WorldWideScience

Sample records for control effective properties

  1. Using nonlinearity and spatiotemporal property modulation to control effective structural properties: dynamic rods

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Blekhman, Iliya I.

    2007-01-01

    , and to call these dynamic materials or spatiotemporal composites. Also, according to theoretical predictions, structural nonlinearity enhances the possibilities of achieving specific effective properties. For example, with an elastic rod having cubical elastic nonlinearities, it seems possible to control......, and exemplified. Then simple approximate analytical expressions are derived for the effective wave speed and natural frequencies for one-dimensional wave propagation in a nonlinear elastic rod, where the spatiotemporal modulation is imposed as a high-frequency standing wave, supposed to be given. Finally the more...

  2. Effect of Controlled Cooling After Hot Rolling on Mechanical Properties of Hot Rolled TRIP Steel

    Institute of Scientific and Technical Information of China (English)

    WU Di; LI Zhuang; L(U) Hui-sheng

    2008-01-01

    A three-step cooling pattern on the runout table (ROT) was conducted for the hot rolled TRIP steel. Microstructural evolution during thermomechanical controlled processing (TMCP) was investigated. Proeessing condition of controlled cooling on a ROT in the laboratory rolling mill was discussed. The results indicated that the microstructure containing polygonal ferrite, granular bainite and a significant amount of the stable retained austenite can be obtained through three-step cooling on the ROT after hot rolling. TMCP led to ferrite grain refinement. Controlled cooling after hot rolling resulted in the stability of the remaining austenite and a satisfactory TRIP effect. Excellent mechanical properties were obtained through TMCP for the hot rolled TRIP steel.

  3. Effects of instant controlled pressure drop process on physical and sensory properties of puffed wheat snack.

    Science.gov (United States)

    Yağcı, Sibel

    2017-04-01

    In this study, research on the development of a puffed wheat snack using the instant controlled pressure drop (DIC) process was carried out. Snack products were produced by expanding moistened wheat under various DIC processing conditions in order to obtain adequate puffing, followed by drying in a hot air dryer. The effects of operational variables such as wheat initial moisture content (11-23% w/w, wet basis), processing pressure (3-5 × 10(2) kPa) and processing time (3-11 min) on the physical (density, color and textural characteristics) and sensory properties of the product were investigated. The physical properties of the wheat snack were most affected by changes in processing pressure, followed by processing time and wheat moisture content. Increasing processing pressure and time often improved expansion and textural properties but led to darkening of the raw wheat color. The most acceptable snack in terms of physical properties was obtained at the lowest wheat moisture content. Sensory analysis suggested that consumer acceptability was optimal for wheat snacks produced at higher processing pressure, medium processing time and lower moisture content. The most desirable conditions for puffed wheat snack production using the DIC process were determined as 11% (w/w) of wheat moisture content, 5 × 10(2) kPa of processing pressure and 7 min of processing time. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Controlling and maximizing effective thermal properties by manipulating transient behaviors during energy-system cycles

    CERN Document Server

    Gao, Z J; Merlitz, H; Pagni, P J; Chen, Z

    2014-01-01

    Transient processes generally constitute part of energy-system cycles. If skillfully manipulated, they actually are capable of assisting systems to behave beneficially to suit designers' needs. In the present study, behaviors related to both thermal conductivities ($\\kappa$) and heat capacities ($c_{v}$) are analyzed. Along with solutions of the temperature and the flow velocity obtained by means of theories and simulations, three findings are reported herein: $(1)$ effective $\\kappa$ and effective $c_{v}$ can be controlled to vary from their intrinsic material-property values to a few orders of magnitude larger; $(2)$ a parameter, tentatively named as "nonlinear thermal bias", is identified and can be used as a criterion in estimating energies transferred into the system during heating processes and effective operating ranges of system temperatures; $(3)$ When a body of water, such as the immense ocean, is subject to the boundary condition of cold bottom and hot top, it may be feasible to manipulate transien...

  5. Local-field effects and nanostructuring for controlling optical properties and enabling novel optical phenomena

    Science.gov (United States)

    Dolgaleva, Ksenia

    My Ph. D. thesis is devoted to the investigation of the methods of controlling and improving the linear and nonlinear optical properties of materials. Within my studies, two approaches are considered: nanostructuring and invoking local-field effects. These broad topics involve various projects that I have undertaken during my Ph. D. research. The first project is on composite laser gain media. It involves both nanostructuring and using local-field effects to control the basic laser parameters, such as the radiative lifetime, small-signal gain and absorption, and the saturation intensity. While being involved in this project, I have performed both theoretical and experimental studies of laser characteristics of composite materials. In particular, I have developed simple theoretical models for calculating the effective linear susceptibilities of layered and Maxwell Garnett composite materials with a gain resonance in one of their components. The analysis of the results given by the models suggests that local-field effects provide considerable freedom in controlling the optical properties of composite laser gain media. I have also experimentally measured the radiative lifetime of Nd:YAG nanopowder suspended in different liquids to extract information regarding local-field effects. The second project is devoted to the investigation of a not-well-known phenomenon that local-field effects can induce, which is microscopic cascading in nonlinear optics. This project involves the theoretical prediction of local-field-induced microscopic cascading effect in the fifth-order nonlinear response and its first experimental observation. This effect has been mostly overlooked or underestimated, but could prove useful in quantum optics. I have shown that, under certain conditions, the microscopic cascaded contribution can be a dominant effect in high-order nonlinearities. The third project is about characterization of laser performance of a new dye, oligofluorene, embedded into

  6. Effects of hydrogen upon the properties of thermo mechanical controlled process (TMCP steel

    Directory of Open Access Journals (Sweden)

    T. Tomić

    2016-01-01

    Full Text Available Research into the effects of hydrogen on the mechanical properties of the material is wide-ranging and time-consuming, since there is no single way of predicting cold cracking that would be applicable to all steel grades. Some research on the action of hydrogen in the weld area has focused on the effects of filler materials, welding parameters, the welding environment and welding process upon the hydrogen content of the weld metal and final effect of the hydrogen content upon the properties of the material.

  7. Using strong nonlinearity and high-frequency vibrations to control effective properties of discrete elastic waveguides

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri

    2008-01-01

    The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear s...... spring-mass chains with non-linear inclusions. The presented analytical and numerical results suggest that the effective material properties can easily be altered by establishing finite amplitude HF standing waves in the non-linear regions of the chain....

  8. Concentration Effects and Ion Properties Controlling the Fractionation of Halides during Aerosol Formation

    Science.gov (United States)

    Guzman, Marcelo I.; Athalye, Richa R.; Rodriguez, Jose M.

    2012-01-01

    During the aerosolization process at the sea surface, halides are incorporated into aerosol droplets, where they may play an important role in tropospheric ozone chemistry. Although this process may significantly contribute to the formation of reactive gas phase molecular halogens, little is known about the environmental factors that control how halides selectively accumulate at the air-water interface. In this study, the production of sea spray aerosol is simulated using electrospray ionization (ESI) of 100 nM equimolar solutions of NaCl, NaBr, NaI, NaNO2, NaNO3, NaClO4, and NaIO4. The microdroplets generated are analyzed by mass spectrometry to study the comparative enrichment of anions (f (Isub x-)) and their correlation with ion properties. Although no correlation exists between f (sub x-) and the limiting equivalent ionic conductivity, the correlation coefficient of the linear fit with the size of the anions R(sub x-), dehydration free-energy ?Gdehyd, and polarizability alpha, follows the order: (R(sub x-)(exp -2)) > (R(sub x-)(exp -1)) >(R(sub x-) > delta G(sub dehyd) > alpha. The same pure physical process is observed in H2O and D2O. The factor f (sub x-) does not change with pH (6.8-8.6), counterion (Li+, Na+, K+, and Cs+) substitution effects, or solvent polarity changes in methanol - and ethanol-water mixtures (0 surfactant is used to modify the structure of the interface. Despite the observed enrichment of I- on the air-water interface of equimolar solutions, our results of seawater mimic samples agree with a model in which the interfacial composition is increasingly enriched in I- < Br- < Cl- over the oceanic boundary layer due to concentration effects in sea spray aerosol formation.

  9. Effects of Several Natural Macromolecules on the Stability and Controlled Release Properties of Water-in-Oil-in-Water Emulsions.

    Science.gov (United States)

    Li, Jinlong; Shi, Yiheng; Zhu, Yunping; Teng, Chao; Li, Xiuting

    2016-05-18

    Water-in-oil-in-water (W/O/W) emulsions are effective vehicles for embedding application of active compounds but limited by their thermodynamic instability and rapid release properties. The present study added bovine serum albumin, whey protein isolate, whey protein hydrolysate, sodium caseinate, carboxymethylcellulose sodium, fish gelatin, apple pectin, gum arabic, ι-carrageenan, and hydroxypropyl chitosan separately to the internal or external aqueous phase to investigate their effects on the physical stabilities and controlled release properties of W/O/W emulsions. The effects of the natural macromolecules in the internal and external aqueous phases were different and depended upon the macromolecule structure and its mass fraction. The addition of the natural macromolecule strengthened the interfaces of emulsions, which improved the physical stability. The natural macromolecules that improved the stability often did not improve controlled release. Therefore, the balance between these properties needs to be considered when adding natural macromolecules to a W/O/W emulsion.

  10. Adaptive control of modal properties of optical beams using photothermal effects.

    Science.gov (United States)

    Arain, Muzammil A; Korth, William Z; Williams, Luke F; Martin, Rodica M; Mueller, Guido; Tanner, D B; Reitze, David H

    2010-02-01

    We present an experimental demonstration of adaptive control of modal properties of optical beams. The control is achieved via heat-induced photothermal actuation of transmissive optical elements. We apply the heat using four electrical heaters in thermal contact with the element. The system is capable of controlling both symmetrical and astigmatic aberrations providing a powerful means for in situ correction and control of thermal aberrations in high power laser systems. We demonstrate a tunable lens with a focusing power varying from minus infinity to -10 m along two axes using SF57 optical glass. Applications of the proposed system include laser material processing, thermal compensation of high laser power radiation, and optical beam steering.

  11. Hydroxypropylcellulose controlled release tablet matrix prepared by wet granulation: effect of powder properties and polymer composition

    Directory of Open Access Journals (Sweden)

    Antonio Zenon Antunes Teixeira

    2009-02-01

    Full Text Available The aim of this study was to attain 100% drug release of caffeine after 24 h from hydroxypropylcellulose (HPC tablet matrices and to investigate the effect of co-excipient. Physical properties of the powders were evaluated and suggested for a wet granulation process. The tablet containing caffeine was formulated by different weight ratios of hydrophilic polymers. The results of polymer evaluation confirmed that the increase of HPC level with the same drug content significantly decreased the rate of drug release. The presence of co-polymer excipients carboxymethylcellulose (CMC and polyvinylpyrrolidone (PVP in the tablet matrix was also investigated. The release rate was also controlled by low levels of CMC (O objetivo deste estudo é desenvolver a liberação 100% da droga cafeína em 24 horas em comprimidos matrizes e investigar o uso de hidroxipropilcelulose (HPC mais os efeitos de co-excipiente. As propriedades físicas dos pós foram avaliadas assim como seu uso no processo de granulação úmida. O comprimido contendo a cafeína foi formulado por diferentes relações de peso dos polímeros hidrofílicos. Os resultados da avaliação do polímero confirmaram que o aumento do nível de HPC com o mesmo índice da droga diminuiu significativamente a taxa de liberação da droga. A presença do co-polímero excipiente carboximetilcelulose (CMC e do polivinilpirrolidona (PVP na matriz do comprimido foi também investigado. A taxa de liberação foi controlada principalmente por baixos níveis de CMC (< 10% enquanto PVP não mostrou efeito diferente considerável. A melhor taxa de liberação de cafeína 100% em 24 horas foi obtida quando 10% da lactose monoidrato foi adicionado na formulação.

  12. Effects of Scale-Free Topological Properties on Dynamical Synchronization and Control in Coupled Map Lattices

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; FANG Jin-Qing; KANG Ge-Wen

    2007-01-01

    In the paper,we study effects of scale-free (SF) topology on dynamical synchronization and control in coupled map lattices (CML).Our strategy is to apply three feedback control methods,including constant feedback and two types of time-delayed feedback,to a small fraction of network nodes to reach desired synchronous state.Two controlled bifurcation diagrams verses feedback strength are obtained respectively.It is found that the value of critical feedback strength γc for the first time-delayed feedback control is increased linearly as ε is increased linearly.The CML with SF loses synchronization and intermittency occurs if γ,>γc.Numerical examples are presented to demonstrate all results.

  13. Division 1137 property control system

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, D.J.

    1982-01-01

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  14. Effect of spaceflight hardware on the skeletal properties of ground control mice

    Science.gov (United States)

    Bateman, Ted; Lloyd, Shane; Dunlap, Alex; Ferguson, Virginia; Simske, Steven; Stodieck, Louis; Livingston, Eric

    Introduction: Spaceflight experiments using mouse or rat models require habitats that are specifically designed for the microgravity environment. During spaceflight, rodents are housed in a specially designed stainless steel meshed cage with gravity-independent food and water delivery systems and constant airflow to push floating urine and feces towards a waste filter. Differences in the housing environment alone, not even considering the spaceflight environment itself, may lead to physiological changes in the animals contained within. It is important to characterize these cage differences so that results from spaceflight experiments can be more reliably compared to studies from other laboratories. Methods: For this study, we examined the effect of NASA's Animal Enclosure Module (AEM) spaceflight hardware on the skeletal properties of 8-week-old female C57BL/6J mice. This 13-day experiment, conducted on the ground, modeled the flight experiment profile of the CBTM-01 payload on STS-108, with standard vivarium-housed mice being compared to AEM-housed mice (n = 12/group). Functional differences were compared via mechanical testing, micro-hardness indentation, microcomputed tomography, and mineral/matrix composition. Cellular changes were examined by serum chemistry, histology, quantitative histomorphometry, and RT-PCR. A Student's t-test was utilized, with the level of Type I error set at 95 Results: There was no change in elastic, maximum, or fracture force mechanical properties at the femur mid-diaphysis, however, structural stiffness was -17.5 Conclusions: Housing mice in the AEM spaceflight hardware had minimal effects on femur cortical bone properties. However, trabecular bone at the proximal tibia in AEM mice experi-enced large increases in microarchitecture and mineral composition. Increases in bone density were accompanied by reductions in bone-forming osteoblasts and bone-resorbing osteoclasts, representing a general decline in bone turnover at this site

  15. The Effects of Biodegradation and Photodegradation on DOM Optical Properties: Controlled Laboratory Study Using Plant, Soil and Algal Leachates

    Science.gov (United States)

    Hansen, A. M.; Kraus, T. E. C.; Pellerin, B. A.; Fleck, J.

    2014-12-01

    Many studies use optical properties to infer dissolved organic matter (DOM) composition and origin; however, there are few controlled studies which examine the effects of environmental processing on different DOM sources. Our goal was to better understand the roles DOM plays in wetland environments of the Sacramento-San Joaquin Delta. Therefore, five endmember sources of DOM from this region were selected for use in this study: peat soil (euic, thermic Typic Medisaprists); three aquatic macrophytes (white rice (Oryza sativa); tule (Schoenoplectus acutus); cattail (Typha spp.)); and one diatom (Thalassiosira weissflogii). We measured DOM concentrations (mg C/L) and optical properties (absorbance and fluorescence) of these sources following biological and photochemical degradation over a three month period. DOM concentration decreased by over 90% in plant and algal leachates following 3 months of biodegradation, while photoexposure had negligible effects. The fluorescence index (FI), humic index (HI), specific UV absorbance at 254 nm (SUVA), and carbon-normalized fluorescence of Peaks C and A increased with biodegradation, whereas Peak T decreased. Photoexposure resulted in a decrease of the FI, HI and SUVA values. Our results emphasize the need to better understand how environmental processing affects DOM properties in aquatic environments; the frequently opposing effects of biodegradation and photodegradation, which occur simultaneously in nature, make it challenging to decipher the original DOM source without considering multiple parameters. This dataset can help us better identify which optical properties, either individual or in combination, can provide insight into how biogeochemical processes affect DOM in aquatic environments.

  16. Effect of Thermomechanical Controlled Processing on Mechanical Properties of 490 MPa Grade Low Carbon Cold Heading Steel

    Institute of Scientific and Technical Information of China (English)

    LI Zhuang

    2009-01-01

    Thermomechanical controlled processing (TMCP) of low carbon cold heading steel in different austenite conditions were conducted by a laboratory hot rolling mill.Effect of various processing parameters on the mechanical properties of the steel was investigated.The results showed that the mechanical properties of the low carbon cold heading steel could be significantly improved by TMCP without heat treatment.The improvement of mechanical properties can be attributed mainly to the ferrite grain refinement due to low temperature rolling.In the experiments the better ultimate tensile strength and ductility are obtained by lowering finishing cooling temperature within the temperature range from 650 ℃ to 550 ℃ since the interlamellar space in pearlite colonies become smaller.Good mechanical properties can be obtained in a proper austenite condition and thermomechanical processing parameter.The ferrite morphology has a more pronounced effect on the mechanical behavior than refinement of the microstructure.It is possible to realize the replacement of medium-carbon by low-carbon for 490 Mpa grade cold heading steel with TMCP.

  17. Effect of formulation composition on the properties of controlled release tablets prepared by roller compaction.

    Science.gov (United States)

    Hariharan, Madhusudan; Wowchuk, Christina; Nkansah, Paul; Gupta, Vishal K

    2004-07-01

    This study discusses the effect of formulation composition on the physical characteristics and drug release behavior of controlled-release formulations made by roller compaction. The authors used mixture experimental design to study the effect of formulation components using diclofenac sodium as the model drug substance and varying relative amounts of microcrystalline cellulose (Avicel), hydroxypropyl methylcellulose (HPMC), and glyceryl behenate (Compritol). Dissolution studies revealed very little variability in drug release. The t70 values for the 13 formulations were found to vary between 260 and 550 min. A reduced cubic model was found to best fit the t70 data and gave an adjusted r-square of 0.9406. Each of the linear terms, the interaction terms between Compritol and Avicel and between all three of the tested factors were found to be significant. The longest release times were observed for formulations having higher concentrations of HPMC or Compritol. Tablets with higher concentrations of Avicel showed reduced ability to retard the release of the drug from the tablet matrix. Crushing strength showed systematic dependence on the formulation factors and could be modeled using a reduced quadratic model. The crushing strength values were highest at high concentrations of Avicel, while tablets with a high level of Compritol showed the lowest values. A predicted optimum formulation was derived by a numerical, multiresponse optimization technique. The validity of the model for predicting physical attributes of the product was also verified by experiment. The observed responses from the calculated optimum formulation were in very close agreement with values predicted by the model. The utility of a mixture experimental design for selecting formulation components of a roller compacted product was demonstrated. These simple statistical tools can allow a formulator to rationally select levels of various components in a formulation, improve the quality of products, and

  18. Photo-controllable thermoelectric properties with reversibility and photo-thermoelectric effects of tungsten trioxide accompanied by its photochromic phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, Chiori [Faculty of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Kawano, Takuto [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Kakemoto, Hirofumi; Irie, Hiroshi, E-mail: hirie@yamanashi.ac.jp [Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan)

    2014-11-07

    The addition of photo-controllable properties to tungsten trioxide (WO{sub 3}) is of interest for developing practical applications of WO{sub 3} as well as for interpreting such phenomena from scientific viewpoints. Here, a sputtered crystalline WO{sub 3} thin film generated thermoelectric power due to ultraviolet (UV) light-induced band-gap excitation and was accompanied by a photochromic reaction resulting from generating W{sup 5+} ions. The thermoelectric properties (electrical conductivity (σ) and Seebeck coefficient (S)) and coloration of WO{sub 3} could be reversibly switched by alternating the external stimulus between UV light irradiation and dark storage. After irradiating the film with UV light, σ increased, whereas the absolute value of S decreased, and the photochromic (coloration) reaction was detected. Notably, the opposite behavior was exhibited by WO{sub 3} after dark storage, and this reversible cycle could be repeated at least three times. Moreover, photo-thermoelectric effects (photo-conductive effect (photo-conductivity, σ{sub photo}) and photo-Seebeck effect (photo-Seebeck coefficient, S{sub photo})) were also detected in response to visible-light irradiation of the colored WO{sub 3} thin films. Under visible-light irradiation, σ{sub photo} and the absolute value of S{sub photo} increased and decreased, respectively. These effects are likely attributable to the excitation of electrons from the mid-gap visible light absorption band (W{sup 5+} state) to the conduction band of WO{sub 3}. Our findings demonstrate that the simultaneous, reversible switching of multiple properties of WO{sub 3} thin film is achieved by the application of an external stimulus and that this material exhibits photo-thermoelectric effects when irradiated with visible-light.

  19. The effects of cross-infection control procedures on the tensile and flexural properties of superelastic nickel-titanium wires.

    Science.gov (United States)

    Crotty, O P; Davies, E H; Jones, S P

    1996-02-01

    The development of superelastic nickel-titanium archwires has simplified the alignment phase of orthodontic treatment by permitting the use of highly flexible, resilient archwires and avoiding the need for complex loops. The majority of these archwires appear undistorted when removed from the mouth after use. This feature, coupled with the disadvantage of relatively high cost has led to sterilization and recycling of these wires by some clinicians. This study was designed to examine the effects of currently used infection control procedures on the mechanical properties of superelastic nickel-titanium alloy (SENTA) archwires. One-hundred-and-forty lengths of a SENTA wire were subjected to various sterilization and disinfection procedures. These included cold disinfection in 2 per cent glutaraldehyde solution for 3- and 24-hour cycles, and steam autoclaving. Single and double cycles were used. The properties investigated were the 0.1 per cent yield strength, the ultimate tensile strength, and the flexural rigidity. No statistically significant differences were found between the groups or against an untreated control.

  20. An Effective Acid Combination for Enhanced Properties and Corrosion Control of Acidizing Sandstone Formation

    Science.gov (United States)

    Umer Shafiq, Mian; Khaled Ben Mahmud, Hisham

    2016-03-01

    To fulfill the demand of the world energy, more technologies to enhance the recovery of oil production are being developed. Sandstone acidizing has been introduced and it acts as one of the important means to increase oil and gas production. Sandstone acidizing operation generally uses acids, which create or enlarge the flow channels of formation around the wellbore. In sandstone matrix acidizing, acids are injected into the formation at a pressure below the formation fracturing pressure, in which the injected acids react with mineral particles that may restrict the flow of hydrocarbons. Most common combination is Hydrofluoric Acid - Hydrochloric with concentration (3% HF - 12% HCl) known as mud acid. But there are some problems associated with the use of mud acid i.e., corrosion, precipitation. In this paper several new combinations of acids were experimentally screened to identify the most effective combination. The combinations used consist of fluoboric, phosphoric, formic and hydrofluoric acids. Cores were allowed to react with these combinations and results are compared with the mud acid. The parameters, which are analyzed, are Improved Permeability Ratio, strength and mineralogy. The analysis showed that the new acid combination has the potential to be used in sandstone acidizing.

  1. Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions.

    Science.gov (United States)

    Rivest, David; Lorente, Miren; Olivier, Alain; Messier, Christian

    2013-10-01

    Agroforestry is increasingly viewed as an effective means of maintaining or even increasing crop and tree productivity under climate change while promoting other ecosystem functions and services. This study focused on soil biochemical properties and resilience following disturbance within agroforestry and conventional agricultural systems and aimed to determine whether soil differences in terms of these biochemical properties and resilience would subsequently affect crop productivity under extreme soil water conditions. Two research sites that had been established on agricultural land were selected for this study. The first site included an 18-year-old windbreak, while the second site consisted in an 8-year-old tree-based intercropping system. In each site, soil samples were used for the determination of soil nutrient availability, microbial dynamics and microbial resilience to different wetting-drying perturbations and for a greenhouse pot experiment with wheat. Drying and flooding were selected as water stress treatments and compared to a control. These treatments were initiated at the beginning of the wheat anthesis period and maintained over 10 days. Trees contributed to increase soil nutrient pools, as evidenced by the higher extractable-P (both sites), and the higher total N and mineralizable N (tree-based intercropping site) found in the agroforestry compared to the conventional agricultural system. Metabolic quotient (qCO2) was lower in the agroforestry than in the conventional agricultural system, suggesting higher microbial substrate use efficiency in agroforestry systems. Microbial resilience was higher in the agroforestry soils compared to soils from the conventional agricultural system (windbreak site only). At the windbreak site, wheat growing in soils from agroforestry system exhibited higher aboveground biomass and number of grains per spike than in conventional agricultural system soils in the three water stress treatments. At the tree

  2. Multiple Property Cross Direction Control of Paper Machines

    Directory of Open Access Journals (Sweden)

    Markku Ohenoja

    2011-07-01

    Full Text Available Cross direction (CD control in sheet-forming process forms a challenging problem with high dimensions. Accounting the interactions between different properties and actuators, the dimensionality increases further and also computational issues arise. We present a multiple property controller feasible to be used especially with imaging measurements that provide high sampling frequency and therefore enable short control interval. The simulation results state the benefits of multiple property CD control over single property control and single property control using full feedforward compensation. The controller presented may also be tuned in automated manner and the results demonstrate the effect of tuning on input saturation.

  3. Controlling charge injection properties in polymer field-effect transistors by incorporation of solution processed molybdenum trioxide.

    Science.gov (United States)

    Long, Dang Xuan; Xu, Yong; Wei, Huai-xin; Liu, Chuan; Noh, Yong-Young

    2015-08-21

    A simply and facilely synthesized MoO3 solution was developed to fabricate charge injection layers for improving the charge-injection properties in p-type organic field-effect transistors (OFETs). By dissolving MoO3 powder in ammonium (NH3) solvent under an air atmosphere, an intermediate ammonium molybdate ((NH4)2MoO4) precursor is made stable, transparent and spin-coated to form the MoO3 interfacial layers, the thickness and morphology of which can be well-controlled. When the MoO3 layer was applied to OFETs with a cost-effective molybdenum (Mo) electrode, the field-effect mobility (μFET) was significantly improved to 0.17 or 1.85 cm(2) V(-1)s(-1) for polymer semiconductors, regioregular poly(3-hexylthiophene) (P3HT) or 3,6-bis-(5bromo-thiophen-2-yl)-N,N'-bis(2-octyl-1-dodecyl)-1,4-dioxo-pyrrolo[3,4-c]pyrrole (DPPT-TT), respectively. Device analysis indicates that the MoO3-deposited Mo contact exhibits a contact resistance RC of 1.2 MΩ cm comparable to that in a device with the noble Au electrode. Kelvin-probe measurements show that the work function of the Mo electrode did not exhibit a dependence on the thickness of MoO3 film. Instead, ultraviolet photoemission spectroscopy results show that a doping effect is probably induced by casting the MoO3 layer on the P3HT semiconductor, which leads to the improved hole injection.

  4. Efeito do controle de nematóides na qualidade da fibra do algodoeiro Effect of nematode control on fiber properties of upland cotton

    Directory of Open Access Journals (Sweden)

    Rubens Rodolfo Albuquerque Lordello

    1985-01-01

    Full Text Available Avaliou-se o efeito do tratamento com torta de mamona e com nematicidas sistêmicos (aldicarb, carbofurã, oxamil e sulfona de aldicarb, na qualidade das fibras do algodoeiro (Gossypium hirsutum cv. IAC 17 cultivado em área infestada por Meloidogyne incognita, Pratylenchus brachyurus, Helicotylenchus dihysteroides e Xiphinema sp., no nunicípio de Paranapanema, no Estado de São Paulo. As características afetadas foram: o comprimento das fibras, no qual só o carbofurã produziu aumento significativo; a resistência das fibras, que aumentou com os tratamentos torta de mamona e aldicarb; e a maturidade das fibras, onde, com exceção do oxamil, todos os tratamentos foram superiores à testemunha. As características de uniformidade e índice de finura das fibras não diferiram da testemunha em nenhum dos tratamentos.The effect of nematode control using castor bean cake and systemic nematicide treatments (Aldicarb, Carbofuran, Oxamyl and Sulfon Aldicarb, on the fiber properties of upland cotton (Gossypium hirsutum cv. IAC 17 was evaluated. The crop was grown in Paranapanema - SP, Brazil, in a field infested with Meloidogyne incognita, Pratylenchus brachyurus, Helicotylenchus dihysteroides and Xiphinema sp. The properties affected were: fiber length, which improved only with Carbofuran; fiber strength, that improved with the treatments castor bean calce and Aldicarb; and fiber maturity, in which all treatments showed superior results than the check, except Oxamyl. No treatment effects on fiber fineness and uniformity were observed.

  5. Preliminary investigation of the effect of air-pollution-control residue from waste incineration on the properties of cement paste and mortar

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Kjeldsen, Ane Mette; Galluci, Emmanuel

    2006-01-01

    For preliminary assessment of the engineering properties of concrete with air-pollution-control residue from waste incineration (APC) the possible reactivity of APC and the effect of APC on cement hydration were investigated by isothermal calorimetry, chemical shrinkage (pychnometry), thermal...

  6. Controllable Nanotribological Properties of Graphene Nanosheets

    Science.gov (United States)

    Zeng, Xingzhong; Peng, Yitian; Lang, Haojie; Liu, Lei

    2017-01-01

    Graphene as one type of well-known solid lubricants possesses different nanotribological properties, due to the varied surface and structural characteristics caused by different preparation methods or post-processes. Graphene nanosheets with controllable surface wettability and structural defects were achieved by plasma treatment and thermal reduction. The nanotribological properties of graphene nanosheets were investigated using the calibrated atomic force microscopy. The friction force increases faster and faster with plasma treatment time, which results from the increase of surface wettability and the introduction of structural defects. Short-time plasma treatment increasing friction force is due to the enhancement of surface hydrophilicity. Longer-time plasma treatment increasing friction force can attribute to the combined effects of the enhanced surface hydrophilicity and the generated structural defects. The structural defects as a single factor also increase the friction force when the surface properties are unified by thermal reduction. The surface wettability and the nanotribological properties of plasma-treated graphene nanosheets can recover to its initial level over time. An improved spring model was proposed to elaborate the effects of surface wettability and structural defects on nanotribological properties at the atomic-scale. PMID:28139748

  7. The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S. [Department of Material Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Wu, Ke; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt [Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Bell, Michael; Oakes, Andrew; Benicewicz, Brian C. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208 (United States)

    2016-08-07

    This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO{sub 2} and ZrO{sub 2} nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (∼10{sup 17} cm{sup −3}). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO{sub 2} filled composites and is likely caused by impact excitation due to the low excitation energy of TiO{sub 2} compared to ZrO{sub 2}. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO{sub 2} may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO{sub 2} composites.

  8. The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation

    Science.gov (United States)

    Huang, Yanhui; Wu, Ke; Bell, Michael; Oakes, Andrew; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt; Benicewicz, Brian C.; Schadler, Linda S.

    2016-08-01

    This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO2 and ZrO2 nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (˜1017 cm-3). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO2 filled composites and is likely caused by impact excitation due to the low excitation energy of TiO2 compared to ZrO2. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO2 may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO2 composites.

  9. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue.

    Science.gov (United States)

    Suk, Ji Won; Lee, Wi Hyoung; Lee, Jongho; Chou, Harry; Piner, Richard D; Hao, Yufeng; Akinwande, Deji; Ruoff, Rodney S

    2013-04-10

    Residual polymer (here, poly(methyl methacrylate), PMMA) left on graphene from transfer from metals or device fabrication processes affects its electrical and thermal properties. We have found that the amount of polymer residue left after the transfer of chemical vapor deposited (CVD) graphene varies depending on the initial concentration of the polymer solution, and this residue influences the electrical performance of graphene field-effect transistors fabricated on SiO2/Si. A PMMA solution with lower concentration gave less residue after exposure to acetone, resulting in less p-type doping in graphene and higher charge carrier mobility. The electrical properties of the weakly p-doped graphene could be further enhanced by exposure to formamide with the Dirac point at nearly zero gate voltage and a more than 50% increase of the room-temperature charge carrier mobility in air. This can be attributed to electron donation to graphene by the -NH2 functional group in formamide that is absorbed in the polymer residue. This work provides a route to enhancing the electrical properties of CVD-grown graphene even when it has a thin polymer coating.

  10. Effect of macrostructural control of an auxiliary layer on the CO2 sensing properties of NASICON-based gas sensors

    OpenAIRE

    Morio, Masataka; Hyodo, Takeo; Shimizu, Yasuhiro; Egashira, Makoto

    2009-01-01

    Macrostructural effects of an auxiliary electrode on the CO2 gas sensing properties of NASICON (Na3Zr2Si2PO12) solid-electrolyte sensors were investigated. The sensor with a porous Li2CO3–BaCO3-based auxiliary layer (mp-Sensor), which was prepared by utilizing constituent metal acetates and polymethylmethacrylate microspheres as a template, showed faster CO2 response and recovery and smaller cross-response against humidity changes than those obtained with a dense auxiliary layer without pores...

  11. Effectiveness of Garlic for the Control of Ixodes scapularis (Acari: Ixodidae) on Residential Properties in Western Connecticut.

    Science.gov (United States)

    Bharadwaj, Anuja; Hayes, Laura E; Stafford, Kirby C

    2015-07-01

    We conducted field trials to evaluate the ability of a garlic juice-based product to control or suppress nymphal activity of the blacklegged tick, Ixodes scapularis Say, at residential properties in Connecticut in 2009, 2010, and 2011. The product was applied at a rate of 0.2 g AI/m2. Percent control of nymphal densities achieved by the spray treatment at 6, 11, and 18 d postspray for the 3 yr was 37.0, 59.0, and 47.4%, respectively. Differences between nymphal densities were greatest during the first post-spray sampling period. While garlic may require multiple applications for the suppression of tick activity, this product could provide a minimal-risk option for the short-term control of nymphal I. scapularis in the residential landscape. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Effect of kaolinite as a key factor controlling the petrophysical properties of the Nubia sandstone in central Eastern Desert, Egypt

    Science.gov (United States)

    Kassab, Mohamed A.; Abu Hashish, Mohamed F.; Nabawy, Bassem S.; Elnaggar, Osama M.

    2017-01-01

    This paper presents the results of a comprehensive petrographical and petrophysical investigation for the Late Cretaceous Nubia sandstone from Wadi Kareem in central Eastern Desert to measure their fluid flow properties and to investigate the effect of kaolinite on their petrophysical characteristics. From the petrographical analyses, scanning electron microscope 'SEM' and the X-ray diffraction 'XRD' analysis, it is shown that the studied sandstone samples are quite homogeneous in mineralogy and can be distinguished into four sedimentary microfacies: quartz arenite as a clean sandstone as well as three kaolinitic microfacies; namely they are kaolinitic quartz arenite, kaolinitic subarkose, and calcareous to kaolinitc quartz arenite. The main recognized diagenetic processes that prevailed during the post-depositional history of the Nubia sandstone are; compaction, cementation, alteration and dissolution of feldspar into kaolinite. The petrophysical potentiality of the studied sandstones was studied using the helium pycnometer, gas permeability and mercury injection confining pressure 'MICP' techniques. The investigated sandstones can be classified into three petrophysical facies with varying reservoir performances. The petrophysical behaviour of these facies is dependent mostly on their kaolinite content and its impact on porosity, permeability, irreducible water saturation, R35 (pore aperture corresponding to mercury saturation of 35% pore volume), R50 (median pore-throat radius), and MHR (the mean hydraulic radius). Therefore, the studied petrophysical facies are comparable to the distinguished petrographical facies.

  13. Poly(3-hydroxybutyrate)/metribuzin formulations: characterization, controlled release properties, herbicidal activity, and effect on soil microorganisms.

    Science.gov (United States)

    Volova, Tatiana; Zhila, Natalia; Kiselev, Evgeniy; Prudnikova, Svetlana; Vinogradova, Olga; Nikolaeva, Elena; Shumilova, Anna; Shershneva, Anna; Shishatskaya, Ekaterina

    2016-12-01

    Slow-release formulations of the herbicide metribuzin (MET) embedded in the polymer matrix of degradable poly-3-hydroxybutyrate [P(3HB)] in the form of microparticles, films, microgranules, and pellets were developed and tested. The kinetics of polymer degradation, MET release, and accumulation in soil were studied in laboratory soil microecosystems with higher plants. The study shows that MET release can be controlled by using different techniques of constructing formulations and by varying MET loading. MET accumulation in soil occurs gradually, as the polymer is degraded. The average P(3HB) degradation rates were determined by the geometry of the formulation, reaching 0.17, 0.12, 0.04, and 0.05 mg/day after 60 days for microparticles, films, microgranules, and pellets, respectively. The herbicidal activities of P(3HB)/MET formulations and commercial formulation Sencor Ultra were tested on the Agrostis stolonifera and Setaria macrocheata plants. The parameters used to evaluate the herbicidal activity were plant density and the weight of fresh green biomass measured at days 10, 20, and 30 after sowing. All P(3HB)/MET formulations had pronounced herbicidal activity, which varied depending on MET loading and the stage of the experiment. In the early phases of the experiment, the herbicidal effect of P(3HB)/MET formulations with the lowest MET loading (10 %) was comparable with that of the commercial formulation. The herbicidal effect of P(3HB)/MET formulations with higher MET loadings (25 and 50 %) at later stages of the experiment were stronger than the effect of Sencor Ultra.

  14. Effects of drying control chemical additive on properties of Li 4Ti 5O 12 negative powders prepared by spray pyrolysis

    Science.gov (United States)

    Ju, Seo Hee; Kang, Yun Chan

    High-density Li 4Ti 5O 12 powders comprising spherical particles are prepared by spray pyrolysis from a solution containing dimethylacetamide (drying control chemical additive) and citric acid and ethylene glycol (organic additives). The prepared powders have high discharge capacities and good cycle properties. The optimum concentration of dimethylacetamide is 0.5 M. The addition of dimethylacetamide to the polymeric spray solutions containing citric acid and ethylene glycol helps in the effective control of the morphology of the Li 4Ti 5O 12 powders. At a constant current density of 0.17 mA g -1, the initial discharge capacities of the powders obtained from the spray solution with and without the organic additives are 171 and 167 mAh g -1, respectively.

  15. Preliminary investigation of the effect of air-pollution-control residue from waste incineration on the properties of cement paste and mortar

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Kjeldsen, Ane Mette; Galluci, Emmanuel

    2006-01-01

    For preliminary assessment of the engineering properties of concrete with air-pollution-control residue from waste incineration (APC) the possible reactivity of APC and the effect of APC on cement hydration were investigated by isothermal calorimetry, chemical shrinkage (pychnometry), thermal...... metals (approx. 3%) the preliminary studies were performed on untreated samples to evaluate the possible application of the least expensive materials and processes. Pastes and mortars of low alkali sulphate resistant Portland cement with 0%, 10%, and 20% APC substitution were prepared. Mixes with 10......% and 20% APC showed a major retarding effect of APC on the development of hydration. The APC was found to be pozzolanic. Chemical shrinkage measurements indicated early expansive reactions of pastes with the APC including evolution of air. Crack formation was observed in mortars with APC, and strength...

  16. About the Interactions Controlling Nafion's Viscoelastic Properties and Morphology

    NARCIS (Netherlands)

    Melchior, Jan-Patrick; Bräuniger, Thomas; Wohlfarth, Andreas; Portale, Giuseppe; Kreuer, Klaus-Dieter

    2015-01-01

    Interactions controlling the viscoelastic properties of Nafion are identified by investigating morphological changes induced through stretching at a wide range of controlled temperature and relative humidity. H-2-goniometer NMR exploiting the pseudonematic effect in D2O-containing membranes provides

  17. Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties.

    Science.gov (United States)

    Liu, Chang-Hai; Liu, Rui-Hua; Sun, Qi-Jun; Chang, Jian-Bing; Gao, Xu; Liu, Yang; Lee, Shuit-Tong; Kang, Zhen-Hui; Wang, Sui-Dong

    2015-04-14

    Graphene-supported bimetallic nanoparticles are promising nanocatalysts, which can show strong and tunable catalytic activity and selectivity. Herein room-temperature-ionic-liquid-assisted metal sputtering is utilized to synthesize PdAu bimetallic nanoparticles on graphene with bare surface, small size, high surface density and controlled Pd-to-Au ratio. This controllable synthetic approach is green-chemistry compatible and totally free of additives and byproducts. The supported PdAu nanoparticles show excellent catalytic capabilities for both oxidation and reduction reactions, strongly dependent on the Pd-to-Au ratio. A strong correlation among catalytic performance, bimetallic composition and charge redistribution in the PdAu nanoparticles has been demonstrated. The results suggest that sufficient Au d-holes appear to be significant to the catalysis of oxidation reaction, and a metallic Pd surface is critical to the catalysis of reduction reaction. By the present method, the bimetallic combination can be tailored for distinct types of catalytic reactions.

  18. Effects of properties of manganese oxide-impregnated catalysts and flue gas condition on multipollutant control of Hg{sup 0} and NO

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chun-Hsiang [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan (China); Hsi, Hsing-Cheng, E-mail: hchsi@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, No. 71, Chou-Shan Rd., Taipei 106, Taiwan (China); Lin, Hong-Ping [Department of Chemistry, National Cheng-Kung University, No. 1, University Rd., Tainan 701, Taiwan (China); Chang, Tien-Chin [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan (China)

    2015-06-30

    Highlights: • MnO{sub x} impregnation caused changes in physical/chemical properties of catalyst. • Mn{sup 4+} was the main valence state of impregnated MnO{sub x}. • MnO{sub x} impregnation enhanced the removal of Hg{sup 0}/NO/SO{sub 2} with SCR catalyst. • HCl, O{sub 2}, and SO{sub 2} at ≤200 ppm and elevating temperature promoted Hg{sup 0} oxidation. • Increasing NO and NH{sub 3} concentrations reduced Hg{sup 0} oxidation. - Abstract: This research investigated the effects of manganese oxide (MnO{sub x}) impregnation on the physical/chemical properties and multi pollutant control effectiveness of Hg{sup 0} and NO using a V{sub 2}O{sub 5}–WO{sub 3}/TiO{sub 2}–SiO{sub 2} selective catalytic reduction (SCR) catalyst. Raw and MnO{sub x}-treated SCR samples were bean-shaped nanoparticles with sizes within 10–30 nm. Impregnating MnO{sub x} of ≤5 wt% caused limited changes in physical properties of the catalyst. The decrease in surface area when the impregnated MnO{sub x} amount was 10 wt% may stem from the pore blockage and particle growth or aggregation of the catalyst. Mn{sup 4+} was the main valence state of impregnated MnO{sub x}. Apparent crystallinity of MnO{sub x} was not observed based on X-ray diffraction. MnO{sub x} impregnation enhanced the Hg{sup 0} oxidation and NO/SO{sub 2} removal of SCR catalyst. The 5 and 10% MnO{sub x}-impregnated samples had the greatest multi pollutant control potentials for Hg{sup 0} oxidation and NO removal; however, the increasing SO{sub 2} removal that may be mainly due to SO{sub 2}–SO{sub 3} conversion should be cautioned. HCl and O{sub 2} greatly promoted Hg{sup 0} oxidation. SO{sub 2} enhanced Hg{sup 0} oxidation at ≤200 ppm while NO and NH{sub 3} consistently inhibited Hg{sup 0} oxidation. Elevating flue gas temperature enhanced Hg{sup 0} oxidation. Overall, MnO{sub x}-impregnated catalysts show stable and consistent multi pollutant removal effectiveness under the test conditions.

  19. Effect of temperature-controlled fermentation on physico-chemical properties and lactic acid bacterial count of durian (Durio zibethinus Murr.) pulp.

    Science.gov (United States)

    Wasnin, Ramdiah M; Karim, Muhammad Shahrim Abdul; Ghazali, Hasanah Mohd

    2014-11-01

    Effects of controlled-temperature fermentation on several physico-chemical properties, lactic acid bacteria (LAB) counts and aroma of durian pulp were examined by storing fresh durian pulp was mixed with 2 % (w/w) salt and stored at 15 °C, 27 °C and 40 °C for 10 days. Storage at 15 °C did not affect the properties of the pulp much. However, at 27 °C and 40 °C, pH and total soluble solids decreased up to 60 % and 52 %, respectively, with greater losses at 27 °C. Titratable acidity, which increased at 27 °C, was due to lactic and acetic acids formation. Loss of sucrose and increases in glucose were greater at 27 °C. LAB population increased up to Day 3 of storage, and then decreased slightly. Principal component analysis based on aroma examination using a zNose(TM) showed better retention of aroma profile at 27 °C. Overall, durian fermented at 27 °C was more acceptable than the one prepared at 40 °C, and it is ready to be consumed between Day 4 and 6.

  20. Optimization of biodegradable sponges as controlled release drug matrices. I. Effect of moisture level on chitosan sponge mechanical properties.

    Science.gov (United States)

    Foda, Nagwa H; El-laithy, Hanan M; Tadros, Mina I

    2004-04-01

    Cross-linked chitosan sponges as controlled release drug carrier systems were developed. Tramadol hydrochloride, a centrally acting analgesic, was used as a model drug. The sponges were prepared by freeze-drying 1.25% and 2.5% (w/w) high and low M.wt. chitosan solutions, respectively, using glutaraldehyde as a cross-linking agent. The hardness of the prepared sponges was a function of glutaraldehyde concentration and volume where the optimum concentration that offered accepted sponge consistency was 5%. Below or above 5%, very soft or very hard and brittle sponges were obtained, respectively. The determined drug content in the prepared sponges was uniform and did not deviate markedly from the calculated amount. Scanning electron microscopy (SEM) was used to characterize the internal structures of the sponges. The SEM photos revealed that cross-linked high M.wt. chitosan sponges have larger size surface pores that form connections (channels) with the interior of the sponge than cross-linked low M.wt. ones. Moreover, crystals of the incorporated Tramadol hydrochloride were detected on the lamellae and within pores in both chitosan sponges. Differences in pore size and dissolution medium uptake capacity were crucial factors for the more delayed drug release from cross-linked low M.wt. chitosan sponges over high M.wt. ones at pH 7.4. Kinetic analysis of the release data using linear regression followed the Higuchi diffusion model over 12 hours. Setting storage conditions at room temperature under 80-92% relative humidity resulted in soft, elastic, and compressible sponges.

  1. 48 CFR 3045.511 - Audit of property control system.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Audit of property control... Government Property in the Possession of Contractors 3045.511 Audit of property control system. (a) The... contractor's property control system whenever there are indications that the contractor's property...

  2. Effect of diaper cream and wet wipes on skin barrier properties in infants: a prospective randomized controlled trial.

    Science.gov (United States)

    Garcia Bartels, Natalie; Lünnemann, Lena; Stroux, Andrea; Kottner, Jan; Serrano, José; Blume-Peytavi, Ulrike

    2014-01-01

    The effect of different diaper care procedures on skin barrier function in infants has been minimally investigated and may be assessed using objective methods. In a single-center, prospective trial, 89 healthy 9-month-old infants (±8 wks) were randomly assigned to three diaper care regimens: group I used water-moistened washcloths at diaper changes (n = 30), group II additionally applied diaper cream twice daily (n = 28), and group III used wet wipes and diaper cream twice daily (n = 31). Transepidermal water loss (TEWL), skin hydration (SCH), skin pH, interleukin 1α (IL-1α) levels, and microbiologic colonization were measured in diapered skin (upper outer quadrant of the buttocks), nondiapered skin (upper leg), and if diaper dermatitis (DD) occurred, using the most affected skin area at day 1 and weeks 4 and 8. Skin condition was assessed utilizing a neonatal skin condition score and diaper rash grade. On diapered skin, SCH decreased in groups II and III, whereas TEWL values were reduced in group II only. Skin pH increased in groups II and III. In general, SCH, skin pH, and IL-1α levels were higher in healthy diapered skin than in nondiapered skin. The incidence and course of DD was comparable in all groups. Areas with DD had greater TEWL and skin pH than unaffected skin areas. Infants who received diaper cream had lower SCH and TEWL and higher pH levels in the diapered area than on nondiapered skin. No correlation with the occurrence of DD was found. © 2014 Wiley Periodicals, Inc.

  3. How gluten properties are effected by pentosans

    NARCIS (Netherlands)

    Wang, M.; Vliet, van T.; Hamer, R.J.

    2004-01-01

    During the wet separation of starch and gluten, both water extractable pentosans (WEP) and water unextractable solids (WUS) have a negative effect on gluten yield. Gluten properties are also affected: the gluten becomes less extensible. In comparison to the control, addition of WUS or WEP resulted i

  4. 48 CFR 1245.511 - Audit of property control system.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Audit of property control... 1245.511 Audit of property control system. (a) The property administrator (or other Government official authorized by the contracting officer) shall audit the contractor's property control system whenever there...

  5. The control of invasive species on private property with neighbor-to-neighbor spillovers.

    Science.gov (United States)

    Fenichel, Eli P; Richards, Timothy J; Shanafelt, David W

    2014-10-01

    Invasive pests cross property boundaries. Property managers may have private incentives to control invasive species despite not having sufficient incentive to fully internalize the external costs of their role in spreading the invasion. Each property manager has a right to future use of his own property, but his property may abut others' properties enabling spread of an invasive species. The incentives for a foresighted property manager to control invasive species have received little attention. We consider the efforts of a foresighted property manager who has rights to future use of a property and has the ability to engage in repeated, discrete control activities. We find that higher rates of dispersal, associated with proximity to neighboring properties, reduce the private incentives for control. Controlling species at one location provides incentives to control at a neighboring location. Control at neighboring locations are strategic complements and coupled with spatial heterogeneity lead to a weaker-link public good problem, in which each property owner is unable to fully appropriate the benefits of his own control activity. Future-use rights and private costs suggest that there is scope for a series of Coase-like exchanges to internalize much of the costs associated with species invasion. Pigouvian taxes on invasive species potentially have qualitatively perverse behavioral effects. A tax with a strong income effect (e.g, failure of effective revenue recycling) can reduce the value of property assets and diminish the incentive to manage insects on one's own property.

  6. Controlled retting of hemp fibres: Effect of hydrothermal pre-treatmen tand enzymatic retting on the mechanical properties of unidirectiona lhemp/epoxy composites

    DEFF Research Database (Denmark)

    Liu, Ming; Silva, Diogo Alexandre Santos; Fernando, Dinesh

    2016-01-01

    The objective of this work was to investigate the use of hydrothermal pre-treatment and enzymatic retting to remove non-cellulosic compounds and thus improve the mechanical properties of hemp fibre/epoxy composites. Hydrothermal pre-treatment at 100 kPa and 121 °C combined with enzymatic retting...... produced fibres with the highest ultimate tensile strength (UTS) of 780 MPa. Compared to untreated fibres, this combined treatment exhibited a positive effect on the mechanical properties of hemp fibre/epoxy composites, resulting in high quality composites with low porosity factor (αpf) of 0.08.Traditional...

  7. Effects of hydrogen irradiation on the optical and electronic properties of site-controlled InGaAsN V-groove quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Felici, M. [Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma, Italy and Laboratory of Physics of Nanostructures, EPFL, CH-1015 Lausanne (Switzerland); Pettinari, G. [High Field Magnet Laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands and School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Polimeni, A.; Lavenuta, G.; Tartaglini, E.; De Luca, M.; Capizzi, M. [Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma (Italy); Carron, R.; Gallo, P.; Dwir, B.; Rudra, A.; Kapon, E. [Laboratory of Physics of Nanostructures, EPFL, CH-1015 Lausanne (Switzerland); Notargiacomo, A. [CNR - Istituto di Fotonica e Nanotecnologie, Via Cineto Romano 42, 00156 Roma (Italy); Fekete, D. [Laboratory of Physics of Nanostructures, EPFL, CH-1015 Lausanne, Switzerland and Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Christianen, P. C. M.; Maan, J. C. [High Field Magnet Laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED Nijmegen (Netherlands)

    2013-12-04

    The properties of InGaAsN V-groove quantum wires (QWRs) –both untreated and irradiated with atomic hydrogen– are probed via micro-magneto-photoluminescence (PL) and polarization-dependent PL. As generally observed in dilute-nitride materials, H irradiation is found to fully passivate nitrogen, thus allowing us to accurately assess –and to precisely control– the effects of N incorporation in the QWRs.

  8. Dispersion controlled by permeable surfaces: surface properties and scaling

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Bowen; Tartakovsky, Alexandre M.; Battiato, Ilenia

    2016-07-19

    Permeable and porous surfaces are common in natural and engineered systems. Flow and transport above such surfaces are significantly affected by the surface properties, e.g. matrix porosity and permeability. However, the relationship between such properties and macroscopic solute transport is largely unknown. In this work, we focus on mass transport in a two-dimensional channel with permeable porous walls under fully developed laminar flow conditions. By means of perturbation theory and asymptotic analysis, we derive the set of upscaled equations describing mass transport in the coupled channel–porous-matrix system and an analytical expression relating the dispersion coefficient with the properties of the surface, namely porosity and permeability. Our analysis shows that their impact on the dispersion coefficient strongly depends on the magnitude of the Péclet number, i.e. on the interplay between diffusive and advective mass transport. Additionally, we demonstrate different scaling behaviours of the dispersion coefficient for thin or thick porous matrices. Our analysis shows the possibility of controlling the dispersion coefficient, i.e. transverse mixing, by either active (i.e. changing the operating conditions) or passive mechanisms (i.e. controlling matrix effective properties) for a given Péclet number. By elucidating the impact of matrix porosity and permeability on solute transport, our upscaled model lays the foundation for the improved understanding, control and design of microporous coatings with targeted macroscopic transport features.

