Radiology information system (RIS technology, and Teleradiology. A basic overview of computer hardware relevant to radiology practice is presented here. The key hardware components in a computer are the motherboard, central processor unit (CPU, the chipset, the random access memory (RAM, the memory modules, bus, storage drives, and ports. The personnel computer (PC has a rectangular case that contains important components called hardware, many of which are integrated circuits (ICs. The fiberglass motherboard is the main printed circuit board and has a variety of important hardware mounted on it, which are connected by electrical pathways called "buses". The CPU is the largest IC on the motherboard and contains millions of transistors. Its principal function is to execute "programs". A Pentium® 4 CPU has transistors that execute a billion instructions per second. The chipset is completely different from the CPU in design and function; it controls data and interaction of buses between the motherboard and the CPU. Memory (RAM is fundamentally semiconductor chips storing data and instructions for access by a CPU. RAM is classified by storage capacity, access speed, data rate, and configuration.

  5. CT image reconstruction system based on hardware implementation

    International Nuclear Information System (INIS)

    Silva, Hamilton P. da; Evseev, Ivan; Schelin, Hugo R.; Paschuk, Sergei A.; Milhoretto, Edney; Setti, Joao A.P.; Zibetti, Marcelo; Hormaza, Joel M.; Lopes, Ricardo T.

    2009-01-01

    Full text: The timing factor is very important for medical imaging systems, which can nowadays be synchronized by vital human signals, like heartbeats or breath. The use of hardware implemented devices in such a system has advantages considering the high speed of information treatment combined with arbitrary low cost on the market. This article refers to a hardware system which is based on electronic programmable logic called FPGA, model Cyclone II from ALTERA Corporation. The hardware was implemented on the UP3 ALTERA Kit. A partially connected neural network with unitary weights was programmed. The system was tested with 60 topographic projections, 100 points in each, of the Shepp and Logan phantom created by MATLAB. The main restriction was found to be the memory size available on the device: the dynamic range of reconstructed image was limited to 0 65535. Also, the normalization factor must be observed in order to do not saturate the image during the reconstruction and filtering process. The test shows a principal possibility to build CT image reconstruction systems for any reasonable amount of input data by arranging the parallel work of the hardware units like we have tested. However, further studies are necessary for better understanding of the error propagation from topographic projections to reconstructed image within the implemented method. (author)

  6. Monitoring and Hardware Management for Critical Fusion Plasma Instrumentation

    Directory of Open Access Journals (Sweden)

    Carvalho Paulo F.

    2018-01-01

    Full Text Available Controlled nuclear fusion aims to obtain energy by particles collision confined inside a nuclear reactor (Tokamak. These ionized particles, heavier isotopes of hydrogen, are the main elements inside of plasma that is kept at high temperatures (millions of Celsius degrees. Due to high temperatures and magnetic confinement, plasma is exposed to several sources of instabilities which require a set of procedures by the control and data acquisition systems throughout fusion experiments processes. Control and data acquisition systems often used in nuclear fusion experiments are based on the Advanced Telecommunication Computer Architecture (AdvancedTCA® standard introduced by the Peripheral Component Interconnect Industrial Manufacturers Group (PICMG®, to meet the demands of telecommunications that require large amount of data (TB transportation at high transfer rates (Gb/s, to ensure high availability including features such as reliability, serviceability and redundancy. For efficient plasma control, systems are required to collect large amounts of data, process it, store for later analysis, make critical decisions in real time and provide status reports either from the experience itself or the electronic instrumentation involved. Moreover, systems should also ensure the correct handling of detected anomalies and identified faults, notify the system operator of occurred events, decisions taken to acknowledge and implemented changes. Therefore, for everything to work in compliance with specifications it is required that the instrumentation includes hardware management and monitoring mechanisms for both hardware and software. These mechanisms should check the system status by reading sensors, manage events, update inventory databases with hardware system components in use and maintenance, store collected information, update firmware and installed software modules, configure and handle alarms to detect possible system failures and prevent emergency

  7. Monitoring and Hardware Management for Critical Fusion Plasma Instrumentation

    Science.gov (United States)

    Carvalho, Paulo F.; Santos, Bruno; Correia, Miguel; Combo, Álvaro M.; Rodrigues, AntÓnio P.; Pereira, Rita C.; Fernandes, Ana; Cruz, Nuno; Sousa, Jorge; Carvalho, Bernardo B.; Batista, AntÓnio J. N.; Correia, Carlos M. B. A.; Gonçalves, Bruno

    2018-01-01

    Controlled nuclear fusion aims to obtain energy by particles collision confined inside a nuclear reactor (Tokamak). These ionized particles, heavier isotopes of hydrogen, are the main elements inside of plasma that is kept at high temperatures (millions of Celsius degrees). Due to high temperatures and magnetic confinement, plasma is exposed to several sources of instabilities which require a set of procedures by the control and data acquisition systems throughout fusion experiments processes. Control and data acquisition systems often used in nuclear fusion experiments are based on the Advanced Telecommunication Computer Architecture (AdvancedTCA®) standard introduced by the Peripheral Component Interconnect Industrial Manufacturers Group (PICMG®), to meet the demands of telecommunications that require large amount of data (TB) transportation at high transfer rates (Gb/s), to ensure high availability including features such as reliability, serviceability and redundancy. For efficient plasma control, systems are required to collect large amounts of data, process it, store for later analysis, make critical decisions in real time and provide status reports either from the experience itself or the electronic instrumentation involved. Moreover, systems should also ensure the correct handling of detected anomalies and identified faults, notify the system operator of occurred events, decisions taken to acknowledge and implemented changes. Therefore, for everything to work in compliance with specifications it is required that the instrumentation includes hardware management and monitoring mechanisms for both hardware and software. These mechanisms should check the system status by reading sensors, manage events, update inventory databases with hardware system components in use and maintenance, store collected information, update firmware and installed software modules, configure and handle alarms to detect possible system failures and prevent emergency scenarios

  8. Multi-loop PWR modeling and hardware-in-the-loop testing using ACSL

    International Nuclear Information System (INIS)

    Thomas, V.M.; Heibel, M.D.; Catullo, W.J.

    1989-01-01

    Westinghouse has developed an Advanced Digital Feedwater Control System (ADFCS) which is aimed at reducing feedwater related reactor trips through improved control performance for pressurized water reactor (PWR) power plants. To support control system setpoint studies and functional design efforts for the ADFCS, an ACSL based model of the nuclear steam supply system (NSSS) of a Westinghouse (PWR) was generated. Use of this plant model has been extended from system design to system testing through integration of the model into a Hardware-in-Loop test environment for the ADFCS. This integration includes appropriate interfacing between a Gould SEL 32/87 computer, upon which the plant model executes in real time, and the Westinghouse Distributed Processing family (WDPF) test hardware. A development program has been undertaken to expand the existing ACSL model to include capability to explicitly model multiple plant loops, steam generators, and corresponding feedwater systems. Furthermore, the program expands the ADFCS Hardware-in-Loop testing to include the multi-loop plant model. This paper provides an overview of the testing approach utilized for the ADFCS with focus on the role of Hardware-in-Loop testing. Background on the plant model, methodology and test environment is also provided. Finally, an overview is presented of the program to expand the model and associated Hardware-in-Loop test environment to handle multiple loops

  9. Open Hardware at CERN

    CERN Multimedia

    CERN Knowledge Transfer Group

    2015-01-01

    CERN is actively making its knowledge and technology available for the benefit of society and does so through a variety of different mechanisms. Open hardware has in recent years established itself as a very effective way for CERN to make electronics designs and in particular printed circuit board layouts, accessible to anyone, while also facilitating collaboration and design re-use. It is creating an impact on many levels, from companies producing and selling products based on hardware designed at CERN, to new projects being released under the CERN Open Hardware Licence. Today the open hardware community includes large research institutes, universities, individual enthusiasts and companies. Many of the companies are actively involved in the entire process from design to production, delivering services and consultancy and even making their own products available under open licences.

  10. Modelling and hardware-in-the-loop simulation of the blowout tract components for passenger compartment air conditioning of motor vehicles; Modellierung und Hardware-in-the-Loop-Simulation der Komponenten des Ausblastraktes zur Kraftfahrzeuginnenraumklimatisierung

    Energy Technology Data Exchange (ETDEWEB)

    Michalek, David

    2009-07-01

    The author investigated the modelling and hardware-in-the-loop simulation of components of the blowout tract of motor car air conditioning systems. The control systems and air conditioning systems are gone into, from the air entering the car to the control systems and sensors for monitoring state variables. The function of the control equipment hardware and software was to be analyzed reproducibly in order to save time and cost. The models were verified using available data. Validation criteria were established for the hardware-in-the-loop simulator. On the basis of selected operating conditions, the performance of the air conditioning control unit inside the vehicle was compared with the simulation results and was evaluated on the basis of the established criteria. (orig.)

  11. Performance comparison between ISCSI and other hardware and software solutions

    CERN Document Server

    Gug, M

    2003-01-01

    We report on our investigations on some technologies that can be used to build disk servers and networks of disk servers using commodity hardware and software solutions. It focuses on the performance that can be achieved by these systems and gives measured figures for different configurations. It is divided into two parts : iSCSI and other technologies and hardware and software RAID solutions. The first part studies different technologies that can be used by clients to access disk servers using a gigabit ethernet network. It covers block access technologies (iSCSI, hyperSCSI, ENBD). Experimental figures are given for different numbers of clients and servers. The second part compares a system based on 3ware hardware RAID controllers, a system using linux software RAID and IDE cards and a system mixing both hardware RAID and software RAID. Performance measurements for reading and writing are given for different RAID levels.

  12. Solar cooling in the hardware-in-the-loop test; Solare Kuehlung im Hardware-in-the-Loop-Test

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Sandra; Radosavljevic, Rada; Goebel, Johannes; Gottschald, Jonas; Adam, Mario [Fachhochschule Duesseldorf (Germany). Erneuerbare Energien und Energieeffizienz E2

    2012-07-01

    The first part of the BMBF-funded research project 'Solar cooling in the hardware-in-the-loop test' (SoCool HIL) deals with the simulation of a solar refrigeration system using the simulation environment Matlab / Simulink with the toolboxes Stateflow and Carnot. Dynamic annual simulations and DoE supported parameter variations were used to select meaningful system configurations, control strategies and dimensioning of components. The second part of this project deals with hardware-in-the-loop tests using the 17.5 kW absorption chiller of the company Yazaki Europe Limited (Hertfordshire, United Kingdom). For this, the chiller is operated on a test bench in order to emulate the behavior of other system components (solar circuit with heat storage, recooling, buildings and cooling distribution / transfer). The chiller is controlled by a simulation of the system using MATLAB / Simulink / Carnot. Based on the knowledge on the real dynamic performance of the chiller the simulation model of the chiller can then be validated. Further tests are used to optimize the control of the chiller to the current cooling load. In addition, some changes in system configurations (for example cold backup) are tested with the real machine. The results of these tests and the findings on the dynamic performance of the chiller are presented.

  13. Secure Hardware Performance Analysis in Virtualized Cloud Environment

    Directory of Open Access Journals (Sweden)

    Chee-Heng Tan

    2013-01-01

    Full Text Available The main obstacle in mass adoption of cloud computing for database operations is the data security issue. In this paper, it is shown that IT services particularly in hardware performance evaluation in virtual machine can be accomplished effectively without IT personnel gaining access to real data for diagnostic and remediation purposes. The proposed mechanisms utilized TPC-H benchmark to achieve 2 objectives. First, the underlying hardware performance and consistency is supervised via a control system, which is constructed using a combination of TPC-H queries, linear regression, and machine learning techniques. Second, linear programming techniques are employed to provide input to the algorithms that construct stress-testing scenarios in the virtual machine, using the combination of TPC-H queries. These stress-testing scenarios serve 2 purposes. They provide the boundary resource threshold verification to the first control system, so that periodic training of the synthetic data sets for performance evaluation is not constrained by hardware inadequacy, particularly when the resources in the virtual machine are scaled up or down which results in the change of the utilization threshold. Secondly, they provide a platform for response time verification on critical transactions, so that the expected Quality of Service (QoS from these transactions is assured.

  14. Hardware protection through obfuscation

    CERN Document Server

    Bhunia, Swarup; Tehranipoor, Mark

    2017-01-01

    This book introduces readers to various threats faced during design and fabrication by today’s integrated circuits (ICs) and systems. The authors discuss key issues, including illegal manufacturing of ICs or “IC Overproduction,” insertion of malicious circuits, referred as “Hardware Trojans”, which cause in-field chip/system malfunction, and reverse engineering and piracy of hardware intellectual property (IP). The authors provide a timely discussion of these threats, along with techniques for IC protection based on hardware obfuscation, which makes reverse-engineering an IC design infeasible for adversaries and untrusted parties with any reasonable amount of resources. This exhaustive study includes a review of the hardware obfuscation methods developed at each level of abstraction (RTL, gate, and layout) for conventional IC manufacturing, new forms of obfuscation for emerging integration strategies (split manufacturing, 2.5D ICs, and 3D ICs), and on-chip infrastructure needed for secure exchange o...

  15. Hardware architecture design of image restoration based on time-frequency domain computation

    Science.gov (United States)

    Wen, Bo; Zhang, Jing; Jiao, Zipeng

    2013-10-01

    The image restoration algorithms based on time-frequency domain computation is high maturity and applied widely in engineering. To solve the high-speed implementation of these algorithms, the TFDC hardware architecture is proposed. Firstly, the main module is designed, by analyzing the common processing and numerical calculation. Then, to improve the commonality, the iteration control module is planed for iterative algorithms. In addition, to reduce the computational cost and memory requirements, the necessary optimizations are suggested for the time-consuming module, which include two-dimensional FFT/IFFT and the plural calculation. Eventually, the TFDC hardware architecture is adopted for hardware design of real-time image restoration system. The result proves that, the TFDC hardware architecture and its optimizations can be applied to image restoration algorithms based on TFDC, with good algorithm commonality, hardware realizability and high efficiency.

  16. CAMAC high energy physics electronics hardware

    International Nuclear Information System (INIS)

    Kolpakov, I.F.

    1977-01-01

    CAMAC hardware for high energy physics large spectrometers and control systems is reviewed as is the development of CAMAC modules at the High Energy Laboratory, JINR (Dubna). The total number of crates used at the Laboratory is 179. The number of CAMAC modules of 120 different types exceeds 1700. The principles of organization and the structure of developed CAMAC systems are described. (author)

  17. Control strategy and hardware implementation for DC–DC boost power circuit based on proportional–integral compensator for high voltage application

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2015-06-01

    Full Text Available For high-voltage (HV applications, the designers mostly prefer the classical DC–DC boost converter. However, it lacks due to the limitation of the output voltage by the gain transfer ratio, decreased efficiency and its requirement of two sensors for feedback signals, which creates complex control scheme with increased overall cost. Furthermore, the output voltage and efficiency are reduced due to the self-parasitic behavior of power circuit components. To overcome these drawbacks, this manuscript provides, the theoretical development and hardware implementation of DC–DC step-up (boost power converter circuit for obtaining extra output-voltage high-performance. The proposed circuit substantially improves the high output-voltage by voltage-lift technology with a closed loop proportional–integral controller. This complete numerical model of the converter circuit including closed loop P-I controller is developed in simulation (Matlab/Simulink software and the hardware prototype model is implemented with digital signal processor (DSP TMS320F2812. A detailed performance analysis was carried out under both line and load regulation conditions. Numerical simulation and its verification results provided in this paper, prove the good agreement of the circuit with theoretical background.

  18. Intersection points for the driving of applier processes of the hardware control of the ZEUS forward detector

    International Nuclear Information System (INIS)

    Siemon, T.

    1992-08-01

    The ZEUS forward detector is built of drift- and transition-radiation chambers which are supported by many peripheral devices. The resulting complex system has to be monitored and controlled continously to preserve safety and to achieve optimal performance. For this task a Hardware-Control-System (HWC) has been developed. Ten VME and OS9-based microprocessors which are connected by Ethernet and VME-bus are provided to run the control- and monitoring tasks. Special attention has been paid to the development of efficient user-interfaces: RDT, an object-oriented database-toolkit, serves as an interface to the data of the HWC. The concept and the usage of this interface are outlined. Finally special features that may be useful for other applications are discussed. (orig.) [de

  19. Internal model control for industrial wireless plant using WirelessHART hardware-in-the-loop simulator.

    Science.gov (United States)

    Tran, Chung Duc; Ibrahim, Rosdiazli; Asirvadam, Vijanth Sagayan; Saad, Nordin; Sabo Miya, Hassan

    2018-04-01

    The emergence of wireless technologies such as WirelessHART and ISA100 Wireless for deployment at industrial process plants has urged the need for research and development in wireless control. This is in view of the fact that the recent application is mainly in monitoring domain due to lack of confidence in control aspect. WirelessHART has an edge over its counterpart as it is based on the successful Wired HART protocol with over 30 million devices as of 2009. Recent works on control have primarily focused on maintaining the traditional PID control structure which is proven not adequate for the wireless environment. In contrast, Internal Model Control (IMC), a promising technique for delay compensation, disturbance rejection and setpoint tracking has not been investigated in the context of WirelessHART. Therefore, this paper discusses the control design using IMC approach with a focus on wireless processes. The simulation and experimental results using real-time WirelessHART hardware-in-the-loop simulator (WH-HILS) indicate that the proposed approach is more robust to delay variation of the network than the PID. Copyright © 2017. Published by Elsevier Ltd.

  20. Hardware random number generator base on monostable multivibrators dedicated for distributed measurement and control systems

    Science.gov (United States)

    Czernik, Pawel

    2013-10-01

    The hardware random number generator based on the 74121 monostable multivibrators for applications in cryptographically secure distributed measurement and control systems with asymmetric resources was presented. This device was implemented on the basis of the physical electronic vibration generator in which the circuit is composed of two "loop" 74121 monostable multivibrators, D flip-flop and external clock signal source. The clock signal, witch control D flip-flop was generated by a computer on one of the parallel port pins. There was presented programmed the author's acquisition process of random data from the measuring system to a computer. The presented system was designed, builded and thoroughly tested in the term of cryptographic security in our laboratory, what there is the most important part of this publication. Real cryptographic security was tested based on the author's software and the software environment called RDieHarder. The obtained results was here presented and analyzed in detail with particular reference to the specificity of distributed measurement and control systems with asymmetric resources.

  1. A computer control system for the PNC high power cw electron linac. Concept and hardware

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, T.; Hirano, K.; Takei, Hayanori; Nomura, Masahiro; Tani, S. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Kato, Y.; Ishikawa, Y.

    1998-06-01

    Design and construction of a high power cw (Continuous Wave) electron linac for studying feasibility of nuclear waste transmutation was started in 1989 at PNC. The PNC accelerator (10 MeV, 20 mA average current, 4 ms pulse width, 50 Hz repetition) is dedicated machine for development of the high current acceleration technology in future need. The computer control system is responsible for accelerator control and supporting the experiment for high power operation. The feature of the system is the measurements of accelerator status simultaneously and modularity of software and hardware for easily implemented for modification or expansion. The high speed network (SCRAM Net {approx} 15 MB/s), Ethernet, and front end processors (Digital Signal Processor) were employed for the high speed data taking and control. The system was designed to be standard modules and software implemented man machine interface. Due to graphical-user-interface and object-oriented-programming, the software development environment is effortless programming and maintenance. (author)

  2. Hardware Support for Embedded Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2012-01-01

    The general Java runtime environment is resource hungry and unfriendly for real-time systems. To reduce the resource consumption of Java in embedded systems, direct hardware support of the language is a valuable option. Furthermore, an implementation of the Java virtual machine in hardware enables...... worst-case execution time analysis of Java programs. This chapter gives an overview of current approaches to hardware support for embedded and real-time Java....

  3. Hardware-in-the-loop simulation for the virtual application of control functions for a coordination of the interaction between a gasoline engine and the 14V-power electrical system; Hardware-in-the-Loop-Simulation fuer die virtuelle Applikation von Steuerungsfunktionen zur Motor-Energiebordnetz-Koordination

    Energy Technology Data Exchange (ETDEWEB)

    Schiele, Thomas

    2010-07-01

    The development of advanced engine management systems increasingly is supported by model-based development tools. Thereby the hardware-in-the-loop simulation is one of these tools. The author of the contribution under consideration reports on an extension of the capabilities of the hardware-in-the-loop simulation from the classic functional testing and safety tests up to the model-based application. Using the control functions for the coordination of the interaction between a gasoline engine and the 14V-power electrical system as an example, the practical application of hardware-in-the-loop systems is presented. Here, the author reviews on the state of technology for the real-time modeling of internal combustion engines and wiring systems.

  4. Open source hardware and software platform for robotics and artificial intelligence applications

    Science.gov (United States)

    Liang, S. Ng; Tan, K. O.; Lai Clement, T. H.; Ng, S. K.; Mohammed, A. H. Ali; Mailah, Musa; Azhar Yussof, Wan; Hamedon, Zamzuri; Yussof, Zulkifli

    2016-02-01

    Recent developments in open source hardware and software platforms (Android, Arduino, Linux, OpenCV etc.) have enabled rapid development of previously expensive and sophisticated system within a lower budget and flatter learning curves for developers. Using these platform, we designed and developed a Java-based 3D robotic simulation system, with graph database, which is integrated in online and offline modes with an Android-Arduino based rubbish picking remote control car. The combination of the open source hardware and software system created a flexible and expandable platform for further developments in the future, both in the software and hardware areas, in particular in combination with graph database for artificial intelligence, as well as more sophisticated hardware, such as legged or humanoid robots.

  5. Open source hardware and software platform for robotics and artificial intelligence applications

    International Nuclear Information System (INIS)

    Liang, S Ng; Tan, K O; Clement, T H Lai; Ng, S K; Mohammed, A H Ali; Mailah, Musa; Yussof, Wan Azhar; Hamedon, Zamzuri; Yussof, Zulkifli

    2016-01-01

    Recent developments in open source hardware and software platforms (Android, Arduino, Linux, OpenCV etc.) have enabled rapid development of previously expensive and sophisticated system within a lower budget and flatter learning curves for developers. Using these platform, we designed and developed a Java-based 3D robotic simulation system, with graph database, which is integrated in online and offline modes with an Android-Arduino based rubbish picking remote control car. The combination of the open source hardware and software system created a flexible and expandable platform for further developments in the future, both in the software and hardware areas, in particular in combination with graph database for artificial intelligence, as well as more sophisticated hardware, such as legged or humanoid robots. (paper)

  6. Plutonium Protection System (PPS). Volume 2. Hardware description. Final report

    International Nuclear Information System (INIS)

    Miyoshi, D.S.

    1979-05-01

    The Plutonium Protection System (PPS) is an integrated safeguards system developed by Sandia Laboratories for the Department of Energy, Office of Safeguards and Security. The system is designed to demonstrate and test concepts for the improved safeguarding of plutonium. Volume 2 of the PPS final report describes the hardware elements of the system. The major areas containing hardware elements are the vault, where plutonium is stored, the packaging room, where plutonium is packaged into Container Modules, the Security Operations Center, which controls movement of personnel, the Material Accountability Center, which maintains the system data base, and the Material Operations Center, which monitors the operating procedures in the system. References are made to documents in which details of the hardware items can be found

  7. HARDWARE TROJAN IDENTIFICATION AND DETECTION

    OpenAIRE

    Samer Moein; Fayez Gebali; T. Aaron Gulliver; Abdulrahman Alkandari

    2017-01-01

    ABSTRACT The majority of techniques developed to detect hardware trojans are based on specific attributes. Further, the ad hoc approaches employed to design methods for trojan detection are largely ineffective. Hardware trojans have a number of attributes which can be used to systematically develop detection techniques. Based on this concept, a detailed examination of current trojan detection techniques and the characteristics of existing hardware trojans is presented. This is used to dev...

  8. Hunting for hardware changes in data centres

    International Nuclear Information System (INIS)

    Coelho dos Santos, M; Steers, I; Szebenyi, I; Xafi, A; Barring, O; Bonfillou, E

    2012-01-01

    With many servers and server parts the environment of warehouse sized data centres is increasingly complex. Server life-cycle management and hardware failures are responsible for frequent changes that need to be managed. To manage these changes better a project codenamed “hardware hound” focusing on hardware failure trending and hardware inventory has been started at CERN. By creating and using a hardware oriented data set - the inventory - with detailed information on servers and their parts as well as tracking changes to this inventory, the project aims at, for example, being able to discover trends in hardware failure rates.

  9. Open-source hardware for medical devices.

    Science.gov (United States)

    Niezen, Gerrit; Eslambolchilar, Parisa; Thimbleby, Harold

    2016-04-01

    Open-source hardware is hardware whose design is made publicly available so anyone can study, modify, distribute, make and sell the design or the hardware based on that design. Some open-source hardware projects can potentially be used as active medical devices. The open-source approach offers a unique combination of advantages, including reducing costs and faster innovation. This article compares 10 of open-source healthcare projects in terms of how easy it is to obtain the required components and build the device.

  10. Inverse biomimetics: how robots can help to verify concepts concerning sensorimotor control of human arm and leg movements.

    Science.gov (United States)

    Kalveram, Karl Theodor; Seyfarth, André

    2009-01-01

    Simulation test, hardware test and behavioral comparison test are proposed to experimentally verify whether a technical control concept for limb movements is logically precise, physically sound, and biologically relevant. Thereby, robot test-beds may play an integral part by mimicking functional limb movements. The procedure is exemplarily demonstrated for human aiming movements with the forearm: when comparing competitive control concepts, these movements are described best by a spring-like operating muscular-skeletal device which is assisted by feedforward control through an inverse internal model of the limb--without regress to a forward model of the limb. In a perspective on hopping, the concept of exploitive control is addressed, and its comparison to concepts derived from classical control theory advised.

  11. Twenty-third water reactor safety information meeting: Volume 2, Human factors research; Advanced I and C hardware and software; Severe accident research; Probabilistic risk assessment topics; Individual plant examination: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01

    This three-volume report contains papers presented at the Twenty- Third Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 23-25, 1995. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Italy, Japan, Norway, Russia, Sweden, and Switzerland. This document, Volume 2, present topics in human factors research, advanced instrumentation and control hardware and software, severe accident research, probabilistic risk assessment, and individual plant examination. Individual papers have been cataloged separately.

  12. Hardware in the loop simulation test platform of fuel cell backup system

    Directory of Open Access Journals (Sweden)

    Ma Tiancai

    2015-01-01

    Full Text Available Based on an analysis of voltage mechanistic model, a real-time simulation model of the proton exchange membrane (PEM fuel cell backup system is developed, and verified by the measurable experiment data. The method of online parameters identification for the model is also improved. Based on the software LabVIEW/VeriStand real-time environment and the PXI Express hardware system, the PEM fuel cell system controller hardware in the loop (HIL simulation plat-form is established. Controller simulation test results showed the accuracy of HIL simulation platform.

  13. An evaluation of Skylab habitability hardware

    Science.gov (United States)

    Stokes, J.

    1974-01-01

    For effective mission performance, participants in space missions lasting 30-60 days or longer must be provided with hardware to accommodate their personal needs. Such habitability hardware was provided on Skylab. Equipment defined as habitability hardware was that equipment composing the food system, water system, sleep system, waste management system, personal hygiene system, trash management system, and entertainment equipment. Equipment not specifically defined as habitability hardware but which served that function were the Wardroom window, the exercise equipment, and the intercom system, which was occasionally used for private communications. All Skylab habitability hardware generally functioned as intended for the three missions, and most items could be considered as adequate concepts for future flights of similar duration. Specific components were criticized for their shortcomings.

  14. Hardware and software maintenance strategies for upgrading vintage computers

    International Nuclear Information System (INIS)

    Wang, B.C.; Buijs, W.J.; Banting, R.D.

    1992-01-01

    The paper focuses on the maintenance of the computer hardware and software for digital control computers (DCC). Specific design and problems related to various maintenance strategies are reviewed. A foundation was required for a reliable computer maintenance and upgrading program to provide operation of the DCC with high availability and reliability for 40 years. This involved a carefully planned and executed maintenance and upgrading program, involving complementary hardware and software strategies. The computer system was designed on a modular basis, with large sections easily replaceable, to facilitate maintenance and improve availability of the system. Advances in computer hardware have made it possible to replace DCC peripheral devices with reliable, inexpensive, and widely available components from PC-based systems (PC = personal computer). By providing a high speed link from the DCC to a PC, it is now possible to use many commercial software packages to process data from the plant. 1 fig

  15. Is Hardware Removal Recommended after Ankle Fracture Repair?

    Directory of Open Access Journals (Sweden)

    Hong-Geun Jung

    2016-01-01

    Full Text Available The indications and clinical necessity for routine hardware removal after treating ankle or distal tibia fracture with open reduction and internal fixation are disputed even when hardware-related pain is insignificant. Thus, we determined the clinical effects of routine hardware removal irrespective of the degree of hardware-related pain, especially in the perspective of patients’ daily activities. This study was conducted on 80 consecutive cases (78 patients treated by surgery and hardware removal after bony union. There were 56 ankle and 24 distal tibia fractures. The hardware-related pain, ankle joint stiffness, discomfort on ambulation, and patient satisfaction were evaluated before and at least 6 months after hardware removal. Pain score before hardware removal was 3.4 (range 0 to 6 and decreased to 1.3 (range 0 to 6 after removal. 58 (72.5% patients experienced improved ankle stiffness and 65 (81.3% less discomfort while walking on uneven ground and 63 (80.8% patients were satisfied with hardware removal. These results suggest that routine hardware removal after ankle or distal tibia fracture could ameliorate hardware-related pain and improves daily activities and patient satisfaction even when the hardware-related pain is minimal.

  16. Door Hardware and Installations; Carpentry: 901894.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The curriculum guide outlines a course designed to provide instruction in the selection, preparation, and installation of hardware for door assemblies. The course is divided into five blocks of instruction (introduction to doors and hardware, door hardware, exterior doors and jambs, interior doors and jambs, and a quinmester post-test) totaling…

  17. Mission Management Computer and Sequencing Hardware for RLV-TD HEX-01 Mission

    Science.gov (United States)

    Gupta, Sukrat; Raj, Remya; Mathew, Asha Mary; Koshy, Anna Priya; Paramasivam, R.; Mookiah, T.

    2017-12-01

    Reusable Launch Vehicle-Technology Demonstrator Hypersonic Experiment (RLV-TD HEX-01) mission posed some unique challenges in the design and development of avionics hardware. This work presents the details of mission critical avionics hardware mainly Mission Management Computer (MMC) and sequencing hardware. The Navigation, Guidance and Control (NGC) chain for RLV-TD is dual redundant with cross-strapped Remote Terminals (RTs) interfaced through MIL-STD-1553B bus. MMC is Bus Controller on the 1553 bus, which does the function of GPS aided navigation, guidance, digital autopilot and sequencing for the RLV-TD launch vehicle in different periodicities (10, 20, 500 ms). Digital autopilot execution in MMC with a periodicity of 10 ms (in ascent phase) is introduced for the first time and successfully demonstrated in the flight. MMC is built around Intel i960 processor and has inbuilt fault tolerance features like ECC for memories. Fault Detection and Isolation schemes are implemented to isolate the failed MMC. The sequencing hardware comprises Stage Processing System (SPS) and Command Execution Module (CEM). SPS is `RT' on the 1553 bus which receives the sequencing and control related commands from MMCs and posts to downstream modules after proper error handling for final execution. SPS is designed as a high reliability system by incorporating various fault tolerance and fault detection features. CEM is a relay based module for sequence command execution.

  18. Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Farooque, M.; Maru, H.

    1993-01-01

    Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals.

  19. Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Farooque, M.; Maru, H.

    1993-05-01

    Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals.

  20. Hardware for dynamic quantum computing experiments: Part I

    Science.gov (United States)

    Johnson, Blake; Ryan, Colm; Riste, Diego; Donovan, Brian; Ohki, Thomas

    Static, pre-defined control sequences routinely achieve high-fidelity operation on superconducting quantum processors. Efforts toward dynamic experiments depending on real-time information have mostly proceeded through hardware duplication and triggers, requiring a combinatorial explosion in the number of channels. We provide a hardware efficient solution to dynamic control with a complete platform of specialized FPGA-based control and readout electronics; these components enable arbitrary control flow, low-latency feedback and/or feedforward, and scale far beyond single-qubit control and measurement. We will introduce the BBN Arbitrary Pulse Sequencer 2 (APS2) control system and the X6 QDSP readout platform. The BBN APS2 features: a sequencer built around implementing short quantum gates, a sequence cache to allow long sequences with branching structures, subroutines for code re-use, and a trigger distribution module to capture and distribute steering information. The X6 QDSP features a single-stage DSP pipeline that combines demodulation with arbitrary integration kernels, and multiple taps to inspect data flow for debugging and calibration. We will show system performance when putting it all together, including a latency budget for feedforward operations. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office Contract No. W911NF-10-1-0324.

  1. SYNTHESIS OF INFORMATION SYSTEM FOR SMART HOUSE HARDWARE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Vikentyeva Olga Leonidovna

    2017-10-01

    Full Text Available Subject: smart house maintenance requires taking into account a number of factors: resource-saving, reduction of operational expenditures, safety enhancement, providing comfortable working and leisure conditions. Automation of the corresponding engineering systems of illumination, climate control, security as well as communication systems and networks via utilization of contemporary technologies (e.g., IoT - Internet of Things poses a significant challenge related to storage and processing of the overwhelmingly massive volume of data whose utilization extent is extremely low nowadays. Since a building’s lifespan is large enough and exceeds the lifespan of codes and standards that take into account the requirements of safety, comfort, energy saving, etc., it is necessary to consider management aspects in the context of rational use of large data at the stage of information modeling. Research objectives: increase the efficiency of managing the subsystems of smart buildings hardware on the basis of a web-based information system that has a flexible multi-level architecture with several control loops and an adaptation model. Materials and methods: since a smart house belongs to man-machine systems, the cybernetic approach is considered as the basic method for design and research of information management system. Instrumental research methods are represented by set-theoretical modelling, automata theory and architectural principles of organization of information management systems. Results: a flexible architecture of information system for management of smart house hardware subsystems has been synthesized. This architecture encompasses several levels: client level, application level and data level as well as three layers: presentation level, actuating device layer and analytics layer. The problem of growing volumes of information processed by realtime message controller is attended by employment of sensors and actuating mechanisms with configurable

  2. James Webb Space Telescope Core 2 Test - Cryogenic Thermal Balance Test of the Observatorys Core Area Thermal Control Hardware

    Science.gov (United States)

    Cleveland, Paul; Parrish, Keith; Thomson, Shaun; Marsh, James; Comber, Brian

    2016-01-01

    The James Webb Space Telescope (JWST), successor to the Hubble Space Telescope, will be the largest astronomical telescope ever sent into space. To observe the very first light of the early universe, JWST requires a large deployed 6.5-meter primary mirror cryogenically cooled to less than 50 Kelvin. Three scientific instruments are further cooled via a large radiator system to less than 40 Kelvin. A fourth scientific instrument is cooled to less than 7 Kelvin using a combination pulse-tube Joule-Thomson mechanical cooler. Passive cryogenic cooling enables the large scale of the telescope which must be highly folded for launch on an Ariane 5 launch vehicle and deployed once on orbit during its journey to the second Earth-Sun Lagrange point. Passive cooling of the observatory is enabled by the deployment of a large tennis court sized five layer Sunshield combined with the use of a network of high efficiency radiators. A high purity aluminum heat strap system connects the three instrument's detector systems to the radiator systems to dissipate less than a single watt of parasitic and instrument dissipated heat. JWST's large scale features, while enabling passive cooling, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone of most space missions' thermal verification plans. This paper describes the JWST Core 2 Test, which is a cryogenic thermal balance test of a full size, high fidelity engineering model of the Observatory's 'Core' area thermal control hardware. The 'Core' area is the key mechanical and cryogenic interface area between all Observatory elements. The 'Core' area thermal control hardware allows for temperature transition of 300K to approximately 50 K by attenuating heat from the room temperature IEC (instrument electronics) and the Spacecraft Bus. Since the flight hardware is not available for test, the Core 2 test uses high fidelity and flight-like reproductions.

  3. From Open Source Software to Open Source Hardware

    OpenAIRE

    Viseur , Robert

    2012-01-01

    Part 2: Lightning Talks; International audience; The open source software principles progressively give rise to new initiatives for culture (free culture), data (open data) or hardware (open hardware). The open hardware is experiencing a significant growth but the business models and legal aspects are not well known. This paper is dedicated to the economics of open hardware. We define the open hardware concept and determine intellectual property tools we can apply to open hardware, with a str...

  4. Design of a Hardware-Implemented Phase Calculating System for Feedback Control in the LHCD Experiments on EAST

    International Nuclear Information System (INIS)

    Liu Qiang; Liang Hao; Zhou Yongzhao

    2009-01-01

    A fully hardware-implemented phase calculating system for the feedback control in the lower-hybrid current drive (LHCD) experiments is presented in this paper. By taking advantages of field programmable gate array (FPGA) chips with embedded digital signal processing (DSP) cores and the Matlab-aided design method, the phase calculating algorithm with a square root operation and parallel process are efficiently implemented in a single FPGA chip to complete the calculation of phase differences fast and accurately in the lower-hybrid wave (LHW) system on EAST. (fusion engineering)

  5. A photovoltaic source I/U model suitable for hardware in the loop application

    Directory of Open Access Journals (Sweden)

    Stala Robert

    2017-12-01

    Full Text Available This paper presents a novel, low-complexity method of simulating PV source characteristics suitable for real-time modeling and hardware implementation. The application of the suitable model of the PV source as well as the model of all the PV system components in a real-time hardware gives a safe, fast and low cost method of testing PV systems. The paper demonstrates the concept of the PV array model and the hardware implementation in FPGAs of the system which combines two PV arrays. The obtained results confirm that the proposed model is of low complexity and can be suitable for hardware in the loop (HIL tests of the complex PV system control, with various arrays operating under different conditions.

  6. Performance/price estimates for cortex-scale hardware: a design space exploration.

    Science.gov (United States)

    Zaveri, Mazad S; Hammerstrom, Dan

    2011-04-01

    In this paper, we revisit the concept of virtualization. Virtualization is useful for understanding and investigating the performance/price and other trade-offs related to the hardware design space. Moreover, it is perhaps the most important aspect of a hardware design space exploration. Such a design space exploration is a necessary part of the study of hardware architectures for large-scale computational models for intelligent computing, including AI, Bayesian, bio-inspired and neural models. A methodical exploration is needed to identify potentially interesting regions in the design space, and to assess the relative performance/price points of these implementations. As an example, in this paper we investigate the performance/price of (digital and mixed-signal) CMOS and hypothetical CMOL (nanogrid) technology based hardware implementations of human cortex-scale spiking neural systems. Through this analysis, and the resulting performance/price points, we demonstrate, in general, the importance of virtualization, and of doing these kinds of design space explorations. The specific results suggest that hybrid nanotechnology such as CMOL is a promising candidate to implement very large-scale spiking neural systems, providing a more efficient utilization of the density and storage benefits of emerging nano-scale technologies. In general, we believe that the study of such hypothetical designs/architectures will guide the neuromorphic hardware community towards building large-scale systems, and help guide research trends in intelligent computing, and computer engineering. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Improvement of nuclear ship engineering simulation system. Hardware renewal and interface improvement of the integral type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroki; Kyoya, Masahiko; Shimazaki, Junya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kano, Tadashi [KCS, Co., Mito, Ibaraki (Japan); Takahashi, Teruo [Energis, Co., Kobe, Hyogo (Japan)

    2001-10-01

    JAERI had carried out the design study about a lightweight and compact integral type reactor (an advanced marine reactor) with passive safety equipment as a power source for the future nuclear ships, and completed an engineering design. We have developed the simulator for the integral type reactor to confirm the design and operation performance and to utilize the study of automation of the reactor operation. The simulator can be used also for future research and development of a compact reactor. However, the improvement in a performance of hardware and a human machine interface of software of the simulator were needed for future research and development. Therefore, renewal of hardware and improvement of software have been conducted. The operability of the integral-reactor simulator has been improved. Furthermore, this improvement with the hardware and software on the market brought about better versatility, maintainability, extendibility and transfer of the system. This report mainly focuses on contents of the enhancement in a human machine interface, and describes hardware renewal and the interface improvement of the integral type reactor simulator. (author)

  8. PACE: A dynamic programming algorithm for hardware/software partitioning

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1996-01-01

    This paper presents the PACE partitioning algorithm which is used in the LYCOS co-synthesis system for partitioning control/dataflow graphs into hardware and software parts. The algorithm is a dynamic programming algorithm which solves both the problem of minimizing system execution time...

  9. The separated-sector cyclotron : the control system

    International Nuclear Information System (INIS)

    1991-01-01

    The old control system of the National Accelerator Centre remains fully operational while the networked system is being used to control new facilities. The latter system is still being developed, particularly with regard to the human interface. The data acquisition and graphic display facility is also being developed, to replace obsolete hardware. Several other graphics display and database packages are being developed to satisfy specific needs. Both hardware and software upgrades are being implemented as more facilities become available for the new operating system. 2 figs

  10. Development of intelligent instruments with embedded HTTP servers for control and data acquisition in a cryogenic setup—The hardware, firmware, and software implementation

    Science.gov (United States)

    Antony, Joby; Mathuria, D. S.; Datta, T. S.; Maity, Tanmoy

    2015-12-01

    The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as "CADS," which stands for "Complete Automation of Distribution System." CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local

  11. Development of intelligent instruments with embedded HTTP servers for control and data acquisition in a cryogenic setup--The hardware, firmware, and software implementation.

    Science.gov (United States)

    Antony, Joby; Mathuria, D S; Datta, T S; Maity, Tanmoy

    2015-12-01

    The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as "CADS," which stands for "Complete Automation of Distribution System." CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local

  12. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    Science.gov (United States)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2015-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-W radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center. While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus, the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA Glenn. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  13. NDAS Hardware Translation Layer Development

    Science.gov (United States)

    Nazaretian, Ryan N.; Holladay, Wendy T.

    2011-01-01

    The NASA Data Acquisition System (NDAS) project is aimed to replace all DAS software for NASA s Rocket Testing Facilities. There must be a software-hardware translation layer so the software can properly talk to the hardware. Since the hardware from each test stand varies, drivers for each stand have to be made. These drivers will act more like plugins for the software. If the software is being used in E3, then the software should point to the E3 driver package. If the software is being used at B2, then the software should point to the B2 driver package. The driver packages should also be filled with hardware drivers that are universal to the DAS system. For example, since A1, A2, and B2 all use the Preston 8300AU signal conditioners, then the driver for those three stands should be the same and updated collectively.

  14. PI and Fuzzy Control Strategies for High Voltage Output DC-DC Boost Power Converter - Hardware Implementation and Analysis

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Siano, Pierluigi

    2016-01-01

    This paper presents the control strategies by Proportional-Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its...... converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter...... performances in terms of efficiency, reduced transfer gain and increased cost with sensor units. Moreover, the internal self-parasitic components reduce the output voltage and efficiency of classical high voltage converters (HVC). This investigation focused on extra high-voltage (EHV) DC-DC boost power...

  15. Spaceflight hardware for conducting plant growth experiments in space: the early years 1960-2000

    Science.gov (United States)

    Porterfield, D. M.; Neichitailo, G. S.; Mashinski, A. L.; Musgrave, M. E.

    2003-01-01

    The best strategy for supporting long-duration space missions is believed to be bioregenerative life support systems (BLSS). An integral part of a BLSS is a chamber supporting the growth of higher plants that would provide food, water, and atmosphere regeneration for the human crew. Such a chamber will have to be a complete plant growth system, capable of providing lighting, water, and nutrients to plants in microgravity. Other capabilities include temperature, humidity, and atmospheric gas composition controls. Many spaceflight experiments to date have utilized incomplete growth systems (typically having a hydration system but lacking lighting) to study tropic and metabolic changes in germinating seedlings and young plants. American, European, and Russian scientists have also developed a number of small complete plant growth systems for use in spaceflight research. Currently we are entering a new era of experimentation and hardware development as a result of long-term spaceflight opportunities available on the International Space Station. This is already impacting development of plant growth hardware. To take full advantage of these new opportunities and construct innovative systems, we must understand the results of past spaceflight experiments and the basic capabilities of the diverse plant growth systems that were used to conduct these experiments. The objective of this paper is to describe the most influential pieces of plant growth hardware that have been used for the purpose of conducting scientific experiments during the first 40 years of research. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  16. Hardware device binding and mutual authentication

    Science.gov (United States)

    Hamlet, Jason R; Pierson, Lyndon G

    2014-03-04

    Detection and deterrence of device tampering and subversion by substitution may be achieved by including a cryptographic unit within a computing device for binding multiple hardware devices and mutually authenticating the devices. The cryptographic unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a binding PUF value. The cryptographic unit uses the binding PUF value during an enrollment phase and subsequent authentication phases. During a subsequent authentication phase, the cryptographic unit uses the binding PUF values of the multiple hardware devices to generate a challenge to send to the other device, and to verify a challenge received from the other device to mutually authenticate the hardware devices.

  17. Secure coupling of hardware components

    NARCIS (Netherlands)

    Hoepman, J.H.; Joosten, H.J.M.; Knobbe, J.W.

    2011-01-01

    A method and a system for securing communication between at least a first and a second hardware components of a mobile device is described. The method includes establishing a first shared secret between the first and the second hardware components during an initialization of the mobile device and,

  18. Feasibility study of a XML-based software environment to manage data acquisition hardware devices

    International Nuclear Information System (INIS)

    Arcidiacono, R.; Brigljevic, V.; Bruno, G.; Cano, E.; Cittolin, S.; Erhan, S.; Gigi, D.; Glege, F.; Gomez-Reino, R.; Gulmini, M.; Gutleber, J.; Jacobs, C.; Kreuzer, P.; Lo Presti, G.; Magrans, I.; Marinelli, N.; Maron, G.; Meijers, F.; Meschi, E.; Murray, S.; Nafria, M.; Oh, A.; Orsini, L.; Pieri, M.; Pollet, L.; Racz, A.; Rosinsky, P.; Schwick, C.; Sphicas, P.; Varela, J.

    2005-01-01

    A Software environment to describe configuration, control and test systems for data acquisition hardware devices is presented. The design follows a model that enforces a comprehensive use of an extensible markup language (XML) syntax to describe both the code and associated data. A feasibility study of this software, carried out for the CMS experiment at CERN, is also presented. This is based on a number of standalone applications for different hardware modules, and the design of a hardware management system to remotely access to these heterogeneous subsystems through a uniform web service interface

  19. Feasibility study of a XML-based software environment to manage data acquisition hardware devices

    Energy Technology Data Exchange (ETDEWEB)

    Arcidiacono, R. [Massachusetts Institute of Technology, Cambridge, MA (United States); Brigljevic, V. [CERN, Geneva (Switzerland); Rudjer Boskovic Institute, Zagreb (Croatia); Bruno, G. [CERN, Geneva (Switzerland); Cano, E. [CERN, Geneva (Switzerland); Cittolin, S. [CERN, Geneva (Switzerland); Erhan, S. [University of California, Los Angeles, Los Angeles, CA (United States); Gigi, D. [CERN, Geneva (Switzerland); Glege, F. [CERN, Geneva (Switzerland); Gomez-Reino, R. [CERN, Geneva (Switzerland); Gulmini, M. [INFN-Laboratori Nazionali di Legnaro, Legnaro (Italy); CERN, Geneva (Switzerland); Gutleber, J. [CERN, Geneva (Switzerland); Jacobs, C. [CERN, Geneva (Switzerland); Kreuzer, P. [University of Athens, Athens (Greece); Lo Presti, G. [CERN, Geneva (Switzerland); Magrans, I. [CERN, Geneva (Switzerland) and Electronic Engineering Department, Universidad Autonoma de Barcelona, Barcelona (Spain)]. E-mail: ildefons.magrans@cern.ch; Marinelli, N. [Institute of Accelerating Systems and Applications, Athens (Greece); Maron, G. [INFN-Laboratori Nazionali di Legnaro, Legnaro (Italy); Meijers, F. [CERN, Geneva (Switzerland); Meschi, E. [CERN, Geneva (Switzerland); Murray, S. [CERN, Geneva (Switzerland); Nafria, M. [Electronic Engineering Department, Universidad Autonoma de Barcelona, Barcelona (Spain); Oh, A. [CERN, Geneva (Switzerland); Orsini, L. [CERN, Geneva (Switzerland); Pieri, M. [University of California, San Diago, San Diago, CA (United States); Pollet, L. [CERN, Geneva (Switzerland); Racz, A. [CERN, Geneva (Switzerland); Rosinsky, P. [CERN, Geneva (Switzerland); Schwick, C. [CERN, Geneva (Switzerland); Sphicas, P. [University of Athens, Athens (Greece); CERN, Geneva (Switzerland); Varela, J. [LIP, Lisbon (Portugal); CERN, Geneva (Switzerland)

    2005-07-01

    A Software environment to describe configuration, control and test systems for data acquisition hardware devices is presented. The design follows a model that enforces a comprehensive use of an extensible markup language (XML) syntax to describe both the code and associated data. A feasibility study of this software, carried out for the CMS experiment at CERN, is also presented. This is based on a number of standalone applications for different hardware modules, and the design of a hardware management system to remotely access to these heterogeneous subsystems through a uniform web service interface.

  20. Open source hard- and software: Using Arduino boards to keep old hardware running

    International Nuclear Information System (INIS)

    Faugel, Helmut; Bobkov, Volodymyr

    2013-01-01

    The ASDEX Upgrade tokamak went into operation in 1991 with a proposed lifetime of 10 years. Due to major modifications ASDEX Upgrade is still in operation. Infrastructure like data acquisition, workstations, etc. is being modernized, interfaces like RS-232 are vanishing and new interfaces are being introduced. This leads to the necessity to adapt old hardware. Most of the microcontrollers used in the old hardware do not offer any support of the new interfaces and have to be replaced. A simple and efficient way is to replace them with open hardware microcontroller boards like the Arduino. These boards are based on 8-bit RISC microcontrollers and offer a software development environment with a large number of libraries. In this paper the use of Arduino boards for replacing the position unit, the stub tuner interface and its use controlling a direct digital synthesizer (DDS) with phase control capability are shown

  1. Open source hard- and software: Using Arduino boards to keep old hardware running

    Energy Technology Data Exchange (ETDEWEB)

    Faugel, Helmut [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Bobkov, Volodymyr [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany)

    2013-10-15

    The ASDEX Upgrade tokamak went into operation in 1991 with a proposed lifetime of 10 years. Due to major modifications ASDEX Upgrade is still in operation. Infrastructure like data acquisition, workstations, etc. is being modernized, interfaces like RS-232 are vanishing and new interfaces are being introduced. This leads to the necessity to adapt old hardware. Most of the microcontrollers used in the old hardware do not offer any support of the new interfaces and have to be replaced. A simple and efficient way is to replace them with open hardware microcontroller boards like the Arduino. These boards are based on 8-bit RISC microcontrollers and offer a software development environment with a large number of libraries. In this paper the use of Arduino boards for replacing the position unit, the stub tuner interface and its use controlling a direct digital synthesizer (DDS) with phase control capability are shown.

  2. Hardware realization of an SVM algorithm implemented in FPGAs

    Science.gov (United States)

    Wiśniewski, Remigiusz; Bazydło, Grzegorz; Szcześniak, Paweł

    2017-08-01

    The paper proposes a technique of hardware realization of a space vector modulation (SVM) of state function switching in matrix converter (MC), oriented on the implementation in a single field programmable gate array (FPGA). In MC the SVM method is based on the instantaneous space-vector representation of input currents and output voltages. The traditional computation algorithms usually involve digital signal processors (DSPs) which consumes the large number of power transistors (18 transistors and 18 independent PWM outputs) and "non-standard positions of control pulses" during the switching sequence. Recently, hardware implementations become popular since computed operations may be executed much faster and efficient due to nature of the digital devices (especially concurrency). In the paper, we propose a hardware algorithm of SVM computation. In opposite to the existing techniques, the presented solution applies COordinate Rotation DIgital Computer (CORDIC) method to solve the trigonometric operations. Furthermore, adequate arithmetic modules (that is, sub-devices) used for intermediate calculations, such as code converters or proper sectors selectors (for output voltages and input current) are presented in detail. The proposed technique has been implemented as a design described with the use of Verilog hardware description language. The preliminary results of logic implementation oriented on the Xilinx FPGA (particularly, low-cost device from Artix-7 family from Xilinx was used) are also presented.

  3. The Impact of Flight Hardware Scavenging on Space Logistics

    Science.gov (United States)

    Oeftering, Richard C.

    2011-01-01

    For a given fixed launch vehicle capacity the logistics payload delivered to the moon may be only roughly 20 percent of the payload delivered to the International Space Station (ISS). This is compounded by the much lower flight frequency to the moon and thus low availability of spares for maintenance. This implies that lunar hardware is much more scarce and more costly per kilogram than ISS and thus there is much more incentive to preserve hardware. The Constellation Lunar Surface System (LSS) program is considering ways of utilizing hardware scavenged from vehicles including the Altair lunar lander. In general, the hardware will have only had a matter of hours of operation yet there may be years of operational life remaining. By scavenging this hardware the program, in effect, is treating vehicle hardware as part of the payload. Flight hardware may provide logistics spares for system maintenance and reduce the overall logistics footprint. This hardware has a wide array of potential applications including expanding the power infrastructure, and exploiting in-situ resources. Scavenging can also be seen as a way of recovering the value of, literally, billions of dollars worth of hardware that would normally be discarded. Scavenging flight hardware adds operational complexity and steps must be taken to augment the crew s capability with robotics, capabilities embedded in flight hardware itself, and external processes. New embedded technologies are needed to make hardware more serviceable and scavengable. Process technologies are needed to extract hardware, evaluate hardware, reconfigure or repair hardware, and reintegrate it into new applications. This paper also illustrates how scavenging can be used to drive down the cost of the overall program by exploiting the intrinsic value of otherwise discarded flight hardware.

  4. Constructing Hardware in a Scale Embedded Language

    Energy Technology Data Exchange (ETDEWEB)

    2014-08-21

    Chisel is a new open-source hardware construction language developed at UC Berkeley that supports advanced hardware design using highly parameterized generators and layered domain-specific hardware languages. Chisel is embedded in the Scala programming language, which raises the level of hardware design abstraction by providing concepts including object orientation, functional programming, parameterized types, and type inference. From the same source, Chisel can generate a high-speed C++-based cycle-accurate software simulator, or low-level Verilog designed to pass on to standard ASIC or FPGA tools for synthesis and place and route.

  5. Hardware Objects for Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Thalinger, Christian; Korsholm, Stephan

    2008-01-01

    Java, as a safe and platform independent language, avoids access to low-level I/O devices or direct memory access. In standard Java, low-level I/O it not a concern; it is handled by the operating system. However, in the embedded domain resources are scarce and a Java virtual machine (JVM) without...... an underlying middleware is an attractive architecture. When running the JVM on bare metal, we need access to I/O devices from Java; therefore we investigate a safe and efficient mechanism to represent I/O devices as first class Java objects, where device registers are represented by object fields. Access...... to those registers is safe as Java’s type system regulates it. The access is also fast as it is directly performed by the bytecodes getfield and putfield. Hardware objects thus provide an object-oriented abstraction of low-level hardware devices. As a proof of concept, we have implemented hardware objects...

  6. PL-DA-PS: A hardware architecture and software toolbox for neurophysiology requiring complex visual stimuli and online behavioral control

    Directory of Open Access Journals (Sweden)

    Kyler M. Eastman

    2012-01-01

    Full Text Available Neurophysiological studies in awake, behaving primates (both human and nonhuman primates have focused with increasing scrutiny on the temporal relationship between neural signals and behaviors. Consequently, laboratories are often faced with the problem of developing experimental equipment that can support data recording with high temporal precision and also be flexible enough to accommodate a wide variety of experimental paradigms. To this end, we have developed an architecture that integrates several modern pieces of equipment, but still grants experimenters a high degree of flexibility. Our hardware architecture and software tools take advantage of three popular and powerful technologies: the PLexon apparatus for neurophysiological recordings (Plexon, Inc., Dallas TX, a DAtapixx box (Vpixx Technologies, Saint-Bruno, QC, Canada for analog, digital, and video signal input-output control, and the PSychtoolbox MATLAB toolbox for stimulus generation (Brainard, 1997. The PL-DA-PS (Platypus system is designed to support the study of the visual systems of awake, behaving primates during multi-electrode neurophysiological recordings, but can be easily applied to other related domains. Despite its wide range of capabilities and support for cutting-edge video displays and neural recording systems, the PLDAPS system is simple enough for someone with basic MATLAB programming skills to design their own experiments.

  7. Life Cycle V and V Process for Hardware Description Language Programs of Programmable Logic Device-based Instrumentation and Control Systems

    International Nuclear Information System (INIS)

    Cha, K. H.; Lee, D. Y.

    2010-01-01

    Programmable Logic Device (PLD), especially Complex PLD (CPLD) or Field Programmable Logic Array (FPGA), has been growing in interest in nuclear Instrumentation and Control (I and C) applications. PLD has been applied to replace an obsolete analog device or old-fashioned microprocessor, or to develop digital controller, subsystem or overall system on hardware aspects. This is the main reason why the PLD-based I and C design provides higher flexibility than the analog-based one, and the PLD-based I and C systems shows better real-time performance than the processor-based I and C systems. Due to the development of the PLD-based I and C systems, their nuclear qualification has been issued in the nuclear industry. Verification and Validation (V and V) is one of necessary qualification activities when a Hardware Description Language (HDL) is used to implement functions of the PLD-based I and C systems. The life cycle V and V process, described in this paper, has been defined as satisfying the nuclear V and V requirements, and it has been applied to verify Correctness, Completeness, and Consistency (3C) among design outputs in a safety-grade programmable logic controller and a safety-critical data communication system. Especially, software engineering techniques such as the Fagan Inspection, formal verification, simulated verification and automated testing have been defined for the life cycle V and V tasks of behavioral, structural, and physical design in VHDL

  8. Development of intelligent instruments with embedded HTTP servers for control and data acquisition in a cryogenic setup—The hardware, firmware, and software implementation

    International Nuclear Information System (INIS)

    Antony, Joby; Mathuria, D. S.; Datta, T. S.; Maity, Tanmoy

    2015-01-01

    The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as “CADS,” which stands for “Complete Automation of Distribution System.” CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN

  9. Development of intelligent instruments with embedded HTTP servers for control and data acquisition in a cryogenic setup—The hardware, firmware, and software implementation

    Energy Technology Data Exchange (ETDEWEB)

    Antony, Joby; Mathuria, D. S.; Datta, T. S. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Maity, Tanmoy [Department of MME, Indian School of Mines (ISM), Dhanbad 826004 (India)

    2015-12-15

    The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as “CADS,” which stands for “Complete Automation of Distribution System.” CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN

  10. Development of Hardware-in-the-Loop Simulation Based on Gazebo and Pixhawk for Unmanned Aerial Vehicles

    Science.gov (United States)

    Nguyen, Khoa Dang; Ha, Cheolkeun

    2018-04-01

    Hardware-in-the-loop simulation (HILS) is well known as an effective approach in the design of unmanned aerial vehicles (UAV) systems, enabling engineers to test the control algorithm on a hardware board with a UAV model on the software. Performance of HILS is determined by performances of the control algorithm, the developed model, and the signal transfer between the hardware and software. The result of HILS is degraded if any signal could not be transferred to the correct destination. Therefore, this paper aims to develop a middleware software to secure communications in HILS system for testing the operation of a quad-rotor UAV. In our HILS, the Gazebo software is used to generate a nonlinear six-degrees-of-freedom (6DOF) model, sensor model, and 3D visualization for the quad-rotor UAV. Meanwhile, the flight control algorithm is designed and implemented on the Pixhawk hardware. New middleware software, referred to as the control application software (CAS), is proposed to ensure the connection and data transfer between Gazebo and Pixhawk using the multithread structure in Qt Creator. The CAS provides a graphical user interface (GUI), allowing the user to monitor the status of packet transfer, and perform the flight control commands and the real-time tuning parameters for the quad-rotor UAV. Numerical implementations have been performed to prove the effectiveness of the middleware software CAS suggested in this paper.

  11. VEG-01: Veggie Hardware Verification Testing

    Science.gov (United States)

    Massa, Gioia; Newsham, Gary; Hummerick, Mary; Morrow, Robert; Wheeler, Raymond

    2013-01-01

    The Veggie plant/vegetable production system is scheduled to fly on ISS at the end of2013. Since much of the technology associated with Veggie has not been previously tested in microgravity, a hardware validation flight was initiated. This test will allow data to be collected about Veggie hardware functionality on ISS, allow crew interactions to be vetted for future improvements, validate the ability of the hardware to grow and sustain plants, and collect data that will be helpful to future Veggie investigators as they develop their payloads. Additionally, food safety data on the lettuce plants grown will be collected to help support the development of a pathway for the crew to safely consume produce grown on orbit. Significant background research has been performed on the Veggie plant growth system, with early tests focusing on the development of the rooting pillow concept, and the selection of fertilizer, rooting medium and plant species. More recent testing has been conducted to integrate the pillow concept into the Veggie hardware and to ensure that adequate water is provided throughout the growth cycle. Seed sanitation protocols have been established for flight, and hardware sanitation between experiments has been studied. Methods for shipping and storage of rooting pillows and the development of crew procedures and crew training videos for plant activities on-orbit have been established. Science verification testing was conducted and lettuce plants were successfully grown in prototype Veggie hardware, microbial samples were taken, plant were harvested, frozen, stored and later analyzed for microbial growth, nutrients, and A TP levels. An additional verification test, prior to the final payload verification testing, is desired to demonstrate similar growth in the flight hardware and also to test a second set of pillows containing zinnia seeds. Issues with root mat water supply are being resolved, with final testing and flight scheduled for later in 2013.

  12. Web tools to monitor and debug DAQ hardware

    International Nuclear Information System (INIS)

    Desavouret, Eugene; Nogiec, Jerzy M.

    2003-01-01

    A web-based toolkit to monitor and diagnose data acquisition hardware has been developed. It allows for remote testing, monitoring, and control of VxWorks data acquisition computers and associated instrumentation using the HTTP protocol and a web browser. This solution provides concurrent and platform independent access, supplementary to the standard single-user rlogin mechanism. The toolkit is based on a specialized web server, and allows remote access and execution of select system commands and tasks, execution of test procedures, and provides remote monitoring of computer system resources and connected hardware. Various DAQ components such as multiplexers, digital I/O boards, analog to digital converters, or current sources can be accessed and diagnosed remotely in a uniform and well-organized manner. Additionally, the toolkit application supports user authentication and is able to enforce specified access restrictions

  13. Multi-Disciplinary Design Support using Hardware-in-the-Loop Simulation

    NARCIS (Netherlands)

    Visser, P.M.; Groothuis, M.A.; Broenink, Johannes F.

    2004-01-01

    This paper describes a method using Hardware-in-the-Loop Simulation as a means for multidisciplinary design support. The method presented here, aims at supporting the design of heterogeneous embedded control systems. The method considers the implementation process as a stepwise refinement from

  14. Implementation of Hardware Accelerators on Zynq

    DEFF Research Database (Denmark)

    Toft, Jakob Kenn

    of the ARM Cortex-9 processor featured on the Zynq SoC, with regard to execution time, power dissipation and energy consumption. The implementation of the hardware accelerators were successful. Use of the Monte Carlo processor resulted in a significant increase in performance. The Telco hardware accelerator......In the recent years it has become obvious that the performance of general purpose processors are having trouble meeting the requirements of high performance computing applications of today. This is partly due to the relatively high power consumption, compared to the performance, of general purpose...... processors, which has made hardware accelerators an essential part of several datacentres and the worlds fastest super-computers. In this work, two different hardware accelerators were implemented on a Xilinx Zynq SoC platform mounted on the ZedBoard platform. The two accelerators are based on two different...

  15. Computer hardware fault administration

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  16. Optimized design of embedded DSP system hardware supporting complex algorithms

    Science.gov (United States)

    Li, Yanhua; Wang, Xiangjun; Zhou, Xinling

    2003-09-01

    The paper presents an optimized design method for a flexible and economical embedded DSP system that can implement complex processing algorithms as biometric recognition, real-time image processing, etc. It consists of a floating-point DSP, 512 Kbytes data RAM, 1 Mbytes FLASH program memory, a CPLD for achieving flexible logic control of input channel and a RS-485 transceiver for local network communication. Because of employing a high performance-price ratio DSP TMS320C6712 and a large FLASH in the design, this system permits loading and performing complex algorithms with little algorithm optimization and code reduction. The CPLD provides flexible logic control for the whole DSP board, especially in input channel, and allows convenient interface between different sensors and DSP system. The transceiver circuit can transfer data between DSP and host computer. In the paper, some key technologies are also introduced which make the whole system work efficiently. Because of the characters referred above, the hardware is a perfect flat for multi-channel data collection, image processing, and other signal processing with high performance and adaptability. The application section of this paper presents how this hardware is adapted for the biometric identification system with high identification precision. The result reveals that this hardware is easy to interface with a CMOS imager and is capable of carrying out complex biometric identification algorithms, which require real-time process.

  17. Efficient Hardware Implementation For Fingerprint Image Enhancement Using Anisotropic Gaussian Filter.

    Science.gov (United States)

    Khan, Tariq Mahmood; Bailey, Donald G; Khan, Mohammad A U; Kong, Yinan

    2017-05-01

    A real-time image filtering technique is proposed which could result in faster implementation for fingerprint image enhancement. One major hurdle associated with fingerprint filtering techniques is the expensive nature of their hardware implementations. To circumvent this, a modified anisotropic Gaussian filter is efficiently adopted in hardware by decomposing the filter into two orthogonal Gaussians and an oriented line Gaussian. An architecture is developed for dynamically controlling the orientation of the line Gaussian filter. To further improve the performance of the filter, the input image is homogenized by a local image normalization. In the proposed structure, for a middle-range reconfigurable FPGA, both parallel compute-intensive and real-time demands were achieved. We manage to efficiently speed up the image-processing time and improve the resource utilization of the FPGA. Test results show an improved speed for its hardware architecture while maintaining reasonable enhancement benchmarks.

  18. A Comprehensive Analysis and Hardware Implementation of Control Strategies for High Output Voltage DC-DC Boost Power Converter

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2017-01-01

    Full Text Available Classical DC-DC converters used in high voltage direct current (HVDC power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned deficiencies. The control strategy is based on classical proportional-integral (P-I and fuzzy logic closed-loop controller to get high and stable output voltage. Complete hardware prototype of EHV is implemented and experimental tasks are carried out with digital signal processor (DSP TMS320F2812. The control algorithms P-I, fuzzy logic and the pulse-width modulation (PWM signals for N-channel MOSFET device are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions.

  19. Graph based communication analysis for hardware/software codesign

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1999-01-01

    In this paper we present a coarse grain CDFG (Control/Data Flow Graph) model suitable for hardware/software partitioning of single processes and demonstrate how it is necessary to perform various transformations on the graph structure before partitioning in order to achieve a structure that allows...... for accurate estimation of communication overhead between nodes mapped to different processors. In particular, we demonstrate how various transformations of control structures can lead to a more accurate communication analysis and more efficient implementations. The purpose of the transformations is to obtain...

  20. Hardware and software techniques for boiler operation and management

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hiroshi (Hirakawa Iron Works, Ltd., Osaka (Japan))

    1989-04-01

    A study was conducted on the requirements for easy-operable boiler from the view points of hardware and software technologies. Relation among efficiency, energy-saving, and economics, and control of total emission regarding low NOx operation, were explained, with suggestion of orientation to developed necessary hard- and soft- ware for the realization. 8 figs.

  1. Non-fuel bearing hardware melting technology

    International Nuclear Information System (INIS)

    Newman, D.F.

    1993-01-01

    Battelle has developed a portable hardware melter concept that would allow spent fuel rod consolidation operations at commercial nuclear power plants to provide significantly more storage space for other spent fuel assemblies in existing pool racks at lower cost. Using low pressure compaction, the non-fuel bearing hardware (NFBH) left over from the removal of spent fuel rods from the stainless steel end fittings and the Zircaloy guide tubes and grid spacers still occupies 1/3 to 2/5 of the volume of the consolidated fuel rod assemblies. Melting the non-fuel bearing hardware reduces its volume by a factor 4 from that achievable with low-pressure compaction. This paper describes: (1) the configuration and design features of Battelle's hardware melter system that permit its portability, (2) the system's throughput capacity, (3) the bases for capital and operating estimates, and (4) the status of NFBH melter demonstration to reduce technical risks for implementation of the concept. Since all NFBH handling and processing operations would be conducted at the reactor site, costs for shipping radioactive hardware to and from a stationary processing facility for volume reduction are avoided. Initial licensing, testing, and installation in the field would follow the successful pattern achieved with rod consolidation technology

  2. Internet-based hardware/software co-design framework for embedded 3D graphics applications

    Directory of Open Access Journals (Sweden)

    Wong Weng-Fai

    2011-01-01

    Full Text Available Abstract Advances in technology are making it possible to run three-dimensional (3D graphics applications on embedded and handheld devices. In this article, we propose a hardware/software co-design environment for 3D graphics application development that includes the 3D graphics software, OpenGL ES application programming interface (API, device driver, and 3D graphics hardware simulators. We developed a 3D graphics system-on-a-chip (SoC accelerator using transaction-level modeling (TLM. This gives software designers early access to the hardware even before it is ready. On the other hand, hardware designers also stand to gain from the more complex test benches made available in the software for verification. A unique aspect of our framework is that it allows hardware and software designers from geographically dispersed areas to cooperate and work on the same framework. Designs can be entered and executed from anywhere in the world without full access to the entire framework, which may include proprietary components. This results in controlled and secure transparency and reproducibility, granting leveled access to users of various roles.

  3. A Practical Introduction to HardwareSoftware Codesign

    CERN Document Server

    Schaumont, Patrick R

    2013-01-01

    This textbook provides an introduction to embedded systems design, with emphasis on integration of custom hardware components with software. The key problem addressed in the book is the following: how can an embedded systems designer strike a balance between flexibility and efficiency? The book describes how combining hardware design with software design leads to a solution to this important computer engineering problem. The book covers four topics in hardware/software codesign: fundamentals, the design space of custom architectures, the hardware/software interface and application examples. The book comes with an associated design environment that helps the reader to perform experiments in hardware/software codesign. Each chapter also includes exercises and further reading suggestions. Improvements in this second edition include labs and examples using modern FPGA environments from Xilinx and Altera, which make the material applicable to a greater number of courses where these tools are already in use.  Mo...

  4. Comparative Modal Analysis of Sieve Hardware Designs

    Science.gov (United States)

    Thompson, Nathaniel

    2012-01-01

    The CMTB Thwacker hardware operates as a testbed analogue for the Flight Thwacker and Sieve components of CHIMRA, a device on the Curiosity Rover. The sieve separates particles with a diameter smaller than 150 microns for delivery to onboard science instruments. The sieving behavior of the testbed hardware should be similar to the Flight hardware for the results to be meaningful. The elastodynamic behavior of both sieves was studied analytically using the Rayleigh Ritz method in conjunction with classical plate theory. Finite element models were used to determine the mode shapes of both designs, and comparisons between the natural frequencies and mode shapes were made. The analysis predicts that the performance of the CMTB Thwacker will closely resemble the performance of the Flight Thwacker within the expected steady state operating regime. Excitations of the testbed hardware that will mimic the flight hardware were recommended, as were those that will improve the efficiency of the sieving process.

  5. Development of Hardware Dual Modality Tomography System

    Directory of Open Access Journals (Sweden)

    R. M. Zain

    2009-06-01

    Full Text Available The paper describes the hardware development and performance of the Dual Modality Tomography (DMT system. DMT consists of optical and capacitance sensors. The optical sensors consist of 16 LEDs and 16 photodiodes. The Electrical Capacitance Tomography (ECT electrode design use eight electrode plates as the detecting sensor. The digital timing and the control unit have been developing in order to control the light projection of optical emitters, switching the capacitance electrodes and to synchronize the operation of data acquisition. As a result, the developed system is able to provide a maximum 529 set data per second received from the signal conditioning circuit to the computer.

  6. Synthetic hardware performance analysis in virtualized cloud environment for healthcare organization.

    Science.gov (United States)

    Tan, Chee-Heng; Teh, Ying-Wah

    2013-08-01

    The main obstacles in mass adoption of cloud computing for database operations in healthcare organization are the data security and privacy issues. In this paper, it is shown that IT services particularly in hardware performance evaluation in virtual machine can be accomplished effectively without IT personnel gaining access to actual data for diagnostic and remediation purposes. The proposed mechanisms utilized the hypothetical data from TPC-H benchmark, to achieve 2 objectives. First, the underlying hardware performance and consistency is monitored via a control system, which is constructed using TPC-H queries. Second, the mechanism to construct stress-testing scenario is envisaged in the host, using a single or combination of TPC-H queries, so that the resource threshold point can be verified, if the virtual machine is still capable of serving critical transactions at this constraining juncture. This threshold point uses server run queue size as input parameter, and it serves 2 purposes: It provides the boundary threshold to the control system, so that periodic learning of the synthetic data sets for performance evaluation does not reach the host's constraint level. Secondly, when the host undergoes hardware change, stress-testing scenarios are simulated in the host by loading up to this resource threshold level, for subsequent response time verification from real and critical transactions.

  7. Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware

    Directory of Open Access Journals (Sweden)

    Andreas Stöckel

    2017-08-01

    Full Text Available Large-scale neuromorphic hardware platforms, specialized computer systems for energy efficient simulation of spiking neural networks, are being developed around the world, for example as part of the European Human Brain Project (HBP. Due to conceptual differences, a universal performance analysis of these systems in terms of runtime, accuracy and energy efficiency is non-trivial, yet indispensable for further hard- and software development. In this paper we describe a scalable benchmark based on a spiking neural network implementation of the binary neural associative memory. We treat neuromorphic hardware and software simulators as black-boxes and execute exactly the same network description across all devices. Experiments on the HBP platforms under varying configurations of the associative memory show that the presented method allows to test the quality of the neuron model implementation, and to explain significant deviations from the expected reference output.

  8. Modular Neural Tile Architecture for Compact Embedded Hardware Spiking Neural Network

    NARCIS (Netherlands)

    Pande, Sandeep; Morgan, Fearghal; Cawley, Seamus; Bruintjes, Tom; Smit, Gerardus Johannes Maria; McGinley, Brian; Carrillo, Snaider; Harkin, Jim; McDaid, Liam

    2013-01-01

    Biologically-inspired packet switched network on chip (NoC) based hardware spiking neural network (SNN) architectures have been proposed as an embedded computing platform for classification, estimation and control applications. Storage of large synaptic connectivity (SNN topology) information in

  9. Intermittent control: a computational theory of human control.

    Science.gov (United States)

    Gawthrop, Peter; Loram, Ian; Lakie, Martin; Gollee, Henrik

    2011-02-01

    The paradigm of continuous control using internal models has advanced understanding of human motor control. However, this paradigm ignores some aspects of human control, including intermittent feedback, serial ballistic control, triggered responses and refractory periods. It is shown that event-driven intermittent control provides a framework to explain the behaviour of the human operator under a wider range of conditions than continuous control. Continuous control is included as a special case, but sampling, system matched hold, an intermittent predictor and an event trigger allow serial open-loop trajectories using intermittent feedback. The implementation here may be described as "continuous observation, intermittent action". Beyond explaining unimodal regulation distributions in common with continuous control, these features naturally explain refractoriness and bimodal stabilisation distributions observed in double stimulus tracking experiments and quiet standing, respectively. Moreover, given that human control systems contain significant time delays, a biological-cybernetic rationale favours intermittent over continuous control: intermittent predictive control is computationally less demanding than continuous predictive control. A standard continuous-time predictive control model of the human operator is used as the underlying design method for an event-driven intermittent controller. It is shown that when event thresholds are small and sampling is regular, the intermittent controller can masquerade as the underlying continuous-time controller and thus, under these conditions, the continuous-time and intermittent controller cannot be distinguished. This explains why the intermittent control hypothesis is consistent with the continuous control hypothesis for certain experimental conditions.

  10. Control by hardware of government systems for laser diodes with STM32F4 and Peltier cells; Control por hardware de sistemas de gobierno para diodos laser con STM32F4 y celdas Peltier

    Energy Technology Data Exchange (ETDEWEB)

    Ulloa Solano, Natalia Irina

    2013-07-01

    A low cost prototype of a government system is developed for laser diodes with STM32F4 microcontrollers and Peltier cooling. Commercial and homemade government system (with STM32F4 microcontrollers ) are investigated with the objective of adequately control the current of a laser diode. Characteristics of STM32F4 microcontrollers are described. The low cost platforms as the Arduino and Raspberry Pi are compared. A bibliographical and documentary compilation is realized for the preliminary study of the components and tools to use in the prototype. The theory related with the heat transfer between a laser diode and the outside, and a Peltier cell and outside is summarized. A heat dissipation model is proposed of a system formed by a laser diode and Peltier cell. A control system of current and fed back temperature is designed and implemented to allow adequately control laser diodes without and with photodiode (2 pickups and 3 pickups respectively). The viability of control with free software is studied and corroborated. The temperature control of the laser diode using a Peltier cell as cooler has been possible through a simple control of ON/OFF mode. The integration of devices such as ADC, DAC, timers and facilities of STM32F4 microcontroller, have allowed to optimize costs by hardware, save time and costs. Also, the incorporation of the Cortex-M4 processor has optimized the consumption of operational resources and has executed much of its instruction set of efficient way. Because of this, the project has complied with its maximum as to low cost is concerned [Spanish] Un prototipo de bajo costo de un sistema de gobierno es desarrollado para diodos laser con microcontroladores STM32F4 y enfriamiento con Peltier. Los sistemas de gobierno comerciales y caseros (con microcontroladores STM32F4) son investigados con el objetivo de controlar adecuadamente la corriente de un diodo laser. Las caracteristicas de los microcontroladores STM32F4 son descritas. Las plataformas de

  11. Transmission delays in hardware clock synchronization

    Science.gov (United States)

    Shin, Kang G.; Ramanathan, P.

    1988-01-01

    Various methods, both with software and hardware, have been proposed to synchronize a set of physical clocks in a system. Software methods are very flexible and economical but suffer an excessive time overhead, whereas hardware methods require no time overhead but are unable to handle transmission delays in clock signals. The effects of nonzero transmission delays in synchronization have been studied extensively in the communication area in the absence of malicious or Byzantine faults. The authors show that it is easy to incorporate the ideas from the communication area into the existing hardware clock synchronization algorithms to take into account the presence of both malicious faults and nonzero transmission delays.

  12. Computer hardware description languages - A tutorial

    Science.gov (United States)

    Shiva, S. G.

    1979-01-01

    The paper introduces hardware description languages (HDL) as useful tools for hardware design and documentation. The capabilities and limitations of HDLs are discussed along with the guidelines needed in selecting an appropriate HDL. The directions for future work are provided and attention is given to the implementation of HDLs in microcomputers.