  9. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2015-08-01

    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  10. Characterization and Control of Powder Properties for Additive Manufacturing

    Science.gov (United States)

    Strondl, A.; Lyckfeldt, O.; Brodin, H.; Ackelid, U.

    2015-03-01

    Powder characterization and handling in powder metallurgy are important issues and the required powder properties will vary between different component manufacturing processes. By understanding and controlling these, the final material properties for different applications can be improved and become more reliable. In this study, the metal powders used in additive manufacturing (AM) in terms of electron beam melting and selective laser melting have been investigated regarding particle size and shape using dynamic image analysis. In parallel, powder flow characteristics have been evaluated with a powder rheometer. Correlations within the results have been found between particle shape and powder flow characteristics that could explain certain effects of the powder processing in the AM processes. The impact, however, in the processing performance as well as in ultimate material properties was found to be limited.

  11. 25 CFR 900.54 - Should the property management system prescribe internal controls?

    Science.gov (United States)

    2010-04-01

    ... System Standards § 900.54 Should the property management system prescribe internal controls? Yes. Effective internal controls should include procedures: (a) For the conduct of periodic inventories; (b) To... 25 Indians 2 2010-04-01 2010-04-01 false Should the property management system prescribe...

  12. The Effects of Fungicide, Soil Fumigant, Bio-Organic Fertilizer and Their Combined Application on Chrysanthemum Fusarium Wilt Controlling, Soil Enzyme Activities and Microbial Properties.

    Science.gov (United States)

    Zhao, Shuang; Chen, Xi; Deng, Shiping; Dong, Xuena; Song, Aiping; Yao, Jianjun; Fang, Weimin; Chen, Fadi

    2016-04-21

    Sustained monoculture often leads to a decline in soil quality, in particular to the build-up of pathogen populations, a problem that is conventionally addressed by the use of either fungicide and/or soil fumigation. This practice is no longer considered to be either environmentally sustainable or safe. While the application of organic fertilizer is seen as a means of combating declining soil fertility, it has also been suggested as providing some control over certain soil-borne plant pathogens. Here, a greenhouse comparison was made of the Fusarium wilt control efficacy of various treatments given to a soil in which chrysanthemum had been produced continuously for many years. The treatments comprised the fungicide carbendazim (MBC), the soil fumigant dazomet (DAZ), the incorporation of a Paenibacillus polymyxa SQR21 (P. polymyxa SQR21, fungal antagonist) enhanced bio-organic fertilizer (BOF), and applications of BOF combined with either MBC or DAZ. Data suggest that all the treatments evaluated show good control over Fusarium wilt. The MBC and DAZ treatments were effective in suppressing the disease, but led to significant decrease in urease activity and no enhancement of catalase activity in the rhizosphere soils. BOF including treatments showed significant enhancement in soil enzyme activities and microbial communities compared to the MBC and DAZ, evidenced by differences in bacterial/fungi (B/F) ratios, Shannon-Wiener indexes and urease, catalase and sucrase activities in the rhizosphere soil of chrysanthemum. Of all the treatments evaluated, DAZ/BOF application not only greatly suppressed Fusarium wilt and enhanced soil enzyme activities and microbial communities but also promoted the quality of chrysanthemum obviously. Our findings suggest that combined BOF with DAZ could more effectively control Fusarium wilt disease of chrysanthemum.

  13. Ride control of surface effect ships using distributed control

    Directory of Open Access Journals (Sweden)

    Asgeir J. Sørensen

    1994-04-01

    Full Text Available A ride control system for active damping of heave and pitch accelerations of Surface Effect Ships (SES is presented. It is demonstrated that distributed effects that are due to a spatially varying pressure in the air cushion result in significant vertical vibrations in low and moderate sea states. In order to achieve a high quality human comfort and crew workability it is necessary to reduce these vibrations using a control system which accounts for distributed effects due to spatial pressure variations in the air cushion. A mathematical model of the process is presented, and collocated sensor and actuator pairs are used. The process stability is ensured using a controller with appropriate passivity properties. Sensor and actuator location is also discussed. The performance of the ride control system is shown by power spectra of the vertical accelerations obtained from full scale experiments with a 35 m SES.

  14. Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti-Sn-Nb alloy produced by powder metallurgy.

    Science.gov (United States)

    Nouri, A; Hodgson, P D; Wen, C E

    2010-04-01

    The influence of different amounts and types of process control agent (PCA), i.e., stearic acid and ethylene bis-stearamide, on the porous structure and mechanical properties of a biomedical Ti-16Sn-4Nb (wt.%) alloy was investigated. Alloy synthesis was performed on elemental metal powders using high-energy ball milling for 5h. Results indicated that varying the PCA content during ball milling led to a drastic change in morphology and particle-size distribution of the ball-milled powders. Porous titanium alloy samples sintered from the powders ball milled with the addition of various amounts of PCA also revealed different pore morphology and porosity. The Vickers hardness of the sintered titanium alloy samples exhibited a considerable increase with increasing PCA content. Moreover, the addition of larger amounts of PCA in the powder mixture resulted in a significant increase in the elastic modulus and peak stress for the sintered porous titanium alloy samples under compression. It should also be mentioned that the addition of PCA introduced contamination (mainly carbon and oxygen) into the sintered porous product.

  15. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    and to verify whether nonlinear control is needed. Finally a controller based on single loop theory is used to analyse if input constraints become active when rejecting transient behaviour from the disturbance steam flow. The model analysis shows large variations in system gains at steady state as function...... supported by a dynamical decoupling. The results indicate that input constraints will become active when the controller responds to transients in the steam flow disturbance. For this reason an MPC (model predictive control) strategy capable of handling constraints on states and control signals should...... the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of the nonlinear model is carried out to further determine the nonlinear characteristics of the boiler system...

  16. Controlled-release Properties of Microencapsulated Disperse Dyes

    Institute of Scientific and Technical Information of China (English)

    LUO Yan; LI Chun-yan; CHEN Shui-lin

    2002-01-01

    Some disperse dyes were microencapsulated by means of in- situ polymerization. These microencapsulated disperse dyes was extracted respectively by ethanol under certain conditions. The controlled-release properties of disperse dyes through the shell of microcapsules were measured by spectrophotometer. According to the results, it was drawn that the type of disperse dyes, the auxiliaries contained in disperse dyes, the quantity of system controlling medium used and the core/shell ratio of microcapsules play important roles in controlling the release properties of microcapsules. The different controlled- release properties of microcapsules, which were prepared under given conditions, however, would in turn influence the performance of microcapsules in multiple-transfer printing.

  17. Nanosilicon properties, synthesis, applications, methods of analysis and control

    CERN Document Server

    Ischenko, Anatoly A; Aslalnov, Leonid A

    2015-01-01

    Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control examines the latest developments on the physics and chemistry of nanosilicon. The book focuses on methods for producing nanosilicon, its electronic and optical properties, research methods to characterize its spectral and structural properties, and its possible applications. The first part of the book covers the basic properties of semiconductors, including causes of the size dependence of the properties, structural and electronic properties, and physical characteristics of the various forms of silicon. It presents theoretical and experimental research results as well as examples of porous silicon and quantum dots. The second part discusses the synthesis of nanosilicon, modification of the surface of nanoparticles, and properties of the resulting particles. The authors give special attention to the photoluminescence of silicon nanoparticles. The third part describes methods used for studying and controlling the structure and pro...

  18. Polarization properties and disorder effects in H{sub 3} photonic crystal cavities incorporating site-controlled, high-symmetry quantum dot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Surrente, Alessandro; Felici, Marco; Gallo, Pascal; Dwir, Benjamin; Rudra, Alok; Kapon, Eli, E-mail: eli.kapon@epfl.ch [Laboratory of Physics of Nanostructures, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Biasiol, Giorgio [Istituto Officina dei Materiali CNR, Laboratorio TASC, I-34149 Trieste (Italy)

    2015-07-20

    We report on the effects of optical disorder on breaking the symmetry of the cavity modes of H{sub 3} photonic crystal cavities incorporating site-controlled pyramidal quantum dots (QDs) as the internal light source. The high in-plane symmetry of the polarization states of the pyramidal QDs simplifies the analysis of the polarization states of the H{sub 3} cavities. It is shown that the optical disorder induced by fabrication imperfections lifts the degeneracy of the two quadrupole cavity modes and tilts the elongation axes of the cavity mode patterns with respect to the ideal, hexagonal symmetry case. These results are useful for designing QD-cavity structures for polarization-entangled photon sources and few-QD lasers.

  19. Effect of anti-sclerostin therapy and osteogenesis imperfecta on tissue-level properties in growing and adult mice while controlling for tissue age.

    Science.gov (United States)

    Sinder, Benjamin P; Lloyd, William R; Salemi, Joseph D; Marini, Joan C; Caird, Michelle S; Morris, Michael D; Kozloff, Kenneth M

    2016-03-01

    Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as osteogenesis imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly➔Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2-4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages>3wks) and rapidly growing Brtl/+ (at tissue ages>4wks) mice compared to WT. At identical tissue ages defined by fluorescent labels, adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and

  20. Solvent blends can control cationic reversed micellar interdroplet interactions. The effect of n-heptane:benzene mixture on BHDC reversed micellar interfacial properties: droplet sizes and micropolarity.

    Science.gov (United States)

    Agazzi, Federico M; Falcone, R Dario; Silber, Juana J; Correa, N Mariano

    2011-10-27

    We have investigated, for the first time, the effect of the composition of the nonpolar organic media on the benzyl-n-hexadecyl-dimethylammonium chloride (BHDC) reversed micelles (RMs) properties at fixed temperature. To achieve this goal we have used the solvatochromic behavior of 1-methyl-8-oxyquinolinium betaine (QB) as absorption probe and dynamic light scattering (DLS), to monitor droplet sizes, interfacial micropolarity, and sequestrated water structure of water/BHDC/n-heptane:benzene RMs. DLS results confirm the formation of the water/BHDC/n-heptane:benzene RMs at every n-heptane mole fraction (X(Hp)) investigated, that is, X(Hp) = 0.00, 0.13, 0.21, 0.30, and 0.38. Also, DLS was used to measure the RMs diffusion coefficient and to calculate the apparent droplet hydrodynamic diameter (d(App)) at different compositions of the nonpolar organic medium. The data suggest that as the n-heptane content increases, the interdroplet attractive interactions also increase with the consequent increment in the droplet size. Moreover, the interdroplet attractive interactions can be "switched on (increased)" or "switched off (decreased)" by formulation of appropriate n-heptane:benzene mixtures. Additionally, QB spectroscopy was used to obtain the "operational" critical micellar concentration (cmc) and to investigate both the RMs interfacial micropolarity and the sequestrated water structure in every RMs studied. The results show that BHDC RMs are formed at lower surfactant concentration when n-heptane or water content increases. When the interdroplet interaction "switches on", the RMs droplet sizes growth expelling benzene molecules from the RMs interface, favoring the water-BHDC interaction at the interface with the consequent increases in the interfacial micropolarity. Therefore, changing the solvent blend is possible to affect dramatically the interfacial micropolarity, the droplet sizes and the structure of the entrapped water.

  1. Thermoelectric property measurements with computer controlled systems

    Science.gov (United States)

    Chmielewski, A. B.; Wood, C.

    1984-01-01

    A joint JPL-NASA program to develop an automated system to measure the thermoelectric properties of newly developed materials is described. Consideration is given to the difficulties created by signal drift in measurements of Hall voltage and the Large Delta T Seebeck coefficient. The benefits of a computerized system were examined with respect to error reduction and time savings for human operators. It is shown that the time required to measure Hall voltage can be reduced by a factor of 10 when a computer is used to fit a curve to the ratio of the measured signal and its standard deviation. The accuracy of measurements of the Large Delta T Seebeck coefficient and thermal diffusivity was also enhanced by the use of computers.

  2. Volcanic rock properties control sector collapse events

    Science.gov (United States)

    Hughes, Amy; Kendrick, Jackie; Lavallée, Yan; Hornby, Adrian; Di Toro, Giulio

    2017-04-01

    Volcanoes constructed by superimposed layers of varying volcanic materials are inherently unstable structures. The heterogeneity of weak and strong layers consisting of ash, tephra and lavas, each with varying coherencies, porosities, crystallinities, glass content and ultimately, strength, can promote volcanic flank and sector collapses. These volcanoes often exist in areas with complex regional tectonics adding to instability caused by heterogeneity, flank overburden, magma movement and emplacement in addition to hydrothermal alteration and anomalous geothermal gradients. Recent studies conducted on the faulting properties of volcanic rocks at variable slip rates show the rate-weakening dependence of the friction coefficients (up to 90% reduction)[1], caused by a wide range of factors such as the generation of gouge and frictional melt lubrication [2]. Experimental data from experiments conducted on volcanic products suggests that frictional melt occurs at slip rates similar to those of plug flow in volcanic conduits [1] and the bases of mass material movements such as debris avalanches from volcanic flanks [3]. In volcanic rock, the generation of frictional heat may prompt the remobilisation of interstitial glass below melting temperatures due to passing of the glass transition temperature at ˜650-750 ˚C [4]. In addition, the crushing of pores in high porosity samples can lead to increased comminution and strain localisation along slip surfaces. Here we present the results of friction tests on both high density, glass rich samples from Santaguito (Guatemala) and synthetic glass samples with varying porosities (0-25%) to better understand frictional properties underlying volcanic collapse events. 1. Kendrick, J.E., et al., Extreme frictional processes in the volcanic conduit of Mount St. Helens (USA) during the 2004-2008 eruption. J. Structural Geology, 2012. 2. Di Toro, G., et al., Fault lubrication during earthquakes. Nature, 2011. 471(7339): p. 494-498. 3

  3. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearised versions of the model are analysed to determine how gain, time constants and right half plane zeros (caused by the shrink-and-swell phenomenon) depend on the steam flow load. Furthermore...... the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of the nonlinear model is carried out to further determine the nonlinear characteristics of the boiler system...

  4. Controlling Properties and Cytotoxicity of Chitosan Nanocapsules by Chemical Grafting

    Directory of Open Access Journals (Sweden)

    Laura De Matteis

    2016-09-01

    Full Text Available The tunability of the properties of chitosan-based carriers opens new ways for the application of drugs with low water-stability or high adverse effects. In this work, the combination of a nanoemulsion with a chitosan hydrogel coating and the following poly (ethylene glycol (PEG grafting is proven to be a promising strategy to obtain a flexible and versatile nanocarrier with an improved stability. Thanks to chitosan amino groups, a new easy and reproducible method to obtain nanocapsule grafting with PEG has been developed in this work, allowing a very good control and tunability of the properties of nanocapsule surface. Two different PEG densities of coverage are studied and the nanocapsule systems obtained are characterized at all steps of the optimization in terms of diameter, Z potential and surface charge (amino group analysis. Results obtained are compatible with a conformation of PEG molecules laying adsorbed on nanoparticle surface after covalent linking through their amino terminal moiety. An improvement in nanocapsule stability in physiological medium is observed with the highest PEG coverage density obtained. Cytotoxicity tests also demonstrate that grafting with PEG is an effective strategy to modulate the cytotoxicity of developed nanocapsules. Such results indicate the suitability of chitosan as protective coating for future studies oriented toward drug delivery.

  5. Controlling Properties and Cytotoxicity of Chitosan Nanocapsules by Chemical Grafting

    Science.gov (United States)

    De Matteis, Laura; Alleva, Maria; Serrano-Sevilla, Inés; García-Embid, Sonia; Stepien, Grazyna; Moros, María; de la Fuente, Jesús M.

    2016-01-01

    The tunability of the properties of chitosan-based carriers opens new ways for the application of drugs with low water-stability or high adverse effects. In this work, the combination of a nanoemulsion with a chitosan hydrogel coating and the following poly (ethylene glycol) (PEG) grafting is proven to be a promising strategy to obtain a flexible and versatile nanocarrier with an improved stability. Thanks to chitosan amino groups, a new easy and reproducible method to obtain nanocapsule grafting with PEG has been developed in this work, allowing a very good control and tunability of the properties of nanocapsule surface. Two different PEG densities of coverage are studied and the nanocapsule systems obtained are characterized at all steps of the optimization in terms of diameter, Z potential and surface charge (amino group analysis). Results obtained are compatible with a conformation of PEG molecules laying adsorbed on nanoparticle surface after covalent linking through their amino terminal moiety. An improvement in nanocapsule stability in physiological medium is observed with the highest PEG coverage density obtained. Cytotoxicity tests also demonstrate that grafting with PEG is an effective strategy to modulate the cytotoxicity of developed nanocapsules. Such results indicate the suitability of chitosan as protective coating for future studies oriented toward drug delivery. PMID:27706041

  6. Effect of bars on the galaxy properties

    CERN Document Server

    Vera, Matias; Coldwell, Georgina

    2016-01-01

    Aims: With the aim of assessing the effects of bars on disc galaxy properties, we present an analysis of different characteristics of spiral galaxies with strong, weak and without bars. Method: We identified barred galaxies from the Sloan Digital Sky Survey. By visual inspection, we classified the face-on spiral galaxies brighter than g<16.5 mag into strong-bar, weak-bar and unbarred. In order to provide an appropiate quantification of the influence of bars on galaxy properties, we also constructed a suitable control sample of unbarred galaxies with similar redshift, magnitude, morphology, bulge sizes, and local density environment distributions to that of barred galaxies. Results: We found 522 strong-barred and 770 weak-barred galaxies, representing a 25.82% of the full sample of spiral galaxies, in good agreement with previous studies. We also found that strong-barred galaxies show less efficient star formation activity and older stellar populations compared to weak-barred and unbarred spirals from the c...

  7. Effect of cryogel on soil properties

    Science.gov (United States)

    Altunina, L. K.; Fufaeva, M. S.; Filatov, D. A.; Svarovskaya, L. I.; Rozhdestvenskii, E. A.; Gan-Erdene, T.

    2014-05-01

    Samples from the A1 and A1A2 horizons of sandy loamy gray forest soil containing 3.1% organic matter have been mixed with a 5% solution of polyvinyl alcohol (PVA) at a ratio of 7 : 1 under laboratory conditions. The samples were frozen at -20°C in a refrigerator; after a freezing-thawing cycle, the evaporation of water from their surface, their thermal conductivity coefficient, their elasticity modulus, and other properties were studied. It has been experimentally found that the thermal conductivity coefficient of cryostructured soil is lower than that of common soil by 25%. It has been shown that the cryostructured soil retains water for a longer time and that the water evaporation rate from its surface is significantly lower compared to the control soil. Cryogel has no negative effect on the catalase activity of soil; it changes the physical properties of soils and positively affects the population of indigenous soil microflora and the growth of the sown plants.

  8. Effect of Nanofiller Characteristics on Nanocomposite Properties

    Science.gov (United States)

    Working, Dennis C.; Lillehei, Peter T.; Lowther, Sharon E.; Siochi, Emilie J.; Kim, Jae-Woo; Sauti, Godfrey; Wise, Kristopher E.; Park, Cheol

    2016-01-01

    This report surveys the effect of nanofiller characteristics on nanocomposites fabricated with two polyimide matrices. Mechanical and electrical properties were determined. Microscopy results showed that matrix chemistry, nanofiller characteristics and processing conditions had significant impact on nanocomposite quality.

  9. Effects of fault-controlled CO2 alteration on mineralogical and geomechanical properties of reservoir and seal rocks, Crystal Geyser, Green River, Utah

    Science.gov (United States)

    Major, J. R.; Eichhubl, P.; Urquhart, A.; Dewers, T. A.

    2012-12-01

    An understanding of the coupled chemical and mechanical properties of reservoir and seal units undergoing CO2 injection is critical for modeling reservoir behavior in response to the introduction of CO2. The implementation of CO2 sequestration as a mitigation strategy for climate change requires extensive risk assessment that relies heavily on computer models of subsurface reservoirs. Numerical models are fundamentally limited by the quality and validity of their input parameters. Existing models generally lack constraints on diagenesis, failing to account for the coupled geochemical or geomechanical processes that affect reservoir and seal unit properties during and after CO2 injection. For example, carbonate dissolution or precipitation after injection of CO2 into subsurface brines may significantly alter the geomechanical properties of reservoir and seal units and thus lead to solution-enhancement or self-sealing of fractures. Acidified brines may erode and breach sealing units. In addition, subcritical fracture growth enhanced by the presence of CO2 could ultimately compromise the integrity of sealing units, or enhance permeability and porosity of the reservoir itself. Such unknown responses to the introduction of CO2 can be addressed by laboratory and field-based observations and measurements. Studies of natural analogs like Crystal Geyser, Utah are thus a critical part of CO2 sequestration research. The Little Grand Wash and Salt Wash fault systems near Green River, Utah, host many fossil and active CO2 seeps, including Crystal Geyser, serving as a faulted anticline CO2 reservoir analog. The site has been extensively studied for sequestration and reservoir applications, but less attention has been paid to the diagenetic and geomechanical aspects of the fault zone. XRD analysis of reservoir and sealing rocks collected along transects across the Little Grand Wash Fault reveal mineralogical trends in the Summerville Fm (a siltstone seal unit) with calcite and

  10. Equilibrium properties of proximity effect

    Energy Technology Data Exchange (ETDEWEB)

    Esteve, D.; Pothier, H.; Gueron, S.; Birge, N.O.; Devoret, M.

    1996-12-31

    The proximity effect in diffusive normal-superconducting (NS) nano-structures is described by the Usadel equations for the electron pair correlations. We show that these equations obey a variational principle with a potential which generalizes the Ginzburg-Landau energy functional. We discuss simple examples of NS circuits using this formalism. In order to test the theoretical predictions of the Usadel equations, we have measured the density of states as a function of energy on a long N wire in contact with a S wire at one end, at different distances from the NS interface. (authors). 12 refs.

  11. Seebeck effect in {ital p}-CdTe: The control of electrical properties of the system Au/{ital p}-CdTe/Au by temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Vackova, S. [Charles University, Prague (Czech Republic)

    1994-08-10

    The interaction of holes with phonons was studied in {ital p}-CdTe by means of Seebeck effect and {ital I}-{ital U} characteristics measurements without and with longitudinal temperature gradient. The both phenomena are evidently influenced by optical phonon drag effect. Optical phonon drag effect obviously diminishes thermopower values, in the second case the {ital I}-{ital U} characteristics shift was observed; in our arrangement temperature difference 10 K increases or decreases the current through the sample of about 40%. The explanation of this effects observed is based on Gurevich {ital et} {ital al}. theory about the charge redistribution in mediums with nonequilibrium carriers (of two types) and phonons in semiconductors. Our experimental results could have new promising applications. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  12. Effect of Homogenization on Physical and Controlled Release Properties of Gelatin Emulsion Films%均质条件对明胶乳液膜物理性能及控释性的影响

    Institute of Scientific and Technical Information of China (English)

    尹寿伟; 马雯; 徐航; 唐传核; 杨晓泉

    2012-01-01

    Protein-based films are of poor mechanical and water vapor-barrier properties. In order to solve this problem, a novel gelatin-olive oil emulsion film was prepared via the microfluidic emulsification technique. Then, the effects of homogenization on the particle size distributions of emulsions and the physical properties of the films were analyzed, and the correlations between the lipid droplet distributions and the mechanical as well as water vapor-barrier properties of the films were discussed. In addition, the controlled release properties of the films to lyso-zyme were also investigated. The results show that (1) when the emulsion is dispersed at a high rate, the lipid droplet is of large and unevenly-distributed particle size, and the corresponding film is of poor mechanical property, with a bi-layer-liked protein-lipid structure occurring during the forming of the film due to the enrichment of partial oil phase on the film surface; (2) when the emulsion is treated by means of microfluidization, it is in nano-scale with a concentrated particle distribution, and the corresponding film is of evenly-distributed oil phase and excellent tensile strength; (3) as compared with the control, the emulsion films obtained through the two above-mentioned homogenization techniques both have better water vapour-barrier property, although the corresponding mechanisms are different; and (4)the film prepared through microfluidization possesses excellent mechanical and water vapor-barrier properties as well as good controlled release ability to lysozyme.%针对蛋白膜材料机械性能和水汽阻隔性能较差的问题,采用微射流乳化的方法制备了新型橄榄油/明胶乳液膜材料,分析了均质条件对成膜乳液粒径分布和乳液膜物理性能的影响,并探讨了膜材料中油滴分布与膜材料的机械性能和水汽阻隔性之间的关联性,以及膜材料对溶菌酶的控释性.结果表明:高速分散处理的成膜乳液的油滴粒径

  13. Effect of bars on the galaxy properties

    Science.gov (United States)

    Vera, Matias; Alonso, Sol; Coldwell, Georgina

    2016-10-01

    Aims: With the aim of assessing the effects of bars on disk galaxy properties, we present an analysis of different characteristics of spiral galaxies with strong bars, weak bars and without bars. Methods: We identified barred galaxies from the Sloan Digital Sky Survey (SDSS). By visual inspection of SDSS images we classified the face-on spiral galaxies brighter than glog (M∗/M⊙) processing, reflected in the significant changes in the physical properties of the host galaxies.

  14. Metabolic control of mitochondrial properties by adenine nucleotide translocator determines palmitoyl-CoA effects - Implications for a mechanism linking obesity and type 2 diabetes

    NARCIS (Netherlands)

    Ciapaite, Jolita; Bakker, Stephan J. L.; Diamant, Michaela; van Eikenhorst, Gerco; Heine, Robert J.; Westerhoff, Hans V.; Krab, Klaas

    2006-01-01

    Inhibition of the mitochondrial adenine nucleotide translocator (ANT) by long-chain acyl-CoA esters has been proposed to contribute to cellular dysfunction in obesity and type 2 diabetes by increasing formation of reactive oxygen species and adenosine via effects on the coenzyme Q redox state, mitoc

  15. Effect of Fe2P in LiFePO4/Fe2P composite on electrochemical properties synthesized by MA and control of heat condition

    Institute of Scientific and Technical Information of China (English)

    PARK Jong Suk; LEE Kyung Tae; LEE Kyung Sub

    2006-01-01

    In order to control the size and distribution of the high conductive Fe2P in LiFePO4/Fe2P composite, two different cooling rates (Fast: 15 ℃·min-1, Slow: 2 ℃·min-1) were employed after mechanical alloying.The discharge capacity of the fast cooled was 83 mAh·g-1 and the slow cooled 121 mAh·g-1.The particle size of the synthesized powder was examined by transmission electron microscopy and distribution of Fe2P was characterized using scanning electron microscopy (SEM).In addition, two-step heat treatment was carried out for better distribution of Fe2P.X-ray diffraction (XRD) and Rietveld refinement reveal that LiFePO4/Fe2P composite consists of 95.77% LiFePO4 and 4.33% of Fe2P.

  16. The Viability Property of Controlled Jump Diffusion Processes

    Institute of Scientific and Technical Information of China (English)

    Shi Ge PENG; Xue Hong ZHU

    2008-01-01

    In this paper,we first give a comparison theorem of viscosity solution to some nonlinear second order integrodifferential equation.And then using the comparison theorem,we obtain a necessary and sufficient condition for the viability property of some controlled jump diffusion processes which can keep the solution within a constraint K.

  17. Aviation fuel property effects on altitude relight

    Science.gov (United States)

    Venkataramani, K.

    1987-01-01

    The major objective of this experimental program was to investigate the effects of fuel property variation on altitude relight characteristics. Four fuels with widely varying volatility properties (JP-4, Jet A, a blend of Jet A and 2040 Solvent, and Diesel 2) were tested in a five-swirl-cup-sector combustor at inlet temperatures and flows representative of windmilling conditions of turbofan engines. The effects of fuel physical properties on atomization were eliminated by using four sets of pressure-atomizing nozzles designed to give the same spray Sauter mean diameter (50 + or - 10 micron) for each fuel at the same design fuel flow. A second series of tests was run with a set of air-blast nozzles. With comparable atomization levels, fuel volatility assumes only a secondary role for first-swirl-cup lightoff and complete blowout. Full propagation first-cup blowout were independent of fuel volatility and depended only on the combustor operating conditions.

  18. 48 CFR 2945.104 - Review and correction of contractors' property control systems.

    Science.gov (United States)

    2010-10-01

    ... contractors' property control systems. 2945.104 Section 2945.104 Federal Acquisition Regulations System... contractors' property control systems. When the Government's property administrator determines that review and approval of the contractor's property control system rests with DOL, the Government's property...

  19. Microbial effect on soil hydraulic properties

    Science.gov (United States)

    Furman, Alex; Rosenzweig, Ravid; Volk, Elazar; Rosenkranz, Hella; Iden, Sascha; Durner, Wolfgang

    2014-05-01

    Although largely ignored, the soil contains large amount of biofilms (attached microbes) that can affect many processes. While biochemical processes are studied, biophysical processes receive only little attention. Biofilms may occupy some of the pore space, and by that affect the soil hydraulic properties. This effect on unsaturated soils, however, was not intensively studied. In this research we directly measure the hydraulic properties, namely the soil's unsaturated hydraulic conductivity function and retention curve, for soils containing real biofilm. To do that we inoculate soil with biofilm-forming bacteria and incubate it with sufficient amounts of nutrient until biofilm is formed. The hydraulic properties of the incubated soil are then measured using several techniques, including multi-step outflow and evaporation method. The longer measurements (evaporation method) are conducted under refrigeration conditions to minimize microbial activity during the experiment. The results show a clear effect of the biofilm, where the biofilm-affected soil (sandy loam in our case) behaves like a much finer soil. This qualitatively makes sense as the biofilm generates an effective pore size distribution that is characterized by smaller pores. However, the effect is much more complex and needs to be studied carefully considering (for example) dual porosity models. We compare our preliminary results with other experiments, including flow-through column experiments and experiments with biofilm analogues. Clearly a better understanding of the way microbial activity alters the hydraulic properties may help designing more efficient bioremediation, irrigation, and other soil-related processes.

  20. Engine control techniques to account for fuel effects

    Science.gov (United States)

    Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.

    2014-08-26

    A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.

  1. Controlling the scattering properties of thin, particle-doped coatings

    Science.gov (United States)

    Rogers, William; Corbett, Madeleine; Manoharan, Vinothan

    2013-03-01

    Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.

  2. Some Remarks on the Boundedness and Convergence Properties of Smooth Sliding Mode Controllers

    Institute of Scientific and Technical Information of China (English)

    Wallace Moreira Bessa

    2009-01-01

    Conventional sliding mode controllers are based on the assumption of switching control, but a well-known drawback of such controllers is the chattering phenomenon. To overcome the undesirable chattering effects, the discontinuity in the control law can be smoothed out in a thin boundary layer neighboring the switching surface. In this paper, rigorous proofs of the boundedness and convergence properties of smooth sliding mode controllers are presented. This result corrects flawed conclusions previously reached in the literature. An illustrative example is also presented in order to confirm the convergence of the tracking error vector to the defined bounded region.

  3. Effective Rheological Properties in Semidilute Bacterial Suspensions

    CERN Document Server

    Potomkin, Mykhailo; Berlyand, Leonid

    2015-01-01

    Interactions between swimming bacteria have led to remarkable experimentally observable macroscopic properties such as the reduction of the effective viscosity, enhanced mixing, and diffusion. In this work, we study an individual based model for a suspension of interacting point dipoles representing bacteria in order to gain greater insight into the physical mechanisms responsible for the drastic reduction in the effective viscosity. In particular, asymptotic analysis is carried out on the corresponding kinetic equation governing the distribution of bacteria orientations. This allows one to derive an explicit asymptotic formula for the effective viscosity of the bacterial suspension in the limit of bacterium non-sphericity. The results show good qualitative agreement with numerical simulations and previous experimental observations. Finally, we justify our approach by proving existence, uniqueness, and regularity properties for this kinetic PDE model.

  4. Effective Optical Properties of Plasmonic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Christoph Etrich

    2014-01-01

    Full Text Available Plasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible. Established theories, e.g., the Maxwell-Garnett formalism, are only applicable for strongly diluted nanocomposites. This effective description, however, is a prerequisite to consider plasmonic nanocomposites in the design of optical devices. Here, we mitigate this problem and use full wave optical simulations to assign effective properties to plasmonic nanocomposites with filling fractions close to the percolation threshold. We show that these effective properties can be used to properly predict the optical action of functional devices that contain nanocomposites in their design. With this contribution we pave the way to consider plasmonic nanocomposites comparably to ordinary materials in the design of optical elements.

  5. Thermodynamic properties of wadsleyite with anharmonic effect

    Institute of Scientific and Technical Information of China (English)

    Zhongqing Wu

    2015-01-01

    The thermodynamic properties of crystals can be routinely calculated by density functional theory calculations combining with quasi-harmonic approximation.Based on the method developed recently by Wu and Wentzcovitch (Phys Rev B 79:104304,2009) and Wu (Phys Rev B 81:172301,2010),we are able to further ab initio include anharmonic effect on thermodynamic properties of crystals by one additional canonical ensemble with numbers of particle,volume and temperature fixed (NVT) molecular dynamic simulations.Our study indicates that phonon-phonon interaction causes the renormalized phonon frequencies of wadsleyite decrease with temperature.This is consistent with the Raman experimental observation.The anharmonic free energy of wadsleyite is negative and its heat capacity at constant pressure can exceed the Dulong-Petit limit at high temperature.The anharmonicity still significantly affects thermodynamic properties of wadsleyite at pressure and temperature conditions correspond to the transition zone.

  6. Crystallization-induced properties from morphology-controlled organic crystals.

    Science.gov (United States)

    Park, Chibeom; Park, Ji Eun; Choi, Hee Cheul

    2014-08-19

    During the past two decades, many materials chemists have focused on the development of organic molecules that can serve as the basis of cost-effective and flexible electronic, optical, and energy conversion devices. Among the potential candidate molecules, metal-free or metal-containing conjugated organic molecules offer high-order electronic conjugation levels that can directly support fast charge carrier transport, rapid optoelectric responses, and reliable exciton manipulation. Early studies of these molecules focused on the design and synthesis of organic unit molecules that exhibit active electrical and optical properties when produced in the form of thin film devices. Since then, researchers have worked to enhance the properties upon crystallization of the unit molecules as single crystals provide higher carrier mobilities and exciton recombination yields. Most recently, researchers have conducted in-depth studies to understand how crystallization induces property changes, especially those that depend on specific crystal surfaces. The different properties that depend on the crystal facets have been of particular interest. Most unit molecules have anisotropic structures, and therefore produce crystals with several unique crystal facets with dissimilar molecular arrangements. These structural differences would also lead to diverse electrical conductance, optical absorption/emission, and even chemical interaction properties depending on the crystal facet investigated. To study the effects of crystallization and crystal facet-dependent property changes, researchers must grow or synthesize crystals of highly conjugated molecules that have both a variety of morphologies and high crystallinity. Morphologically well-defined organic crystals, that form structures such as wires, rods, disks, and cubes, provide objects that researchers can use to evaluate these material properties. Such structures typically occur as single crystals with well-developed facets with

  7. Emulsified lipids: formulation and control of end-use properties

    Directory of Open Access Journals (Sweden)

    Leal-Calderon Fernando

    2012-03-01

    Full Text Available In many practical applications including foods, cosmetics, pharmaceuticals, etc., lipids are emulsified in an aqueous phase in the presence of surface-active molecules and other additives like thickening/gelling agents. Once fabricated, the emulsions may exhibit all kinds of rheological behaviors from viscous fluid to elastic pastes, and transitions: reversible phase transitions as a result of droplet interactions that may be modified to a large extent, and irreversible transitions that generally involve their destruction. Besides the predominance of empiricism in controlling most of the end-use properties, the scientific background of emulsions is progressing. In this paper we aim to review some advances concerning the control of the structure, the texture (rheological properties and the ageing of emulsions.

  8. Dynamic modeling, property investigation, and adaptive controller design of serial robotic manipulators modeled with structural compliance

    Science.gov (United States)

    Tesar, Delbert; Tosunoglu, Sabri; Lin, Shyng-Her

    1990-01-01

    Research results on general serial robotic manipulators modeled with structural compliances are presented. Two compliant manipulator modeling approaches, distributed and lumped parameter models, are used in this study. System dynamic equations for both compliant models are derived by using the first and second order influence coefficients. Also, the properties of compliant manipulator system dynamics are investigated. One of the properties, which is defined as inaccessibility of vibratory modes, is shown to display a distinct character associated with compliant manipulators. This property indicates the impact of robot geometry on the control of structural oscillations. Example studies are provided to illustrate the physical interpretation of inaccessibility of vibratory modes. Two types of controllers are designed for compliant manipulators modeled by either lumped or distributed parameter techniques. In order to maintain the generality of the results, neither linearization is introduced. Example simulations are given to demonstrate the controller performance. The second type controller is also built for general serial robot arms and is adaptive in nature which can estimate uncertain payload parameters on-line and simultaneously maintain trajectory tracking properties. The relation between manipulator motion tracking capability and convergence of parameter estimation properties is discussed through example case studies. The effect of control input update delays on adaptive controller performance is also studied.

  9. Effectiveness of the “What’s Up!” Intervention to Reduce Stigma and Psychometric Properties of the Youth Program Questionnaire (YPQ: Results from a Cluster Non-randomized Controlled Trial Conducted in Catalan High Schools

    Directory of Open Access Journals (Sweden)

    Laura Andrés-Rodríguez

    2017-09-01

    Full Text Available Mental disorders are highly prevalent in the general population, and people who experience them are frequently stigmatized. Stigma has a very negative impact on social, academic/professional, and personal life. Considering the high rates of mental disorders among children and adolescents (13.4% and how critical this age is in the formation of nuclear beliefs, many campaigns to combat stigma have been developed in the last decade, with mixed results. The OBERTAMENT initiative has produced various anti-stigma campaigns in Catalonia (Spain. In the present study, the main objective was to report on the effectiveness of the OBERTAMENT “What’s up!” intervention, a curricular intervention including education and social contact conducted by the teachers in the classroom with teenagers aged between 14 and 18. Prior to this, we examined the psychometric properties of the Youth Program Questionnaire (YPQ, our main outcome measure, in terms of dimensionality, reliability, and validity. A cluster non-randomized controlled trial was conducted to assess this intervention, which was tested in nine high schools situated in the Barcelona region. A convenience sample of 261 students formed the intervention group and 132 the control group (52% women, mean age = 14, SD = 0.47. The assignment to study conditions was conducted by Departament d’Ensenyament (Department of Education, Generalitat de Catalunya (Catalan Government. Participants were evaluated at baseline, post-intervention, and 9-month follow-up. The main outcome measure of this study was the YPQ. The Reported and Intended Behavior Scale (RIBS was used as secondary outcome measure. The statistical analysis indicated that the YPQ possesses a two-factor structure (stereotypical attitudes and intended behavior and sound psychometric properties. The multilevel mixed-effects models revealed statistically significant interactions for both study measures and post hoc intragroup analyses revealed a

  10. Alcohol's Effects on Lipid Bilayer Properties

    Science.gov (United States)

    Ingólfsson, Helgi I.; Andersen, Olaf S.

    2011-01-01

    Alcohols are known modulators of lipid bilayer properties. Their biological effects have long been attributed to their bilayer-modifying effects, but alcohols can also alter protein function through direct protein interactions. This raises the question: Do alcohol's biological actions result predominantly from direct protein-alcohol interactions or from general changes in the membrane properties? The efficacy of alcohols of various chain lengths tends to exhibit a so-called cutoff effect (i.e., increasing potency with increased chain length, which that eventually levels off). The cutoff varies depending on the assay, and numerous mechanisms have been proposed such as: limited size of the alcohol-protein interaction site, limited alcohol solubility, and a chain-length-dependent lipid bilayer-alcohol interaction. To address these issues, we determined the bilayer-modifying potency of 27 aliphatic alcohols using a gramicidin-based fluorescence assay. All of the alcohols tested (with chain lengths of 1–16 carbons) alter the bilayer properties, as sensed by a bilayer-spanning channel. The bilayer-modifying potency of the short-chain alcohols scales linearly with their bilayer partitioning; the potency tapers off at higher chain lengths, and eventually changes sign for the longest-chain alcohols, demonstrating an alcohol cutoff effect in a system that has no alcohol-binding pocket. PMID:21843475

  11. 23 CFR 750.705 - Effective control.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Effective control. 750.705 Section 750.705 Highways... BEAUTIFICATION Outdoor Advertising Control § 750.705 Effective control. In order to provide effective control of... of applicable control requirements will apply; (h) Develop laws, regulations, and procedures...

  12. Hydrogen effect on the properties of sapphire

    Science.gov (United States)

    Mogilevsky, Radion N.; Sharafutdinova, Liudmila G.; Nedilko, Sergiy; Gavrilov, Valeriy; Verbilo, Dmitriy; Mittl, Scott D.

    2009-05-01

    Sapphire is a widely used material for optical, electronic and semiconductor applications due to its excellent optical properties and very high durability. Optical and mechanical properties of sapphire depend on many factors such as the starting materials that are used to grow crystals, methods to grow sapphire crystals, etc. Demand for highest purity and quality of sapphire crystals increased ten fold for the last several years due to new applications for this material. In this work we studied the effect of starting materials and crystal growth methods on the optical and mechanical properties of sapphire, especially concentrating on the effect of hydrogen on the properties of sapphire. It was found that the infrared (IR) absorption which is traditionally used to measure the hydrogen content in sapphire crystals cannot be reliably used and the data obtained by this method provides a much lower hydrogen concentration than actual. We have shown for the first time that Nuclear Magnetic Resonance techniques can be successfully used to determine hydrogen concentration in sapphire crystals. We have shown that hydrogen concentration in sapphire can reach thousands of ppm if these crystals are grown from Verneuil starting material or aluminum oxide powder. Alternatively, the hydrogen concentration is very low if sapphire crystals are grown from High Purity Densified Alumina (HPDA®) as a starting material. HPDA® is produced by EMT, Inc through their proprietary patented technology. It was found that optical and mechanical properties of sapphire crystals grown using EMT HPDA® starting material are much better than those sapphire crystals grown using a starting material of Verneuil crystals or aluminum oxide powder.

  13. Properties of Controllable Soliton Switching in Optical Lattices with Longitudinal Exponential-Asymptotic Modulation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jun; XUE Chun-Hua; QI Yi-Hong; LOU Sen-Yue

    2008-01-01

    The properties of controllable soliton switching in Kerr-type optical lattices with different modulation are investigated theoretically and simulated numerically. The results show that the optical lattices can be available for all-optical soliton switching through utilization for length-scale competition effects. And through longitudinal exponential-asymptotic modulation for the linear refractive index, the properties of soliton switching in the optical lattices can be improved. The number of output channels of soliton switching can be controlled by the parameters such as incident angle, asymptotic rate of longitudinal modulation, guiding parameter and form factor.

  14. The factors controlling the abundance and migration of heavy versus light oils, as constrained by data from the Gulf of Suez. Part 1. The effect of expelled petroleum composition, PVT properties and petroleum system geometry

    Energy Technology Data Exchange (ETDEWEB)

    Khavari-Khorasani, G. [PETEC, Stavanger (Norway); Dolson, J.C. [GUPCO, Cairo (Egypt); Michelsen, J.K. [STATOIL, Stavanger (Norway)

    1998-12-31

    In the Gulf of Suez (GOS) petroleum systems the main factors which control the abundance and migration of heavy vs light oils are (a) the composition and PVT properties of the expelled fluids, (b) the geometry of the petroleum systems and (c) reservoir flow processes. Compositional and PVT modeling of the expelled petroleum fluids from the Brown Limestone and the Thebes Formation carbonate source rocks show the following. The fluids expelled below a transformation ratio of 0.5 are heavy oils (stock tank API gravity = 10-20{sup o}), have a low GOR, and contain 20-25% asphaltenes. These fluids are formed from source rocks which have mainly low to intermediate sulfur content and normal thermal stability. The further expelled fluids, up to a transformation ratio of around 0.97, are bubble point behaving fluids (oils) with stock tank API from > 20-50{sup o}, and GOR {approx} 300-800 scf/bbl, and display a progressive decrease in asphaltene content. The latest {approx} 3% expelled fluids represent dew point behaving fluids (gas condensates). The heavy, low GOR oils expelled below a transformation ratio of 0.5, have a very low saturation pressure and are not prone to asphaltene precipitation, unless they are mixed with higher GOR fluids. Geometrically imposed mixing of fluids with large maturity-induced compositional differences, and reservoir flow processes have a significant effect on the PVT behavior of the migrating fluids, on asphaltene precipitation, and on the distribution of heavy vs light oils. (author)

  15. Development of graphene oxide materials with controllably modified optical properties

    Science.gov (United States)

    Naumov, Anton; Galande, Charudatta; Mohite, Aditya; Ajayan, Pulickel; Weisman, R. Bruce

    2015-03-01

    One of the major current goals in graphene research is modifying its optical and electronic properties through controllable generation of band gaps. To achieve this, we have studied the changes in optical properties of reduced graphene oxide (RGO) in water suspension upon the exposure to ozone. Ozonation for the periods of 5 to 35 minutes has caused a dramatic bleaching of its absorption and the concurrent appearance of strong visible fluorescence in previously nonemissive samples. These observed spectral changes suggest a functionalization-induced band gap opening. The sample fluorescence induced by ozonation was found to be highly pH-dependent: sharp and structured emission features resembling the spectra of molecular fluorophores were present at basic pH values, but this emission reversibly broadened and red-shifted in acidic conditions. These findings are consistent with excited state protonation of the emitting species in acidic media. Oxygen-containing addends resulting from the ozonation were detected by XPS and FTIR spectroscopy and related to optical transitions in localized graphene oxide fluorophores by computational modeling. Further research will be directed toward producing graphene-based optoelectronic devices with tailored and controllable optical properties.

  16. Shape Memory Effect and Properties Memory Effect of Polyurethane

    OpenAIRE

    FARZANEH, Sedigeh; Fitoussi, Joseph; LUCAS, Albert; Bocquet, Michel; Tcharkhtchi, Abbas

    2013-01-01

    International audience; The relationship between shape and properties memory effect, especially viscoelastic properties of polyurethane under study is the main aim of this research work. Tensile tests have been performed in order to introduce 100% of deformation in the polyurethane samples. Under this deformation, stress-relaxation experiments have been performed in order to eliminate the residual stresses. This deformation of the samples has been fixed by cooling. Recovery tests, then, were ...

  17. Cluster Properties via Sunyaev-Zel Effect

    Science.gov (United States)

    Cooray, Asantha

    We will discuss the role played by the Sunyaev-Zel'dovich (SZ) effect in uderstanding the physical properties of the intracluster medium. While the SZ effect has been considered widely for its cosmological purposes when combined with multiwavelength observations the SZ effect data can also be used to understand the nature and evolution of the ICM including its thermal structure and the presence of nonthermal plasma. We also discuss future opportunities on this aspect involving observations from the planned South Pole Telescope Planck mission and various other attempts to image the SZ effect in galaxy clusters using wide-field bolometer arrays and other techniques. We will also explore the connection between gas in clusters and the general intergalactic medium and how one can use detailed wide-field SZ maps beyond those towards individual clusters to study such possibilities.

  18. [Prebiotics: concept, properties and beneficial effects].

    Science.gov (United States)

    Corzo, N; Alonso, J L; Azpiroz, F; Calvo, M A; Cirici, M; Leis, R; Lombó, F; Mateos-Aparicio, I; Plou, F J; Ruas-Madiedo, P; Rúperez, P; Redondo-Cuenca, A; Sanz, M L; Clemente, A

    2015-02-07

    Prebiotics are non-digestible food ingredients (oligosaccharides) that reach the colon and are used as substrate by microorganisms producing energy, metabolites and micronutrients used for the host; in addition they also stimulate the selective growth of certain beneficial species (mainly bifidobacteria and lactobacilli) in the intestinal microbiota. In this article, a multidisciplinary approach to understand the concept of prebiotic carbohydrates, their properties and beneficial effects in humans has been carried out. Definitions of prebiotics, reported by relevant international organizations and researchers, are described. A comprehensive description of accepted prebiotics having strong scientific evidence of their beneficial properties in humans (inulin-type fructans, FOS, GOS, lactulose and human milk oligosaccharides) is reported. Emerging prebiotics and those which are in the early stages of study have also included in this study. Taken into account that the chemical structure greatly influences carbohydrates prebiotic properties, the analytical techniques used for their analysis and characterization are discussed. In vitro and in vivo models used to evaluate the gastrointestinal digestion, absorption resistance and fermentability in the colon of prebiotics as well as major criteria to design robust intervention trials in humans are described. Finally, a comprehensive summary of the beneficial effects of prebiotics for health at systemic and intestinal levels is reported. The research effort on prebiotics has been intensive in last decades and has demonstrated that a multidisciplinary approach is necessary in order to claim their health benefits.

  19. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers

    Science.gov (United States)

    Denissen, Wim; Droesbeke, Martijn; Nicolaÿ, Renaud; Leibler, Ludwik; Winne, Johan M.; Du Prez, Filip E.

    2017-03-01

    Vinylogous urethane based vitrimers are polymer networks that have the intrinsic property to undergo network rearrangements, stress relaxation and viscoelastic flow, mediated by rapid addition/elimination reactions of free chain end amines. Here we show that the covalent exchange kinetics significantly can be influenced by combination with various simple additives. As anticipated, the exchange reactions on network level can be further accelerated using either Brønsted or Lewis acid additives. Remarkably, however, a strong inhibitory effect is observed when a base is added to the polymer matrix. These effects have been mechanistically rationalized, guided by low-molecular weight kinetic model experiments. Thus, vitrimer elastomer materials can be rationally designed to display a wide range of viscoelastic properties.

  20. EFFECT OF POZZOLAN PROPERTIES ON THE PROPERTIES OF BUILDING COMPOSITES

    OpenAIRE

    Pavia, Sara; WALKER, ROSANNE

    2010-01-01

    PUBLISHED University College Cork Pozzolans were used by ancient civilizations to enhance the properties of mortars and concrete and are now regaining popularity as sustainable, environmentally-friendly alternatives to cement. This paper studies the relationships amongst some properties of nine pozzolans and their impact on compressive strength and setting time of the resultant composites. Its objective is to assist in making informed choices in the selection of pozzolans...

  1. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  2. 23 CFR 751.9 - Effective control.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Effective control. 751.9 Section 751.9 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY AND ENVIRONMENT JUNKYARD CONTROL AND ACQUISITION § 751.9 Effective control. (a) In order to provide effective control of junkyards located within...

  3. Low temperature carrier transport properties in isotopically controlled germanium

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.

    1994-12-01

    Investigations of electronic and optical properties of semiconductors often require specimens with extremely homogeneous dopant distributions and precisely controlled net-carrier concentrations and compensation ratios. The previous difficulties in fabricating such samples are overcome as reported in this thesis by growing high-purity Ge single crystals of controlled {sup 75}Ge and {sup 70}Ge isotopic compositions, and doping these crystals by the neutron transmutation doping (NTD) technique. The resulting net-impurity concentrations and the compensation ratios are precisely determined by the thermal neutron fluence and the [{sup 74}Ge]/[{sup 70}Ge] ratios of the starting Ge materials, respectively. This method also guarantees unprecedented doping uniformity. Using such samples the authors have conducted four types of electron (hole) transport studies probing the nature of (1) free carrier scattering by neutral impurities, (2) free carrier scattering by ionized impurities, (3) low temperature hopping conduction, and (4) free carrier transport in samples close to the metal-insulator transition.

  4. Fault controlled geochemical properties in Lahendong geothermal reservoir Indonesia

    Science.gov (United States)

    Brehme, Maren; Deon, Fiorenza; Haase, Christoph; Wiegand, Bettina; Kamah, Yustin; Sauter, Martin; Regenspurg, Simona

    2016-03-01

    Rock and fluid geochemical data from Lahendong, Indonesia, were analyzed to evaluate the influence of fault zones on reservoir properties. It was found that these properties depend on fault-permeability controlled fluid flow. Results from measurements of spring and well water as well as rocks and their hydraulic properties were combined with hydrochemical numerical modeling. The models show that the geothermal field consists of two geochemically distinct reservoir sections. One section is characterized by acidic water, considerable gas discharge and high geothermal-power productivity—all related to increased fault zone permeability. The other section is characterized by neutral water and lower productivity. Increased fluid flow in the highly fractured and permeable areas enhances chemical reaction rates. This results in strong alteration of their surrounding rocks. Numerical models of reactions between water and rock at Lahendong indicate the main alteration products are clay minerals. A geochemical conceptual model illustrates the relation between geochemistry and permeability and their distribution within the area. Our conceptual model illustrates the relation between geochemistry and fault-zone permeability within the Lahendong area. Further mapping of fault-related permeability would support sustainable energy exploitation by avoiding low-productive wells or the production of highly corroding waters, both there and elsewhere in the world.