  13. Reconfigurable Hardware for Compressing Hyperspectral Image Data

    Science.gov (United States)

    Aranki, Nazeeh; Namkung, Jeffrey; Villapando, Carlos; Kiely, Aaron; Klimesh, Matthew; Xie, Hua

    2010-01-01

    High-speed, low-power, reconfigurable electronic hardware has been developed to implement ICER-3D, an algorithm for compressing hyperspectral-image data. The algorithm and parts thereof have been the topics of several NASA Tech Briefs articles, including Context Modeler for Wavelet Compression of Hyperspectral Images (NPO-43239) and ICER-3D Hyperspectral Image Compression Software (NPO-43238), which appear elsewhere in this issue of NASA Tech Briefs. As described in more detail in those articles, the algorithm includes three main subalgorithms: one for computing wavelet transforms, one for context modeling, and one for entropy encoding. For the purpose of designing the hardware, these subalgorithms are treated as modules to be implemented efficiently in field-programmable gate arrays (FPGAs). The design takes advantage of industry- standard, commercially available FPGAs. The implementation targets the Xilinx Virtex II pro architecture, which has embedded PowerPC processor cores with flexible on-chip bus architecture. It incorporates an efficient parallel and pipelined architecture to compress the three-dimensional image data. The design provides for internal buffering to minimize intensive input/output operations while making efficient use of offchip memory. The design is scalable in that the subalgorithms are implemented as independent hardware modules that can be combined in parallel to increase throughput. The on-chip processor manages the overall operation of the compression system, including execution of the top-level control functions as well as scheduling, initiating, and monitoring processes. The design prototype has been demonstrated to be capable of compressing hyperspectral data at a rate of 4.5 megasamples per second at a conservative clock frequency of 50 MHz, with a potential for substantially greater throughput at a higher clock frequency. The power consumption of the prototype is less than 6.5 W. The reconfigurability (by means of reprogramming) of

  14. Support for NUMA hardware in HelenOS

    OpenAIRE

    Horký, Vojtěch

    2011-01-01

    The goal of this master thesis is to extend HelenOS operating system with the support for ccNUMA hardware. The text of the thesis contains a brief introduction to ccNUMA hardware, an overview of NUMA features and relevant features of HelenOS (memory management, scheduling, etc.). The thesis analyses various design decisions of the implementation of NUMA support -- introducing the hardware topology into the kernel data structures, propagating this information to user space, thread affinity to ...

  15. Technological advances for studying human behavior

    Science.gov (United States)

    Roske-Hofstrand, Renate J.

    1990-01-01

    Technological advances for studying human behavior are noted in viewgraph form. It is asserted that performance-aiding systems are proliferating without a fundamental understanding of how they would interact with the humans who must control them. Two views of automation research, the hardware view and the human-centered view, are listed. Other viewgraphs give information on vital elements for human-centered research, a continuum of the research process, available technologies, new technologies for persistent problems, a sample research infrastructure, the need for metrics, and examples of data-link technology.

  16. Sterilization of space hardware.

    Science.gov (United States)

    Pflug, I. J.

    1971-01-01

    Discussion of various techniques of sterilization of space flight hardware using either destructive heating or the action of chemicals. Factors considered in the dry-heat destruction of microorganisms include the effects of microbial water content, temperature, the physicochemical properties of the microorganism and adjacent support, and nature of the surrounding gas atmosphere. Dry-heat destruction rates of microorganisms on the surface, between mated surface areas, or buried in the solid material of space vehicle hardware are reviewed, along with alternative dry-heat sterilization cycles, thermodynamic considerations, and considerations of final sterilization-process design. Discussed sterilization chemicals include ethylene oxide, formaldehyde, methyl bromide, dimethyl sulfoxide, peracetic acid, and beta-propiolactone.

  17. Software for Managing Inventory of Flight Hardware

    Science.gov (United States)

    Salisbury, John; Savage, Scott; Thomas, Shirman

    2003-01-01

    The Flight Hardware Support Request System (FHSRS) is a computer program that relieves engineers at Marshall Space Flight Center (MSFC) of most of the non-engineering administrative burden of managing an inventory of flight hardware. The FHSRS can also be adapted to perform similar functions for other organizations. The FHSRS affords a combination of capabilities, including those formerly provided by three separate programs in purchasing, inventorying, and inspecting hardware. The FHSRS provides a Web-based interface with a server computer that supports a relational database of inventory; electronic routing of requests and approvals; and electronic documentation from initial request through implementation of quality criteria, acquisition, receipt, inspection, storage, and final issue of flight materials and components. The database lists both hardware acquired for current projects and residual hardware from previous projects. The increased visibility of residual flight components provided by the FHSRS has dramatically improved the re-utilization of materials in lieu of new procurements, resulting in a cost savings of over $1.7 million. The FHSRS includes subprograms for manipulating the data in the database, informing of the status of a request or an item of hardware, and searching the database on any physical or other technical characteristic of a component or material. The software structure forces normalization of the data to facilitate inquiries and searches for which users have entered mixed or inconsistent values.

  18. Targeting multiple heterogeneous hardware platforms with OpenCL

    Science.gov (United States)

    Fox, Paul A.; Kozacik, Stephen T.; Humphrey, John R.; Paolini, Aaron; Kuller, Aryeh; Kelmelis, Eric J.

    2014-06-01

    The OpenCL API allows for the abstract expression of parallel, heterogeneous computing, but hardware implementations have substantial implementation differences. The abstractions provided by the OpenCL API are often insufficiently high-level to conceal differences in hardware architecture. Additionally, implementations often do not take advantage of potential performance gains from certain features due to hardware limitations and other factors. These factors make it challenging to produce code that is portable in practice, resulting in much OpenCL code being duplicated for each hardware platform being targeted. This duplication of effort offsets the principal advantage of OpenCL: portability. The use of certain coding practices can mitigate this problem, allowing a common code base to be adapted to perform well across a wide range of hardware platforms. To this end, we explore some general practices for producing performant code that are effective across platforms. Additionally, we explore some ways of modularizing code to enable optional optimizations that take advantage of hardware-specific characteristics. The minimum requirement for portability implies avoiding the use of OpenCL features that are optional, not widely implemented, poorly implemented, or missing in major implementations. Exposing multiple levels of parallelism allows hardware to take advantage of the types of parallelism it supports, from the task level down to explicit vector operations. Static optimizations and branch elimination in device code help the platform compiler to effectively optimize programs. Modularization of some code is important to allow operations to be chosen for performance on target hardware. Optional subroutines exploiting explicit memory locality allow for different memory hierarchies to be exploited for maximum performance. The C preprocessor and JIT compilation using the OpenCL runtime can be used to enable some of these techniques, as well as to factor in hardware

  19. DUL Radio: A light-weight, wireless toolkit for sketching in hardware

    DEFF Research Database (Denmark)

    Brynskov, Martin; Lunding, Rasmus; Vestergaard, Lasse Steenbock

    2011-01-01

    -mobile prototyping where fast reaction is needed (e.g. in controlling sound). The target audiences include designers, students, artists etc. with minimal programming and hardware skills. This presentation covers our motivations for creating the toolkit, specifications, test results, comparison to related products...

  20. Human factors issues in the use of artificial intelligence in air traffic control. October 1990 Workshop

    Science.gov (United States)

    Hockaday, Stephen; Kuhlenschmidt, Sharon (Editor)

    1991-01-01

    The objective of the workshop was to explore the role of human factors in facilitating the introduction of artificial intelligence (AI) to advanced air traffic control (ATC) automation concepts. AI is an umbrella term which is continually expanding to cover a variety of techniques where machines are performing actions taken based upon dynamic, external stimuli. AI methods can be implemented using more traditional programming languages such as LISP or PROLOG, or they can be implemented using state-of-the-art techniques such as object-oriented programming, neural nets (hardware or software), and knowledge based expert systems. As this technology advances and as increasingly powerful computing platforms become available, the use of AI to enhance ATC systems can be realized. Substantial efforts along these lines are already being undertaken at the FAA Technical Center, NASA Ames Research Center, academic institutions, industry, and elsewhere. Although it is clear that the technology is ripe for bringing computer automation to ATC systems, the proper scope and role of automation are not at all apparent. The major concern is how to combine human controllers with computer technology. A wide spectrum of options exists, ranging from using automation only to provide extra tools to augment decision making by human controllers to turning over moment-by-moment control to automated systems and using humans as supervisors and system managers. Across this spectrum, it is now obvious that the difficulties that occur when tying human and automated systems together must be resolved so that automation can be introduced safely and effectively. The focus of the workshop was to further explore the role of injecting AI into ATC systems and to identify the human factors that need to be considered for successful application of the technology to present and future ATC systems.

  1. Contamination Examples and Lessons from Low Earth Orbit Experiments and Operational Hardware

    Science.gov (United States)

    Pippin, Gary; Finckenor, Miria M.

    2009-01-01

    Flight experiments flown on the Space Shuttle, the International Space Station, Mir, Skylab, and free flyers such as the Long Duration Exposure Facility, the European Retrievable Carrier, and the EFFU, provide multiple opportunities for the investigation of molecular contamination effects. Retrieved hardware from the Solar Maximum Mission satellite, Mir, and the Hubble Space Telescope has also provided the means gaining insight into contamination processes. Images from the above mentioned hardware show contamination effects due to materials processing, hardware storage, pre-flight cleaning, as well as on-orbit events such as outgassing, mechanical failure of hardware in close proximity, impacts from man-made debris, and changes due to natural environment factors.. Contamination effects include significant changes to thermal and electrical properties of thermal control surfaces, optics, and power systems. Data from several flights has been used to develop a rudimentary estimate of asymptotic values for absorptance changes due to long-term solar exposure (4000-6000 Equivalent Sun Hours) of silicone-based molecular contamination deposits of varying thickness. Recommendations and suggestions for processing changes and constraints based on the on-orbit observed results will be presented.

  2. A Power Hardware-in-the-Loop Platform with Remote Distribution Circuit Cosimulation

    Energy Technology Data Exchange (ETDEWEB)

    Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta; Williams, Tess L.; Schneider, Kevin P.; Chassin, David P.

    2015-04-01

    This paper demonstrates the use of a novel cosimulation architecture that integrates hardware testing using Power Hardware-in-the-Loop (PHIL) with larger-scale electric grid models using off-the-shelf, non-PHIL software tools. This architecture enables utilities to study the impacts of emerging energy technologies on their system and manufacturers to explore the interactions of new devices with existing and emerging devices on the power system, both without the need to convert existing grid models to a new platform or to conduct in-field trials. The paper describes an implementation of this architecture for testing two residential-scale advanced solar inverters at separate points of common coupling. The same hardware setup is tested with two different distribution feeders (IEEE 123 and 8500 node test systems) modeled using GridLAB-D. In addition to simplifying testing with multiple feeders, the architecture demonstrates additional flexibility with hardware testing in one location linked via the Internet to software modeling in a remote location. In testing, inverter current, real and reactive power, and PCC voltage are well captured by the co-simulation platform. Testing of the inverter advanced control features is currently somewhat limited by the software model time step (1 sec) and tested communication latency (24 msec). Overshoot induced oscillations are observed with volt/VAR control delays of 0 and 1.5 sec, while 3.4 sec and 5.5 sec delays produced little or no oscillation. These limitations could be overcome using faster modeling and communication within the same co-simulation architecture.

  3. Water system hardware and management rehabilitation: Qualitative evidence from Ghana, Kenya, and Zambia.

    Science.gov (United States)

    Klug, Tori; Shields, Katherine F; Cronk, Ryan; Kelly, Emma; Behnke, Nikki; Lee, Kristen; Bartram, Jamie

    2017-05-01

    Sufficient, safe, continuously available drinking water is important for human health and development, yet one in three handpumps in sub-Saharan Africa are non-functional at any given time. Community management, coupled with access to external technical expertise and spare parts, is a widely promoted model for rural water supply management. However, there is limited evidence describing how community management can address common hardware and management failures of rural water systems in sub-Saharan Africa. We identified hardware and management rehabilitation pathways using qualitative data from 267 interviews and 57 focus group discussions in Ghana, Kenya, and Zambia. Study participants were water committee members, community members, and local leaders in 18 communities (six in each study country) with water systems managed by a water committee and supported by World Vision (WV), an international non-governmental organization (NGO). Government, WV or private sector employees engaged in supporting the water systems were also interviewed. Inductive analysis was used to allow for pathways to emerge from the data, based on the perspectives and experiences of study participants. Four hardware rehabilitation pathways were identified, based on the types of support used in rehabilitation. Types of support were differentiated as community or external. External support includes financial and/or technical support from government or WV employees. Community actor understanding of who to contact when a hardware breakdown occurs and easy access to technical experts were consistent reasons for rapid rehabilitation for all hardware rehabilitation pathways. Three management rehabilitation pathways were identified. All require the involvement of community leaders and were best carried out when the action was participatory. The rehabilitation pathways show how available resources can be leveraged to restore hardware breakdowns and management failures for rural water systems in sub

  4. An empirical study on the human error recovery failure probability when using soft controls in NPP advanced MCRs

    International Nuclear Information System (INIS)

    Jang, Inseok; Kim, Ar Ryum; Jung, Wondea; Seong, Poong Hyun

    2014-01-01

    Highlights: • Many researchers have tried to understand human recovery process or step. • Modeling human recovery process is not sufficient to be applied to HRA. • The operation environment of MCRs in NPPs has changed by adopting new HSIs. • Recovery failure probability in a soft control operation environment is investigated. • Recovery failure probability here would be important evidence for expert judgment. - Abstract: It is well known that probabilistic safety assessments (PSAs) today consider not just hardware failures and environmental events that can impact upon risk, but also human error contributions. Consequently, the focus on reliability and performance management has been on the prevention of human errors and failures rather than the recovery of human errors. However, the recovery of human errors is as important as the prevention of human errors and failures for the safe operation of nuclear power plants (NPPs). For this reason, many researchers have tried to find a human recovery process or step. However, modeling the human recovery process is not sufficient enough to be applied to human reliability analysis (HRA), which requires human error and recovery probabilities. In this study, therefore, human error recovery failure probabilities based on predefined human error modes were investigated by conducting experiments in the operation mockup of advanced/digital main control rooms (MCRs) in NPPs. To this end, 48 subjects majoring in nuclear engineering participated in the experiments. In the experiments, using the developed accident scenario based on tasks from the standard post trip action (SPTA), the steam generator tube rupture (SGTR), and predominant soft control tasks, which are derived from the loss of coolant accident (LOCA) and the excess steam demand event (ESDE), all error detection and recovery data based on human error modes were checked with the performance sheet and the statistical analysis of error recovery/detection was then

  5. Improvement of hardware basic testing : Identification and development of a scripted automation tool that will support hardware basic testing

    OpenAIRE

    Rask, Ulf; Mannestig, Pontus

    2002-01-01

    In the ever-increasing development pace, circuits and hardware are no exception. Hardware designs grow and circuits gets more complex at the same time as the market pressure lowers the expected time-to-market. In this rush, verification methods often lag behind. Hardware manufacturers must be aware of the importance of total verification if they want to avoid quality flaws and broken deadlines which in the long run will lead to delayed time-to-market, bad publicity and a decreasing market sha...

  6. Parallel-Architecture Simulator Development Using Hardware Transactional Memory

    OpenAIRE

    Armejach Sanosa, Adrià

    2009-01-01

    To address the need for a simpler parallel programming model, Transactional Memory (TM) has been developed and promises good parallel performance with easy-to-write parallel code. Unlike lock-based approaches, with TM, programmers do not need to explicitly specify and manage the synchronization among threads. However, programmers simply mark code segments as transactions, and the TM system manages the concurrency control for them. TM can be implemented either in software (STM) or hardware (HT...

  7. Flight Hardware Packaging Design for Stringent EMC Radiated Emission Requirements

    Science.gov (United States)

    Lortz, Charlene L.; Huang, Chi-Chien N.; Ravich, Joshua A.; Steiner, Carl N.

    2013-01-01

    This packaging design approach can help heritage hardware meet a flight project's stringent EMC radiated emissions requirement. The approach requires only minor modifications to a hardware's chassis and mainly concentrates on its connector interfaces. The solution is to raise the surface area where the connector is mounted by a few millimeters using a pedestal, and then wrapping with conductive tape from the cable backshell down to the surface-mounted connector. This design approach has been applied to JPL flight project subsystems. The EMC radiated emissions requirements for flight projects can vary from benign to mission critical. If the project's EMC requirements are stringent, the best approach to meet EMC requirements would be to design an EMC control program for the project early on and implement EMC design techniques starting with the circuit board layout. This is the ideal scenario for hardware that is built from scratch. Implementation of EMC radiated emissions mitigation techniques can mature as the design progresses, with minimal impact to the design cycle. The real challenge exists for hardware that is planned to be flown following a built-to-print approach, in which heritage hardware from a past project with a different set of requirements is expected to perform satisfactorily for a new project. With acceptance of heritage, the design would already be established (circuit board layout and components have already been pre-determined), and hence any radiated emissions mitigation techniques would only be applicable at the packaging level. The key is to take a heritage design with its known radiated emissions spectrum and repackage, or modify its chassis design so that it would have a better chance of meeting the new project s radiated emissions requirements.

  8. Static Scheduling of Periodic Hardware Tasks with Precedence and Deadline Constraints on Reconfigurable Hardware Devices

    Directory of Open Access Journals (Sweden)

    Ikbel Belaid

    2011-01-01

    Full Text Available Task graph scheduling for reconfigurable hardware devices can be defined as finding a schedule for a set of periodic tasks with precedence, dependence, and deadline constraints as well as their optimal allocations on the available heterogeneous hardware resources. This paper proposes a new methodology comprising three main stages. Using these three main stages, dynamic partial reconfiguration and mixed integer programming, pipelined scheduling and efficient placement are achieved and enable parallel computing of the task graph on the reconfigurable devices by optimizing placement/scheduling quality. Experiments on an application of heterogeneous hardware tasks demonstrate an improvement of resource utilization of 12.45% of the available reconfigurable resources corresponding to a resource gain of 17.3% compared to a static design. The configuration overhead is reduced to 2% of the total running time. Due to pipelined scheduling, the task graph spanning is minimized by 4% compared to sequential execution of the graph.

  9. Digital Hardware Realization of Forward and Inverse Kinematics for a Five-Axis Articulated Robot Arm

    Directory of Open Access Journals (Sweden)

    Bui Thi Hai Linh

    2015-01-01

    Full Text Available When robot arm performs a motion control, it needs to calculate a complicated algorithm of forward and inverse kinematics which consumes much CPU time and certainty slows down the motion speed of robot arm. Therefore, to solve this issue, the development of a hardware realization of forward and inverse kinematics for an articulated robot arm is investigated. In this paper, the formulation of the forward and inverse kinematics for a five-axis articulated robot arm is derived firstly. Then, the computations algorithm and its hardware implementation are described. Further, very high speed integrated circuits hardware description language (VHDL is applied to describe the overall hardware behavior of forward and inverse kinematics. Additionally, finite state machine (FSM is applied for reducing the hardware resource usage. Finally, for verifying the correctness of forward and inverse kinematics for the five-axis articulated robot arm, a cosimulation work is constructed by ModelSim and Simulink. The hardware of the forward and inverse kinematics is run by ModelSim and a test bench which generates stimulus to ModelSim and displays the output response is taken in Simulink. Under this design, the forward and inverse kinematics algorithms can be completed within one microsecond.

  10. COMPUTER HARDWARE MARKING

    CERN Multimedia

    Groupe de protection des biens

    2000-01-01

    As part of the campaign to protect CERN property and for insurance reasons, all computer hardware belonging to the Organization must be marked with the words 'PROPRIETE CERN'.IT Division has recently introduced a new marking system that is both economical and easy to use. From now on all desktop hardware (PCs, Macintoshes, printers) issued by IT Division with a value equal to or exceeding 500 CHF will be marked using this new system.For equipment that is already installed but not yet marked, including UNIX workstations and X terminals, IT Division's Desktop Support Service offers the following services free of charge:Equipment-marking wherever the Service is called out to perform other work (please submit all work requests to the IT Helpdesk on 78888 or helpdesk@cern.ch; for unavoidable operational reasons, the Desktop Support Service will only respond to marking requests when these coincide with requests for other work such as repairs, system upgrades, etc.);Training of personnel designated by Division Leade...

  11. Space Flight Human System Standards (SFHSS). Volume 2; Human Factors, Habitability and Environmental Factors" and Human Integration Design Handbook (HIDH)

    Science.gov (United States)

    Davis, Jeffrey R.; Fitts, David J.

    2009-01-01

    This viewgraph presentation reviews the standards for space flight hardware based on human capabilities and limitations. The contents include: 1) Scope; 2) Applicable documents; 3) General; 4) Human Physical Characteristics and Capabilities; 5) Human Performance and Cognition; 6) Natural and Induced Environments; 7) Habitability Functions; 8) Architecture; 9) Hardware and Equipment; 10) Crew Interfaces; 11) Spacesuits; 12) Operatons: Reserved; 13) Ground Maintenance and Assembly: Reserved; 14) Appendix A-Reference Documents; 15) Appendix N-Acronyms and 16) Appendix C-Definition. Volume 2 is supported by the Human Integration Design Handbook (HIDH)s.

  12. Logistics hardware and services control system

    Science.gov (United States)

    Koromilas, A.; Miller, K.; Lamb, T.

    1973-01-01

    Software system permits onsite direct control of logistics operations, which include spare parts, initial installation, tool control, and repairable parts status and control, through all facets of operations. System integrates logistics actions and controls receipts, issues, loans, repairs, fabrications, and modifications and assets in predicting and allocating logistics parts and services effectively.

  13. GOSH! A roadmap for open-source science hardware

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    The goal of the Gathering for Open Science Hardware (GOSH! 2016), held from 2 to 5 March 2016 at IdeaSquare, was to lay the foundations of the open-source hardware for science movement.   The participants in the GOSH! 2016 meeting gathered in IdeaSquare. (Image: GOSH Community) “Despite advances in technology, many scientific innovations are held back because of a lack of affordable and customisable hardware,” says François Grey, a professor at the University of Geneva and coordinator of Citizen Cyberlab – a partnership between CERN, the UN Institute for Training and Research and the University of Geneva – which co-organised the GOSH! 2016 workshop. “This scarcity of accessible science hardware is particularly obstructive for citizen science groups and humanitarian organisations that don’t have the same economic means as a well-funded institution.” Instead, open sourcing science hardware co...

  14. Design of controller for control rod of research reactors

    International Nuclear Information System (INIS)

    Abou-Zaid, R.M.F.M

    2008-01-01

    Designing and testing digital control system for any nuclear research reactor can be costly and time consuming. In this thesis, a rapid, low-cost proto typing and testing procedure for digital controller design is proposed using the concept of Hardware-In-The-Loop (HIL). Some of the control loop components are real hardware components and the others are simulated. First, the whole system is modeled and tested by Real-Time Simulation (RTS) using conventional simulation techniques such as MATLAB / SIMULINK. Second the Hardware-in-the-loop simulation is tested using Real-Time Windows Target in MATLAB and Visual C ++ . The control parts are included as hardware components which are the reactor control rod and its drivers. Three kinds of controllers are studied, Proportional-Derivative (PD), Proportional-Integral-Derivative (PID) and Fuzzy controller. An experimental setup for the hardware used in HIL concept for the control of the nuclear research reactor has been realized. Experimental results are obtained and compared with the simulation results. The experimental results indicate the validation of HIL method in this domain.

  15. Hardware Accelerated Simulated Radiography

    International Nuclear Information System (INIS)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-01-01

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists

  16. Human Systems Engineering for Launch processing at Kennedy Space Center (KSC)

    Science.gov (United States)

    Henderson, Gena; Stambolian, Damon B.; Stelges, Katrine

    2012-01-01

    Launch processing at Kennedy Space Center (KSC) is primarily accomplished by human users of expensive and specialized equipment. In order to reduce the likelihood of human error, to reduce personal injuries, damage to hardware, and loss of mission the design process for the hardware needs to include the human's relationship with the hardware. Just as there is electrical, mechanical, and fluids, the human aspect is just as important. The focus of this presentation is to illustrate how KSC accomplishes the inclusion of the human aspect in the design using human centered hardware modeling and engineering. The presentations also explain the current and future plans for research and development for improving our human factors analysis tools and processes.

  17. Enhancing transparent fuzzy controllers through temporal concepts : an application to computer games

    NARCIS (Netherlands)

    Acampora, G.; Loia, V.; Vitiello, A.

    2010-01-01

    In the last years, FML (Fuzzy Markup Language) is emerging as one of the most efficient and useful language to define a fuzzy control thanks to its capability of modeling Fuzzy Logic Controllers in a human-readable and hardware independent way, i.e. the so-called Transparent Fuzzy Controllers

  18. Test system design for Hardware-in-Loop evaluation of PEM fuel cells and auxiliaries

    Energy Technology Data Exchange (ETDEWEB)

    Randolf, Guenter; Moore, Robert M. [Hawaii Natural Energy Institute, University of Hawaii, Honolulu, HI (United States)

    2006-07-14

    In order to evaluate the dynamic behavior of proton exchange membrane (PEM) fuel cells and their auxiliaries, the dynamic capability of the test system must exceed the dynamics of the fastest component within the fuel cell or auxiliary component under test. This criterion is even more critical when a simulated component of the fuel cell system (e.g., the fuel cell stack) is replaced by hardware and Hardware-in-Loop (HiL) methodology is employed. This paper describes the design of a very fast dynamic test system for fuel cell transient research and HiL evaluation. The integration of the real time target (which runs the simulation), the test stand PC (that controls the operation of the test stand), and the programmable logic controller (PLC), for safety and low-level control tasks, into one single integrated unit is successfully completed. (author)

  19. Ultra-low noise miniaturized neural amplifier with hardware averaging.

    Science.gov (United States)

    Dweiri, Yazan M; Eggers, Thomas; McCallum, Grant; Durand, Dominique M

    2015-08-01

    Peripheral nerves carry neural signals that could be used to control hybrid bionic systems. Cuff electrodes provide a robust and stable interface but the recorded signal amplitude is small (concept of hardware averaging to nerve recordings obtained with cuff electrodes. An optimization procedure is developed to minimize noise and power simultaneously. The novel design was based on existing neural amplifiers (Intan Technologies, LLC) and is validated with signals obtained from the FINE in chronic dog experiments. We showed that hardware averaging leads to a reduction in the total recording noise by a factor of 1/√N or less depending on the source resistance. Chronic recording of physiological activity with FINE using the presented design showed significant improvement on the recorded baseline noise with at least two parallel operation transconductance amplifiers leading to a 46.1% reduction at N = 8. The functionality of these recordings was quantified by the SNR improvement and shown to be significant for N = 3 or more. The present design was shown to be capable of generating hardware averaging on noise improvement for neural recording with cuff electrodes, and can accommodate the presence of high source impedances that are associated with the miniaturized contacts and the high channel count in electrode arrays. This technique can be adopted for other applications where miniaturized and implantable multichannel acquisition systems with ultra-low noise and low power are required.

  20. Reliable software for unreliable hardware a cross layer perspective

    CERN Document Server

    Rehman, Semeen; Henkel, Jörg

    2016-01-01

    This book describes novel software concepts to increase reliability under user-defined constraints. The authors’ approach bridges, for the first time, the reliability gap between hardware and software. Readers will learn how to achieve increased soft error resilience on unreliable hardware, while exploiting the inherent error masking characteristics and error (stemming from soft errors, aging, and process variations) mitigations potential at different software layers. · Provides a comprehensive overview of reliability modeling and optimization techniques at different hardware and software levels; · Describes novel optimization techniques for software cross-layer reliability, targeting unreliable hardware.

  1. Hardware device to physical structure binding and authentication

    Science.gov (United States)

    Hamlet, Jason R.; Stein, David J.; Bauer, Todd M.

    2013-08-20

    Detection and deterrence of device tampering and subversion may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a binding of the hardware device and a physical structure. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generate an internal PUF value. Binding logic is coupled to receive the internal PUF value, as well as an external PUF value associated with the physical structure, and generates a binding PUF value, which represents the binding of the hardware device and the physical structure. The cryptographic fingerprint unit also includes a cryptographic unit that uses the binding PUF value to allow a challenger to authenticate the binding.

  2. Raspberry Pi hardware projects 1

    CERN Document Server

    Robinson, Andrew

    2013-01-01

    Learn how to take full advantage of all of Raspberry Pi's amazing features and functions-and have a blast doing it! Congratulations on becoming a proud owner of a Raspberry Pi, the credit-card-sized computer! If you're ready to dive in and start finding out what this amazing little gizmo is really capable of, this ebook is for you. Taken from the forthcoming Raspberry Pi Projects, Raspberry Pi Hardware Projects 1 contains three cool hardware projects that let you have fun with the Raspberry Pi while developing your Raspberry Pi skills. The authors - PiFace inventor, Andrew Robinson and Rasp

  3. A Hardware Abstraction Layer in Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Korsholm, Stephan; Kalibera, Tomas

    2011-01-01

    Embedded systems use specialized hardware devices to interact with their environment, and since they have to be dependable, it is attractive to use a modern, type-safe programming language like Java to develop programs for them. Standard Java, as a platform-independent language, delegates access...... to devices, direct memory access, and interrupt handling to some underlying operating system or kernel, but in the embedded systems domain resources are scarce and a Java Virtual Machine (JVM) without an underlying middleware is an attractive architecture. The contribution of this article is a proposal...... for Java packages with hardware objects and interrupt handlers that interface to such a JVM. We provide implementations of the proposal directly in hardware, as extensions of standard interpreters, and finally with an operating system middleware. The latter solution is mainly seen as a migration path...

  4. Designing Secure Systems on Reconfigurable Hardware

    OpenAIRE

    Huffmire, Ted; Brotherton, Brett; Callegari, Nick; Valamehr, Jonathan; White, Jeff; Kastner, Ryan; Sherwood, Ted

    2008-01-01

    The extremely high cost of custom ASIC fabrication makes FPGAs an attractive alternative for deployment of custom hardware. Embedded systems based on reconfigurable hardware integrate many functions onto a single device. Since embedded designers often have no choice but to use soft IP cores obtained from third parties, the cores operate at different trust levels, resulting in mixed trust designs. The goal of this project is to evaluate recently proposed security primitives for reconfigurab...

  5. Hardware-Accelerated Simulated Radiography

    International Nuclear Information System (INIS)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S.; Frank, R

    2005-01-01

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32-bit floating point texture capabilities to obtain solutions to the radiative transport equation for X-rays. The hardware accelerated solutions are accurate enough to enable scientists to explore the experimental design space with greater efficiency than the methods currently in use. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedral meshes that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester

  6. Hardware and Software of a Bipolar Current Source Controlled by PC

    Directory of Open Access Journals (Sweden)

    Mirjana Rajčić-Vujasinović

    2008-03-01

    Full Text Available This paper describes a realization of a bipolar current source developed by the paper's authors. The source is intended for use in galvanic and other industrial plants, where a pulse-reverse current supply (with the desired shape in time is required. A prototype of the device, which provides the outcome current intensity up to ± 50 A, has been constructed. The hardware of the source consists of a Pentium IV PC, a commercial ADDA converter, an interface of authors’ original construction as well as a current regulator. The application software is developed using a commercial packet LabView as the basis.

  7. Accelerator control using RSX-11M and CAMAC

    International Nuclear Information System (INIS)

    Kulaga, J.E.

    1978-01-01

    This paper describes a computer-control system for a superconducting linear accelerator currently under development at Argonne National Laboratory. RSX-11M V3.1 running on a PDP 11/34 is used with CAMAC hardware to fully control 22 active beam-line elements and monitor critical accelerator conditions such as temperature, vacuum, and beam characteristics. This paper contrasts the use of an RSX compatible CAMAC driver for most CAMAC I/O operations and the use of the Connect-to-Interrupt Vector directive for fast ADC operation. The usage of table-driven software to achieve hardware configuration independence is discussed, along with the design considerations of the software interface between a human operator and a computer-control system featuring multi-function computer-readable control knobs and computer-writable displays which make up the operator's control console

  8. The reactor power control system based on digital control in nuclear power plant

    International Nuclear Information System (INIS)

    Liu Chong; Zhou Jianliang; Tan Ping

    2010-01-01

    The PLC (Programmable Logical Controller), digital communication and redundant techniques are applied in the rod control and position indication system(namely the reactor power control system) to perform the power control in the 300 MW reactor automatically and integrally in Qinshan Phase I project. This paper introduces the features, digital design methods of hardware of the instrumentation and control system (I and C) in the reactor power control. It is more convenient for the information exchange by human-machine interface (HMI), operation and maintenance, and the system reliability has been greatly improved after the project being reconstructed. (authors)

  9. WE-DE-206-02: MRI Hardware - Magnet, Gradient, RF Coils

    Energy Technology Data Exchange (ETDEWEB)

    Kocharian, A. [Methodist Hospital (United States)

    2016-06-15

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner, and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.

  10. Design and hardware alternatives for a Safety-Parameter Display System

    International Nuclear Information System (INIS)

    Honeycutt, F.; Merten, W.T.; Roy, G.M.; Segraves, E.; Stone, G.P.

    1981-05-01

    The SPDS is a dedicated control room operator aid and is viewed as an important safety improvement within the context of other post-TMI fixes. Hardware configurations and components to implement the NSAC display format of a Safety Parameter Display System (SPDS) are evaluated. The evaluation was made on the basis of five alternative hardware configurations which use commercially available components. Four of the alternatives use computer/video display architecture. The fifth alternative is a simple hardwired system which uses strip chart recorders. SPDS regulatory requirements are defined by NUREG 0696. Overall feasibility of the NSAC concept was evaluated in terms of performance, reliability, cost, licensability, and flexibility. The flexibility evaluation relates to the ability to handle other display formats, the data acquisition needs of the other emergency facilities and the impact of expected future NRC requirements

  11. Real time hardware implementation of power converters for grid integration of distributed generation and STATCOM systems

    Science.gov (United States)

    Jaithwa, Ishan

    Deployment of smart grid technologies is accelerating. Smart grid enables bidirectional flows of energy and energy-related communications. The future electricity grid will look very different from today's power system. Large variable renewable energy sources will provide a greater portion of electricity, small DERs and energy storage systems will become more common, and utilities will operate many different kinds of energy efficiency. All of these changes will add complexity to the grid and require operators to be able to respond to fast dynamic changes to maintain system stability and security. This thesis investigates advanced control technology for grid integration of renewable energy sources and STATCOM systems by verifying them on real time hardware experiments using two different systems: d SPACE and OPAL RT. Three controls: conventional, direct vector control and the intelligent Neural network control were first simulated using Matlab to check the stability and safety of the system and were then implemented on real time hardware using the d SPACE and OPAL RT systems. The thesis then shows how dynamic-programming (DP) methods employed to train the neural networks are better than any other controllers where, an optimal control strategy is developed to ensure effective power delivery and to improve system stability. Through real time hardware implementation it is proved that the neural vector control approach produces the fastest response time, low overshoot, and, the best performance compared to the conventional standard vector control method and DCC vector control technique. Finally the entrepreneurial approach taken to drive the technologies from the lab to market via ORANGE ELECTRIC is discussed in brief.

  12. Apple-CORE: Microgrids of SVP cores: flexible, general-purpose, fine-grained hardware concurrency management

    NARCIS (Netherlands)

    Poss, R.; Lankamp, M.; Yang, Q.; Fu, J.; van Tol, M.W.; Jesshope, C.; Nair, S.

    2012-01-01

    To harness the potential of CMPs for scalable, energy-efficient performance in general-purpose computers, the Apple-CORE project has co-designed a general machine model and concurrency control interface with dedicated hardware support for concurrency control across multiple cores. Its SVP interface

  13. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    Science.gov (United States)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important

  14. Hardware design of a microcomputer controlled diagnostic vacuum controller

    International Nuclear Information System (INIS)

    Marsala, R.J.

    1983-01-01

    The TFTR diagnostic vacuum controller (DVC) has been designed and built to control and monitor the pumps, valves and gauges which comprise a diagnostic vacuum system. The DVC is a microcomputer based self-contained controller with battery backup which may be controlled manually from front panel controls or remotely via CICADA. The DVC implements all pump and valve sequencing and provides protection against incorrect operation. There are presently two versions of the DVC operating on TFTR and a third version being used on the S-1 machine

  15. Hardware-in-the-Loop Test for Automatic Voltage Regulator of Synchronous Condenser

    DEFF Research Database (Denmark)

    Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde

    2018-01-01

    Automatic voltage regulator (AVR) plays an important role in volt/var control of synchronous condenser (SC) in power systems. Test AVR performance in steady-state and dynamic conditions in real grid is expensive, low efficiency, and hard to achieve. To address this issue, we implement hardware...

  16. Hardware security and trust design and deployment of integrated circuits in a threatened environment

    CERN Document Server

    Chaves, Ricardo; Natale, Giorgio; Regazzoni, Francesco

    2017-01-01

    This book provides a comprehensive introduction to hardware security, from specification to implementation. Applications discussed include embedded systems ranging from small RFID tags to satellites orbiting the earth. The authors describe a design and synthesis flow, which will transform a given circuit into a secure design incorporating counter-measures against fault attacks. In order to address the conflict between testability and security, the authors describe innovative design-for-testability (DFT) computer-aided design (CAD) tools that support security challenges, engineered for compliance with existing, commercial tools. Secure protocols are discussed, which protect access to necessary test infrastructures and enable the design of secure access controllers. Covers all aspects of hardware security including design, manufacturing, testing, reliability, validation and utilization; Describes new methods and algorithms for the identification/detection of hardware trojans; Defines new architectures capable o...

  17. Development of inspection techniques for quantitatively measuring surface contamination on SRM hardware

    Science.gov (United States)

    Law, R. D.

    1989-01-01

    A contaminant is any material or substance which is potentially undesirable or which may adversely affect any part, component, or assembly. Contamination control of SRM hardware surfaces is a serious concern, for both Thiokol and NASA, with particular concern for contaminants which may adversely affect bonding surfaces. The purpose of this study is to develop laboratory analytical techniques which will make it possible to certify the cleanliness of any designated surface, with special focus on particulates (dust, dirt, lint, etc.), oils (hydrocarbons, silicones, plasticizers, etc.), and greases (HD-2, fluorocarbon grease, etc.). The hardware surfaces of concern will include D6AC steel, aluminum alloys, anodized aluminum alloys, glass/phenolic, carbon/phenolic, NBR/asbestos-silica, and EPDM rubber.

  18. Hardware-in-the-Loop Co-simulation of Distribution Grid for Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Rotger-Griful, Sergi; Chatzivasileiadis, Spyros; Jacobsen, Rune H.; Stewart, Emma M.; Domingo, Javier M.; Wetter, Michael

    2016-06-20

    In modern power systems, co-simulation is proposed as an enabler for analyzing the interactions between disparate systems. This paper introduces the co-simulation platform Virtual Grid Integration Laboratory (VirGIL) including Hardware-in-the-Loop testing, and demonstrates its potential to assess demand response strategies. VirGIL is based on a modular architecture using the Functional Mock-up Interface industrial standard to integrate new simulators. VirGIL combines state-of-the-art simulators in power systems, communications, buildings, and control. In this work, VirGIL is extended with a Hardware-in-the-Loop component to control the ventilation system of a real 12-story building in Denmark. VirGIL capabilities are illustrated in three scenarios: load following, primary reserves and load following aggregation. Experimental results show that the system can track one minute changing signals and it can provide primary reserves for up-regulation. Furthermore, the potential of aggregating several ventilation systems is evaluated considering the impact at distribution grid level and the communications protocol effect.

  19. Control System Architectures, Technologies and Concepts for Near Term and Future Human Exploration of Space

    Science.gov (United States)

    Boulanger, Richard; Overland, David

    2004-01-01

    Technologies that facilitate the design and control of complex, hybrid, and resource-constrained systems are examined. This paper focuses on design methodologies, and system architectures, not on specific control methods that may be applied to life support subsystems. Honeywell and Boeing have estimated that 60-80Y0 of the effort in developing complex control systems is software development, and only 20-40% is control system development. It has also been shown that large software projects have failure rates of as high as 50-65%. Concepts discussed include the Unified Modeling Language (UML) and design patterns with the goal of creating a self-improving, self-documenting system design process. Successful architectures for control must not only facilitate hardware to software integration, but must also reconcile continuously changing software with much less frequently changing hardware. These architectures rely on software modules or components to facilitate change. Architecting such systems for change leverages the interfaces between these modules or components.