  5. Controlled study of ISA effects

    DEFF Research Database (Denmark)

    Harms, Lisbeth; Klarborg, B.; Lahrmann, Harry

    2008-01-01

    part of the study was a driving experiment in which two factors, informative ISA and an economic incentive for not speeding, were manipulated between groups of volunteers. A control group had ISA switched off and received insurance discount independent of their speeding. This group did not reduce......This study is a part of an ongoing ISA project in Denmark. Its aim was to clarify two human factors issues, (1) the difference in attitude between ISA-volunteers and non-volunteers, and (2) the relative impact on speeding of two factors, ISA-information and driver motivation. The first part...... their speeding in the experiment period, whereas another group, also with ISA switched off but with insurance discount dependent on their speeding reduced their speeding by a small amount. Two groups, both driving with ISA switched on showed a substantial reduction in their speeding. The effect of informative...

  6. Pairing properties of realistic effective interactions

    Directory of Open Access Journals (Sweden)

    Gargano A.

    2016-01-01

    Full Text Available We investigate the pairing properties of an effective shell-model interaction defined within a model space outside 132Sn and derived by means of perturbation theory from the CD-Bonn free nucleon-nucleon potential. It turns out that the neutron pairing component of the effective interaction is significantly weaker than the proton one, which accounts for the large pairing gap difference observed in the two-valence identical particle nuclei 134Sn and 134Te. The role of the contribution arising from one particle-one hole excitations in determining the pairing force is discussed and its microscopic structure is also analyzed in terms of the multipole decomposition.

  7. Controlled growth of ZnO pyramid arrays with nanorods and their field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Jing; Wu Yue; Bai Xin; Zhang Wei; Yu Ligang [Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China)], E-mail: Xiao@pku.edu.cn, E-mail: Nanoele@gmail.com

    2008-07-07

    Two kinds of novel ZnO pyramid arrays with nanorods were synthesized by a simple pressure controlled thermal evaporation method without any catalyst. The field emission properties of the ZnO pyramid arrays with nanorods have been investigated: the turn-on electric field (at the current density of 10 {mu}A cm{sup -2}) was about 3.7 and 4.5 V {mu}m{sup -1} and the threshold electric field (at the current density of 1 mA cm{sup -2}) was 6.0 and 6.6 V {mu}m{sup -1}. The good field emission properties were believed to benefit from good arrangement and low emitter density. This work provided a simple and catalyst-free method to control the density of the emitters, which could efficiently suppress the field-screening effect and improve the field emission properties.

  8. Control of Sudden Death of Entanglement by Transient Effects

    Institute of Scientific and Technical Information of China (English)

    Hunkar Kayhan

    2011-01-01

    We investigate the properties of entanglement between an isolated atom and a Jaynes-Cummings atom in the presence of transient effects. These effects are due to the modulation of the atom-field coupling whose explicit time-dependence is considered for the case of the linear sweep. We show that the sudden death of entanglement can be controlled by the transient effects. These effects can suppress the sudden death of entanglement in time.

  9. Hematite nanoplates: Controllable synthesis, gas sensing, photocatalytic and magnetic properties.

    Science.gov (United States)

    Hao, Hongying; Sun, Dandan; Xu, Yanyan; Liu, Ping; Zhang, Guoying; Sun, Yaqiu; Gao, Dongzhao

    2016-01-15

    Uniform hematite (α-Fe2O3) nanoplates exposing {001} plane as basal planes have been prepared by a facile solvothermal method under the assistance of sodium acetate. The morphological evolution of the nanoplates was studied by adjusting the reaction parameters including the solvent and the amount of sodium acetate. The results indicated that both the adequate nucleation/growth rate and selective adsorption of alcohol molecules and acetate anions contribute to the formation of the plate-like morphology. In addition, the size of the nanoplates can be adjusted from ca. 180nm to 740nm by changing the reaction parameters. Three nanoplate samples with different size were selected to investigate the gas sensing performance, photocatalytic and magnetic properties. As gas sensing materials, all the α-Fe2O3 nanoplates exhibited high gas sensitivity and stability toward n-butanol. When applied as photocatalyst, the α-Fe2O3 nanoplates show high photodegradation efficiency towards RhB. Both the gas sensing performance and the photocatalytic property of the products exhibit obvious size-dependent effect. Magnetic measurements reveal that the plate-like α-Fe2O3 particles possess good room temperature magnetic properties.

  10. Chemical control of the properties of perovskite oxides

    Science.gov (United States)

    Tachibana, Makoto

    2010-03-01

    Perovskite oxides show a variety of interesting properties that can be tuned by chemical control. In this talk, I will present three examples of how such approach can be used to study the nature of functional properties in perovskites: (1) RMnO3 (R=rare earth) show a variety of unusual states, including the spiral spin ordering and ferroelectricity in R=Tb and Dy. In [1], R=Ho-Lu have been obtained under high pressure, and their magnetic and structural properties have been studied. Combined with the data on larger R, the results show the importance of competing magnetic interactions on the complex phase diagram of RMnO3. (2) RCoO3 show a spin-state transition and an insulator-metal transition as a function of temperature. The nature of the excited states has been studied since the 1950's, but remains elusive. Here [2], I provide the complete electronic phase diagram of RCoO3 that has been obtained from high-pressure synthesis and heat capacity measurements. The results support a picture involving a high-spin state above the spin-state transition and an intermediate-spin state above the insulator-metal transition. (3) Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) is a relaxor ferroelectric system with extraordinary dielectric and piezoelectric properties. The average structure of the system changes from cubic to rhombohedral, monoclinic, and tetragonal with x. However, this system is also characterized by nanoscale phase inhomogeneities, and the role of polar nanoregions on the enhanced properties is not clear. Here [3], I will show that thermal conductivity and heat capacity of PMN-xPT show a systematic evolution from glasslike to crystalline behavior as a function of x. The results provide interesting perspectives on how polar nanoregions are transformed into macroscopic polarizations with increasing x. [4pt] [1] M. Tachibana et al., Phys. Rev. B 75, 144425 (2007). [0pt] [2] M. Tachibana et al., Phys. Rev. B 77, 094402 (2008). [0pt] [3] M. Tachibana et al., Phys. Rev. B 79

  11. Controllable and facile fabrication of Fe nanoparticles/nanochains and their magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hongzhe, E-mail: tanghongzhe@buaa.edu.cn [Ecole Centrale de Pekin, Beihang University, Beijing 100191 (China); Zhan, Xiaotong; Wu, Zhe [Ecole Centrale de Pekin, Beihang University, Beijing 100191 (China); Du, Yu; Talbi, Abdelkrim; Pernod, Philippe [Joint International Laboratory LEMAC – IEMN/UMR-CNRS 8520, Ecole Centrale de Lille, Lille 59651 (France)

    2015-03-01

    Fe nanoparticles and nanochains were prepared by a simple, accessible and pollution-free chemical reduction method. When the concentrations of addition agent NaOH and reagents were changed, the microstructure of Fe nanoparticles and Fe nanochains were distinctive. The magnetic properties of samples were researched, and the influence of the concentration of NaOH and Fe{sup 2+} on the microstructure and the magnetic properties of samples has been discussed detailedly. The control of magnetic properties of Fe nanoparticles and nanochains has been realized by adjusting the microstructure via changing the concentration of reagents and addition agent. - Highlights: • Controllable fabrication of Fe nanoparticles and nanochains has been realized by a simple and pollution-free method. • The microstructure of Fe nanoparticles and Fe nanochains is influenced by the concentration of NaOH and reagents. • NaOH can be used to control the magnetic properties of Fe nanoparticles and nanochains. • Concentration of reagents has effect on the magnetic properties of Fe nanoparticles and nanochains. • The coercivity of Fe nanoparticles is lower than that of Fe nanochains.

  12. Effects of knots on protein folding properties.

    Directory of Open Access Journals (Sweden)

    Miguel A Soler

    Full Text Available This work explores the impact of knots, knot depth and motif of the threading terminus in protein folding properties (kinetics, thermodynamics and mechanism via extensive Monte Carlo simulations of lattice models. A knotted backbone has no effect on protein thermodynamic stability but it may affect key aspects of folding kinetics. In this regard, we found clear evidence for a functional advantage of knots: knots enhance kinetic stability because a knotted protein unfolds at a distinctively slower rate than its unknotted counterpart. However, an increase in knot deepness does not necessarily lead to more effective changes in folding properties. In this regard, a terminus with a non-trivial conformation (e.g. hairpin can have a more dramatic effect in enhancing kinetic stability than knot depth. Nevertheless, our results suggest that the probability of the denatured ensemble to keep knotted is higher for proteins with deeper knots, indicating that knot depth plays a role in determining the topology of the denatured state. Refolding simulations starting from denatured knotted conformations show that not every knot is able to nucleate folding and further indicate that the formation of the knotting loop is a key event in the folding of knotted trefoils. They also show that there are specific native contacts within the knotted core that are crucial to keep a native knotting loop in denatured conformations which otherwise have no detectable structure. The study of the knotting mechanism reveals that the threading of the knotting loop generally occurs towards late folding in conformations that exhibit a significant degree of structural consolidation.

  13. Effect of bond extracellular polymeric substances on membrane fouling control property of a HMBR%附着性胞外多聚物对HMBR膜污染控制性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘强; 王晓昌

    2012-01-01

    An experiment was conducted to study the effect of bond extracellular polymeric substances (B-EPS) on the membrane fouling control property of a hybrid membrane bioreactor (HMBR). Results showed that the B-EPS, the loosely bond extracellular polymeric substances (LB-EPS) and the tightly bond extracellular polymeric substances (TB-EPS) in the HMBR decreased by 10.0% , 43.6% and 2.1%, respectively, compa- ring with the conventional membrane bioreactor (CMBR). The B-EPS had a significant correlation with the spe- cific resistance to filtration of the cake layer, the lower the former was, the smaller the latter became. Otherwise, the LB-EPS affected the specific resistance to filtration of the cake layer more strongly than the TB-EPS. As a re- sult, with the B-EPS especially the LB-EPS decreasing, the HMBR showed a good property of membrane fouling control and the cake laver resistance in which decreased by 56.9% comoaring with tha CMBR.%采用复合式膜生物反应器(HMBR)处理城市生活污水,对附着性胞外多聚物影响HMBR膜污染控制性能的作用机理进行了研究。实验结果表明,HMBR中附着性胞外多聚物、松散附着性胞外多聚物和紧密附着性胞外多聚物的浓度比常规膜生物反应器分别降低了10.0%、43.6%和2.1%。附着性胞外多聚物与膜表面滤饼层污泥比阻的关系较为密切,随着其浓度逐渐降低,滤饼层污泥比阻相应减小。与紧密附着性胞外多聚物相比,松散附着性胞外多聚物对滤饼层污泥比阻的影响程度更深。因此,随着反应器中附着性胞外多聚物特别是松散附着性胞外多聚物浓度的降低,HMBR的膜污染控制性能增强,反应器中膜表面的滤饼层阻力比常规膜生物反应器降低了56.9%。

  14. Effect of bicellar systems on skin properties.

    Science.gov (United States)

    Barbosa-Barros, L; Barba, C; Cócera, M; Coderch, L; López-Iglesias, C; de la Maza, A; López, O

    2008-03-20

    Bicelles are discoidal aggregates formed by a flat dimyristoyl-glycero-phosphocholine (DMPC) bilayer, stabilized by a rim of dihexanoyl-glycero-phosphocholine (DHPC) in water. Given the structure, composition and the dimensions of these aggregates around 10-50 nm diameter, their use for topical applications is a promising strategy. This work evaluates the effect of DMPC/DHPC bicelles with molar ratio (2/1) on intact skin. Biophysical properties of the skin, such as transepidermal water loss (TEWL), elasticity, skin capacitance and irritation were measured in healthy skin in vivo. To study the effect of the bicellar systems on the microstructure of the stratum corneum (SC) in vitro, pieces of native tissue were treated with the aforementioned bicellar system and evaluated by freeze substitution applied to transmission electron microscopy (FSTEM). Our results show that bicelles increase the TEWL, the skin elastic parameters and, decrease skin hydration without promoting local signs of irritation and without affecting the SC lipid microstructure. Thus, a permeabilizing effect of bicelles on the skin takes place possibly due to the changes in the phase behaviour of the SC lipids by effect of phospholipids from bicelles.

  15. Optical Property Evaluation of Next Generation Thermal Control Coatings

    Science.gov (United States)

    Jaworske, Donald A.; Deshpande, Mukund S.; Pierson, Edward A.

    2010-01-01

    Next generation white thermal control coatings were developed via the Small Business Innovative Research program utilizing lithium silicate chemistry as a binder. Doping of the binder with additives yielded a powder that was plasma spray capable and that could be applied to light weight polymers and carbon-carbon composite surfaces. The plasma sprayed coating had acceptable beginning-of-life and end-of-live optical properties, as indicated by a successful 1.5 year exposure to the space environment in low Earth orbit. Recent studies also showed the coating to be durable to simulated space environments consisting of 1 keV and 10 keV electrons, 4.5 MeV electrons, and thermal cycling. Large scale deposition was demonstrated on a polymer matrix composite radiator panel, leading to the selection of the coating for use on the Gravity Recovery And Interior Laboratory (GRAIL) mission.

  16. The stochastic properties of input spike trains control neuronal arithmetic.

    Science.gov (United States)

    Bures, Zbynek

    2012-02-01

    In the nervous system, the representation of signals is based predominantly on the rate and timing of neuronal discharges. In most everyday tasks, the brain has to carry out a variety of mathematical operations on the discharge patterns. Recent findings show that even single neurons are capable of performing basic arithmetic on the sequences of spikes. However, the interaction of the two spike trains, and thus the resulting arithmetic operation may be influenced by the stochastic properties of the interacting spike trains. If we represent the individual discharges as events of a random point process, then an arithmetical operation is given by the interaction of two point processes. Employing a probabilistic model based on detection of coincidence of random events and complementary computer simulations, we show that the point process statistics control the arithmetical operation being performed and, particularly, that it is possible to switch from subtraction to division solely by changing the distribution of the inter-event intervals of the processes. Consequences of the model for evaluation of binaural information in the auditory brainstem are demonstrated. The results accentuate the importance of the stochastic properties of neuronal discharge patterns for information processing in the brain; further studies related to neuronal arithmetic should therefore consider the statistics of the interacting spike trains.

  17. Controlling interferometric properties of nanoporous anodic aluminium oxide.

    Science.gov (United States)

    Kumeria, Tushar; Losic, Dusan

    2012-01-26

    A study of reflective interference spectroscopy [RIfS] properties of nanoporous anodic aluminium oxide [AAO] with the aim to develop a reliable substrate for label-free optical biosensing is presented. The influence of structural parameters of AAO including pore diameters, inter-pore distance, pore length, and surface modification by deposition of Au, Ag, Cr, Pt, Ni, and TiO2 on the RIfS signal (Fabry-Perot fringe) was explored. AAO with controlled pore dimensions was prepared by electrochemical anodization of aluminium using 0.3 M oxalic acid at different voltages (30 to 70 V) and anodization times (10 to 60 min). Results show the strong influence of pore structures and surface modifications on the interference signal and indicate the importance of optimisation of AAO pore structures for RIfS sensing. The pore length/pore diameter aspect ratio of AAO was identified as a suitable parameter to tune interferometric properties of AAO. Finally, the application of AAO with optimised pore structures for sensing of a surface binding reaction of alkanethiols (mercaptoundecanoic acid) on gold surface is demonstrated.

  18. Geometrical and mechanical properties control actin filament organization.

    Directory of Open Access Journals (Sweden)

    Gaëlle Letort

    2015-05-01

    Full Text Available The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model.

  19. Ultrafast control and monitoring of material properties using terahertz pulses

    Energy Technology Data Exchange (ETDEWEB)

    Bowlan, Pamela Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Lab. for Ultrafast Materials Optical Science (LUMOS)

    2016-05-02

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying this to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi2Se3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.

  20. Optimal control of the Lotka-Volterra system: turnpike property and numerical simulations.

    Science.gov (United States)

    Ibañez, Aitziber

    2017-12-01

    The Lotka-Volterra model is a differential system of two coupled equations representing the interaction of two species: a prey one and a predator one. We formulate an optimal control problem adding the effect of hunting both species as the control variable. We analyse the optimal hunting problem paying special attention to the nature of the optimal state and control trajectories in long time intervals. To do that, we apply recent theoretical results on the frame to show that, when the time horizon is large enough, optimal strategies are nearly steady-state. Such path is known as turnpike property. Some experiments are performed to observe such turnpike phenomenon in the hunting problem. Based on the turnpike property, we implement a variant of the single shooting method to solve the previous optimisation problem, taking the middle of the time interval as starting point.

  1. Effect of Superfine Slag Powder on HPC Properties

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A superfine slag powder (SP) made from granulated blast furnace slag incorporating activators by using special millingtechnique, was used as supplementary cementitious material in high performance concrete (HPC), replacing part ofthe mass of normal Portland cement. The effects of the SP on the workability, mechanical and crack self-healingproperties of HPC were studied. The hydration process and microstructure characteristics were investigated by X-raydiffraction (XRD) and scanning electron microscopy (SEM) techniques, respectively. The crack self-healing capacitywas evaluated by Brazilian test. The test results indicate that the SP has especially supplementary effect on waterreducing and excellent property of better control of slump loss. The concrete flowability increases remarkably withthe increase of SP replacement level in the range of 20% to 50%. The compressive and splitting tensile strengthsof HPC containing SP are higher than the corresponding strength of the control concrete at all ages. The crackself-healing ability is highly dependent on SP content of HPC.

  2. How Copper Nanowires Grow and How To Control Their Properties.

    Science.gov (United States)

    Ye, Shengrong; Stewart, Ian E; Chen, Zuofeng; Li, Bo; Rathmell, Aaron R; Wiley, Benjamin J

    2016-03-15

    Scalable, solution-phase nanostructure synthesis has the promise to produce a wide variety of nanomaterials with novel properties at a cost that is low enough for these materials to be used to solve problems. For example, solution-synthesized metal nanowires are now being used to make low cost, flexible transparent electrodes in touch screens, organic light-emitting diodes (OLEDs), and solar cells. There has been a tremendous increase in the number of solution-phase syntheses that enable control over the assembly of atoms into nanowires in the last 15 years, but proposed mechanisms for nanowire formation are usually qualitative, and for many syntheses there is little consensus as to how nanowires form. It is often not clear what species is adding to a nanowire growing in solution or what mechanistic step limits its rate of growth. A deeper understanding of nanowire growth is important for efficiently directing the development of nanowire synthesis toward producing a wide variety of nanostructure morphologies for structure-property studies or producing precisely defined nanostructures for a specific application. This Account reviews our progress over the last five years toward understanding how copper nanowires form in solution, how to direct their growth into nanowires with dimensions ideally suited for use in transparent conducting films, and how to use copper nanowires as a template to grow core-shell nanowires. The key advance enabling a better understanding of copper nanowire growth is the first real-time visualization of nanowire growth in solution, enabling the acquisition of nanowire growth kinetics. By measuring the growth rate of individual nanowires as a function of concentration of the reactants and temperature, we show that a growing copper nanowire can be thought of as a microelectrode that is charged with electrons by hydrazine and grows through the diffusion-limited addition of Cu(OH)2(-). This deeper mechanistic understanding, coupled to an

  3. Control of mechanical properties of chitin nanofiber film using glycerol without losing its characteristics.

    Science.gov (United States)

    Ifuku, Shinsuke; Ikuta, Akiko; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki

    2014-01-30

    Surface-deacetylated chitin nanofiber films plasticized with glycerol were prepared to control mechanical properties. Nanofiber networks were able to retain excessive glycerol content up to 70% to obtain self-standing film. All films were flexible and highly transparent independent of glycerol content. Glycerol significantly decreased the Young's moduli and tensile strengths, and increased the fracture strain due to its plasticizing effect. At the same time, glycerol did not change the high transparency or the low thermal expansion of the nanofiber film.

  4. Controllable Biosynthesis and Properties of Gold Nanoplates Using Yeast Extract

    Institute of Scientific and Technical Information of China (English)

    Zhi Yang; Yasha Yi; Zhaohui Li; Xuxing Lu; Fengjiao He; Xingzhong Zhu; Yujie Ma; Rong He; Feng Gao; Weihai Ni

    2017-01-01

    Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source and difficulties of controllable formation of morphology and size. Herein, one-pot biosynthesis of gold nanoplates is proposed, in which cheap yeast was extracted as a green precursor. The morphologies and sizes of the gold nanostructures can be controlled via varying the pH value of the biomedium. In acid condition, gold nanoplates with side length from 1300 ± 200 to 300 ± 100 nm and height from 18 to 15 nm were obtained by increasing the pH value. Whereas, in neutral or basic condition, only gold nanoflowers and nanoparticles were obtained. It was determined that organic molecules, such as succinic acid, lactic acid, malic acid, and glutathione, which are generated in metabolism process, played important role in the reduction of gold ions. Besides, it was found that the gold nanoplates exhibited plasmonic property with prominent dipole infrared resonance in near-infrared region, indicating their potential in surface plasmon-enhanced applications, such as bioimaging and photothermal therapy.

  5. Facile fabrication of properties-controllable graphene sheet

    Science.gov (United States)

    Choi, Jin Sik; Choi, Hongkyw; Kim, Ki-Chul; Jeong, Hu Young; Yu, Young-Jun; Kim, Jin Tae; Kim, Jin-Soo; Shin, Jin-Wook; Cho, Hyunsu; Choi, Choon-Gi

    2016-04-01

    Graphene has been received a considerable amount of attention as a transparent conducting electrode (TCE) which may be able to replace indium tin oxide (ITO) to overcome the significant weakness of the poor flexibility of ITO. Given that graphene is the thinnest 2-dimensional (2D) material known, it shows extremely high flexibility, and its lateral periodic honeycomb structure of sp2-bonded carbon atoms enables ~2.3% of incident light absorption per layer. However, there is a trade-off between the electrical resistance and the optical transmittance, and the fixed absorption rate in graphene limits is use when fabricating devices. Therefore, a more efficient method which continuously controls the optical and electrical properties of graphene is needed. Here, we introduce a method which controls the optical transmittance and the electrical resistance of graphene through various thicknesses of the top Cu layers with a Cu/Ni metal catalyst structure used to fabricate a planar mesh pattern of single and multi-layer graphene. We exhibit a continuous transmittance change from 85% (MLG) to 97.6% (SLG) at an incident light wavelength of 550 nm on graphene samples simultaneously grown in a CVD quartz tube. We also investigate the relationships between the sheet resistances.

  6. Effect of Sucrose Esters on the Physicochemical Properties of Wheat ...

    African Journals Online (AJOL)

    Effect of Sucrose Esters on the Physicochemical Properties of Wheat Starch. ... Methods: Sucrose ester was mixed with wheat starch extracted from normal soft wheat cultivars and heated. Change in starch properties arising ... Article Metrics.

  7. Synthesis and optical properties of gold nanorods with controllable morphology

    Science.gov (United States)

    Ye, Tianyu; Dai, Zhigao; Mei, Fei; Zhang, Xingang; Zhou, Yuanming; Xu, Jinxia; Wu, Wei; Xiao, Xiangheng; Jiang, Changzhong

    2016-11-01

    Searching for architectural building blocks with tunable morphology and peculiarity is a prominent challenge for novel diagnostic and therapeutic applications. Here, the aqueous-based seed-mediated methods for preparing highly mono-dispersed Au nanorods with a different aspect ratio are systematically studied by controlling the amounts of Ag ions and seeds. We also explore the effect of pH on the synthesis of gold nanorods. The realization of the overlap of longitudinal plasmon band and excitation source with different degrees is made by changing the aspect ratio of nanorod in order to determine its effect on the overall surface enhancement. In addition, the gold octahedra are prepared by overgrowth on Au nanorods. The SERS effects of Au nanorods are researched and the FDTD simulations are performed to reveal the morphology induced plasmon modes.

  8. Exotic properties and optimal control of quantum heat engine

    Science.gov (United States)

    Ou, Congjie; Abe, Sumiyoshi

    2016-02-01

    A quantum heat engine of a specific type is studied. This engine contains a single particle confined in the infinite square well potential with variable width and consists of three processes: the isoenergetic process (which has no classical analogs) as well as the isothermal and adiabatic processes. It is found that the engine possesses exotic properties in its performance. The efficiency takes the maximum value when the expansion ratio of the engine is appropriately set, and, in addition, the lower the temperature is, the higher the maximum efficiency becomes, highlighting aspects of the influence of quantum effects on thermodynamics. A comment is also made on the relevance of this engine to that of Carnot.

  9. Modulation of electronic properties of tin oxide nanobelts via thermal control of surface oxygen defects

    Science.gov (United States)

    Keiper, Timothy D.; Barreda, Jorge L.; Zheng, Jim P.; Xiong, Peng

    2017-02-01

    Nanomaterials made from binary metal oxides are of increasing interest because of their versatility in applications from flexible electronics to portable chemical and biological sensors. Controlling the electrical properties of these materials is the first step in device implementation. Tin dioxide (SnO2) nanobelts (NB) synthesized by the vapor-liquid-solid mechanism have shown much promise in this regard. We explore the modification of devices prepared with single crystalline NBs by thermal annealing in vacuum and oxygen, resulting in a viable field-effect transistor (FET) for numerous applications at ambient temperature. An oxygen annealing step initially increases the device conductance by up to a factor of 105, likely through the modification of the surface defects of the NB, leading to Schottky barrier limited devices. A multi-step annealing procedure leads to further increase of the conductance by approximately 350% and optimization of the electronic properties. The effects of each step is investigated systematically on a single NB. The optimization of the electrical properties of the NBs makes possible the consistent production of channel-limited FETs and control of the device performance. Understanding these improvements on the electrical properties over the as-grown materials provides a pathway to enhance and tailor the functionalities of tin oxide nanostructures for a wide variety of optical, electronic, optoelectronic, and sensing applications that operate at room temperature.

  10. Effects of fire on properties of forest soils: a review.

    Science.gov (United States)

    Certini, Giacomo

    2005-03-01

    Many physical, chemical, mineralogical, and biological soil properties can be affected by forest fires. The effects are chiefly a result of burn severity, which consists of peak temperatures and duration of the fire. Climate, vegetation, and topography of the burnt area control the resilience of the soil system; some fire-induced changes can even be permanent. Low to moderate severity fires, such as most of those prescribed in forest management, promote renovation of the dominant vegetation through elimination of undesired species and transient increase of pH and available nutrients. No irreversible ecosystem change occurs, but the enhancement of hydrophobicity can render the soil less able to soak up water and more prone to erosion. Severe fires, such as wildfires, generally have several negative effects on soil. They cause significant removal of organic matter, deterioration of both structure and porosity, considerable loss of nutrients through volatilisation, ash entrapment in smoke columns, leaching and erosion, and marked alteration of both quantity and specific composition of microbial and soil-dwelling invertebrate communities. However, despite common perceptions, if plants succeed in promptly recolonising the burnt area, the pre-fire level of most properties can be recovered and even enhanced. This work is a review of the up-to-date literature dealing with changes imposed by fires on properties of forest soils. Ecological implications of these changes are described.

  11. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    Directory of Open Access Journals (Sweden)

    Bashar Issa

    2013-10-01

    Full Text Available Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm, viruses, genes, down to proteins (3–50 nm. The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents.

  12. Orientation control and thermoelectric properties of FeSb2 films

    DEFF Research Database (Denmark)

    Sun, Ye; Zhang, Eryun; Johnsen, Simon

    2010-01-01

    lang0 0 2rang-textured FeSb2 films by employing a pre-deposited FeSb2 thin-film layer as template. The in-plane thermoelectric properties of FeSb2 films with different orientations were studied and compared. The anisotropy of FeSb2 is shown to have an important effect on the transport properties of FeSb......2 films. Orientation control of the FeSb2 films could be significant for their property optimization and thus highlight their application potential.......FeSb2 has a high potential for technological applications due to its colossal thermoelectric power, giant carrier mobility and large magnetoresistance. Earlier, growth of lang1 0 1rang-textured FeSb2 films on quartz (0 0 0 1) substrates has been reported. Here magnetron sputtering is used to obtain...

  13. Autonomous Control, Climate and Environmental Changes Effects ...

    African Journals Online (AJOL)

    Autonomous Control, Climate and Environmental Changes Effects on Trypanosomiasis in ... Log in or Register to get access to full text downloads. ... benefits of increased production, improved human health must exceed the costs of control.

  14. Properties of the grasp stiffness matrix and conservative control strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kao, I.; Ngo, C. [State Univ. of New York, Stony Brook, NY (United States)

    1999-02-01

    In this paper, the authors present fundamental properties of stiffness matrices as applied in analysis of grasping and dexterous manipulation in configuration spaces and linear Euclidean R{sup 3x3} space without rotational components. A conservative-stiffness matrix in such spaces needs to satisfy both symmetric and exact differential criteria. Two types of stiffness matrices are discussed: constant and configuration-dependent matrices are discussed: constant and configuration-dependent matrices. The symmetric part of a constant-stiffness matrix can be derived from a conservative quadratic potential function in the Hermitian form; while the skew-symmetric part is a function of the nonconservative curl vector field of the grasp. A configuration-dependent stiffness matrix needs to be symmetric and must simultaneously satisfy the exact differential condition to be conservative. The theory is most relevant to the Cartesian stiffness control, where the stiffness of the end effector is usually constant, such as that in RCC wrists. Conservative control strategies are proposed for a configuration-dependent stiffness matrix. One of the most important results of this paper is the nonconservative congruence mapping of stiffness between the joint and Cartesian spaces. In general, the congruence transformation (or its inverse transformation), K{sub {theta}} = J{sub {theta}}{sup T}K{sub p}J{sub {theta}}, is a nonconservative mapping over finite paths for a configuration-dependent Jacobian. Thus, to obtain a conservative system with respect to the Cartesian space, one has to either find the corresponding K{sub {theta}} at every configuration due to the constant and symmetric Cartesian stiffness matrix, or determine symmetric yet configuration-varying K{sub {theta}} at every configuration due to the constant and symmetric Cartesian stiffness matrix, or determine the symmetric yet configuration-varying K{sub {theta}} which makes the resulting configuration-dependent K{sub p

  15. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Vedadghavami, Armin; Minooei, Farnaz; Mohammadi, Mohammad Hossein; Khetani, Sultan; Rezaei Kolahchi, Ahmad; Mashayekhan, Shohreh; Sanati-Nezhad, Amir

    2017-10-15

    Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most common approaches used for tuning mechanical properties of hydrogels including but are not limited to, interpenetrating polymer networks, nanocomposites, self-assembly techniques, and co-polymerization are discussed. The performance of different techniques used for tuning biomechanical properties of hydrogels is further compared. Such techniques involve lithography techniques for replication of tissues with complex mechanical profiles; microfluidic techniques applicable for generating gradients of mechanical properties in hydrogel biomaterials for engineering complex human tissues like intervertebral discs, osteochondral tissues, blood vessels and skin layers; and electrospinning techniques for synthesis of hybrid hydrogels and highly ordered fibers with tunable mechanical and biological properties. We finally discuss future perspectives and challenges for controlling biomimetic hydrogel materials possessing proper biomechanical properties. Hydrogels biomaterials are essential constituting components of engineered tissues with the applications in regenerative medicine and drug delivery. The mechanical properties of hydrogels play crucial roles in regulating the interactions between cells and extracellular matrix and directing the cells phenotype and genotype. Despite

  16. EFFECT OF ELECTRIC FERTILIZER ON SOIL PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    WANG Ya-qin; WANG Ji-hong

    2004-01-01

    Electric fertilizer, I. E. Exerting electric field on plants during growing season instead of chemical fertilizer, is a kind of physical fertilizer, and the third kind of fertilizer with developmental prospect after inorganic fertilizer and organic fertilizer. For the purpose of studying the changes of physical and chemical properties of soil after exerting electric field, five treatments with different applications of chemical fertilizer were arranged on the black soil in Yushu City of Jilin Province by randomized block method, and electric field was exerted on plants every ten days during the growing season. Through sample analysis the paper arrives at following conclusions: 1) Exerting electric field can make soil's granular structure increase, bulk density decrease, moisture capacity increase,thus improving the perviousness of soil. 2) Exerting electric field can make microorganism's number increase and activity strengthen, thus activating nutrient and increasing organic matter content. 3) Exerting electric field with 0.1A medium has the best effect. So the chemical fertilizer can be saved. Therefore, we can say that the application of electric fertilizer is favorable for decreasing chemical poison, improving soil, relaxing the contradiction between the supply and demand of chemical fertilizer, and decreasing production cost of agriculture and forestry.

  17. Ultrasonic atomization: effect of liquid phase properties.

    Science.gov (United States)

    Avvaru, Balasubrahmanyam; Patil, Mohan N; Gogate, Parag R; Pandit, Aniruddha B

    2006-02-01

    Experiments have been conducted to understand the mechanism by which the ultrasonic vibration at the gas liquid interface causes the atomization of liquid. For this purpose, aqueous solutions having different viscosities and liquids showing Newtonian (aqueous solution of glycerin) and non-Newtonian behavior (aqueous solution of sodium salt of carboxy methyl cellulose) were employed. It has been found that the average droplet size produced by the pseudo-plastic liquid is less than that produced by the viscous Newtonian liquid having viscosity equal to zero-shear rate viscosity of the shear thinning liquid. The droplet size was found to increase initially with an increase in the viscosity up to a certain threshold viscosity after which the droplet size was found to decrease again. Also droplet size distribution is found to be more compact (uniform sizes) with an increasing viscosity of the atomizing liquid. The presence of the cavitation and its effect on the atomization has been semi quantitatively confirmed using energy balance and by the measurement of the droplet ejection velocities and validated on the basis of the decomposition of the aqueous KI solution. A correlation has been proposed for the prediction of droplet size for aqueous Newtonian fluids and fluids showing non-Newtonian behavior based on the dimensionless numbers incorporating the operating parameters of the ultrasonic atomizer and the liquid phase physico-chemical properties.

  18. Effect of Chitosan Properties on Immunoreactivity

    Directory of Open Access Journals (Sweden)

    Sruthi Ravindranathan

    2016-05-01

    Full Text Available Chitosan is a widely investigated biopolymer in drug and gene delivery, tissue engineering and vaccine development. However, the immune response to chitosan is not clearly understood due to contradicting results in literature regarding its immunoreactivity. Thus, in this study, we analyzed effects of various biochemical properties, namely degree of deacetylation (DDA, viscosity/polymer length and endotoxin levels, on immune responses by antigen presenting cells (APCs. Chitosan solutions from various sources were treated with mouse and human APCs (macrophages and/or dendritic cells and the amount of tumor necrosis factor-α (TNF-α released by the cells was used as an indicator of immunoreactivity. Our results indicate that only endotoxin content and not DDA or viscosity influenced chitosan-induced immune responses. Our data also indicate that low endotoxin chitosan (<0.01 EU/mg ranging from 20 to 600 cP and 80% to 97% DDA is essentially inert. This study emphasizes the need for more complete characterization and purification of chitosan in preclinical studies in order for this valuable biomaterial to achieve widespread clinical application.

  19. Small variations of soil properties control fire-induced water repellency

    Directory of Open Access Journals (Sweden)

    Jorge Mataix-Solera

    2014-03-01

    Full Text Available Fire induced soil water repellency (WR is controlled by many different factors (temperature reached, amount and type of fuel, etc.. Soil properties may determine the occurrence and intensity of this property in burned soils. The objectives of this paper are to make advances in the study of soil properties as key factors controlling the behaviour of fire-induced WR, and to study the impact of pre-fire SOM content and SOM quality in fire-induced soil WR. In this research, experimental laboratory burnings were carried out using soil samples from different sites with different lithologies, soil types and plant species. Soil samples taken from the same site differ only in quantity and quality of soil organic matter, as they were collected from under different plant species. All soil samples were heated in a muffle furnace at 200, 250, 300 and 350 ºC without the addition of any fuel load. WR was measured using the water drop penetration time test (WDPT. The results showed significant differences between soil types and plant species, indicating that small differences in soil properties may act as key factors controlling the development and persistence of WR reached, with burned soil samples ranging from wettable to extremely water repellent. The main soil property controlling the response was texture, specifically sand content. The quality of organic matter was also observed to have an effect, since soil samples from the same site with similar organic matter contents, but taken from beneath different plant species, showed different WR values after burning.

  20. Controlled swelling and adsorption properties of polyacrylate/montmorillonite composites

    Energy Technology Data Exchange (ETDEWEB)

    Natkanski, Piotr [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Kustrowski, Piotr, E-mail: kustrows@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Bialas, Anna; Piwowarska, Zofia [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Michalik, Marek [Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Krakow (Poland)

    2012-10-15

    A series of novel polyacrylate/montmorillonite composites was synthesized by in situ polymerization in aqueous slurry of clay. Dissociated (obtained by adding ammonium or sodium hydroxide) and undissociated forms of acrylic acid were used as monomers in the hydrogel synthesis. The structure and composition of the samples were studied by powder X-ray diffraction, diffuse reflectance infra-red Fourier transform spectroscopy, thermogravimetry and elemental analysis. It has been found that the kind of monomer influences strongly the location of a polymer chain in the formed composite. Complete intercalation of hydrogel into the interlayer space of montmorillonite was observed for sodium polyacrylate, whereas polyacrylic acid and ammonium polyacrylate mainly occupied the outer surface of the clay. The position of hydrogel determined the swelling and adsorption properties of the studied composites. The important factor influencing the kinetics of Fe(III) cation adsorption was pH. The analysis of adsorption isotherms allowed to propose the mechanism of Fe(III) cation adsorption. Highlights: Black-Right-Pointing-Pointer Polyacrylate hydrogels can be introduced into the interlayers of clay. Black-Right-Pointing-Pointer The position of hydrogel in the composite depends on the polymer type. Black-Right-Pointing-Pointer Ammonium polyacrylate places outside the clay, sodium one is intercalated into it. Black-Right-Pointing-Pointer Swelling and adsorption capacities can be controlled by the polymer position. Black-Right-Pointing-Pointer High adsorption efficiency in Fe(III) removal was observed.

  1. Effects of muscle atrophy on motor control

    Science.gov (United States)

    Stuart, D. G.

    1985-01-01

    As a biological tissue, muscle adapts to the demands of usage. One traditional way of assessing the extent of this adaptation has been to examine the effects of an altered-activity protocol on the physiological properties of muscles. However, in order to accurately interpret the changes associated with an activity pattern, it is necessary to employ an appropriate control model. A substantial literature exists which reports altered-use effects by comparing experimental observations with those from animals raised in small laboratory cages. Some evidence suggests that small-cage-reared animals actually represent a model of reduced use. For example, laboratory animals subjected to limited physical activity have shown resistance to insulin-induced glucose uptake which can be altered by exercise training. This project concerned itself with the basic mechanisms underlying muscle atrophy. Specifically, the project addressed the issue of the appropriateness of rats raised in conventional-sized cages as experimental models to examine this phenomenon. The project hypothesis was that rats raised in small cages are inappropriate models for the study of muscle atrophy. The experimental protocol involved: 1) raising two populations of rats, one group in conventional (small)-sized cages and the other group in a much larger (133x) cage, from weanling age (21 days) through to young adulthood (125 days); 2) comparison of size- and force-related characteristics of selected test muscles in an acute terminal paradigm.

  2. Controlling the Photophysical Properties of Semiconductor Quantum Dot Arrays by Strategically Altering Their Surface Chemistry

    Science.gov (United States)

    Marshall, Ashley R.

    Semiconductor quantum dots (QDs) are interesting materials that, after less than 40 years of research, are used in commercial products. QDs are now found in displays, such as Samsung televisions and the Kindle Fire, and have applications in lighting, bio-imaging, quantum computing, and photovoltaics. They offer a large range of desirable properties: a controllable band gap, solution processability, controlled energy levels, and are currently the best materials for multiple exciton generation. The tunable optoelectronic properties of QDs can be controlled using size, shape, composition, and surface treatments--as shown here. Due to the quasi-spherical shape of QDs the surface to volume ratio is high, i.e. many of the constituent atoms are found on the QD surface. This makes QDs highly sensitive to surface chemistry modifications. This thesis encompasses the effects of surface treatments for QDs of two semiconducting materials: lead chalcogenides and CsPbI3. Our group developed a new synthetic technique for lead chalcogenide QDs via the cation exchange of cadmium chalcogenides. An in-depth chemical analysis is paired with optical and electrical studies and we find that metal halide residue contributes to the oxidative stability and decreased trap state density in cation-exchanged PbS QDs. We exploit these properties to make air-stable QD photovoltaic devices from both PbS and PbSe QD materials. Beyond the effects of residual atoms left from the synthetic technique, I investigated how to controllably add atoms onto the surface of QDs. I found that by introducing metal halides as a post-treatment in an electronically coupled array I am able to control the performance parameters in QD photovoltaic devices. These treatments fully infiltrate the assembled film, even under short exposure times and allow me to add controlled quantities of surface atoms to study their effects on film properties and photovoltaic device performance. Finally, I sought to apply the knowledge of

  3. Preparation and photoelectric property of TiO{sub 2} nanoparticles with controllable phase junctions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongmei [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Tan, Xin [School of Science, Tibet University, Lhasa 850000, Tibet (China); Yu, Tao, E-mail: yutao@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tianjin University-National Institute for Materials Science (TU-NIMS) Joint Research Center, Tianjin University, Tianjin 300072 (China)

    2014-12-01

    Graphical abstract: - Highlights: • A series of bicrystalline TiO{sub 2} nanoparticles with different ratio of controllable phase junctions between anatase and rutile were synthesized successfully using ionic liquid-assisted method by hydrolysis of TiCl{sub 4}. • The spatial separation capacity of photogenerated charge carriers and photocatalytic activities of the samples with different ratio of controllable phase junctions were evaluated systemically. • The best photocatalytic activity for MO degradation can reach above 99% at the sample with 27.4% rutile which also has the best photoelectric property compared with other samples. - Abstract: To explore the effect of phase composition on the photoelectric property of anatase–rutile mixed crystal nanoparticles, a series of TiO{sub 2} nanoparticles with phase junctions controlling were synthetized by hydrolysis of TiCl{sub 4} in hydrochloric acid, an ionic liquid-assisted method was used during this process. Crystalline size and the ratio of anatase to rutile of as-prepared samples were calculated by the XRD. The surface area was measured by nitrogen sorption measurements using the BET method. The micro-structure of phase junctions was characterized by TEM. Optical transmittance properties of TiO{sub 2} with controllable phase junctions were examined via ultraviolet–visible diffuse reflection spectroscopy (UV–vis DRS). The particles were manufactured into films using the doctor-blade technique on FTO glasses. To test photocurrent density, and spatial separation capacity of electron–holes pairs, photo-electro method was employed. The photocatalytic activities of the resulting samples were examined in the degradation of methyl orange (MO) under artificial solar light irradiation. Mechanisms of separation and transfer of photogenerated charge and the effect of phase composition on photoelectric property of anatase–rutile nanoparticles were discussed.

  4. DETERMINATION OF EFFECTIVE PROPERTIES OF FIBER-REINFORCED COMPOSITE LAMINATES

    Directory of Open Access Journals (Sweden)

    Andrzej Skrzat

    2014-06-01

    Full Text Available The determination of effective mechanical properties of multi-layer composite is presented in this paper. Computations based on finite element method predicting properties of inhomogeneous materials require solving huge tasks. More effective is Mori-Tanaka approach, typical for micromechanics problems. For regularly distributed fibers closed-forms for effective composite material properties are possible to derive. The results of homogenization are used in strength analysis of the composite pressure vessel.

  5. Tillage Effects on Soil Properties & Respiration

    Science.gov (United States)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  6. Controlled study of ISA effects

    DEFF Research Database (Denmark)

    2007-01-01

    of ISA effects. The second part of the study compared effects of ISA on speeding for ISA-volunteers exposed to different combinations of informative ISA and incentives e.g. speed dependent insurance discounts. Comparisons of amount speeding between treatment groups showed that ISA in combination...

  7. Geometry effect on the magnetic properties of manganese zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Landgraf, F.J.G.; Lazaro-Colan, V. [Polytechnic School - EPUSP, Av.Prof. Luciano Gualberto 380, Sao Paulo 05508-900 (Brazil); Leicht, J. [Institute for Technological Research of Sao Paulo, Almeida Prado 532, Sao Paulo 05508-901 (Brazil)], E-mail: leichtj@ipt.br; Janasi, S.R. [Institute for Technological Research of Sao Paulo, Almeida Prado 532, Sao Paulo 05508-901 (Brazil); Lopes, M.F. [IMAG Industria e Comercio de Componentes Eletronicos Ltda, Embaixador 74, Ribeirao Pires 09410-650 (Brazil)

    2008-10-15

    The geometry effect on the bulk magnetic properties of MnZn ferrite toroidal cores produced by the ceramic method was investigated. The MnZn ferrite powder was pressed at two different toroidal sizes and sintered, under controlled atmosphere at different temperatures. The MnZn ferrites cores were characterized according to their magnetic losses, electrical resistivity, initial permeability and Curie temperature. The total loss (200 mT, 100 kHz) in the small cores S (aspect ratio (AR)=2.84) is lower compared with the total loss in the large cores L (AR=0.79). These results show an agreement with the geometry effect observed on electrical steels.

  8. 加载控制模式对电沉积镍薄膜力学性能测试的影响%The effect of control modules in determining mechanical properties of electrodeposited nickel films by indentation

    Institute of Scientific and Technical Information of China (English)

    赵冠湘; 黄勇力; 马增胜; 周益春

    2011-01-01

    为研究深度和载荷2种加载控制模式对样品硬度和杨氏模量测试结果的影响,选取了厚度为6μm的电沉积镍薄膜为样品,采用美国Hysitron公司生产的TriboIndenter型压痕仪进行压痕试验.结果表明:因薄膜和基底2种材料的性能相差较大,随着压痕深度的增加,基底效应越来越明显;载荷控制模式下所测的硬度和杨氏模量较深度控制模式的都要大,且两性能参数中因应力松弛效应的影响硬度差别更为明显.%Under displacement and load control modules, indentation tests were performed, which on the 6 (μm electrodeposited nickel films, to study the effect of control module in determining the hardness and Young' s modulus. The results indicate that the substrate effect becomes obvious with increasing indentation depth, both the hardness and Young' s modulus tested under load control module are bigger than that under displacement control module, and the hardness is of bigger change than the Young' s modulus because of the stress relaxation.

  9. Enabling Ultrasensitive Photo-detection Through Control of Interface Properties in Molybdenum Disulfide Atomic Layers

    Science.gov (United States)

    Najmaei, Sina; Lei, Sidong; Burke, Robert A.; Nichols, Barbara M.; George, Antony; Ajayan, Pulickel M.; Franklin, Aaron D.; Lou, Jun; Dubey, Madan

    2016-12-01

    The interfaces in devices made of two-dimensional materials such as MoS2 can effectively control their optoelectronic performance. However, the extent and nature of these deterministic interactions are not fully understood. Here, we investigate the role of substrate interfaces on the photodetector properties of MoS2 devices by studying its photocurrent properties on both SiO2 and self-assembled monolayer-modified substrates. Results indicate that while the photoresponsivity of the devices can be enhanced through control of device interfaces, response times are moderately compromised. We attribute this trade-off to the changes in the electrical contact resistance at the device metal-semiconductor interface. We demonstrate that the formation of charge carrier traps at the interface can dominate the device photoresponse properties. The capture and emission rates of deeply trapped charge carriers in the substrate-semiconductor-metal regions are strongly influenced by exposure to light and can dynamically dope the contact regions and thus perturb the photodetector properties. As a result, interface-modified photodetectors have significantly lower dark-currents and higher on-currents. Through appropriate interfacial design, a record high device responsivity of 4.5 × 103 A/W at 7 V is achieved, indicative of the large signal gain in the devices and exemplifying an important design strategy that enables highly responsive two-dimensional photodetectors.

  10. Effect of different fibers on dough properties and biscuit quality.

    Science.gov (United States)

    Blanco Canalis, María S; Steffolani, María E; León, Alberto E; Ribotta, Pablo D

    2017-03-01

    This study forms part of a broader project aimed at understanding the role of fibers from different sources in high-fat, high-sugar biscuits and at selecting the best fibers for biscuit quality. The main purpose of this work was to understand the rheological and structural properties involved in fiber-enriched biscuit dough. High-amylose corn starch (RSII), chemically modified starch (RSIV), oat fiber (OF) and inulin (IN) were used at two different levels of incorporation (6 and 12 g) in dough formulation. The influence of fiber on the properties of biscuit dough was studied via dynamic rheological tests, confocal microscopy and spreading behavior. Biscuit quality was assessed by width/thickness factor, texture and surface characteristics, total dietary fiber and sensory evaluation. Main results indicated that IN incorporation increased the capacity of dough spreading during baking and thus improved biscuit quality. OF reduced dough spreading during baking and strongly increased its resistance to deformation. RSII and RSIV slightly affected the quality of the biscuits. Sensory evaluation revealed that the panel liked IN-incorporated biscuits as much as control biscuits. The increase in total dietary fiber modified dough behavior and biscuit properties, and the extent of these effects depended on the type of fiber incorporated. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Effects of torrefaction on energy properties of Eucalyptus grandis wood

    Directory of Open Access Journals (Sweden)

    Thiago Oliveira Rodrigues

    2009-12-01

    Full Text Available Torrefaction is a thermal treatment that promotes homogenization and improvement of energy properties of biomass. This study aims to evaluate the effects of torrefaction on the main energy properties of Eucalyptus grandis wood. Wood was torrefied at three distinct temperatures (220°C, 250°C and 280°C and analyzed for gravimetric yield (ratio of dry wood mass to torrefied wood mass, bulk density (ratio of dry torrefied mass to dry torrefied volume, heating value (higher – HHV, lower – LHV and useful – UHV, energy density (ratio of heating value to bulk density and energy yield (product of gravimetric yield and ratio of HHV of torrefied wood to HHV of feedstock. The obtained results revealed significant differences for all properties being analyzed except for bulk density, which showed no statistical difference between the control and the treatment at 220°C. Temperature 250°C generated the best energy density as a function of the increase in heating value and the slight decrease in bulk density.

  12. Effect of leavening microflora on pizza dough properties.

    Science.gov (United States)

    Coppola, S; Pepe, O; Mauriello, G

    1998-11-01

    Fourteen different starter cultures containing one strain of Saccharomyces cerevisiae with and without individual or combinations of lactic acid bacteria (Lactobacillus plantarum, Lact. sanfrancisco, Enterococcus faecium, Leuconostoc mesenteroides) were employed to investigate the role of leavening microflora on the properties of pizza doughs. Microbiological, chemical and physical characteristics of doughs prepared with the same flour and under the same processing conditions were determined. Leavening times and acidification properties depended on the microbial association used. The proportions of lactic and acetic acid produced by lactic acid bacteria were consistent with the metabolic properties of the strains employed. The bacteria/yeast ratios arising from microbial counts at the end of the leavening process were always lower in comparison to sour- or bread-doughs. The size of the yeast population did not change much, while bacteria showed from one to four duplications. Rheologically, the fermented doughs could only be significantly distinguished from the control dough with regard to the elastic modulus. Principal Component Analysis was applied to the acidimetric data. The scattergram of the two principal components effectively discriminated 13 of the 14 pizza dough types.

  13. Relay feedback tuning of robust PID controllers with iso-damping property.

    Science.gov (United States)

    Chen, YangQuan; Moore, Kevin L

    2005-02-01

    A new tuning method for proportional-integral-derivative (PID) controller design is proposed for a class of unknown, stable, and minimum phase plants. We are able to design a PID controller to ensure that the phase Bode plot is flat, i.e., the phase derivative w.r.t. the frequency is zero, at a given frequency called the "tangent frequency" so that the closed-loop system is robust to gain variations and the step responses exhibit an iso-damping property. At the "tangent frequency," the Nyquist curve tangentially touches the sensitivity circle. Several relay feedback tests are used to identify the plant gain and phase at the tangent frequency in an iterative way. The identified plant gain and phase at the desired tangent frequency are used to estimate the derivatives of amplitude and phase of the plant with respect to frequency at the same frequency point by Bode's integral relationship. Then, these derivatives are used to design a PID controller for slope adjustment of the Nyquist plot to achieve the robustness of the system to gain variations. No plant model is assumed during the PID controller design. Only several relay tests are needed. Simulation examples illustrate the effectiveness and the simplicity of the proposed method for robust PID controller design with an iso-damping property.

  14. Assessment of possible control of selected operational properties of metal-ceramic foams

    Directory of Open Access Journals (Sweden)

    J. Grabian

    2010-01-01

    Full Text Available Effective use of metal foams, an increasingly popular group of machine structural materials, often requires that their properties be adjusted to customer needs. The growing popularity of foams is due to their specific properties, i.e. capability of absorbing the impact and explosion energy, increasing the stiffness of structural components such as panels of closed profiles, ability to damp vibrations, relatively good thermal insulation, dispersion of electromagnetic waves, resistance to high temperature and others. One of the operational properties of metal foams that is essential for their use in various structures is the resistance to single-axial static compression.Initial studies aimed at the determination of how metal foam behaves when statically compressed. Foam samples were made by blowing gas into liquid metal. The composition of metal foam (AlSi11 was differentiated by introducing ceramic particles SiC. By changing technological parameters of the foaming process we could affect the size of gaseous bubbles and their homogeneity. By comparing the structure of foams and their properties we found significant differences in the curve x = f(P of foam sample affected by the force (P. It has been proved that one operational property, namely the resistance to compression, can be indirectly controlled, that is its determined specific structure can be obtained by maintaining specific technological parameters.