  20. Hardware-in-the-loop environment for the design and test of regulators in the refrigeration technology; Hardware-in-the-Loop Umgebung fuer den Entwurf und Test von kaeltetechnischen Reglern

    Energy Technology Data Exchange (ETDEWEB)

    Koeberle, Thomas; Becker, Martin [Hochschule Biberach (Germany). Inst. fuer Gebaeude- und Energiesysteme

    2012-07-01

    In its Directive on energy efficiency, The European Commission has specified a target value for saving primary energy by 20 % up the year 2020. According to current projections, the target will be failed by half. This is why significantly more efforts are needed. The energy consumption of the technical supply of coldness amounts nearly 14 % of the total consumption of electrical power in Germany. The Research Council Coldness specifies that the potential for energy conservation in the refrigeration engineering amounts up to 40 %. Thus, more effort must be made in the refrigeration engineering in order to reach the energy saving targets of the European Commission. Thereby, the major portion of the potential of energy saving consists of the establishment of the requirements in regard to system concepts and components as well as the control. The control of refrigeration systems provides a simple possibility of intervention to optimize the energy efficiency. The optimization of control parameters is usually achieved only with great experience and knowledge. There are any tools which facilitate an objective comparison of optimization measures of control concepts, strategies and settings. In order to facilitate the evaluation and comparison of refrigeration controls, a hardware-in-the-loop test environment was set up at the University of Applied Sciences in Biberach (Federal Republic of Germany). The test environment facilitates an implementation of a controller in a simulation environment so that the controller drives the simulation model of the chiller. Due to this procedure, tests are possible under standardized and reproducible conditions. The impact of modified control parameters, disturbances and modifications in the regulatory approach can be investigated by means of the possibility of a targeted impacting of individual disturbances. The test rig was designed, built and tested at the University of Applied Sciences in Biberach. Simulation models were adapted to the

  1. Diseño de AUV.Arquitectura de hardware y software

    Directory of Open Access Journals (Sweden)

    Alain Martínez

    2013-07-01

    Full Text Available Resumen: El presente documento discute la estrategia bajo la que fueron concebidas la arquitectura de hardware y software para el prototipo de vehículo autónomo: HRC-AUV, así como la selección de los elementos fundamentales que las componen. El diseño obtenido pondera la sencillez y el desarrollo en condiciones de bajo costo, factores útiles a investigadores que comienzan su actividad en este campo. El trabajo resume las prestaciones que brindan dichas estructuras y las pruebas preliminares de operatividad a que han sido sometidas para demostrar la validez de su empleo en la explotación de un AUV. De igual forma se presentan los modelos dinámicos linealizados de la planta, utilizados en la sintonía de los lazos de control. La respuesta de dichos lazos y en general del HRC-AUV navegando en el océano, es presentada a través de los resultados obtenidos en varias pruebas experimentales. Abstract: This paper discusses the strategy under which were conceived the hardware and software architecture for autonomous vehicle prototype: HRC-AUV, and the selection of the fundamental elements that compose them. The obtained design weights simplicity and development in terms of low cost, factors useful to researchers begin their activity in this field. The paper summarizes the benefits provided by these structures and preliminary operational tests that have been submitted to demonstrate the validity of their use in the operation of an AUV. Likewise are linearized dynamic models of the plant, used in the tuning of the control loops are presented. The response of such loops and in general the HRC-AUV navigating in the ocean is presented through the results of several experimental tests. Palabras clave: AUV, arquitectura de hardware, arquitectura de software., Keywords: AUV, hardware architecture, software architecture.

  2. Generation of Embedded Hardware/Software from SystemC

    Directory of Open Access Journals (Sweden)

    Dominique Houzet

    2006-08-01

    Full Text Available Designers increasingly rely on reusing intellectual property (IP and on raising the level of abstraction to respect system-on-chip (SoC market characteristics. However, most hardware and embedded software codes are recoded manually from system level. This recoding step often results in new coding errors that must be identified and debugged. Thus, shorter time-to-market requires automation of the system synthesis from high-level specifications. In this paper, we propose a design flow intended to reduce the SoC design cost. This design flow unifies hardware and software using a single high-level language. It integrates hardware/software (HW/SW generation tools and an automatic interface synthesis through a custom library of adapters. We have validated our interface synthesis approach on a hardware producer/consumer case study and on the design of a given software radiocommunication application.

  3. Generation of Embedded Hardware/Software from SystemC

    Directory of Open Access Journals (Sweden)

    Ouadjaout Salim

    2006-01-01

    Full Text Available Designers increasingly rely on reusing intellectual property (IP and on raising the level of abstraction to respect system-on-chip (SoC market characteristics. However, most hardware and embedded software codes are recoded manually from system level. This recoding step often results in new coding errors that must be identified and debugged. Thus, shorter time-to-market requires automation of the system synthesis from high-level specifications. In this paper, we propose a design flow intended to reduce the SoC design cost. This design flow unifies hardware and software using a single high-level language. It integrates hardware/software (HW/SW generation tools and an automatic interface synthesis through a custom library of adapters. We have validated our interface synthesis approach on a hardware producer/consumer case study and on the design of a given software radiocommunication application.

  4. Cooperative communications hardware, channel and PHY

    CERN Document Server

    Dohler, Mischa

    2010-01-01

    Facilitating Cooperation for Wireless Systems Cooperative Communications: Hardware, Channel & PHY focuses on issues pertaining to the PHY layer of wireless communication networks, offering a rigorous taxonomy of this dispersed field, along with a range of application scenarios for cooperative and distributed schemes, demonstrating how these techniques can be employed. The authors discuss hardware, complexity and power consumption issues, which are vital for understanding what can be realized at the PHY layer, showing how wireless channel models differ from more traditional

  5. IDD Archival Hardware Architecture and Workflow

    Energy Technology Data Exchange (ETDEWEB)

    Mendonsa, D; Nekoogar, F; Martz, H

    2008-10-09

    This document describes the functionality of every component in the DHS/IDD archival and storage hardware system shown in Fig. 1. The document describes steps by step process of image data being received at LLNL then being processed and made available to authorized personnel and collaborators. Throughout this document references will be made to one of two figures, Fig. 1 describing the elements of the architecture and the Fig. 2 describing the workflow and how the project utilizes the available hardware.

  6. Aspects of system modelling in Hardware/Software partitioning

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1996-01-01

    This paper addresses fundamental aspects of system modelling and partitioning algorithms in the area of Hardware/Software Codesign. Three basic system models for partitioning are presented and the consequences of partitioning according to each of these are analyzed. The analysis shows...... the importance of making a clear distinction between the model used for partitioning and the model used for evaluation It also illustrates the importance of having a realistic hardware model such that hardware sharing can be taken into account. Finally, the importance of integrating scheduling and allocation...

  7. Advanced Research and Education in Electrical Drives by Using Digital Real-Time Hardware-in-the-Loop Simulation

    DEFF Research Database (Denmark)

    Bojoi, R.; Profumo, F.; Griva, G.

    2002-01-01

    The authors present in this paper a digital real-time hardware-in-the-loop simulation of a three-phase induction motor drive. The main real-time simulation tool is the dSPACE DS1103 PPC Controller Board which simulates the power and signal conditioning parts. The control algorithm of the virtual...... drive has been implemented on the Evaluation Board of TMS320F240 DSP. The experimental results validate this solution as a powerful tool to be used in research and advanced education. Thus, the students can put in practic the theory without spending too much time with details concerning the hardware...

  8. Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models

    Science.gov (United States)

    Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro

    2017-10-01

    Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.

  9. Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models

    Directory of Open Access Journals (Sweden)

    Marcello Benedetti

    2017-11-01

    Full Text Available Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.

  10. Hardware Acceleration of Adaptive Neural Algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    James, Conrad D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    As tradit ional numerical computing has faced challenges, researchers have turned towards alternative computing approaches to reduce power - per - computation metrics and improve algorithm performance. Here, we describe an approach towards non - conventional computing that strengthens the connection between machine learning and neuroscience concepts. The Hardware Acceleration of Adaptive Neural Algorithms (HAANA) project ha s develop ed neural machine learning algorithms and hardware for applications in image processing and cybersecurity. While machine learning methods are effective at extracting relevant features from many types of data, the effectiveness of these algorithms degrades when subjected to real - world conditions. Our team has generated novel neural - inspired approa ches to improve the resiliency and adaptability of machine learning algorithms. In addition, we have also designed and fabricated hardware architectures and microelectronic devices specifically tuned towards the training and inference operations of neural - inspired algorithms. Finally, our multi - scale simulation framework allows us to assess the impact of microelectronic device properties on algorithm performance.

  11. Human Spirometry: Computerized Data Acquisition in the Undergraduate Human Physiology Laboratory.

    Science.gov (United States)

    Braun, Bradley T.; Mulstay, Richard E.

    1993-01-01

    Applies microcomputer technology to the development of a data acquisition and analysis system for the study of measuring the human lung capacity and metabolism. Discusses the chain-compensated spirometer, interfacing hardware, data acquisition hardware and software, and the applicability of the system to other biological measurements. (MDH)

  12. Design of microprocessor-based hardware for number theoretic transform implementation

    Energy Technology Data Exchange (ETDEWEB)

    Anwar Ahmed Shamim

    1985-01-01

    The Winograd (1976) Fourier Transform algorithm (WFTA) was implemented on a TMS9900 microprocessor to compute NTTs. Since multiplication conducted modulo m is very time consuming a special purpose external hardware modular multiplier was designed, constructed and interfaced with the TMS9900 microprocessor. This external hardware modular multiplier allowed an improvement in the transform execution time. Computation time may further be reduced by employing several microprocessors. Taking advantage of the inherent parallelism of the WFTA, a dedicated parallel microprocessor system was designed and constructed to implement a 15-point WFTA in parallel. Benchmark programs were written to choose a suitable microprocessor for the parallel microprocessor system. A master or a host microprocessor is used to control the parallel microprocessor system and provides an interface to the outside world. An analogue to digital (a/d) and a digital to analogue (d/a) converter allows real time digital signal processing.

  13. A Novel Real-Time Path Servo Control of a Hardware-in-the-Loop for a Large-Stroke Asymmetric Rod-Less Pneumatic System under Variable Loads

    Directory of Open Access Journals (Sweden)

    Hao-Ting Lin

    2017-06-01

    Full Text Available This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally.

  14. A Novel Real-Time Path Servo Control of a Hardware-in-the-Loop for a Large-Stroke Asymmetric Rod-Less Pneumatic System under Variable Loads.

    Science.gov (United States)

    Lin, Hao-Ting

    2017-06-04

    This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC) is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally.

  15. Hardware/software virtualization for the reconfigurable multicore platform.

    NARCIS (Netherlands)

    Ferger, M.; Al Kadi, M.; Hübner, M.; Koedam, M.L.P.J.; Sinha, S.S.; Goossens, K.G.W.; Marchesan Almeida, Gabriel; Rodrigo Azambuja, J.; Becker, Juergen

    2012-01-01

    This paper presents the Flex Tiles approach for the virtualization of hardware and software for a reconfigurable multicore architecture. The approach enables the virtualization of a dynamic tile-based hardware architecture consisting of processing tiles connected via a network-on-chip and a

  16. PERANCANGAN APLIKASI SISTEM PAKAR DIAGNOSA KERUSAKAN HARDWARE KOMPUTER METODE FORWARD CHAINING

    Directory of Open Access Journals (Sweden)

    Ali Akbar Rismayadi

    2016-09-01

    Full Text Available Abstract Damage to computer hardware, not a big disaster, because not all damage to computer hardware can not be repaired, nearly all computer users, whether public or institutions often suffer various kinds of damage that occurred in the computer hardware it has, and the damage can be caused by various factors that are basically as the user does not know the cause of what makes the computer hardware used damaged. Therefore, it is necessary to build an application that can help users to mendiganosa damage to computer hardware. So that everyone can diagnose the type of hardware damage his computer. Development of expert system diagnosis of damage to computer hardware uses forward chaining method by promoting alisisis descriptive of various damage data obtained from several experts and other sources of literature to reach a conclusion on the diagnosis of damage. As well as using the waterfall model as a model system development, starting from the analysis stage to stage software needs support. This application is built using a programming language tools Eclipse ADT as well as SQLite as its database. diagnosis expert system damage computer hardware is expected to be used as a tool to help find the causes of damage to computer hardware independently without the help of a computer technician.

  17. Humans vs Hardware: The Unique World of NASA Human System Risk Assessment

    Science.gov (United States)

    Anton, W.; Havenhill, M.; Overton, Eric

    2016-01-01

    Understanding spaceflight risks to crew health and performance is a crucial aspect of preparing for exploration missions in the future. The research activities of the Human Research Program (HRP) provide substantial evidence to support most risk reduction work. The Human System Risk Board (HSRB), acting on behalf of the Office of Chief Health and Medical Officer (OCHMO), assesses these risks and assigns likelihood and consequence ratings to track progress. Unfortunately, many traditional approaches in risk assessment such as those used in the engineering aspects of spaceflight are difficult to apply to human system risks. This presentation discusses the unique aspects of risk assessment from the human system risk perspective and how these limitations are accommodated and addressed in order to ensure that reasonable inputs are provided to support the OCHMO's overall risk posture for manned exploration missions.

  18. Hardware and software architecture for the integration of the new EC waves launcher in FTU control system

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, L. [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy); Centioli, C., E-mail: cristina.centioli@enea.it [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy); Galperti, C.; Alessi, E.; Granucci, G. [Associazione EURATOM-ENEA-CNR sulla Fusione – IFP-CNR, Via Roberto Cozzi, 53 20125 Milano (Italy); Grosso, L.A. [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy); Marchetto, C. [Associazione EURATOM-ENEA-CNR sulla Fusione – IFP-CNR, Via Roberto Cozzi, 53 20125 Milano (Italy); Napolitano, M. [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy); Nowak, S. [Associazione EURATOM-ENEA-CNR sulla Fusione – IFP-CNR, Via Roberto Cozzi, 53 20125 Milano (Italy); Panella, M. [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy); Sozzi, C. [Associazione EURATOM-ENEA-CNR sulla Fusione – IFP-CNR, Via Roberto Cozzi, 53 20125 Milano (Italy); Tilia, B.; Vitale, V. [Associazione EURATOM-ENEA sulla Fusione – ENEA, Via Enrico Fermi, 45 00045 Frascati (RM) (Italy)

    2013-10-15

    Highlights: ► The integration of a new ECRH launcher to FTU legacy control system is reported. ► Fast control has been developed with a three-node RT cluster within MARTe framework. ► Slow control was implemented with a Simatic S7 PLC and an EPICS IOC-CA application. ► The first results have assessed the feasibility of the launcher control architecture. -- Abstract: The role of high power electron cyclotron (EC) waves in controlling magnetohydrodynamic (MHD) instabilities in tokamaks has been assessed in several experiments, exploiting the physical effects induced by resonant heating and current drive. Recently a new EC launcher, whose main goal is controlling tearing modes and possibly preventing their onset, is being implemented on FTU. So far most of the components of the launcher control strategy have been realized and successfully tested on plasma experiments. Nevertheless the operations of the new launcher must be completely integrated into the existing one, and to FTU control system. This work deals with this final step, proposing a hardware and software architecture implementing up to date technologies, to achieve a modular and effective control strategy well integrated into a legacy system. The slow control system of the new EC launcher is based on a Siemens S7 Programmable Logic Controller (PLC), integrated into FTU control system supervisor through an EPICS input output controller (IOC) and an in-house developed Channel Access client application creating an abstraction layer that decouples the IOC and the PLC from the FTU Supervisor software. This architecture could enable a smooth migration to an EPICS-only supervisory control system. The real time component of the control system is based on the open source MARTe framework relying on a Linux real time cluster, devoted to the detection of MHD instabilities and the calculation of the injection angles and the time reference for the radiofrequency power enable commands for the EC launcher.

  19. Flight Hardware Virtualization for On-Board Science Data Processing

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilize Hardware Virtualization technology to benefit on-board science data processing by investigating new real time embedded Hardware Virtualization solutions and...

  20. Speed challenge: a case for hardware implementation in soft-computing

    Science.gov (United States)

    Daud, T.; Stoica, A.; Duong, T.; Keymeulen, D.; Zebulum, R.; Thomas, T.; Thakoor, A.

    2000-01-01

    For over a decade, JPL has been actively involved in soft computing research on theory, architecture, applications, and electronics hardware. The driving force in all our research activities, in addition to the potential enabling technology promise, has been creation of a niche that imparts orders of magnitude speed advantage by implementation in parallel processing hardware with algorithms made especially suitable for hardware implementation. We review our work on neural networks, fuzzy logic, and evolvable hardware with selected application examples requiring real time response capabilities.

  1. Hardware malware

    CERN Document Server

    Krieg, Christian

    2013-01-01

    In our digital world, integrated circuits are present in nearly every moment of our daily life. Even when using the coffee machine in the morning, or driving our car to work, we interact with integrated circuits. The increasing spread of information technology in virtually all areas of life in the industrialized world offers a broad range of attack vectors. So far, mainly software-based attacks have been considered and investigated, while hardware-based attacks have attracted comparatively little interest. The design and production process of integrated circuits is mostly decentralized due to

  2. Hardware Accelerated Sequence Alignment with Traceback

    Directory of Open Access Journals (Sweden)

    Scott Lloyd

    2009-01-01

    in a timely manner. Known methods to accelerate alignment on reconfigurable hardware only address sequence comparison, limit the sequence length, or exhibit memory and I/O bottlenecks. A space-efficient, global sequence alignment algorithm and architecture is presented that accelerates the forward scan and traceback in hardware without memory and I/O limitations. With 256 processing elements in FPGA technology, a performance gain over 300 times that of a desktop computer is demonstrated on sequence lengths of 16000. For greater performance, the architecture is scalable to more processing elements.

  3. Hardware-in-the-Loop Testing

    Data.gov (United States)

    Federal Laboratory Consortium — RTC has a suite of Hardware-in-the Loop facilities that include three operational facilities that provide performance assessment and production acceptance testing of...

  4. Hardware-software face detection system based on multi-block local binary patterns

    Science.gov (United States)

    Acasandrei, Laurentiu; Barriga, Angel

    2015-03-01

    Face detection is an important aspect for biometrics, video surveillance and human computer interaction. Due to the complexity of the detection algorithms any face detection system requires a huge amount of computational and memory resources. In this communication an accelerated implementation of MB LBP face detection algorithm targeting low frequency, low memory and low power embedded system is presented. The resulted implementation is time deterministic and uses a customizable AMBA IP hardware accelerator. The IP implements the kernel operations of the MB-LBP algorithm and can be used as universal accelerator for MB LBP based applications. The IP employs 8 parallel MB-LBP feature evaluators cores, uses a deterministic bandwidth, has a low area profile and the power consumption is ~95 mW on a Virtex5 XC5VLX50T. The resulted implementation acceleration gain is between 5 to 8 times, while the hardware MB-LBP feature evaluation gain is between 69 and 139 times.

  5. Human subjects concerns in ground based ECLSS testing - Managing uncertainty in closely recycled systems

    Science.gov (United States)

    Crump, William J.; Janik, Daniel S.; Thomas, L. Dale

    1990-01-01

    U.S. space missions have to this point used water either made on board or carried from earth and discarded after use. For Space Station Freedom, long duration life support will include air and water recycling using a series of physical-chemical subsystems. The Environmental Control and Life Support System (ECLSS) designed for this application must be tested extensively at all stages of hardware maturity. Human test subjects are required to conduct some of these tests, and the risks associated with the use of development hardware must be addressed. Federal guidelines for protection of human subjects require careful consideration of risks and potential benefits by an Institutional Review Board (IRB) before and during testing. This paper reviews the ethical principles guiding this consideration, details the problems and uncertainties inherent in current hardware testing, and presents an incremental approach to risk assessment for ECLSS testing.

  6. Air Vehicle Technology Integration Program (AVTIP) Delivery Order 0008: Open Control Platform (OCP) Software Enabled Control (SEC) Hardware in the Loop Simulation Program

    National Research Council Canada - National Science Library

    Portilla, Eric

    2004-01-01

    ...) contract awarded to Northrop Grumman Corporation (NGC). The OCP HITL program developed a Hardware-in-the Loop facility for demonstrating and evaluating High-Confidence Software and Systems (HCSS...

  7. Modeling Human Error Mechanism for Soft Control in Advanced Control Rooms (ACRs)

    Energy Technology Data Exchange (ETDEWEB)

    Aljneibi, Hanan Salah Ali [Khalifa Univ., Abu Dhabi (United Arab Emirates); Ha, Jun Su; Kang, Seongkeun; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    To achieve the switch from conventional analog-based design to digital design in ACRs, a large number of manual operating controls and switches have to be replaced by a few common multi-function devices which is called soft control system. The soft controls in APR-1400 ACRs are classified into safety-grade and non-safety-grade soft controls; each was designed using different and independent input devices in ACRs. The operations using soft controls require operators to perform new tasks which were not necessary in conventional controls such as navigating computerized displays to monitor plant information and control devices. These kinds of computerized displays and soft controls may make operations more convenient but they might cause new types of human error. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or human errors) during NPP operation. The developed model would contribute to a lot of applications to improve human performance (or reduce human errors), HMI designs, and operators' training program in ACRs. The developed model of human error mechanism for the soft control is based on assumptions that a human operator has certain amount of capacity in cognitive resources and if resources required by operating tasks are greater than resources invested by the operator, human error (or poor human performance) is likely to occur (especially in 'slip'); good HMI (Human-machine Interface) design decreases the required resources; operator's skillfulness decreases the required resources; and high vigilance increases the invested resources. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or reduction of human errors) during NPP operation.

  8. Modeling Human Error Mechanism for Soft Control in Advanced Control Rooms (ACRs)

    International Nuclear Information System (INIS)

    Aljneibi, Hanan Salah Ali; Ha, Jun Su; Kang, Seongkeun; Seong, Poong Hyun

    2015-01-01

    To achieve the switch from conventional analog-based design to digital design in ACRs, a large number of manual operating controls and switches have to be replaced by a few common multi-function devices which is called soft control system. The soft controls in APR-1400 ACRs are classified into safety-grade and non-safety-grade soft controls; each was designed using different and independent input devices in ACRs. The operations using soft controls require operators to perform new tasks which were not necessary in conventional controls such as navigating computerized displays to monitor plant information and control devices. These kinds of computerized displays and soft controls may make operations more convenient but they might cause new types of human error. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or human errors) during NPP operation. The developed model would contribute to a lot of applications to improve human performance (or reduce human errors), HMI designs, and operators' training program in ACRs. The developed model of human error mechanism for the soft control is based on assumptions that a human operator has certain amount of capacity in cognitive resources and if resources required by operating tasks are greater than resources invested by the operator, human error (or poor human performance) is likely to occur (especially in 'slip'); good HMI (Human-machine Interface) design decreases the required resources; operator's skillfulness decreases the required resources; and high vigilance increases the invested resources. In this study the human error mechanism during the soft controls is studied and modeled to be used for analysis and enhancement of human performance (or reduction of human errors) during NPP operation

  9. Learning Machines Implemented on Non-Deterministic Hardware

    OpenAIRE

    Gupta, Suyog; Sindhwani, Vikas; Gopalakrishnan, Kailash

    2014-01-01

    This paper highlights new opportunities for designing large-scale machine learning systems as a consequence of blurring traditional boundaries that have allowed algorithm designers and application-level practitioners to stay -- for the most part -- oblivious to the details of the underlying hardware-level implementations. The hardware/software co-design methodology advocated here hinges on the deployment of compute-intensive machine learning kernels onto compute platforms that trade-off deter...

  10. Design of a Flexible Hardware Interface for Multiple Remote Electronic practical Experiments of Virtual Laboratory

    Directory of Open Access Journals (Sweden)

    Farah Said

    2012-03-01

    Full Text Available The objective of this work is to present a new design of a Flexible Hardware Interface (FHI based on PID control techniques to use in a virtual laboratory. This flexible hardware interface allows the easy implementation of different and multiple remote electronic practical experiments for undergraduate engineering classes. This interface can be viewed as opened hardware architecture to easily develop simple or complex remote experiments in the electronic domain. The philosophy of the use of this interface can also be expanded to many other domains as optic experiments for instance. It is also demonstrated that software can be developed to enable remote measurements of electronic circuits or systems using only Web site Interface. Using standard browsers (such as Internet explorer, Firefox, Chrome or Safari, different students can have a remote access to different practical experiments at a time.

  11. Hardware Middleware for Person Tracking on Embedded Distributed Smart Cameras

    Directory of Open Access Journals (Sweden)

    Ali Akbar Zarezadeh

    2012-01-01

    Full Text Available Tracking individuals is a prominent application in such domains like surveillance or smart environments. This paper provides a development of a multiple camera setup with jointed view that observes moving persons in a site. It focuses on a geometry-based approach to establish correspondence among different views. The expensive computational parts of the tracker are hardware accelerated via a novel system-on-chip (SoC design. In conjunction with this vision application, a hardware object request broker (ORB middleware is presented as the underlying communication system. The hardware ORB provides a hardware/software architecture to achieve real-time intercommunication among multiple smart cameras. Via a probing mechanism, a performance analysis is performed to measure network latencies, that is, time traversing the TCP/IP stack, in both software and hardware ORB approaches on the same smart camera platform. The empirical results show that using the proposed hardware ORB as client and server in separate smart camera nodes will considerably reduce the network latency up to 100 times compared to the software ORB.

  12. Programming time-multiplexed reconfigurable hardware using a scalable neuromorphic compiler.

    Science.gov (United States)

    Minkovich, Kirill; Srinivasa, Narayan; Cruz-Albrecht, Jose M; Cho, Youngkwan; Nogin, Aleksey

    2012-06-01

    Scalability and connectivity are two key challenges in designing neuromorphic hardware that can match biological levels. In this paper, we describe a neuromorphic system architecture design that addresses an approach to meet these challenges using traditional complementary metal-oxide-semiconductor (CMOS) hardware. A key requirement in realizing such neural architectures in hardware is the ability to automatically configure the hardware to emulate any neural architecture or model. The focus for this paper is to describe the details of such a programmable front-end. This programmable front-end is composed of a neuromorphic compiler and a digital memory, and is designed based on the concept of synaptic time-multiplexing (STM). The neuromorphic compiler automatically translates any given neural architecture to hardware switch states and these states are stored in digital memory to enable desired neural architectures. STM enables our proposed architecture to address scalability and connectivity using traditional CMOS hardware. We describe the details of the proposed design and the programmable front-end, and provide examples to illustrate its capabilities. We also provide perspectives for future extensions and potential applications.

  13. Control by hardware of government systems for laser diodes with STM32F4 and Peltier cells

    International Nuclear Information System (INIS)

    Ulloa Solano, Natalia Irina

    2013-01-01

    A low cost prototype of a government system is developed for laser diodes with STM32F4 microcontrollers and Peltier cooling. Commercial and homemade government system (with STM32F4 microcontrollers ) are investigated with the objective of adequately control the current of a laser diode. Characteristics of STM32F4 microcontrollers are described. The low cost platforms as the Arduino and Raspberry Pi are compared. A bibliographical and documentary compilation is realized for the preliminary study of the components and tools to use in the prototype. The theory related with the heat transfer between a laser diode and the outside, and a Peltier cell and outside is summarized. A heat dissipation model is proposed of a system formed by a laser diode and Peltier cell. A control system of current and fed back temperature is designed and implemented to allow adequately control laser diodes without and with photodiode (2 pickups and 3 pickups respectively). The viability of control with free software is studied and corroborated. The temperature control of the laser diode using a Peltier cell as cooler has been possible through a simple control of ON/OFF mode. The integration of devices such as ADC, DAC, timers and facilities of STM32F4 microcontroller, have allowed to optimize costs by hardware, save time and costs. Also, the incorporation of the Cortex-M4 processor has optimized the consumption of operational resources and has executed much of its instruction set of efficient way. Because of this, the project has complied with its maximum as to low cost is concerned [es

  14. What you can't feel won't hurt you: Evaluating haptic hardware using a haptic contrast sensitivity function.

    Science.gov (United States)

    Salisbury, C M; Gillespie, R B; Tan, H Z; Barbagli, F; Salisbury, J K

    2011-01-01

    In this paper, we extend the concept of the contrast sensitivity function - used to evaluate video projectors - to the evaluation of haptic devices. We propose using human observers to determine if vibrations rendered using a given haptic device are accompanied by artifacts detectable to humans. This determination produces a performance measure that carries particular relevance to applications involving texture rendering. For cases in which a device produces detectable artifacts, we have developed a protocol that localizes deficiencies in device design and/or hardware implementation. In this paper, we present results from human vibration detection experiments carried out using three commercial haptic devices and one high performance voice coil motor. We found that all three commercial devices produced perceptible artifacts when rendering vibrations near human detection thresholds. Our protocol allowed us to pinpoint the deficiencies, however, and we were able to show that minor modifications to the haptic hardware were sufficient to make these devices well suited for rendering vibrations, and by extension, the vibratory components of textures. We generalize our findings to provide quantitative design guidelines that ensure the ability of haptic devices to proficiently render the vibratory components of textures.

  15. Proof-Carrying Hardware: Concept and Prototype Tool Flow for Online Verification

    OpenAIRE

    Drzevitzky, Stephanie; Kastens, Uwe; Platzner, Marco

    2010-01-01

    Dynamically reconfigurable hardware combines hardware performance with software-like flexibility and finds increasing use in networked systems. The capability to load hardware modules at runtime provides these systems with an unparalleled degree of adaptivity but at the same time poses new challenges for security and safety. In this paper, we elaborate on the presentation of proof carrying hardware (PCH) as a novel approach to reconfigurable system security. PCH takes ...

  16. Microgravity Flight: Accommodating Non-Human Primates

    Science.gov (United States)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1995-01-01

    thermoregulation, muscular, and cardiac responses to weightlessness. In contrast, the five completed Cosmos/Bion flights, lacked the metabolic samples and behavioral task monitoring, but did facilitate studies of the neurovestibular system during several of the flights. The RRF accommodated two adult 8-11 kg rhesus monkeys, while the Russian experiments and hardware were configured for a younger animal in the 44 kg range. Both the American and Russian hardware maintained a controlled environmental system, specifically temperature, humidity, a timed lighting cycle, and had means for providing food and fluids to the animal(s). Crew availability during a Shuttle mission was to be an optimal condition for retrieval and refrigeration of the animal urine samples along with a manual calcein injection which could lead to greater understanding of bone calcium incorporation. A special portable bioisolation glove box was under development to support this aspect of the experiment profile along with the capability of any contingency human intervention. As a result of recent U.S./Russian negotiations, funding for Space Station, and a series of other events, the SLS-3 mission was cancelled and applicable Rhesus Project experiments incorporated into the Russian Bion 11 and 12 missions. A presentation of the RRF and COSMOS/Bion rhesus hardware is presented along with current plans for the hardware.

  17. Use of Shuttle Heritage Hardware in Space Launch System (SLS) Application-Structural Assessment

    Science.gov (United States)

    Aggarwal, Pravin; Booker, James N.

    2018-01-01

    NASA is moving forward with the development of the next generation system of human spaceflight to meet the Nation's goals of human space exploration. To meet these goals, NASA is aggressively pursuing the development of an integrated architecture and capabilities for safe crewed and cargo missions beyond low-Earth orbit. Two important tenets critical to the achievement of NASA's strategic objectives are Affordability and Safety. The Space Launch System (SLS) is a heavy-lift launch vehicle being designed/developed to meet these goals. The SLS Block 1 configuration (Figure 1) will be used for the first Exploration Mission (EM-1). It utilizes existing hardware from the Space Shuttle inventory, as much as possible, to save cost and expedite the schedule. SLS Block 1 Elements include the Core Stage, "Heritage" Boosters, Heritage Engines, and the Integrated Spacecraft and Payload Element (ISPE) consisting of the Launch Vehicle Stage Adapter (LVSA), the Multi-Purpose Crew Vehicle (MPCV) Stage Adapter (MSA), and an Interim Cryogenic Propulsion Stage (ICPS) for Earth orbit escape and beyond-Earth orbit in-space propulsive maneuvers. When heritage hardware is used in a new application, it requires a systematic evaluation of its qualification. In addition, there are previously-documented Lessons Learned (Table -1) in this area cautioning the need of a rigorous evaluation in any new application. This paper will exemplify the systematic qualification/assessment efforts made to qualify the application of Heritage Solid Rocket Booster (SRB) hardware in SLS. This paper describes the testing and structural assessment performed to ensure the application is acceptable for intended use without having any adverse impact to Safety. It will further address elements such as Loads, Material Properties and Manufacturing, Testing, Analysis, Failure Criterion and Factor of Safety (FS) considerations made to reach the conclusion and recommendation.

  18. LHCb: Hardware Data Injector

    CERN Multimedia

    Delord, V; Neufeld, N

    2009-01-01

    The LHCb High Level Trigger and Data Acquisition system selects about 2 kHz of events out of the 1 MHz of events, which have been selected previously by the first-level hardware trigger. The selected events are consolidated into files and then sent to permanent storage for subsequent analysis on the Grid. The goal of the upgrade of the LHCb readout is to lift the limitation to 1 MHz. This means speeding up the DAQ to 40 MHz. Such a DAQ system will certainly employ 10 Gigabit or technologies and might also need new networking protocols: a customized TCP or proprietary solutions. A test module is being presented, which integrates in the existing LHCb infrastructure. It is a 10-Gigabit traffic generator, flexible enough to generate LHCb's raw data packets using dummy data or simulated data. These data are seen as real data coming from sub-detectors by the DAQ. The implementation is based on an FPGA using 10 Gigabit Ethernet interface. This module is integrated in the experiment control system. The architecture, ...

  19. The VMTG Hardware Description

    CERN Document Server

    Puccio, B

    1998-01-01

    The document describes the hardware features of the CERN Master Timing Generator. This board is the common platform for the transmission of General Timing Machine required by the CERN accelerators. In addition, the paper shows the various jumper options to customise the card which is compliant to the VMEbus standard.

  20. Dynamically-Loaded Hardware Libraries (HLL) Technology for Audio Applications

    DEFF Research Database (Denmark)

    Esposito, A.; Lomuscio, A.; Nunzio, L. Di

    2016-01-01

    In this work, we apply hardware acceleration to embedded systems running audio applications. We present a new framework, Dynamically-Loaded Hardware Libraries or HLL, to dynamically load hardware libraries on reconfigurable platforms (FPGAs). Provided a library of application-specific processors......, we load on-the-fly the specific processor in the FPGA, and we transfer the execution from the CPU to the FPGA-based accelerator. The proposed architecture provides excellent flexibility with respect to the different audio applications implemented, high quality audio, and an energy efficient solution....

  1. Hardware implementation of a GFSR pseudo-random number generator

    Science.gov (United States)

    Aiello, G. R.; Budinich, M.; Milotti, E.

    1989-12-01

    We describe the hardware implementation of a pseudo-random number generator of the "Generalized Feedback Shift Register" (GFSR) type. After brief theoretical considerations we describe two versions of the hardware, the tests done and the performances achieved.

  2. Hardware Realization of Chaos Based Symmetric Image Encryption

    KAUST Repository

    Barakat, Mohamed L.

    2012-06-01

    This thesis presents a novel work on hardware realization of symmetric image encryption utilizing chaos based continuous systems as pseudo random number generators. Digital implementation of chaotic systems results in serious degradations in the dynamics of the system. Such defects are illuminated through a new technique of generalized post proceeding with very low hardware cost. The thesis further discusses two encryption algorithms designed and implemented as a block cipher and a stream cipher. The security of both systems is thoroughly analyzed and the performance is compared with other reported systems showing a superior results. Both systems are realized on Xilinx Vetrix-4 FPGA with a hardware and throughput performance surpassing known encryption systems.

  3. FPGA-Based Efficient Hardware/Software Co-Design for Industrial Systems with Consideration of Output Selection

    Science.gov (United States)

    Deliparaschos, Kyriakos M.; Michail, Konstantinos; Zolotas, Argyrios C.; Tzafestas, Spyros G.

    2016-05-01

    This work presents a field programmable gate array (FPGA)-based embedded software platform coupled with a software-based plant, forming a hardware-in-the-loop (HIL) that is used to validate a systematic sensor selection framework. The systematic sensor selection framework combines multi-objective optimization, linear-quadratic-Gaussian (LQG)-type control, and the nonlinear model of a maglev suspension. A robustness analysis of the closed-loop is followed (prior to implementation) supporting the appropriateness of the solution under parametric variation. The analysis also shows that quantization is robust under different controller gains. While the LQG controller is implemented on an FPGA, the physical process is realized in a high-level system modeling environment. FPGA technology enables rapid evaluation of the algorithms and test designs under realistic scenarios avoiding heavy time penalty associated with hardware description language (HDL) simulators. The HIL technique facilitates significant speed-up in the required execution time when compared to its software-based counterpart model.

  4. Desenvolvimento de hardware reconfigurável de criptografia assimétrica

    Directory of Open Access Journals (Sweden)

    Otávio Souza Martins Gomes

    2015-01-01

    Full Text Available Este artigo apresenta o resultado parcial do desenvolvimento de uma interface de hardware reconfigurável para criptografia assimétrica que permite a troca segura de dados. Hardwares reconfiguráveis permitem o desenvolvimento deste tipo de dispositivo com segurança e flexibilidade e possibilitam a mudança de características no projeto com baixo custo e de forma rápida.Palavras-chave: Criptografia. Hardware. ElGamal. FPGA. Segurança. Development of an asymmetric cryptography reconfigurable harwadre ABSTRACTThis paper presents some conclusions and choices about the development of an asymmetric cryptography reconfigurable hardware interface to allow a safe data communication. Reconfigurable hardwares allows the development of this kind of device with safety and flexibility, and offer the possibility to change some features with low cost and in a fast way.Keywords: Cryptography. Hardware. ElGamal. FPGAs. Security.

  5. MRI monitoring of focused ultrasound sonications near metallic hardware.

    Science.gov (United States)

    Weber, Hans; Ghanouni, Pejman; Pascal-Tenorio, Aurea; Pauly, Kim Butts; Hargreaves, Brian A

    2018-07-01

    To explore the temperature-induced signal change in two-dimensional multi-spectral imaging (2DMSI) for fast thermometry near metallic hardware to enable MR-guided focused ultrasound surgery (MRgFUS) in patients with implanted metallic hardware. 2DMSI was optimized for temperature sensitivity and applied to monitor focus ultrasound surgery (FUS) sonications near metallic hardware in phantoms and ex vivo porcine muscle tissue. Further, we evaluated its temperature sensitivity for in vivo muscle in patients without metallic hardware. In addition, we performed a comparison of temperature sensitivity between 2DMSI and conventional proton-resonance-frequency-shift (PRFS) thermometry at different distances from metal devices and different signal-to-noise ratios (SNR). 2DMSI thermometry enabled visualization of short ultrasound sonications near metallic hardware. Calibration using in vivo muscle yielded a constant temperature sensitivity for temperatures below 43 °C. For an off-resonance coverage of ± 6 kHz, we achieved a temperature sensitivity of 1.45%/K, resulting in a minimum detectable temperature change of ∼2.5 K for an SNR of 100 with a temporal resolution of 6 s per frame. The proposed 2DMSI thermometry has the potential to allow MR-guided FUS treatments of patients with metallic hardware and therefore expand its reach to a larger patient population. Magn Reson Med 80:259-271, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Hardware upgrade for A2 data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Ostrick, Michael; Gradl, Wolfgang; Otte, Peter-Bernd; Neiser, Andreas; Steffen, Oliver; Wolfes, Martin; Koerner, Tito [Institut fuer Kernphysik, Mainz (Germany); Collaboration: A2-Collaboration

    2014-07-01

    The A2 Collaboration uses an energy tagged photon beam which is produced via bremsstrahlung off the MAMI electron beam. The detector system consists of Crystal Ball and TAPS and covers almost the whole solid angle. A frozen-spin polarized target allows to perform high precision measurements of polarization observables in meson photo-production. During the last summer, a major upgrade of the data acquisition system was performed, both on the hardware and the software side. The goal of this upgrade was increased reliability of the system and an improvement in the data rate to disk. By doubling the number of readout CPUs and employing special VME crates with a split backplane, the number of bus accesses per readout cycle and crate was cut by a factor of two, giving almost a factor of two gain in the readout rate. In the course of the upgrade, we also switched most of the detector control system to using the distributed control system EPICS. For the upgraded control system, some new tools were developed to make full use of the capabilities of this decentralised slow control and monitoring system. The poster presents some of the major contributions to this project.