  15. Effect of correlations on controllability transition in network control.

    Science.gov (United States)

    Nie, Sen; Wang, Xu-Wen; Wang, Bing-Hong; Jiang, Luo-Luo

    2016-04-11

    The network control problem has recently attracted an increasing amount of attention, owing to concerns including the avoidance of cascading failures of power-grids and the management of ecological networks. It has been proven that numerical control can be achieved if the number of control inputs exceeds a certain transition point. In the present study, we investigate the effect of degree correlation on the numerical controllability in networks whose topological structures are reconstructed from both real and modeling systems, and we find that the transition point of the number of control inputs depends strongly on the degree correlation in both undirected and directed networks with moderately sparse links. More interestingly, the effect of the degree correlation on the transition point cannot be observed in dense networks for numerical controllability, which contrasts with the corresponding result for structural controllability. In particular, for directed random networks and scale-free networks, the influence of the degree correlation is determined by the types of correlations. Our approach provides an understanding of control problems in complex sparse networks.

  16. Correction: β-Sialon nanowires, nanobelts and hierarchical nanostructures: morphology control, growth mechanism and cathodoluminescence properties

    Science.gov (United States)

    Huang, Juntong; Huang, Zhaohui; Liu, Yangai; Fang, Minghao; Chen, Kai; Huang, Yaoting; Huang, Saifang; Ji, Haipeng; Yang, Jingzhou; Wu, Xiaowen; Zhang, Shaowei

    2016-07-01

    Correction for `β-Sialon nanowires, nanobelts and hierarchical nanostructures: morphology control, growth mechanism and cathodoluminescence properties' by Juntong Huang, et al., Nanoscale, 2014, 6, 424-432.

  17. Effect of microparticulated whey proteins on milk coagulation properties.

    Science.gov (United States)

    Sturaro, A; Penasa, M; Cassandro, M; Varotto, A; De Marchi, M

    2014-11-01

    The enhancement of milk coagulation properties (MCP) and the reuse of whey produced by the dairy industry are of great interest to improve the efficiency of the cheese-making process. Native whey proteins (WP) can be aggregated and denatured to obtain colloidal microparticulated WP (MWP). The objective of this study was to assess the effect of MWP on MCP; namely, rennet coagulation time (RCT), curd-firming time, and curd firmness 30 min after rennet addition. Six concentrations of MWP (vol/vol; 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0%) were added to 3 bulk milk samples (collected and analyzed during 3 d), and a sample without MWP was used as control. Within each day of analysis, 6 replicates of MCP for each treatment were obtained, changing the position of the treatment in the rack. For control samples, 2 replicates per day were performed. In addition to MCP, WP fractions were measured on each treatment during the 3 d of analysis. Milk coagulation properties were measured on 144 samples by using a Formagraph (Foss Electric, Hillerød, Denmark). Increasing the amount of MWP added to milk led to a longer RCT. In particular, significant differences were found between RCT of the control samples (13.5 min) and RCT of samples with 3.0% (14.6 min) or more MWP. A similar trend was observed for curd-firming time, which was shortest in the control samples and longest in samples with 9.0% MWP (21.4 min). No significant differences were detected for curd firmness at 30 min across concentrations of MWP. Adjustments in cheese processing should be made when recycling MWP, in particular during the coagulation process, by prolonging the time of rennet activity before cutting the curd.

  18. Effects of scalp dermatitis on chemical property of hair keratin

    Science.gov (United States)

    Kim, Kyung Sook; Shin, Min Kyung; Park, Hun-Kuk

    2013-05-01

    The effects of scalp dermatitis (seborrheic dermatitis (SD), psoriasis, and atopic dermatitis (AD)) on chemical properties of hair keratin were investigated by Fourier transform infrared (FT-IR) spectroscopy. Hairs were collected from lesional regions affected by SD, psoriasis, and AD and non-lesional regions separately. The hairs with SD were taken from patients with ages of 16-80 years. The ages of patients with psoriasis ranged from 8 to 67 years, and all patients exhibited moderate disease. Hairs with AD were taken from the patients with ages of 24-45 years and the average SCORing atopic dermatitis (SCORAD) was 48.75. Hairs from 20 normal adults were collected as a control. The FT-IR absorbance bands were analyzed by the Gaussian model to obtain the center frequency, half width, height, and area of each band. The height and area of all bands in the spectra were normalized to the amide I centered at 1652 cm-1 to quantitatively analyze the chemical composition of keratin. The spectra of hair with scalp dermatitis were different with that of control, the amide A components centered at 3278 cm-1 were smaller than those of the control. The psoriasis hair showed a large difference in the IR absorbance band between lesional and non-lesional hairs indicating good agreement with the morphological changes. The hairs with diseases did not show differences in the content of cystine, which was centered at 1054 cm-1, from the control. The chemical properties of keratin were not significantly different between the hairs affected by SD, psoriasis, and AD. However, the changes induced by scalp dermatitis were different with weathering. Therefore, FT-IR analysis could be used to screen differences between the physiological and pathological conditions of scalp hair.

  19. Megasonic cleaning: effect of dissolved gas properties on cleaning

    Science.gov (United States)

    Shende, Hrishi; Singh, Sherjang; Baugh, James; Dietze, Uwe; Dress, Peter

    2013-06-01

    Current and future lithography techniques require complex imaging improvement strategies. These imaging improvement strategies require printing of sub-resolution assist-features (SRAF) on photomasks. The size of SRAF's has proven to be the main limiting factor in using high power Megasonic cleaning process on photomasks. These features, due to high aspect ratio are more prone to damage at low Megasonic frequencies and at high Megasonic powers. Additionally the non-uniformity of energy dissipated during Megasonic cleaning is a concern for exceeding the damage threshold of the SRAFs. If the cavitation events during Megasonic cleaning are controlled in way to dissipate uniform energy, better process control can be achieved to clean without damage. The amount and type of gas dissolved in the cleaning liquid defines the cavitation behavior. Some of the gases possess favourable solubility and adiabatic properties for stable and controlled cavitation behaviour. This paper particularly discusses the effects of dissolved Ar gas on Megasonic characteristics. The effect of Ar Gas is characterized by measuring acoustic energy and Sonoluminscense. The phenomenon is further verified with pattern damage studies.

  20. Explorations of Crystalline Effects on 4-(Benzyloxy)Benzaldehyde Properties

    Science.gov (United States)

    Harismah, Kun; Ozkendir, O. Murat; Mirzaei, Mahmoud

    2015-12-01

    The properties of 4-(benzyloxy)benzaldehyde (BBA), as a pharmaceutically important compound, have been investigated through the density functional theory (DFT) calculations. The properties of original crystalline and optimised gaseous structures have been evaluated to recognise the crystalline effects. In addition to the structural properties, nuclear magnetic resonance (NMR) properties have also been evaluated for both investigated systems to better detect the effects in atomic levels. The results indicated that the structural shape of BBA is significantly changed in the optimised gaseous system, showing significant crystalline effects on the geometrical positions. Moreover, the magnitudes for energies and dipole moments indicate notable effects on the electronic properties. The evaluated NMR properties also show that the atoms of aromatic systems detect significant changes more than the atoms of aliphatic systems in the investigated BBA. And finally, the oxygen bridge atom plays a dominant role in combining two benzene rings of BBA.

  1. From "Absolute Property Right" to "Relative Property Right"Control--Effective Analysis for Regulatory Detailed Planning based on the Theory of Transaction Cost%从“绝对产权”到“相对产权”控制--一个基于交易费用理论的控制性详细规划实效性分析

    Institute of Scientific and Technical Information of China (English)

    郑晓伟

    2014-01-01

    文章提出清晰的绝对产权控制能在一定程度上降低控规编制与实施的交易费用,但界定绝对产权的做法不适应我国的土地政策;进而提出在控规中对“相对产权”进行控制的制度性理念,即提出将控规的“技术工具”属性上升为一种长期性针对不同利益主体“普遍意愿”下的社会契约规范;最后从规划衔接、价值取向、设施配置、控制指标、实施管理、制度建构六个方面探讨了以社会契约为目标的控规“相对产权”控制途径。%The article puts forward that clear control of the absolute property right can reduce the transaction cost of plan making and implementation, but the deifnition of absolute property right is not able to adapt to China's land policy. Then the article discussed the institutional concept of control of the relative property right in Regulatory Detailed Planning,that means change the“technical tools”which are used by Regulatory Detailed Planning into the social contract speciifcation for the different interests of the main"general will". At last,to investigate the path to control of the relative property right in Regulatory Detailed Planning which use the social contract as the target according to planning convergence, value orientation, facilities conifguration, controlling index, management, institutional construction and so on.

  2. Greywater reuse for irrigation: effect on soil properties.

    Science.gov (United States)

    Travis, Micheal J; Wiel-Shafran, Alit; Weisbrod, Noam; Adar, Eilon; Gross, Amit

    2010-05-15

    A controlled study of the effect of greywater (GW) irrigation on soil properties was conducted. Containers of sand, loam and loess soils were planted with lettuce, and irrigated with fresh water, raw artificial GW or treated artificial GW. Greywater was treated using a recirculating vertical-flow constructed wetland. Soil samples were collected every 10 days for the 40-day duration of the study, and plant growth was measured. Soils were analysed for physicochemical and biological parameters to determine changes caused by the different treatments. It was demonstrated that raw artificial GW significantly increased the development of hydrophobicity in the sand and loam soils, as determined by water droplet penetration time. No significant changes were observed for the loess soil under all treatments. Observed hydrophobicity was correlated with increased oil and grease and surfactant concentrations in the soil. Zeta (zeta) potential of the soils was measured to determine changes in the soil particle surface properties as a result of GW irrigation. A significant change in zeta-potential (less negative) was observed in the raw artificial GW-irrigated sand, whereas no difference was observed in the loam or loess. Soils irrigated with fresh water or treated GW exhibited no increase in hydrophobicity. Fecal coliform bacteria were absent or <10 CFU g(-1) in soils irrigated with fresh water or treated GW, but at least 1 order of magnitude higher in raw artificial GW irrigated soils. Only in the last sampling event and only for the loess soil was plant growth significantly higher for fresh water irrigated vs. raw or treated GW irrigated soils. This study demonstrates that treated GW can be effectively irrigated without detrimental effects on soil or plant growth; however, raw GW may significantly change soil properties that can impact the movement of water in soil and the transport of contaminants in the vadose zone.

  3. Force-controlled ultrasound to measure passive mechanical properties of muscle in Duchenne muscular dystrophy.

    Science.gov (United States)

    Pigula, Anne J; Wu, Jim S; Gilbertson, Matthew W; Darras, Basil T; Rutkove, Seward B; Anthony, Brian W

    2016-08-01

    The purpose of this study is to assess differences in skeletal muscle compressibility between patients with Duchenne muscular dystrophy (DMD) and normal subjects. The transverse passive mechanical properties of muscle, particularly those related to stiffness and elasticity, can be measured using force-controlled ultrasound. We acquired ultrasound videos of muscle compression under known pressures in the biceps and quadriceps in 23 boys with DMD and 20 age-matched healthy controls. We calculated the bulk linear spring constant, nonlinear stress-strain response, and average Young's modulus for each. Young's modulus was found to be significantly higher in the DMD population in both the biceps (normal: 33 ± 6 kPa, DMD: 45 ± 14, p Muscle compressibility measured by force-controlled ultrasound is an objective and robust technique to quantitatively monitor the effects of DMD and distinguish from normal subjects.

  4. Atomically modified thin interface in metal-dielectric hetero-integrated systems: control of electronic properties

    Science.gov (United States)

    Iida, Kenji; Nobusada, Katsuyuki

    2017-04-01

    We have performed first-principles studies of the electronic properties of Cu-diamond hetero-integrated systems, particularly placing emphasis on elucidating the effects of surface modification of diamond with H or O. It is found that the electronic properties crucially depend on the chemical compositions of the modified atomically thin interface region. The local density of states (LDOS) of the H-terminated diamond moiety near the Cu surface exhibits a clearly different distribution from that near the vacuum region, whereas the LDOS of the O-terminated diamond is almost independent of the Cu deposition. In other words, the effects of the electronic interactions between Cu and diamond on the electronic properties in the interface region are readily controlled by surface modification with only one atomic (i.e. H or O) layer. Electric field (EF) effects on the Cu-diamond systems also strongly depend on the electronic details, i.e. atomistic modification in the interface regions. In particular, at the interface between the H-terminated diamond moiety and the vacuum region, its conduction band energy is strongly affected by an applied EF much more than the valence band energy; that is, the band gap can be varied with an applied EF. The band gap variation is found to be attributed to an atomistic level difference in the spatial extension of the valence and conduction bands and thus is not explained with a macroscopic band diagram model. It has been demonstrated that the electronic properties of hetero-integrated systems are described and controlled well by carefully designing atomically thin interface regions.

  5. The effect of demagnetization on the magnetocaloric properties of gadolinium

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Nielsen, Kaspar Kirstein

    2009-01-01

    Gadolinium displays a strong magnetocaloric effect at temperatures close to room temperature making it useful in the field of room temperature magnetic refrigeration. We discuss the importance of including the effects of the demagnetization field when considering the magnetocaloric properties...

  6. Frequency-dependent dynamic effective properties of porous materials

    Institute of Scientific and Technical Information of China (English)

    Peijun Wei; Zhuping Huang

    2005-01-01

    The frequency-dependent dynamic effective properties (phase velocity, attenuation and elastic modulus) of porous materials are studied numerically. The coherent plane longitudinal and shear wave equations, which are obtained by averaging on the multiple scattering fields, are used to evaluate the frequency-dependent dynamic effective properties of a porous material. It is found that the prediction of the dynamic effective properties includes the size effects of voids which are not included in most prediction of the traditional static effective properties. The prediction of the dynamic effective elastic modulus at a relatively low frequency range is compared with that of the traditional static effective elastic modulus, and the dynamic effective elastic modulus is found to be very close to the Hashin-Shtrikman upper bound.

  7. Effect of Afforestation on Soil Properties and Mycorrhizal Formation

    Institute of Scientific and Technical Information of China (English)

    P. KAHLE; C. BAUM; B. BOELCKE

    2005-01-01

    A study was conducted on Cambisols in Northern Germany to analyze the effect of fast growing trees (Salix and Populus spp.) used in agroforestry on soil chemical and physical properties and also on endo- and ectomycorrhizal colonization measure the topsoil inventories at the very beginning and after six (GUL), seven (VIP) and ten (ROS) years of afforestation with fast growing trees. The effect on soil organic carbon, plant available nutrients, reaction, bulk density, porosity and water conditions was analyzed. Arable soils without tree coppice were used as controls. Additionally, the endoand ectomycorrhizal colonization of two Salix and two Populus clones were investigated at one site (GUL) in 2002. The amounts of organic carbon in the topsoil increased significantly (P<0.01) presumably induced by leaf and root litter and also by the lack of tillage. The soil bulk density significantly decreased and the porosity of the soil increased significantly (both P<0.01). The proportion of medium pores in the soil also rose significantly (P<0.05 and 0.01). Generally,afforestation of arable soils improved soil water retention. Ectomycorrhizas dominated the mycorrhizal formation of the Salix and Populus clones, with the accumulation of organic matter in the topsoil suspected of supporting the ectomycorrhizal formation. Thus, agroforestry with Salix and Populus spp. conspicuously affected chemical and additionally physical properties of the top layer of Cambisols within a period of six years.

  8. Constraining the surface properties of effective Skyrme interactions

    Science.gov (United States)

    Jodon, R.; Bender, M.; Bennaceur, K.; Meyer, J.

    2016-08-01

    Background: Deformation energy surfaces map how the total binding energy of a nuclear system depends on the geometrical properties of intrinsic configurations, thereby providing a powerful tool to interpret nuclear spectroscopy and large-amplitude collective-motion phenomena such as fission. The global behavior of the deformation energy is known to be directly connected to the surface properties of the effective interaction used for its calculation. Purpose: The precise control of surface properties during the parameter adjustment of an effective interaction is key to obtain a reliable and predictive description of nuclear properties. The most relevant indicator is the surface-energy coefficient asurf. There are several possibilities for its definition and estimation, which are not fully equivalent and require a computational effort that can differ by orders of magnitude. The purpose of this study is threefold: first, to identify a scheme for the determination of asurf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for asurf and the characteristic energies of the fission barrier of 240Pu; and third, to lay out an efficient and robust procedure for how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. Methods: There are several frequently used possibilities to define and calculate the surface energy coefficient asurf of effective interactions built for the purpose of self-consistent mean-field calculations. The most direct access is provided by the model system of semi-infinite nuclear matter, but asurf can also be extracted from the systematics of binding energies of finite nuclei. Calculations can be carried out either self-consistently [Hartree-Fock (HF)], which incorporates quantal shell effects, or in one of the semiclassical extended Thomas-Fermi (ETF) or modified Thomas-Fermi (MTF) approximations. The

  9. Calculating effective gun control policies

    CERN Document Server

    Wodarz, Dominik

    2013-01-01

    Following recent shootings in the USA, a debate has erupted, one side favoring stricter gun control, the other promoting protection through more weapons. We provide a scientific foundation to inform this debate, based on population dynamic models that quantify the dependence of firearm-related death rates of people on gun policies. We assume a shooter attacking a single individual or a crowd. Two strategies can minimize deaths in the model, depending on parameters: either a ban of private firearms possession, or a policy allowing the general population to carry guns. In particular, the outcome depends on the fraction of offenders that illegally possess a gun, on the degree of protection provided by gun ownership, and on the fraction of the population who take up their right to own a gun and carry it with them when attacked, parameters that can be estimated from statistical data. With the measured parameters, the model suggests that if the gun law is enforced at a level similar to that in the United Kingdom, g...

  10. Aviation-fuel property effects on combustion

    Science.gov (United States)

    Rosfjord, T. J.

    1984-01-01

    The fuel chemical property influence on a gas turbine combustor was studied using 25 test fuels. Fuel physical properties were de-emphasized by using fuel injectors which produce highly-atomized, and hence rapidly vaporizing sprays. A substantial fuel spray characterization effort was conducted to allow selection of nozzles which assured that such sprays were achieved for all fuels. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15 (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. standard fuels (e.g., Jet A, JP4), speciality products (e.g., decalin, xylene tower bottoms) and special fuel blends were included. The latter group included six, 4-component blends prepared to achieve parametric variations in fuel hydrogen, total aromatics and naphthalene contents. The principle influences of fuel chemical properties on the combustor behavior were reflected by the radiation, liner temperature, and exhaust smoke number (or equivalently, soot number density) data. Test results indicated that naphthalene content strongly influenced the radiative heat load while parametric variations in total aromatics did not.

  11. Effect of mixing on properties of SCC

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Ekstrand, John Peter; Hansen, Rune

    2007-01-01

    The method of mixing may affect the degree of agglomeration of particles in cement-based materials and thus the properties of the materials in their fresh, hardening, and hardened state. The larger the external force applied during mixing, the larger surface forces can be overcome and the smaller...

  12. The effect of milkfat melting properties on chemical and physical properties of 20% reformulated cream

    OpenAIRE

    Scott, Lisa Lenore

    1999-01-01

    The Effect of Milkfat Melting Properties on Chemical and Physical Properties of 20% Reformulated Cream Lisa L. Scott (ABSTRACT) Skim, sweet buttermilk, and butter derived aqueous phase components were used to re-emulsify low-melt and medium-melt fraction butteroils to yield 20% milkfat creams. The implications of separation temperature in obtaining components, melting point characteristics, and formulation on the chemical and physical properties of reformulated and natural crea...

  13. The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tadao; Tsurekawa, Sadahiro

    1999-11-12

    Grain boundaries can be effectively controlled to produce or enhance their beneficial effects and also to diminish or reduce their detrimental effects on bulk properties in polycrystalline materials. Particular attention has been paid to the control of intergranular brittleness which remains a serious problem of material processing and development. Recent studies are presented and discussed, which have been successfully performed to control intergranular brittleness of intrinsically brittle materials such as the refractory metal molybdenum and the ordered intermetallic alloy Ni{sub 3}Al and to produce superplasticity in an Al-Li alloy, by grain boundary engineering through controlling a new microstructural factor termed the grain boundary character distribution (GBCD). The optimization of GBCD and the grain boundary connectivity has been found to be a key to produce desirable bulk mechanical properties in both structural and functional polycrystalline materials.

  14. The effects of biodegradation and photodegradation on DOM optical properties

    Science.gov (United States)

    Hansen, A.; Moll, L.; Kraus, T. E.

    2012-12-01

    In aquatic environments, dissolved organic matter (DOM) plays a central role in ecosystem biogeochemistry and is important because it affects light penetration, food web dynamics, and pollutant transport. While knowing DOM concentration is important, it is also critical to characterize DOM composition because its chemical make-up determines how it reacts in the environment. Furthermore, the ability to determine the origin of DOM can help inform watershed management and predict future trends. The main factors affecting DOM composition include (1) original source material, (2) biodegradation, and (3) photodegradation. Many studies use optical properties (absorbance and fluorescence) to infer DOM composition and source, however there are few controlled laboratory studies using endmember sources. Here DOM optical properties of eight endmember sources-including soil, plant and algal leachates-from San Francisco Bay Delta wetlands were investigated following biological and photochemical degradation during a three month incubation period. The effects of photoexposure were examined at various points along the biodegradation curve to simulate photodegradation occurring as microorganisms consumed and transformed the bioavailable DOM. Samples were analyzed for dissolved organic carbon (DOC) concentration, absorbance, and fluorescence. While our results showed little change in DOC concentration in the soil leachate over the 3 month study period, DOC concentrations in plant and algal leachates decrease by over 70% within the first three days of biodegradation. As expected, biodegradation led to an increase in fluorescence index (FI), humic index (HIX), and specific absorbance (SUVA) values. Carbon-normalized fluorescence values increased for humic-like components associated with Peaks C and A, but decreased for more labile material, which is associated with Peak T. While the initial FI for plant and algal leachates was similar to soil, the FI for both of these sources increased

  15. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.

    2009-12-09

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  16. Controlling thermal and electrical properties of graphene by strain-engineering its flexural phonons

    Science.gov (United States)

    Conley, Hiram; Nicholl, Ryan; Bolotin, Kirill

    2014-03-01

    We explore the effects of flexural phonons on the thermal and electrical properties of graphene. To control the amplitude of flexural phonons, we developed a technique to engineer uniform mechanical strain between 0 and 1% in suspended graphene. We determine the level of strain, thermal conductivity and carrier mobility of graphene through a combination of mechanical resonance and electrical transport measurements. Depending on strain, we find significant changes in the thermal expansion coefficient, thermal conductivity, and carrier mobility of suspended graphene. These changes are consistent with the expected contribution of flexural phonons.

  17. Improvement in PCI property of PWR fuel cladding by texture control

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, S. (Kansai Electric Power Co., Inc., Osaka (Japan)); Abeta, S.; Ozawa, M.; Takahashi, T.

    1993-09-01

    Effects of texture on out-of-pile Stress Corrosion Cracking (SCC) resistance in Zircaloy fuel cladding tube and the Pellet-Clad Interaction (PCI) property of a fuel rod using texture controlled cladding tube under power ramp conditions are described. The cladding tube with radial texture, which means that the c-axis of hcp crystal of Zr is highly concentrated in the radial direction of the tube, showed excellent performance in out-of-pile SCC tests and power ramp tests. (author).

  18. Factors Controlling the Properties of Multi-Phase Arctic Stratocumulus Clouds

    Science.gov (United States)

    Fridlind, Ann; Ackerman, Andrew; Menon, Surabi

    2005-01-01

    The 2004 Multi-Phase Arctic Cloud Experiment (M-PACE) IOP at the ARM NSA site focused on measuring the properties of autumn transition-season arctic stratus and the environmental conditions controlling them, including concentrations of heterogeneous ice nuclei. Our work aims to use a large-eddy simulation (LES) code with embedded size-resolved aerosol and cloud microphysics to identify factors controlling multi-phase arctic stratus. Our preliminary simulations of autumn transition-season clouds observed during the 1994 Beaufort and Arctic Seas Experiment (BASE) indicated that low concentrations of ice nuclei, which were not measured, may have significantly lowered liquid water content and thereby stabilized cloud evolution. However, cloud drop concentrations appeared to be virtually immune to changes in liquid water content, indicating an active Bergeron process with little effect of collection on drop number concentration. We will compare these results with preliminary simulations from October 8-13 during MPACE. The sensitivity of cloud properties to uncertainty in other factors, such as large-scale forcings and aerosol profiles, will also be investigated. Based on the LES simulations with M-PACE data, preliminary results from the NASA GlSS single-column model (SCM) will be used to examine the sensitivity of predicted cloud properties to changing cloud drop number concentrations for multi-phase arctic clouds. Present parametrizations assumed fixed cloud droplet number concentrations and these will be modified using M-PACE data.

  19. 细菌微生物对高分子缓控释化肥降解性能的影响%Effects of Microbes on Degradation Properties of Polymer Slow Controlled-Release Fertilizer

    Institute of Scientific and Technical Information of China (English)

    杨斌华; 郭桂珍; 孙友谊; 王燕; 刘亚青

    2012-01-01

    [目的]研究细菌微生物对高分子缓控释化肥降解性能的影响.[方法]以尿素、甲醛、磷酸二氢钾为原料,制备出高分子缓控释化肥.通过在淤泥中分离培养细菌微生物,同时与高温灭菌土做对比.[结果]与高温灭菌土相比,高分子缓控释化肥在细菌微生物的作用下,具有更快的养分释放速度和更高的失重率,80d后分别达到98%和88%;SEM照片显示,在微生物的作用下,高分子缓控释化肥表面产生很多孔洞.[结论]该高分子缓释肥是一种可生物降解肥,是一种绿色化肥.%[ Objective ] The research aimed to study the effects of microbes on the degradation of the slow controlled-release fertilizer. [ Meth-od ] A polymer slow controlled-release fertilizer was prepared using urea, formaldehyde, and potassium dihydrdgen phosphate as raw materials.Microbes in silt were isolated and cultured, and the high-temperature sterilization of the soil was compared with at the same time. [ Result ]Compared with the high-temperature sterilization of the soil, on the effect of the bacterial microorganism, the polymer slow controlled-release fertilizer had the faster speed of nutrient release and the higher weightlessness,reached 98% and 88% respectively in 80. Days. SEM showedthat there were a lot of holes on the surface. [ Conclusion ] The fertilizer is a kind of biodegradable fertilizer and green fertilizer.

  20. Exploring the differences in distributional properties between Stroop and Simon effects using delta plots

    NARCIS (Netherlands)

    Pratte, Michael S.; Rouder, Jeffrey N.; Morey, Richard D.; Feng, Chuning

    2010-01-01

    Stroop and Simon tasks are logically similar and are often used to investigate cognitive control and inhibition processes. We compare the distributional properties of Stroop and Simon effects with delta plots and find different although stable patterns. Stroop effects across a variety of conditions

  1. Control software analysis, Part I Open-loop properties

    CERN Document Server

    Feron, Eric

    2008-01-01

    As the digital world enters further into everyday life, questions are raised about the increasing challenges brought by the interaction of real-time software with physical devices. Many accidents and incidents encountered in areas as diverse as medical systems, transportation systems or weapon systems are ultimately attributed to "software failures". Since real-time software that interacts with physical systems might as well be called control software, the long litany of accidents due to real-time software failures might be taken as an equally long list of opportunities for control systems engineering. In this paper, we are interested only in run-time errors in those pieces of software that are a direct implementation of control system specifications: For well-defined and well-understood control architectures such as those present in standard textbooks on digital control systems, the current state of theoretical computer science is well-equipped enough to address and analyze control algorithms. It appears tha...

  2. Effect of Precuring Warming on Mechanical Properties of Restorative Composites

    Directory of Open Access Journals (Sweden)

    Kareem Nada

    2011-01-01

    Full Text Available To investigate the effect of prepolymerization warming on composites' mechanical properties, three composites were evaluated: Clearfil Majesty (CM (Kuraray, Z-100 (3M/ESPE, and Light-Core (LC (Bisco. Specimens were prepared from each composite at room temperature as control and 2 higher temperatures (37∘C and 54∘C to test surface hardness (SH, compressive strength (CS, and diametral tensile strength (DTS. Data were statistically analyzed using ANOVA and Fisher's LSD tests. Results revealed that prewarming CM and Z100 specimens significantly improved their SH mean values (P<0.05. Prewarming also improved mean CS values of Z100 specimens (P<0.05. Furthermore, DTS mean value of CM prepared at 52∘ was significantly higher than that of room temperature specimens (P<0.05. KHN, CS, and DTS mean values varied significantly among the three composites. In conclusion, Prewarming significantly enhanced surface hardness of 2 composites. Prewarming also improved bulk properties of the composites; however, this improvement was significant in only some of the tested materials.

  3. Effect of refractive error on temperament and character properties

    Institute of Scientific and Technical Information of China (English)

    Emine; Kalkan; Akcay; Fatih; Canan; Huseyin; Simavli; Derya; Dal; Hacer; Yalniz; Nagihan; Ugurlu; Omer; Gecici; Nurullah; Cagil

    2015-01-01

    AIM: To determine the effect of refractive error on temperament and character properties using Cloninger’s psychobiological model of personality.METHODS: Using the Temperament and Character Inventory(TCI), the temperament and character profiles of 41 participants with refractive errors(17 with myopia,12 with hyperopia, and 12 with myopic astigmatism) were compared to those of 30 healthy control participants.Here, temperament comprised the traits of novelty seeking, harm-avoidance, and reward dependence, while character comprised traits of self-directedness,cooperativeness, and self-transcendence.RESULTS: Participants with refractive error showed significantly lower scores on purposefulness,cooperativeness, empathy, helpfulness, and compassion(P <0.05, P <0.01, P <0.05, P <0.05, and P <0.01,respectively).CONCLUSION: Refractive error might have a negative influence on some character traits, and different types of refractive error might have different temperament and character properties. These personality traits may be implicated in the onset and/or perpetuation of refractive errors and may be a productive focus for psychotherapy.

  4. Rainbow Perylene Monoimides : Easy Control of Optical Properties

    NARCIS (Netherlands)

    Li, Chen; Schoeneboom, Jan; Liu, Zhihong; Pschirer, Neil G.; Erk, Peter; Herrmann, Andreas; Muellen, Klaus; Müllen, Klaus

    2009-01-01

    Perylene dyes have been widely used as photoreceptors in organic photovoltaics because of their outstanding photo-, thermal and chemical stability as well as their excellent photophysical properties. Herein we describe a novel generation of perylene dyes based on N-(2.6-diisopropylphenyl)-perylene-3

  5. Effects of Ultrasonic Treatment on Residue Properties

    Institute of Scientific and Technical Information of China (English)

    Sun Yudong; Zhang Qiang; Shi Honghong; Wang Xue; Liu Bo

    2013-01-01

    The changes in properties and structural parameters of four vacuum residue samples before and after ultrasonic treatment were analyzed. Ultrasonic treatment could increase the carbon residue value, decrease the average molecular weight and viscosity, which can barely inlfuence the density of vacuum residue. Meanwhile the constitution of residue can be varied including the decrease in the content of saturates, aromatics and asphaltenes, while the increase in the content of resins can lead to an increase in the total content of asphaltenes and resins. Among the four kinds of residue samples, there is a common trend that the more the content of asphaltenes in feedstock is, the more the increase in the content of resins, the more signiifcant decrease in the aromatic content and the less decrease in the saturates content after ultrasonic treatment of residue would be. Changes in the structure and content of asphaltenes caused by ultrasonic treatment have a signiifcant impact on the changes in residue properties. Ultrasonic treatment has changed the structural parameters of residue such as decrease in the total carbon number of average molecule (CTotal), the total number of rings (RT), the aromatic carbon number (CA),the aromatic rings number (RA) and the naphthenic rings number (RN) , and increase of characterization factor (KH). The study has indicated that ultrasonic treatment of vacuum residue can change the average structure of residue, and the changes in the content and structure of asphaltenes are the main cause leading to property changes. The results of residue hydrotreat-ing revealed that coke yield decreased, whereas the gas and light oil yield and conversion increased after ultrasonic treat-ment of vacuum residue.

  6. Geographical networks: geographical effects on network properties

    Institute of Scientific and Technical Information of China (English)

    Kong-qing YANG; Lei YANG; Bai-hua GONG; Zhong-cai LIN; Hong-sheng HE; Liang HUANG

    2008-01-01

    Complex networks describe a wide range of sys-tems in nature and society. Since most real systems exist in certain physical space and the distance between the nodes has influence on the connections, it is helpful to study geographi-cal complex networks and to investigate how the geographical constrains on the connections affect the network properties. In this paper, we briefly review our recent progress on geo-graphical complex networks with respect of statistics, mod-elling, robustness, and synchronizability. It has been shown that the geographical constrains tend to make the network less robust and less synchronizable. Synchronization on random networks and clustered networks is also studied.

  7. Analytical properties of the effective refractive index

    Science.gov (United States)

    Puzko, R. S.; Merzlikin, A. M.

    2017-01-01

    The propagation of a plane wave through a periodic layered system is considered in terms of the effective parameters. The problem of introduction of effective parameters is discussed. It was demonstrated that although the effective admittance cannot be introduced, it is possible to introduce the effective refractive index, which tends toward the Rytov value when the system size increases. It was shown that the effective wave vector derivative is an analytical function of frequency. In particular, the Kramers-Kronig-like relations for real and imaginary parts of the effective wave vector derivative were obtained. The Kramers-Kronig-like relations for the effective refractive index were also considered. The results obtained numerically were proved by exact solution of Maxwell's equations in the specific case of an "equi-impedance" system.

  8. Active control of nano dimers response using piezoelectric effect

    Science.gov (United States)

    Mekkawy, Ahmed A.; Ali, Tamer A.; Badawi, Ashraf H.

    2016-09-01

    Nano devices can be used as building blocks for Internet of Nano-Things network devices, such as sensors/actuators, transceivers, and routers. Although nano particles response can be engineered to fit in different regimes, for such a nano particle to be used as an active nano device, its properties should be dynamically controlled. This controllability is a challenge, and there are many proposed techniques to tune nanoparticle response on the spot through a sort of control signal, wither that signal is optical (for all-optical systems) or electronic (for opto-electronic systems). This will allow the use of nano particles as nano-switches or as dynamic sensors that can pick different frequencies depending on surrounding conditions or depending on a smart decisions. In this work, we propose a piezoelectric substrate as an active control mediator to control plasmonic gaps in nano dimers. This method allows for integrating nano devices with regular electronics while communicating control signals to nano devices through applying electric signals to a piezoelectric material, in order to control the gaps between nano particles in a nano cluster. We do a full numerical study to the system, analyzing the piezoelectric control resolution (minimum gap change step) and its effect on a nanodimer response as a nanoantenna. This analysis considers the dielectric functions of materials within the visible frequencies range. The effects of different parameters, such as the piezoelectric geometrical structure and materials, on the gap control resolution and the operating frequency are studied.

  9. Pseudospectral Optimal Control: Hidden Properties and Flight Results

    Science.gov (United States)

    2011-11-30

    on solving optimal control problems , we focus on developing PS methods over arbitrary grids for Problem B. Such research can provides a unified...more efficient algorithms for solving optimal control problems , for example, multiscale PS methods for dynamical systems with different timescales

  10. Effect of hydrocolloids on functional properties of navy bean starch

    Science.gov (United States)

    The effects of hydrocolloid replacement on the pasting properties of navy bean starch and on the properties of navy bean starch gels were studied. Navy bean starch was isolated, and blends were prepared with beta-glucan, guar gum, pectin and xanthan gum solutions. The total solids concentration was ...

  11. Process for controlled effect on the properties of cylinder charges of two-stroke Diesel engines, particularly those with particle filters or catalysts. Verfahren zur geregelten Beeinflussung der Beschaffenheit der Zylinderladung von Zweitaktdieselmotoren, insbesondere solcher mit Partikelfilter oder Katalysator

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, B.

    1992-02-27

    In Diesel engines, the automatic free combustion of a particle filter is only guaranteed near full load with sufficiently high exhaust gas temperatures. By the new process, the exhaust gas temperature of two-stroke Diesel engines is to be raised so far in the part load range that the automatic free combustion of a particle filter or the efficiency of a catalyst is guaranteed in all working conditions of the engine. The quantity of flushing air introduced into the cylinder per working cycle is controlled depending on the load by a control device, so that at full load and in the range near full load, the ratio of the volume of flushing air per working cycle to the cylinder swept space is greater than 1, but in the low part load range and at tickover it is appreciably less than 1. In the lower part load range, the flushing air is additionally increasing preheated with decreasing load in an exhaust gas flushing air heat exchanger after the particle filter or the catalyst. Apart from the automatic particle filter cleaning, an effect corresponding to exhaust gas feedback and a seris of other advantages are achieved. Two-stroke Diesel engines with frequent part-load operation, eg: for vehicles and working engines.

  12. Target Capturing Control for Space Robots with Unknown Mass Properties: A Self-Tuning Method Based on Gyros and Cameras

    Science.gov (United States)

    Li, Zhenyu; Wang, Bin; Liu, Hong

    2016-01-01

    Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme. PMID:27589748

  13. Target Capturing Control for Space Robots with Unknown Mass Properties: A Self-Tuning Method Based on Gyros and Cameras

    Directory of Open Access Journals (Sweden)

    Zhenyu Li

    2016-08-01

    Full Text Available Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme.

  14. Target Capturing Control for Space Robots with Unknown Mass Properties: A Self-Tuning Method Based on Gyros and Cameras.

    Science.gov (United States)

    Li, Zhenyu; Wang, Bin; Liu, Hong

    2016-08-30

    Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme.

  15. Orange oil effect in the control of fennel aphid

    OpenAIRE

    Ivanildo Cavalcanti de Albuquerque; Luciano de Medeiros Pereira Brito; Carlos Henrique de Brito; Edson Batista Lopes; Jacinto de Luna Batista

    2009-01-01

    In the properties where fennel is grown, in the states of Bahia, Sergipe, Pernambuco and Paraiba, at the Northeast of Brazil, a high rate of usage of pesticides in the crop, aiming to control the aphid Hyadaphis foeniculi. The purpose of this study was to evaluate the effect of orange oil Prev-Am (sodium tetraborohydrate decahydrate), in the control of H. foeniculi aphid of the fennel crop. The trial was conducted in a fennel field located in Lagoa Seca Experimental Station, belonging to the ...

  16. Controlling MegaSonic performance by optimizing cleaning media's physical and gaseous properties

    Science.gov (United States)

    Shende, Hrishi; Singh, SherJang; Baugh, James; Dietze, Uwe; Dress, Peter

    2012-11-01

    As the feature size of the mask shrinks, the feature becomes more fragile and the potential for physical force damage during cleaning increases. At the same time, increased feature density of the mask makes it difficult to remove particles from congested trenches without physical force cleaning. Acoustic energy has the ability to suppress the hydro-dynamic boundary layer thereby transferring the physical force impact closer to particles trapped in the deep trenches of the mask. MegaSonic, which employs acoustic energy, is a preferred physical force cleaning technology for advanced masks. However MegaSonic can be extremely aggressive if the energy distribution is not contained within the narrowest process window available. In this paper, liquid media properties and their effect in controlling MegaSonic energy is evaluated. A chemistry is identified which provides favorable gaseous properties for controlling MegaSonic cavitation. The effect of this chemistry is characterized by measuring acoustic energy and Sonoluminscense. The phenomenon is further verified with pattern damage studies.

  17. AA patterns for point sets with controlled spectral properties

    OpenAIRE

    2015-01-01

    We describe a novel technique for the fast production of large point sets with different spectral properties. In contrast to tile-based methods we use so-called AA Patterns: ornamental point sets obtained from quantization errors. These patterns have a discrete and structured number-theoretic nature, can be produced at very low costs, and possess an inherent structural indexing mechanism equivalent to those used in recursive tiling techniques. This allows us to generate, manipulate and store ...

  18. Intrinsic control of electroresponsive properties of transplanted mammalian brain neurons

    DEFF Research Database (Denmark)

    Hounsgaard, J; Yarom, Y

    1985-01-01

    The present study presents the first analysis of neurons in mammalian brain transplants based on intracellular recording. The results, obtained in brain slices including both donor and host tissue, showed that neuronal precursor cells in embryonic transplants retained their ability to complete...... their normal differentiation of cell-type-specific electroresponsive properties. Distortions in cell aggregation and synaptic connectivity did not affect this aspect of neuronal differentiation....

  19. Effect of Tocopherol on Antioxygenic Properties of Green Lubricating Oil

    Institute of Scientific and Technical Information of China (English)

    XIAO Zhixin; SHI Chen; MAO Daheng

    2008-01-01

    Based on the needs of green motor oil, and in order to improve the antioxidation properties of green lubricating oil, the effect of tocopherol antioxidation properties of rapeseed oil was studied. Experiments of high temperature oxidation, antiwear and infra-red spectrum analysis were accomplished, the results show that the rapeseed oil including tocopherol can still keeps steady structure after high temperature oxidation, with a small variety of acid number, whose antioxygenic properties are improved evidently. Meanwhile, both thiocarbamate and vitamin C play an assistant role in tocopherol, which can make rapeseed oil to have better oxidation stability and keep excellent antiwear properties after high temperature oxidation.

  20. Controlling attribute effect in linear regression

    KAUST Repository

    Calders, Toon

    2013-12-01

    In data mining we often have to learn from biased data, because, for instance, data comes from different batches or there was a gender or racial bias in the collection of social data. In some applications it may be necessary to explicitly control this bias in the models we learn from the data. This paper is the first to study learning linear regression models under constraints that control the biasing effect of a given attribute such as gender or batch number. We show how propensity modeling can be used for factoring out the part of the bias that can be justified by externally provided explanatory attributes. Then we analytically derive linear models that minimize squared error while controlling the bias by imposing constraints on the mean outcome or residuals of the models. Experiments with discrimination-aware crime prediction and batch effect normalization tasks show that the proposed techniques are successful in controlling attribute effects in linear regression models. © 2013 IEEE.

  1. Noise in the Library: Effects and Control.

    Science.gov (United States)

    Eagan, Ann

    1991-01-01

    Describes the physiological and psychological effects of noise in libraries and suggests methods of controlling noise from telephones, computers, printers, and photocopiers. Hearing loss and stress-related problems are discussed, the effects of noise on performance are described, and planning is emphasized as a method of avoiding noise problems.…

  2. Effect of extrusion parameters on some properties of dietary fiber ...

    African Journals Online (AJOL)

    use

    2011-11-21

    Nov 21, 2011 ... The independent variables studied were extrusion temperature (from. 59.77 to ... The extraction of juice from citrus fruits, such as oranges, grapefruit ..... properties of extruded orange pulp and its effect on the quality of cookies.

  3. Effect of ultrasonication on physical properties of mineral trioxide aggregate

    National Research Council Canada - National Science Library

    Parashos, Peter; Phoon, Amanda; Sathorn, Chankhrit

    2014-01-01

    To evaluate the effect on physical properties of Mineral Trioxide Aggregate (MTA) of using direct hand compaction during placement and when using hand compaction with indirect ultrasonic activation with different application times...

  4. Effects of vacation properties on local education budgets

    Directory of Open Access Journals (Sweden)

    Jason Giersch

    2014-12-01

    Full Text Available Residents of school districts with large percentages of vacation properties have the opportunity to export a portion of their school taxes onto the owners of those vacation properties. Those property owners are unlikely to consume educational services or have the opportunity to vote against local school taxes. Previous studies address exportation of taxes onto vacation property owners and the effects on local government budgets generally but not on education finances specifically. This study connects research on rates of vacation properties with that on local education finances by using data from the state of Georgia in 2010 and weighted least squares regression analysis to show that high percentages of vacation properties do indeed result in larger local school expenditures.

  5. Immunosuppressive agent leflunomide: a SWNTs-immobilized dihydroortate dehydrogenase inhibitory effect and computational study of its adsorption properties on zigzag single walled (6,0) carbon and boron nitride nanotubes as controlled drug delivery devices.

    Science.gov (United States)

    Raissi, Heidar; Mollania, Fariba

    2014-06-02

    Leflunomide [HWA 486 or RS-34821, 5-methyl-N-(4trifluoromethylphenyl)-4-isoxazole carboximide] is an immunosuppressive agent effective in the treatment of rheumatoid arthritis. Dihydroortate dehydrogenase (DHODH, EC 1.3.3.1) immobilization on the nanotubes was carried out and biochemical characterization of free and immobilized enzyme was determined. In comparison with free enzyme, the immobilized DHODH showed improved stability and reusability for investigation of inhibition pattern of drugs such as leflunomide. The experimental data showed that, DHODH was inhibited by the active metabolite of leflunomide (RS-61980) with a Ki and KI of 0.82 and 0.06 mM, respectively. Results exhibited mixed-type inhibition kinetics towards dihydroorotate as a substrate in the free and immobilized enzyme. Furthermore, the behavior of anticancer drug leflunomide adsorbed on the external surface of zigzag single walled (6,0) carbon and boron nitride nanotubes (SWCNT and SWBNNT) was studied by means of DFT calculations at the B3LYP/6-31G(*) level of theory. The larger adsorption energies and charges transfer showed that the adsorption of leflunomide onto SWBNNT is more stable than that the adsorption of leflunomide onto SWCNT. Frontier molecular orbitals (HOMO and LUMO) suggest that adsorption of leflunomide onto SWBNNT behave as charge transfer compounds with leflunomide as an electron donor and SWBNNT as an electron acceptor. Thus, nanotubes (NTs) have been proposed and actively explored as multipurpose innovative carriers for drug delivery and diagnostic application. The AIM theory has been also applied to analyze the properties of the bond critical points: their electron densities and their laplacians. Also, the natural bond orbital (NBO) calculations were performed to derive natural atomic orbital occupancies, and partial charges of the interacting atoms in the equilibrium tube-molecule distance.

  6. The Controllable Grain Size Synthesis of Graphene and its Effects in Electrical Property%石墨烯晶畴尺寸的可控生长及其对材料电学性能的影响

    Institute of Scientific and Technical Information of China (English)

    吴渊文; 张燕辉; 陈志蓥; 王彬; 于广辉

    2012-01-01

    采用化学气相沉积技术(CVD)在铜箔衬底上实现了石墨烯单晶畴的可控生长,并用两步生长法制备了不同单晶畴尺寸的多晶石墨烯连续膜.利用光学显微镜和拉曼光谱仪对石墨烯的形貌和结构进行了表征.通过对转移到Si02衬底上石墨烯连续膜的霍尔测试发现,石墨烯晶畴尺寸变化对其连续膜的电学性能影响显著.石墨烯连续膜的晶畴尺寸越大,其方块电阻越小,载流子迁移率越高.%Different grain sizes of single - crystal graphene were successfully synthesized on copper foils by chemical vapor deposition ( CVD) and their continuous polycrystalline graphene films were also obtained via two -step growth. The morphology and structure of as - synthesized graphene were characterized by optical microscopy and Raman spectroscopy. The Hall effect investigations for the transferred graphene films on SiO2 substrates revealed that the grain size of single - crystal graphene had a great influence on the electrical properties of its continuous films, and it showed that larger grains could offer smaller square resistance and larger carrier mobility.

  7. Effect of boron waste on the properties of mortar and concrete.

    Science.gov (United States)

    Topçu, Iker Bekir; Boga, Ahmet Raif

    2010-07-01

    Utilization of by-products or waste materials in concrete production are important subjects for sustainable development and industrial ecology concepts. The usages as mineral admixtures or fine aggregates improve the durability properties of concrete and thus increase the economic and environmental advantages for the concrete industry. The effect of clay waste (CW) containing boron on the mechanical properties of concrete was investigated. CW was added in different proportions as cement additive in concrete. The effect of CW on workability and strength of concrete were analysed by fresh and hardened concrete tests. The results obtained were compared with control concrete properties and Turkish standard values. The results showed that the addition of CW had a small effect upon the workability of the concrete but an important effect on the reduction of its strength. It was observed that strength values were quite near to that of control concrete when not more than 10% CW was used in place of cement. In addition to concrete specimens, replacing cement with CW produced mortar specimens, which were investigated for their strength and durability properties. The tests of SO( 4) (2-) and Cl(-) effect as well as freeze-thaw behaviour related to the durability of mortar were performed. Consequently, it can be said that some improvements were obtained in durability properties even if mechanical properties had decreased with increasing CW content.

  8. Online Optimal Controller Design using Evolutionary Algorithm with Convergence Properties

    Directory of Open Access Journals (Sweden)

    Yousef Alipouri

    2014-06-01

    Full Text Available Many real-world applications require minimization of a cost function. This function is the criterion that figures out optimally. In the control engineering, this criterion is used in the design of optimal controllers. Cost function optimization has difficulties including calculating gradient function and lack of information about the system and the control loop. In this article, for the first time, gradient memetic evolutionary programming is proposed for minimization of non-convex cost functions that have been defined in control engineering. Moreover, stability and convergence of the proposed algorithm are proved. Besides, it is modified to be used in online optimization. To achieve this, the sign of the gradient function is utilized. For calculating the sign of the gradient, there is no need to know the cost-function’s shape. The gradient functions are estimated by the algorithm. The proposed algorithm is used to design a PI controller for nonlinear benchmark system CSTR (Continuous Stirred Tank Reactor by online and off-line approaches.

  9. Effective organizational control: implications for academic medicine.

    Science.gov (United States)

    Wilkes, Michael S; Srinivasan, Malathi; Flamholtz, Eric

    2005-11-01

    This article provides a framework for understanding the nature, role, functioning, design, and effects of organizational oversight systems. Using a case study with elements recognizable to an academic audience, the authors explore how a dean of a fictitious School of Medicine might use organizational control structures to develop effective solutions to global disarray within the academic medical center. Organizational control systems are intended to help influence the behavior of people as members of a formal organization. They are necessary to motivate people toward organizational goals, to coordinate diverse efforts, and to provide feedback about problems. The authors present a model of control to make this process more visible within organizations. They explore the overlap among academic medical centers and large businesses-for instance, each is a billion-dollar enterprise with complex internal and external demands and multiple audiences. The authors identify and describe how to use the key components of an organization's control system: environment, culture, structure, and core control system. Elements of the core control system are identified, described, and explored. These closely articulating elements include planning, operations, measurement, evaluation, and feedback systems. Use of control portfolios is explored to achieve goal-outcome congruence. Additionally, the authors describe how the components of the control system can be used synergistically by academic leadership to create organizational change, congruent with larger organizational goals. The enterprise of medicine is quickly learning from the enterprise of business. Achieving goal-action congruence will better position academic medicine to meet its multiple missions.

  10. Fabrication of ultrathin polyelectrolyte fibers and their controlled release properties.

    Science.gov (United States)

    Chunder, Anindarupa; Sarkar, Sourangsu; Yu, Yingbo; Zhai, Lei

    2007-08-01

    Ultrathin fibers comprising 2-weak polyelectrolytes, poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) were fabricated using the electrospinning technique. Methylene blue (MB) was used as a model drug to evaluate the potential application of the fibers for drug delivery. The release of MB was controlled in a nonbuffered medium by changing the pH of the solution. The sustained release of MB in a phosphate buffered saline (PBS) solution was achieved by constructing perfluorosilane networks on the fiber surfaces as capping layers. Temperature controlled release of MB was obtained by depositing temperature sensitive PAA/poly(N-isopropylacrylamide) (PNIPAAM) multilayers onto the fiber surfaces. The controlled release of drugs from electrospun fibers have potential applications as drug carriers in biomedical science.

  11. Phonemic Analysis: Effects of Word Properties.

    Science.gov (United States)

    Schreuder, Robert; van Bon, Wim H. J.

    The phonemic effects of word length, consonant-vowel structure, syllable structure, and meaning on word segmentation were investigated in two experiments with young children. The decentration hypothesis, which predicts that children who habitually direct their attention to word meaning would concentrate better at analyzing a spoken form without…

  12. Rheological behaviour and physical properties of controlled-release gluten-based bioplastics.

    Science.gov (United States)

    Gómez-Martínez, D; Partal, P; Martínez, I; Gallegos, C

    2009-03-01

    Bioplastics based on glycerol, water and wheat gluten have been manufactured in order to determine the effect that mechanical processing and further thermal treatments exert on different thermo-mechanical properties of the biomaterials obtained. An "active agent", KCl was incorporated in these matrices to develop controlled-release formulations. Oscillatory shear, dynamic mechanical thermal analysis (DMTA), diffusion and water absorption tests were carried out in order to study the influence of the above-mentioned treatments on the physico-chemical characteristics and rheological behaviour of these bioplastic samples. Wheat gluten protein-based bioplastics studied in this work present a high ability for thermosetting modification, due to protein denaturation, which may favour the development of a wide variety of biomaterials. Bioplastic hygroscopic properties depend on plasticizer nature and processing procedure, and may be a key factor for industrial applications where water absorption is required. On the other hand, high water absorption and slow KCl release from bioplastic samples (both of them suitable properties in agricultural applications) may be obtained by adding citric acid to a given formulation, at selected processing conditions.