  7. Rapid prototyping of an automated video surveillance system: a hardware-software co-design approach

    Science.gov (United States)

    Ngo, Hau T.; Rakvic, Ryan N.; Broussard, Randy P.; Ives, Robert W.

    2011-06-01

    FPGA devices with embedded DSP and memory blocks, and high-speed interfaces are ideal for real-time video processing applications. In this work, a hardware-software co-design approach is proposed to effectively utilize FPGA features for a prototype of an automated video surveillance system. Time-critical steps of the video surveillance algorithm are designed and implemented in the FPGAs logic elements to maximize parallel processing. Other non timecritical tasks are achieved by executing a high level language program on an embedded Nios-II processor. Pre-tested and verified video and interface functions from a standard video framework are utilized to significantly reduce development and verification time. Custom and parallel processing modules are integrated into the video processing chain by Altera's Avalon Streaming video protocol. Other data control interfaces are achieved by connecting hardware controllers to a Nios-II processor using Altera's Avalon Memory Mapped protocol.

  8. Hardware in the Loop Testing of an Iodine-Fed Hall Thruster

    Science.gov (United States)

    Polzin, Kurt A.; Peeples, Steven R.; Cecil, Jim; Lewis, Brandon L.; Molina Fraticelli, Jose C.; Clark, James P.

    2015-01-01

    chamber (it is under 10(exp -6) torr at -75 C), making it possible to 'cryopump' the propellant with lower-cost recirculating refrigerant-based systems as opposed to using liquid nitrogen or low temperature gaseous helium cryopanels. In the present paper, we describe testing performed using an iodine-fed 200 W Hall thruster mounted to a thrust stand and operated in conjunction with MSFCs Small Projects Rapid Integration and Test Environment (SPRITE) Portable Hardware In the Loop (PHIL) hardware. This work is performed in support of the iodine satellite (iSAT) project, which aims to fly a 200-W iodine-fed thruster on a 12-U CubeSat. The SPRITE PHIL hardware allows a given vehicle to do a checkout of its avionics algorithm by allowing it to monitor and feed data to simulated sensors and effectors in a digital environment. These data are then used to determine the attitude of the vehicle and a separate computer is used to interpret the data set and visualize it using a 3D graphical interface. The PHIL hardware allows the testing of the vehicles bus by providing 'real' hardware interfaces (in the case of this test a real RS422 bus) and specific components can be modeled to show their interactions with the avionics algorithm (e.g. a thruster model). For the iSAT project the PHIL is used to visualize the operating cycle of the thruster and the subsequent effect this thrusting has on the attitude of the satellite over a given period of time. The test is controlled using software running on an Andrews Space Cortex 160 flight computer. This computer is the current baseline for a full iSAT mission. While the test could be conducted with a lab computer and software, the team chose to exercise the propulsion system with a representative CubeSat-class computer. For purposes of this test, the "flight" software monitored the propulsion and PPU systems, controlled operation of the thruster, and provided thruster state data to the PHIL simulation. Commands to operate the thruster were

  9. A hardware overview of the RHIC LLRF platform

    International Nuclear Information System (INIS)

    Hayes, T.; Smith, K.S.

    2011-01-01

    The RHIC Low Level RF (LLRF) platform is a flexible, modular system designed around a carrier board with six XMC daughter sites. The carrier board features a Xilinx FPGA with an embedded, hard core Power PC that is remotely reconfigurable. It serves as a front end computer (FEC) that interfaces with the RHIC control system. The carrier provides high speed serial data paths to each daughter site and between daughter sites as well as four generic external fiber optic links. It also distributes low noise clocks and serial data links to all daughter sites and monitors temperature, voltage and current. To date, two XMC cards have been designed: a four channel high speed ADC and a four channel high speed DAC. The new LLRF hardware was used to replace the old RHIC LLRF system for the 2009 run. For the 2010 run, the RHIC RF system operation was dramatically changed with the introduction of accelerating both beams in a new, common cavity instead of each ring having independent cavities. The flexibility of the new system was beneficial in allowing the low level system to be adapted to support this new configuration. This hardware was also used in 2009 to provide LLRF for the newly commissioned Electron Beam Ion Source.

  10. Trends in computer hardware and software.

    Science.gov (United States)

    Frankenfeld, F M

    1993-04-01

    Previously identified and current trends in the development of computer systems and in the use of computers for health care applications are reviewed. Trends identified in a 1982 article were increasing miniaturization and archival ability, increasing software costs, increasing software independence, user empowerment through new software technologies, shorter computer-system life cycles, and more rapid development and support of pharmaceutical services. Most of these trends continue today. Current trends in hardware and software include the increasing use of reduced instruction-set computing, migration to the UNIX operating system, the development of large software libraries, microprocessor-based smart terminals that allow remote validation of data, speech synthesis and recognition, application generators, fourth-generation languages, computer-aided software engineering, object-oriented technologies, and artificial intelligence. Current trends specific to pharmacy and hospitals are the withdrawal of vendors of hospital information systems from the pharmacy market, improved linkage of information systems within hospitals, and increased regulation by government. The computer industry and its products continue to undergo dynamic change. Software development continues to lag behind hardware, and its high cost is offsetting the savings provided by hardware.

  11. An Open Hardware seismic data recorder - a solid basis for citizen science

    Science.gov (United States)

    Mertl, Stefan

    2015-04-01

    "Ruwai" is a 24-Bit Open Hardware seismic data recorder. It is built up of four stackable printed circuit boards fitting the Arduino Mega 2560 microcontroller prototyping platform. An interface to the BeagleBone Black single-board computer enables extensive data storage, -processing and networking capabilities. The four printed circuit boards provide a uBlox Lea-6T GPS module and real-time clock (GPS Timing shield), an Texas Instruments ADS1274 24-Bit analog to digital converter (ADC main shield), an analog input section with a Texas Instruments PGA281 programmable gain amplifier and an analog anti-aliasing filter (ADC analog interface pga) and the power conditioning based on 9-36V DC input (power supply shield). The Arduino Mega 2560 is used for controlling the hardware components, timestamping sampled data using the GPS timing information and transmitting the data to the BeagleBone Black single-board computer. The BeagleBone Black provides local data storage, wireless mesh networking using the optimized link state routing daemon and differential GNSS positioning using the RTKLIB software. The complete hardware and software is published under free software - or open hardware licenses and only free software (e.g. KiCad) was used for the development to facilitate the reusability of the design and increases the sustainability of the project. "Ruwai" was developed within the framework of the "Community Environmental Observation Network (CEON)" (http://www.mertl-research.at/ceon/) which was supported by the Internet Foundation Austria (IPA) within the NetIdee 2013 call.

  12. CERN Neutrino Platform Hardware

    CERN Document Server

    Nelson, Kevin

    2017-01-01

    My summer research was broadly in CERN's neutrino platform hardware efforts. This project had two main components: detector assembly and data analysis work for ICARUS. Specifically, I worked on assembly for the ProtoDUNE project and monitored the safety of ICARUS as it was transported to Fermilab by analyzing the accelerometer data from its move.

  13. Analysis for Parallel Execution without Performing Hardware/Software Co-simulation

    OpenAIRE

    Muhammad Rashid

    2014-01-01

    Hardware/software co-simulation improves the performance of embedded applications by executing the applications on a virtual platform before the actual hardware is available in silicon. However, the virtual platform of the target architecture is often not available during early stages of the embedded design flow. Consequently, analysis for parallel execution without performing hardware/software co-simulation is required. This article presents an analysis methodology for parallel execution of ...

  14. Top-down and bottom-up definitions of human failure events in human reliability analysis

    International Nuclear Information System (INIS)

    Boring, Ronald Laurids

    2014-01-01

    In the probabilistic risk assessments (PRAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question is crucial, however, as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PRAs tend to be top-down - defined as a subset of the PRA - whereas the HFEs used in petroleum quantitative risk assessments (QRAs) often tend to be bottom-up - derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.

  15. Software error masking effect on hardware faults

    International Nuclear Information System (INIS)

    Choi, Jong Gyun; Seong, Poong Hyun

    1999-01-01

    Based on the Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL), in this work, a simulation model for fault injection is developed to estimate the dependability of the digital system in operational phase. We investigated the software masking effect on hardware faults through the single bit-flip and stuck-at-x fault injection into the internal registers of the processor and memory cells. The fault location reaches all registers and memory cells. Fault distribution over locations is randomly chosen based on a uniform probability distribution. Using this model, we have predicted the reliability and masking effect of an application software in a digital system-Interposing Logic System (ILS) in a nuclear power plant. We have considered four the software operational profiles. From the results it was found that the software masking effect on hardware faults should be properly considered for predicting the system dependability accurately in operation phase. It is because the masking effect was formed to have different values according to the operational profile

  16. Instrument hardware and software upgrades at IPNS

    International Nuclear Information System (INIS)

    Worlton, Thomas; Hammonds, John; Mikkelson, D.; Mikkelson, Ruth; Porter, Rodney; Tao, Julian; Chatterjee, Alok

    2006-01-01

    IPNS is in the process of upgrading their time-of-flight neutron scattering instruments with improved hardware and software. The hardware upgrades include replacing old VAX Qbus and Multibus-based data acquisition systems with new systems based on VXI and VME. Hardware upgrades also include expanded detector banks and new detector electronics. Old VAX Fortran-based data acquisition and analysis software is being replaced with new software as part of the ISAW project. ISAW is written in Java for ease of development and portability, and is now used routinely for data visualization, reduction, and analysis on all upgraded instruments. ISAW provides the ability to process and visualize the data from thousands of detector pixels, each having thousands of time channels. These operations can be done interactively through a familiar graphical user interface or automatically through simple scripts. Scripts and operators provided by end users are automatically included in the ISAW menu structure, along with those distributed with ISAW, when the application is started

  17. Flight Hardware Virtualization for On-Board Science Data Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilize Hardware Virtualization technology to benefit on-board science data processing by investigating new real time embedded Hardware Virtualization solutions and...

  18. Compiling quantum circuits to realistic hardware architectures using temporal planners

    Science.gov (United States)

    Venturelli, Davide; Do, Minh; Rieffel, Eleanor; Frank, Jeremy

    2018-04-01

    To run quantum algorithms on emerging gate-model quantum hardware, quantum circuits must be compiled to take into account constraints on the hardware. For near-term hardware, with only limited means to mitigate decoherence, it is critical to minimize the duration of the circuit. We investigate the application of temporal planners to the problem of compiling quantum circuits to newly emerging quantum hardware. While our approach is general, we focus on compiling to superconducting hardware architectures with nearest neighbor constraints. Our initial experiments focus on compiling Quantum Alternating Operator Ansatz (QAOA) circuits whose high number of commuting gates allow great flexibility in the order in which the gates can be applied. That freedom makes it more challenging to find optimal compilations but also means there is a greater potential win from more optimized compilation than for less flexible circuits. We map this quantum circuit compilation problem to a temporal planning problem, and generated a test suite of compilation problems for QAOA circuits of various sizes to a realistic hardware architecture. We report compilation results from several state-of-the-art temporal planners on this test set. This early empirical evaluation demonstrates that temporal planning is a viable approach to quantum circuit compilation.

  19. Event-driven processing for hardware-efficient neural spike sorting

    Science.gov (United States)

    Liu, Yan; Pereira, João L.; Constandinou, Timothy G.

    2018-02-01

    Objective. The prospect of real-time and on-node spike sorting provides a genuine opportunity to push the envelope of large-scale integrated neural recording systems. In such systems the hardware resources, power requirements and data bandwidth increase linearly with channel count. Event-based (or data-driven) processing can provide here a new efficient means for hardware implementation that is completely activity dependant. In this work, we investigate using continuous-time level-crossing sampling for efficient data representation and subsequent spike processing. Approach. (1) We first compare signals (synthetic neural datasets) encoded with this technique against conventional sampling. (2) We then show how such a representation can be directly exploited by extracting simple time domain features from the bitstream to perform neural spike sorting. (3) The proposed method is implemented in a low power FPGA platform to demonstrate its hardware viability. Main results. It is observed that considerably lower data rates are achievable when using 7 bits or less to represent the signals, whilst maintaining the signal fidelity. Results obtained using both MATLAB and reconfigurable logic hardware (FPGA) indicate that feature extraction and spike sorting accuracies can be achieved with comparable or better accuracy than reference methods whilst also requiring relatively low hardware resources. Significance. By effectively exploiting continuous-time data representation, neural signal processing can be achieved in a completely event-driven manner, reducing both the required resources (memory, complexity) and computations (operations). This will see future large-scale neural systems integrating on-node processing in real-time hardware.

  20. The Simbox Experiment with Arabidopsis Thaliana Cell Cultures: Hardware-Tests and First Resutls from the German-Chinese satellite Mission Shenzhou 8

    Science.gov (United States)

    Fengler, Svenja; Neef, Maren; Ecke, Margret; Hampp, Ruediger

    2013-02-01

    The Simbox experiment was the first joint German-Chinese space project. In this context Arabidopsis thaliana cell cultures were exposed to microgravity for a 17-day period. To carry out a successful space mission, diverse hardware tests were performed in advance. Due to the limited oxygen supply inside the hardware units, cells were fixed after 5 days under microgravity conditions. As a control, samples were exposed in an on-board 1g reference centrifuge. To investigate the space effect, a ground-based study was performed with the same hardware and identical experimental procedures. As we were able to obtain high quality RNA from the RNAlater quenched samples, we used the Affymetrix Arabidopsis genome array for a transcriptome analysis. Our experiment aimed at the identification of plant genes that were differentially expressed after long-term exposure to microgravity. Pair-wise comparison of flight samples with 1g controls revealed the largest differences between space 1g and ground 1g controls.

  1. Flexible hardware design for RSA and Elliptic Curve Cryptosystems

    NARCIS (Netherlands)

    Batina, L.; Bruin - Muurling, G.; Örs, S.B.; Okamoto, T.

    2004-01-01

    This paper presents a scalable hardware implementation of both commonly used public key cryptosystems, RSA and Elliptic Curve Cryptosystem (ECC) on the same platform. The introduced hardware accelerator features a design which can be varied from very small (less than 20 Kgates) targeting wireless

  2. Sharing open hardware through ROP, the robotic open platform

    NARCIS (Netherlands)

    Lunenburg, J.; Soetens, R.P.T.; Schoenmakers, F.; Metsemakers, P.M.G.; van de Molengraft, M.J.G.; Steinbuch, M.; Behnke, S.; Veloso, M.; Visser, A.; Xiong, R.

    2014-01-01

    The robot open source software community, in particular ROS, drastically boosted robotics research. However, a centralized place to exchange open hardware designs does not exist. Therefore we launched the Robotic Open Platform (ROP). A place to share and discuss open hardware designs. Among others

  3. Sharing open hardware through ROP, the Robotic Open Platform

    NARCIS (Netherlands)

    Lunenburg, J.J.M.; Soetens, R.P.T.; Schoenmakers, Ferry; Metsemakers, P.M.G.; Molengraft, van de M.J.G.; Steinbuch, M.

    2013-01-01

    The robot open source software community, in particular ROS, drastically boosted robotics research. However, a centralized place to exchange open hardware designs does not exist. Therefore we launched the Robotic Open Platform (ROP). A place to share and discuss open hardware designs. Among others

  4. Hardware Abstraction and Protocol Optimization for Coded Sensor Networks

    DEFF Research Database (Denmark)

    Nistor, Maricica; Roetter, Daniel Enrique Lucani; Barros, João

    2015-01-01

    The design of the communication protocols in wireless sensor networks (WSNs) often neglects several key characteristics of the sensor's hardware, while assuming that the number of transmitted bits is the dominating factor behind the system's energy consumption. A closer look at the hardware speci...

  5. Fast DRR splat rendering using common consumer graphics hardware

    International Nuclear Information System (INIS)

    Spoerk, Jakob; Bergmann, Helmar; Wanschitz, Felix; Dong, Shuo; Birkfellner, Wolfgang

    2007-01-01

    Digitally rendered radiographs (DRR) are a vital part of various medical image processing applications such as 2D/3D registration for patient pose determination in image-guided radiotherapy procedures. This paper presents a technique to accelerate DRR creation by using conventional graphics hardware for the rendering process. DRR computation itself is done by an efficient volume rendering method named wobbled splatting. For programming the graphics hardware, NVIDIAs C for Graphics (Cg) is used. The description of an algorithm used for rendering DRRs on the graphics hardware is presented, together with a benchmark comparing this technique to a CPU-based wobbled splatting program. Results show a reduction of rendering time by about 70%-90% depending on the amount of data. For instance, rendering a volume of 2x10 6 voxels is feasible at an update rate of 38 Hz compared to 6 Hz on a common Intel-based PC using the graphics processing unit (GPU) of a conventional graphics adapter. In addition, wobbled splatting using graphics hardware for DRR computation provides higher resolution DRRs with comparable image quality due to special processing characteristics of the GPU. We conclude that DRR generation on common graphics hardware using the freely available Cg environment is a major step toward 2D/3D registration in clinical routine

  6. LISA Pathfinder: hardware tests and their input to the mission

    Science.gov (United States)

    Audley, Heather

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA mission for the first space-borne gravitational wave detector. LISA aims to detect sources in the 0.1mHz to 1Hz range, which include supermassive black holes and galactic binary stars. Core technologies required for the LISA mission, including drag-free test mass control, picometre interferometry and micro-Newton thrusters, cannot be tested on-ground. Therefore, a precursor satellite, LISA Pathfinder, has been developed as a technology demonstration mission. The preparations for the LISA Pathfinder mission have reached an exciting stage. Tests of the engineering model of the optical metrology system have recently been completed at the Albert Einstein Institute, Hannover, and flight model tests are now underway. Significantly, they represent the first complete integration and testing of the space-qualified hardware and are the first tests on system level. The results and test procedures of these campaigns will be utilised directly in the ground-based flight hardware tests, and subsequently within in-flight operations. In addition, they allow valuable testing of the data analysis methods using the MatLab based LTP data analysis toolbox. This contribution presents an overview of the test campaigns calibration, control and perfor-mance results, focusing on the implications for the Experimental Master Plan which provides the basis for the in-flight operations and procedures.

  7. Human spinal motor control

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo

    2016-01-01

    Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. We differ from other animals in having direct cortical connections to spinal motoneurons, which bypass spinal...... the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior. Expected final online...

  8. FPS-RAM: Fast Prefix Search RAM-Based Hardware for Forwarding Engine

    Science.gov (United States)

    Zaitsu, Kazuya; Yamamoto, Koji; Kuroda, Yasuto; Inoue, Kazunari; Ata, Shingo; Oka, Ikuo

    Ternary content addressable memory (TCAM) is becoming very popular for designing high-throughput forwarding engines on routers. However, TCAM has potential problems in terms of hardware and power costs, which limits its ability to deploy large amounts of capacity in IP routers. In this paper, we propose new hardware architecture for fast forwarding engines, called fast prefix search RAM-based hardware (FPS-RAM). We designed FPS-RAM hardware with the intent of maintaining the same search performance and physical user interface as TCAM because our objective is to replace the TCAM in the market. Our RAM-based hardware architecture is completely different from that of TCAM and has dramatically reduced the costs and power consumption to 62% and 52%, respectively. We implemented FPS-RAM on an FPGA to examine its lookup operation.

  9. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    Science.gov (United States)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  10. Development of a Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Science.gov (United States)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  11. Generation of Efficient High-Level Hardware Code from Dataflow Programs

    OpenAIRE

    Siret , Nicolas; Wipliez , Matthieu; Nezan , Jean François; Palumbo , Francesca

    2012-01-01

    High-level synthesis (HLS) aims at reducing the time-to-market by providing an automated design process that interprets and compiles high-level abstraction programs into hardware. However, HLS tools still face limitations regarding the performance of the generated code, due to the difficulties of compiling input imperative languages into efficient hardware code. Moreover the hardware code generated by the HLS tools is usually target-dependant and at a low level of abstraction (i.e. gate-level...

  12. Desenvolvimento de software e hardware para irrigação de precisão usando pivô central Development of software and hardware for precision irrigation using the center pivot

    Directory of Open Access Journals (Sweden)

    Tadeu M. de Queiroz

    2008-03-01

    Full Text Available O presente trabalho teve por objetivo desenvolver softwares e hardwares para aplicação ao monitoramento e controle automático para a irrigação de precisão usando sistemas do tipo pivô central. O trabalho foi desenvolvido no Departamento de Engenharia Rural - LER, da Escola Superior de Agricultura "Luiz de Queiroz" - ESALQ, da Universidade de São Paulo - USP, em Piracicaba - SP. Foram utilizados componentes eletrônicos discretos, circuitos integrados diversos, módulos de radiofreqüência, microcontroladores da família Basic Step e um microcomputador. Foram utilizadas as linguagens Delphi e TBasic. O hardware é constituído de dois circuitos eletrônicos, sendo um deles para "interface" com o computador e o outro para monitoramento e transmissão da leitura de tensiômetros para o computador via radiofreqüência. Foram feitas avaliações do alcance e da eficiência na transmissão de dados dos módulos de radiofreqüência e do desempenho do software e do hardware. Os resultados mostraram que tanto os circuitos quanto os aplicativos desenvolvidos apresentaram funcionamento satisfatório. Os testes de comunicação dos rádios indicaram que esses possuem alcance máximo de 50 m. Concluiu-se que o sistema desenvolvido tem grande potencial para utilização em sistemas de irrigação de precisão usando pivô central, bastando para isso que o alcance dos rádios seja aumentado.The objective of this work was to develop softwares and hardwares applied to the management and automatic control for precision irrigation using center pivot systems. They were developed in the Rural Engineering Department - LER, at the "Luiz de Queiroz" College of Agriculture - ESALQ, of São Paulo University - USP, in Piracicaba, SP-Brazil. It was used discrete electronic components, several integrated circuits, radio frequency modules, microcontrollers from the Basic Step family and a microcomputer. The computer software was developed in Delphi language, and

  13. Hardware and software status of QCDOC

    International Nuclear Information System (INIS)

    Boyle, P.A.; Chen, D.; Christ, N.H.; Clark, M.; Cohen, S.D.; Cristian, C.; Dong, Z.; Gara, A.; Joo, B.; Jung, C.; Kim, C.; Levkova, L.; Liao, X.; Liu, G.; Mawhinney, R.D.; Ohta, S.; Petrov, K.; Wettig, T.; Yamaguchi, A.

    2004-01-01

    QCDOC is a massively parallel supercomputer whose processing nodes are based on an application-specific integrated circuit (ASIC). This ASIC was custom-designed so that crucial lattice QCD kernels achieve an overall sustained performance of 50% on machines with several 10,000 nodes. This strong scalability, together with low power consumption and a price/performance ratio of $1 per sustained MFlops, enable QCDOC to attack the most demanding lattice QCD problems. The first ASICs became available in June of 2003, and the testing performed so far has shown all systems functioning according to specification. We review the hardware and software status of QCDOC and present performance figures obtained in real hardware as well as in simulation

  14. Hardware Design of Tuber Electrical Resistance Tomography System Based on the Soil Impedance Test and Analysis

    Directory of Open Access Journals (Sweden)

    Liu Shuyi

    2016-01-01

    Full Text Available The hardware design of tuber electrical resistance tomography (TERT system is one of the key research problems of TERT data acquisition system. The TERT system can be applied to the tuber growth process monitoring in agriculture, i.e., the TERT data acquisition system can realize the real imaging of tuber plants in soil. In TERT system, the imaging tuber and soil multiphase medium is quite complexity. So, the impedance test and analysis of soil multiphase medium is very important to the design of sensitive array sensor subsystem and signals processing circuits. In the paper, the soil impedance test experimental is described and the results are analysed. The data acquisition hardware system is designed based on the result of soil medium impedance test and analysis. In the hardware design, the switch control chip ADG508, the instrumentation amplifier AD620 and programmable amplifier AD526 are employed. In the meantime, the phase locked loop technique for signal demodulation is introduced. The initial data collection is given and discussed under the conditions of existing plant tuber and no existing plant tuber. Conclusions of the hardware design of TERT system are presented.

  15. Quantum neuromorphic hardware for quantum artificial intelligence

    Science.gov (United States)

    Prati, Enrico

    2017-08-01

    The development of machine learning methods based on deep learning boosted the field of artificial intelligence towards unprecedented achievements and application in several fields. Such prominent results were made in parallel with the first successful demonstrations of fault tolerant hardware for quantum information processing. To which extent deep learning can take advantage of the existence of a hardware based on qubits behaving as a universal quantum computer is an open question under investigation. Here I review the convergence between the two fields towards implementation of advanced quantum algorithms, including quantum deep learning.

  16. Modeling and Compensation Design for a Power Hardware-in-the-Loop Simulation of an AC Distribution System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Prabakar, Kumaraguru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainsworth, Nathan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pratt, Annabelle [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baggu, Murali M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hariri, Ali [Formerly NREL

    2017-10-06

    Power hardware-in-the-loop (PHIL) simulation, where actual hardware under text is coupled with a real-time digital model in closed loop, is a powerful tool for analyzing new methods of control for emerging distributed power systems. However, without careful design and compensation of the interface between the simulated and actual systems, PHIL simulations may exhibit instability and modeling inaccuracies. This paper addresses issues that arise in the PHIL simulation of a hardware battery inverter interfaced with a simulated distribution feeder. Both the stability and accuracy issues are modeled and characterized, and a methodology for design of PHIL interface compensation to ensure stability and accuracy is presented. The stability and accuracy of the resulting compensated PHIL simulation is then shown by experiment.

  17. Introduction to co-simulation of software and hardware in embedded processor systems

    Energy Technology Data Exchange (ETDEWEB)

    Dreike, P.L.; McCoy, J.A.

    1996-09-01

    From the dawn of the first use of microprocessors and microcontrollers in embedded systems, the software has been blamed for products being late to market, This is due to software being developed after hardware is fabricated. During the past few years, the use of Hardware Description (or Design) Languages (HDLs) and digital simulation have advanced to a point where the concurrent development of software and hardware can be contemplated using simulation environments. This offers the potential of 50% or greater reductions in time-to-market for embedded systems. This paper is a tutorial on the technical issues that underlie software-hardware (swhw) co-simulation, and the current state of the art. We review the traditional sequential hardware-software design paradigm, and suggest a paradigm for concurrent design, which is supported by co-simulation of software and hardware. This is followed by sections on HDLs modeling and simulation;hardware assisted approaches to simulation; microprocessor modeling methods; brief descriptions of four commercial products for sw-hw co-simulation and a description of our own experiments to develop a co-simulation environment.

  18. The LASS hardware processor

    International Nuclear Information System (INIS)

    Kunz, P.F.

    1976-01-01

    The problems of data analysis with hardware processors are reviewed and a description is given of a programmable processor. This processor, the 168/E, has been designed for use in the LASS multi-processor system; it has an execution speed comparable to the IBM 370/168 and uses the subset of IBM 370 instructions appropriate to the LASS analysis task. (Auth.)

  19. RRFC hardware operation manual

    International Nuclear Information System (INIS)

    Abhold, M.E.; Hsue, S.T.; Menlove, H.O.; Walton, G.

    1996-05-01

    The Research Reactor Fuel Counter (RRFC) system was developed to assay the 235 U content in spent Material Test Reactor (MTR) type fuel elements underwater in a spent fuel pool. RRFC assays the 235 U content using active neutron coincidence counting and also incorporates an ion chamber for gross gamma-ray measurements. This manual describes RRFC hardware, including detectors, electronics, and performance characteristics

  20. Removal of symptomatic craniofacial titanium hardware following craniotomy: Case series and review

    Directory of Open Access Journals (Sweden)

    Sheri K. Palejwala

    2015-06-01

    Full Text Available Titanium craniofacial hardware has become commonplace for reconstruction and bone flap fixation following craniotomy. Complications of titanium hardware include palpability, visibility, infection, exposure, pain, and hardware malfunction, which can necessitate hardware removal. We describe three patients who underwent craniofacial reconstruction following craniotomies for trauma with post-operative courses complicated by medically intractable facial pain. All three patients subsequently underwent removal of the symptomatic craniofacial titanium hardware and experienced rapid resolution of their painful parasthesias. Symptomatic plates were found in the region of the frontozygomatic suture or MacCarty keyhole, or in close proximity with the supraorbital nerve. Titanium plates, though relatively safe and low profile, can cause local nerve irritation or neuropathy. Surgeons should be cognizant of the potential complications of titanium craniofacial hardware and locations that are at higher risk for becoming symptomatic necessitating a second surgery for removal.

  1. Memory Based Machine Intelligence Techniques in VLSI hardware

    OpenAIRE

    James, Alex Pappachen

    2012-01-01

    We briefly introduce the memory based approaches to emulate machine intelligence in VLSI hardware, describing the challenges and advantages. Implementation of artificial intelligence techniques in VLSI hardware is a practical and difficult problem. Deep architectures, hierarchical temporal memories and memory networks are some of the contemporary approaches in this area of research. The techniques attempt to emulate low level intelligence tasks and aim at providing scalable solutions to high ...

  2. Hardware support for collecting performance counters directly to memory

    Science.gov (United States)

    Gara, Alan; Salapura, Valentina; Wisniewski, Robert W.

    2012-09-25

    Hardware support for collecting performance counters directly to memory, in one aspect, may include a plurality of performance counters operable to collect one or more counts of one or more selected activities. A first storage element may be operable to store an address of a memory location. A second storage element may be operable to store a value indicating whether the hardware should begin copying. A state machine may be operable to detect the value in the second storage element and trigger hardware copying of data in selected one or more of the plurality of performance counters to the memory location whose address is stored in the first storage element.

  3. Why Open Source Hardware matters and why you should care

    OpenAIRE

    Gürkaynak, Frank K.

    2017-01-01

    Open source hardware is currently where open source software was about 30 years ago. The idea is well received by enthusiasts, there is interest and the open source hardware has gained visible momentum recently, with several well-known universities including UC Berkeley, Cambridge and ETH Zürich actively working on large projects involving open source hardware, attracting the attention of companies big and small. But it is still not quite there yet. In this talk, based on my experience on the...

  4. Acceleration of Meshfree Radial Point Interpolation Method on Graphics Hardware

    International Nuclear Information System (INIS)

    Nakata, Susumu

    2008-01-01

    This article describes a parallel computational technique to accelerate radial point interpolation method (RPIM)-based meshfree method using graphics hardware. RPIM is one of the meshfree partial differential equation solvers that do not require the mesh structure of the analysis targets. In this paper, a technique for accelerating RPIM using graphics hardware is presented. In the method, the computation process is divided into small processes suitable for processing on the parallel architecture of the graphics hardware in a single instruction multiple data manner.

  5. No-hardware-signature cybersecurity-crypto-module: a resilient cyber defense agent

    Science.gov (United States)

    Zaghloul, A. R. M.; Zaghloul, Y. A.

    2014-06-01

    We present an optical cybersecurity-crypto-module as a resilient cyber defense agent. It has no hardware signature since it is bitstream reconfigurable, where single hardware architecture functions as any selected device of all possible ones of the same number of inputs. For a two-input digital device, a 4-digit bitstream of 0s and 1s determines which device, of a total of 16 devices, the hardware performs as. Accordingly, the hardware itself is not physically reconfigured, but its performance is. Such a defense agent allows the attack to take place, rendering it harmless. On the other hand, if the system is already infected with malware sending out information, the defense agent allows the information to go out, rendering it meaningless. The hardware architecture is immune to side attacks since such an attack would reveal information on the attack itself and not on the hardware. This cyber defense agent can be used to secure a point-to-point, point-to-multipoint, a whole network, and/or a single entity in the cyberspace. Therefore, ensuring trust between cyber resources. It can provide secure communication in an insecure network. We provide the hardware design and explain how it works. Scalability of the design is briefly discussed. (Protected by United States Patents No.: US 8,004,734; US 8,325,404; and other National Patents worldwide.)

  6. An open-source hardware and software system for acquisition and real-time processing of electrophysiology during high field MRI.

    Science.gov (United States)

    Purdon, Patrick L; Millan, Hernan; Fuller, Peter L; Bonmassar, Giorgio

    2008-11-15

    Simultaneous recording of electrophysiology and functional magnetic resonance imaging (fMRI) is a technique of growing importance in neuroscience. Rapidly evolving clinical and scientific requirements have created a need for hardware and software that can be customized for specific applications. Hardware may require customization to enable a variety of recording types (e.g., electroencephalogram, local field potentials, or multi-unit activity) while meeting the stringent and costly requirements of MRI safety and compatibility. Real-time signal processing tools are an enabling technology for studies of learning, attention, sleep, epilepsy, neurofeedback, and neuropharmacology, yet real-time signal processing tools are difficult to develop. We describe an open-source system for simultaneous electrophysiology and fMRI featuring low-noise (tested up to 7T), and user-programmable real-time signal processing. The hardware distribution provides the complete specifications required to build an MRI-compatible electrophysiological data acquisition system, including circuit schematics, print circuit board (PCB) layouts, Gerber files for PCB fabrication and robotic assembly, a bill of materials with part numbers, data sheets, and vendor information, and test procedures. The software facilitates rapid implementation of real-time signal processing algorithms. This system has been used in human EEG/fMRI studies at 3 and 7T examining the auditory system, visual system, sleep physiology, and anesthesia, as well as in intracranial electrophysiological studies of the non-human primate visual system during 3T fMRI, and in human hyperbaric physiology studies at depths of up to 300 feet below sea level.

  7. Safety Metrics for Human-Computer Controlled Systems

    Science.gov (United States)

    Leveson, Nancy G; Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems.This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  8. TreeBASIS Feature Descriptor and Its Hardware Implementation

    Directory of Open Access Journals (Sweden)

    Spencer Fowers

    2014-01-01

    Full Text Available This paper presents a novel feature descriptor called TreeBASIS that provides improvements in descriptor size, computation time, matching speed, and accuracy. This new descriptor uses a binary vocabulary tree that is computed using basis dictionary images and a test set of feature region images. To facilitate real-time implementation, a feature region image is binary quantized and the resulting quantized vector is passed into the BASIS vocabulary tree. A Hamming distance is then computed between the feature region image and the effectively descriptive basis dictionary image at a node to determine the branch taken and the path the feature region image takes is saved as a descriptor. The TreeBASIS feature descriptor is an excellent candidate for hardware implementation because of its reduced descriptor size and the fact that descriptors can be created and features matched without the use of floating point operations. The TreeBASIS descriptor is more computationally and space efficient than other descriptors such as BASIS, SIFT, and SURF. Moreover, it can be computed entirely in hardware without the support of a CPU for additional software-based computations. Experimental results and a hardware implementation show that the TreeBASIS descriptor compares well with other descriptors for frame-to-frame homography computation while requiring fewer hardware resources.

  9. Efficient Architecture for Spike Sorting in Reconfigurable Hardware

    Science.gov (United States)

    Hwang, Wen-Jyi; Lee, Wei-Hao; Lin, Shiow-Jyu; Lai, Sheng-Ying

    2013-01-01

    This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA) and fuzzy C-means (FCM) algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA). It is embedded in a System-on-Chip (SOC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation. PMID:24189331

  10. Efficient Architecture for Spike Sorting in Reconfigurable Hardware

    Directory of Open Access Journals (Sweden)

    Sheng-Ying Lai

    2013-11-01

    Full Text Available This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA and fuzzy C-means (FCM algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA. It is embedded in a System-on-Chip (SOC platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation.

  11. Parallel asynchronous hardware implementation of image processing algorithms

    Science.gov (United States)

    Coon, Darryl D.; Perera, A. G. U.

    1990-01-01

    Research is being carried out on hardware for a new approach to focal plane processing. The hardware involves silicon injection mode devices. These devices provide a natural basis for parallel asynchronous focal plane image preprocessing. The simplicity and novel properties of the devices would permit an independent analog processing channel to be dedicated to every pixel. A laminar architecture built from arrays of the devices would form a two-dimensional (2-D) array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuron-like asynchronous pulse-coded form through the laminar processor. No multiplexing, digitization, or serial processing would occur in the preprocessing state. High performance is expected, based on pulse coding of input currents down to one picoampere with noise referred to input of about 10 femtoamperes. Linear pulse coding has been observed for input currents ranging up to seven orders of magnitude. Low power requirements suggest utility in space and in conjunction with very large arrays. Very low dark current and multispectral capability are possible because of hardware compatibility with the cryogenic environment of high performance detector arrays. The aforementioned hardware development effort is aimed at systems which would integrate image acquisition and image processing.

  12. Human strongyloidiasis: identifying knowledge gaps, with emphasis on environmental control

    Directory of Open Access Journals (Sweden)

    Taylor MJ

    2014-08-01

    Full Text Available Michael J Taylor, Tara A Garrard, Francis J O'Donahoo, Kirstin E Ross Health and Environment, School of the Environment, Flinders University, Adelaide, SA, Australia Abstract: Strongyloides is a human parasitic nematode that is poorly understood outside a clinical context. This article identifies gaps within the literature, with particular emphasis on gaps that are hindering environmental control of Strongyloides. The prevalence and distribution of Strongyloides is unclear. An estimate of 100–370 million people infected worldwide has been proposed; however, inaccuracy of diagnosis, unreliability of prevalence mapping, and the fact that strongyloidiasis remains a neglected disease suggest that the higher figure of more than 300 million cases is likely to be a more accurate estimate. The complexity of Strongyloides life cycle means that laboratory cultures cannot be maintained outside of a host. This currently limits the range of laboratory-based research, which is vital to controlling Strongyloides through environmental alteration or treatment. Successful clinical treatment with antihelminthic drugs has meant that controlling Strongyloides through environmental control, rather than clinical intervention, has been largely overlooked. These control measures may encompass alteration of the soil environment through physical means, such as desiccation or removal of nutrients, or through chemical or biological agents. Repeated antihelminthic treatment of individuals with recurrent strongyloidiasis has not been observed to result in the selection of resistant strains; however, this has not been explicitly demonstrated, and relying on such assumptions in the long-term may prove to be shortsighted. It is ultimately naive to assume that continued administration of antihelminthics will be without any negative long-term effects. In Australia, strongyloidiasis primarily affects Indigenous communities, including communities from arid central Australia. This

  13. The CMS Trigger Supervisor: Control and Hardware Monitoring System of the CMS Level-1 Trigger at CERN

    CERN Document Server

    Ildefons Magrans de Abril

    2008-01-01

    The experiments CMS (Compact Muon Solenoid) and ATLAS (A Toroidal LHC ApparatuS) at the LargeHadron Collider (LHC) are the greatest exponents of the rising complexity in High Energy Physics (HEP) datahandling instrumentation. Tens of millions of readout channels, tens of thousands of hardware boards and thesame order of connections are figures of merit. However, the hardware volume is not the only complexitydimension, the unprecedented large number of research institutes and scientists that form the internationalcollaborations, and the long design, development, commissioning and operational phases are additional factorsthat must be taken into account.The Level-1 (L1) trigger decision loop is an excellent example of these difficulties. This system is based on apipelined logic destined to analyze without deadtime the data from each LHC bunch crossing occurring every25_ns, using special coarsely segmented trigger data from the detectors. The L1 trigger is responsible forreducing the rate of accepted crossings to...

  14. Power Hardware-in-the-Loop Testing of Multiple Photovoltaic Inverters' Volt-Var Control with Real-Time Grid Model

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Sudipta; Nelson, Austin; Hoke, Anderson

    2016-12-12

    Traditional testing methods fall short in evaluating interactions between multiple smart inverters providing advanced grid support functions due to the fact that such interactions largely depend on their placements on the electric distribution systems with impedances between them. Even though significant concerns have been raised by the utilities on the effects of such interactions, little effort has been made to evaluate them. In this paper, power hardware-in-the-loop (PHIL) based testing was utilized to evaluate autonomous volt-var operations of multiple smart photovoltaic (PV) inverters connected to a simple distribution feeder model. The results provided in this paper show that depending on volt-var control (VVC) parameters and grid parameters, interaction between inverters and between the inverter and the grid is possible in some extreme cases with very high VVC slopes, fast response times and large VVC response delays.

  15. Available hardware for automated entry control

    International Nuclear Information System (INIS)

    Holmes, J.P.