  13. Controlling the Properties of Solvent-free Fe3O4 Nanofluids by Corona Structure

    Institute of Scientific and Technical Information of China (English)

    Yumo Tan; Yaping Zheng∗; Nan Wang; Aibo Zhang

    2012-01-01

    We studied the relationship between corona structure and properties of solvent-free Fe3O4 nanoflu-ids. We proposed a series of corona structures with different branched chains and synthesize different solvent-free nanofluids in order to show the effect of corona structure on the phase behavior, dispersion, as well as rheol-ogy properties. Results demonstrate novel liquid-like behaviors without solvent at room temperature. Fe3O4 magnetic nanoparticles content is bigger than 8%and its size is about 2∼3 nm. For the solvent-free nanofluids, the long chain corona has the internal plasticization, which can decrease the loss modulus of system, while the short chain of corona results in the high viscosity of nanofluids. Long alkyl chains of modifiers lead to lower viscosity and better flowability of nanofluids. The rheology and viscosity of the nanofluids are correlated to the microscopic structure of the corona, which provide an in-depth insight into the preparing nanofluids with promising applications based on their tunable and controllable physical properties.

  14. Composition-controlled optical properties of colloidal CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ayele, Delele Worku [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Department of Chemistry, Bahir Dar University, Bahir Dar (Ethiopia); Su, Wei-Nien, E-mail: wsu@mail.ntust.edu.tw [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Chou, Hung-Lung [Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Pan, Chun-Jern [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Hwang, Bing-Joe, E-mail: bjh@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China)

    2014-12-15

    Graphical abstract: - Highlights: • The surface of CdSe QDs are modified with cadmium followed by selenium. • The optical properties of CdSe QDs can be controlled by manipulating the composition. • Surface compositional change affects the surface defects or traps and recombination. • The surface trapping state can be controlled by tuning the surface composition. • A change in composition shows a change in the carrier life time. - Abstract: A strategy with respect to band gap engineering by controlling the composition of CdSe quantum dots (QDs) is reported. After the CdSe QDs are prepared, their compositions can be effectively manipulated from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich QDs. To obtain Cd-rich CdSe QDs, Cd was deposited on equimolar CdSe QDs. Further deposition of Se on Cd-rich CdSe QDs produced Se-rich CdSe QDs. The compositions (Cd:Se) of the as-prepared CdSe quantum dots were acquired by Energy-dispersive X-ray spectroscopy (EDX). By changing the composition, the overall optical properties of the CdSe QDs can be manipulated. It was found that as the composition of the QDs changes from 1:1 (Cd:Se) CdSe to Cd-rich and then Se-rich CdSe, the band gap decreases along with a red shift of UV–vis absorption edges and photoluminescence (PL) peaks. The quantum yield also decreases with surface composition from 1:1 (Cd:Se) CdSe QDs to Cd-rich and then to Se-rich, largely due to the changes in the surface state. Because of the involvement of the surface defect or trapping state, the carrier life time increased from the 1:1 (Cd:Se) CdSe QDs to the Cd-rich to the Se-rich CdSe QDs. We have shown that the optical properties of CdSe QDs can be controlled by manipulating the composition of the surface atoms. This strategy can potentially be extended to other semiconductor nanocrystals to modify their properties.

  15. Effect of charge on the mechanical properties of surfactant bilayers.

    Science.gov (United States)

    Bradbury, Robert; Nagao, Michihiro

    2016-11-23

    Charge effects on the mechanical properties of surfactant bilayers have been measured, for a system with a low ionic strength, using small-angle neutron scattering and neutron spin echo spectroscopy. We report that, not only does increasing the surface charge density lead to greater structural ordering and a stiffening of the membrane, which is consistent with classical theory of charge effects on membranes, but also that the relaxation rate of the membrane thickness fluctuations decreases without affecting the fluctuation amplitude. From the relaxation rate we demonstrate, using recent theory, that the viscosity of the surfactant membrane is increased with surface charge density, which suggests that the amount of charge controls the diffusion behavior of inclusions inside the membrane. The present results confirm that the thickness fluctuation relaxation rate and amplitude are tuned independently since the membrane viscosity is only influencing the relaxation rate. This work demonstrates that charge stabilization of lamellar bilayers is not merely affected by intermembrane interactions and structural ordering but that intramembrane dynamics also have a significant contribution.

  16. Effective force control by muscle synergies

    Directory of Open Access Journals (Sweden)

    Denise J Berger

    2014-04-01

    Full Text Available Muscle synergies have been proposed as a way for the central nervous system (CNS to simplify the generation of motor commands and they have been shown to explain a large fraction of the variation in the muscle patterns across a variety of conditions. However, whether human subjects are able to control forces and movements effectively with a small set of synergies has not been tested directly. Here we show that muscle synergies can be used to generate target forces in multiple directions with the same accuracy achieved using individual muscles. We recorded electromyographic (EMG activity from 13 arm muscles and isometric hand forces during a force reaching task in a virtual environment. From these data we estimated the force associated to each muscle by linear regression and we identified muscle synergies by non-negative matrix factorization. We compared trajectories of a virtual mass displaced by the force estimated using the entire set of recorded EMGs to trajectories obtained using 4 to 5 muscle synergies. While trajectories were similar, when feedback was provided according to force estimated from recorded EMGs (EMG-control on average trajectories generated with the synergies were less accurate. However, when feedback was provided according to recorded force (force-control we did not find significant differences in initial angle error and endpoint error. We then tested whether synergies could be used as effectively as individual muscles to control cursor movement in the force reaching task by providing feedback according to force estimated from the projection of the recorded EMGs into synergy space (synergy-control. Human subjects were able to perform the task immediately after switching from force-control to EMG-control and synergy-control and we found no differences between initial movement direction errors and endpoint errors in all control modes. These results indicate that muscle synergies provide an effective strategy for motor

  17. Effective force control by muscle synergies.

    Science.gov (United States)

    Berger, Denise J; d'Avella, Andrea

    2014-01-01

    Muscle synergies have been proposed as a way for the central nervous system (CNS) to simplify the generation of motor commands and they have been shown to explain a large fraction of the variation in the muscle patterns across a variety of conditions. However, whether human subjects are able to control forces and movements effectively with a small set of synergies has not been tested directly. Here we show that muscle synergies can be used to generate target forces in multiple directions with the same accuracy achieved using individual muscles. We recorded electromyographic (EMG) activity from 13 arm muscles and isometric hand forces during a force reaching task in a virtual environment. From these data we estimated the force associated to each muscle by linear regression and we identified muscle synergies by non-negative matrix factorization. We compared trajectories of a virtual mass displaced by the force estimated using the entire set of recorded EMGs to trajectories obtained using 4-5 muscle synergies. While trajectories were similar, when feedback was provided according to force estimated from recorded EMGs (EMG-control) on average trajectories generated with the synergies were less accurate. However, when feedback was provided according to recorded force (force-control) we did not find significant differences in initial angle error and endpoint error. We then tested whether synergies could be used as effectively as individual muscles to control cursor movement in the force reaching task by providing feedback according to force estimated from the projection of the recorded EMGs into synergy space (synergy-control). Human subjects were able to perform the task immediately after switching from force-control to EMG-control and synergy-control and we found no differences between initial movement direction errors and endpoint errors in all control modes. These results indicate that muscle synergies provide an effective strategy for motor coordination.

  18. Amorphous intergranular phases control the properties of rodent tooth enamel

    Science.gov (United States)

    Gordon, Lyle M.; Cohen, Michael J.; MacRenaris, Keith W.; Pasteris, Jill D.; Seda, Takele; Joester, Derk

    2015-02-01

    Dental enamel, a hierarchical material composed primarily of hydroxylapatite nanowires, is susceptible to degradation by plaque biofilm-derived acids. The solubility of enamel strongly depends on the presence of Mg2+, F-, and CO32-. However, determining the distribution of these minor ions is challenging. We show—using atom probe tomography, x-ray absorption spectroscopy, and correlative techniques—that in unpigmented rodent enamel, Mg2+ is predominantly present at grain boundaries as an intergranular phase of Mg-substituted amorphous calcium phosphate (Mg-ACP). In the pigmented enamel, a mixture of ferrihydrite and amorphous iron-calcium phosphate replaces the more soluble Mg-ACP, rendering it both harder and more resistant to acid attack. These results demonstrate the presence of enduring amorphous phases with a dramatic influence on the physical and chemical properties of the mature mineralized tissue.

  19. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties.

    Science.gov (United States)

    Rode, Ambadas B; Endoh, Tamaki; Sugimoto, Naoki

    2015-01-12

    Riboswitch-mediated control of gene expression depends on ligand binding properties (kinetics and affinity) of its aptamer domain. A detailed analysis of interior regions of the aptamer, which affect the ligand binding properties, is important for both understanding natural riboswitch functions and for enabling rational design of tuneable artificial riboswitches. Kinetic analyses of binding reaction between flavin mononucleotide (FMN) and several natural and mutant aptamer domains of FMN-specific riboswitches were performed. The strong dependence of the dissociation rate (52.6-fold) and affinity (100-fold) on the identities of base pairs in the aptamer stem suggested that the stem region, which is conserved in length but variable in base-pair composition and context, is the tuning region of the FMN-specific aptamer. Synthetic riboswitches were constructed based on the same aptamer domain by rationally modifying the tuning regions. The observed 9.31-fold difference in the half-maximal effective concentration (EC50) corresponded to a 11.6-fold difference in the dissociation constant (K(D)) of the aptamer domains and suggested that the gene expression can be controlled by rationally adjusting the tuning regions.

  20. Hydrothermal synthesis and properties of controlled α-Fe2O3 nanostructures in HEPES solution.

    Science.gov (United States)

    Li, Hui; Lu, Zhong; Li, Qin; So, Man-Ho; Che, Chi-Ming; Chen, Rong

    2011-09-05

    A facile, template-free, and environmentally friendly hydrothermal strategy was explored for the controllable synthesis of α-Fe(2)O(3) nanostructures in HEPES solution (HEPES=2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid). The effects of experimental parameters including HEPES/FeCl(3) molar ratio, pH value, reaction temperature, and reaction time on the formation of α-Fe(2)O(3) nanostructures have been investigated systematically. Based on the observations of the products, the function of HEPES in the reaction is discussed. The different α-Fe(2)O(3) nanostructures possess different optical, magnetic properties, and photocatalytic activities, depending on the shape and size of the sample. In addition, a novel and facile approach was developed for the synthesis of Au/α-Fe(2)O(3) and Ag/α-Fe(2)O(3) nanocomposites in HEPES buffer solution; this verified the dual function of HEPES both as reductant and stabilizer. This work provides a new strategy for the controllable synthesis of transition metal oxide nanostructures and metal-supported nanocomposites, and gives a strong evidence of the relationship between the property and morphology/size of nanomaterials.

  1. Single muscle fibre contractile properties differ between body-builders, power athletes and control subjects.

    Science.gov (United States)

    Meijer, J P; Jaspers, R T; Rittweger, J; Seynnes, O R; Kamandulis, S; Brazaitis, M; Skurvydas, A; Pišot, R; Šimunič, B; Narici, M V; Degens, H

    2015-11-01

    What is the central question of this study? Do the contractile properties of single muscle fibres differ between body-builders, power athletes and control subjects? What is the main finding and its importance? Peak power normalized for muscle fibre volume in power athletes is higher than in control subjects. Compared with control subjects, maximal isometric tension (normalized for muscle fibre cross-sectional area) is lower in body-builders. Although this difference may be caused in part by an apparent negative effect of hypertrophy, these results indicate that the training history of power athletes may increase muscle fibre quality, whereas body-building may be detrimental. We compared muscle fibre contractile properties of biopsies taken from the vastus lateralis of 12 body-builders (BBs; low- to moderate-intensity high-volume resistance training), six power athletes (PAs; high-intensity, low-volume combined with aerobic training) and 14 control subjects (Cs). Maximal isotonic contractions were performed in single muscle fibres, typed with SDS-PAGE. Fibre cross-sectional area was 67 and 88% (P power (PP) of PA fibres was 58% higher than that of BB fibres (P < 0.05), whereas BB fibres, despite considerable hypertrophy, had similar PP to the C fibres. This work suggests that high-intensity, low-volume resistance training with aerobic exercise improves PP, while low- to moderate-intensity high-volume resistance training does not affect PP and results in a reduction in specific tension. We postulate that the decrease in specific tension is caused by differences in myofibrillar density and/or post-translational modifications of contractile proteins. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  2. Effects of sodium on electrical properties in Cu2ZnSnS4 single crystal

    Science.gov (United States)

    Nagaoka, Akira; Miyake, Hideto; Taniyama, Tomoyasu; Kakimoto, Koichi; Nose, Yoshitaro; Scarpulla, Michael A.; Yoshino, Kenji

    2014-04-01

    We have studied the effect of sodium on the electrical properties of Cu2ZnSnS4 (CZTS) single crystal by using temperature dependence of Hall effect measurement. The sodium substitution on the cation site in CZTS is observed from the increasing of unit-cell size by powder X-ray diffraction. Sodium increases the effective hole concentration and makes the thermal activation energy smaller. The degree of compensation decreases with sodium incorporation, thus the hole mobility is enhanced. We revealed that sodium is important dopant in CZTS to control the electrical properties.

  3. Controlling dielectric and pyroelectric properties of compositionally graded ferroelectric rods by an applied pressure

    Science.gov (United States)

    Zheng, Yue; Woo, C. H.; Wang, Biao

    2007-06-01

    The polarization, charge offset, dielectric, and pyroelectric properties of a compositionally graded ferroelectric rod inside a high-pressure polyethylene tube are studied using a thermodynamic model based on the Landau-Ginzburg-Devonshire formulation. The calculated distribution of the polarization in the rod is nonuniform, and the corresponding charge offset, dielectric, and pyroelectric properties vary according to the applied pressure. This behavior may be used as a convenient means to control these properties for design optimization.

  4. Effect of microscopic disorder on magnetic properties of metamaterials.

    Science.gov (United States)

    Gorkunov, Maxim V; Gredeskul, Sergey A; Shadrivov, Ilya V; Kivshar, Yuri S

    2006-05-01

    We analyze the effect of microscopic disorder on the macroscopic properties of composite metamaterials and study how weak statistically independent fluctuations of the parameters of the structure elements can modify their collective magnetic response and left-handed properties. We demonstrate that even a weak microscopic disorder may lead to a substantial modification of the metamaterial magnetic properties, and a 10% deviation in the parameters of the microscopic resonant elements may lead to a substantial suppression of the wave propagation in a wide frequency range. A noticeable suppression occurs also if more than 10% of the resonant magnetic elements possess strongly different properties, and in the latter case the defects can create an additional weak resonant line. These results are of a key importance for characterizing and optimizing novel composite metamaterials with the left-handed properties at terahertz and optical frequencies.

  5. Silicon nanocrystals on amorphous silicon carbide alloy thin films: Control of film properties and nanocrystals growth

    Energy Technology Data Exchange (ETDEWEB)

    Barbe, Jeremy, E-mail: jeremy.barbe@hotmail.com [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); Xie, Ling; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden); Faucherand, Pascal; Morin, Christine; Rapisarda, Dario; De Vito, Eric [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Makasheva, Kremena; Despax, Bernard [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, 31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France); Perraud, Simon [CEA, Liten, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2012-11-01

    The present study demonstrates the growth of silicon nanocrystals on amorphous silicon carbide alloy thin films. Amorphous silicon carbide films [a-Si{sub 1-x}C{sub x}:H (with x < 0.3)] were obtained by plasma enhanced chemical vapor deposition from a mixture of silane and methane diluted in hydrogen. The effect of varying the precursor gas-flow ratio on the film properties was investigated. In particular, a wide optical band gap (2.3 eV) was reached by using a high methane-to-silane flow ratio during the deposition of the a-Si{sub 1-x}C{sub x}:H layer. The effect of short-time annealing at 700 Degree-Sign C on the composition and properties of the layer was studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. It was observed that the silicon-to-carbon ratio in the layer remains unchanged after short-time annealing, but the reorganization of the film due to a large dehydrogenation leads to a higher density of SiC bonds. Moreover, the film remains amorphous after the performed short-time annealing. In a second part, it was shown that a high density (1 Multiplication-Sign 10{sup 12} cm{sup -2}) of silicon nanocrystals can be grown by low pressure chemical vapor deposition on a-Si{sub 0.8}C{sub 0.2} surfaces at 700 Degree-Sign C, from silane diluted in hydrogen. The influence of growth time and silane partial pressure on nanocrystals size and density was studied. It was also found that amorphous silicon carbide surfaces enhance silicon nanocrystal nucleation with respect to SiO{sub 2}, due to the differences in surface chemical properties. - Highlights: Black-Right-Pointing-Pointer Silicon nanocrystals (Si-NC) growth on amorphous silicon carbide alloy thin films Black-Right-Pointing-Pointer Plasma deposited amorphous silicon carbide films with well-controlled properties Black-Right-Pointing-Pointer Study on the thermal effect of 700 Degree-Sign C short-time annealing on the layer properties Black-Right-Pointing-Pointer Low pressure

  6. The effect of varying path properties in path steering tasks

    NARCIS (Netherlands)

    Liu, L.; Liere, R. van

    2010-01-01

    Path steering is a primitive 3D interaction task that requires the user to navigate through a path of a given length and width. In a previous paper, we have conducted controlled experiments in which users operated a pen input device to steer a cursor through a 3D path subject to fixed path propertie

  7. Frequency Properties Research of Elevator Drive System with Direct Torque Control-Pulse with Modulation

    Directory of Open Access Journals (Sweden)

    A. S. Koval

    2008-01-01

    Full Text Available In the article problems of frequency properties research for electric drive system with direct torque control and pulse width modulator are described. The mathematical description of elevator is present. Simplified mathematical description of direct torque control - pulse width modulator electric drive system is shown. Transfer functions for torque and speed loops are determined. Logarithmic frequency characteristics are computed. Damping properties of elevator drive system are estimated.

  8. Crystallisation of energetic materials: The effect on stability,sensitivity and processing properties

    NARCIS (Netherlands)

    Meulenbrugge, J.J.; Steen, A.C. van der; Heijden, A.E.D.M. van der

    1995-01-01

    Resuits are presented from HNF and RDX ciystallisation experiments and the effect thereof on the properties of these materials. Control of the crystallisation process for HNF will improve the particle shape, the stability and the processability. Other parameters, like sensitivity, are much better

  9. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Akhtari, Keivan [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Soltanian, Saied [Department of Physics, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2013-07-01

    Electrodeposited cobalt oxide nanostructures were prepared by Repetitive Triangular Potential Scans (RTPS) as a simple, remarkably fast and scalable potentiodynamic method. Electrochemical deposition of cobalt oxide nanostructures onto GC electrode was performed from aqueous Co(NO{sub 3}){sub 2}, (pH 6) solution using cyclic voltammetry method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology of fabricated nanostructures. The evaluation of electrochemical properties of deposited films was performed using cyclic voltametry (CV) and impedance spectroscopy (IS) techniques. The analysis of the experimental data clearly showed that the variations of potential scanning ranges during deposition process have drastic effects on the geometry, chemical structure and particle size of cobalt oxide nanoparticles. In addition, the electrochemical and electrocatalytic properties of prepared nanostructures can be controlled through applying different potential windows in electrodeposition process. The imaging and voltammetric studies suggested to the existence of at least three different shapes of cobalt-oxide nanostructures in various potential windows applied for electrodeposition. With enlarging the applied potential window, the spherical-like cobalt oxide nanoparticles with particles sizes about 30–50 nm changed to the grain-like structures (30 nm × 80 nm) and then to the worm-like cobalt oxide nanostructures with 30 nm diameter and 200–400 nm in length. Furthermore, the roughness of the prepared nanostructures increased with increasing positive potential window. The GC electrodes modified with cobalt oxide nanostructures shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} and As (III) oxidation. The electrocatalytic activity of cobalt oxide nanostructures prepared at more positive potential window toward hydrogen peroxide oxidation was increased, while for As(III) oxidation the electrocatalytic

  10. Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays.

    Science.gov (United States)

    Han, Ning; Yang, Zai-Xing; Wang, Fengyun; Yip, SenPo; Li, Dapan; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2016-06-28

    In recent years, despite significant progress in the synthesis, characterization, and integration of various nanowire (NW) material systems, crystal orientation controlled NW growth as well as real-time assessment of their growth-structure-property relationships still presents one of the major challenges in deploying NWs for practical large-scale applications. In this study, we propose, design, and develop a multilayer NW printing scheme for the determination of crystal orientation controlled photovoltaic properties of parallel GaAs NW arrays. By tuning the catalyst thickness and nucleation and growth temperatures in the two-step chemical vapor deposition, crystalline GaAs NWs with uniform, pure ⟨110⟩ and ⟨111⟩ orientations and other mixture ratios can be successfully prepared. Employing lift-off resists, three-layer NW parallel arrays can be easily attained for X-ray diffraction in order to evaluate their growth orientation along with the fabrication of NW parallel array based Schottky photovoltaic devices for the subsequent performance assessment. Notably, the open-circuit voltage of purely ⟨111⟩-oriented NW arrayed cells is far higher than that of ⟨110⟩-oriented NW arrayed counterparts, which can be interpreted by the different surface Fermi level pinning that exists on various NW crystal surface planes due to the different As dangling bond densities. All this indicates the profound effect of NW crystal orientation on physical and chemical properties of GaAs NWs, suggesting the careful NW design considerations for achieving optimal photovoltaic performances. The approach presented here could also serve as a versatile and powerful platform for in situ characterization of other NW materials.

  11. Electric field control of the magnetocaloric effect.

    Science.gov (United States)

    Gong, Yuan-Yuan; Wang, Dun-Hui; Cao, Qing-Qi; Liu, En-Ke; Liu, Jian; Du, You-Wei

    2015-02-04

    Through strain-mediated magnetoelectric coupling, it is demonstrated that the magnetocaloric effect of a ferromagnetic shape-memory alloy can be controlled by an electric field. Large hysteresis and the limited operating temperature region are effectively overcome by applying an electric field on a laminate comprising a piezoelectric and the alloy. Accordingly, a model for an active magnetic refrigerator with high efficiency is proposed in principle.

  12. Properties of Strange Matter in a Model with Effective Lagrangian

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; SU Ru-Keng; SONG Hong-Qiu; ZHANG Li-Liang

    2001-01-01

    The strange hadronic matter with nucleons, A-hyperons and E-hyperons is studied by using an effective nuclear model in a mean-field approximation. The density and strangeness fraction dependence of the effective baryon masses as well as the saturation properties and stabilities of the strange hadronic matter are discussed.``

  13. Controlled release of antibiotics encapsulated in the electrospinning polylactide nanofibrous scaffold and their antibacterial and biocompatible properties

    Science.gov (United States)

    Wang, Shu-Dong; Zhang, Sheng-Zhong; Liu, Hua; Zhang, You-Zhu

    2014-04-01

    In this research, the drug loaded polylactide nanofibers are fabricated by electrospinning. Morphology, microstructure and mechanical properties are characterized. Properties and mechanism of the controlled release of the nanofibers are investigated. The results show that the drug loaded polylactide nanofibers do not show dispersed phase, and there is a good compatibility between polylactide and drugs. FTIR spectra show that drugs are encapsulated inside the polylactide nanofibers, and drugs do not break the structure of polylcatide. Flexibility of drug loaded polylactide scaffolds is higher than that of the pure polylactide nanofibers. Release rate of the drug loaded nanofibers is significantly slower than that of the drug powder. Release rate increases with the increase of the drugs’ concentration. The research mechanism suggests a typical diffusion-controlled release of the three loaded drugs. Antibacterial and cell culture show that drug loaded nanofibers possess effective antibacterial activity and biocompatible properties.

  14. EFFECT OF MODAL COLLOIDAL SUBSTANCES ON THE PROPERTIES OF NEWSPRINT

    Institute of Scientific and Technical Information of China (English)

    Liying Qian; Xiangmin Wang; Beihai He; Guanglei Zhao

    2004-01-01

    In this paper, modal colloidal substances (MCS)were employed to study the effects of in-process colloid on the properties of newsprint. The adsorption of MCS on fibers and optical and physical properties of newsprint were both investigated with and without retention systems including agglomerating agent and flocculent. Results showed that MCS could be absorbed on the fibers without retention system, and retention systems could promote the MCS retention efficiency while the physical properties of sheets was affected by blocking the formation of hydrogen bonding between fibers and the surface tension of water and density of paper decreased

  15. EFFECT OF MODAL COLLOIDAL SUBSTANCES ON THE PROPERTIES OF NEWSPRINT

    Institute of Scientific and Technical Information of China (English)

    LiyingQian; XiangminWang; BeihaiHe; GuangleiZhao

    2004-01-01

    In this paper, modal colloidal substances (MCS)were employed to study the effects of in-process colloid on the properties of newsprint. The adsorption ofMCS on fibers and optical and physical properties ofnewsprint were both investigated with and withoutretention systems including agglomerating agent andflocculent. Results showed that MCS could be absorbed on the fibers without retention system, and retention systems could promote the MCS retention efficiency while the physical properties of sheets wasaffected by blocking the formation of hydrogen bonding between fibers and the surface tension ofwater and density of paper decreased

  16. Effects of titanium coating on property of diamond

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The titanium film was coated on the surface of diamond crystal in order to improve the chemical properties of diamond and the effect of titanium coating on the property of diamond was discussed. The anti-impacting strength, the oxidization process and the soakage property between vitrified bond and diamond were investigated. It is found that, when the titanium film is coated on the surface of diamond crystal, the soakage angle between vitrified bond and diamond decreases from 39.5° to 34.5° at 993 K, and the oxidization degree on the surface of diamonds is lowered greatly.

  17. Studying laser radiation effect on steel structure and properties

    Directory of Open Access Journals (Sweden)

    А. М. Gazaliyev

    2016-07-01

    Full Text Available There was studied the effect of laser radiation on the structure and properties of annealed and tempered steel with different content of carbon. For surface hardening there was used a laser complex equipped with Nd: YAG pulse laser with power density up to 30 kW/сm2. As a result of the carried-out studies there were calculated characteristics of laser, steel microstructure and properties.

  18. Controllable proximity effect in superconducting hybrid devices

    NARCIS (Netherlands)

    Bakurskiy, Sergey

    2015-01-01

    This thesis is devoted to the study of controllable proximity effects in superconductors, both in terms of fundamental aspects and applications. As a part of this thesis theoretical description was suggested for a number of structures with superconducting electrodes and multiple interlayers. These s

  19. Effects of different chemical additives on biodiesel fuel properties and engine performance. A comparison review

    Directory of Open Access Journals (Sweden)

    Ali Obed Majeed

    2016-01-01

    Full Text Available Biodiesel fuel can be used as an alternative to mineral diesel, its blend up to 20% used as a commercial fuel for the existing diesel engine in many countries. However, at high blending ratio, the fuel properties are worsening. The feasibility of pure biodiesel and blended fuel at high blending ratio using different chemical additives has been reviewed in this study. The results obtained by different researchers were analysed to evaluate the fuel properties trend and engine performance and emissions with different chemical additives. It found that, variety of chemical additives can be utilised with biodiesel fuel to improve the fuel properties. Furthermore, the chemical additives usage in biodiesel is inseparable both for improving the cold flow properties and for better engine performance and emission control. Therefore, research is needed to develop biodiesel specific additives that can be adopted to improve the fuel properties and achieve best engine performance at lower exhaust emission effects.

  20. Effect of acetylation, oxidation and annealing on physicochemical properties of bean starch.

    Science.gov (United States)

    Simsek, Senay; Ovando-Martínez, Maribel; Whitney, Kristin; Bello-Pérez, Luis A

    2012-10-15

    Black and Pinto bean starches were physically and chemically modified to investigate the effect of modification on digestibility and physicochemical properties of bean starch. The impact of acetylation, oxidation (ozonation) and annealing on the chemical composition, syneresis, swelling volume, pasting, thermal properties and digestibility of starches was evaluated. The physicochemical and estimated glycemic index (eGI) of the Black and Pinto bean starches treated with ozone were not significantly (P>0.05) different than that of their respective control starches. Annealed starches had improved thermal and pasting properties compared to native starches. Acetylated starches presented reduced syneresis, good pasting properties and lower eGI. Also, all modified starches had increased levels of resistant starch (RS). Therefore, the digestibility and physicochemical properties of bean starch were affected by the type of modification but there were no significant (P>0.05) differences between the Black and Pinto bean starches.

  1. Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Sumeet Kumar

    2015-02-01

    Full Text Available In the present study, monodispersed CeO2 nanoparticles (NPs of size 8.5 ± 1.0, 11.4 ± 1.0 and 15.4 ± 1.0 nm were synthesized using the sol-gel method. Size-dependent structural, optical and magnetic properties of as-prepared samples were investigated by X-ray diffraction (XRD, field emission scanning electron microscope (FE-SEM, high resolution transmission electron microscopy (HR-TEM, ultra-violet visible (UV-VIS spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM measurements. The value of optical band gap is calculated for each particle size. The decrease in the value of optical band gap with increase of particle size may be attributed to the quantum confinement, which causes to produce localized states created by the oxygen vacancies due to the conversion of Ce4+ into Ce3+ at higher calcination temperature. The Raman spectra showed a peak at ∼461 cm-1 for the particle size 8.5 nm, which is attributed to the 1LO phonon mode. The shift in the Raman peak could be due to lattice strain developed due to variation in particle size. Weak ferromagnetism at room temperature is observed for each particle size. The values of saturation magnetization (Ms, coercivity (Hc and retentivity (Mr are increased with increase of particle size. The increase of Ms and Mr for larger particle size may be explained by increase of density of oxygen vacancies at higher calcination temperature. The latter causes high concentrations of Ce3+ ions activate more coupling between the individual magnetic moments of the Ce ions, leading to an increase of Ms value with the particle size. Moreover, the oxygen vacancies may also produce magnetic moment by polarizing spins of f electrons of cerium (Ce ions located around oxygen vacancies, which causes ferromagnetism in pure CeO2 samples.

  2. Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sumeet; Ojha, Animesh K. [Department of Physics, Motilal Nehru National Institute of Technology, Allahabad-211004 (India); Srivastava, Manish, E-mail: 84.srivastava@gmail.com, E-mail: manish-mani84@rediffmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Singh, Jay [Department of Applied Chemistry and Polymer Technology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042 (India); Layek, Samar [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Yashpal, Madhu [Electron Microscope Facility, Department of Anatomy Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005 (India); Materny, Arnulf [Center for Functional Materials and Nanomolecular Science, Jacobs University Bremen, Campus Ring, 28759 Bremen (Germany)

    2015-02-15

    In the present study, monodispersed CeO{sub 2} nanoparticles (NPs) of size 8.5 ± 1.0, 11.4 ± 1.0 and 15.4 ± 1.0 nm were synthesized using the sol-gel method. Size-dependent structural, optical and magnetic properties of as-prepared samples were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), high resolution transmission electron microscopy (HR-TEM), ultra-violet visible (UV-VIS) spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM) measurements. The value of optical band gap is calculated for each particle size. The decrease in the value of optical band gap with increase of particle size may be attributed to the quantum confinement, which causes to produce localized states created by the oxygen vacancies due to the conversion of Ce{sup 4+} into Ce{sup 3+} at higher calcination temperature. The Raman spectra showed a peak at ∼461 cm{sup -1} for the particle size 8.5 nm, which is attributed to the 1LO phonon mode. The shift in the Raman peak could be due to lattice strain developed due to variation in particle size. Weak ferromagnetism at room temperature is observed for each particle size. The values of saturation magnetization (Ms), coercivity (Hc) and retentivity (Mr) are increased with increase of particle size. The increase of Ms and Mr for larger particle size may be explained by increase of density of oxygen vacancies at higher calcination temperature. The latter causes high concentrations of Ce{sup 3+} ions activate more coupling between the individual magnetic moments of the Ce ions, leading to an increase of Ms value with the particle size. Moreover, the oxygen vacancies may also produce magnetic moment by polarizing spins of f electrons of cerium (Ce) ions located around oxygen vacancies, which causes ferromagnetism in pure CeO{sub 2} samples.

  3. Nanostructured Biomaterials with Controlled Properties Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Petcu C

    2009-01-01

    Full Text Available Abstract Magnetic nanoparticles were obtained using an adjusted Massart method and were covered in a layer-by-layer technique with hydrogel-type biocompatible shells, from chitosan and hyaluronic acid. The synthesized nanocomposites were characterized using dynamic light scattering, transmission electron microscopy, and Fourier transformed infrared spectroscopy. Biocompatibility of magnetic nanostructures was determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide cell proliferation assay, swelling tests, and degradation tests. In addition, interaction of hydrogel-magnetic nanoparticles with microorganisms was studied. The possibility of precise nanoparticles size control, as long as the availability of bio-compatible covering, makes them suitable for biomedical applications.

  4. Field Observations of the Effects of Explosives on Snow Properties

    Science.gov (United States)

    Wooldridge, R.; Hendrikx, J.; Miller, D. A.; Birkeland, K.

    2012-12-01

    Explosives are a critically important component of avalanche control programs. They are used to both initiate avalanches and to test snowpack instability by ski areas, highway departments and other avalanche programs around the world. Current understanding of the effects of explosives on snow is mainly limited to shock wave behavior demonstrated through stress wave velocities, pressures and attenuation. This study seeks to enhance current knowledge of how explosives physically alter snow by providing practical, field-based observations and analyses that quantify the effect of explosives on snow density, snow hardness and snow stability test results. Density, hardness and stability test results were evaluated both before and after the application of 0.9 kg cast pentolite boosters as air blasts. Changes in these properties were evaluated at specified distances up to 4 meters (m) from the blast center using a density gauge, hand hardness, Compression Tests (CTs), and Extended Column Tests (ECTs). Statistically significant density increases occurred out to a distance of 1.5 m from the blast center and down to a depth of 60 centimeters (cm). Statistically significant density increases were also observed at the surface (down to 20 cm) out to a distance of 4 m. Hardness increased slightly at the surface and at the bottom of the snowpack (depths of 80-100 cm), while decreasing slightly in the middle of the snowpack (depths of 30-60 cm). Results from CTs showed a decrease in the number of taps needed for column failure in the post explosive tests, while a smaller data set of ECT results showed no overall change in ECT score. The findings of this study provide a better understanding of the physical changes in snow following explosives, which may lead to more effective and efficient avalanche risk mitigation.

  5. Hybrid gels assembled from Fmoc-amino acid and graphene oxide with controllable properties.

    Science.gov (United States)

    Xing, Pengyao; Chu, Xiaoxiao; Li, Shangyang; Ma, Mingfang; Hao, Aiyou

    2014-08-04

    A supramolecular gel is obtained from the self-assembly of an ultralow-molecular-weight gelator (N-fluorenyl-9-methoxycarbonyl glutamic acid) in good and poor solvents. The gelators can self-assemble into a lamellar structure, which can further form twisted fibers and nanotubes in the gel phase. Rheological studies show that the gels are robust and rigid, and are able to rapidly self-recover to a gel after being destroyed by shear force. Fluorescence experiments reveal the aggregation-induced emission effects of the gel system; the fluorescence intensity is significantly enhanced by gel formation. Graphene oxide (GO) is introduced into the system efficiently to give a hybrid material, and the interaction between gelators-GO sheets is studied. Rheological and fluorescent studies imply that the mechanical properties and the fluorescent emission of the hybrid materials can be fine-tuned by controlling the addition of GO.

  6. Shape controlled synthesis and tribological properties of CeVO4 nanoparticles as lubricating additive

    Institute of Scientific and Technical Information of China (English)

    LIU Fengzhen; SHAO Xin; YIN Yibin; ZHAO Limin; SHAO Zhuwei; LIU Xuehua; MENG Xianhua

    2011-01-01

    Shape controlled structure of CeVO4 nanocrystals were successfully synthesized via a hydrothermal method from Na3VO4· 12H2O and Ce(NO3)3·6H2O.The resulting products were characterized by X-ray powder diffraction (XRD),electron microscopy (SEM) and other techniques.On the basis of the experimental results,CeVO4 nanoparticles exhibited the crystal tetragonal structure and the pH value of solution had an important effect on the crystal structure and morphology of CeVO4 nanoparticles.Furthermore,the tribological properties of CeVO4 nanoparticles as additives in liquid paraffin were evaluated on a four-ball tester.The results indicated that the wear resistance was improved by the additive CeVO4 nanoparticles which exhibited very good antiwear and friction reduction performance in wear.

  7. Controlling growth of ZnO rods by polyvinylpyrrolidone (PVP) and their optical properties

    Science.gov (United States)

    Wei, S. F.; Lian, J. S.; Jiang, Q.

    2009-05-01

    ZnO rods with different morphologies were synthesized through a wet chemical method by addition of polyvinylpyrrolidone (PVP). By adjusting the concentration of the additive in the growth solution, we can control the diameter, ratio of length to diameter and density of ZnO rods. FESEM images showed that the rods in nanoscale could be obtained at the polyvinylpyrrolidone concentration of 1.0 mM. Meanwhile, the resonant Raman scattering and photoluminescence spectra showed that the crystalline quality and the optical property of ZnO rods were improved through moderate addition of polyvinylpyrrolidone (concentration of 1.0 mM) in the growth solution. In addition, the possible mechanism of the PVP effect on the growth of ZnO rods was discussed based on the FT-IR spectra.

  8. Effective electromechanical properties of cellular piezoelectret: A review

    Institute of Scientific and Technical Information of China (English)

    Yong-Ping Wan; Zheng Zhong

    2012-01-01

    Due to the large quasi-piezoelectric d33 coefficient in the film thickness direction,cellular piezoelectret has emerged as a new kind of compliant electromechanical transducer materials.The macroscopic piezoelectric effect of cellular piezoelectret is closely related to the void microstructures as well as the material constants of host polymer.Complex void microstructures are usually encountered in the optimum design of cellular piezoelectret polymer film with advanced piezoelectric properties.Analysis of the effective electromechanical properties is generally needed.This article presents an overview of the recent progress on theoretical models and numerical simulation for the effective electromechanical properties of cellular piezoelectret.Emphasis is placed on our own works of cellular piezoelectret published in past several years.

  9. Properties and controlled release of chitosan microencapsulated limonene oil

    Directory of Open Access Journals (Sweden)

    Jefferson M. Souza

    2014-12-01

    Full Text Available Chitosan microcapsules containing limonene essential oil as active ingredient were prepared by coacervation using three different concentrations of NaOH (0.50, 1.00, 1.45 wt% and fixed concentrations of chitosan and surfactant of 0.50 wt%. The produced microcapsules were fully characterized in their morphology and chemical composition, and the kinetic release analysis of the active ingredient was evaluated after deposition in a non-woven cellulose fabric. The concentration of 1.00 and 1.45 wt% clearly show the best results in terms of dimension and shape of the microcapsules as well as in the volatility results. However, at the concentration of 1 wt% a higher number of microcapsules were produced as confirmed by FTIR and EDS analysis. Free microcapsules are spherical in size with disperse diameters between 2 and 12 μm. Immobilized microcapsules showed sizes from 4 to 7 μm, a rough surface and loss of spherical shape with pore formation in the chitosan walls. SEM analysis confirms that at higher NaOH concentrations, the larger the size of the microcapsules. This technique shows that by tuning NaOH concentration it is possible to efficiently control the release rate of encapsulated active agents demonstrating great potential as insect repellent for textiles.

  10. Photocatalytic Properties of Size-Controlled Titania Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Takeshi Hashishin

    2011-01-01

    Full Text Available The titania nanotube arrays (TNAs with smooth surface was synthesized by anodization of titanium foil with 3 cm2 in square area using the electrolyte composed of 0.2 wt% NH4F and 0.5 vol% H2SO4 in ethylene glycol in order to evaluate the methylene blue photodegradation under ultra-violet irradiation. The tube length and inner diameter as a size parameter were controlled by the anodization time from 5 to 10 h and applied voltage from 10 to 50 V. The titania nanotube arrays (TNAs annealed at 300 to 500°C were assigned to anatase phase, and TNAs at 600°C had both phase of anatase and rutile. The crystallite size and the apparent rate constant were increased with the increase in the annealing temperature of TNAs from 300 to 500°C. The bigger crystallite size of TNAs is suggested to be related to the increase in the amount of hole at the valence band, leading to the decrease in the apparent rate constant of MB degradation. Interestingly, the four kinds of linear relationship with the apparent rate constant were seen in both the inner diameter of TNAs and the length. Consequently, the apparent rate constant strongly depended on inner diameter of TNAs.

  11. Effect of Somatosensory Impairments on Balance Control

    Directory of Open Access Journals (Sweden)

    Alireza Hassanpour

    2012-10-01

    Full Text Available Background and Aim: The somatosensory system is one of the most effective systems in balance control. It consists of peripheral and central components. Knowing the role of these components in balance control assists the developing of effective rehabilitation protocols. In some diseases peripheral components and in others central components are impaired. This paper reviews the effect of impairment of peripheral and central components of the somatosensory system on balance control.Methods: In this study publication about somatosensory impairments from 1983 through 2011 in PubMed, Scopus, ProQuest, Google Scholar, Iran Medex, Iran Doc and Magiran were reviewed. Medical subject headings terms and keywords related to balance, somatosensory, somatosensory loss, and sensory integration/processing were used to perform the searches.Conclusion: Somatosensory impairments either with peripheral or central origin, can cause problems in balance control. However, these problems are not considered in some patients. In these impairments, balance training is recommended to be used alongside other routine treatments in the patients' rehabilitation programs.

  12. Piezo Voltage Controlled Planar Hall Effect Devices

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  13. Piezo Voltage Controlled Planar Hall Effect Devices.

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  14. The effects of variability in bank material properties on riverbank stability: Goodwin Creek, Mississippi

    Science.gov (United States)

    Parker, Chris; Simon, Andrew; Thorne, Colin R.

    2008-11-01

    Bank retreat is an important area of research within fluvial geomorphology and is a land management problem of global significance. The Yazoo River Basin in Mississippi is one example of a system which is experiencing excessive erosion and bank instability. The properties of bank materials are important in controlling the stability of stream banks and past studies have found that these properties are often variable spatially. Through an investigation of bank material properties on a stretch of Goodwin Creek in the Yazoo Basin, Mississippi, this study focuses on: i) how and why effective bank material properties vary through different scales; ii) how this variation impacts on the outputs from a bank stability model; and iii) how best to appropriately represent this variability within a bank stability model. The study demonstrates the importance that the variability of effective bank material properties has on bank stability: at both the micro-scale within a site, and at the meso-scale between sites in a reach. This variability was shown to have important implications for the usage of the Bank Stability and Toe Erosion Model (BSTEM), a deterministic bank stability model that currently uses a single value to describe each bank material property. As a result, a probabilistic representation of effective bank material strength parameters is recommended as a potential solution for any bank stability model that wishes to account for the important influence of the inherent variability of soil properties.

  15. ON THE PERSISTENT PROPERTY OF A DELAYED NON-AUTONOMOUS SCHOENER MODEL WITH FEEDBACK CONTROL

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    We study a delayed non-autonomous Schoener model with feedback control, which was proposed by Qiming Liu, Rui Xu and Pinghua Yang [8]. By applying a differential inequality and some analysis technique, we show that under some suitable assumptions, the feedback control variable has no influence on the persistent property of the system. Our result improves the existing ones.

  16. Improved antimicrobial property and controlled drug release kinetics of silver sulfadiazine loaded ordered mesoporous silica

    Directory of Open Access Journals (Sweden)

    Suman Jangra

    2016-09-01

    Full Text Available The present study deals with the loading of silver sulfadiazine into ordered mesoporous silica material by post-impregnation method and its effect on the in vitro release kinetics and antimicrobial property of the drug. The formulated SBA-15 silica material with rope-like morphology and SBA-15-silver sulfadiazine (SBA-AgSD were characterized by UV–visible spectrophotometer, small and wide-angle powder X-ray diffraction (PXRD, field emission scanning electron microscope (FESEM and high resolution transmission electron microscope (HRTEM. Thermo-gravimetric analysis of SBA-AgSD revealed a high loading amount of 52.87%. Nitrogen adsorption–desorption analysis confirmed the drug entrapment into host material by revealing a reduced surface area (214 m2/g and pore diameter (6.7 nm of the SBA-AgSD. The controlled release of silver sulfadiazine drug from the mesoporous silica to simulated gastric, intestinal and body fluids was evaluated. The Korsmeyer–Peppas model fits the drug release data with the non-Fickian diffusion model and zero order kinetics of SBA-AgSD. The antibacterial performance of the SBA-AgSD was evaluated with respect to Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa. The controlled drug delivery of the SBA-AgSD revealed improved antibacterial activity, thus endorsing its applicability in effective wound dressing.

  17. Effect of Osthole on the Control of Listeriosis

    Directory of Open Access Journals (Sweden)

    Abkhoo

    2016-06-01

    Full Text Available Background Listeria monocytogenes is the causal agent of listeriosis, a foodborne infection. Objectives Osthole has antibacterial properties, but its mechanisms of action is still unknown. Materials and Methods Two millimoles of osthole was inoculated in the broth culture of Listeria monocytogenes. To study the mechanism of action, the ATP levels of cells were measured. Results Listeria monocytogenes was controlled using 2 mM of osthole. Treatment of L. monocytogenes by 2 mM osthole had no effect on the ATP level. Conclusions Probable mechanism of suppression of energy generation is suppression of the rise in glucose.

  18. Phase errors and their effect on undulator radiation properties

    Directory of Open Access Journals (Sweden)

    Richard P. Walker

    2013-01-01

    Full Text Available A detailed analysis is carried out of the various types of phase errors present in real undulator devices, and their statistical properties. The influence of phase errors on the radiation properties is also examined, distinguishing the effects on peak brightness and integrated flux, and including the effects of electron beam emittance and energy spread. The limitation of the usual expression for the reduction in intensity due to phase errors, based on the rms phase error, is explored, and a new parameter is introduced which correlates better with the reduction in integrated flux. The implications for operation of undulators in future lower emittance storage rings is also discussed.

  19. Cardiovascular effects of statins, beyond lipid-lowering properties.

    Science.gov (United States)

    Mihos, Christos G; Pineda, Andres M; Santana, Orlando

    2014-10-01

    The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, better known as 'statins', are amongst the most widely used medications in the world. They have become a pivotal component in the primary and secondary prevention of coronary artery and vascular disease. However, a growing amount of evidence has suggested that statins also possess strong pleiotropic effects irrespective of their lipid-lowering properties, which include enhancement of endothelial function, anti-inflammatory and anti-atherothrombotic properties, and immunomodulation. The following provides a comprehensive and updated review of the clinical evidence regarding the pleiotropic effects of statins in cardiovascular disorders and their potential therapeutic benefits.

  20. Effects of physicochemical properties of nanomaterials on their toxicity.

    Science.gov (United States)

    Li, Xiaoming; Liu, Wei; Sun, Lianwen; Aifantis, Katerina E; Yu, Bo; Fan, Yubo; Feng, Qingling; Cui, Fuzhai; Watari, Fumio

    2015-07-01

    Due to their unique size and properties, nanomaterials have numerous applications, which range from electronics, cosmetics, household appliances, energy storage, and semiconductor devices, to medical products such as biological sensors, drug carriers, bioprobes, and implants. Many of the promising properties of nanomaterials arise from their large surface to volume ratio and, therefore, nanobiomaterials that are implantable have a large contact area with the human body. Before, therefore, we can fully exploit nanomaterials, in medicine and bioengineering; it is necessary to understand how they can affect the human body. As a step in this direction, this review paper provides a comprehensive summary of the effects that the physicochemical properties of commonly used nanobiomaterials have on their toxicity. Furthermore, the possible mechanisms of toxicity are described with the aim to provide guidance concerning the design of the nanobiomaterials with desirable properties. © 2014 Wiley Periodicals, Inc.

  1. Structural properties of the material control and accounting system

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A unified digraph approach is proposed for the assessment of the structure of the MC and A System. The approach emphasizes the two structural aspects of the system: vulnerability and reliability. Vulnerability is defined as a possibility of loosing connectedness in a given structure due to line and/or node removals. It is purely deterministic notion which leads to a qualitative analysis of redundancy of connections in the corresponding system. Reliability of the MC and A System structure provides a more quantitative way of assessing how safe the system is to random failures of the links representing lines of communication, material paths, monitors, and the components of the power supply network. By assigning probabilities to the lines and nodes of the corresponding digraph, the least reliable path can be used as a measure of the goodness of the system, which can be computed by efficient shortest path algorithms. Both vulnerability and reliability considerations are important in determining the effect of tampering of an adversary with the elements of the MC and M System.

  2. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.

    Science.gov (United States)

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-12-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti2Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti2Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (>99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties.

  3. CuO nanostructures: optical properties and morphology control by pyridinium-based ionic liquids.

    Science.gov (United States)

    Sabbaghan, Maryam; Shahvelayati, Ashraf Sadat; Madankar, Kamelia

    2015-01-25

    Copper oxide nanostructures have been synthesized by a simple reflux method in aqueous medium of pyridinium based ionic liquids. The structural and optical properties of CuO nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectroscopy (PL) and UV-visible. The morphologies of the nanostructures can be controlled by changing the amount of NaOH and ionic liquids. The results show that the use identical pyridinium based ionic liquids in ratio of 4:1 NaOH/Cu(OAc)2⋅H2O yield minor differences in morphology of CuO nanostructures. Different morphologies of CuO nanostructures were obtained by changing the ratio NaOH/Cu(OAc)2⋅H2O to 2:1. Ionic liquids play an important role on optical properties of CuO nanostructures. The results of optical measurements of the CuO nanostructures illustrate that band gaps are estimated to be 1.67-1.85 eV. PL patterns studies show that the ionic liquids can be effect on PL patterns of the samples. The reasons of these phenomena are discussed.

  4. Control of optical and electrical properties of ZnO nanocrystals by nanosecond-laser annealing

    Science.gov (United States)

    Shimogaki, T.; Ofuji, T.; Tetsuyama, N.; Kawahara, H.; Higashihata, M.; Ikenoue, H.; Nakamura, D.; Okada, T.

    2014-03-01

    Effects of laser annealing on electrical and optical properties of Zinc oxide (ZnO) nanocrystals, which are expected as building blocks for optoelectronic devices, have been investigated in this study. In the case of fabricating p-n junction in single one-dimensional ZnO nanocrystal, phosphorus-ions implanted p-type ZnO nanocrystals were recrystallized and recovered in the optical properties by nanosecond-laser annealing using a KrF excimer laser. Antimony-doped p-type ZnO nanocrystals were synthesized by irradiating laminated structure which antimony thin film were deposited on ZnO nanocrystals with the laser beam. Additionally, it is possible to control the growth rate of ZnO nanowires by using laser annealing. Irradiating with pulsed laser a part of ZnO buffer layer deposited on the a-cut sapphire substrate, then ZnO nanowires were grown on the ZnO buffer layer by the nanoparticle assisted pulsed laser deposition method. As a result, the clear boundary of the laser annealed and non-laser annealed area was appeared. It was observed that ZnO nanowires were grown densely at non-laser annealed area, on the other hand, sparse ones were grown at the laser-annealed region. In this report, the possibility of laser annealing techniques to establish the stable and reliable fabrication process of ZnO nanowires-based LD and LED are discussed on the basis of experimental results.

  5. Single muscle fibre contractile properties differ between body-builders, power athletes and control subjects

    OpenAIRE

    Meijer, J.P; Jaspers, R.T.; Rittweger, Jörn; SEYNNES, OLIVIER R.; Kamandulis, Sigitas; Brazaitis, M.; Skurvydas, A.; Pisot, Rado; Šimunič, Boštjan; Narici, Maco V.; Degens, Hans

    2016-01-01

    What is the central question of this study? Do the contractile properties of single muscle fibres differ between body-builders, power athletes and control subjects? •What is the main finding and its importance? Peak power normalized for muscle fibre volume in power athletes is higher than in control subjects. Compared with control subjects, maximal isometric tension (normalized for muscle fibre cross-sectional area) is lower in body-builders. Although this difference may be cause...

  6. Fitts' law with an isometric controller: effects of order of control and control-display gain.

    Science.gov (United States)

    Kantowitz, B H; Elvers, G C

    1988-03-01

    Twenty-four male subjects performed a discrete positioning task using an isometric controller. Two levels of order of control (position and velocity) were factorially crossed with two levels of control-display gain. Fitts' law functions were found for each of the four conditions. The velocity control conditions had significantly steeper slopes than the corresponding position control conditions, but there was no main effect for gain. A predicted interaction between control-display gain and order of control was found, indicating that the relative benefit of high gain is greater for velocity control than for position control. The reaction time (RT) regression lines had steeper negative slopes than those attained by Jagacinski, Repperger, Moran, Ward, and Glass (1980), who used an isotonic controller. This is in agreement with the results of Falkenberg and Newell (1980), who found that as average velocity increases, RT decreases. The components of Fitts' law were investigated, and this showed that the RT finding was due to the amplitude of the target, which covaried with average velocity, but was not due to the width.