    1990-01-01

    Automated entry control has become an increasingly important issue at facilities where budget constraints are limiting options for manned entry control points. Ongoing work at Sandia National Laboratories is attempting to establish a data base for use by facility security managers working the problem of how to maintain security on a limited budget. Sandia National Laboratories conducted a performance test of the following biometric verifiers: (1) voice verifier by Alpha Microsystems of Santa Ana, California; (2) signature dynamics verifier by Autosig Systems of Irving, Texas; (3) voice verifier by Ecco Industries of Danvers, Massachusetts (now International Electronics); (4) retinal pattern verifier by EyeDentify of Portland, Oregon; (5) fingerprint verifier by Identix of Sunnyvale, California; and (6) hand geometry verifier by Recognition Systems of San Jose, California

  16. A Hybrid Hardware and Software Component Architecture for Embedded System Design

    Science.gov (United States)

    Marcondes, Hugo; Fröhlich, Antônio Augusto

    Embedded systems are increasing in complexity, while several metrics such as time-to-market, reliability, safety and performance should be considered during the design of such systems. A component-based design which enables the migration of its components between hardware and software can cope to achieve such metrics. To enable that, we define hybrid hardware and software components as a development artifact that can be deployed by different combinations of hardware and software elements. In this paper, we present an architecture for developing such components in order to construct a repository of components that can migrate between the hardware and software domains to meet the design system requirements.

  17. Benchmarking and Hardware-In-The-Loop Operation of a ...

    Science.gov (United States)

    Engine Performance evaluation in support of LD MTE. EPA used elements of its ALPHA model to apply hardware-in-the-loop (HIL) controls to the SKYACTIV engine test setup to better understand how the engine would operate in a chassis test after combined with future leading edge technologies, advanced high-efficiency transmission, reduced mass, and reduced roadload. Predict future vehicle performance with Atkinson engine. As part of its technology assessment for the upcoming midterm evaluation of the 2017-2025 LD vehicle GHG emissions regulation, EPA has been benchmarking engines and transmissions to generate inputs for use in its ALPHA model

  18. Information Presentation and Control in a Modern Air Traffic Control Tower Simulator

    Science.gov (United States)

    Haines, Richard F.; Doubek, Sharon; Rabin, Boris; Harke, Stanton

    1996-01-01

    The proper presentation and management of information in America's largest and busiest (Level V) air traffic control towers calls for an in-depth understanding of many different human-computer considerations: user interface design for graphical, radar, and text; manual and automated data input hardware; information/display output technology; reconfigurable workstations; workload assessment; and many other related subjects. This paper discusses these subjects in the context of the Surface Development and Test Facility (SDTF) currently under construction at NASA's Ames Research Center, a full scale, multi-manned, air traffic control simulator which will provide the "look and feel" of an actual airport tower cab. Special emphasis will be given to the human-computer interfaces required for the different kinds of information displayed at the various controller and supervisory positions and to the computer-aided design (CAD) and other analytic, computer-based tools used to develop the facility.

  19. Hardware-in-the-loop grid simulator system and method

    Science.gov (United States)

    Fox, John Curtiss; Collins, Edward Randolph; Rigas, Nikolaos

    2017-05-16

    A hardware-in-the-loop (HIL) electrical grid simulation system and method that combines a reactive divider with a variable frequency converter to better mimic and control expected and unexpected parameters in an electrical grid. The invention provides grid simulation in a manner to allow improved testing of variable power generators, such as wind turbines, and their operation once interconnected with an electrical grid in multiple countries. The system further comprises an improved variable fault reactance (reactive divider) capable of providing a variable fault reactance power output to control a voltage profile, therein creating an arbitrary recovery voltage. The system further comprises an improved isolation transformer designed to isolate zero-sequence current from either a primary or secondary winding in a transformer or pass the zero-sequence current from a primary to a secondary winding.

  20. Use of a russian software and hardware complex for quantitative analysis of coronary angiograms

    International Nuclear Information System (INIS)

    Savchenko, A.P.; Pavlov, N.A.; Myasnikova, A.L.

    1996-01-01

    The software and hardware complex developed by the Cardiology Research Center, Russian Academy of Medical Sciences, jointly with the Technomash Research Production Association on the basis of a IBM 386DX personal computer equipped with a VS-100 video controller and a DS P31 VS signal processor board. Testing has indicated that it provides a qualitative image and a quantitative analysis both of phantoms and real images of coronarograms, but more accurately in the analysis of the image obtained from a film projector. Clinical tests have shown that the software and hardware complex may yield a rather qualitative image and calculate the required diameter of a vessel, virtually without prolonging the time of intervention. 4 refs.; 3 figs. 1 tab

  1. BIOLOGICALLY INSPIRED HARDWARE CELL ARCHITECTURE

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a system comprising: - a reconfigurable hardware platform; - a plurality of hardware units defined as cells adapted to be programmed to provide self-organization and self-maintenance of the system by means of implementing a program expressed in a programming language defined as DNA...... language, where each cell is adapted to communicate with one or more other cells in the system, and where the system further comprises a converter program adapted to convert keywords from the DNA language to a binary DNA code; where the self-organisation comprises that the DNA code is transmitted to one...... or more of the cells, and each of the one or more cells is adapted to determine its function in the system; where if a fault occurs in a first cell and the first cell ceases to perform its function, self-maintenance is performed by that the system transmits information to the cells that the first cell has...

  2. Travel Software using GPU Hardware

    CERN Document Server

    Szalwinski, Chris M; Dimov, Veliko Atanasov; CERN. Geneva. ATS Department

    2015-01-01

    Travel is the main multi-particle tracking code being used at CERN for the beam dynamics calculations through hadron and ion linear accelerators. It uses two routines for the calculation of space charge forces, namely, rings of charges and point-to-point. This report presents the studies to improve the performance of Travel using GPU hardware. The studies showed that the performance of Travel with the point-to-point simulations of space-charge effects can be speeded up at least 72 times using current GPU hardware. Simple recompilation of the source code using an Intel compiler can improve performance at least 4 times without GPU support. The limited memory of the GPU is the bottleneck. Two algorithms were investigated on this point: repeated computation and tiling. The repeating computation algorithm is simpler and is the currently recommended solution. The tiling algorithm was more complicated and degraded performance. Both build and test instructions for the parallelized version of the software are inclu...

  3. The principles of computer hardware

    CERN Document Server

    Clements, Alan

    2000-01-01

    Principles of Computer Hardware, now in its third edition, provides a first course in computer architecture or computer organization for undergraduates. The book covers the core topics of such a course, including Boolean algebra and logic design; number bases and binary arithmetic; the CPU; assembly language; memory systems; and input/output methods and devices. It then goes on to cover the related topics of computer peripherals such as printers; the hardware aspects of the operating system; and data communications, and hence provides a broader overview of the subject. Its readable, tutorial-based approach makes it an accessible introduction to the subject. The book has extensive in-depth coverage of two microprocessors, one of which (the 68000) is widely used in education. All chapters in the new edition have been updated. Major updates include: powerful software simulations of digital systems to accompany the chapters on digital design; a tutorial-based introduction to assembly language, including many exam...

  4. Human factors methods for nuclear control room design. Volume I. Human factors enhancement of existing nuclear control rooms. Final report

    International Nuclear Information System (INIS)

    Seminara, J.L.; Seidenstein, S.; Eckert, S.K.; Smith, D.L.

    1979-11-01

    Human factors engineering is an interdisciplinary specialty concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. Human factors approaches were applied in the design of representative nuclear power plant control panels. First, methods for upgrading existing operational control panels were examined. Then, based on detailed human factors analyses of operator information and control requirements, designs of reactor, feedwater, and turbine-generator control panels were developed to improve the operator-control board interface, thereby reducing the potential for operator errors. In addition to examining present-generation concepts, human factors aspects of advanced systems and of hybrid combinations of advanced and conventional designs were investigated. Special attention was given to warning system designs. Also, a survey was conducted among control board designers to (1) develop an overview of design practices in the industry, and (2) establish appropriate measures leading to a more systematic concern for human factors in control board design

  5. Hardware and software for image acquisition in nuclear medicine

    International Nuclear Information System (INIS)

    Fideles, E.L.; Vilar, G.; Silva, H.S.

    1992-01-01

    A system for image acquisition and processing in nuclear medicine is presented, including the hardware and software referring to acquisition. The hardware is consisted of an analog-digital conversion card, developed in wire-wape. Its function is digitate the analogic signs provided by gamma camera. The acquisitions are made in list or frame mode. (C.G.C.)

  6. Hardware concepts for a large low-energetics LMFBR core. Final report

    International Nuclear Information System (INIS)

    Hutter, E.; Batch, R.V.

    1980-12-01

    A design study was made to identify a practical set of hardware configurations that would embody the requirements developed in the numerical study of a low-energetics core and blanket for a prototype large breeder reactor. Dimensioned drawings are presented for fuel, blanket, reflector/shield, and control rod subassemblies. A horizontal cross section drawing shows how these subassemblies are arranged in the total core/blanket assembly. A core support is illustrated showing a dual plenums arrangement

  7. Combined Cycle Engine Large-Scale Inlet for Mode Transition Experiments: System Identification Rack Hardware Design

    Science.gov (United States)

    Thomas, Randy; Stueber, Thomas J.

    2013-01-01

    The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.

  8. Human error mode identification for NPP main control room operations using soft controls

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jaewhan; Jang, Seung-Cheol

    2011-01-01

    The operation environment of main control rooms (MCRs) in modern nuclear power plants (NPPs) has considerably changed over the years. Advanced MCRs, which have been designed by adapting digital and computer technologies, have simpler interfaces using large display panels, computerized displays, soft controls, computerized procedure systems, and so on. The actions for the NPP operations are performed using soft controls in advanced MCRs. Soft controls have different features from conventional controls. Operators need to navigate the screens to find indicators and controls and manipulate controls using a mouse, touch screens, and so on. Due to these different interfaces, different human errors should be considered in the human reliability analysis (HRA) for advanced MCRs. In this work, human errors that could occur during operation executions using soft controls were analyzed. This work classified the human errors in soft controls into six types, and the reasons that affect the occurrence of the human errors were also analyzed. (author)

  9. Hardware Realization of Chaos-based Symmetric Video Encryption

    KAUST Repository

    Ibrahim, Mohamad A.

    2013-05-01

    This thesis reports original work on hardware realization of symmetric video encryption using chaos-based continuous systems as pseudo-random number generators. The thesis also presents some of the serious degradations caused by digitally implementing chaotic systems. Subsequently, some techniques to eliminate such defects, including the ultimately adopted scheme are listed and explained in detail. Moreover, the thesis describes original work on the design of an encryption system to encrypt MPEG-2 video streams. Information about the MPEG-2 standard that fits this design context is presented. Then, the security of the proposed system is exhaustively analyzed and the performance is compared with other reported systems, showing superiority in performance and security. The thesis focuses more on the hardware and the circuit aspect of the system’s design. The system is realized on Xilinx Vetrix-4 FPGA with hardware parameters and throughput performance surpassing conventional encryption systems.

  10. Model for RHIC ramp controls

    International Nuclear Information System (INIS)

    Kewisch, J.; Mane, V.; Clifford, T.; Hartmann, H.; Kahn, T.; Oerter, B.; Peggs, S.

    1994-01-01

    This paper introduces the hardware and software concepts for the implementation of the ramp controls. The hardware part of the ramp controls consists of a number of multi-purpose Wave Form Generators (WFGS) which control the settings of accelerator hardware directly or indirectly by controlling their WFG. A Real Time Data Link (RTDL) data transfer system connects the WFGs in a three layer architecture. To the usual two layers which generate an independent timing signal and dependent set points, respectively, an intermediate layer is added which produces accelerator parameters such as the magnet strength. The task of the bottom layer is therefore reduced to the function of implementing those parameters. This architecture de-couples two independent functions which axe normally folded together. The function of the hardware becomes modular and easily maintainable. The ramp control software is layered in the same way. Between the top layer (the ramp procedure application program) and the bottom layer (the hardware interface) an additional layer of ''manager'' programs allow operation of accelerator subsystems

  11. Task Decomposition in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory

    2014-06-01

    In the probabilistic safety assessments (PSAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question remains central as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PSAs tend to be top-down— defined as a subset of the PSA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) are more likely to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.

  12. Characterization of a Prototype Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Science.gov (United States)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for interspacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of the medium, moving platforms, and radiated power. The Path Emulator for Radio Frequency Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  13. Human factors challenges for advanced process control

    International Nuclear Information System (INIS)

    Stubler, W.F.; O'Hara, J..M.

    1996-01-01

    New human-system interface technologies provide opportunities for improving operator and plant performance. However, if these technologies are not properly implemented, they may introduce new challenges to performance and safety. This paper reports the results from a survey of human factors considerations that arise in the implementation of advanced human-system interface technologies in process control and other complex systems. General trends were identified for several areas based on a review of technical literature and a combination of interviews and site visits with process control organizations. Human factors considerations are discussed for two of these areas, automation and controls

  14. Real-Time Processing Library for Open-Source Hardware Biomedical Sensors.

    Science.gov (United States)

    Molina-Cantero, Alberto J; Castro-García, Juan A; Lebrato-Vázquez, Clara; Gómez-González, Isabel M; Merino-Monge, Manuel

    2018-03-29

    Applications involving data acquisition from sensors need samples at a preset frequency rate, the filtering out of noise and/or analysis of certain frequency components. We propose a novel software architecture based on open-software hardware platforms which allows programmers to create data streams from input channels and easily implement filters and frequency analysis objects. The performances of the different classes given in the size of memory allocated and execution time (number of clock cycles) were analyzed in the low-cost platform Arduino Genuino. In addition, 11 people took part in an experiment in which they had to implement several exercises and complete a usability test. Sampling rates under 250 Hz (typical for many biomedical applications) makes it feasible to implement filters, sliding windows and Fourier analysis, operating in real time. Participants rated software usability at 70.2 out of 100 and the ease of use when implementing several signal processing applications was rated at just over 4.4 out of 5. Participants showed their intention of using this software because it was percieved as useful and very easy to use. The performances of the library showed that it may be appropriate for implementing small biomedical real-time applications or for human movement monitoring, even in a simple open-source hardware device like Arduino Genuino. The general perception about this library is that it is easy to use and intuitive.

  15. Hardware Implementation Of Line Clipping A lgorithm By Using FPGA

    Directory of Open Access Journals (Sweden)

    Amar Dawod

    2013-04-01

    Full Text Available The computer graphics system performance is increasing faster than any other computing application. Algorithms for line clipping against convex polygons and lines have been studied for a long time and many research papers have been published so far. In spite of the latest graphical hardware development and significant increase of performance the clipping is still a bottleneck of any graphical system. So its implementation in hardware is essential for real time applications. In this paper clipping operation is discussed and a hardware implementation of the line clipping algorithm is presented and finally formulated and tested using Field Programmable Gate Arrays (FPGA. The designed hardware unit consists of two parts : the first is positional code generator unit and the second is the clipping unit. Finally it is worth mentioning that the  designed unit is capable of clipping (232524 line segments per second.       

  16. Biofeedback, voluntary control, and human potential.

    Science.gov (United States)

    Norris, P

    1986-03-01

    This paper examines some of the philosophical and scientific relationships involving self-control, voluntary control, and psychophysiologic self-regulation. The role of biofeedback in mediating conscious and unconscious processes is explored. Demonstrations of superior voluntary control and its relationship to belief, confidence, and expectation are examined. Biofeedback demonstrates the potential of control to oneself, creating confidence in one's ability to establish enhanced and peak performance in athletics, education, and psychophysiologic therapy. Emphasis is placed on the power of images in all human functioning, and in enhancing human potential.

  17. Hardware based redundant multi-threading inside a GPU for improved reliability

    Science.gov (United States)

    Sridharan, Vilas; Gurumurthi, Sudhanva

    2015-05-05

    A system and method for verifying computation output using computer hardware are provided. Instances of computation are generated and processed on hardware-based processors. As instances of computation are processed, each instance of computation receives a load accessible to other instances of computation. Instances of output are generated by processing the instances of computation. The instances of output are verified against each other in a hardware based processor to ensure accuracy of the output.

  18. Design of master control unit for laboratory prototype of traction converter for locomotives

    OpenAIRE

    Žák, Jan; Peroutka, Zdeněk; Ovaska, Seppo J.

    2008-01-01

    This paper deals with the prototype of a main traction converter with medium-frequency transformer for AC trolley wire-fed locomotives. The attention is paid to the new master control and diagnostic unit. The designed master control unit has been implemented in the LabVIEW environment. Our master control unit ensures an effective human interface between a user and the control hardware. In this case, the master unit makes possible both extensive control and diagnostic operations of the laborat...

  19. Hardware accelerator design for change detection in smart camera

    Science.gov (United States)

    Singh, Sanjay; Dunga, Srinivasa Murali; Saini, Ravi; Mandal, A. S.; Shekhar, Chandra; Chaudhury, Santanu; Vohra, Anil

    2011-10-01

    Smart Cameras are important components in Human Computer Interaction. In any remote surveillance scenario, smart cameras have to take intelligent decisions to select frames of significant changes to minimize communication and processing overhead. Among many of the algorithms for change detection, one based on clustering based scheme was proposed for smart camera systems. However, such an algorithm could achieve low frame rate far from real-time requirements on a general purpose processors (like PowerPC) available on FPGAs. This paper proposes the hardware accelerator capable of detecting real time changes in a scene, which uses clustering based change detection scheme. The system is designed and simulated using VHDL and implemented on Xilinx XUP Virtex-IIPro FPGA board. Resulted frame rate is 30 frames per second for QVGA resolution in gray scale.

  20. Basics of spectroscopic instruments. Hardware of NMR spectrometer

    International Nuclear Information System (INIS)

    Sato, Hajime

    2009-01-01

    NMR is a powerful tool for structure analysis of small molecules, natural products, biological macromolecules, synthesized polymers, samples from material science and so on. Magnetic Resonance Imaging (MRI) is applicable to plants and animals Because most of NMR experiments can be done by an automation mode, one can forget hardware of NMR spectrometers. It would be good to understand features and performance of NMR spectrometers. Here I present hardware of a modern NMR spectrometer which is fully equipped with digital technology. (author)

  1. Integrated circuit authentication hardware Trojans and counterfeit detection

    CERN Document Server

    Tehranipoor, Mohammad; Zhang, Xuehui

    2013-01-01

    This book describes techniques to verify the authenticity of integrated circuits (ICs). It focuses on hardware Trojan detection and prevention and counterfeit detection and prevention. The authors discuss a variety of detection schemes and design methodologies for improving Trojan detection techniques, as well as various attempts at developing hardware Trojans in IP cores and ICs. While describing existing Trojan detection methods, the authors also analyze their effectiveness in disclosing various types of Trojans, and demonstrate several architecture-level solutions. 

  2. A Hardware Lab Anywhere At Any Time

    Directory of Open Access Journals (Sweden)

    Tobias Schubert

    2004-12-01

    Full Text Available Scientific technical courses are an important component in any student's education. These courses are usually characterised by the fact that the students execute experiments in special laboratories. This leads to extremely high costs and a reduction in the maximum number of possible participants. From this traditional point of view, it doesn't seem possible to realise the concepts of a Virtual University in the context of sophisticated technical courses since the students must be "on the spot". In this paper we introduce the so-called Mobile Hardware Lab which makes student participation possible at any time and from any place. This lab nevertheless transfers a feeling of being present in a laboratory. This is accomplished with a special Learning Management System in combination with hardware components which correspond to a fully equipped laboratory workstation that are lent out to the students for the duration of the lab. The experiments are performed and solved at home, then handed in electronically. Judging and marking are also both performed electronically. Since 2003 the Mobile Hardware Lab is now offered in a completely web based form.

  3. What makes a control system usable? An operational viewpoint

    International Nuclear Information System (INIS)

    Clay, M.

    1990-01-01

    This report discusses the generally accepted successes and shortcomings of the various computer and hardware-based control systems at the Los Alamos Meson Physics Facility (LAMPF) from an operator's standpoint. LAMPF currently utilizes three separate control rooms that, although critically co-dependent, use distinct operating methods. The first, the Injector Control Room, which is responsible for the operation of the three ion sources, the 750 keV transport lines and the 201.25 MHz portion of the linac, uses a predominantly hardware-based control system. The second, the LANSCE Control Room, which is responsible for the operation of the Los Alamos Neutron Scattering Center, uses a graphical touch-panel interface with single-application screens as its control system. The third, the LAMPF Central Control Room, which is responsible for the overall operation of LAMPF, primarily uses a text-oriented keyboard interface with multiple applications per screen. Though each system provides generally reliable human interfacing to the enormously complex and diverse machine known as LAMPF, the operational requirements of speed, usability, and reliability are increasingly necessitating the use of a standard control system that incorporates the positive aspects of all three control systems. (orig.)

  4. Hardware-in-the-loop (HIL) nuclear power plant training simulation platform design and validation

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, D.J. [Univ. of Western Ontario, Control and Instrumentation (CIES) Research Group, Dept. of Electrical and Computer Engineering, London, Ontario (Canada)

    2008-07-01

    The design, development and validation of a hardware-in- the-loop (HIL) simulation platform are presented. An Invensys Triconex Tricon v9 safety PLC is interfaced to a nuclear power plant (NPP) simulation suite, replicating the operation of Darlington NPP. Communication between the simulator and external hardware is supported by a National Instruments (NI) data acquisition system (DAQ) and a customized virtual instrument (VI). Event timings within the control loop are thoroughly investigated and an acceptable method for HIL platform communication is developed. A sample application (primary shutdown system (SDS1)) is implemented and evaluated. SDS1 evaluation is performed with focus on steam generator (SG) level low trip scenarios. For this purpose, a design basis accident (DBA) associated with SDS1 regulatory standards is applied to the HIL simulation environment and compared with simulated expected plant operation. Further, the role of the Tricon v9 system within the HIL loop is investigated to establish a basis for the future integration of the entire SDS1 control logic. (author)

  5. Hardware in the loop platform development for hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, E. [ETH Zurich, Zurich (Switzerland); Fowler, E.; Stevens, M.B. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering; Fraser, M.W. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2007-07-01

    This paper described a hardware-in-the-loop (HIL) validation simulation system designed to evaluate hybrid control strategies. The system was designed to reduce development costs and improve the safety of hybrid vehicle control systems. Model-based design processes for power trains typically include a series of processes to assess the real time and physical limitations of control systems prior to in-vehicle testing. The study used a 70 kW nickel metal hydride battery; a 67 kW 3-phase induction traction motor; and, a high voltage DC-DC converter within a fuel cell Chevrolet Equinox. Two physical vehicle controllers were used to interface with the virtual vehicle simulation in real time. System performance was monitored with a supervisory computer. A software in the loop (SIL) process was conducted to assess torque control and regenerative braking algorithm validation. An analysis of the controller code showed that a Simulink-native integrator block was updating too slowly. A custom integration term calculation was written. The charge control was then validated and tuned. It was concluded that use of the HIL system mitigated the risk of component damage through the identification and correction of unstable control logic. 10 refs., 2 tabs., 10 figs.

  6. Improvements in flight table dynamic transparency for hardware-in-the-loop facilities

    Science.gov (United States)

    DeMore, Louis A.; Mackin, Rob; Swamp, Michael; Rusterholtz, Roger

    2000-07-01

    Flight tables are a 'necessary evil' in the Hardware-In-The- Loop (HWIL) simulation. Adding the actual or prototypic flight hardware to the loop, in order to increase the realism of the simulation, forces us to add motion simulation to the process. Flight table motion bases bring unwanted dynamics, non- linearities, transport delays, etc to an already difficult problem sometimes requiring the simulation engineer to compromise the results. We desire that the flight tables be 'dynamically transparent' to the simulation scenario. This paper presents a State Variable Feedback (SVF) control system architecture with feed-forward techniques that improves the flight table's dynamic transparency by significantly reducing the table's low frequency phase lag. We offer some actual results with existing flight tables that demonstrate the improved transparency. These results come from a demonstration conducted on a flight table in the KHILS laboratory at Eglin AFB and during a refurbishment of a flight table for the Boeing Company of St. Charles, Missouri.

  7. Universal Programmable Logic Controller Software

    International Nuclear Information System (INIS)

    Mohd Arif Hamzah; Azhar Shamsudin; Fadil Ismail; Muhammad Nor Atan; Anwar Abdul Rahman

    2013-01-01

    Programmable Logic Controller (PLC) is an electronic hardware which is widely used in manufacturing or processing industries. It is also serve as the main control system hardware to run the production and manufacturing process. There are more than ten (10) well known company producing PLC hardware, with their own specialties, including the method of programming and language used. Malaysia Nuclear Agency have various plant and equipment, runs and control by PLC, such as Mintex Sinagama Plant, Alurtron Plant, and few laboratory equipment. Since all the equipment and plant are equipped with various brand or different manufacture of PLC, it creates difficulties to the supporting staff to master the control program. The same problems occur for new application of this hardware, since there no policies to purchase only one specific brand of PLC. (author)

  8. Effect of spaceflight hardware on the skeletal properties of ground control mice

    Science.gov (United States)

    Bateman, Ted; Lloyd, Shane; Dunlap, Alex; Ferguson, Virginia; Simske, Steven; Stodieck, Louis; Livingston, Eric

    Introduction: Spaceflight experiments using mouse or rat models require habitats that are specifically designed for the microgravity environment. During spaceflight, rodents are housed in a specially designed stainless steel meshed cage with gravity-independent food and water delivery systems and constant airflow to push floating urine and feces towards a waste filter. Differences in the housing environment alone, not even considering the spaceflight environment itself, may lead to physiological changes in the animals contained within. It is important to characterize these cage differences so that results from spaceflight experiments can be more reliably compared to studies from other laboratories. Methods: For this study, we examined the effect of NASA's Animal Enclosure Module (AEM) spaceflight hardware on the skeletal properties of 8-week-old female C57BL/6J mice. This 13-day experiment, conducted on the ground, modeled the flight experiment profile of the CBTM-01 payload on STS-108, with standard vivarium-housed mice being compared to AEM-housed mice (n = 12/group). Functional differences were compared via mechanical testing, micro-hardness indentation, microcomputed tomography, and mineral/matrix composition. Cellular changes were examined by serum chemistry, histology, quantitative histomorphometry, and RT-PCR. A Student's t-test was utilized, with the level of Type I error set at 95 Results: There was no change in elastic, maximum, or fracture force mechanical properties at the femur mid-diaphysis, however, structural stiffness was -17.5 Conclusions: Housing mice in the AEM spaceflight hardware had minimal effects on femur cortical bone properties. However, trabecular bone at the proximal tibia in AEM mice experi-enced large increases in microarchitecture and mineral composition. Increases in bone density were accompanied by reductions in bone-forming osteoblasts and bone-resorbing osteoclasts, representing a general decline in bone turnover at this site

  9. Fault Detection, Isolation and Recovery (FDIR) Portable Liquid Oxygen Hardware Demonstrator

    Science.gov (United States)

    Oostdyk, Rebecca L.; Perotti, Jose M.

    2011-01-01

    The Fault Detection, Isolation and Recovery (FDIR) hardware demonstration will highlight the effort being conducted by Constellation's Ground Operations (GO) to provide the Launch Control System (LCS) with system-level health management during vehicle processing and countdown activities. A proof-of-concept demonstration of the FDIR prototype established the capability of the software to provide real-time fault detection and isolation using generated Liquid Hydrogen data. The FDIR portable testbed unit (presented here) aims to enhance FDIR by providing a dynamic simulation of Constellation subsystems that feed the FDIR software live data based on Liquid Oxygen system properties. The LO2 cryogenic ground system has key properties that are analogous to the properties of an electronic circuit. The LO2 system is modeled using electrical components and an equivalent circuit is designed on a printed circuit board to simulate the live data. The portable testbed is also be equipped with data acquisition and communication hardware to relay the measurements to the FDIR application running on a PC. This portable testbed is an ideal capability to perform FDIR software testing, troubleshooting, training among others.

  10. NSSS Component Control System Design of Integral Reactor

    International Nuclear Information System (INIS)

    Lee, Joon Koo; Kwon, Ho Je; Jeong, Kwong Il; Park, Heui Youn; Koo, In Soo

    2005-01-01

    MMIS(Man Machine Interface System) of an integral reactor is composed of a Control Room, Plant Protection System, Control System and Monitoring System which are related with the overall plant operation. MMIS is being developed with a new design concept and digital technology to reduce the Human Factor Error and improve the systems' safety, reliability and availability. And CCS(component control system) is also being developed with a new design concept and digital hardware technology A fully digitalized system and design concept are introduced in the NSSS CCS

  11. Motion compensation in digital subtraction angiography using graphics hardware.

    Science.gov (United States)

    Deuerling-Zheng, Yu; Lell, Michael; Galant, Adam; Hornegger, Joachim

    2006-07-01

    An inherent disadvantage of digital subtraction angiography (DSA) is its sensitivity to patient motion which causes artifacts in the subtraction images. These artifacts could often reduce the diagnostic value of this technique. Automated, fast and accurate motion compensation is therefore required. To cope with this requirement, we first examine a method explicitly designed to detect local motions in DSA. Then, we implement a motion compensation algorithm by means of block matching on modern graphics hardware. Both methods search for maximal local similarity by evaluating a histogram-based measure. In this context, we are the first who have mapped an optimizing search strategy on graphics hardware while paralleling block matching. Moreover, we provide an innovative method for creating histograms on graphics hardware with vertex texturing and frame buffer blending. It turns out that both methods can effectively correct the artifacts in most case, as the hardware implementation of block matching performs much faster: the displacements of two 1024 x 1024 images can be calculated at 3 frames/s with integer precision or 2 frames/s with sub-pixel precision. Preliminary clinical evaluation indicates that the computation with integer precision could already be sufficient.

  12. The priority queue as an example of hardware/software codesign

    DEFF Research Database (Denmark)

    Høeg, Flemming; Mellergaard, Niels; Staunstrup, Jørgen

    1994-01-01

    The paper identifies a number of issues that are believed to be important for hardware/software codesign. The issues are illustrated by a small comprehensible example: a priority queue. Based on simulations of a real application, we suggest a combined hardware/software realization of the priority...

  13. Review of international standards related to the design for control rooms on nuclear power plants

    International Nuclear Information System (INIS)

    Kitamura, Masashi; Yoshikawa, Hidekazu; Fujita, Yushi

    2005-01-01

    The improvement of Human-Machine Interface (HMI) design for control rooms on nuclear power plants (NPP) has been accomplished world wide, especially after the TMI-2 accident. The design process and guidelines are standardized in IEC60964 and supplemental standards as international standard. However, technological update is required due to the increased use of computerized control and monitoring equipment and systems in control rooms on NPP in recent years. Standards are becoming more important for computerized control rooms because there is more freedom to design than conventional hardware based system. For computerized control rooms, standards for hardware and software of HMI systems should be also considered. Standards and guidelines for computerized control rooms on NPP have been developed recently in each body such as IEC, ISO, and IEEE etc. Therefore, reviewing these standards and guidelines related to control rooms design of NPP can be useful not only for revision of the international standards such as IEC60964, but also for users of the standards and guidelines. In this paper, we reviewed the international standards related to the design for control rooms, in the two aspects of HMI design and hardware and software design, considering the undergoing revision work and their application. (author)

  14. Hardware characteristic and application

    International Nuclear Information System (INIS)

    Gu, Dong Hyeon

    1990-03-01

    The contents of this book are system board on memory, performance, system timer system click and specification, coprocessor such as programing interface and hardware interface, power supply on input and output, protection for DC output, Power Good signal, explanation on 84 keyboard and 101/102 keyboard,BIOS system, 80286 instruction set and 80287 coprocessor, characters, keystrokes and colors, communication and compatibility of IBM personal computer on application direction, multitasking and code for distinction of system.

  15. Automating an EXAFS facility: hardware and software considerations

    International Nuclear Information System (INIS)

    Georgopoulos, P.; Sayers, D.E.; Bunker, B.; Elam, T.; Grote, W.A.

    1981-01-01

    The basic design considerations for computer hardware and software, applicable not only to laboratory EXAFS facilities, but also to synchrotron installations, are reviewed. Uniformity and standardization of both hardware configurations and program packages for data collection and analysis are heavily emphasized. Specific recommendations are made with respect to choice of computers, peripherals, and interfaces, and guidelines for the development of software packages are set forth. A description of two working computer-interfaced EXAFS facilities is presented which can serve as prototypes for future developments. 3 figures

  16. Human Research Program Advanced Exercise Concepts (AEC) Overview

    Science.gov (United States)

    Perusek, Gail; Lewandowski, Beth; Nall, Marsha; Norsk, Peter; Linnehan, Rick; Baumann, David

    2015-01-01

    countermeasures systems. Numerous technologies have been considered and evaluated against HRP-approved functional device requirements for these extreme mission profiles, and include wearable sensors, exoskeletons, flywheel, pneumatic, and closed-loop microprocessor controlled motor driven systems. Each technology has unique advantages and disadvantages. The Advanced Exercise Concepts project oversees development of candidate next generation exercise countermeasures hardware, performs trade studies of current and state of the art exercise technologies, manages and supports candidate systems physiological evaluations with human test subjects on the ground, in flight analogs and flight. The near term goal is evaluation of candidate systems in flight, culminating in an integrated candidate next generation exercise countermeasures suite on the ISS which coalesces research findings from HRP disciplines in the areas of exercise performance for muscle, bone, cardiovascular, sensorimotor, behavioral health, and nutrition for optimal benefit to the crew.

  17. Human factors methods for nuclear control room design. Volume 2. Human factors survey of control room design practices

    International Nuclear Information System (INIS)

    Seminara, J.L.; Parsons, S.O.

    1979-11-01

    An earlier review of the control rooms of operating nuclear power plants identified many design problems having potential for degrading operator performance. As a result, the formal application of human factors principles was found to be needed. This report demonstrates the use of human factors in the design of power plant control rooms. The approaches shown in the report can be applied to operating power plants, as well as to those in the design stage. This study documents human factors techniques required to provide a sustained concern for the man-machine interface from control room concept definition to system implementation

  18. Commodity hardware and software summary

    International Nuclear Information System (INIS)

    Wolbers, S.

    1997-04-01

    A review is given of the talks and papers presented in the Commodity Hardware and Software Session at the CHEP97 conference. An examination of the trends leading to the consideration of PC's for HEP is given, and a status of the work that is being done at various HEP labs and Universities is given

  19. Distributed control system for CANDU 9 nuclear power plant

    International Nuclear Information System (INIS)

    Harber, J.E.; Kattan, M.K.; Macbeth, M.J.

    1996-01-01

    Canadian designed CANDU pressurized heavy water nuclear reactors have been world leaders in electrical power generation. The CANDU 9 project is AECL's next reactor design. The CANDU 9 plant monitoring, annunciation, and control functions are implemented in two evolutionary systems; the distributed control system (DCS) and the plant display system (PDS). The CDS implements most of the plant control functions in a single hardware platform. The DCS communicates with the PDS to provide the main operator interface and annunciation capabilities of the previous control computer designs along with human interface enhancements required in a modern control system. (author)

  20. Surface moisture measurement system hardware acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.A., Westinghouse Hanford

    1996-05-28

    This document summarizes the results of the hardware acceptance test for the Surface Moisture Measurement System (SMMS). This test verified that the mechanical and electrical features of the SMMS functioned as designed and that the unit is ready for field service. The bulk of hardware testing was performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. The SMMS was developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks.

  1. Computer organization and design the hardware/software interface

    CERN Document Server

    Hennessy, John L

    1994-01-01

    Computer Organization and Design: The Hardware/Software Interface presents the interaction between hardware and software at a variety of levels, which offers a framework for understanding the fundamentals of computing. This book focuses on the concepts that are the basis for computers.Organized into nine chapters, this book begins with an overview of the computer revolution. This text then explains the concepts and algorithms used in modern computer arithmetic. Other chapters consider the abstractions and concepts in memory hierarchies by starting with the simplest possible cache. This book di

  2. Magnetic Gimbal Proof-of-Concept Hardware performance results

    Science.gov (United States)

    Stuart, Keith O.

    1993-01-01

    The Magnetic Gimbal Proof-of-Concept Hardware activities, accomplishments, and test results are discussed. The Magnetic Gimbal Fabrication and Test (MGFT) program addressed the feasibility of using a magnetic gimbal to isolate an Electro-Optical (EO) sensor from the severe angular vibrations induced during the firing of divert and attitude control system (ACS) thrusters during space flight. The MGFT effort was performed in parallel with the fabrication and testing of a mechanically gimballed, flex pivot based isolation system by the Hughes Aircraft Missile Systems Group. Both servo systems supported identical EO sensor assembly mockups to facilitate direct comparison of performance. The results obtained from the MGFT effort indicate that the magnetic gimbal exhibits the ability to provide significant performance advantages over alternative mechanically gimballed techniques.

  3. The role of the visual hardware system in rugby performance ...

    African Journals Online (AJOL)

    This study explores the importance of the 'hardware' factors of the visual system in the game of rugby. A group of professional and club rugby players were tested and the results compared. The results were also compared with the established norms for elite athletes. The findings indicate no significant difference in hardware ...

  4. OER Approach for Specific Student Groups in Hardware-Based Courses

    Science.gov (United States)

    Ackovska, Nevena; Ristov, Sasko

    2014-01-01

    Hardware-based courses in computer science studies require much effort from both students and teachers. The most important part of students' learning is attending in person and actively working on laboratory exercises on hardware equipment. This paper deals with a specific group of students, those who are marginalized by not being able to…

  5. 49 CFR 238.105 - Train electronic hardware and software safety.

    Science.gov (United States)

    2010-10-01

    ... and software system safety as part of the pre-revenue service testing of the equipment. (d)(1... safely by initiating a full service brake application in the event of a hardware or software failure that... 49 Transportation 4 2010-10-01 2010-10-01 false Train electronic hardware and software safety. 238...

  6. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR): Data manual. Part 3: Hardware component failure data; Volume 5, Revision 4

    International Nuclear Information System (INIS)

    Reece, W.J.; Gilbert, B.G.; Richards, R.E.

    1994-09-01

    This data manual contains a hard copy of the information in the Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) Version 3.5 database, which is sponsored by the US Nuclear Regulatory Commission. NUCLARR was designed as a tool for risk analysis. Many of the nuclear reactors in the US and several outside the US are represented in the NUCLARR database. NUCLARR includes both human error probability estimates for workers at the plants and hardware failure data for nuclear reactor equipment. Aggregations of these data yield valuable reliability estimates for probabilistic risk assessments and human reliability analyses. The data manual is organized to permit manual searches of the information if the computerized version is not available. Originally, the manual was published in three parts. In this revision the introductory material located in the original Part 1 has been incorporated into the text of Parts 2 and 3. The user can now find introductory material either in the original Part 1, or in Parts 2 and 3 as revised. Part 2 contains the human error probability data, and Part 3, the hardware component reliability data

  7. Analog Exercise Hardware to Implement a High Intensity Exercise Program During Bed Rest

    Science.gov (United States)

    Loerch, Linda; Newby, Nate; Ploutz-Snyder, Lori

    2012-01-01

    Background: In order to evaluate novel countermeasure protocols in a space flight analog prior to validation on the International Space Station (ISS), NASA's Human Research Program (HRP) is sponsoring a multi-investigator bedrest campaign that utilizes a combination of commercial and custom-made exercise training hardware to conduct daily resistive and aerobic exercise protocols. This paper will describe these pieces of hardware and how they are used to support current bedrest studies at NASA's Flight Analog Research Unit in Galveston, TX. Discussion: To implement candidate exercise countermeasure studies during extended bed rest studies the following analog hardware are being utilized: Stand alone Zero-Gravity Locomotion Simulator (sZLS) -- a custom built device by NASA, the sZLS allows bedrest subjects to remain supine as they run on a vertically-oriented treadmill (0-15 miles/hour). The treadmill includes a pneumatic subject loading device to provide variable body loading (0-100%) and a harness to keep the subject in contact with the motorized treadmill to provide a ground reaction force at their feet that is quantified by a Kistler Force Plate. Supine Cycle Ergometer -- a commercially available supine cycle ergometer (Lode, Groningen, Netherlands) is used for all cycle ergometer sessions. The ergometer has adjustable shoulder supports and handgrips to help stabilize the subject during exercise. Horizontal Squat Device (HSD) -- a custom built device by Quantum Fitness Corp (Stafford, TX), the HSD allows for squat exercises to be performed while lying in a supine position. The HSD can provide 0 to 600 pounds of force in selectable 5 lb increments, and allows hip translation in both the vertical and horizontal planes. Prone Leg Curl -- a commercially available prone leg curl machine (Cybex International Inc., Medway, MA) is used to complete leg curl exercises. Horizontal Leg Press -- a commercially available horizontal leg press (Quantum Fitness Corporation) is

  8. A Framework for Hardware-Accelerated Services Using Partially Reconfigurable SoCs

    Directory of Open Access Journals (Sweden)

    MACHIDON, O. M.

    2016-05-01

    Full Text Available The current trend towards ?Everything as a Service? fosters a new approach on reconfigurable hardware resources. This innovative, service-oriented approach has the potential of bringing a series of benefits for both reconfigurable and distributed computing fields by favoring a hardware-based acceleration of web services and increasing service performance. This paper proposes a framework for accelerating web services by offloading the compute-intensive tasks to reconfigurable System-on-Chip (SoC devices, as integrated IP (Intellectual Property cores. The framework provides a scalable, dynamic management of the tasks and hardware processing cores, based on dynamic partial reconfiguration of the SoC. We have enhanced security of the entire system by making use of the built-in detection features of the hardware device and also by implementing active counter-measures that protect the sensitive data.

  9. Outline of a Hardware Reconfiguration Framework for Modular Industrial Mobile Manipulators

    DEFF Research Database (Denmark)

    Schou, Casper; Bøgh, Simon; Madsen, Ole

    2014-01-01

    This paper presents concepts and ideas of a hard- ware reconfiguration framework for modular industrial mobile manipulators. Mobile manipulators pose a highly flexible pro- duction resource due to their ability to autonomously navigate between workstations. However, due to this high flexibility new...... approaches to the operation of the robots are needed. Reconfig- uring the robot to a new task should be carried out by shop floor operators and, thus, be both quick and intuitive. Late research has already proposed a method for intuitive robot programming. However, this relies on a predetermined hardware...... configuration. Finding a single multi-purpose hardware configuration suited to all tasks is considered unrealistic. As a result, the need for reconfiguration of the hardware is inevitable. In this paper an outline of a framework for making hardware reconfiguration quick and intuitive is presented. Two main...

  10. Hardware-in-loop simulation of electric vehicles automated mechanical transmission system

    Energy Technology Data Exchange (ETDEWEB)

    Liao, C.; Wu, Y.; Wang, L. [Chinese Academy of Sciences, Beijing (China). Inst. of Electrical Engineering

    2009-03-11

    Automated mechanical transmission (AMT) can be used to enhance the performance of hybrid electric vehicles. In this study, hardware-in-loop (HIL) simulations were used to develop an AMT control system. HIL was used to simulate the running and fault status of the system as well as to optimize its performance. HIL was combined with a commercial simulation tool and an automatic code generation technology in a real time environment tool to develop the AMT control system. A hybrid vehicle system dynamics model was generated and then simulated in various real time operating vehicle environments. Virtual instrument technology was used to develop real time monitoring, parameter matching calibration, data acquisition and offline analyses for the optimization of the control system. Results of the analyses demonstrated that the AMT control system can be used to optimize the performance of hybrid electric vehicles. 5 refs., 9 figs.

  11. Security challenges and opportunities in adaptive and reconfigurable hardware

    OpenAIRE

    Costan, Victor Marius; Devadas, Srinivas

    2011-01-01

    We present a novel approach to building hardware support for providing strong security guarantees for computations running in the cloud (shared hardware in massive data centers), while maintaining the high performance and low cost that make cloud computing attractive in the first place. We propose augmenting regular cloud servers with a Trusted Computation Base (TCB) that can securely perform high-performance computations. Our TCB achieves cost savings by spreading functionality across two pa...

  12. Review of Maxillofacial Hardware Complications and Indications for Salvage

    OpenAIRE

    Hernandez Rosa, Jonatan; Villanueva, Nathaniel L.; Sanati-Mehrizy, Paymon; Factor, Stephanie H.; Taub, Peter J.

    2015-01-01

    From 2002 to 2006, more than 117,000 facial fractures were recorded in the U.S. National Trauma Database. These fractures are commonly treated with open reduction and internal fixation. While in place, the hardware facilitates successful bony union. However, when postoperative complications occur, the plates may require removal before bony union. Indications for salvage versus removal of the maxillofacial hardware are not well defined. A literature review was performed to identify instances w...

  13. System-level protection and hardware Trojan detection using weighted voting.

    Science.gov (United States)

    Amin, Hany A M; Alkabani, Yousra; Selim, Gamal M I

    2014-07-01

    The problem of hardware Trojans is becoming more serious especially with the widespread of fabless design houses and design reuse. Hardware Trojans can be embedded on chip during manufacturing or in third party intellectual property cores (IPs) during the design process. Recent research is performed to detect Trojans embedded at manufacturing time by comparing the suspected chip with a golden chip that is fully trusted. However, Trojan detection in third party IP cores is more challenging than other logic modules especially that there is no golden chip. This paper proposes a new methodology to detect/prevent hardware Trojans in third party IP cores. The method works by gradually building trust in suspected IP cores by comparing the outputs of different untrusted implementations of the same IP core. Simulation results show that our method achieves higher probability of Trojan detection over a naive implementation of simple voting on the output of different IP cores. In addition, experimental results show that the proposed method requires less hardware overhead when compared with a simple voting technique achieving the same degree of security.

  14. System-level protection and hardware Trojan detection using weighted voting

    Directory of Open Access Journals (Sweden)

    Hany A.M. Amin

    2014-07-01

    Full Text Available The problem of hardware Trojans is becoming more serious especially with the widespread of fabless design houses and design reuse. Hardware Trojans can be embedded on chip during manufacturing or in third party intellectual property cores (IPs during the design process. Recent research is performed to detect Trojans embedded at manufacturing time by comparing the suspected chip with a golden chip that is fully trusted. However, Trojan detection in third party IP cores is more challenging than other logic modules especially that there is no golden chip. This paper proposes a new methodology to detect/prevent hardware Trojans in third party IP cores. The method works by gradually building trust in suspected IP cores by comparing the outputs of different untrusted implementations of the same IP core. Simulation results show that our method achieves higher probability of Trojan detection over a naive implementation of simple voting on the output of different IP cores. In addition, experimental results show that the proposed method requires less hardware overhead when compared with a simple voting technique achieving the same degree of security.

  15. Arduino based laser control

    OpenAIRE

    Bernal Muñoz, Ferran

    2015-01-01

    ARDUINO is a vey usefull platform for prototypes. In this project ARDUINO will be used for controling a Semiconductor Tuneable Laser. [ANGLÈS] Diode laser for communications control based on an Arduino board. Temperature control implementation. Software and hardware protection for the laser implementation. [CASTELLÀ] Control de un láser de comunicaciones ópticas desde el ordenador utilizando una placa Arduino. Implementación de un control de temperatura y protección software y hardware ...

  16. Control system for 10 MeV irradiation electron linac

    International Nuclear Information System (INIS)

    Zeng Ziqiang; Zhang Lifeng; Lu Weixing; Gao Zhenjiang; Zhang Yan; Han Guangwen; Wang Shuxian

    2005-01-01

    Control system of the 10 MeV electron linac using Distributed Control System (DCS) was studied. The hardware of control system consists of four SIEMENS PLCs and monitor computer, the software bases on STEP 7, Labwindows/CVI and SQL Server. The bus between the monitor computer and the main PLC is 100 M industrial networks, between PLCs is MPI bus, between PLC and remote partner is PROFIBUS, between PLC and terminals is RS485/422. The software of control system can provide a friendly human machine interface to operate the machine, protect the human and equipment from risk, and storage the status of the accelerator real time to the database. The monitor and maintenance of the linac can been carried out not only on local computer or local network, but also in internet. (author)

  17. Hardware and layout aspects affecting maintainability

    International Nuclear Information System (INIS)

    Jayaraman, V.N.; Surendar, Ch.

    1977-01-01

    It has been found from maintenance experience at the Rajasthan Atomic Power Station that proper hardware and instrumentation layout can reduce maintenance and down-time on the related equipment. The problems faced in this connection and how they were solved is narrated. (M.G.B.)

  18. Building Correlators with Many-Core Hardware

    NARCIS (Netherlands)

    van Nieuwpoort, R.V.

    2010-01-01

    Radio telescopes typically consist of multiple receivers whose signals are cross-correlated to filter out noise. A recent trend is to correlate in software instead of custom-built hardware, taking advantage of the flexibility that software solutions offer. Examples include e-VLBI and LOFAR. However,

  19. Development of a software and hardware system for monitoring the air cleaning process using a cyclone-separator

    Science.gov (United States)

    Nicolaeva, B. K.; Borisov, A. P.; Zlochevskiy, V. L.

    2017-08-01

    The article is devoted to the development of a hardware-software complex for monitoring and controlling the process of air purification by means of a cyclone-separator. The hardware of this complex is the Arduino platform, to which are connected pressure sensors, air velocities, dustmeters, which allow monitoring of the main parameters of the cyclone-separator. Also, a frequency converter was developed to regulate the rotation speed of an asynchronous motor necessary to correct the flow rate, the control signals of which come with Arduino. The program part of the complex is written in the form of a web application in the programming language JavaScript and inserts into CSS and HTML for the user interface. This program allows you to receive data from sensors, build dependencies in real time and control the speed of rotation of an asynchronous electric drive. The conducted experiment shows that the cleaning efficiency is 95-99.9%, while the airflow at the cyclone inlet is 16-18 m/s, and at the exit 50-70 m/s.

  20. Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

    1986-10-01

    There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

  1. Software and hardware complex for research and management of the separation process

    Science.gov (United States)

    Borisov, A. P.

    2018-01-01

    The article is devoted to the development of a program for studying the operation of an asynchronous electric drive using vector-algorithmic switching of windings, as well as the development of a hardware-software complex for controlling parameters and controlling the speed of rotation of an asynchronous electric drive for investigating the operation of a cyclone. To study the operation of an asynchronous electric drive, a method was used in which the average value of flux linkage is found and a method for vector-algorithmic calculation of the power and electromagnetic moment of an asynchronous electric drive feeding from a single-phase network is developed, with vector-algorithmic commutation, and software for calculating parameters. The software part of the complex allows to regulate the speed of rotation of the motor by vector-algorithmic switching of transistors or, using pulse-width modulation (PWM), set any engine speed. Also sensors are connected to the hardware-software complex at the inlet and outlet of the cyclone. The developed cyclone with an inserted complex allows to receive high efficiency of product separation at various entrance speeds. At an inlet air speed of 18 m / s, the cyclone’s maximum efficiency is achieved. For this, it is necessary to provide the rotational speed of an asynchronous electric drive with a frequency of 45 Hz.

  2. How to create successful Open Hardware projects - About White Rabbits and open fields

    CERN Document Server

    van der Bij, E; Lewis, J; Stana, T; Wlostowski, T; Gousiou, E; Serrano, J; Arruat, M; Lipinski, M M; Daniluk, G; Voumard, N; Cattin, M

    2013-01-01

    CERN's accelerator control group has embraced "Open Hardware" (OH) to facilitate peer review, avoid vendor lock-in and make support tasks scalable. A web-based tool for easing collaborative work was set up and the CERN OH Licence was created. New ADC, TDC, fine delay and carrier cards based on VITA and PCI-SIG standards were designed and drivers for Linux were written. Often industry was paid for developments, while quality and documentation was controlled by CERN. An innovative timing network was also developed with the OH paradigm. Industry now sells and supports these designs that find their way into new fields.

  3. Recent Technology Advances in Distributed Engine Control

    Science.gov (United States)

    Culley, Dennis

    2017-01-01

    This presentation provides an overview of the work performed at NASA Glenn Research Center in distributed engine control technology. This is control system hardware technology that overcomes engine system constraints by modularizing control hardware and integrating the components over communication networks.

  4. Challenges for Virtual Humans in Human Computing

    NARCIS (Netherlands)

    Reidsma, Dennis; Ruttkay, Z.M.; Huang, T; Nijholt, Antinus; Pantic, Maja; Pentland, A.

    The vision of Ambient Intelligence (AmI) presumes a plethora of embedded services and devices that all endeavor to support humans in their daily activities as unobtrusively as possible. Hardware gets distributed throughout the environment, occupying even the fabric of our clothing. The environment

  5. Human wound photogrammetry with low-cost hardware based on automatic calibration of geometry and color

    Science.gov (United States)

    Jose, Abin; Haak, Daniel; Jonas, Stephan; Brandenburg, Vincent; Deserno, Thomas M.

    2015-03-01

    Photographic documentation and image-based wound assessment is frequently performed in medical diagnostics, patient care, and clinical research. To support quantitative assessment, photographic imaging is based on expensive and high-quality hardware and still needs appropriate registration and calibration. Using inexpensive consumer hardware such as smartphone-integrated cameras, calibration of geometry, color, and contrast is challenging. Some methods involve color calibration using a reference pattern such as a standard color card, which is located manually in the photographs. In this paper, we adopt the lattice detection algorithm by Park et al. from real world to medicine. At first, the algorithm extracts and clusters feature points according to their local intensity patterns. Groups of similar points are fed into a selection process, which tests for suitability as a lattice grid. The group which describes the largest probability of the meshes of a lattice is selected and from it a template for an initial lattice cell is extracted. Then, a Markov random field is modeled. Using the mean-shift belief propagation, the detection of the 2D lattice is solved iteratively as a spatial tracking problem. Least-squares geometric calibration of projective distortions and non-linear color calibration in RGB space is supported by 35 corner points of 24 color patches, respectively. The method is tested on 37 photographs taken from the German Calciphylaxis registry, where non-standardized photographic documentation is collected nationwide from all contributing trial sites. In all images, the reference card location is correctly identified. At least, 28 out of 35 lattice points were detected, outperforming the SIFT-based approach previously applied. Based on these coordinates, robust geometry and color registration is performed making the photographs comparable for quantitative analysis.

  6. Characterization of spent fuel disassembly hardware and nonfuel bearing components and their relationship to 10 CFR 61

    International Nuclear Information System (INIS)

    Luksic, A.T.

    1987-02-01

    There are a variety of wastes that will be disposed of by the federal waste management system under the Nuclear Waste Policy Act of 1982. The primary waste form is spent nuclear fuel. Currently, this is in the form of fuel assemblies. If the fuel pins are removed from the fuel assembly, as in consolidation, then the fuel pins and the structural portion of the fuel assembly must be considered as separate waste streams. The structural hardware consists of end fittings, grid spacers, water rods (BWR 8 x 8 only), control rod guide tubes (PWR only) and various nuts, washers, springs, etc. These are referred to as spent fuel disassembly (SFD) hardware. There will also be a number of other components which are defined in Appendix E of 10 CFR 961, the standard utility contract. These are referred to as nonfuel-bearing (NFB) components, and include fuel channels (BWR), control rods, fission chambers, neutron sources, thimble plugs, and other components. This paper characterizes spent fuel disassembly (SFD) hardware, and nonfuel-bearing (NFB) components for the most abundant fuel types. The descriptions and figures given are representative for the items described. Many subvariants exist due to design evaluation, which are not covered. This paper also discusses the relationship of these wastes to 10 CFR 61 waste classification

  7. An AES chip with DPA resistance using hardware-based random order execution

    International Nuclear Information System (INIS)

    Yu Bo; Li Xiangyu; Chen Cong; Sun Yihe; Wu Liji; Zhang Xiangmin

    2012-01-01

    This paper presents an AES (advanced encryption standard) chip that combats differential power analysis (DPA) side-channel attack through hardware-based random order execution. Both decryption and encryption procedures of an AES are implemented on the chip. A fine-grained dataflow architecture is proposed, which dynamically exploits intrinsic byte-level independence in the algorithm. A novel circuit called an HMF (Hold-Match-Fetch) unit is proposed for random control, which randomly sets execution orders for concurrent operations. The AES chip was manufactured in SMIC 0.18 μm technology. The average energy for encrypting one group of plain texts (128 bits secrete keys) is 19 nJ. The core area is 0.43 mm 2 . A sophisticated experimental setup was built to test the DPA resistance. Measurement-based experimental results show that one byte of a secret key cannot be disclosed from our chip under random mode after 64000 power traces were used in the DPA attack. Compared with the corresponding fixed order execution, the hardware based random order execution is improved by at least 21 times the DPA resistance. (semiconductor integrated circuits)

  8. An AES chip with DPA resistance using hardware-based random order execution

    Science.gov (United States)

    Bo, Yu; Xiangyu, Li; Cong, Chen; Yihe, Sun; Liji, Wu; Xiangmin, Zhang

    2012-06-01

    This paper presents an AES (advanced encryption standard) chip that combats differential power analysis (DPA) side-channel attack through hardware-based random order execution. Both decryption and encryption procedures of an AES are implemented on the chip. A fine-grained dataflow architecture is proposed, which dynamically exploits intrinsic byte-level independence in the algorithm. A novel circuit called an HMF (Hold-Match-Fetch) unit is proposed for random control, which randomly sets execution orders for concurrent operations. The AES chip was manufactured in SMIC 0.18 μm technology. The average energy for encrypting one group of plain texts (128 bits secrete keys) is 19 nJ. The core area is 0.43 mm2. A sophisticated experimental setup was built to test the DPA resistance. Measurement-based experimental results show that one byte of a secret key cannot be disclosed from our chip under random mode after 64000 power traces were used in the DPA attack. Compared with the corresponding fixed order execution, the hardware based random order execution is improved by at least 21 times the DPA resistance.

  9. Permanent magnet brushless DC motor drives and controls

    CERN Document Server

    Xia, Chang-liang

    2012-01-01

    An advanced introduction to the simulation and hardware implementation of BLDC motor drives A thorough reference on the simulation and hardware implementation of BLDC motor drives, this book covers recent advances in the control of BLDC motor drives, including intelligent control, sensorless control, torque ripple reduction and hardware implementation. With the guidance of the expert author team, readers will understand the principle, modelling, design and control of BLDC motor drives. The advanced control methods and new achievements of BLDC motor drives, of interest to more a

  10. Current trends in hardware and software for brain-computer interfaces (BCIs).

    Science.gov (United States)

    Brunner, P; Bianchi, L; Guger, C; Cincotti, F; Schalk, G

    2011-04-01

    A brain-computer interface (BCI) provides a non-muscular communication channel to people with and without disabilities. BCI devices consist of hardware and software. BCI hardware records signals from the brain, either invasively or non-invasively, using a series of device components. BCI software then translates these signals into device output commands and provides feedback. One may categorize different types of BCI applications into the following four categories: basic research, clinical/translational research, consumer products, and emerging applications. These four categories use BCI hardware and software, but have different sets of requirements. For example, while basic research needs to explore a wide range of system configurations, and thus requires a wide range of hardware and software capabilities, applications in the other three categories may be designed for relatively narrow purposes and thus may only need a very limited subset of capabilities. This paper summarizes technical aspects for each of these four categories of BCI applications. The results indicate that BCI technology is in transition from isolated demonstrations to systematic research and commercial development. This process requires several multidisciplinary efforts, including the development of better integrated and more robust BCI hardware and software, the definition of standardized interfaces, and the development of certification, dissemination and reimbursement procedures.

  11. Current trends in hardware and software for brain-computer interfaces (BCIs)

    Science.gov (United States)

    Brunner, P.; Bianchi, L.; Guger, C.; Cincotti, F.; Schalk, G.

    2011-04-01

    A brain-computer interface (BCI) provides a non-muscular communication channel to people with and without disabilities. BCI devices consist of hardware and software. BCI hardware records signals from the brain, either invasively or non-invasively, using a series of device components. BCI software then translates these signals into device output commands and provides feedback. One may categorize different types of BCI applications into the following four categories: basic research, clinical/translational research, consumer products, and emerging applications. These four categories use BCI hardware and software, but have different sets of requirements. For example, while basic research needs to explore a wide range of system configurations, and thus requires a wide range of hardware and software capabilities, applications in the other three categories may be designed for relatively narrow purposes and thus may only need a very limited subset of capabilities. This paper summarizes technical aspects for each of these four categories of BCI applications. The results indicate that BCI technology is in transition from isolated demonstrations to systematic research and commercial development. This process requires several multidisciplinary efforts, including the development of better integrated and more robust BCI hardware and software, the definition of standardized interfaces, and the development of certification, dissemination and reimbursement procedures.

  12. Tomographic image reconstruction and rendering with texture-mapping hardware

    International Nuclear Information System (INIS)

    Azevedo, S.G.; Cabral, B.K.; Foran, J.

    1994-07-01

    The image reconstruction problem, also known as the inverse Radon transform, for x-ray computed tomography (CT) is found in numerous applications in medicine and industry. The most common algorithm used in these cases is filtered backprojection (FBP), which, while a simple procedure, is time-consuming for large images on any type of computational engine. Specially-designed, dedicated parallel processors are commonly used in medical CT scanners, whose results are then passed to graphics workstation for rendering and analysis. However, a fast direct FBP algorithm can be implemented on modern texture-mapping hardware in current high-end workstation platforms. This is done by casting the FBP algorithm as an image warping operation with summing. Texture-mapping hardware, such as that on the Silicon Graphics Reality Engine (TM), shows around 600 times speedup of backprojection over a CPU-based implementation (a 100 Mhz R4400 in this case). This technique has the further advantages of flexibility and rapid programming. In addition, the same hardware can be used for both image reconstruction and for volumetric rendering. The techniques can also be used to accelerate iterative reconstruction algorithms. The hardware architecture also allows more complex operations than straight-ray backprojection if they are required, including fan-beam, cone-beam, and curved ray paths, with little or no speed penalties

  13. Hardware Design Considerations for Edge-Accelerated Stereo Correspondence Algorithms

    Directory of Open Access Journals (Sweden)

    Christos Ttofis

    2012-01-01

    Full Text Available Stereo correspondence is a popular algorithm for the extraction of depth information from a pair of rectified 2D images. Hence, it has been used in many computer vision applications that require knowledge about depth. However, stereo correspondence is a computationally intensive algorithm and requires high-end hardware resources in order to achieve real-time processing speed in embedded computer vision systems. This paper presents an overview of the use of edge information as a means to accelerate hardware implementations of stereo correspondence algorithms. The presented approach restricts the stereo correspondence algorithm only to the edges of the input images rather than to all image points, thus resulting in a considerable reduction of the search space. The paper highlights the benefits of the edge-directed approach by applying it to two stereo correspondence algorithms: an SAD-based fixed-support algorithm and a more complex adaptive support weight algorithm. Furthermore, we present design considerations about the implementation of these algorithms on reconfigurable hardware and also discuss issues related to the memory structures needed, the amount of parallelism that can be exploited, the organization of the processing blocks, and so forth. The two architectures (fixed-support based versus adaptive-support weight based are compared in terms of processing speed, disparity map accuracy, and hardware overheads, when both are implemented on a Virtex-5 FPGA platform.

  14. Introduction to Hardware Security and Trust

    CERN Document Server

    Wang, Cliff

    2012-01-01

    The emergence of a globalized, horizontal semiconductor business model raises a set of concerns involving the security and trust of the information systems on which modern society is increasingly reliant for mission-critical functionality. Hardware-oriented security and trust issues span a broad range including threats related to the malicious insertion of Trojan circuits designed, e.g.,to act as a ‘kill switch’ to disable a chip, to integrated circuit (IC) piracy,and to attacks designed to extract encryption keys and IP from a chip. This book provides the foundations for understanding hardware security and trust, which have become major concerns for national security over the past decade.  Coverage includes security and trust issues in all types of electronic devices and systems such as ASICs, COTS, FPGAs, microprocessors/DSPs, and embedded systems.  This serves as an invaluable reference to the state-of-the-art research that is of critical significance to the security of,and trust in, modern society�...

  15. Automatización de pequeña escala con Open Hardware

    Directory of Open Access Journals (Sweden)

    Luis Diego Murillo-Soto

    2015-03-01

    Full Text Available Una posible solución a los problemas de automatización en pequeña escala es realizar los proyectos con la plataforma de prototipado rápido llamada Arduino. El presente trabajo muestra el estado actual del dispositivo y su utilización en labores de control industrial. Además, se programó la lógica de control de un sistema que posee dos alternadores de bombas; la codificación se realizó usando el lenguaje C y el lenguaje LabView. Las pruebas de funcionalidad del controlador mostraron el cumplimiento de ambos lenguajes. Finalmente, se discuten las ventajas y desventajas de la utilización de open hardware en proyectos de automatización.

  16. Utilizing IXP1200 hardware and software for packet filtering

    OpenAIRE

    Lindholm, Jeffery L.

    2004-01-01

    As network processors have advanced in speed and efficiency they have become more and more complex in both hardware and software configurations. Intel's IXP1200 is one of these new network processors that has been given to different universities worldwide to conduct research on. The goal of this thesis is to take the first step in starting that research by providing a stable system that can provide a reliable platform for further research. This thesis introduces the fundamental hardware of In...

  17. The (human) science of medical virtual learning environments.

    Science.gov (United States)

    Stone, Robert J

    2011-01-27

    The uptake of virtual simulation technologies in both military and civilian surgical contexts has been both slow and patchy. The failure of the virtual reality community in the 1990s and early 2000s to deliver affordable and accessible training systems stems not only from an obsessive quest to develop the 'ultimate' in so-called 'immersive' hardware solutions, from head-mounted displays to large-scale projection theatres, but also from a comprehensive lack of attention to the needs of the end users. While many still perceive the science of simulation to be defined by technological advances, such as computing power, specialized graphics hardware, advanced interactive controllers, displays and so on, the true science underpinning simulation--the science that helps to guarantee the transfer of skills from the simulated to the real--is that of human factors, a well-established discipline that focuses on the abilities and limitations of the end user when designing interactive systems, as opposed to the more commercially explicit components of technology. Based on three surgical simulation case studies, the importance of a human factors approach to the design of appropriate simulation content and interactive hardware for medical simulation is illustrated. The studies demonstrate that it is unnecessary to pursue real-world fidelity in all instances in order to achieve psychological fidelity--the degree to which the simulated tasks reproduce and foster knowledge, skills and behaviours that can be reliably transferred to real-world training applications.

  18. Speed test results and hardware/software study of computational speed problem, appendix D

    Science.gov (United States)

    1984-01-01

    The HP9845C is a desktop computer which is tested and evaluated for processing speed. A study was made to determine the availability and approximate cost of computers and/or hardware accessories necessary to meet the 20 ms sample period speed requirements. Additional requirements were that the control algorithm could be programmed in a high language and that the machine have sufficient storage to store the data from a complete experiment.

  19. A Message-Passing Hardware/Software Cosimulation Environment for Reconfigurable Computing Systems

    Directory of Open Access Journals (Sweden)

    Manuel Saldaña

    2009-01-01

    Full Text Available High-performance reconfigurable computers (HPRCs provide a mix of standard processors and FPGAs to collectively accelerate applications. This introduces new design challenges, such as the need for portable programming models across HPRCs and system-level verification tools. To address the need for cosimulating a complete heterogeneous application using both software and hardware in an HPRC, we have created a tool called the Message-passing Simulation Framework (MSF. We have used it to simulate and develop an interface enabling an MPI-based approach to exchange data between X86 processors and hardware engines inside FPGAs. The MSF can also be used as an application development tool that enables multiple FPGAs in simulation to exchange messages amongst themselves and with X86 processors. As an example, we simulate a LINPACK benchmark hardware core using an Intel-FSB-Xilinx-FPGA platform to quickly prototype the hardware, to test the communications. and to verify the benchmark results.

  20. Establishing a novel modeling tool: a python-based interface for a neuromorphic hardware system.

    Science.gov (United States)

    Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz

    2009-01-01

    Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated.

  1. Effect of intermittent feedback control on robustness of human-like postural control system

    Science.gov (United States)

    Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki

    2016-03-01

    Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.

  2. AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research

    Science.gov (United States)

    Laughter, Sean; Cox, David

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.

  3. Automated WWER steam generator eddy current testing and plugging control system

    International Nuclear Information System (INIS)

    Gorecan, I.; Gortan, K.; Grzalja, I.

    2004-01-01

    The structural architecture of the system contains three main components which are described as follows: Manipulator Guidance System; Eddy Current Testing System; Plugging System. The manipulator system has the task to position the end-effectors to the desired tube position. When the final position is reached, the Eddy Current testing system performs data acquisition. In case defects are found, the plugging system performs tube plug installment. Each system is composed of 3 layers. The first layer is the hardware layer consisting of motors driving the effectors along with sensors needed to obtain the positioning data, pusher motors used to push the test probes into tubes of the WWER steam generator, and plugging hardware tool. The second layer is the control box performing basic monitoring and control routines as an interconnection between first and third layer. The highest layer is the control software, running on the PC, which is used as a human-machine-interface.(author)

  4. Hardware and software for automating the process of studying high-speed gas flows in wind tunnels of short-term action

    Science.gov (United States)

    Yakovlev, V. V.; Shakirov, S. R.; Gilyov, V. M.; Shpak, S. I.

    2017-10-01

    In this paper, we propose a variant of constructing automation systems for aerodynamic experiments on the basis of modern hardware-software means of domestic development. The structure of the universal control and data collection system for performing experiments in wind tunnels of continuous, periodic or short-term action is proposed. The proposed hardware and software development tools for ICT SB RAS and ITAM SB RAS, as well as subsystems based on them, can be widely applied to any scientific and experimental installations, as well as to the automation of technological processes in production.

  5. SAMAC program: the computer support for a stand-alone monitoring and control system

    International Nuclear Information System (INIS)

    Logg, C.A.

    1979-12-01

    The high energy physics experiments at SLAC require constant monitoring and control of the numerous components contained in the particle detection apparatus. This paper describes a basic hardware configuration and operating system which have been designed and implemented to satisfy the monitoring and control requirements of the many different setups used in these high energy physics experiments. It is based on the LSI-11 microprocessor with up to one million words of RAM and EPROM which are interchangeably mappable into the normal LSI-11 RAM/EPROM address space of 28K words. The entire system is modular in hardware and software so that it can easily be tailored to an individual experiment. The human interface is such that little training is required for effective use of the system

  6. Evaluation of Cathode Air Flow Transients in a SOFC/GT Hybrid System Using Hardware in the Loop Simulation.

    Science.gov (United States)

    Zhou, Nana; Yang, Chen; Tucker, David

    2015-02-01

    Thermal management in the fuel cell component of a direct fired solid oxide fuel cell gas turbine (SOFC/GT) hybrid power system can be improved by effective management and control of the cathode airflow. The disturbances of the cathode airflow were accomplished by diverting air around the fuel cell system through the manipulation of a hot-air bypass valve in open loop experiments, using a hardware-based simulation facility designed and built by the U.S. Department of Energy, National Energy Technology Laboratory (NETL). The dynamic responses of the fuel cell component and hardware component of the hybrid system were studied in this paper.

  7. Hardware resilience: a way to achieve reliability and safety in new nuclear reactors I and C systems

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Marcos S.; Carvalho, Paulo Victor R. de, E-mail: msantana@ien.gov.br, E-mail: paulov@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Divisão de Engenharia Nuclear. Serviço de Instrumentação; Nedjah, Nadia, E-mail: nadia@eng.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia de Sistemas e Telecomunicações

    2017-07-01

    The idea that systems have a property called ‘resilience’ has emerged in the last decade [1]. In this paper we intend to bring the idea of resilient systems for the hardware applied in safety-critical systems, such as the new nuclear reactor instrumentation and control (I and C) systems. The new systems (based in hardware description language (HDL) programmable devices) have been developed in response to the obsolescence of old analog technologies and current microprocessor-based digital technologies. Although HDL programmable devices have been widely used in various other industries for decades, they are still very new in nuclear reactors systems, which can be seen as a challenge and risk in the safety analyses and licensing efforts for utilities and designers. The goal of this work is to develop and test hardware architectures to tolerate the occurrence of faults, including multiple faults, minimizing the impact of the recovery process on system availability. Basic concepts of resilience in complex systems, as 'return to equilibrium', 'robustness' and 'extra adaptive capacity' were analyzed from the point of view of hardware architectures, leading to linkages between concepts and methods for resilience using an approach that increases reliability and simplifies the licensing process of systems based in HDL programmable devices in nuclear plants. (author)

  8. Hardware resilience: a way to achieve reliability and safety in new nuclear reactors I and C systems

    International Nuclear Information System (INIS)

    Farias, Marcos S.; Carvalho, Paulo Victor R. de; Nedjah, Nadia

    2017-01-01

    The idea that systems have a property called ‘resilience’ has emerged in the last decade [1]. In this paper we intend to bring the idea of resilient systems for the hardware applied in safety-critical systems, such as the new nuclear reactor instrumentation and control (I and C) systems. The new systems (based in hardware description language (HDL) programmable devices) have been developed in response to the obsolescence of old analog technologies and current microprocessor-based digital technologies. Although HDL programmable devices have been widely used in various other industries for decades, they are still very new in nuclear reactors systems, which can be seen as a challenge and risk in the safety analyses and licensing efforts for utilities and designers. The goal of this work is to develop and test hardware architectures to tolerate the occurrence of faults, including multiple faults, minimizing the impact of the recovery process on system availability. Basic concepts of resilience in complex systems, as 'return to equilibrium', 'robustness' and 'extra adaptive capacity' were analyzed from the point of view of hardware architectures, leading to linkages between concepts and methods for resilience using an approach that increases reliability and simplifies the licensing process of systems based in HDL programmable devices in nuclear plants. (author)

  9. Establishing a novel modeling tool: a python-based interface for a neuromorphic hardware system

    Directory of Open Access Journals (Sweden)

    Daniel Brüderle

    2009-06-01

    Full Text Available Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated.

  10. Enabling Open Hardware through FOSS tools

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Software developers often take open file formats and tools for granted. When you publish code on github, you do not ask yourself if somebody will be able to open it and modify it. We need the same freedom in the open hardware world, to make it truly accessible for everyone.

  11. Integrated conception of hardware/software mixed systems used in nuclear instrumentation

    International Nuclear Information System (INIS)

    Dias, Ailton F.; Sorel, Yves; Akil, Mohamed

    2002-01-01

    Hardware/software codesign carries out the design of systems composed by a hardware portion, with specific components, and a software portion, with microprocessor based architecture. This paper describes the Algorithm Architecture Adequation (AAA) design methodology - originally oriented to programmable multicomponent architectures, its extension to reconfigurable circuits and its application to design and development of nuclear instrumentation systems composed by programmable and configurable circuits. AAA methodology uses an unified model to describe algorithm, architecture and implementation, based on graph theory. The great advantage of AAA methodology is the utilization of a same model from the specification to the implementation of hardware/software systems, reducing the complexity and design time. (author)

  12. Exploring Hardware Support For Scaling Irregular Applications on Multi-node Multi-core Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Simone; Ceriani, Marco; Tumeo, Antonino; Villa, Oreste; Palermo, Gianluca; Raffo, Luigi

    2013-06-05

    With the recent emergence of large-scale knowledge dis- covery, data mining and social network analysis, irregular applications have gained renewed interest. Classic cache-based high-performance architectures do not provide optimal performances with such kind of workloads, mainly due to the very low spatial and temporal locality of the irregular control and memory access patterns. In this paper, we present a multi-node, multi-core, fine-grained multi-threaded shared-memory system architecture specifically designed for the execution of large-scale irregular applications, and built on top of three pillars, that we believe are fundamental to support these workloads. First, we offer transparent hardware support for Partitioned Global Address Space (PGAS) to provide a large globally-shared address space with no software library overhead. Second, we employ multi-threaded multi-core processing nodes to achieve the necessary latency tolerance required by accessing global memory, which potentially resides in a remote node. Finally, we devise hardware support for inter-thread synchronization on the whole global address space. We first model the performances by using an analytical model that takes into account the main architecture and application characteristics. We describe the hardware design of the proposed cus- tom architectural building blocks that provide support for the above- mentioned three pillars. Finally, we present a limited-scale evaluation of the system on a multi-board FPGA prototype with typical irregular kernels and benchmarks. The experimental evaluation demonstrates the architecture performance scalability for different configurations of the whole system.

  13. Calculator: A Hardware Design, Math and Software Programming Project Base Learning

    Directory of Open Access Journals (Sweden)

    F. Criado

    2015-03-01

    Full Text Available This paper presents the implementation by the students of a complex calculator in hardware. This project meets hardware design goals, and also highly motivates them to use competences learned in others subjects. The learning process, associated to System Design, is hard enough because the students have to deal with parallel execution, signal delay, synchronization … Then, to strengthen the knowledge of hardware design a methodology as project based learning (PBL is proposed. Moreover, it is also used to reinforce cross subjects like math and software programming. This methodology creates a course dynamics that is closer to a professional environment where they will work with software and mathematics to resolve the hardware design problems. The students design from zero the functionality of the calculator. They are who make the decisions about the math operations that it is able to resolve it, and also the operands format or how to introduce a complex equation into the calculator. This will increase the student intrinsic motivation. In addition, since the choices may have consequences on the reliability of the calculator, students are encouraged to program in software the decisions about how implement the selected mathematical algorithm. Although math and hardware design are two tough subjects for students, the perception that they get at the end of the course is quite positive.

  14. Benchmarking and Hardware-In-The-Loop Operation of a 2014 MAZDA SkyActiv (SAE 2016-01-1007)

    Science.gov (United States)

    Engine Performance evaluation in support of LD MTE. EPA used elements of its ALPHA model to apply hardware-in-the-loop (HIL) controls to the SKYACTIV engine test setup to better understand how the engine would operate in a chassis test after combined with future leading edge tech...

  15. MORPION: a fast hardware processor for straight line finding in MWPC

    International Nuclear Information System (INIS)

    Mur, M.

    1980-02-01

    A fast hardware processor for straight line finding in MWPC has been built in Saclay and successfully operated in the NA3 experiment at CERN. We give the motivations to build this processor, and describe the hardware implementation of the line finding algorithm. Finally its use and performance in NA3 are described

  16. Total knee arthroplasty using patient-specific blocks after prior femoral fracture without hardware removal

    Directory of Open Access Journals (Sweden)

    Raju Vaishya

    2018-01-01

    Full Text Available Background: The options to perform total knee arthroplasty (TKA with retained hardware in femur are mainly – removal of hardware, use of extramedullary guide, or computer-assisted surgery. Patient-specific blocks (PSBs have been introduced with many potential advantages, but their use in retained hardware has not been adequately explored. The purpose of the present study was to outline and assess the usefulness of the PSBs in performing TKA in patients with retained femoral hardware. Materials and Materials and Methods: Nine patients with retained femoral hardware underwent TKA using PSBs. All the surgeries were performed by the same surgeon using same implants. Nine cases (7 males and 2 females out of total of 120 primary TKA had retained hardware. The average age of the patients was 60.55 years. The retained hardware were 6 patients with nails, 2 with plates and one patient had screws. Out of the nine cases, only one patient needed removal of a screw which was hindering placement of pin for the PSB. Results: All the patients had significant improvement in their Knee Society Score (KSS which improved from 47.0 to postoperative KSS of 86.77 (P < 0.00. The mechanical axis was significantly improved (P < 0.03 after surgery. No patient required blood transfusion and the average tourniquet time was 41 min. Conclusion: TKA using PSBs is useful and can be used in patients with retained hardware with good functional and radiological outcome.