  7. Phosphatidylcholine (lecithin stimulating effect on pathogenic properties of pneumococcus

    Directory of Open Access Journals (Sweden)

    A. S. Kvetnaya

    2014-01-01

    Full Text Available The authors have studied the effect of phosphatidylcholine (lecithin - a derivative of choline - on the biological properties of streptococus pneumonia. The concentration of lecithin 0.01 g/l in a simple nutrient broth has a stimulating effect on proliferation, on in vitro stabilization of the population, and on pathogenic properties of the pneumococcus. Four - five times passaging of the strains on this medium (as opposed to the commonly used 20 % serum broth retained the species and the typical properties of pneumococcus, but led to increased capsule formation, increased virulence and expressed β-hemolytic activity. These results suggest that phosphatidylcholine (lecithin, as the main supplier of pneumococcus growth stimulant - choline, has an expressing impact on the capsule formation - the main pathogenic factor, and on the substance of P-teichoic acid in the cell wall of pneumococcus that specifically interacts with the C-reactive protein.

  8. Controlling In–Ga–Zn–O thin films transport properties through density changes

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarski, Jakub, E-mail: kaczmarski@ite.waw.pl [Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw (Poland); Boll, Torben [Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-412 96 Gothenburg (Sweden); Borysiewicz, Michał A. [Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw (Poland); Taube, Andrzej [Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of Microelectronics & Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw (Poland); Thuvander, Mattias; Law, Jia Yan [Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-412 96 Gothenburg (Sweden); Kamińska, Eliana [Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw (Poland); Stiller, Krystyna [Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-412 96 Gothenburg (Sweden)

    2016-06-01

    In the following study we investigate the effect of the magnetron cathode current (I{sub c}) during reactive sputtering of In–Ga–Zn–O (a-IGZO) on thin-films nanostructure and transport properties. All fabricated films are amorphous, according to X-ray diffraction measurements. However, High Resolution Transmission Electron Microscopy revealed the a-IGZO fabricated at I{sub C} = 70 mA to contain randomly-oriented nanocrystals dispersed in amorphous matrix, which disappear in films deposited at higher cathode current. These nanocrystals have the same composition as the amorphous matrix. One can observe that, while I{sub C} is increased from 70 to 150 mA, the carrier mobility improves from μ{sub Hall} = 6.9 cm{sup 2}/Vs to μ{sub Hall} = 9.1 cm{sup 2}/Vs. Additionally, the increase of I{sub C} caused a reduction of the depletion region trap states density of the Ru–Si–O/In–Ga–Zn–O Schottky barrier. This enhancement in transport properties is attributed to the greater overlapping of s-orbitals of the film-forming cations caused by increased density, evidenced by X-ray reflectivity, at a fixed chemical composition, regardless nanostructure of thin films. - Highlights: • Magnetron cathode current (I{sub C}) controls the transport properties of In–Ga–Zn–O (IGZO). • Low I{sub C} results in IGZO films with nanocrystalline inclusions in amorphous matrix. • High I{sub C} reduces the number of trap states in depletion region of Schottky contacts.

  9. Effect of hydrogen on mechanical properties of -titanium alloys

    Indian Academy of Sciences (India)

    H-J Christ; A Senemmar; M Decker; K Prüßner

    2003-06-01

    Conflicting opinions exist in the literature on the manner in which hydrogen influences the mechanical properties of -titanium alloys. This can be attributed to the -stabilizing effect of hydrogen in these materials leading to major changes in the microstructure as a result of hydrogen charging. The resulting (extrinsic) effect of hydrogen on the mechanical properties can possibly cover up the direct (intrinsic) influences. On the basis of experimentally determined thermodynamic and kinetic data regarding the interaction of hydrogen with -titanium alloys, hydrogen concentrations of up to 8 at.% were established in three commercial alloys by means of hydrogen charging from the gas phase. In order to separate intrinsic and extrinsic effects the charging was carried out during one step of the two-step heat treatment typical of metastable -titanium alloys, while the other step was performed in vacuum. The results on the single-phase condition represent the intrinsic hydrogen effect. Monotonic and cyclic strength increase at the expense of ductility with increasing hydrogen concentration. The brittle to ductile transition temperature shifts to higher values and the fatigue crack propagation threshold value decreases. The microstructure of the metastable, usually two-phase -titanium alloys is strongly affected by hydrogen, although the extent of this effect depends not only on the hydrogen concentration but also on the temperature of charging. This microstructural influence (extrinsic effect) changes the mechanical properties in the opposite direction as compared to the intrinsic hydrogen effect.

  10. 45 CFR 74.83 - Effect on intangible property.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Effect on intangible property. 74.83 Section 74.83 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION UNIFORM ADMINISTRATIVE REQUIREMENTS FOR AWARDS AND SUBAWARDS TO INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, OTHER NONPROFIT ORGANIZATIONS, AND COMMERCIAL...

  11. Effect of oxygen on the hydrogenation properties of magnesium films

    DEFF Research Database (Denmark)

    Ostenfeld, Christopher Worsøe; Chorkendorff, Ib

    2006-01-01

    The effect of magnesium oxide on the magnesium and hydrogen desorption properties of magnesium films have been investigated. We find that by capping metallic magnesium films with oxide overlayers the apparent desorption energy of magnesium is increased from 146 kJ/mol to 314 kJ/mol. The results...

  12. Controlling software development of CW terahertz target scattering properties measurements based on LabVIEW

    Science.gov (United States)

    Fan, Chang-Kun; Li, Qi; Zhou, Yi; Zhao, Yong-Peng; Chen, De-Ying

    2016-10-01

    With the development of terahertz technology and increasing studies on terahertz target scattering properties, research on terahertz target scattering properties measurements attracts more and more attention. In this paper, to solve problems in the detection process, we design a controlling software for Continuous-Wave (CW) terahertz target scattering properties measurements. The software is designed and programmed based on LabVIEW. The software controls the whole system, involving the switch between the target and the calibration target, the rotation of target, collection, display and storage of the initial data and display, storage of the data after the calibration process. The experimental results show that the software can accomplish the expected requirement, enhance the speed of scattering properties measurements and reduce operation errors.

  13. Effect of Photostablizers on Surface Color and Mechanical Property of Wood-flour/HDPE Composites after Weathering

    Institute of Scientific and Technical Information of China (English)

    XUE Ping; JIA Mingyin; WANG Kejian; DING Yun; WANG Linna

    2012-01-01

    The effects of photostabilizers of ultraviolet absorbers (UVA),hindered amine light stabilizer (HALS) and pigment on surface color change and mechanical properties of weathered wood-flour/polyethylene (HDPE) composites were investigated.After being added UVA with high UV absorbance,the WPC exhibites better ability to resist color fading and mechanical property loss.High molecular weight HALS is found to be the most effective in controlling long term fading and yellowing changes.Pigments cover the composites for remaining the original color after weathering regardless of less contribution to mechanical property.Addition of photostabilizer and pigment together show great synergism in decreasing color fading and flexural property loss.

  14. The effect of composition on mechanical properties of brushite cements.

    Science.gov (United States)

    Engstrand, Johanna; Persson, Cecilia; Engqvist, Håkan

    2014-01-01

    Due to a fast setting reaction, good biological properties, and easily available starting materials, there has been extensive research within the field of brushite cements as bone replacing material. However, the fast setting of brushite cement gives them intrinsically low mechanical properties due to the poor crystal compaction during setting. To improve this, many additives such as citric acid, pyrophosphates, and glycolic acid have been added to the cement paste to retard the crystal growth. Furthermore, the incorporation of a filler material could improve the mechanical properties when used in the correct amounts. In this study, the effect of the addition of the two retardants, disodium dihydrogen pyrophosphate and citric acid, together with the addition of β-TCP filler particles, on the mechanical properties of a brushite cement was investigated. The results showed that the addition of low amounts of a filler (up to 10%) can have large effects on the mechanical properties. Furthermore, the addition of citric acid to the liquid phase makes it possible to use lower liquid-to-powder ratios (L/P), which strongly affects the strength of the cements. The maximal compressive strength (41.8MPa) was found for a composition with a molar ratio of 45:55 between monocalcium phosphate monohydrate and beta-tricalcium phosphate, an L/P of 0.25ml/g and a citric acid concentration of 0.5M in the liquid phase.

  15. Controlling thermal gelation properties of novel Tetronic RTM hydrogel-based tissue adhesive

    Science.gov (United States)

    Alejos, Martin Fernando

    The advancement in laparoscopic and robotic surgeries is calling for innovation in wound closure methods where the classical mechanical ligatures are proving very challenging due to reduction in surgical spaces, even for seasoned surgeons. Tissue adhesives have been investigated as an alternative and/or adjuvant method to address some of these unmet needs. Previously in our lab, Sanders and co-workers developed a successful synthetic adhesive by modifying Tetronic 1107 to incorporate acrylate (ACR) for chemical crosslinking and N-hydroxisuccinimide (NHS) to enhance tissue bonding, improving the seminal work done by Cho et al. However, solutions of modified T1107 would undergo reverse thermal gelation below room temperature, imposing a usability limitation since they could gel while being handled, and a functional limitation because if the material gelled to fast it would not make a good contact with the microstructure of the underlying tissues. Therefore, the main objective of this master's thesis research is to further improve the performance of these Tetronic-based adhesives by controlling the gelation temperature of these polymeric systems. To control the gelation temperatures of functionalized T1107 blends solutions, the acrylated version of a lower molecular Tetronic, T304, was incorporated into these polymers blends. This strategy proved to be effective to control de gelation temperature of the Tetronic-based adhesives, and also extended their degradation times. However, increased amounts of T304-ACR were correlated with lower adhesive strengths. With the right blend ratio, these three properties can be balanced to yield a mechanically strong adhesive, with a useful degradation profile and controlled gelation temperature.

  16. The effect of cyclic hardening on fatigue properties of modified asphalt

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The phenomenon of cyclic hardening is observed in fatigue tests of modified asphalt controlled by low strain/stress level and it is not clear how the phenomenon affects the fatigue properties of binders. The special time weep tests were performed to investigate the point. Tests results indicate that the cyclic hardening is caused by the rearrangement of molecules in binders, and it can make the inner structure of binders getting stable and increase the fatigue properties of asphalt binders. But fatigue damage occurs when fatigue tests start, no matter the phenomenon of cyclic hardening happens or not. If the controlled load is low, the effect of rearrangement of molecules on material is beyond the effect of fatigue damage so that the cyclic hardening can be observed. When the load conditions get worse, the effect of slight fatigue damages produced in hardening stage will show.

  17. Reversible control of electrochemical properties using thermally-responsive polymer electrolytes.

    Science.gov (United States)

    Kelly, Jesse C; Pepin, Mark; Huber, Dale L; Bunker, Bruce C; Roberts, Mark E

    2012-02-14

    A thermally responsive copolymer is designed to modulate the properties of an electrolyte solution. The copolymer is prepared using pNIPAM, which governs the thermal properties, and acrylic acid, which provides the electrolyte ions. As the polymer undergoes a thermally activated phase transition, the local environment around the acid groups is reversibly switched, decreasing ion concentration and conductivity. The responsive electrolyte is used to control the activity of redox electrodes with temperature.

  18. Effect of tomato internal structure on its mechanical properties and ...

    African Journals Online (AJOL)

    ONOS

    2010-03-22

    Mar 22, 2010 ... control mode. Therefore, if the tomatoes have the .... bruising on polygalacturonase and pectinmethylesterase active and pectic cell wall ... effect of compressive load, container, vibration and maturity on mechanical damage.

  19. The effects of redundant control inputs in optimal control

    Institute of Scientific and Technical Information of China (English)

    DUAN ZhiSheng; HUANG Lin; YANG Ying

    2009-01-01

    For a stabillzable system,the extension of the control inputs has no use for stabllizability,but it is important for optimal control.In this paper,a necessary and sufficient condition is presented to strictly decrease the quadratic optimal performance index after control input extensions.A similar result is also provided for H_2 optimal control problem.These results show an essential difference between single-input and multi-input control systems.Several examples are taken to illustrate related problems.

  20. A comparison between acoustic properties and heat effects in biogenic (magnetosomes) and abiotic magnetite nanoparticle suspensions

    Science.gov (United States)

    Józefczak, A.; Leszczyński, B.; Skumiel, A.; Hornowski, T.

    2016-06-01

    Magnetic nanoparticles show unique properties and find many applications because of the possibility to control their properties using magnetic field. Magnetic nanoparticles are usually synthesized chemically and modification of the particle surface is necessary. Another source of magnetic nanoparticles are various magnetotactic bacteria. These biogenic nanoparticles (magnetosomes) represent an attractive alternative to chemically synthesized iron oxide particles because of their unique characteristics and a high potential for biotechnological and biomedical applications. This work presents a comparison between acoustic properties of biogenic and abiotic magnetite nanoparticle suspensions. Experimental studies have shown the influence of a biological membrane on the ultrasound properties of magnetosomes suspension. Finally the heat effect in synthetic and biogenic magnetite nanoparticles is also discussed. The experimental study shows that magnetosomes present good heating efficiency.

  1. Structural and Magnetic Properties of Zinc and Silicon Oxides Doped Cu Ferrite for Temperature Controller Devices

    Science.gov (United States)

    Hessien, M. M.; Ahmed, E. M.; Hemeda, O. M.

    2015-10-01

    The effects of Si+4 and Zn+2 substitutions on the structural and magnetic properties of Cu1-xZnx+ySiyFe2-2yO4 ferrites prepared by double sintering ceramic technique have been investigated. From X-ray diffraction analysis, it was found that substitution of Zn and Si enhanced sintering process and crystallization. The XRD peaks increase by increasing Zn and Si content. On the other hand, the initial permeability decreases sharply at Curie temperature for all samples, which makes Zn/Si co-doped CuFe2O4 spinel ferrites a very promising candidate for magnetic switches, magnetic temperature transducers (MTT), and for fabrication of temperature sensitive controller devices. The important change of Curie temperature of CuFe2O4 compound occurs by simply controlling the content of Zn and Si within CuFe2O4 and results in obtaining magnetic materials with desired Curie temperature. Magnetic hysteresis loop measurements show that the samples have soft magnetic character.

  2. Optical properties of CeO2/Fe3O4 solar control glass coating

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hongsheng; LIU Bing; HU Hongpo; LI Ziqiang; SHAO Youlin

    2006-01-01

    A cerium-iron oxide solar control coating on glass was prepared by citric acid sol-gel method, dip-coating techniques and proper heat treatment process. Results show that the cerium-iron glass coating is composed of nanocrystalline CeO2, Fe2O3, and nano holes. The cerium-iron glass coating has high transmittance in visible light, low UV and near IR transmittance. The wavelength of absorption edge for most glass coating has an obvious redshift to about 375 nm. There exist a wide absorption band at the range of 800-1600 nm and high transmittance at the wavelength from 400 nm to 800 nm, and the solar energy and visible transmittances are 50% and 65%, respectively. It ascribes to the high content of trivalence cerium and bivalence iron ions in the cerium/iron coating. It is indicated that this kind of glass coating has very good UV-sheering and heat-insulating property, can be used as an effective solar control glass in automobile and architecture.

  3. Controlling nonclassical properties of the two-photon process by a time-varying field

    Institute of Scientific and Technical Information of China (English)

    Jia Fei; Xie Shuang-Yuan; Yang Ya-Ping

    2009-01-01

    The interactions between a two-level atom and a field via two-photon transition without rotating wave approx imation have been investigated.We emphasize the dynamic behaviors of the atomic population inversion,the field squeezing,and the atomic dipole squeezing numerically when the field frequency varies with time in the forms of sine and rectangle.Some interesting phenomena axe discovered and discussed.The good periodic character of the atomic population inversion in the standard two-photon Jaynes-Cummings model is weakened by the influence of the sine field frequency modulation.The rectangular field frequency modulation can change the correlation among different oscillations suddenly and induce new collapse-revival processes of the atomic population inversion.The field squeezing increases at the beginning of time,but then decreases and loses as the time increases after it reaches the maximum due to the sine modulation.The effects of the rectangular modulation on the field squeezing depend mostly on the appear ance time of the modulation.The atomic dipole squeezing is weakened under the influence of the sine or rectangular modulation.Our results indicate that it is possible to perform the dynamic controlling of the system properties by changing the parameters of the system with time.This implies that one can dynamically control a quantum information process by choosing the system modulation properly.

  4. Influence of controlled inoculation of malolactic fermentation on the sensory properties of industrial cider.

    Science.gov (United States)

    Sánchez, Ainoa; de Revel, Gilles; Antalick, Guillaume; Herrero, Mónica; García, Luis A; Díaz, Mario

    2014-05-01

    Given the lack of research in the traditional cider making field when compared to the efforts devoted to winemaking, this work focused on the effects of controlled inoculation of the malolactic fermentation (MLF) on the sensory properties of cider. MLF develops spontaneously in cider making at industrial level. In this work, industrial cider samples were inoculated with selected indigenous Oenococcus oeni strains and the benefits on the aroma and flavour in cider production compared to non-inoculated ciders were evaluated. Randomly amplified polymorphic DNA PCR was used to monitor strain colonization ability, outnumbering the indigenous microbiota, after completion of the alcoholic fermentation at industrial scale (20,000 l). Aroma-active compounds of experimentally inoculated ciders were analysed by HPLC and GC-MS, and sensory profiles were determined by fractioning aroma extracts using reversed-phase HPLC. Principal component analysis allowed the identification of relationships and differences among ciders with or without inoculation, including several highly appreciated commercial ones obtained under spontaneous conditions. Under controlled inoculation conditions, not only could MLF be shortened by half but, interestingly, enhancement of aroma complexity and flavour resulted in ciders enriched with a higher fruity note. In addition, important aromatic groups analysed here had not been previously described, thus affording deeper knowledge on aroma characterization of apple cider.

  5. Controllable Synthesis and Tunable Photocatalytic Properties of Ti(3+)-doped TiO2.

    Science.gov (United States)

    Ren, Ren; Wen, Zhenhai; Cui, Shumao; Hou, Yang; Guo, Xiaoru; Chen, Junhong

    2015-06-05

    Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein report a facile route for controllable synthesis of Ti(3+)-doped TiO2 with tunable photocatalytic properties using a hydrothermal method with varying amounts of reductant, i.e., sodium borohydride (NaBH4). The resulting TiO2 showed color changes from light yellow, light grey, to dark grey with the increasing amount of NaBH4. The present method can controllably and effectively reduce Ti(4+) on the surface of TiO2 and induce partial transformation of anatase TiO2 to rutile TiO2, with the evolution of nanoparticles into hierarchical structures attributable to a high pressure and strong alkali environment in the synthesis atmosphere; in this way, the photocatalytic activity of Ti(3+)-doped TiO2 under visible-light can be tuned. The as-developed strategy may open up a new avenue for designing and functionalizing TiO2 materials for enhancing visible light absorption, narrowing band gap, and improving photocatalytic activity.

  6. Determinants of Effective Internal Control System in Nigerian Banks ...

    African Journals Online (AJOL)

    Determinants of Effective Internal Control System in Nigerian Banks. ... Log in or Register to get access to full text downloads. ... management observance of control, good remuneration of internal control staff, cost of instituting internal control ...

  7. Effect of surfactant for magnetic properties of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Haracz, S. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Hilgendorff, M. [Freie Universität Berlin, Fachbereich Physik, Arnimalle 14, 14195 Berlin (Germany); Rybka, J.D. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Giersig, M. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Freie Universität Berlin, Fachbereich Physik, Arnimalle 14, 14195 Berlin (Germany)

    2015-12-01

    Highlights: • Dynamic behavior of magnetic nanoparticles. • Synthesis of iron oxide nanoparticles. • Effect of surfactant for magnetic properties. - Abstract: For different medical applications nanoparticles (NPs) with well-defined magnetic properties have to be used. Coating ligand can change the magnetic moment on the surface of nanostructures and therefore the magnetic behavior of the system. Here we investigated magnetic NPs in a size of 13 nm conjugated with four different kinds of surfactants. The surface anisotropy and the magnetic moment of the system were changed due to the presence of the surfactant on the surface of iron oxide NPs.

  8. Effect of wet grinding on structural properties of ball clay

    Science.gov (United States)

    Purohit, A.; Hameed, A.; Chander, S.; Nehra, S. P.; Singh, P.; Dhaka, M. S.

    2015-05-01

    In this paper, the effect of wet grinding on structural properties of ball clay is undertaken. The wet grinding treatment was performed employing ball and vibro mills for different time spells of 2, 4, 8 and 16 hours. The structural properties were carried out using X-ray diffraction (XRD). The structure of ground samples is found to be simple cubic. The crystallographic parameters are calculated and slight change in lattice constant, inter planner spacing and particle size is observed with grinding treatment. The results are in agreement with the available literature.

  9. Effect of vitro preservation on mechanical properties of brain tissue

    Science.gov (United States)

    Zhang, Wei; Liu, Yi-fan; Liu, Li-fu; Niu, Ying; Ma, Jian-li; Wu, Cheng-wei

    2017-05-01

    To develop the protective devices for preventing traumatic brain injuries, it requires the accurate characterization of the mechanical properties of brain tissue. For this, it necessary to elucidate the effect of vitro preservation on the mechanical performance of brain tissue as usually the measurements are carried out in vitro. In this paper, the thermal behavior of brain tissue preserved for various period of time was first investigated and the mechanical properties were also measured. Both reveals the deterioration with prolonged preservation duration. The observations of brain tissue slices indicates the brain tissue experiences karyorrhexis and karyorrhexis in sequence, which accounts for the deterioration phenomena.

  10. The effect of wavelength on optical properties extracted from images of engineered tissue

    Science.gov (United States)

    Levitz, David; Phillips, Kevin G.; An, Lin; Truffer, Frederic; Samatham, Ravikant; Choudhury, Niloy; Hinds, Monica T.; Hanson, Stephen R.; Jacques, Steven L.

    2009-02-01

    Optical imaging modalities such as confocal microscopy and optical coherence tomography (OCT) are emerging as appealing methods for non-destructive evaluation of engineered tissues. The information offered by such optical imaging methods depends on the wavelength vis-á-vis the optical scattering properties of the sample. These properties affect many factors critical to image analysis in a nonlinear and nontrivial manner. Thus, we sought to characterize the effect wavelength has on the optical properties collagen remodeled by cells at 3 common imaging wavelengths: 488, 633, and 1310 nm. To do this, we seeded smooth muscle cells (SMCs) in soluble collagen gels at a density of 1×106 cells/ml; similar acellular control constructs were also prepared. The constructs were allowed to remodel in the incubator for 5 days, and were examined at 24 and 120 hours by confocal imaging at 488 and 633 nm, and by OCT imaging at 1310 nm. From the confocal and OCT data, the attenuation and reflectivity were evaluated by fitting the data to a theoretical model that relates the tissue optical properties (scattering coefficient and anisotropy factor) and imaging conditions to the signal. In general, we found that at 1310 nm, the optical properties of the acellular control constructs had a lower reflectivity (higher anisotropy) than the SMC constructs. The difference in reflectivity between the SMC construct and acellular controls tended to decrease with wavelength, owing to a relative increase in reflectivity of acellular controls at lower wavelengths relative to the cellular constructs. Overall, the largest difference in optical properties occurred at 1310 nm. Taken together, the data show that the shift in optical properties of soluble collagen gels caused by cellular remodeling is nonlinearly wavelength dependent, and that this information should be considered when devising how to optimally characterize engineered tissues using optical imaging methods.

  11. Duffing oscillators: control and memory effects.

    Science.gov (United States)

    Batista, Adriano A; Oliveira, F A; Nazareno, H N

    2008-06-01

    In the first part of this article we study the hysteretic bistable response of Duffing oscillators and show ways to control the switching between stable branches of this nonlinear response. The control mechanism is either applied through a pulse that can be in phase or out of phase with the periodic driving force or through a frequency-modulated driving force. In the second part we show how memory effects in dissipation qualitatively and quantitatively alter the dynamics of Duffing oscillators. We show how memory functions corresponding to different dissipative regimes (diffusion, subdiffusion, and superdiffusion) affect the oscillator. In particular, we obtain universal power laws for the absoption when the driving frequency omega-->0 . For subdiffusive memories the power law exponents nu2 .

  12. Rheological Properties of Extreme Pressure Greases Measured Using a Process Control Rheometer

    DEFF Research Database (Denmark)

    Glasscock, Julie; Smith, Robin S.

    2012-01-01

    A new process control rheometer (PCR) designed for use in industrial process flows has been used to measure the rheological properties of three extreme-pressure greases. The rheometer is a robust yet sensitive instrument designed to operate in an industrial processing environment in either in......-line or on-line configurations. The PCR was able to measure the rheological properties including the elastic modulus, viscous modulus, and complex viscosity of the greases which in an industrial flow application could be used as variables in a feedback system to control the process and the quality...

  13. Control effect of lanthanum against plant disease

    Institute of Scientific and Technical Information of China (English)

    LIU Yajia; WANG Yan; WANG Fubin; LIU Yuming; CUI Jianyu; HU Lin; MU Kangguo

    2008-01-01

    Effect of La on emergence, growth and development of Isatis indigotica Fort and Festuca arundinacea seedlings was researched by pot experiments of inoculating Rhizoctonia solani and with the mixture of Rhizoctonia solani and Fusarium solani in disinfected soil after the seeds were soaked in the solution with different concentrations of La3+. The results indicated that infection rate decreased and there were significant disease controlling effects on seed rot, bud rot and root rot caused by pathogenic fungi when the seeds were soaked by La3+. Thus, the rates of emergence of Isatis indigotica Fort. And turfgrass Festuca arundinacea were increased. When La3+ concentration was in a proper range, the growth and development of plant seedlings were promoted. Spraying La on rice plants showed a significant controling effect on Rhizoctonia solani. Furthermore, the EC50 of La3+ performed 128.7 and 128.1 mg/L at 1 and 7 d after spraying La in rice plants, respectively. The EC50ofLa3+ performed in vivo (in rice plant) was lower than that in vitro (171.9 mg/L).

  14. Effect of graphene on mechanical properties of cement mortars

    Institute of Scientific and Technical Information of China (English)

    曹明莉; 张会霞; 张聪

    2016-01-01

    Functionalized graphene nano-sheets (FGN) of 0.01%−0.05% (mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious material were then investigated. The results indicate that the addition of FGN decreases the fluidity slightly and improves mechanical properties of cement-based composites significantly. The highest strength is obtained with FGN content of 0.02% where the flexural strength and compressive strength at 28 days are 12.917 MPa and 52.42 MPa, respectively. Besides, scanning electron micrographs show that FGN can regulate formation of massive compact cross-linking structures and thermo gravimetric analysis indicates that FGN can accelerate the hydration reaction to increase the function of the composite effectively.

  15. Effect of hydrostatic pressure on elastic properties of ZDTP tribofilms

    CERN Document Server

    Demmou, Karim; Loubet, Jean-Luc

    2007-01-01

    Previous studies have shown that the elastic properties of Zinc Dialkyl-dithiophosphate (ZDTP) tribofilms measured by nanoindentation increase versus applied pressure (Anvil effect) [1, 2]. The aim of this paper is to demonstrate that, up to 8 GPa, this increase is a reversible phenomenon. A ZDTP tribofilm has been produced on "AISI 52100" steel substrate using a Cameron-Plint tribometer. After its formation, a hydrostatic pressure of about 8 GPa was applied during one minute on the tribofilm using a large radius steel ball ("Brinell-like" test). Nanoindentation tests were performed with a Berkovich tip on pads in order to measure and compare the mechanical properties of the tribofilm inside and outside the macroscopic plastically deformed area. Careful AFM observations have been carried out on each indent in order to take into account actual contact area. No difference in elastic properties was observed between the two areas: tribofilm modulus and pressure sensitivity are the same inside and outside the resi...

  16. Effect of polysaccharides on the gelatinization properties of cornstarch dispersions.

    Science.gov (United States)

    Xu, Zhiting; Zhong, Fang; Li, Yue; Shoemaker, Charles F; Yokoyama, Wallace H; Xia, Wenshui

    2012-01-18

    Konjac glucomannan (KG, neutral), carboxymethylcellulose (CMC, negatively charged), and chitosan (positively charged) were added to cornstarch dispersions to study the effect of polysaccharide-starch interactions on starch gelatinization properties. Pasting and retrogradation properties were measured with a rheometer and DSC. Swelling properties of the starch granules were determined by solubility index, swelling power, and particle size distribution. Depending on the nature of the different polysaccharides, viscosities of cornstarch dispersions were affected differently. The particle size distributions were not influenced by the addition of any of the polysaccharides. Swelling results showed that the KG and CMC molecules interacted with the released or partly released amylose in the cornstarch dispersions. This was correlated with the short-term retrogradation of the starch pastes being retarded by the additions of KG and CMC. However, the chitosan molecules appeared not to associate with the amylose, so the retrogradation of the chitosan-cornstarch dispersions was not retarded.

  17. Properties of effective noise for systems with quenched randomness

    Science.gov (United States)

    Majaniemi, Sami

    2001-03-01

    The fluid-fluid phase boundary wandering in a disordered medium such as a Hele-Shaw cell filled with porous material experiences exotic correlations which are quite different from the static correlations characterizing the material properties of the medium. The equation of motion for the phase boundary is obtained by projecting out the bulk degrees of freedom. It is used to determine the noise properties of the nonlinear Langevin equation describing the dynamics of lower dimensional collective coordinates like interfaces and contact lines. Effect of local conservation law at the level of bulk dynamics changes the universal properties of the fluctuation of collective coordinates in a non-trivial way. As a particular example we use the refinements of the spontaneous imbibition model originally introduced for wetting of random medium [1]. [1] M. Dubé, M. Rost, K.R. Elder, M. Alava, S. Majaniemi, T. Ala-Nissila, Eur. Phys. J. B 15, 701 (2000).

  18. Effect of transglutaminase treatment on skimmed yogurt properties

    Directory of Open Access Journals (Sweden)

    Iuliana BANU

    2012-12-01

    Full Text Available The aim of the present study was to evaluate the effect of microbial transglutaminase on the stability and rheological properties of skimmed yogurt. The fermentation was carried out with Streptococus theromophilus and Lactobacillus delbrueckii subsp. Bulgaricus after incubating the milk with various enzyme concentrations ranging from 0 to 0.04%, at different setting temperatures (30, 40 and 50°C, for 60, 90 and 120 min. The postacidification process and the stability of the yogurt samples were influenced by the degree of polymerization of the milk proteins which depended on the conditions of the milk treated with microbial transglutaminase. The best results in terms of whey separation and rheological properties were obtained when preincubating the milk with 0.04% transglutaminase for 120 min setting at 40°C. The results indicate that transglutaminase may be successfully used for enhancing the functional properties of yogurt with low fat content.

  19. Enzymatic generation of whey protein hydrolysates under pH-controlled and non pH-controlled conditions: Impact on physicochemical and bioactive properties.

    Science.gov (United States)

    Le Maux, Solène; Nongonierma, Alice B; Barre, Chloé; FitzGerald, Richard J

    2016-05-15

    Enzymatic hydrolysis of whey protein (WP) was carried out under pH-controlled and non pH-controlled conditions using papain and a microbial-derived alternative (papain-like activity). The impact of such conditions on physicochemical and bioactive properties was assessed. WP hydrolysates (WPH) generated with the same enzyme displayed similar degree of hydrolysis. However, their reverse-phase liquid chromatograph mass spectrometry peptide profiles differed. A significantly higher oxygen radical absorbance capacity (ORAC) value was obtained for WP hydrolysed with papain at constant pH of 7.0 compared to the associated WPH generated without pH regulation. In contrast, there was no significant effect of pH regulation on dipeptidyl peptidase IV (DPP-IV) properties. WP hydrolysed with papain-like activity under pH regulation at 7.0 displayed higher ORAC activity and DPP-IV inhibitory properties compared to the associated WPH generated without pH regulation. This study has demonstrated that pH conditions during WPH generation may impact on peptide release and therefore on WPH bioactive properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Elastic properties of continental carbonate rocks: controlling factors and applicable model

    Science.gov (United States)

    Regnet, Jean-Baptiste; Fortin, Jérôme; Guéguen, Yves; Pellerin, Matthieu

    2016-04-01

    Continental carbonates gained interest following the discovery of the supergiant field in the post- and pre-salt deposits in offshore Brazil, as they account for a large portion of the deepwater production. The genesis of continental carbonates is generally associated with physico-chemical and biological precipitation of carbonates, coupled with a strong influence of clastic mineralogical inputs. This results in a complex mineralogical mixing, associated with a wide heterogeneity of pore types due to the intense diagenetic overprint potential of carbonate deposits (cementation, dissolution, recrystallisation, dolomitisation...). With that in mind, we propose insights on the controling factors of elastic properties in a continental carbonate dataset, analogue of the brazilian pre-salt deposits. An applicable model based on the effective medium theory is proposed and discussed regarding the experimental results, and try to account for the wide variability of the elastic properties. Analyzed samples exhibit large variation of (1) sedimentary texture (coquinas grainstones, muddy facies (mudstones to packtones), travertines and stromatolites, (2) pore types (moldic, intercrystalline, vuggy and micropores) and shapes (aspect ratio values fall between 0.2 and 0.5) and (3) physical properties (porosity, acoustic velocity). Regarding composition, samples are characterized by three major mineralogical assemblages, from pure calcite, dolomite, to quartz/clay mixing. If porosity is clearly the first order parameter controlling P-wave velocities, the mineralogical overprint can be accounted for the wide variability of the p-wave velocities at a given porosity (figure 1). The lower porosity-velocity relationship trend is dominated by samples with low to large quartz/clay proportions, whereas the higher trend is dominated by dolomitized samples. Two input parameters are extracted from the previous experimental observation: porosity and mineralogical composition of each sample

  1. Lunar Dust Contamination Effects on Lunar Base Thermal Control Systems

    Science.gov (United States)

    Keller, John R.; Ewert, Michael K.

    2000-01-01

    Many studies have been conducted to develop a thermal control system that can operate under the extreme thermal environments found on the lunar surface. While these proposed heat rejection systems use different methods to reject heat, each system contains a similar component, a thermal radiator system. These studies have always considered pristine thermal control system components and have overlooked the possible deleterious effects of lunar dust contamination. Since lunar dust has a high emissivity and absorptivity (greater than 0.9) and is opaque, dust accumulation on a surface should radically alter its optical properties and therefore alter its thermal response compared to ideal conditions. In addition, the non-specular nature of the dust particles will alter the performance of systems that employ specular surfaces to enhance heat rejection. To date, few studies have examined the effect of dust deposition on the normal control system components. These studies only focused on a single heat rejection or photovoltaic system. These studies did show that lunar dust accumulations alter the optical properties of any lunar base hardware, which in turn affects component temperatures, and heat rejection. Therefore, a new study was conducted to determine the effect of lunar dust contamination on heat rejection systems. For this study, a previously developed dust deposition model was incorporated into the Thermal Synthesizer System (TSS) model. This modeling scheme incorporates the original method of predicting dust accumulation due to vehicle landings by assuming that the thin dust layer can be treated as a semitransparent surface slightly above and in thermal contact with the pristine surface. The results of this study showed that even small amounts of dust deposits can radically alter the performance of the heat rejection systems. Furthermore. this study indicates that heat rejection systems be either located far from any landing sites or be protected from dust

  2. The Hawthorne Effect: a randomised, controlled trial

    Directory of Open Access Journals (Sweden)

    van Haselen Robbert

    2007-07-01

    Full Text Available Abstract Background The 'Hawthorne Effect' may be an important factor affecting the generalisability of clinical research to routine practice, but has been little studied. Hawthorne Effects have been reported in previous clinical trials in dementia but to our knowledge, no attempt has been made to quantify them. Our aim was to compare minimal follow-up to intensive follow-up in participants in a placebo controlled trial of Ginkgo biloba for treating mild-moderate dementia. Methods Participants in a dementia trial were randomised to intensive follow-up (with comprehensive assessment visits at baseline and two, four and six months post randomisation or minimal follow-up (with an abbreviated assessment at baseline and a full assessment at six months. Our primary outcomes were cognitive functioning (ADAS-Cog and participant and carer-rated quality of life (QOL-AD. Results We recruited 176 participants, mainly through general practices. The main analysis was based on Intention to treat (ITT, with available data. In the ANCOVA model with baseline score as a co-variate, follow-up group had a significant effect on outcome at six months on the ADAS-Cog score (n = 140; mean difference = -2.018; 95%CI -3.914, -0.121; p = 0.037 favouring the intensive follow-up group, and on participant-rated quality of life score (n = 142; mean difference = -1.382; 95%CI -2.642, -0.122; p = 0.032 favouring minimal follow-up group. There was no significant difference on carer quality of life. Conclusion We found that more intensive follow-up of individuals in a placebo-controlled clinical trial of Ginkgo biloba for treating mild-moderate dementia resulted in a better outcome than minimal follow-up, as measured by their cognitive functioning. Trial registration Current controlled trials: ISRCTN45577048

  3. Maturation of muscle properties and its hormonal control in an adult insect.

    Science.gov (United States)

    Rose, U; Ferber, M; Hustert, R

    2001-10-01

    The oviposition of female locusts requires longitudinal muscles to tolerate remarkable lengthening. Whether this ability together with concomitant properties develops during maturation or is present throughout life was investigated. The properties of the locust abdominal muscles involved in oviposition behaviour were investigated with respect to their maturation, segment- and gender-specificity and regulation by juvenile hormone (JH). Muscles from the sixth abdominal segment (an oviposition segment) of mature females (>18 days old) were able to tolerate large extensions (>8 mm). At this length, muscles were still able to generate considerable neurally evoked twitch tension. In contrast, muscle fibres from females less than 5 days old did not tolerate extension of more than 4 mm. At this length, tension generation was negligible. The maximum tension generated at different stimulus frequencies was significantly higher in muscles of females more than 18 days old than in females less than 5 days old. Furthermore, the cross-sectional area of muscle fibres increased significantly during reproductive development. Current-clamp recordings from denervated muscle fibres of females more than 18 days old revealed their ability to generate overshooting action potentials. The potentials were tetrodotoxin (TTX)-insensitive (0.5 micromol l(-1) TTX), but were blocked by Cd(2+) (50 micromol l(-1)) or nifedipine (50 micromol l(-1)), which suggests the involvement of L-type Ca(2+) channels. Action potentials recorded from females less than 5 days old differed considerably in amplitude and shape from those recorded from females more than 18 days old, suggesting their maturation during the first 2 weeks of adult life. Inactivation of the corpora allata (CA) by precocene inhibited the maturation of these muscle properties, whereas injection of JH into precocene-treated females reversed this effect. Homologous muscles from the third abdominal segment (a non-oviposition segment, M169) and

  4. 控冷工艺对热轧双相钢盘条组织和性能的影响%Effect of Controlling Cooling Process on Microstructure and Properties of Dual Phase Steel Wire Rods

    Institute of Scientific and Technical Information of China (English)

    徐向俊; 孔俊其

    2012-01-01

    通过840℃精轧后空冷到760℃然后淬水(工艺1)和850℃精轧后在保温罩中缓冷到760℃然后风冷(工艺2)两种工艺轧制ER70s-6钢盘条,并分析了其盘条的组织和性能.结果表明,工艺1生产的盘条横截面表层和内部组织不均匀,内部含20.7%成条带状分布的马氏体,其抗拉强度、屈服强度和伸长率分别为725、382 MPa和16.5%:工艺2生产的盘条组织较均匀,含11.5%马氏体,其抗拉强度、屈服强度和伸长率分别为608、338 MPa和31.3%.双相钢中马氏体含量高对强度有利,但其成条带状分布对塑性不利.%ER70s-6 steel wire rods rolled at finishing rolling temperature of 840 ℃ and cooled to 760℃ in air then quenched in water (process 1) and rolled at finishing rolling temperature of 850 ℃, cooled to 760 ℃ in heat insulation mantle and then cooled in flow air (process 2) were produced, and their microstructures and the mechanical properties were analyzed. The results show that the wire rod produced in process 1 has different microstructures between internal and external parts of the rod cross section. In internal part the martensite distributed in banded form is 20.7% in volume fraction. The wire rod produced in process 2 has uniform microstructure with 11.5% martensite in volume fraction. The wire rod produced in process 1 has yield strength level of 382MPa, ultimate tensile strength level of 725 MPa and plastic elongation of 16.5 %, respectively. The wire rod produced in process 2 has yield strength level of 338MPa, ultimate tensile strength level of 608 MPa and plastic elongation of 31.3%, respectively. For dual phase steel high content of martensite is beneficial for strength, but the bended distribution of martensite is bad for the ductility.

  5. Enhanced catalytic activity and inhibited biofouling of cathode in microbial fuel cells through controlling hydrophilic property

    Science.gov (United States)

    Li, Da; Liu, Jia; Wang, Haiman; Qu, Youpeng; Zhang, Jie; Feng, Yujie

    2016-11-01

    The hydrophilicity of activated carbon cathode directly determines the distribution of three-phase interfaces where oxygen reduction occurs. In this study, activated carbon cathodes are fabricated by using hydrophobic polytetrafluoroethylene (PTFE) and amphiphilic LA132 at various weight ratio to investigate the effect of hydrophilic property on cathode performance. Contact angle tests confirm the positive impact of LA132 content on hydrophilicity. Cathode with 67 wt% LA132 content shows the highest electrochemical activity as exchange current density increases by 71% and charge transfer resistance declines by 44.6% compared to that of PTFE cathode, probably due to the extended reaction interfaces by optimal hydrophilicity of cathode so that oxygen reduction is facilitated. As a result, the highest power density of 1171 ± 71 mW m-2 is obtained which is 14% higher than PTFE cathode. In addition to the hydrophilicity, this cathode had more negative charged surface of catalyst layer, therefore the protein content of cathodic biofilm decreased by 47.5%, indicating the effective bacterial inhibition when 67 wt% LA132 is used. This study shows that the catalytic activity of cathode is improved by controlling proper hydrophilicity of cathode, and that biofilm can be reduced by increasing hydrophilicity and lowering the surface potential.

  6. Exotic optoelectronic properties of organic semiconductors with super-controlled nanoscale sizes and molecular shapes.

    Science.gov (United States)

    Hotta, Shu; Yamao, Takeshi; Katagiri, Toshifumi

    2014-03-01

    We present several aspects of thiophene/phenylene co-oligomers (TPCOs). TPCOs are regarded as a newly occurring class of organic semiconductors. These materials are synthesized by hybridizing thiophene and phenylene rings at the molecular level with their various mutual arrangements. These materials are characterized by the super-controlled nanoscale sizes and molecular shapes. These produce peculiar crystallographic structures and high-performance optical and electronic properties. The crystals of TPCOs were obtained through both vapor phase and liquid phase. In the TPCO crystals, the molecules take upright configuration. These cause large carrier mobilities of field-effect transistors and laser oscillations under optical excitations. Spectrally-narrowed emissions (SNEs) were also achieved under weak optical excitation using a mercury lamp. The light-emitting field-effect transistors using these crystals for an active layer have shown the current-injected SNEs when the device was combined with an optical cavity and operated by an alternating-current gate-voltage method. Thus the TPCO materials will play an important role in the future in the fields of nanoscale technology and organic semiconductor materials as well as their optoelectronic device applications.

  7. Mechanical Properties and Energy-saving Effect of Polypropylene Fiber Foam Concrete

    Directory of Open Access Journals (Sweden)

    Deng Fukang

    2013-07-01

    Full Text Available Compared with ordinary concrete, foam concrete possesses advantages such as lightweight, heat insulation, etc., but the internal bubbles have of great influence on its strength. This study examined the impact of polypropylene fibers on mechanical properties of foam concrete using flexural deformation control method and obtained complete load-deformation curve. The results show that, polypropylene fibers significantly affect the compressive property of the foam concrete and improve the carrying capacity after the peak compression load, but have little effect on the compressive strength; polypropylene fibers improve the flexural performance significantly.

  8. The effect of long-term oxidation on the rheological properties of polymer modified asphalts

    Energy Technology Data Exchange (ETDEWEB)

    Yonghong Ruan; Richard R. Davison; Charles J. Glover [Texas A & M University, College Station, TX (United States). Department of Chemical Engineering

    2003-10-01

    The effect of long-term aging on rheological properties of polymer modified asphalt binders was studied. Modifiers included diblock poly(styrene-b-butadiene) rubber, triblock poly(styrene-b-butadiene-b-styrene), and tire rubber. Asphalt aging was carried out either at 60{sup o}C in a controlled environmental room or at 100{sup o}C in a pressure aging vessel (AASHTO Provisional Standards, 1993). Both dynamic shear properties and extensional properties were investigated. Polymer modification resulted in increased asphalt complex modulus at high temperatures, decreased asphalt complex modulus at low temperatures, broadened relaxation spectra, and improved ductility. Oxidative aging decreased asphalt temperature susceptibility, damaged the polymer network in binders, further broadened the relaxation spectrum, and diminished polymer effectiveness in improving asphalt ductility. 27 refs., 8 figs., 3 tabs.

  9. 26 CFR 301.6339-1 - Legal effect of certificate of sale of personal property and deed of real property.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Legal effect of certificate of sale of personal property and deed of real property. 301.6339-1 Section 301.6339-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) PROCEDURE AND ADMINISTRATION PROCEDURE AND ADMINISTRATION Seizure of Property for Collection of...

  10. Effects of model layer simplification using composite hydraulic properties

    Science.gov (United States)

    Kuniansky, Eve L.; Sepulveda, Nicasio; Elango, Lakshmanan

    2011-01-01

    Groundwater provides much of the fresh drinking water to more than 1.5 billion people in the world (Clarke et al., 1996) and in the United States more that 50 percent of citizens rely on groundwater for drinking water (Solley et al., 1998). As aquifer systems are developed for water supply, the hydrologic system is changed. Water pumped from the aquifer system initially can come from some combination of inducing more recharge, water permanently removed from storage, and decreased groundwater discharge. Once a new equilibrium is achieved, all of the pumpage must come from induced recharge and decreased discharge (Alley et al., 1999). Further development of groundwater resources may result in reductions of surface water runoff and base flows. Competing demands for groundwater resources require good management. Adequate data to characterize the aquifers and confining units of the system, like hydrologic boundaries, groundwater levels, streamflow, and groundwater pumping and climatic data for recharge estimation are to be collected in order to quantify the effects of groundwater withdrawals on wetlands, streams, and lakes. Once collected, three-dimensional (3D) groundwater flow models can be developed and calibrated and used as a tool for groundwater management. The main hydraulic parameters that comprise a regional or subregional model of an aquifer system are the hydraulic conductivity and storage properties of the aquifers and confining units (hydrogeologic units) that confine the system. Many 3D groundwater flow models used to help assess groundwater/surface-water interactions require calculating ?effective? or composite hydraulic properties of multilayered lithologic units within a hydrogeologic unit. The calculation of composite hydraulic properties stems from the need to characterize groundwater flow using coarse model layering in order to reduce simulation times while still representing the flow through the system accurately. The accuracy of flow models with

  11. Investigation of Effective Material Properties of Stony Meteorites

    Science.gov (United States)

    Agrawal, Parul; Carlozzi, Alex; Bryson, Kathryn

    2016-01-01

    To assess the threat posed by an asteroid entering Earth's atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the Asteroid material properties is needed to achieve this objective. At present, the meteorite material found on Earth are the only objects from an entering asteroid that can be used as representative material and be tested inside a laboratory setting. Therefore, unit cell models are developed to determine the effective material properties of stony meteorites and in turn deduce the properties of asteroids. The unit cell is representative volume that accounts for diverse minerals, porosity, and matrix composition inside a meteorite. The various classes under investigation includes H-class, L-class, and LL-class chondrites. The effective mechanical properties such as Young's Modulus and Poisson's Ratio of the unit cell are calculated by performing several hundreds of Monte-Carlo simulations. Terrestrial analogs such as Basalt and Gabbro are being used to validate the unit cell methodology.

  12. Viscoelastic effective properties of two types of heterogeneous materials.

    Science.gov (United States)

    Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel

    2015-04-01

    In the past, a lot of efforts have been put to describe two end cases of rock behaviors: elasticity and viscosity. In recent years, more focus has been brought on the intermediate viscoelastic cases which describe better the rheology of rocks such as shales. Shales are typically heterogeneous and the question arises as to how to derive their effective properties so that they can be approximated as homogeneous media. This question has already been dealt with at the elastic and viscous limit but still remains for some cases in between. Using MILAMIN, a fast finite element solver for large problems, we numerically investigate different approaches to derive the effective properties of several viscoelastic media. Two types of geometries are considered: layered and inclusion based media. We focus on two dimensional plane strain problems considering two phase composites deformed under pure shear. We start by investigating the case of transversely isotropic layered media made of two Maxwell materials. Using the Backus averaging method we discuss the degree of relevance of this averaging by considering some parameters as: layer periodicity, layer thickness and layer interface roughness. Other averaging methods are also discussed which provide a broader perspective on the performances of Backus averaging. In a second part we move on to inclusion based models. The advantage of these models compared to the previous one is that they provide a better approximation to real microstructures in rocks. The setup we consider in this part is the following: some viscous circular inclusions are embedded in an elastic matrix. Both the inclusions and the matrix are homogeneous but the inclusions are purely isotropic while the matrix can also be anisotropic. In order to derive the effective viscoelastic properties of the medium we use two approaches: the self-consistent averaging and the differential effective medium theory. The idea behind self-consistency is to assume that the inclusions

  13. Effects of carbon nanoparticles on properties of thermoset polymer systems

    Science.gov (United States)

    Movva, Siva Subramanyam

    Polymer nanocomposites are novel materials in which at least one of the dimensions of the reinforcing material is on the order of 100 nm or less. While thermoplastic nanocomposites have been studied very widely, there are fewer studies concerning the effect of nanoparticles on thermoset systems. Low temperature cure thermoset systems are very important for many important applications. In this study, the processing, mechanical and thermal properties and reaction kinetics of carbon nanofiber (CNF) and/or carbon nanotubes (CNT) reinforced low temperature vinyl ester and epoxy nanocomposites were studied. In the first part, the processing challenge of incorporating CNFs into conventional fiber reinforced composites made by Vacuum infusion resin transfer molding (VARTM) was addressed by a new technique. The CNFs are pre-bound on the long fiber mats, instead of mixing them in the polymer resin, thereby eliminating several processing drawbacks. The resulting hybrid nanocomposites showed significant improvements in tensile, flexural and thermal properties. The effect of CNFs on the mold filling in VARTM was also studied and shown to follow the Darcy's law. In the second part, the effect of CNFs on the low temperature cure kinetics of vinyl ester and epoxy resins is studied using a thermal analysis technique, namely Differential scanning calorimetry (DSC). The effect of CNFs on the free radical polymerization of vinyl esters was found to be very complex as the CNFs interact with the various curing ingredients in the formulation. Specifically, the interaction effects of CNFs and the inhibitor were studied and a reaction mechanism was proposed to explain the observed phenomenon. The effect of surface modification of the carbon nanoparticles on the cure kinetics of wind-blade epoxy was studied. The surface functionalization reduced the activation energy of the epoxy reaction and was found to have an acceleration effect on the cure kinetics of epoxy resin at room temperature

  14. Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel

    Institute of Scientific and Technical Information of China (English)

    LI Zhuang; WU Di

    2007-01-01

    Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel were investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, in which three different kinds of finishing rolling temperatures and reduction and various austempering times were applied. The results showed that polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes, and that the strain-induced transformation to martensite from the retained austenite can occur gradually when the steel is deformed during tensile test. Mechanical properties increase with decreasing finishing rolling temperature and increasing amount of deformation. The most TRIP (transformation induced plasticity) effect, and ultimate tensile strength (UTS), total elongation (TEL) and the product of ultimate tensile strength and total elongation (UTS× TEL) are obtained at 20 min.

  15. Effects of Fibers on the Dynamic Properties of Asphalt Mixtures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The dynamic characteristics of fiber-modified asphalt mixture were investigated. Cellulose fiber, polyester fiber and mineral fiber were used as additives for asphalt mixture, and the dosage was 0.3%, 0.3%,0.4%, respectively. Dynamic modulus test using SuperPave simple performance tester (SPT) was conducted to study the dynamic modulus (E*) and phase angle (δ) for the control asphalt mixture and fiber-modified ones at various temperatures and frequencies. Experimental results show that all fiber-modified asphalt mixtures have higher dynamic modulus compared with control mixture. The dynamic modulus master curves of each type of asphalt mixtures are determined based on nonlinear least square regression in accordance with the timetemperature superposition theory at a control temperature (21.1 ℃). The fatigue parameter E*×sinδ and rutting parameter E*/sinδ of asphalt mixture are adopted to study the fatigue and rutting-resistance properties, and experimental results indicate that such properties can be improved by fiber additives.

  16. Effect of Natural Fillers on Mechanical Properties of GFRP Composites

    Directory of Open Access Journals (Sweden)

    Vikas Dhawan

    2013-01-01

    Full Text Available Fiber reinforced plastics (FRPs have replaced conventional engineering materials in many areas, especially in the field of automobiles and household applications. With the increasing demand, various modifications are being incorporated in the conventional FRPs for specific applications in order to reduce costs and achieve the quality standards. The present research endeavor is an attempt to study the effect of natural fillers on the mechanical characteristics of FRPs. Rice husk, wheat husk, and coconut coir have been used as natural fillers in glass fiber reinforced plastics (GFRPs. In order to study the effect of matrix on the properties of GFRPs, polyester and epoxy resins have been used. It has been found that natural fillers provide better results in polyester-based composites. Amongst the natural fillers, in general, the composites with coconut coir have better mechanical properties as compared to the other fillers in glass/epoxy composites.

  17. Finite amplitude effects on drop levitation for material properties measurement

    Science.gov (United States)

    Ansari Hosseinzadeh, Vahideh; Holt, R. Glynn

    2017-05-01

    The method of exciting shape oscillation of drops to extract material properties has a long history, which is most often coupled with the technique of acoustic levitation to achieve non-contact manipulation of the drop sample. We revisit this method with application to the inference of bulk shear viscosity and surface tension. The literature is replete with references to a "10% oscillation amplitude" as a sufficient condition for the application of Lamb's analytical expressions for the shape oscillations of viscous liquids. Our results show that even a 10% oscillation amplitude leads to dynamic effects which render Lamb's results inapplicable. By comparison with samples of known viscosity and surface tension, we illustrate the complicating finite-amplitude effects (mode-splitting and excess dissipation associated with vorticity) that can occur and then show that sufficiently small oscillations allow us to recover the correct material properties using Lamb's formula.

  18. Effect of current annealing on electronic properties of multilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S; Goto, H; Tomori, H; Kanda, A [Institute of Physics, University of Tsukuba, Tsukuba 305-8571 (Japan); Ootuka, Y [Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, Tsukuba 305-8571 (Japan); Tsukagoshi, K, E-mail: tanaka@lt.px.tsukuba.ac.j [MANA, NIMS, Namiki, Tsukuba, Ibaraki 305-0047 (Japan)

    2010-06-01

    While ideal graphene has high mobility due to the relativistic nature of carriers, it is known that the carrier transport in actual graphene samples is dominated by the influence of scattering from charged impurities, which almost conceals the intrinsic splendid properties of this novel material. The common techniques to improve the graphene mobility include the annealing in hydrogen atmosphere and the local annealing by imposing a large biasing current. Although annealing is quite important technique for the experimental study of graphene, detailed evaluation of the annealing effect is lacking at present. In this paper, we study the effect of the current annealing in multilayer graphene devices quantitatively by investigating the change in the mobility and the carrier density at the charge neutrality point. We find that the current annealing sometimes causes degradation of the transport properties.

  19. The effects of proton radiation on UHMWPE material properties for space flight and medical applications

    Science.gov (United States)

    Cummings, Chad S.; Lucas, Eric M.; Marro, Justin A.; Kieu, Tri M.; DesJardins, John D.

    2011-11-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) is a polymer widely used as a radiation shielding material in space flight applications and as a bearing material in total joint replacements. As a long chain hydrocarbon based polymer, UHMWPE's material properties are influenced by radiation exposure, and prior studies show that gamma irradiation is effective for both medical sterilization and increased wear resistance in total joint replacement applications. However, the effects of space flight radiation types and doses on UHMWPE material properties are poorly understood. In this study, three clinically relevant grades of UHMWPE (GUR 1020, GUR 1050, and GUR 1020 blended with Vitamin E) were proton irradiated and tested for differences in material properties. Each of the three types of UHMWPE was irradiated at nominal doses of 0 Gy (control), 5 Gy, 10 Gy, 20 Gy, and 35 Gy. Following irradiation, uniaxial tensile testing and thermal testing using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) were performed. Results show small but significant changes in several material properties between the control (0 Gy) and 35 Gy samples, indicating that proton irradiation could have a effect on the long term performance of UHMWPE in both medical and space flight applications.

  20. Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time

    Science.gov (United States)

    Gross, Elad; Liu, Jack Hung-Chang; Toste, F. Dean; Somorjai, Gabor A.

    2012-11-01

    A combination of the advantages of homogeneous and heterogeneous catalysis could enable the development of sustainable catalysts with novel reactivity and selectivity. Although heterogeneous catalysts are often recycled more easily than their homogeneous counterparts, they can be difficult to apply in traditional organic reactions and modification of their properties towards a desired reactivity is, at best, complex. In contrast, tuning the properties of homogeneous catalysts by, for example, modifying the ligands that coordinate a metal centre is better understood. Here, using olefin cyclopropanation reactions catalysed by dendrimer-encapsulated Au nanoclusters as examples, we demonstrate that changing the dendrimer properties allows the catalytic reactivity to be tuned in a similar fashion to ligand modification in a homogeneous catalyst. Furthermore, we show that these heterogeneous catalysts employed in a fixed-bed flow reactor allow fine control over the residence time of the reactants and thus enables the control over product distribution in a way that is not easily available for homogeneous catalysts.

  1. The Functionalization, Size Control and Properties of Metal-Organic Frameworks

    DEFF Research Database (Denmark)

    Xu, Hui; Iversen, Bo Brummerstedt

    2016-01-01

    Recent years, Metal-Organic Framework (MOF) materials have drawn great attentions due to their potential applications in gas sorption/separation and luminescent sensing. In this dissertation, the recent progress of MOF materials is reviewed, with specific focus on the functionalization, size...... control and properties of MOF materials. A cationic MOF material was synthesized, and small hydrocarbons C1/C2 sorption/separation properties were studied. A MOF with both open metal sites and Lewis basic pyridyl sites was developed, and C2H2, CO2 and CH4 gas sorption/separation properties were explored....... A nanoscale MOF material with controllable size was realized whose morphology has been simulated base on the BFDH method, and the sensing of bacteria endospores was research in detail. We also report the synthesis and sensing of nitroaromatic explosives of a nanoscale MOF material....

  2. Interface engineering for oxide electronics: tuning electronic properties by atomically controlled growth

    NARCIS (Netherlands)

    Huijben, Mark

    2006-01-01

    The main aim of this thesis is to develop a controlled growth with atomic precision for the realization of artificial perovskite structures, to exploit the exceptional physical properties of complex oxide materials such as high-temperature superconductors and conducting interfaces between band

  3. On Disturbance Attenuation Properties of Control Schemes for Euler-Lagrange Systems : Theoretical and Experimental Results

    NARCIS (Netherlands)

    Scherpen, Jacquelien M.A.; Ortega, Romeo; Escobar, Gerardo

    1997-01-01

    In this paper we analyse and experimentally verify the (local) disturbance attenuation properties of some asymptotically stabilizing nonlinear controllers for Euler-Lagrange systems reported in the literature. Our objective with this study is twofold: first, to compare the performance of these schem

  4. CONTACT DEFORMATION AND PRE-CONTROL OF TRANSMISSION PROPERTIES OF POINT CONJUGATE GEAR

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    According to spatial conjugate principle and theory of elastic contact, a method to pre-control transmission properties and contact mark of point meshing gear is presented, while the deformation of tooth surface is under consideration. A new approach to improve the quality of spiral bevel gear is illustrated emphatically.

  5. Effective thermoelastic properties of composites with periodicity in cylindrical coordinates

    KAUST Repository

    Chatzigeorgiou, George

    2012-09-01

    The aim of this work is to study composites that present cylindrical periodicity in the microstructure. The effective thermomechanical properties of these composites are identified using a modified version of the asymptotic expansion homogenization method, which accounts for unit cells with shell shape. The microscale response is also shown. Several numerical examples demonstrate the use of the proposed approach, which is validated by other micromechanics methods. © 2012 Elsevier Ltd. All rights reserved.

  6. Effects of Coal—Water Mixture Properties in Atomization

    Institute of Scientific and Technical Information of China (English)

    DavidJ.Wildman; JamesM.Ekmann

    1994-01-01

    Recent suggested CWM applications include using filter cake material and mill tailings as coal sources.Neither coal type nor particle size distribution are necessarily well suited for coal-water mixture production.Slurries were prepared with and without additives and attempts were made to characterize their rheological properties and atomize these materials,Limits of operation and the value of existing rheological instrumentation and methods were investigated.Effects of changes in particle size distribution are discussed.

  7. Effect of heat on the adsorption properties of silica gel

    OpenAIRE

    Christy, Alfred A.

    2012-01-01

    Adsorption properties of silica gel have been attributed to the surface hydroxyl groups of silica gel. Some hydroxyl groups are free standing and called free silanol groups. Some are hydrogen bonded to neighbouring silanol groups. Christy has shown that a high silanol number and a balanced concentration proportionality between these two different types of hydroxyl groups is necessary for effective adsorption of water molecules. Thermal treatment of silica gel samples alters the proportions...

  8. Investigation of the effects of substrate annealing on the properties of polymer blends

    CSIR Research Space (South Africa)

    Motaung, DE

    2010-06-01

    Full Text Available of the effects of substrate annealing on the properties of polymer blends David E. Motaung1, 2, Gerald F. Malgas1,*, Christopher J. Arendse2,?, 1National Centre for Nano-structured Materials, Council for Scientific Industrial Research, PO. Box 395...-substrate annealing controls the crystallization of P3HT, the phase separation and diffusion of the acceptor material (C60 or PCBM). * Corresponding Author: Dr. Gerald Malgas, Tel: (+27) 012 841 3972, Fax...

  9. Mechanical Properties of Water-Assembled Graphene Oxide Langmuir Monolayers: Guiding Controlled Transfer.

    Science.gov (United States)

    Harrison, Katharine L; Biedermann, Laura B; Zavadil, Kevin R

    2015-09-15

    Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir-Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10-25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of such behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. We hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.

  10. Antimisting kerosene: Base fuel effects, blending and quality control techniques

    Science.gov (United States)

    Yavrouian, A. H.; Ernest, J.; Sarohia, V.

    1984-01-01

    The problems associated with blending of the AMK additive with Jet A, and the base fuel effects on AMK properties are addressed. The results from the evaluation of some of the quality control techniques for AMK are presented. The principal conclusions of this investigation are: significant compositional differences for base fuel (Jet A) within the ASTM specification DI655; higher aromatic content of the base fuel was found to be beneficial for the polymer dissolution at ambient (20 C) temperature; using static mixer technology, the antimisting additive (FM-9) is in-line blended with Jet A, producing AMK which has adequate fire-protection properties 15 to 20 minutes after blending; degradability of freshly blended and equilibrated AMK indicated that maximum degradability is reached after adequate fire protection is obtained; the results of AMK degradability as measured by filter ratio, confirmed previous RAE data that power requirements to decade freshly blended AMK are significantly higher than equilibrated AMK; blending of the additive by using FM-9 concentrate in Jet A produces equilibrated AMK almost instantly; nephelometry offers a simple continuous monitoring capability and is used as a real time quality control device for AMK; and trajectory (jet thurst) and pressure drop tests are useful laboratory techniques for evaluating AMK quality.

  11. Exotic properties of neutrinos using effective Lagrangians and specific models

    CERN Document Server

    Aparici, Alberto

    2013-01-01

    This doctoral dissertation presents several works on nonstandard properties of neutrinos exploiting the synergies between effective field theory and models. The phenomena are first analysed by means of effective operators, which allow to discuss their phenomenological consequences and to derive estimations about the mass scale of the heavy particles needed to induce the new interactions. In a second phase we propose models that realise the effective operators, allowing us to check the conclusions of effective field theory as well as to extract new phenomenological features of the scenarios considered. The text is divided into two parts: in the first one we apply these ideas to an effective interaction that generates magnetic dipole moments for right-handed neutrinos, and in the second one we discuss a family of operators that violate lepton number without quarks, and which can allow for large rates of neutrinoless double $\\beta$ decay and small neutrino masses. The right-handed neutrino magnetic moments have ...

  12. Numerical evaluation of effective unsaturated hydraulic properties for fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhiming [Los Alamos National Laboratory; Kwicklis, Edward M [Los Alamos National Laboratory

    2009-01-01

    To represent a heterogeneous unsaturated fractured rock by its homogeneous equivalent, Monte Carlo simulations are used to obtain upscaled (effective) flow properties. In this study, we present a numerical procedure for upscaling the van Genuchten parameters of unsaturated fractured rocks by conducting Monte Carlo simulations of the unsaturated flow in a domain under gravity-dominated regime. The simulation domain can be chosen as the scale of block size in the field-scale modeling. The effective conductivity is computed from the steady-state flux at the lower boundary and plotted as a function of the averaging pressure head or saturation over the domain. The scatter plot is then fitted using van Genuchten model and three parameters, i.e., the saturated conductivity K{sub s}, the air-entry parameter {alpha}, the pore-size distribution parameter n, corresponding to this model are considered as the effective K{sub s}, effective {alpha}, and effective n, respectively.

  13. Effects of multiwall carbon nanotubes on viscoelastic properties of magnetorheological elastomers

    Science.gov (United States)

    Aziz, Siti Aishah Abdul; Amri Mazlan, Saiful; Intan Nik Ismail, Nik; Ubaidillah, U.; Choi, Seung-Bok; Khairi, Muntaz Hana Ahmad; Azhani Yunus, Nurul

    2016-07-01

    The effect of different types of multiwall carbon nanotubes (MWCNTs) on the morphological, magnetic and viscoelastic properties of magnetorheological elastomers (MREs) are studied in this work. A series of natural rubber MRE are prepared by adding MWCNTs as a new additive in MRE. Effects of functionalized MWCNT namely carboxylated MWCNT (COOH-MWCNT) and hydroxylated MWCNT (OH-MWCNT) on the rheological properties of MREs are investigated and the pristine MWCNTs is referred as a control. Epoxidised palm oil (EPO) is used as a medium to disperse carbonyl iron particle (CIP) and sonicate the MWCNTs. Morphological and magnetic properties of MREs are characterized by field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM), respectively. Rheological properties under different magnetic field are evaluated by using parallel plate rheometer. From the results obtained, FESEM images indicate that COOH-MWCNT and CIP have better compatibility which leads to the formation of interconnected network in the matrix. In addition, by adding functionalized COOH-MWCNT, it is shown that the saturation magnetization is 5% higher than the pristine MWCNTs. It is also found that with the addition of COOH-MWCNT, the magnetic properties are improved parallel with enhancement of MR effect particularly at low strain amplitude. It is finally shown that the use of EPO also can contribute to the enhancement of MR performance.

  14. Control of fumonisin: effects of processing.

    Science.gov (United States)

    Saunders, D S; Meredith, F I; Voss, K A

    2001-05-01

    Of about 10 billion bushels of corn that are grown each year in the United States, less than 2% is processed directly into food products, and about 18% is processed into intermediates such as high-fructose corn syrup, ethanol, and cornstarch. The vast majority of the annual crop is used domestically for animal feed (60%), and about 16% is exported. Thus, any program for controlling residues of fumonisin (FB) in food must recognize that most of the crop is grown for something other than food. Studies on the effects of wet milling on FB residues found these residues nondetectable in cornstarch, the starting material for high-fructose corn syrup and most other wet-milled food ingredients. Similar effects are noted for the dry-milling process. FB residues were nondetectable or quite low in dry flaking grits and corn flour, higher in corn germ, and highest in corn bran. Extrusion of dry-milled products reduces FB concentrations by 30-90% for mixing-type extruders and 20-50% for nonmixing extruders. Cooking and canning generally have little effect on FB content. In the masa process measurable FB is reduced following the cooking, soaking, and washing steps, with little conversion of FB to the hydrolyzed form. Sheeting, baking, and frying at commercial times and temperatures generally have no effect. In summary, all available studies on the effects of processing corn into food and food ingredients consistently demonstrate substantial reductions in measurable FB. No studies have shown a concentration in FB residues in food products or ingredients.

  15. Effective optical properties of supported silicon nanopillars at telecommunication wavelengths

    Science.gov (United States)

    Pérez-Chávez, V.; Simonsen, I.; Maradudin, A. A.; Blaize, S.; Méndez, E. R.

    2017-09-01

    We measure and calculate the optical response of a structure consisting of a square array of subwavelength silicon posts on a silicon substrate at telecommunication wavelengths. By the use of the reduced Rayleigh equations and the Fourier modal method (rigorous coupled wave analysis) we calculate the reflectivity of this structure illuminated from vacuum by normally incident light. The calculated reflectivities together with experimentally determined ones, are used to test the accuracy of effective medium theories of the optical properties of structured silicon surfaces, and to estimate the effective refractive index of such surfaces produced by a homogeneous layer model.

  16. Effects of model layer simplification using composite hydraulic properties

    Science.gov (United States)

    Sepulveda, Nicasio; Kuniansky, Eve L.

    2010-01-01

    The effects of simplifying hydraulic property layering within an unconfined aquifer and the underlying confining unit were assessed. The hydraulic properties of lithologic units within the unconfined aquifer and confining unit were computed by analyzing the aquifer-test data using radial, axisymmetric two-dimensional (2D) flow. Time-varying recharge to the unconfined aquifer and pumping from the confined Upper Floridan aquifer (USA) were simulated using 3D flow. Conceptual flow models were developed by gradually reducing the number of lithologic units in the unconfined aquifer and confining unit by calculating composite hydraulic properties for the simplified lithologic units. Composite hydraulic properties were calculated using either thickness-weighted averages or inverse modeling using regression-based parameter estimation. No significant residuals were simulated when all lithologic units comprising the unconfined aquifer were simulated as one layer. The largest residuals occurred when the unconfined aquifer and confining unit were aggregated into a single layer (quasi-3D), with residuals over 100% for the leakage rates to the confined aquifer and the heads in the confining unit. Residuals increased with contrasts in vertical hydraulic conductivity between the unconfined aquifer and confining unit. Residuals increased when the constant-head boundary at the bottom of the Upper Floridan aquifer was replaced with a no-flow boundary.

  17. Effect of activated carbon and electrolyte on properties of supercapacitor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Effect of activated carbon and electrolyte on electrochemical properties of organic supercapacitor was investigated. The results show that specific surface area and mesoporosity of activated carbon influence specific capacitance. If specific surface area is larger and mesoporosity is higher, the specific capacitance will become bigger. Specific surface area influences resistance of carbon electrode and consequently influences power property and pore size distribution. If specific surface area is smaller and mesoporosity is higher, the power property will become better. Ash influences leakage current and electrochemical cycling stability. If ash content is lower, the performance will become better. The properties of supercapacitor highly depend on the electrolyte. The compatibility of electrolyte and activated carbon is a determining factor of supercapacitor's working voltage. LiPF6/(EC+EMC+DMC) is inappropriate for double layer capacitor. MeEt3NPF4/PC has higher specific capacitance than EtnNPFn/PC because methyl's electronegativity value is lower than ethyl and MeEt3N+ has more positive charges and stronger polarizability than Et4N+ when an ethyl is substituted by methyl.

  18. Effect of aging on tensile properties of ODS steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Whan; Noh, Sang Hoon; Kim, Tae Gyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Oxide dispersion strengthened (ODS) martensitic steel is a candidate material for fuel cladding of sodium cooled fast breeder reactor (SFR). ODS steel shows high strength at high temperature because of the dispersion of oxide particle in matrix and high thermal conductivity. The operating temperature of SFR was 550.deg.C and precipitates, such as M{sub 23}C{sub 6}, MX, Laves phase, were observed after long exposure at the operating temperature of SFR for martensitic Cr-Mo steel. To design SFR, the effect of aging on mechanical properties should be evaluated as a function of temperature because these precipitates affect mechanical properties. In this study, tensile properties of martensitic ODS steel were investigated after aging at high temperature. ODS steel shows high strength but exhibits low elongation at temperature range from RT to 500.deg.C. Tensile properties are little changed by aging. Dynamic strain aging is not observed at temperature range from RT to 700.deg.C for unaged and aged steels.

  19. [Biomineralization--precision of shape, structure and properties controlled by proteins].

    Science.gov (United States)

    Hołubowicz, Rafał; Porębska, Aleksandra; Poznar, Monika; Różycka, Mirosława; Dobryszycki, Piotr

    2015-01-01

    ABSTRACT Biomineralization is the process of the formation of crystal structures that is under biological control. Living organisms produce structures such as bone, teeth, otoliths, otoconia or shells. Although the chemical composition of these tissues is similar to corresponding inorganic minerals, their structure and mechanical properties differ significantly. This may be because of how they are adapted for the functions they perform. The precise control of the formation of biominerals starting with the early nucleation stage influences how the final tissues are formed. The key factors which determine the size, shape, internal structure and properties of biominerals are proteins which control the nucleation and growth of the crystals. Biomineralization is a multi-step process involving protein-protein interactions, as well as interactions between proteins and inorganic fraction. Due to their specific properties, intrinsically disordered proteins (IDPs) perform a particularly important role in the control of the biomineralization process. This article contains an overview of biominerals that are naturally occurring and describes the structures and mineralization mechanisms of the most important of them. The main part of this work was dedicated to the role of proteins which control crystal growth.

  20. Control of crystal structure, morphology and optical properties of ceria films by post deposition annealing treatments

    Energy Technology Data Exchange (ETDEWEB)

    Eltayeb, Asmaa, E-mail: asmaa.eltayeb2@mail.dcu.ie [School of Electronic Engineering, National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland); Vijayaraghavan, Rajani K. [School of Electronic Engineering, National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland); McCoy, Anthony P. [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland); Cullen, Joseph [School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland); Daniels, Stephen [School of Electronic Engineering, National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland); McGlynn, Enda [School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2016-03-31

    In this paper, the effects of post-deposition annealing temperature and atmosphere on the properties of pulsed DC magnetron sputtered ceria (CeO{sub 2}) thin films, including crystalline structure, grain size and shape and optical properties were investigated. Experimental results, obtained from X-ray diffraction (XRD), showed that the prepared films crystallised predominantly in the CeO{sub 2} cubic fluorite structure, although evidence of Ce{sub 2}O{sub 3} was also seen and this was quantified by a Rietveld refinement. The anneal temperature and oxygen content of the Ar/O{sub 2} annealing atmosphere both played important roles on the size and shape of the nanocrystals as determined by atomic force microscopy (AFM). The average grain size (determined by an AFM) as well as the out of plane coherence length (obtained from XRD) varied with increasing oxygen flow rate (OFR) in the annealing chamber. In addition, the shape of the grains seen in the AFM studies transformed from circular to triangular as the OFR was raised from 20 sccm to 30 sccm during an 800 °C thermal anneal. X-ray photoelectron spectroscopy was used to measure near-surface oxidation states of the thin-films with varying OFR in the annealing chamber. The bandgap energies were estimated from the ultra-violet and visible absorption spectra and low-temperature photoluminescence. An extracted bandgap value of 3.04 eV was determined for as-deposited CeO{sub 2} films and this value increased with increasing annealing temperatures. However, no difference was observed in bandgap energies with variation of annealing atmosphere. - Highlights: • Deposition of ceria thin films by pulsed DC magnetron sputtering • Effect of annealing temperature and gas ambient on film crystalline structure • Evidence for control of the film roughness and grain size and shape is achieved. • Investigation of the effect of post-deposition annealing on the film stoichiometry • Films showed blue shifts in bandgap energies

  1. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    Science.gov (United States)

    Podestà, Alessandro; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo

    2015-12-01

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO2) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  2. Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it [Centro Interdisciplinare Materiali e Interfacce Nanostrutturati (C.I.Ma.I.Na.), Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)

    2015-12-21

    Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO{sub 2}) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.

  3. Materials science in microelectronics II the effects of structure on properties in thin films

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    The subject matter of thin-films - which play a key role in microelectronics - divides naturally into two headings: the processing / structure relationship, and the structure / properties relationship. Part II of 'Materials Science in Microelectronics' focuses on the latter of these relationships, examining the effect of structure on the following: Electrical properties Magnetic properties Optical properties Mechanical properties Mass transport properties Interface and junction properties Defects and properties Captures the importance of thin films to microelectronic development Examines the cause / effect relationship of structure on thin film properties.

  4. Effect of Micro- and Nanomagnetite on Printing Toner Properties

    Directory of Open Access Journals (Sweden)

    Maryam Ataeefard

    2014-01-01

    Full Text Available Toner is a main component of electrophotographic printing and copying processes. One of the most important ingredients of toner is magnetite (Fe3O4 which provides the tribocharging property for toner particles. In this study, nano- and microparticles of Fe3O4 were synthesized using the coprecipitation method and different amounts of lauric acid as a surfactant. The synthesized nano and micro Fe3O4 was then used as the charge control agent to produce toner by emulsion aggregation. The Fe3O4 and toner were characterized by X-ray powder diffraction (XRD, atomic gradient force magnetometry (AGFM, dynamic laser scattering (DLS, particle size analysis, differential scanning calorimetry (DSC, and scanning electron microscopy (SEM. The results show that the optimum amount of surfactant not only reduced particle size but also reduced the magnetite properties of Fe3O4. It was found that the magnetite behavior of the toner is not similar to the Fe3O4 used to produce it. Although small-sized Fe3O4 created toner with a smaller size, toners made with micro Fe3O4 showed better magnetite properties than toner made with nano Fe3O4.

  5. Effects of fluid thermophysical properties on cavitating flows

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tairan; Huang, Biao; Wang, Guoyu; Wang, Kun [Beijing Institute of Technology, Beijing (China)

    2015-10-15

    We studied the thermo-fluid cavitating flows and evaluated the effects of physical properties on cavitation behaviors. The thermo-fluid (including liquid nitrogen, liquid hydrogen and hot water) cavitating flows around a 2D hydrofoil were numerically investigated. The Favre-averaged Navier-Stokes equations with the enthalpy-based energy equation, transport equation-based cavitation model, and the k- ω SST turbulence model were applied. The thermodynamic parameter ∑, defined as ∑=(P{sub v}{sup 2}L{sup 2})/(P{sub l}{sup 2}C{sub v}T{sub ∞} √ε{sub I}) was used to assess the thermodynamic effects on cavitating flows. The results manifest that the thermal energy solution case yields a substantially shorter and mushier cavity attached on the hydrofoil due to the thermodynamic effects, which shows better agreement with the experimental data. The temperature drop inside the cavity decreases the local saturated vapor pressure and hence increases the local cavitation number; it could delay or suppress the occurrence and development of the cavitation behavior. The thermodynamic effects can be evaluated by thermophysical properties under the same free-stream conditions; the thermodynamic parameter ∑ is shown to be critical in accurately predicting the thermodynamic effects on cavitating flows. The surrogate-based global sensitivity analysis of liquid nitrogen cavitating flow suggests that ρ{sub v}, C{sub l} and L could significantly influence temperature drop and cavity structure in the existing numerical framework, while ρv plays the dominant role on temperature drop when properties vary with changing temperature. The liquid viscosity ml slightly affects the flow structure but hardly affects the temperature distribution.

  6. Human control of an inverted pendulum: is continuous control necessary? Is intermittent control effective? Is intermittent control physiological?

    Science.gov (United States)

    Loram, Ian D; Gollee, Henrik; Lakie, Martin; Gawthrop, Peter J

    2011-01-15

    Human motor control is often explained in terms of engineering 'servo' theory. Recently, continuous, optimal control using internal models has emerged as a leading paradigm for voluntary movement. However, these engineering paradigms are designed for high band-width, inflexible, consistent systems whereas human control is low bandwidth and flexible using noisy sensors and actuators. By contrast, engineering intermittent control was designed for bandwidth-limited applications. Our general interest is whether intermittent rather than continuous control is generic to human motor control. Currently, it would be assumed that continuous control is the superior and physiologically natural choice for controlling unstable loads, for example as required for maintaining human balance. Using visuo-manual tracking of an unstable load, we show that control using gentle, intermittent taps is entirely natural and effective. The gentle tapping method resulted in slightly superior position control and velocity minimisation, a reduced feedback time delay, greater robustness to changing actuator gain and equal or greater linearity with respect to the external disturbance. Control was possible with a median contact rate of 0.8±0.3 s(-1). However, when optimising position or velocity regulation, a modal contact rate of 2 s(-1) was observed. This modal rate was consistent with insignificant disturbance-joystick coherence beyond 1-2 Hz in both tapping and continuous contact methods. For this load, these results demonstrate a motor control process of serial ballistic trajectories limited to an optimum rate of 2 s(-1). Consistent with theoretical reasoning, our results suggest that intermittent open loop action is a natural consequence of human physiology.

  7. Fibril morphology and tendon mechanical properties in patellar tendinopathy: effects of heavy slow resistance training.

    Science.gov (United States)

    Kongsgaard, Mads; Qvortrup, Klaus; Larsen, Jytte; Aagaard, Per; Doessing, Simon; Hansen, Philip; Kjaer, Michael; Magnusson, S Peter

    2010-04-01

    Patellar tendinopathy is characterized by pathologic abnormalities. Heavy slow resistance training (HSR) is effective in the management of patellar tendinopathy, but the underlying functional mechanisms remain elusive. To investigate fibril morphology and mechanical properties in patellar tendinopathy and the effect of HSR on these properties. Cohort study; Level of evidence, 2. Eight male patients with patellar tendinopathy completed 12 weeks of HSR. Nine healthy subjects served as controls. Assessments were conducted at baseline and at 12 weeks. Patients assessed symptoms/function and maximal tendon pain during activity. Tendon biopsy samples were analyzed for fibril density, volume fraction, and mean fibril area. Tendon mechanical properties were assessed using force and ultrasonography samplings. Patients improved in symptoms/function (P = .02) and maximal tendon pain during activity (P = .008). Stiffness and modulus of control and tendinopathy tendons were similar at baseline. Stiffness remained unaffected in control tendons (3487 +/- 392 to 3157 +/- 327 N/mm, P = .57) but declined in tendinopathic tendons at 12 weeks (3185 +/- 187 to 2701 +/- 201 N/mm, P = .04). At baseline, fibril volume fraction was equal, fibril density smaller (P = .03), and mean fibril area tended to be higher in tendinopathy versus controls (P = .07). Fibril morphology remained unchanged in controls but fibril density increased (70% +/- 18%, P = .02) and fibril mean area decreased (-26% +/- 21%, P = .04) in tendinopathic tendons after HSR. Fibril morphology is abnormal in tendinopathy, but tendon mechanical properties are not. Clinical improvements after HSR were associated with changes in fibril morphology toward normal fibril density and mean fibril area. Heavy slow resistance training improved the clinical outcome of patellar tendinopathy, and these improvements were associated with normalization of fibril morphology, most likely due to a production of new fibrils.

  8. Controlling of dielectrical properties of hydroxyapatite by ethylenediamine tetraacetic acid (EDTA) for bone healing applications.

    Science.gov (United States)

    Kaygili, Omer; Ates, Tankut; Keser, Serhat; Al-Ghamdi, Ahmed A; Yakuphanoglu, Fahrettin

    2014-08-14

    The hydroxyapatite (HAp) samples in the presence of various amounts of ethylenediamine tetraacetic acid (EDTA) were prepared by sol-gel method. The effects of EDTA on the crystallinity, phase structure, chemical, micro-structural and dielectric properties of HAp samples were investigated. With the addition of EDTA, the average crystallite size of the HAp samples is gradually decreased from 30 to 22 nm and the crystallinity is in the range of 65-71%. The values of the lattice parameters (a and c) and volume of the unit cell are decreased by stages with the addition of EDTA. The dielectric parameters such as relative permittivity, dielectric loss and relaxation time are affected by the adding of EDTA. The alternating current conductivity of the as-synthesized hydroxyapatites increases with the increasing frequency and obeys the universal power law behavior. The HAp samples exhibit a non-Debye relaxation mechanism. The obtained results that the dielectrical parameters of the HAp sample can be controlled by EDTA.

  9. Tunable electronic properties of graphene through controlling bonding configurations of doped nitrogen atoms

    Science.gov (United States)

    Zhang, Jia; Zhao, Chao; Liu, Na; Zhang, Huanxi; Liu, Jingjing; Fu, Yong Qing; Guo, Bin; Wang, Zhenlong; Lei, Shengbin; Hu, PingAn

    2016-01-01

    Single–layer and mono–component doped graphene is a crucial platform for a better understanding of the relationship between its intrinsic electronic properties and atomic bonding configurations. Large–scale doped graphene films dominated with graphitic nitrogen (GG) or pyrrolic nitrogen (PG) were synthesized on Cu foils via a free radical reaction at growth temperatures of 230–300 °C and 400–600 °C, respectively. The bonding configurations of N atoms in the graphene lattices were controlled through reaction temperature, and characterized using Raman spectroscopy, X–ray photoelectron spectroscopy and scanning tunneling microscope. The GG exhibited a strong n–type doping behavior, whereas the PG showed a weak n–type doping behavior. Electron mobilities of the GG and PG were in the range of 80.1–340 cm2 V−1·s−1 and 59.3–160.6 cm2 V−1·s−1, respectively. The enhanced doping effect caused by graphitic nitrogen in the GG produced an asymmetry electron–hole transport characteristic, indicating that the long–range scattering (ionized impurities) plays an important role in determining the carrier transport behavior. Analysis of temperature dependent conductance showed that the carrier transport mechanism in the GG was thermal excitation, whereas that in the PG, was a combination of thermal excitation and variable range hopping. PMID:27325386

  10. A Facile Strategy to Fabricate Multishape Memory Polymers with Controllable Mechanical Properties.

    Science.gov (United States)

    Zhang, Qinglong; Hua, Wenqiang; Feng, Jiachun

    2016-08-01

    A facile blending strategy to fabricate multishape memory polymers (SMPs) with only one sort of phase transition material has been reported. In this work, olefin block copolymer (OBC) and styrene-b-(ethylene-co-butylene)-b-styrene (SEBS), which are both physically crosslinked, are blended with crystalline paraffin together. Due to the different interactions between polymer matrices and paraffin, the paraffin penetrated in OBC and SEBS exhibit separated melting transitions. It is quite interesting that merely paraffin distributed in OBC also shows two distinct melting transitions with enough OBC content in composites. Therefore, excellent quadruple shape memory effect can be achieved with a maximum of three melting transitions. Furthermore, through adjusting the polymer species and content, the mechanical and rheological properties can be conveniently tuned to a great extent. Compared with the reported strategies, this simple and controllable method sheds light on rapid design of multi-SMPs using inexpensive raw materials, which greatly paves the way for multi-SMPs from laboratory to factory.

  11. Contamination Control to Meet Nb-1Zr Property Requirements for SP-100 Applications

    Science.gov (United States)

    Chan, Ricky C.; Kangilaski, Mike; Ring, Peter J.

    1994-07-01

    The SP-100 Space Reactor is a high temperature liquid metal reactor constructed mainly of Nb-1Zr and the related alloy PWC-11 (Nb-lZr-0.1C). Lithium metal is used as the heat transfer medium. Contamination of Nb-lZr and PWC-11 can result in degradation of mechanical properties and attack by lithium or liquid metal embrittlement during operation at 1350 K. A study was initiated to identify the most deleterious metallic contaminants. First, a theoretical evaluation was performed based on metallurgical principles which indicated potential contaminants to be aluminum, cadmium, copper, iron, lead, nickel, platinum, silver, tin, and zinc. This was followed by an experimental program in which deliberately contaminated Nb-1Zr specimens were tensile tested at a temperature of 1350 K. In this series of tests, copper was shown to be the major risk, no other material was found to be as conclusively deleterious to Nb-lZr as copper. Indications of degrading effects were observed for lead, zinc, steel, alumina, cadmium, platinum, and aluminum. In addition, these materials and other materials tested may increase the susceptibility to lithium attack. Further testing in this area would be necessary to fully understand the extent of degradation. In the interim, strict contamination controls must be maintained with particular emphasis on the identified contaminants.

  12. Cluster properties via Sunyaev-Zel'dovich effect

    Science.gov (United States)

    Cooray, Asantha

    2005-01-01

    We will discuss the role played by the Sunyaev-Zel'dovich (SZ) effect in uderstanding the physical properties of the intracluster medium. While the SZ effect has been considered widely for its cosmological purposes when combined with multiwavelength observations the SZ effect data can also be used to understand the nature and evolution of the ICM including its thermal structure and the presence of nonthermal plasma. We also discuss future opportunities on this aspect involving observations from the planned South Pole Telescope Planck mission and various other attempts to image the SZ effect in galaxy clusters using wide-field bolometer arrays and other techniques. We will also explore the connection between gas in clusters and the general intergalactic medium and how one can use detailed wide-field SZ maps beyond those towards individual clusters to study such possibilities.

  13. Effects of Charcoal Addition on the Properties of Carbon Anodes

    Directory of Open Access Journals (Sweden)

    Asem Hussein

    2017-03-01

    Full Text Available Wood charcoal is an attractive alternative to petroleum coke in production of carbon anodes for the aluminum smelting process. Calcined petroleum coke is the major component in the anode recipe and its consumption results in a direct greenhouse gas (GHG footprint for the industry. Charcoal, on the other hand, is considered as a green and abundant source of sulfur-free carbon. However, its amorphous carbon structure and high contents of alkali and alkaline earth metals (e.g., Na and Ca make charcoal highly reactive to air and CO2. Acid washing and heat treatment were employed in order to reduce the reactivity of charcoal. The pre-treated charcoal was used to substitute up to 10% of coke in the anode recipe in an attempt to investigate the effect of this substitution on final anode properties. The results showed deterioration in the anode properties by increasing the charcoal content. However, by adjusting the anode recipe, this negative effect can be considerably mitigated. Increasing the pitch content was found to be helpful to improve the physical properties of the anodes containing charcoal.

  14. Effects of electrolyte components on properties of Al alloy anode

    Institute of Scientific and Technical Information of China (English)

    MA Zheng-qing; ZUO Lie; PANG Xu; ZENG Su-min

    2009-01-01

    The effects of Na2SnO3, In(OH)3 and Na2SnO3+In(OH)3 on the properties of Al alloy anode were studied in alkaline medium at 25 ℃. The self-corrosion rate of Al alloy anode was studied by method of H2 immersed in aqueous medium, and the electrochemical properties of Al alloy anode were tested via galvanostatic discharge and dynamic potential methods. The results show that the self-corrosion rate of Al alloy anode in 4 mol/L NaOH+3 mol/L NaAlO2 medium can be minimized by adding Na2SnO3, In(OH)3 and Na2SnO3+ In(OH)3. Na2SnO3, In(OH)3 and Na2SnO3+In(OH)3 make Al anodic potential shift positively in galvanostatic discharging. The most effective additive of Al alloy anode in 4 mol/L NaOH+3 mol/L NaAlO2 medium is 0.075 mol/L Na2SnO3+0.005 mol/L In(OH)3, integrating self-corrosion rate and electrochemical properties.

  15. Effects of plant cover on properties of rhizosphere and inter-plant soil in a semiarid valley, SW China

    NARCIS (Netherlands)

    Qu, Laiye; Huang, Yuanyuan; Ma, Keming; Zhang, Yuxin; Biere, A.

    2016-01-01

    Plant establishment is widely recognized as an effective way to prevent soil erosion in arid and semiarid ecosystems. Artemisia gmelinii, a pioneering species in many degraded ecosystems in China, is effective in improving soil properties and controlling runoff and soil loss, but mechanisms underlyi

  16. Effects of plant cover on properties of rhizosphere and inter-plant soil in a semiarid valley, SW China

    NARCIS (Netherlands)

    Qu, Laiye; Huang, Yuanyuan; Ma, Keming; Zhang, Yuxin; Biere, A.

    2016-01-01

    Plant establishment is widely recognized as an effective way to prevent soil erosion in arid and semiarid ecosystems. Artemisia gmelinii, a pioneering species in many degraded ecosystems in China, is effective in improving soil properties and controlling runoff and soil loss, but mechanisms

  17. Reducing resin content and board density without adversely affecting the mechanical properties of particleboard through controlling particle size

    Institute of Scientific and Technical Information of China (English)

    Mohammad Arabi; Mehdi Faezipour; Heydar Gholizadeh

    2011-01-01

    Density and resin content are two factors that have a significant effect on the production cost of wood composite.However,particle size affects resin content and density,which suggests that the interaction of these three factors can be manipulated to reduce the board density and resin content of particleboard without adversely influencing its mechai cal properties.Some mathematical functional forms based on resin content,board density and slenderness ratio were regressed and an appropriate form was chosen.According to analysis of the results using SHAZAM 9 software,the exponential function best fit the experimental data.Finally,"indifference curves" of mechanical properties were illustrated and analyzed.The results indicated that negative effects of density or resin content reduction on mechanical properties could be compensated for by controlling particles' slenderness ratio.Interestingly,increases in slenderness ratio compensated for the negative effects of decreases in resin content or board density on module of rupture (MOR) and module of elasticity (MOE).Moreover,this "compensation ratio" intensified as resin content or density decreased and/or as the MOR or MOE increased.On the other hand,reduction in slenderness ratio indicated a complementary effect on reducing internal bond (IB) strength,a result of decresses in resin content or density.Moreover,this "complementary ratio" was intensified as resin content or density decreased and/or as IB strength increased.

  18. The effect of listing the lesser prairie chicken as a threatened species on rural property values.

    Science.gov (United States)

    Wietelman, Derek C; Melstrom, Richard T

    2017-04-15

    This paper estimates the effect of Endangered Species Act protections for the lesser prairie chicken (Tympanuchus pallidicinctus) on rural property values in Oklahoma. The political and legal controversy surrounding the listing of imperiled species raises questions about the development restrictions and opportunity costs the Endangered Species Act imposes on private landowners. Examining parcel-level sales data before and after the listing of the endemic lesser prairie chicken, we employ difference-in-differences (DD) regression to measure the welfare costs of these restrictions. While our basic DD regression provides evidence the listing was associated with a drop in property values, this finding does not hold up in models that control for latent county and year effects. The lack of a significant price effect is confirmed by several robustness checks. Thus, the local economic costs of listing the lesser prairie chicken under the Endangered Species Act appear to have been small.

  19. Effect of helium on tensile properties of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Billone, M.C.; Smith, D.L. [Argonne National Lab., IL (United States)

    1997-08-01

    Tensile properties of V-4Cr-4Ti (Heat BL-47), 3Ti-1Si (BL-45), and V-5Ti (BL-46) alloys after irradiation in a conventional irradiation experiment and in the Dynamic Helium Charging Experiment (DHCE) were reported previously. This paper presents revised tensile properties of these alloys, with a focus on the effects of dynamically generated helium of ductility and work-hardening capability at <500{degrees}C. After conventional irradiation (negligible helium generation) at {approx}427{degrees}C, a 30-kg heat of V-4Cr-4Ti (BL-47) exhibited very low uniform elongation, manifesting a strong susceptibility to loss of work-hardening capability. In contrast, a 15-kg heat of V-3Ti-1Si (BL -45) exhibited relatively high uniform elongation ({approx}4%) during conventional irradiation at {approx}427{degrees}C, showing that the heat is resistant to loss of work-hardening capability.

  20. Effect of Exposure to Electrical Discharge on Transformer Oil Properties

    Institute of Scientific and Technical Information of China (English)

    J. S. N'Cho; I. Fofana; T. Aka-Ngnui; A. Beroual

    2011-01-01

    Petroleum based oils, the so-called mineral oils, are used for impregnating solid insulations or filling products of very large number of electric materials: transformers, reactors, cables, bushings, circuit breakers, tap changers, etc. In these equipments, oil is exposed to electrical stress and may experience electrical discharges under certain circumstances. Since the electrical stress is unavoidable in power equipments, the ability of oil to resist decomposition under electrical stress is of great importance for the safety of these devices. Electrical stress together with heat and moisture, in the presence of oxygen, oxidises the oil producing free radicals, acids and sludge that are deleterious to the transformer. In this paper, the effect of electrical discharges on oil properties is reported. The results indicate that quality of oil is considerably affected with increasing voltage stress. Comparing oil properties before and after voltage application allows assessing the outcome of random secondary chemical reactions between large oil born free radicals.

  1. Effect of ageing on fatigue properties of asphalt

    Institute of Scientific and Technical Information of China (English)

    王佶; 庞凌; 吴少鹏; 刘全涛; 陈筝

    2008-01-01

    The fatigue properties of asphalts were investigated after various laboratory simulation ageing tests and outdoor natural exposure ultraviolet radiation ageing,by dynamic shear rheometer(DSR) time sweep fatigue test in constant strain model and a new type of specimen which was introduced to avoid the problem of adhesion failure between rotor and asphalt binder.The results show that outdoor natural exposure ageing(NEA) causes the decrease of retained fatigue life distinctly,and photodegradation caused by outdoor NEA of 1 250 μm thin films asphalt for three months,is found to be severer than pressure ageing vessel(PAV) with respects to retained fatigue life.The effect of photodegradation increases as the time of outdoor NEA increases.DSR time sweep fatigue test in constant strain indicates that the aged styrene-butadiene-styrene(SBS) modified asphalt still displays better fatigue properties than the corresponding base asphalt after ageing.

  2. Numerical Simulation of Effective Properties of 3D Piezoelectric Composites

    Directory of Open Access Journals (Sweden)

    Ri-Song Qin

    2014-01-01

    Full Text Available The prediction of the overall effective properties of fibre-reinforced piezocomposites has drawn much interest from investigators recently. In this work, an algorithm used in two-dimensional (2D analysis for calculating transversely isotropic material properties is developed. Since the finite element (FE meshing patterns on the opposite areas are the same, constraint equations can be applied directly to generate appropriate load. The numerical results derived using this model have found a good agreement with those in the literature. The 2D algorithm is then modified and improved in such a way that it is valid for three-dimensional (3D analysis in the case of random distributed shorts and inclusions. Linear interpolation of displacement field is employed to establish constraint equations of nodal displacements between two adjacent elements.

  3. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation.

    Science.gov (United States)

    Song, F; Koo, H; Ren, D

    2015-08-01

    Adhesion of microbes, such as bacteria and fungi, to surfaces and the subsequent formation of biofilms cause multidrug-tolerant infections in humans and fouling of medical devices. To address these challenges, it is important to understand how material properties affect microbe-surface interactions and engineer better nonfouling materials. Here we review the recent progresses in this field and discuss the main challenges and opportunities. In particular, we focus on bacterial biofilms and review the effects of surface energy, charge, topography, and stiffness of substratum material on bacterial adhesion. We summarize how these surface properties influence oral biofilm formation, and we discuss the important findings from nondental systems that have potential applications in dental medicine. © International & American Associations for Dental Research 2015.

  4. Magnetic properties of a nanoribbon: An effective-field theory

    Science.gov (United States)

    Wang, Jiu-Ming; Jiang, Wei; Zhou, Chen-Long; Shi, Zuo; Wu, Chuang

    2017-02-01

    An effective-field theory is proposed to study magnetic properties of a nanoribbon. The model consists of a core spin-3/2 and shell spin-2 with a ferrimagnetic exchange coupling, which is described by transverse Ising model with the anisotropy. Based on the differential operator technique, the magnetization and the susceptibility formulas of the nanoribbon are given. Numerical results of the magnetization, the susceptibility, the hysteresis loop of the system are discussed for specific values of the parameters. Magnetization plateaus exhibits on the magnetization curves at low temperature. The exchange coupling, the anisotropy and the transverse field have important roles in the magnetic properties for the nanoribbon. Results may provide some guidance to design in the nanoribbons.

  5. Metacognitive control and the spacing effect.

    Science.gov (United States)

    Son, Lisa K

    2010-01-01

    This study investigates whether the use of a spacing strategy absolutely improves final performance, even when the learner had chosen, metacognitively, to mass. After making judgments of learning, adult and child participants chose to mass or space their study of word pairs. However, 1/3 of their choices were dishonored. That is, they were forced to mass after having chosen to space and forced to space after having chosen to mass. Results showed that the spacing effect obtained for both adults and children when choices were honored. However, using a spacing strategy when it was in disagreement with the participant's own choice, or forced, did not enhance performance for the adults (Experiment 1). And although performance was enhanced for the children (beyond massing strategies), it was not as good as when the spacing decisions were self-chosen (Experiment 2). The data suggest that although spacing is an effective strategy for learning, it is not universal, particularly when the strategy is not chosen by the learner. In short, metacognitive control is often crucial and should be honored. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  6. Summary of property damage control programs of the United States Department of Energy CY 1979

    Energy Technology Data Exchange (ETDEWEB)

    Dix, George P.; Maybee, Walter W.

    1980-10-01

    Calendar year 1979 was the second full year of operation of the Department of Energy. This report summarizes the loss experience in overall terms and itemizes facility and program achievements in property protection. Planned projects for CY 1980 are included and several subjects of interest to loss-control specialists are discussed in detail. Property damage from all causes was $2.5 million, of which $0.65 million was due to fire, the major cause of losses in both the Department of Energy and its predecessor agencies. Combined losses for the 2 full years of Department of Energy experience total over $20 million, of which over $13 million is due to fire. The fire loss ratio for 1979 was 0.13 cents for each $100 of property values at risk, more than an order-of-magnitude less than that expeienced by the better class of insured private property. Final decontamination and cleanup costs necessitated by a product spill at a solvent-refined coal pilot plant at the end of 1979 may exceed $2 million. Even including this estimate, the total loss from all causes (fire, explosion, mechanical or electrical damage, acts of nature, radioactive and non-radioactive contamination/cleanup costs, and a variety of miscellaneous causes), would yield a loss ratio of about 1 cent for each $100 of property. This indicated the overall property protection program is exemplary.

  7. Effects and Control of the Correlation Properties of Light Sources

    Science.gov (United States)

    1990-05-01

    frequency of interest. The mutual coherence function is related by a linear transform to the cross- spectral density function which describes the...Another important note here is that although there exists a simple relationship between the mutual coherence function and the cross- spectral density function , the...homogeneous, planar, secondary source can be characterized by a cross- spectral density function given by16 W(r,r 2 ;o) = G(r1 - r2 ;o) , (1.2.1) where

  8. Effect of filter designs on hydraulic properties and well efficiency.

    Science.gov (United States)

    Kim, Byung-Woo

    2014-09-01

    To analyze the effect of filter pack arrangement on the hydraulic properties and the well efficiency of a well design, a step drawdown was conducted in a sand-filled tank model. Prior to the test, a single filter pack (SFP), granule only, and two dual filter packs (DFPs), type A (granule-pebble) and type B (pebble-granule), were designed to surround the well screen. The hydraulic properties and well efficiencies related to the filter packs were evaluated using the Hazen's, Eden-Hazel's, Jacob's, and Labadie-Helweg's methods. The results showed that the hydraulic properties and well efficiency of the DFPs were higher than those of a SFP, and the clogging effect and wellhead loss related to the aquifer material were the lowest owing to the grain size and the arrangement of the filter pack. The hydraulic conductivity of the DFPs types A and B was about 1.41 and 6.43 times that of a SFP, respectively. In addition, the well efficiency of the DFPs types A and B was about 1.38 and 1.60 times that of the SFP, respectively. In this study, hydraulic property and well efficiency changes were observed according to the variety of the filter pack used. The results differed from the predictions of previous studies on the grain-size ratio. Proper pack-aquifer ratios and filter pack arrangements are primary factors in the construction of efficient water wells, as is the grain ratio, intrinsic permeability (k), and hydraulic conductivity (K) between the grains of the filter packs and the grains of the aquifer. © 2014, National Ground Water Association.

  9. The Effect of Shared Information on Pilot/Controller And Controller/Controller Interactions

    Science.gov (United States)

    Hansman, R. John

    1999-01-01

    information systems is that the performance of ATM operations will improve with an increase in Shared Situation Awareness between agents (Pilots, Controller, Dispatchers). This will allow better informed control decisions and an improved ability to negotiate between agents. A common information basis may reduce communication load and may increase the level of collaboration in the decision process. In general, information sharing is expected to have advantages for all agents within the system. However there are important questions which remain to be,addressed. For example: What shared information is most important for developing effective Shared Situation Awareness? Are there issues of information saturation? Does information parity create ambiguity in control authority? Will information sharing induce undesirable or unstable gaming behavior between agents? This paper will explore the effect of current and proposed information sharing between different ATM agents. The paper will primarily concentrate on bilateral tactical interactions between specific agents (Pilot/Controller; Controller/Controller; Pilot/Dispatcher; Controller/Dispatcher) however it will also briefly discuss multilateral interaction and more strategic interactions.

  10. Effects of fixation and preservation on tissue elastic properties measured by quantitative optical coherence elastography (OCE).

    Science.gov (United States)

    Ling, Yuting; Li, Chunhui; Feng, Kairui; Duncan, Robyn; Eisma, Roos; Huang, Zhihong; Nabi, Ghulam

    2016-05-03

    Fixed and preserved tissues have been massively used in the development of biomedical equipment and instrumentation. Not only the tissue morphology, but also its mechanical properties need to be considered in the fixation and preservation procedures since mechanical properties have significant influence on the design and performance of such instruments. Understanding the effects of storage and preservation conditions on the mechanical properties of soft tissue has both clinical and experimental significance. To this end, we aimed to study the effects of tissue preservation (by 10% formalin and Thiel fluids) on the elastic properties of five different kinds of fresh tissues from pig and chicken; specifically fat, liver, muscle, tendon and cartilage. The tissue elasticity was measured intensively and strictly within a controlled timeline of 6 months by quantitative optical coherence elastography (OCE) system. Our findings suggest that the elasticity change of tissues in the formalin solution has an ascending trend, but that of Thiel remains almost constant, providing a more real texture and properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effect of presowing magnetic treatment on properties of pea

    Science.gov (United States)

    Iqbal, M.; Haq, Z. U.; Jamil, Y.; Ahmad, M. R.