  17. APS controls overview

    International Nuclear Information System (INIS)

    1996-01-01

    The APS accelerator control system described in this report is a distributed system consisting of operator interfaces, a network, and interfaces to hardware. The operator interface is a UNIX-based workstation with an X-windows graphical user interface. The workstation may be located at any point on the facility network and maintain full functionality. The user has the ability to generate and alter control displays and to access the alarm handler, the archiver, interactive control programs, custom code, and other tools. The TCP/EP networking protocol has been selected as the underlying protocol for the control system network. TCP/EP is a commercial standard and readily available from network hardware vendors. Its implementation is independent of the particular network medium selected to implement the controls network. In the development environment copper Ethernet is the network medium; however, in the actual implementation a fiber-based system using hub technology will be utilized. The function of the network is to provide a generalized communication path between the host computers, operator workstations, input/output crates, and other hardware that comprise the control system

  18. Event management for large scale event-driven digital hardware spiking neural networks.

    Science.gov (United States)

    Caron, Louis-Charles; D'Haene, Michiel; Mailhot, Frédéric; Schrauwen, Benjamin; Rouat, Jean

    2013-09-01

    The interest in brain-like computation has led to the design of a plethora of innovative neuromorphic systems. Individually, spiking neural networks (SNNs), event-driven simulation and digital hardware neuromorphic systems get a lot of attention. Despite the popularity of event-driven SNNs in software, very few digital hardware architectures are found. This is because existing hardware solutions for event management scale badly with the number of events. This paper introduces the structured heap queue, a pipelined digital hardware data structure, and demonstrates its suitability for event management. The structured heap queue scales gracefully with the number of events, allowing the efficient implementation of large scale digital hardware event-driven SNNs. The scaling is linear for memory, logarithmic for logic resources and constant for processing time. The use of the structured heap queue is demonstrated on a field-programmable gate array (FPGA) with an image segmentation experiment and a SNN of 65,536 neurons and 513,184 synapses. Events can be processed at the rate of 1 every 7 clock cycles and a 406×158 pixel image is segmented in 200 ms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Hardware-assisted software clock synchronization for homogeneous distributed systems

    Science.gov (United States)

    Ramanathan, P.; Kandlur, Dilip D.; Shin, Kang G.

    1990-01-01

    A clock synchronization scheme that strikes a balance between hardware and software solutions is proposed. The proposed is a software algorithm that uses minimal additional hardware to achieve reasonably tight synchronization. Unlike other software solutions, the guaranteed worst-case skews can be made insensitive to the maximum variation of message transit delay in the system. The scheme is particularly suitable for large partially connected distributed systems with topologies that support simple point-to-point broadcast algorithms. Examples of such topologies include the hypercube and the mesh interconnection structures.

  20. The Human/Machine Humanities: A Proposal

    Directory of Open Access Journals (Sweden)

    Ollivier Dyens

    2016-03-01

    Full Text Available What does it mean to be human in the 21st century? The pull of engineering on every aspect of our lives, the impact of machines on how we represent ourselves, the influence of computers on our understanding of free-will, individuality and species, and the effect of microorganisms on our behaviour are so great that one cannot discourse on humanity and humanities without considering their entanglement with technology and with the multiple new dimensions of reality that it opens up. The future of humanities should take into account AI, bacteria, software, viruses (both organic and inorganic, hardware, machine language, parasites, big data, monitors, pixels, swarms systems and the Internet. One cannot think of humanity and humanities as distinct from technology anymore.

  1. [Network Design of the Spaceport Command and Control System

    Science.gov (United States)

    Teijeiro, Antonio

    2017-01-01

    I helped the Launch Control System (LCS) hardware team sustain the network design of the Spaceport Command and Control System. I wrote the procedure that will be used to satisfy an official hardware test for the hardware carrying data from the Launch Vehicle. I installed hardware and updated design documents in support of the ongoing development of the Spaceport Command and Control System and applied firewall experience I gained during my spring 2017 semester to inspect and create firewall security policies as requested. Finally, I completed several online courses concerning networking fundamentals and Unix operating systems.

  2. Terrestrial Sources of X-Ray Radiation and Their Effects on NASA Flight Hardware

    Science.gov (United States)

    Kniffin, Scott

    2016-01-01

    X-rays are an energetic and penetrating form of ionizing electromagnetic radiation, which can degrade NASA flight hardware. The main concern posed by such radiation is degradation of active electronic devices and, in some cases, diodes. Non-electronic components are only damaged at doses that far exceed the point where any electronic device would be destroyed. For the purposes of this document, flight hardware can be taken to mean an entire instrument, the flight electronics within the instrument or the individual microelectronic devices in the flight electronics. This document will discuss and describe the ways in which NASA flight hardware might be exposed to x-rays, what is and isn't a concern, and how to tell the difference. First, we must understand what components in flight hardware may be vulnerable to degradation or failure as a result of being exposed to ionizing radiation, such as x-rays. As stated above, bulk materials (structural metals, plastics, etc.) are generally only affected by ionizing radiation at very high dose levels. Likewise, passive electronic components (e.g. resistors, capacitors, most diodes) are strongly resistant to exposure to x-rays, except at very high doses. The main concerns arise when active components, that is, components like discrete transistors and microelectronic devices, are exposed to ionizing radiation. Active components are designed to respond to minute changes in currents and voltages in the circuit. As such, it is not surprising that exposure to ionizing radiation, which creates ionized and therefore electrically active particles, may degrade the way the hardware performs. For the most part, the mechanism for this degradation is trapping of the charges generated by ionizing radiation by defects in dielectric materials in the hardware. As such, the degree of damage is a function of both the quantity of ionizing radiation exposure and the physical characteristics of the hardware itself. The metric that describes the

  3. Storage Information Management System (SIMS) Spaceflight Hardware Warehousing at Goddard Space Flight Center

    Science.gov (United States)

    Kubicko, Richard M.; Bingham, Lindy

    1995-01-01

    Goddard Space Flight Center (GSFC) on site and leased warehouses contain thousands of items of ground support equipment (GSE) and flight hardware including spacecraft, scaffolding, computer racks, stands, holding fixtures, test equipment, spares, etc. The control of these warehouses, and the management, accountability, and control of the items within them, is accomplished by the Logistics Management Division. To facilitate this management and tracking effort, the Logistics and Transportation Management Branch, is developing a system to provide warehouse personnel, property owners, and managers with storage and inventory information. This paper will describe that PC-based system and address how it will improve GSFC warehouse and storage management.

  4. D0 HVAC System Controls Evaluation of Upgrade Options

    International Nuclear Information System (INIS)

    Markley, D.; Simon, P.

    1998-01-01

    This engineering note documents three different options for upgrading the Dzero HVAC control system. All three options leave the current field hardware and field devices intact and upgrade the computer control hardware and software. Dzero will be heading into a physics run starting in 2000. This physics run could last several years. The Dzero HVAC system is an integral part of climate control and electronics cooling. The current HVAC control system is based upon a 1985 Johnson Controls System. In order to enter the next long-term physics run with a solid HVAC control system, the current control system needs to be upgraded. This proposal investigates three options: (1) Replacement to the next generation of Johnson Controls Hardware and Software with the Johnson Controls operator interface - FESS; (2) Replacement to the next generation of Johnson Controls Hardware and Software with the FIX32 Operator Interface - FESS/Dzero; and (3) Replacement with a commercially available Programmable Logic Controller (PLC) WITH THE FIX 32 Operator Interface - Dzero.

  5. Hardware availability calculations and results of the IFMIF accelerator facility

    International Nuclear Information System (INIS)

    Bargalló, Enric; Arroyo, Jose Manuel; Abal, Javier; Beauvais, Pierre-Yves; Gobin, Raphael; Orsini, Fabienne; Weber, Moisés; Podadera, Ivan; Grespan, Francesco; Fagotti, Enrico; De Blas, Alfredo; Dies, Javier; Tapia, Carlos; Mollá, Joaquín; Ibarra, Ángel

    2014-01-01

    Highlights: • IFMIF accelerator facility hardware availability analyses methodology is described. • Results of the individual hardware availability analyses are shown for the reference design. • Accelerator design improvements are proposed for each system. • Availability results are evaluated and compared with the requirements. - Abstract: Hardware availability calculations have been done individually for each system of the deuteron accelerators of the International Fusion Materials Irradiation Facility (IFMIF). The principal goal of these analyses is to estimate the availability of the systems, compare it with the challenging IFMIF requirements and find new paths to improve availability performances. Major unavailability contributors are highlighted and possible design changes are proposed in order to achieve the hardware availability requirements established for each system. In this paper, such possible improvements are implemented in fault tree models and the availability results are evaluated. The parallel activity on the design and construction of the linear IFMIF prototype accelerator (LIPAc) provides detailed design information for the RAMI (reliability, availability, maintainability and inspectability) analyses and allows finding out the improvements that the final accelerator could have. Because of the R and D behavior of the LIPAc, RAMI improvements could be the major differences between the prototype and the IFMIF accelerator design

  6. Hardware availability calculations and results of the IFMIF accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Bargalló, Enric, E-mail: enric.bargallo-font@upc.edu [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC), Barcelona (Spain); Arroyo, Jose Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Abal, Javier [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC), Barcelona (Spain); Beauvais, Pierre-Yves; Gobin, Raphael; Orsini, Fabienne [Commissariat à l’Energie Atomique, Saclay (France); Weber, Moisés; Podadera, Ivan [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Grespan, Francesco; Fagotti, Enrico [Istituto Nazionale di Fisica Nucleare, Legnaro (Italy); De Blas, Alfredo; Dies, Javier; Tapia, Carlos [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC), Barcelona (Spain); Mollá, Joaquín; Ibarra, Ángel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain)

    2014-10-15

    Highlights: • IFMIF accelerator facility hardware availability analyses methodology is described. • Results of the individual hardware availability analyses are shown for the reference design. • Accelerator design improvements are proposed for each system. • Availability results are evaluated and compared with the requirements. - Abstract: Hardware availability calculations have been done individually for each system of the deuteron accelerators of the International Fusion Materials Irradiation Facility (IFMIF). The principal goal of these analyses is to estimate the availability of the systems, compare it with the challenging IFMIF requirements and find new paths to improve availability performances. Major unavailability contributors are highlighted and possible design changes are proposed in order to achieve the hardware availability requirements established for each system. In this paper, such possible improvements are implemented in fault tree models and the availability results are evaluated. The parallel activity on the design and construction of the linear IFMIF prototype accelerator (LIPAc) provides detailed design information for the RAMI (reliability, availability, maintainability and inspectability) analyses and allows finding out the improvements that the final accelerator could have. Because of the R and D behavior of the LIPAc, RAMI improvements could be the major differences between the prototype and the IFMIF accelerator design.

  7. Advanced hardware design for error correcting codes

    CERN Document Server

    Coussy, Philippe

    2015-01-01

    This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques.

  8. Space station common module power system network topology and hardware development

    Science.gov (United States)

    Landis, D. M.

    1985-01-01

    Candidate power system newtork topologies for the space station common module are defined and developed and the necessary hardware for test and evaluation is provided. Martin Marietta's approach to performing the proposed program is presented. Performance of the tasks described will assure systematic development and evaluation of program results, and will provide the necessary management tools, visibility, and control techniques for performance assessment. The plan is submitted in accordance with the data requirements given and includes a comprehensive task logic flow diagram, time phased manpower requirements, a program milestone schedule, and detailed descriptions of each program task.

  9. Computer hardware for radiologists: Part 2

    International Nuclear Information System (INIS)

    Indrajit, IK; Alam, A

    2010-01-01

    Computers are an integral part of modern radiology equipment. In the first half of this two-part article, we dwelt upon some fundamental concepts regarding computer hardware, covering components like motherboard, central processing unit (CPU), chipset, random access memory (RAM), and memory modules. In this article, we describe the remaining computer hardware components that are of relevance to radiology. “Storage drive” is a term describing a “memory” hardware used to store data for later retrieval. Commonly used storage drives are hard drives, floppy drives, optical drives, flash drives, and network drives. The capacity of a hard drive is dependent on many factors, including the number of disk sides, number of tracks per side, number of sectors on each track, and the amount of data that can be stored in each sector. “Drive interfaces” connect hard drives and optical drives to a computer. The connections of such drives require both a power cable and a data cable. The four most popular “input/output devices” used commonly with computers are the printer, monitor, mouse, and keyboard. The “bus” is a built-in electronic signal pathway in the motherboard to permit efficient and uninterrupted data transfer. A motherboard can have several buses, including the system bus, the PCI express bus, the PCI bus, the AGP bus, and the (outdated) ISA bus. “Ports” are the location at which external devices are connected to a computer motherboard. All commonly used peripheral devices, such as printers, scanners, and portable drives, need ports. A working knowledge of computers is necessary for the radiologist if the workflow is to realize its full potential and, besides, this knowledge will prepare the radiologist for the coming innovations in the ‘ever increasing’ digital future

  10. Computer hardware for radiologists: Part 2

    Directory of Open Access Journals (Sweden)

    Indrajit I

    2010-01-01

    Full Text Available Computers are an integral part of modern radiology equipment. In the first half of this two-part article, we dwelt upon some fundamental concepts regarding computer hardware, covering components like motherboard, central processing unit (CPU, chipset, random access memory (RAM, and memory modules. In this article, we describe the remaining computer hardware components that are of relevance to radiology. "Storage drive" is a term describing a "memory" hardware used to store data for later retrieval. Commonly used storage drives are hard drives, floppy drives, optical drives, flash drives, and network drives. The capacity of a hard drive is dependent on many factors, including the number of disk sides, number of tracks per side, number of sectors on each track, and the amount of data that can be stored in each sector. "Drive interfaces" connect hard drives and optical drives to a computer. The connections of such drives require both a power cable and a data cable. The four most popular "input/output devices" used commonly with computers are the printer, monitor, mouse, and keyboard. The "bus" is a built-in electronic signal pathway in the motherboard to permit efficient and uninterrupted data transfer. A motherboard can have several buses, including the system bus, the PCI express bus, the PCI bus, the AGP bus, and the (outdated ISA bus. "Ports" are the location at which external devices are connected to a computer motherboard. All commonly used peripheral devices, such as printers, scanners, and portable drives, need ports. A working knowledge of computers is necessary for the radiologist if the workflow is to realize its full potential and, besides, this knowledge will prepare the radiologist for the coming innovations in the ′ever increasing′ digital future.

  11. Hardwares e sistemas multiagente: um estudo sobre arquiteturas híbridas

    Directory of Open Access Journals (Sweden)

    Rafhael Rodrigues Cunha

    2015-05-01

    Full Text Available Este artigo apresenta três estudos de caso sobre a aplicabilidade de arquiteturas de hardware reconfiguráveis, como FPGA, voltadas à utilização em sistemas multiagentes. Feita uma análise visando à elucidação dos resultados e das contribuições que os estudos proporcionaram aos autores, observa-se que o desenvolvimento de sistemas inteligentes depende cada vez mais de uma programação que explore o hardware ao máximo. Esse desfecho torna o uso de hardwares reconfiguráveis o mais aconselhável quando problemas computacionais complexos demandam respostas rápidas e eficientes, como nos casos estudados.

  12. Controlling human oesophagostomiasis in northern Ghana

    NARCIS (Netherlands)

    Ziem, Juventus Benogle

    2006-01-01

    This thesis describes aspects of the epidemiology and attempts to control infection and pathology due to the nematode parasite Oesophagostomum bifurcum . In northern Ghana and Togo O. bifurcum is an important parasite of humans; elsewhere it is predominantly seen as a parasite of non-human primates.

  13. Accelerator Technology: Injection and Extraction Related Hardware: Kickers and Septa

    CERN Document Server

    Barnes, M J; Mertens, V

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.7 Injection and Extraction Related Hardware: Kickers and Septa' of the Chapter '8 Accelerator Technology' with the content: 8.7 Injection and Extraction Related Hardware: Kickers and Septa 8.7.1 Fast Pulsed Systems (Kickers) 8.7.2 Electrostatic and Magnetic Septa

  14. Testing Microgravity Flight Hardware Concepts on the NASA KC-135

    Science.gov (United States)

    Motil, Susan M.; Harrivel, Angela R.; Zimmerli, Gregory A.

    2001-01-01

    This paper provides an overview of utilizing the NASA KC-135 Reduced Gravity Aircraft for the Foam Optics and Mechanics (FOAM) microgravity flight project. The FOAM science requirements are summarized, and the KC-135 test-rig used to test hardware concepts designed to meet the requirements are described. Preliminary results regarding foam dispensing, foam/surface slip tests, and dynamic light scattering data are discussed in support of the flight hardware development for the FOAM experiment.

  15. ARM assembly language with hardware experiments

    CERN Document Server

    Elahi, Ata

    2015-01-01

    This book provides a hands-on approach to learning ARM assembly language with the use of a TI microcontroller. The book starts with an introduction to computer architecture and then discusses number systems and digital logic. The text covers ARM Assembly Language, ARM Cortex Architecture and its components, and Hardware Experiments using TILM3S1968. Written for those interested in learning embedded programming using an ARM Microcontroller. ·         Introduces number systems and signal transmission methods   ·         Reviews logic gates, registers, multiplexers, decoders and memory   ·         Provides an overview and examples of ARM instruction set   ·         Uses using Keil development tools for writing and debugging ARM assembly language Programs   ·         Hardware experiments using a Mbed NXP LPC1768 microcontroller; including General Purpose Input/Output (GPIO) configuration, real time clock configuration, binary input to 7-segment display, creating ...

  16. Fast image processing on parallel hardware

    International Nuclear Information System (INIS)

    Bittner, U.

    1988-01-01

    Current digital imaging modalities in the medical field incorporate parallel hardware which is heavily used in the stage of image formation like the CT/MR image reconstruction or in the DSA real time subtraction. In order to image post-processing as efficient as image acquisition, new software approaches have to be found which take full advantage of the parallel hardware architecture. This paper describes the implementation of two-dimensional median filter which can serve as an example for the development of such an algorithm. The algorithm is analyzed by viewing it as a complete parallel sort of the k pixel values in the chosen window which leads to a generalization to rank order operators and other closely related filters reported in literature. A section about the theoretical base of the algorithm gives hints for how to characterize operations suitable for implementations on pipeline processors and the way to find the appropriate algorithms. Finally some results that computation time and usefulness of medial filtering in radiographic imaging are given

  17. Taking account of human factors in control-room design

    International Nuclear Information System (INIS)

    Dien, Y.; Montmayeul, R.

    1995-07-01

    Since the Three Mile Island accident two ways for improving the Human-Machine Interface have mainly been followed: the development of computerized operator aids in existing control-rooms and the design of advanced control-rooms. Insufficient attention paid to human factors in the design of operator aids has generally led to these aids being neglected or unused by their potential users. While for the design of advanced control-rooms efforts have been made for dealing with human factors in more extensive way. Based upon this experience, a general method for taking account of human factors in a control-room design has been devised and is described in this paper. (author)

  18. How to create successful Open Hardware projects — About White Rabbits and open fields

    International Nuclear Information System (INIS)

    Bij, E van der; Arruat, M; Cattin, M; Daniluk, G; Cobas, J D Gonzalez; Gousiou, E; Lewis, J; Lipinski, M M; Serrano, J; Stana, T; Voumard, N; Wlostowski, T

    2013-01-01

    CERN's accelerator control group has embraced ''Open Hardware'' (OH) to facilitate peer review, avoid vendor lock-in and make support tasks scalable. A web-based tool for easing collaborative work was set up and the CERN OH Licence was created. New ADC, TDC, fine delay and carrier cards based on VITA and PCI-SIG standards were designed and drivers for Linux were written. Often industry was paid for developments, while quality and documentation was controlled by CERN. An innovative timing network was also developed with the OH paradigm. Industry now sells and supports these designs that find their way into new fields

  19. Usability: Human Research Program - Space Human Factors and Habitability

    Science.gov (United States)

    Sandor, Aniko; Holden, Kritina L.

    2009-01-01

    The Usability project addresses the need for research in the area of metrics and methodologies used in hardware and software usability testing in order to define quantifiable and verifiable usability requirements. A usability test is a human-in-the-loop evaluation where a participant works through a realistic set of representative tasks using the hardware/software under investigation. The purpose of this research is to define metrics and methodologies for measuring and verifying usability in the aerospace domain in accordance with FY09 focus on errors, consistency, and mobility/maneuverability. Usability metrics must be predictive of success with the interfaces, must be easy to obtain and/or calculate, and must meet the intent of current Human Systems Integration Requirements (HSIR). Methodologies must work within the constraints of the aerospace domain, be cost and time efficient, and be able to be applied without extensive specialized training.

  20. Automating the Incremental Evolution of Controllers for Physical Robots

    DEFF Research Database (Denmark)

    Faina, Andres; Jacobsen, Lars Toft; Risi, Sebastian

    2017-01-01

    the evolution of digital objects.…” The work presented here investigates how fully autonomous evolution of robot controllers can be realized in hardware, using an industrial robot and a marker-based computer vision system. In particular, this article presents an approach to automate the reconfiguration...... of the test environment and shows that it is possible, for the first time, to incrementally evolve a neural robot controller for different obstacle avoidance tasks with no human intervention. Importantly, the system offers a high level of robustness and precision that could potentially open up the range...

  1. National plan to enhance aviation safety through human factors improvements

    Science.gov (United States)

    Foushee, Clay

    1990-01-01

    The purpose of this section of the plan is to establish a development and implementation strategy plan for improving safety and efficiency in the Air Traffic Control (ATC) system. These improvements will be achieved through the proper applications of human factors considerations to the present and future systems. The program will have four basic goals: (1) prepare for the future system through proper hiring and training; (2) develop a controller work station team concept (managing human errors); (3) understand and address the human factors implications of negative system results; and (4) define the proper division of responsibilities and interactions between the human and the machine in ATC systems. This plan addresses six program elements which together address the overall purpose. The six program elements are: (1) determine principles of human-centered automation that will enhance aviation safety and the efficiency of the air traffic controller; (2) provide new and/or enhanced methods and techniques to measure, assess, and improve human performance in the ATC environment; (3) determine system needs and methods for information transfer between and within controller teams and between controller teams and the cockpit; (4) determine how new controller work station technology can optimally be applied and integrated to enhance safety and efficiency; (5) assess training needs and develop improved techniques and strategies for selection, training, and evaluation of controllers; and (6) develop standards, methods, and procedures for the certification and validation of human engineering in the design, testing, and implementation of any hardware or software system element which affects information flow to or from the human.

  2. Use of Human Modeling Simulation Software in the Task Analysis of the Environmental Control and Life Support System Component Installation Procedures

    Science.gov (United States)

    Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Virtual reality and simulation applications are becoming widespread in human task analysis. These programs have many benefits for the Human Factors Engineering field. Not only do creating and using virtual environments for human engineering analyses save money and time, this approach also promotes user experimentation and provides increased quality of analyses. This paper explains the human engineering task analysis performed on the Environmental Control and Life Support System (ECLSS) space station rack and its Distillation Assembly (DA) subsystem using EAI's human modeling simulation software, Jack. When installed on the International Space Station (ISS), ECLSS will provide the life and environment support needed to adequately sustain crew life. The DA is an Orbital Replaceable Unit (ORU) that provides means of wastewater (primarily urine from flight crew and experimental animals) reclamation. Jack was used to create a model of the weightless environment of the ISS Node 3, where the ECLSS is housed. Computer aided drawings of the ECLSS rack and DA system were also brought into the environment. Anthropometric models of a 95th percentile male and 5th percentile female were used to examine the human interfaces encountered during various ECLSS and DA tasks. The results of the task analyses were used in suggesting modifications to hardware and crew task procedures to improve accessibility, conserve crew time, and add convenience for the crew. This paper will address some of those suggested modifications and the method of presenting final analyses for requirements verification.

  3. 2D neural hardware versus 3D biological ones

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    This paper will present important limitations of hardware neural nets as opposed to biological neural nets (i.e. the real ones). The author starts by discussing neural structures and their biological inspirations, while mentioning the simplifications leading to artificial neural nets. Going further, the focus will be on hardware constraints. The author will present recent results for three different alternatives of implementing neural networks: digital, threshold gate, and analog, while the area and the delay will be related to neurons' fan-in and weights' precision. Based on all of these, it will be shown why hardware implementations cannot cope with their biological inspiration with respect to their power of computation: the mapping onto silicon lacking the third dimension of biological nets. This translates into reduced fan-in, and leads to reduced precision. The main conclusion is that one is faced with the following alternatives: (1) try to cope with the limitations imposed by silicon, by speeding up the computation of the elementary silicon neurons; (2) investigate solutions which would allow one to use the third dimension, e.g. using optical interconnections.

  4. A Novel Supervisory Control Algorithm to Improve the Performance of a Real-Time PV Power-Hardware-In-Loop Simulator with Non-RTDS

    Directory of Open Access Journals (Sweden)

    Dae-Jin Kim

    2017-10-01

    Full Text Available A programmable direct current (DC power supply with Real-time Digital Simulator (RTDS-based photovoltaic (PV Power Hardware-In-the-Loop (PHIL simulators has been used to improve the control algorithm and reliability of a PV inverter. This paper proposes a supervisory control algorithm for a PV PHIL simulator with a non-RTDS device that is an alternative solution to a high-cost PHIL simulator. However, when such a simulator with the conventional algorithm which is used in an RTDS is connected to a PV inverter, the output is in the transient state and it makes it impossible to evaluate the performance of the PV inverter. Therefore, the proposed algorithm controls the voltage and current target values according to constant voltage (CV and constant current (CC modes to overcome the limitation of the Computing Unit and DC power supply, and it also uses a multi-rate system to account for the characteristics of each component of the simulator. A mathematical model of a PV system, programmable DC power supply, isolated DC measurement device, and Computing Unit are integrated to form a real-time processing simulator. Performance tests are carried out with a commercial PV inverter and prove the superiority of this proposed algorithm against the conventional algorithm.

  5. The Control of Behavior: Human and Environmental

    Science.gov (United States)

    Burhoe, Ralph Wendell

    1972-01-01

    Theological perspective on human and environmental behavior, with a view toward man's ultimate concerns or longest range values and the ultimate controls of behavior. Maintains that all human behavior and destiny is ultimately in the hand of a transcendent power which prevails over any human errors.'' (LK)

  6. Fermilab 200 MeV linac control system hardware

    Energy Technology Data Exchange (ETDEWEB)

    Shea, M.F.

    1984-01-01

    This report is a description of the present Linac distributed control system that replaces the original Xerox computer and interface electronics with a network of 68000-based stations. In addition to replacing the obsolete Xerox equipment, goals set for the new system were to retain the fast response and interactive nature of the original system, to improve reliability, to ease maintenance, and to provide 15 Hz monitoring of all Linac parameters. Our previous experience with microcomputer installations showed that small, stand-alone control systems are rather straightforward to implement and have been proven to be reliable in operation, even in the severe environment of the 750-keV preaccelerator. The overall design of the Linac system incorporates the concept of many relatively small, stand-alone control systems networked together using an intercomputer communication network. Each station retains its local control system character but takes advantage of the network to allow an operator to interact with the entire Linac from any local console. At the same time, a link to the central computer system allows Host computers to also access parameters in the Linac.

  7. Fermilab 200 MeV linac control system hardware

    International Nuclear Information System (INIS)

    Shea, M.F.

    1984-01-01

    This report is a description of the present Linac distributed control system that replaces the original Xerox computer and interface electronics with a network of 68000-based stations. In addition to replacing the obsolete Xerox equipment, goals set for the new system were to retain the fast response and interactive nature of the original system, to improve reliability, to ease maintenance, and to provide 15 Hz monitoring of all Linac parameters. Our previous experience with microcomputer installations showed that small, stand-alone control systems are rather straightforward to implement and have been proven to be reliable in operation, even in the severe environment of the 750-keV preaccelerator. The overall design of the Linac system incorporates the concept of many relatively small, stand-alone control systems networked together using an intercomputer communication network. Each station retains its local control system character but takes advantage of the network to allow an operator to interact with the entire Linac from any local console. At the same time, a link to the central computer system allows Host computers to also access parameters in the Linac

  8. Development of a hardware-based AC microgrid for AC stability assessment

    Science.gov (United States)

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  9. Evaluation of digital fault-tolerant architectures for nuclear power plant control systems

    International Nuclear Information System (INIS)

    Battle, R.E.

    1990-01-01

    Four fault tolerant architectures were evaluated for their potential reliability in service as control systems of nuclear power plants. The reliability analyses showed that human- and software-related common cause failures and single points of failure in the output modules are dominant contributors to system unreliability. The four architectures are triple-modular-redundant (TMR), both synchronous and asynchronous, and also dual synchronous and asynchronous. The evaluation includes a review of design features, an analysis of the importance of coverage, and reliability analyses of fault tolerant systems. An advantage of fault-tolerant controllers over those not fault tolerant, is that fault-tolerant controllers continue to function after the occurrence of most single hardware faults. However, most fault-tolerant controllers have single hardware components that will cause system failure, almost all controllers have single points of failure in software, and all are subject to common cause failures. Reliability analyses based on data from several industries that have fault-tolerant controllers were used to estimate the mean-time-between-failures of fault-tolerant controllers and to predict those failures modes that may be important in nuclear power plants. 7 refs., 4 tabs

  10. Human rights and conventionality control in Mexico

    Directory of Open Access Journals (Sweden)

    Azul América Aguiar-Aguilar

    2014-12-01

    Full Text Available The protection of human rights in Mexico has, de jure, suffered an important change in the last years, given a new judicial interpretation delivered by the National Supreme Court of Justice that allows the use of conventionality control, which means, that it allows federal and state judges to verify the conformity of domestic laws with those established in the Inter-American Convention of Human Rights. To what extent domestic actors are protecting human rights using this new legal tool called conventionality control? In this article I explore whom and how is conventionality control being used in Mexico. Using N-Vivo Software I reviewed concluded decisions delivered by intermediate level courts (Collegiate Circuit Courts in three Mexican states. The evidence points that conventionality control is a very useful tool especially to defenders, who appear in sentences claiming compliance with the commitments Mexico has acquired when this country ratified the Convention.

  11. Single-sector thermophysiological human simulator

    International Nuclear Information System (INIS)

    Psikuta, Agnieszka; Richards, Mark; Fiala, Dusan

    2008-01-01

    Thermal sweating manikins are used to analyse the heat and mass transfer phenomena in the skin–clothing–environment system. However, the limiting factor of present thermal manikins is their inability to simulate adequately the human thermal behaviour, which has a significant effect on the clothing microenvironment. A mathematical model of the human physiology was, therefore, incorporated into the system control to simulate human thermoregulatory responses and the perception of thermal comfort over a wide range of environmental and personal conditions. Thereby, the computer model provides the physiological intelligence, while the hardware is used to measure the required calorimetric states relevant to the human heat exchange with the environment. This paper describes the development of a single-sector thermophysiological human simulator, which consists of a sweating heated cylinder 'Torso' coupled with the iesd-Fiala multi-node model of human physiology and thermal comfort. Validation tests conducted for steady-state and, to some extent, transient conditions ranging from cold to hot revealed good agreement with the corresponding experimental results obtained for semi-nude subjects. The new coupled system enables overall physiological and comfort responses, health risk and survival conditions to be predicted for adult humans for various scenarios

  12. 76 FR 35130 - Pipeline Safety: Control Room Management/Human Factors

    Science.gov (United States)

    2011-06-16

    ...: Control Room Management/Human Factors AGENCY: Pipeline and Hazardous Materials Safety Administration... the Control Room Management/Human Factors regulations in order to realize the safety benefits sooner... FR 5536). By this amendment to the Control Room Management/Human Factors (CRM) rule, an operator must...

  13. Effect of a preoperative decontamination protocol on surgical site infections in patients undergoing elective orthopedic surgery with hardware implantation.

    Science.gov (United States)

    Bebko, Serge P; Green, David M; Awad, Samir S

    2015-05-01

    Surgical site infections (SSIs), commonly caused by methicillin-resistant Staphylococcus aureus (MRSA), are associated with significant morbidity and mortality, specifically when hardware is implanted in the patient. Previously, we have demonstrated that a preoperative decontamination protocol using chlorhexidine gluconate washcloths and intranasal antiseptic ointment is effective in eradicating MRSA in the nose and on the skin of patients. To examine the effect of a decontamination protocol on SSIs in patients undergoing elective orthopedic surgery with hardware implantation. A prospective database of patients undergoing elective orthopedic surgery with hardware implantation at the Michael E. DeBakey Veterans Affairs Medical Center in Houston, Texas, was analyzed from October 1, 2012, to December 31, 2013. Cohort groups before and after the intervention were compared. Starting in May 2013, during their preoperative visit, all of the patients watched an educational video about MRSA decontamination and were given chlorhexidine washcloths and oral rinse and nasal povidone-iodine solution to be used the night before and the morning of scheduled surgery. Thirty-day SSI rates were collected according to the definitions of the Centers for Disease Control and Prevention National Nosocomial Infections Surveillance. Data on demographics, comorbidities such as chronic obstructive pulmonary disease and coronary artery disease, tobacco use, alcohol use, and body mass index were also collected. Univariate analysis was performed between the 2 groups of patients. Multivariate analysis was used to identify independent predictors of SSI. A total of 709 patients were analyzed (344 controls and 365 patients who were decolonized). Both groups were well matched with no significant differences in age, body mass index, sex, or comorbidities. All of the patients (100%) completed the MRSA decontamination protocol. The SSI rate in the intervention group was significantly lower (1.1%; 4 of

  14. Power-Hardware-In-the-Loop (PHIL) Test of VSC-based HVDC connection for Offshore Wind Power Plants (WPPs)

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Cha, Seung-Tae; Wu, Qiuwei

    2011-01-01

    This paper presents a power-hardware-in-the-loop (PHIL) test for an offshore wind power plant (WPP) interconnected to the onshore grid by a VSC-based HVDC connection. The intention of the PHIL test is to verify the control coordination between the plant side converter of the HVDC connection...... the successful control coordination between the WPP and the plant side VSC converter of the HVDC connection of the WPP....

  15. Open Source Hardware for DIY Environmental Sensing

    Science.gov (United States)

    Aufdenkampe, A. K.; Hicks, S. D.; Damiano, S. G.; Montgomery, D. S.

    2014-12-01

    The Arduino open source electronics platform has been very popular within the DIY (Do It Yourself) community for several years, and it is now providing environmental science researchers with an inexpensive alternative to commercial data logging and transmission hardware. Here we present the designs for our latest series of custom Arduino-based dataloggers, which include wireless communication options like self-meshing radio networks and cellular phone modules. The main Arduino board uses a custom interface board to connect to various research-grade sensors to take readings of turbidity, dissolved oxygen, water depth and conductivity, soil moisture, solar radiation, and other parameters. Sensors with SDI-12 communications can be directly interfaced to the logger using our open Arduino-SDI-12 software library (https://github.com/StroudCenter/Arduino-SDI-12). Different deployment options are shown, like rugged enclosures to house the loggers and rigs for mounting the sensors in both fresh water and marine environments. After the data has been collected and transmitted by the logger, the data is received by a mySQL-PHP stack running on a web server that can be accessed from anywhere in the world. Once there, the data can be visualized on web pages or served though REST requests and Water One Flow (WOF) services. Since one of the main benefits of using open source hardware is the easy collaboration between users, we are introducing a new web platform for discussion and sharing of ideas and plans for hardware and software designs used with DIY environmental sensors and data loggers.

  16. The significance of human actions for plant safety

    International Nuclear Information System (INIS)

    Holloway, N.J.

    1988-01-01

    The occurrence of the Chernobyl accident and before it the accidents at Three Mile Island, Flixborough and Bhopal, together with lesser process plant accidents, has emphasised the potential danger of human errors in major hazard plant operations. The perception of human error, held by the majority of the public and containing a fair amount of truth for a simple perception, is of an unpredictable and uncontrollable force let loose within the safest of system designs, and able, by virtue of these properties, to override the best laid plans. In this paper, we review the nature of the human errors which most concern us in process plant operation, and consider some of the conceptual approaches which might bring these errors under the same type of control as has been achieved for random hardware failures. (author)

  17. The LISA Pathfinder interferometry-hardware and system testing

    Energy Technology Data Exchange (ETDEWEB)

    Audley, H; Danzmann, K; MarIn, A Garcia; Heinzel, G; Monsky, A; Nofrarias, M; Steier, F; Bogenstahl, J [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik und Universitaet Hannover, 30167 Hannover (Germany); Gerardi, D; Gerndt, R; Hechenblaikner, G; Johann, U; Luetzow-Wentzky, P; Wand, V [EADS Astrium GmbH, Friedrichshafen (Germany); Antonucci, F [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo Collegato di Trento, 38050 Povo, Trento (Italy); Armano, M [European Space Astronomy Centre, European Space Agency, Villanueva de la Canada, 28692 Madrid (Spain); Auger, G; Binetruy, P [APC UMR7164, Universite Paris Diderot, Paris (France); Benedetti, M [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Boatella, C, E-mail: antonio.garcia@aei.mpg.de [CNES, DCT/AQ/EC, 18 Avenue Edouard Belin, 31401 Toulouse, Cedex 9 (France)

    2011-05-07

    Preparations for the LISA Pathfinder mission have reached an exciting stage. Tests of the engineering model (EM) of the optical metrology system have recently been completed at the Albert Einstein Institute, Hannover, and flight model tests are now underway. Significantly, they represent the first complete integration and testing of the space-qualified hardware and are the first tests on an optical system level. The results and test procedures of these campaigns will be utilized directly in the ground-based flight hardware tests, and subsequently during in-flight operations. In addition, they allow valuable testing of the data analysis methods using the MATLAB-based LTP data analysis toolbox. This paper presents an overview of the results from the EM test campaign that was successfully completed in December 2009.

  18. RESEARCH PROGRESS AND HARDWARE SYSTEMS AT DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN,P.I; THE DIII-D TEAM

    2003-10-01

    OAK-B135 During the last two years significant progress has been made in the scientific understanding of DIII-D plasmas. Much of this progress has been enabled by the addition of new hardware systems. The electron cyclotron (EC) system has been upgraded from 3 MW to 6 MW, by adding three 1 MW gyrotrons with diamond windows and three steerable launchers (PPPL). The new gyrotrons have been tested to 1.0 MW for 5 s. The system has been used to control the 3/2 and 2/1 neoclassical tearing modes and to locally heat the plasma and thereby indirectly control the current density. Electron cyclotron current drive ECCD has been used to directly affect the current density. A Li-beam diagnostic has been brought on-line for measuring the edge current density using Zeeman splitting. A set of 12 coils (1-coils), consisting of six picture frame coils each above and below the midplane, with a capability of 7 kA for 10 s has been installed inside the DIII-D vessel. These coils, along with the existing six C-coils, are used to apply non-axisymmetric fields to the plasma for both exciting and controlling plasma instabilities. The DIII-D digital plasma control system is now used to not just control the shape and location of the plasma but also the electron temperature, density, the NTMs, RWMs, plasma beta and disruption mitigation. Plasma disruption experiments are extended to mitigation of real time detected disruptions on DIII-D.

  19. New experimental diffractive-optical data on E.Land's Retinex mechanism in human color vision: Part II

    Science.gov (United States)

    Lauinger, N.

    2007-09-01

    A better understanding of the color constancy mechanism in human color vision [7] can be reached through analyses of photometric data of all illuminants and patches (Mondrians or other visible objects) involved in visual experiments. In Part I [3] and in [4, 5 and 6] the integration in the human eye of the geometrical-optical imaging hardware and the diffractive-optical hardware has been described and illustrated (Fig.1). This combined hardware represents the main topic of the NAMIROS research project (nano- and micro- 3D gratings for optical sensors) [8] promoted and coordinated by Corrsys 3D Sensors AG. The hardware relevant to (photopic) human color vision can be described as a diffractive or interference-optical correlator transforming incident light into diffractive-optical RGB data and relating local RGB onto global RGB data in the near-field behind the 'inverted' human retina. The relative differences at local/global RGB interference-optical contrasts are available to photoreceptors (cones and rods) only after this optical pre-processing.

  20. Tools and methods for implementing the control systems on the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Minor, E.G.; Labiak, W.G.

    1981-01-01

    Installation of the major hardware subsystems for MFTF is nearing completion. These subsystems include the Fusion Chamber System, the eighty KV Neutral Beam System, the Superconducting Magnet System, and the Personnel Safety System. The Local Controls group has undertaken a uniform aproach to implementing the control systems for all of these hardware subsystems. This approach has two major aspects: (1) to provide a stand-alone computer control system with a remote, portable terminal so that computer control can be provided at the site of the hardware for initial testing, (2) to provide hardware simulators so that the complicated MFTF computer control system can be tested independent of the hardware. The software and hardware tools which were developed to carry out this plan will be described. Our experiences with bringing up subsystems containing up to 900 separate channels of control and status will also be described