    2012-02-01

    The pea seeds were exposed to full-wave rectified sinusoidal magnetic fields. The effects of electromagnetic treatment on seedling growth and chlorophyll contents and have been investigated. Seed were sown after magnetic field treatment according to ISTA under controlled laboratory conditions. The magnetic filed treatment of seeds increased the growth significantly (Pmagnetic field could be used to enhance the growth in pea plant.

  12. Surface effects on the mechanical properties of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Xia Re [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Li Xide; Feng Xiqiao [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Qin Qinghua [School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Liu Jianlin, E-mail: fengxq@tsinghua.edu.cn [Department of Engineering Mechanics, China University of Petroleum, Qingdao 266555 (China)

    2011-07-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  13. Microstructural and dielectric susceptibility effects on predictions of dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, K.F.; Exarhos, G.J. [Pacific Northwest National Lab., Richland, WA (United States); Risser, S.M. [Texas A& M Univ., Commerce, TX (United States)

    1997-12-01

    In modeling the dielectric properties of inhomogeneous materials, the treatment of the electric field interactions differentiate the usual modeling formalisms (such as the Maxwell-Garnett and Bruggeman effective medium methods) and their accuracy. In this paper, we show that the performance of effective medium methods is dependent upon a number of variables - defect concentration, alignment, and the dielectric constant of the material itself. Using our previously developed finite element model of an inhomogeneous dielectric, we have developed models for a number of dielectric films of varying dielectric constant and microstructures. Alignment of defects parallel to the applied field and the larger defect aspect ratios increase the overall dielectric constant. The extent of these effects is dependent on the dielectric constant of the bulk component.

  14. Effects of emotional context on impulse control.

    Science.gov (United States)

    Brown, Matthew R G; Lebel, R Marc; Dolcos, Florin; Wilman, Alan H; Silverstone, Peter H; Pazderka, Hannah; Fujiwara, Esther; Wild, T Cameron; Carroll, Alan M; Hodlevskyy, Oleksandr; Zedkova, Lenka; Zwaigenbaum, Lonnie; Thompson, Angus H; Greenshaw, Andrew J; Dursun, Serdar M

    2012-10-15

    High risk behaviors such as narcotic use or physical fighting can be caused by impulsive decision making in emotionally-charged situations. Improved neuroscientific understanding of how emotional context interacts with the control of impulsive behaviors may lead to advances in public policy and/or treatment approaches for high risk groups, including some high-risk adolescents or adults with poor impulse control. Inferior frontal gyrus (IFG) is an important contributor to response inhibition (behavioral impulse control). IFG also has a role in processing emotional stimuli and regulating emotional responses. The mechanism(s) whereby response inhibition processes interact with emotion processing in IFG are poorly understood. We used 4.7 T fMRI in 20 healthy young adults performing a rapid event-related emotional Go/NoGo task. This task combined the Go/NoGo task, which is a classic means of recruiting response inhibition processes, with emotionally neutral and aversive distractor images. In IFG, both response inhibition in an emotionally neutral context (neutral NoGo trials) and aversive emotional picture processing (aversive Go trials) evoked activation greater than the simple response baseline (neutral Go trials). These results are consistent with the literature. Activation for response inhibition in aversive contexts (aversive NoGo-neutral Go trials) was approximately the sum of response inhibition activation (neutral NoGo-neutral Go) and aversive emotional distractor activation (aversive Go-neutral Go). We conclude that response inhibition and aversive emotional stimulus processing activities combine additively (linearly) in IFG, rather than interfering with each other (sub-linearly) or mutually-enhancing each other (super-linearly). We also found previously undocumented interaction effects between response inhibition (NoGo vs. Go) and emotional context (aversive vs. neutral distractor pictures) in bilateral posterior middle temporal gyrus and angular gyrus, right

  15. Orange oil effect in the control of fennel aphid

    Directory of Open Access Journals (Sweden)

    Ivanildo Cavalcanti de Albuquerque

    2009-08-01

    Full Text Available In the properties where fennel is grown, in the states of Bahia, Sergipe, Pernambuco and Paraiba, at the Northeast of Brazil, a high rate of usage of pesticides in the crop, aiming to control the aphid Hyadaphis foeniculi. The purpose of this study was to evaluate the effect of orange oil Prev-Am (sodium tetraborohydrate decahydrate, in the control of H. foeniculi aphid of the fennel crop. The trial was conducted in a fennel field located in Lagoa Seca Experimental Station, belonging to the EMEPA-PB. Forty-eight hours after the product has been sprayed, one flower of the umbel was collected and removed her aphids, which were placed in a "petri" plate from 9cm in diameter. As a following step, the insects were counted as part of two groups, considering the number of insects dead and alive, being tabulated for later analysis. The data were subjected to analysis of variance, using the experimental design of randomized blocks composed of six treatments (doses of 0.3, 0.4, 0.5, 0.6, 0.7% of orange oil (Prev-am and pure water as check, with five repetitions. The data were submitted to the regression analysis. The orange oil (Prev-am controls effectively H. foeniculi at the concentration of 0.3%, increasing the control up to concentrations of 0.6 and 0.7%. The product does not kill ladybugs (Cycloneda sanguinea and can be used in programs for integrated pest management.Keywords: Foeniculum vulgare, aphid, vegetable oil, ladybug, umbel.

  16. Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline.

    Science.gov (United States)

    Li, Ming; Xie, Fengwei; Hasjim, Jovin; Witt, Torsten; Halley, Peter J; Gilbert, Robert G

    2015-03-06

    The effects of molecular and crystalline structures on the tensile mechanical properties of thermoplastic starch (TPS) films from waxy, normal, and high-amylose maize were investigated. Starch structural variations were obtained through extrusion and hydrothermal treatment (HTT). The molecular and crystalline structures were characterized using size-exclusion chromatography and X-ray diffractometry, respectively. TPS from high-amylose maize showed higher elongation at break and tensile strength than those from normal maize and waxy maize starches when processed with 40% plasticizer. Within the same amylose content, the mechanical properties were not affected by amylopectin molecular size or the crystallinity of TPS prior to HTT. This lack of correlation between the molecular size, crystallinity and mechanical properties may be due to the dominant effect of the plasticizer on the mechanical properties. Further crystallization of normal maize TPS by HTT increased the tensile strength and Young's modulus, while decreasing the elongation at break. The results suggest that the crystallinity from the remaining ungelatinized starch granules has less significant effect on the mechanical properties than that resulting from starch recrystallization, possibly due to a stronger network from leached-out amylose surrounding the remaining starch granules.

  17. Coaxial electrospinning multicomponent functional controlled-release vascular graft: Optimization of graft properties.

    Science.gov (United States)

    Yin, Anlin; Luo, Rifang; Li, Jiukai; Mo, Xiumei; Wang, Yunbing; Zhang, Xingdong

    2017-04-01

    Small diameter vascular grafts possessing desirable biocompatibility and suitable mechanical properties have become an urgent clinic demand. Herein, heparin loaded fibrous grafts of collagen/chitosan/poly(l-lactic acid-co-ε-caprolactone) (PLCL) were successfully fabricated via coaxial electrospinning. By controlling the concentration of heparin and the ratio of collagen/chitosan/PLCL, most grafts had the heparin encapsulation efficiency higher than 70%, and the heparin presented sustained release for more than 45 days. Particularly, such multicomponent grafts had relative low initial burst release, and after heparin releasing for 3 weeks, the grafts still showed good anti-platelet adhesion ability. In addition, along with the excellent cell biocompatibility, the fabricated grafts possessed suitable mechanical properties including good tensile strength, suture retention strength, burst pressure and compliance which could well match the native blood vessels. Thus, the optimized graft properties could be properly addressed for vascular tissue application via coaxial electrospinning.

  18. Control of electronic properties of organic conductors by hydrostatic and uniaxial compression

    Energy Technology Data Exchange (ETDEWEB)

    Kagoshima, S.; Kondo, R.; Hirai, H.; Shibata, T.; Kaga, Y. [Tokyo Univ. (Japan). Dept. of Basic Science; Maesato, M. [Kyoto Univ. (Japan). Dept. of Chemistry

    2001-01-01

    We developed the uniaxial strain method to artificially control the electronic properties of organic conductors by reducing the intermolecular distance along a desired direction without changing those along others. Using this method, we were able to cause and enhance superconductivity in two-dimensional organic conductors, {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} and its isostructural compound having NH{sub 4} instead of K. We found that these two compounds show essentially the same properties if their lattice parameters are appropriately reduced by the uniaxial strain method, although they show quite different properties under ambient and hydrostatic pressures. In the one-dimensional organic superconductor (TMTSF){sub 2}PF{sub 6}, we found a novel result that is contradictory to the current interpretation for the suppression of spin density waves under pressures. (orig.)

  19. Habitat structure mediates biodiversity effects on ecosystem properties.

    Science.gov (United States)

    Godbold, J A; Bulling, M T; Solan, M

    2011-08-22

    Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.

  20. Effects of acetylcholine on neuronal properties in entorhinal cortex

    Directory of Open Access Journals (Sweden)

    James G Heys

    2012-07-01

    Full Text Available The entorhinal cortex receives prominent cholinergic innervation from the medial septum and the vertical limb of the diagonal band of Broca (MSDB. To understand how cholinergic neurotransmission can modulate behavior, research has been directed towards identification of the specific cellular mechanisms in entorhinal cortex that can be modulated through cholinergic activity. This review focuses on intrinsic cellular properties of neurons in entorhinal cortex that may underlie functions such as working memory, spatial processing and episodic memory. In particular, the study of stellate cells in medial entorhinal has resulted in discovery of correlations between physiological properties of these neurons and properties of the unique spatial representation that is demonstrated through unit recordings of neurons in medial entorhinal cortex from awake-behaving animals. A separate line of investigation has demonstrated persistent firing behavior among neurons in entorhinal cortex that is enhanced by cholinergic activity and could underlie working memory. There is also evidence that acetylcholine plays a role in modulation of synaptic transmission that could also enhance mnemonic function in entorhinal cortex. Finally, the local circuits of entorhinal cortex demonstrate a variety of interneuron physiology, which is also subject to cholinergic modulation. Together these effects alter the dynamics of entorhinal cortex to underlie the functional role of acetylcholine in memory.

  1. Effect of temperature on thermal properties of Graphene

    Directory of Open Access Journals (Sweden)

    Neetu Sorot

    2015-09-01

    Full Text Available Home About Us » Editorial Board Indexed in Current Issue Coming Issue Archives Submission » Contact Us Effect of temperature on thermal properties of Graphene Volume 31, Number 3 Neetu Sorot and B. R. K.Gupta* Department of physics GLA University, Mathura-U.P. (India . Correspondence Author Email : brk.gupta@gla.ac.in DOI : http://dx.doi.org/10.13005/ojc/310309 ABSTRACT: Many potential applications of graphene in nanotechnology depend on its thermo-mechanical stability. We have calculated the temperature dependent properties such as the volume thermal expansion, and thermal expansion coefficient of the graphene using the equation of state (EOS based on thermodynamic variables. A simple theoretical method is applied to determine the thermal expansion and thermal expansion properties of graphene. The model employed in the present study consists of only two input parameters and independent of potential. The results achieved as reported in this paper are found in good agreement with those obtained from QHA-GGA ab- initio study [25].

  2. Effect of glucosylceramide on the biophysical properties of fluid membranes.

    Science.gov (United States)

    Varela, Ana R P; Gonçalves da Silva, Amélia M P S; Fedorov, Alexander; Futerman, Anthony H; Prieto, Manuel; Silva, Liana C

    2013-03-01

    Glucosylceramide (GlcCer), a relevant intermediate in the pathways of glycosphingolipid metabolism, plays key roles in the regulation of cell physiology. The molecular mechanisms by which GlcCer regulates cellular processes are unknown, but might involve changes in membrane biophysical properties and formation of lipid domains. In the present study, fluorescence spectroscopy, confocal microscopy and surface pressure-area (π-A) measurements were used to characterize the effect of GlcCer on the biophysical properties of model membranes. We show that C16:0-GlcCer has a high tendency to segregate into highly ordered gel domains and to increase the order of the fluid phase. Monolayer studies support the aggregation propensity of C16:0-GlcCer. π-A isotherms of single C16:0-GlcCer indicate that bilayer domains, or crystal-like structures, coexist within monolayer domains at the air-water interface. Mixtures with POPC exhibit partial miscibility with expansion of the mean molecular areas relative to the additive behavior of the components. Moreover, C16:0-GlcCer promotes morphological alterations in lipid vesicles leading to formation of flexible tubule-like structures that protrude from the fluid region of the bilayer. These results support the hypothesis that alterations in membrane biophysical properties induced by GlcCer might be involved in its mechanism of action.

  3. Effects of Sintering Technology on PMZN Piezoceramics Properties

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Pb(Mn1/3Sb2/3)x(Zn1/3Nb2/3)y(Zr0.535Ti0.465)1-x-yO3 (PMZN)piezoelectric ceramics were fabricated.The effects of sintering temperature and heat-treatment time on properties were discussed,the optimum preparation technology parameters were obtained.In this case,the ceramics have the highest electromechanical coupling coefficients and mechanical quality factor and the least dielectric loss.It is revealed that the PMZN piezoceramics material can be utilized for high-power ultrasound transducers.

  4. The effect of interlayers on dissimilar friction weld properties

    Science.gov (United States)

    Maldonado-Zepeda, Cuauhtemoc

    The influence of silver interlayers on the metallurgical and mechanical properties of dissimilar aluminium alloy/stainless steel friction welds are investigated. An elastic contact model is proposed that explains the conditions at and close to the contact surface, which produce Al2O3 particle fracture in dissimilar MMC/AISI 304 stainless steel friction welds. Intermixed (IM) and particle dispersed (PD) regions are formed in Ag-containing dissimilar friction welds. These regions form very early in the joining operation and both contain Ag3Al. Therefore, an interlayer (Ag) introduced with the specific aim of preventing FexAly compound formation in MMC/AISI 304 stainless steel friction welds promotes the formation of another intermetallic phase at the bondline. Since IM and PD regions are progressively removed as the friction welding operation proceeds thinner intermetallic layers are produced when long friction welding times are applied. This type of behavior is quite different from that observed in silver-free dissimilar MMC/AISI 304 stainless steel welds. Nanoparticles of silver are formed in dissimilar MMC/Ag/AISI 304 stainless steel welds produced using low friction pressures. Nanoparticle formation in dissimilar friction welds has never been previously observed or investigated. The introduction of silver interlayers decreases heat generation during welding, produces narrower softened zone regions and improved notch tensile strength properties. All research to-date has assumed per se that joint mechanical properties wholly depend on the mechanical properties and width of the intermetallic layer formed at the dissimilar joint interface. However, it is shown in this thesis that the mechanical properties of MMC/AISI 304 stainless steel joints are determined by the combined effects of intermetallic formation at the bondline and softened zone formation in MMC base material immediately adjacent to the joint interface. A methodology for calculating the notch tensile

  5. Thermal properties of soils: effect of biochar application

    Science.gov (United States)

    Usowicz, Boguslaw; Lukowski, Mateusz; Lipiec, Jerzy

    2014-05-01

    Thermal properties (thermal conductivity, heat capacity and thermal diffusivity) have a significant effect on the soil surface energy partitioning and resulting in the temperature distribution. Thermal properties of soil depend on water content, bulk density and organic matter content. An important source of organic matter is biochar. Biochar as a material is defined as: "charcoal for application as a soil conditioner". Biochar is generally associated with co-produced end products of pyrolysis. Many different materials are used as biomass feedstock for biochar, including wood, crop residues and manures. Additional predictions were done for terra preta soil (also known as "Amazonian dark earth"), high in charcoal content, due to adding a mixture of charcoal, bone, and manure for thousands of years i.e. approximately 10-1,000 times longer than residence times of most soil organic matter. The effect of biochar obtained from the wood biomass and other organic amendments (peat, compost) on soil thermal properties is presented in this paper. The results were compared with wetland soils of different organic matter content. The measurements of the thermal properties at various water contents were performed after incubation, under laboratory conditions using KD2Pro, Decagon Devices. The measured data were compared with predictions made using Usowicz statistical-physical model (Usowicz et al., 2006) for biochar, mineral soil and soil with addition of biochar at various water contents and bulk densities. The model operates statistically by probability of occurrence of contacts between particular fractional compounds. It combines physical properties, specific to particular compounds, into one apparent conductance specific to the mixture. The results revealed that addition of the biochar and other organic amendments into the soil caused considerable reduction of the thermal conductivity and diffusivity. The mineral soil showed the highest thermal conductivity and diffusivity

  6. Controlled synthesis and enhanced catalytic and gas-sensing properties of tin dioxide nanoparticles with exposed high-energy facets.

    Science.gov (United States)

    Wang, Xue; Han, Xiguang; Xie, Shuifen; Kuang, Qin; Jiang, Yaqi; Zhang, Subing; Mu, Xiaoliang; Chen, Guangxu; Xie, Zhaoxiong; Zheng, Lansun

    2012-02-20

    A morphology evolution of SnO(2) nanoparticles from low-energy facets (i.e., {101} and {110}) to high-energy facets (i.e., {111}) was achieved in a basic environment. In the proposed synthetic method, octahedral SnO(2) nanoparticles enclosed by high-energy {111} facets were successfully synthesized for the first time, and tetramethylammonium hydroxide was found to be crucial for the control of exposed facets. Furthermore, our experiments demonstrated that the SnO(2) nanoparticles with exposed high-energy facets, such as {221} or {111}, exhibited enhanced catalytic activity for the oxidation of CO and enhanced gas-sensing properties due to their high chemical activity, which results from unsaturated coordination of surface atoms, superior to that of low-energy facets. These results effectively demonstrate the significance of research into improving the physical and chemical properties of materials by tailoring exposed facets of nanomaterials.

  7. Thermoelectric properties control due to doping level and sintering conditions for FGM thermoelectric element

    CERN Document Server

    Kajikawa, T; Shiraishi, K; Ohmori, M; Hirai, T

    1999-01-01

    Thermoelectric performance is determined with three factors, namely, Seebeck coefficient, electrical resistivity and thermal conductivity. For metal and single crystalline semiconductor, those factors have close interrelation each $9 other. However, as the sintered thermoelectric element has various levels of superstructure from macro scale and micro scale in terms of the thermoelectric mechanism, the relationship among them is more complex than that for the $9 melt- grown element, so it is suggested that the control of the temperature dependence of thermoelectric properties is possible to enhance the thermoelectric performance for wide temperature range due to FGM approach. The research $9 objective is to investigate the characteristics of the thermoelectric properties for various doping levels and hot-pressed conditions to make the thermoelectric elements for which the temperature dependence of the performance is $9 controlled due to FGM approach varying the doping levels and sintering conditions. By usage ...

  8. Price game and chaos control among three oligarchs with different rationalities in property insurance market

    Science.gov (United States)

    Ma, Junhai; Zhang, Junling

    2012-12-01

    Combining with the actual competition in Chinese property insurance market and assuming that the property insurance companies take the marginal utility maximization as the basis of decision-making when they play price games, we first established the price game model with three oligarchs who have different rationalities. Then, we discussed the existence and stability of equilibrium points. Third, we studied the theoretical value of Lyapunov exponent at Nash equilibrium point and its change process with the main parameters' changes though having numerical simulation for the system such as the bifurcation, chaos attractors, and so on. Finally, we analyzed the influences which the changes of different parameters have on the profits and utilities of oligarchs and their corresponding competition advantage. Based on this, we used the variable feedback control method to control the chaos of the system and stabilized the chaos state to Nash equilibrium point again. The results have significant theoretical and practical application value.

  9. Controlled inflation of voids in cellular polymer ferroelectrets: Optimizing electromechanical transducer properties

    Science.gov (United States)

    Wegener, M.; Wirges, W.; Gerhard-Multhaupt, R.; Dansachmüller, M.; Schwödiauer, R.; Bauer-Gogonea, S.; Bauer, S.; Paajanen, M.; Minkkinen, H.; Raukola, J.

    2004-01-01

    When exposed to sufficiently high electric fields, polymer-foam electret materials with closed cells exhibit ferroelectric-like behavior and may therefore be called ferroelectrets. In cellular ferroelectrets, the influence of the cell size and shape distributions on the application-relevant properties is not yet understood. Therefore, controlled inflation experiments were carried out on cellular polypropylene films, and the resulting elastical and electromechanical parameters were determined. The elastic modulus in the thickness direction shows a minimum with a corresponding maximum in the electromechanical transducer coefficient. The resonance frequency shifts as a function of the elastic modulus and the relative density of the inflated cellular films. Therefore, the transducer properties of cellular ferroelectrets can be optimized by means of controlled inflation.

  10. Improvement in tensile properties of PVC–montmorillonite nanocomposites through controlled uniaxial stretching

    Indian Academy of Sciences (India)

    Adnan Sarfraz; Muhammad Farooq Warsi; Muhammad Ilyas Sarwar; Muhammad Ishaq

    2012-08-01

    In this paper we present the results exhibiting an improvement in the tensile properties of polyvinyl chloride (PVC)–montmorillonite nanocomposites through uniaxial stretching. The clay was dispersed in PVC matrix with the help of dodecylamine. PVC–montmorillonite nanocomposites films containing varying amounts of clay (0–5%) were produced through solution elution technique. The films were stretched uniaxially at a constant temperature of 80 °C in three different steps using controlled loads. X-ray diffraction and stress–strain curves were obtained for both unstretched and stretched films in order to determine the improvement in various properties. The controlled uniaxial stretching of films close to the softening temperature of PVC has resulted in enhancement in the degree of crystallinity in the nanocomposites. This improvement in the structural order has also imparted increase in tensile strength and Young’s modulus of the nanocomposite films.

  11. Price game and chaos control among three oligarchs with different rationalities in property insurance market.

    Science.gov (United States)

    Ma, Junhai; Zhang, Junling

    2012-12-01

    Combining with the actual competition in Chinese property insurance market and assuming that the property insurance companies take the marginal utility maximization as the basis of decision-making when they play price games, we first established the price game model with three oligarchs who have different rationalities. Then, we discussed the existence and stability of equilibrium points. Third, we studied the theoretical value of Lyapunov exponent at Nash equilibrium point and its change process with the main parameters' changes though having numerical simulation for the system such as the bifurcation, chaos attractors, and so on. Finally, we analyzed the influences which the changes of different parameters have on the profits and utilities of oligarchs and their corresponding competition advantage. Based on this, we used the variable feedback control method to control the chaos of the system and stabilized the chaos state to Nash equilibrium point again. The results have significant theoretical and practical application value.

  12. Effect of tumor therapeutic irradiation on the mechanical properties of teeth tissue

    Energy Technology Data Exchange (ETDEWEB)

    Fraenzel, W. [Dept. of Physics, Martin Luther Univ. Halle (Germany); Gerlach, R. [Univ. Clinic and Policlinic for Radiation Therapy, Martin Luther Univ. Halle (Germany); Hein, H.J. [Univ. Clinic and Policlinic for Orthopaedics and Physical Medicine, Martin Luther Univ. Halle (Germany); Schaller, H.G. [Dept. of Operative Dentistry and Periodontology, Martin Luther Univ. Halle (Germany)

    2006-07-01

    Tumor irradiation of the head-neck area is accompanied by the development of a so-called radiation caries in the treated patients. In spite of conservative therapeutic measures, the process results in tooth destruction. The present study investigated the effects of irradiation on the demineralization and remineralization of the dental tissue. For this purpose, retained third molars were prepared and assigned either to a test group, which was exposed to fractional irradiation up to 60 Gy, or to a non-irradiated control group. Irradiated and non-irradiated teeth were then demineralized using acidic hydroxyl-cellulose gel; afterwards the teeth were remineralized using either Bifluorid12 {sup registered} or elmex gelee {sup registered}. The nanoindentation technique was used to measure the mechanical properties, hardness and elasticity, of the teeth in each of the conditions. The values were compared to the non-irradiated control group. Irradiation decreased dramatically the mechanical parameters of enamel and dentine. In non-irradiated teeth, demineralization had nearly the same effects of irradiation on the mechanical properties. In irradiated teeth, the effects of demineralization were negligible in comparison to non-irradiated teeth. Remineralization with Bifluorid12 {sup registered} or elmex gelee {sup registered} led to a partial improvement of the mechanical properties of the teeth. The enamel was more positively affected, by remineralization than the dentine. (orig.)

  13. Task-related changes in functional properties of the human brain network underlying attentional control.

    Directory of Open Access Journals (Sweden)

    Tetsuo Kida

    Full Text Available Previous studies have demonstrated task-related changes in brain activation and inter-regional connectivity but the temporal dynamics of functional properties of the brain during task execution is still unclear. In the present study, we investigated task-related changes in functional properties of the human brain network by applying graph-theoretical analysis to magnetoencephalography (MEG. Subjects performed a cue-target attention task in which a visual cue informed them of the direction of focus for incoming auditory or tactile target stimuli, but not the sensory modality. We analyzed the MEG signal in the cue-target interval to examine network properties during attentional control. Cluster-based non-parametric permutation tests with the Monte-Carlo method showed that in the cue-target interval, beta activity was desynchronized in the sensori-motor region including premotor and posterior parietal regions in the hemisphere contralateral to the attended side. Graph-theoretical analysis revealed that, in beta frequency, global hubs were found around the sensori-motor and prefrontal regions, and functional segregation over the entire network was decreased during attentional control compared to the baseline. Thus, network measures revealed task-related temporal changes in functional properties of the human brain network, leading to the understanding of how the brain dynamically responds to task execution as a network.

  14. Task-related changes in functional properties of the human brain network underlying attentional control.

    Science.gov (United States)

    Kida, Tetsuo; Kakigi, Ryusuke

    2013-01-01

    Previous studies have demonstrated task-related changes in brain activation and inter-regional connectivity but the temporal dynamics of functional properties of the brain during task execution is still unclear. In the present study, we investigated task-related changes in functional properties of the human brain network by applying graph-theoretical analysis to magnetoencephalography (MEG). Subjects performed a cue-target attention task in which a visual cue informed them of the direction of focus for incoming auditory or tactile target stimuli, but not the sensory modality. We analyzed the MEG signal in the cue-target interval to examine network properties during attentional control. Cluster-based non-parametric permutation tests with the Monte-Carlo method showed that in the cue-target interval, beta activity was desynchronized in the sensori-motor region including premotor and posterior parietal regions in the hemisphere contralateral to the attended side. Graph-theoretical analysis revealed that, in beta frequency, global hubs were found around the sensori-motor and prefrontal regions, and functional segregation over the entire network was decreased during attentional control compared to the baseline. Thus, network measures revealed task-related temporal changes in functional properties of the human brain network, leading to the understanding of how the brain dynamically responds to task execution as a network.

  15. Control of Mechanical Properties of Thermoplastic Polyurethane Elastomers by Restriction of Crystallization of Soft Segment

    Directory of Open Access Journals (Sweden)

    Sadaharu Nakamura

    2010-12-01

    Full Text Available Mechanical properties of thermoplastic polyurethane elastomers based on either polyether or polycarbonate (PC-glycols, 4,4’-dipheylmethane diisocyanate (1,1’-methylenebis(4-isocyanatobenzene, 1,4-butanediol, were controlled by restriction of crystallization of polymer glycols. For the polyether glycol based-polyurethane elastomers (PUEs, poly(oxytetramethylene glycol (PTMG, and PTMG incorporating dimethyl groups (PTG-X and methyl side groups (PTG-L were employed as a polymer glycol. For the PC-glycol, the randomly copolymerized PC-glycols with hexamethylene (C6 and tetramethylene (C4 units between carbonate groups with various composition ratios (C4/C6 = 0/100, 50/50, 70/30 and 90/10 were employed. The degree of microphase separation and mechanical properties of both the PUEs were investigated using differential scanning calorimetry, dynamic viscoelastic property measurements and tensile testing. Mechanical properties could be controlled by changing the molar ratio of two different monomer components.

  16. A Theoretical Characterization of Curvature Controlled Adhesive Properties of Bio-Inspired Membranes

    DEFF Research Database (Denmark)

    Afferante, Luciano; Heepe, Lars; Casdorff, Kirstin

    2016-01-01

    Some biological systems, such as the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima, have developed the ability to control adhesion by changing the curvature of their pads. Active control systems of adhesion inspired by these biological models can be very attractive...... for the development of devices with controllable adhesive properties. In this paper, we present a theory describing the adhesive behavior of an artificial system consisting of an inflatable membrane clamped to a metallic cylinder and filled with air. In such a system, by controlling the internal pressure acting...... the experiments. The present model might help to achieve a better understanding of the adhesion behavior of biological systems and of the fingertips that, in a broad sense, may be regarded as shell-like structures....

  17. A Theoretical Characterization of Curvature Controlled Adhesive Properties of Bio-Inspired Membranes

    DEFF Research Database (Denmark)

    Afferante, Luciano; Heepe, Lars; Casdorff, Kirstin;

    2016-01-01

    Some biological systems, such as the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima, have developed the ability to control adhesion by changing the curvature of their pads. Active control systems of adhesion inspired by these biological models can be very attractive...... for the development of devices with controllable adhesive properties. In this paper, we present a theory describing the adhesive behavior of an artificial system consisting of an inflatable membrane clamped to a metallic cylinder and filled with air. In such a system, by controlling the internal pressure acting...... on the membrane, it is possible to modulate the adhesive strength. In particular, an increase of the internal pressure and, hence, the curvature of the membrane, results in a decrease of the pull-off force. Results predicted by the theoretical model are in good agreement with experimental data. The model explains...

  18. Properties of Closed-Loop Reference Models in Adaptive Control: Part I Full States Accessible

    CERN Document Server

    Gibson, Travis E; Lavretsky, Eugene

    2012-01-01

    This paper explores the properties of adaptive systems with closed-loop reference models. Historically, reference models in adaptive systems run open-loop in parallel with the plant and controller, using no information from the plant or controller to alter the trajectory of the reference system. Closed-loop reference models on the other hand use information from the plant to alter the reference trajectory. We show that closed-loop reference models have one more free design parameter as compared to their open-loop counterparts. Using the extra design freedom, we study closed--loop reference models and their impact on transient response and robustness in adaptive systems.

  19. Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, A.V., E-mail: arozhkov@gmail.co [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412, Moscow (Russian Federation); Giavaras, G. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Bliokh, Yury P. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Freilikher, Valentin [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Bar-Ilan University, Ramat-Gan 52900 (Israel); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2011-06-15

    This brief review discusses electronic properties of mesoscopic graphene-based structures. These allow controlling the confinement and transport of charge and spin; thus, they are of interest not only for fundamental research, but also for applications. The graphene-related topics covered here are: edges, nanoribbons, quantum dots, pn-junctions, pnp-structures, and quantum barriers and waveguides. This review is partly intended as a short introduction to graphene mesoscopics.

  20. Controlling the focusing properties of a triangular-lattice metallic photonic-crystal slab

    Institute of Scientific and Technical Information of China (English)

    Feng Shuai; Wang Yi-Quan; Li Zhi-Yuan; Cheng Bing-Ying; Zhang Dao-Zhong

    2007-01-01

    This paper studies the focusing properties of a two-dimensional photonic crystal (PC) slab consisting of a triangular lattice of metallic cylinders immersed in a dielectric background. Through the analysis of the equifrequency-surface contours and the field patterns of a point source placed in the vicinity of the PC slab, it finds that both the image distance and image quality can be controlled by simply adjusting the refractive index of the background material.

  1. Fatigue effect of elastocaloric properties in natural rubber.

    Science.gov (United States)

    Sebald, Gael; Xie, Zhongjian; Guyomar, Daniel

    2016-08-13

    In the framework of elastocaloric (eC) refrigeration, the fatigue effect on the eC effect of natural rubber (NR) is investigated. Repetitive deformation cycles at engineering strain regime from 1 to 6 results in a rapid rupture (approx. 800 cycles). Degradation of properties and fatigue life are then investigated at three different strain regimes with the same strain amplitude: before onset strain of strain-induced crystallization (SIC) (strain regime of 0-3), onset strain of melting (strain regime of 2-5) and high strain of SIC (strain regime of 4-7). Strain of 0-3 leads to a low eC effect and cracking after 2000 cycles. Strain of 2-5 and 4-7 results in an excellent crack growth resistance and much higher eC effect with adiabatic temperature changes of 3.5 K and 4.2 K, respectively, thanks to the effect of SIC. The eC stress coefficient index γ (ratio between eC temperature change and applied stress) for strains of 2-5 and 4-7 are γ2-5=4.4 K MPa(-1) and γ4-7=1.6 K MPa(-1), respectively, demonstrating the advantage of the strain regime 2-5. Finally, a high-cycle test up to 1.7×10(5) cycles is successfully applied to the NR sample with very little degradation of eC properties, constituting an important step towards cooling applications.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  2. Experimental study of the effect of controlling signal on controlling chaos

    Institute of Scientific and Technical Information of China (English)

    李蓉; 祝恒江; 屈支林; 温孝东; 秦光戎; 胡岗

    1995-01-01

    A model of double-harmonious circuit for non-feedback control of chaos is introduced. A controlling signal is added to the coefficient for two-order term of the nonlinear differential equation The effect of controlling signal on controlling chaos is studied. By changing the controlling frequency fk and controlling strength Ik, chaos to period-doubling, period-adding and quasi-period state can be controlled. The effect of phase on controlling chaos is also discussed. A breathing phenomenon is observed and its mechanism is explained.

  3. Controlled hydrophilic/hydrophobic property of silica films by manipulating the hydrolysis and condensation of tetraethoxysilane

    Science.gov (United States)

    Yang, Xin; Zhu, Liqun; Chen, Yichi; Bao, Baiqing; Xu, Jinlong; Zhou, Weiwei

    2016-07-01

    Controlling surface wettability is an important road to afford the materials with anticipated functional properties, such as anti-fogging, anti-icing and self-cleaning. Manipulating the surface topography and chemical composition is a promising strategy to achieve the expected functional properties. Herein, we concurrently realized the control of surface topography and chemical composition of the film materials via exploiting a simply one step method through the hydrolysis and condensation of tetraethoxysilane (TEOS) to form silica sol-gel films. By adjusting the amount of water, TEOS and basic catalyst, the hydrophilic or hydrophobic chemical groups on the silica particles surface were well controlled. As a result, the sol-gel silica films exhibiting a controllable and wide range contact angles from 7.7 ± 1.5° to 121.6 ± 1.8° were obtained by this simple one-step method. The inorganic nonmetallic, metallic and polymer materials surface could maintain different wettability by the modification of controlled wettability silica films. Furthermore the wettability of silica film could be easily changed from hydrophobicity to superhydrophilicity through a heat-treatment due to the decrease of hydrophobic chemical groups conforming to the time-temperature equivalence principle. Raising temperature and extending holding time were equivalent to chemical bond breaking which result in the wettability change of silica films.

  4. III-Nitride nanowire lasers: fabrication and control of optical properties (Conference Presentation)

    Science.gov (United States)

    Wang, George T.

    2016-09-01

    III-nitride nanowires have attracted increasing interest as potential ultracompact and low-power nanoscale lasers in the UV-visible wavelengths. In order to maximize the potential of nanowire lasers, a greater understanding and control over their properties, including mode control, polarization control, wavelength tuning, and beam shaping, is necessary. Here, we discuss the fabrication of III-nitride based single nanowire and nanowire photonic crystal lasers using a top-down approach, and present multiple methods for controlling their optical properties. The nanowires were fabricated by a two-step process composed of a lithographic dry etch followed by a selective, wet chemical etch of the nanowire sidewalls. This technique allows for high quality nanowires with straight and smooth nonpolar m-plane sidewalls and with controllable height, pitch and diameter. Precisely engineered axial nanowire heterostructures can be formed from planar heterostructures, while radial nanowire heterostructures can be formed via regrowth on the etched nanowires. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Effects of Tamarisk shrub on physicochemical properties of soil in coastal wetland of the Bohai Sea

    Institute of Scientific and Technical Information of China (English)

    HE Xiuping; WANG Baodong; XIE Linping; XIN Ming; WANG Wei; WANG Zicheng; ZHANG Wenquan; WEI Qinsheng

    2016-01-01

    There are many different and even controversial results concerning the effects of Tamarisk on the physicochemical properties of soil. A year-round monitoring of soil salinity, pH and moisture is conducted beneath the Tamarisk shrub in a coastal wetland in the Bohai Sea in China, to ascertain the effects of Tamarisk on the physicochemical properties of soil in coastal wetland. Compared with the control area, the soil moisture content is lower around the area of the taproot when there is less precipitation in the growing season because of water consumption by Tamarisk shrub. However, the soil moisture content is higher around the taproot when there is more precipitation in the growing season or in the non-growing period because of water conservation by the rhizosphere. The absorption of salt by the Tamarisk shrub reduces the soil salinity temporarily, but eventually salt returns to the soil by the leaching of salt on leaves by rainfall or by fallen leaves. The annual average soil moisture content beneath the Tamarisk shrub is lower than the control area by only 6.4%, indicating that the Tamarisk shrub has little effect on drought or water conservation in soils in the temperate coastal wetland with moderate annual precipitation. The annual average salinity beneath the Tamarisk shrub is 18% greater than that of the control area, indicating that Tamarisk does have an effect of rising soil salinity around Tamarisk shrubs. The soil pH value is as low as 7.3 in summer and as high as 10.2 in winter. The pH of soil near the taproot of the Tamarisk shrubs is one pH unit lower than that in the control area during the growing season. The difference in pH is less different from the control area in the non-growing season, indicating that the Tamarisk shrub does have the effect of reducing the alkalinity of soil in coastal wetland.

  6. Fabrication and Evaluation of Multilayer Nanofiber-Hydrogel Meshes with a Controlled Release Property

    Directory of Open Access Journals (Sweden)

    Rigumula Wu

    2015-07-01

    Full Text Available Controlled release drug delivery systems enable the sustained release of bioactive molecules, and increase bioavailability over an extended length of time. Biocompatible and biodegradable materials such as polycaprolactone (PCL nanofibers and alginate hydrogel play a significant role in designing controlled release systems. Prolonged release of bioactive molecules is observed when these polymer materials are used as matrices independently. However, there has not been a report in the literature that shows how different molecules are released at various rates over time. The goal of this study is to demonstrate a novel drug delivery system that has a property of releasing designated drugs at various rates over a defined length of time. We fabricated multilayer nanofiber-hydrogel meshes using electrospun PCL nanofiber and alginate hydrogel, and evaluated their controlled release properties. The multilayer meshes are composed of sandwiched layers of alternating PCL nanofibers and alginate hydrogel. Adenosine triphosphate (ATP, encapsulated in the designated hydrogel layers, is used as a mock drug for the release study. The exposed top layer of the meshes demonstrates a dramatically higher burst release and shorter release time compared to the deeper layers. Such properties of the different layers within the meshes can be employed to achieve the release of multiple drugs at different rates over a specified length of time.

  7. Effect of Thermal Treatment on Fracture Properties and Adsorption Properties of Spruce Wood

    Directory of Open Access Journals (Sweden)

    Takato Nakano

    2013-09-01

    Full Text Available The effect of thermal treatment on spruce is examined by analyzing the fracture and hygroscopic properties. Specimens were heated at temperatures within the range 120–200 °C for 1 h. Fracture energy was measured using a single-edge notched bending test and the strain-softening index was estimated by dividing the fracture energy by the maximum load. Adsorption properties were estimated using adsorption isotherms. Fiber saturation points (FSPs were estimated by extrapolating the moisture adsorption isotherm curve. Langmuir’s adsorption coefficient and number of adsorption sites were obtained using Langmuir’s theory and the Hailwood-Horrobin theory, respectively. The fracture energy, FSPs, and specimen weights decreased at temperatures higher than 150 °C, but the critical point for the strain-softening index and the number of adsorption sites was shown to be 180 °C. We hypothesize that the fracture energy and FSP depend on the chemical structure of the cell wall, whereas the strain-softening behavior may be influenced by the number of adsorption sites, and in turn the number of hydrogen bonds in hemicellulose.

  8. Effect of electromagnetic fields on some biomechanical and biochemical properties of rat’s blood

    Science.gov (United States)

    Mohaseb, M. A.; Shahin, F. A.; Ali, F. M.; Baieth, H. A.

    2017-06-01

    In order to study the effect of electromagnetic fields (0.3 mT, 50 Hz) on some biomechanical and biochemical properties of rats’ blood, healthy thirty male albino rats of 150 ± 10 g were divided into three equal groups namely A, B1, B2. Group A used as a control group, group B1 was continuously exposed to a magnetic field of (0.3 mT, 50 Hz) for a period of 21 days for direct effect studies. Group B2 was continuously exposed to the same magnetic field for the same period of time, then was housed away from the magnetic field for a period of 45 days for delayed effects studies. After examination, the results indicated that the apparent viscosity and the consistency index increased significantly and very high significantly for groub B1 and B2 compared to control at Pmagnetic fields, which proved to be biologically toxic.

  9. Effect of heat processing on selected grain amaranth physicochemical properties.

    Science.gov (United States)

    Muyonga, John H; Andabati, Brian; Ssepuuya, Geoffrey

    2014-01-01

    Grain amaranth is a pseudocereal with unique agricultural, nutritional, and functional properties. This study was undertaken to determine the effect of different heat-processing methods on physicochemical and nutraceutical properties in two main grain amaranth species, of Amaranthus hypochondriacus L. and Amaranthus cruentus L. Grains were prepared by roasting and popping, milled and analyzed for changes in in vitro protein digestibility, gruel viscosity, pasting characteristics, antioxidant activity, flavonoids, and total phenolics. In vitro protein digestibility was determined using the pepsin-pancreatin enzyme system. Viscosity and pasting characteristics of samples were determined using a Brookfield Viscometer and a Rapid Visco Analyzer, respectively. The grain methanol extracts were analysed for phenolics using spectrophotometry while antioxidant activity was determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method. Heat treatment led to a reduction in protein digestibility, the effect being higher in popped than in roasted samples. Viscosities for roasted grain amaranth gruels were significantly higher than those obtained from raw and popped grain amaranth gruels. The results for pasting properties were consistent with the results for viscosity. In both A. hypochondriacus L. and A. cruentus L., the order of the viscosity values was roasted>raw>popped. The viscosities were also generally lower for A. cruentus L. compared to A. hypochondriacus L. Raw samples for both A. hypochondriacus L. and A. cruentus L. did not significantly differ in total phenolic content (TPC), total flavonoid content (TFC), and total antioxidant activity values. Thermal processing led to an increase in TFC and antioxidant activity. However, TPC of heat-processed samples remained unchanged. From the results, it can be concluded that heat treatment enhances antioxidant activity of grain amaranth and causes rheological changes dependent on the nature of heat treatment.

  10. Effective Materials Property Information Management for the 21st Century

    Science.gov (United States)

    Ren, Weiju; Cebon, David; Arnold, Steve

    2009-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fueled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the need for consistency, quality and traceability of data, as well as control of access to sensitive information such as proprietary data. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single "gold source" of materials information between members of global engineering teams in extended supply chains. Fortunately, material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data "pedigree" traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  11. Effective Materials Property Information Management for the 21st Century

    Science.gov (United States)

    Ren, Weiju; Cebon, David; Arnold, Steve

    2009-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fueled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the need for consistency, quality and traceability of data, as well as control of access to sensitive information such as proprietary data. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single "gold source" of materials information between members of global engineering teams in extended supply chains. Fortunately, material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data "pedigree" traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  12. Effective Materials Property Information Management for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Cebon, David [Cambridge University; Barabash, Oleg M [ORNL

    2011-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fuelled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data pedigree traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  13. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl C; Overgaard, Søren

    2010-01-01

    The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone – Validation of large animal model for tissue engineering and biomaterial research Ming Ding,1* Carl Christian Danielsen,2 Søren Overgaard1 1Orthopaedic Research Laboratory...... treatment. Group 3 was left untreated and served as the controls. All sheep received restricted diet with low calcium and phosphorus. At sacrifice, cortical bone samples from the femur midshaft of sheep were harvested, micro-CT scanned and tested in 3 point bending and in tensile. Bone collagen and mineral...... mechanical properties in the glucocorticoid-2. In conclusion, 7 months glucocorticoid treatment with malnutrition had significant impact on cortical microarchitecture of sheep femur midshaft. These changes occurred particularly 3 months after the glucocorticoid cessation suggesting a delayed effect...

  14. Effect of cryogenic treatment on thermal conductivity properties of copper

    Science.gov (United States)

    Nadig, D. S.; Ramakrishnan, V.; Sampathkumaran, P.; Prashanth, C. S.

    2012-06-01

    Copper exhibits high thermal conductivity properties and hence it is extensively used in cryogenic applications like cold fingers, heat exchangers, etc. During the realization of such components, copper undergoes various machining operations from the raw material stage to the final component. During these machining processes, stresses are induced within the metal resulting in internal stresses, strains and dislocations. These effects build up resistance paths for the heat carriers which transfer heat from one location to the other. This in turn, results in reduction of thermal conductivity of the conducting metal and as a result the developed component will not perform as per expectations. In the process of cryogenic treatment, the metal samples are exposed to cryogenic temperature for extended duration of time for 24 hours and later tempered. During this process, the internal stresses and strains are reduced with refinement of the atomic structure. These effects are expected to favourably improve thermal conductivity properties of the metal. In this experimental work, OFHC copper samples were cryotreated for 24 hours at 98 K and part of them were tempered at 423K for one hour. Significant enhancement of thermal conductivity values were observed after cryotreating and tempering the copper samples.

  15. Structural properties of effective potential model by liquid state theories

    Institute of Scientific and Technical Information of China (English)

    Xiang Yuan-Tao; Andrej Jamnik; Yang Kai-Wei

    2010-01-01

    This paper investigates the structural properties of a model fluid dictated by an effective inter-particle oscillatory potential by grand canonical ensemble Monte Carlo (GCEMC) simulation and classical liquid state theories. The chosen oscillatory potential incorporates basic interaction terms used in modeling of various complex fluids which is composed of mesoscopic particles dispersed in a solvent bath, the studied structural properties include radial distribution function in bulk and inhomogeneous density distribution profile due to influence of several external fields. The GCEMC results are employed to test the validity of two recently proposed theoretical approaches in the field of atomic fluids. One is an Ornstein-Zernike integral equation theory approach; the other is a third order + second order perturbation density functional theory. Satisfactory agreement between the GCEMC simulation and the pure theories fully indicates the ready adaptability of the atomic fluid theories to effective model potentials in complex fluids, and classifies the proposed theoretical approaches as convenient tools for the investigation of complex fluids under the single component macro-fluid approximation.

  16. Scale effects on thermal buckling properties of carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yize, E-mail: wangyize@gmail.co [P.O. Box 137, School of Astronautics, Harbin Institute of Technology, Harbin 150001 (China); Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Li Fengming, E-mail: fmli@hit.edu.c [P.O. Box 137, School of Astronautics, Harbin Institute of Technology, Harbin 150001 (China); Kishimoto, Kikuo [Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2010-11-01

    In this Letter, the thermal buckling properties of carbon nanotube with small scale effects are studied. Based on the nonlocal continuum theory and the Timoshenko beam model, the governing equation is derived and the nondimensional critical buckling temperature is presented. The influences of the scale coefficients, the ratio of the length to the diameter, the transverse shear deformation and rotary inertia are discussed. It can be observed that the small scale effects are significant and should be considered for thermal analysis of carbon nanotube. The nondimensional critical buckling temperature becomes higher with the ratio of length to diameter increasing. Furthermore, for smaller ratios of the length to the diameter and higher mode numbers, the transverse shear deformation and rotary inertia have remarkable influences on the thermal buckling behaviors.

  17. Effect of Ground Waste Concrete Powder on Cement Properties

    Directory of Open Access Journals (Sweden)

    Xianwei Ma

    2013-01-01

    Full Text Available The paste/mortar attached to the recycled aggregate decreases the quality of the aggregate and needs to be stripped. The stripped paste/mortar is roughly 20% to 50% in waste concrete, but relevant research is very limited. In this paper, the effects of ground waste concrete (GWC powder, coming from the attached paste/mortar, on water demand for normal consistency, setting time, fluidity, and compressive strength of cement were analyzed. The results show that the 20% of GWC powder (by the mass of binder has little effect on the above properties and can prepare C20 concrete; when the sand made by waste red clay brick (WRB replaces 20% of river sand, the strength of the concrete is increased by 17% compared with that without WRB sand.

  18. Gray free-energy multiphase lattice Boltzmann model with effective transport and wetting properties.

    Science.gov (United States)

    Zalzale, Mohamad; Ramaioli, M; Scrivener, K L; McDonald, P J

    2016-11-01

    The paper shows that it is possible to combine the free-energy lattice Boltzmann approach to multiphase modeling of fluids involving both liquid and vapor with the partial bounce back lattice Boltzmann approach to modeling effective media. Effective media models are designed to mimic the properties of porous materials with porosity much finer than the scale of the simulation lattice. In the partial bounce-back approach, an effective media parameter or bounce-back fraction controls fluid transport. In the combined model, a wetting potential is additionally introduced that controls the wetting properties of the fluid with respect to interfaces between free space (white nodes), effective media (gray nodes), and solids (black nodes). The use of the wetting potential combined with the bounce-back parameter gives the model the ability to simulate transport and sorption of a wide range of fluid in material systems. Results for phase separation, permeability, contact angle, and wicking in gray media are shown. Sorption is explored in small sections of model multiscale porous systems to demonstrate two-step desorption, sorption hysteresis, and the ink-bottle effect.

  19. Gray free-energy multiphase lattice Boltzmann model with effective transport and wetting properties

    Science.gov (United States)

    Zalzale, Mohamad; Ramaioli, M.; Scrivener, K. L.; McDonald, P. J.

    2016-11-01

    The paper shows that it is possible to combine the free-energy lattice Boltzmann approach to multiphase modeling of fluids involving both liquid and vapor with the partial bounce back lattice Boltzmann approach to modeling effective media. Effective media models are designed to mimic the properties of porous materials with porosity much finer than the scale of the simulation lattice. In the partial bounce-back approach, an effective media parameter or bounce-back fraction controls fluid transport. In the combined model, a wetting potential is additionally introduced that controls the wetting properties of the fluid with respect to interfaces between free space (white nodes), effective media (gray nodes), and solids (black nodes). The use of the wetting potential combined with the bounce-back parameter gives the model the ability to simulate transport and sorption of a wide range of fluid in material systems. Results for phase separation, permeability, contact angle, and wicking in gray media are shown. Sorption is explored in small sections of model multiscale porous systems to demonstrate two-step desorption, sorption hysteresis, and the ink-bottle effect.

  20. Automatic control algorithm effects on energy production

    Science.gov (United States)

    Mcnerney, G. M.

    1981-01-01

    A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.

  1. Effects of biochars on hydraulic properties of clayey soil

    Science.gov (United States)

    Zhen, Jingbo; Palladino, Mario; Lazarovitch, Naftali; Bonanomi, Giuliano; Battista Chirico, Giovanni

    2017-04-01

    Biochar has gained popularity as an amendment to improve soil hydraulic properties. Since biochar properties depend on feedstocks and pyrolysis temperatures used for its production, proper selection of biochar type as soil amendment is of great importance for soil hydraulic properties improvement. This study investigated the effects of eight types of biochar on physical and hydraulic properties of clayey soil. Biochars were derived from four different feedstocks (Alfalfa hay, municipal organic waste, corn residues and wood chip) pyrolyzed at two different temperatures (300 and 550 °C). Clayey soil samples were taken from Leone farm (40° 26' 15.31" N, 14° 59' 45.54" E), Italy, and were oven-dried at 105 °C to determine dry bulk density. Biochars were mixed with the clayey soil at 5% by mass. Bulk densities of the mixtures were also determined. Saturated hydraulic conductivities (Ks) of the original clayey soil and corresponding mixtures were measured by means of falling-head method. Soil water retention measurements were conducted for clayey soil and mixtures using suction table apparatus and Richards' plate with the pressure head (h) up to 12000 cm. van Genuchten retention function was selected to evaluate the retention characteristics of clayey soil and mixtures. Available water content (AWC) was calculated by field capacity (h = - 500 cm) minus wilting pointing (h = -12000 cm). The results showed that biochar addition decreased the bulk density of clayey soil. The Ks of clayey soil increased due to the incorporation of biochars except for waste and corn biochars pyrolyzed at 550 °C. AWC of soils mixed with corn biochar pyrolyzed at 300 °C and wood biochar pyrolyzed at 550 °C, increased by 31% and 7%, respectively. Further analysis will be conducted in combination of biochar properties such as specific surface area and total pore volume. Better understanding of biochar impact on clayey soil will be helpful in biochar selection for soil amendment and

  2. Effects of nanoparticle and matrix interface on nanocomposite properties

    Science.gov (United States)

    Miller, Sandi G.

    The objectives of this work were to functionalize two nanoparticles, layered silicate clay and expanded graphite, and evaluate the effects of surface modification on polymer nanocomposite properties. Two thermosetting resin systems were evaluated, a polyimide for high temperature applications, and a general use epoxy. The chemistry of the modifier or the particle surface was tailored in each case to optimize nanocomposite properties such as: particle dispersion, thermal oxidative stability (TOS), electrical conductivity, strength, and toughness. Dispersion of layered silicate clay into the two separate matrices demonstrated an apparent affinity between the silicate surface and aromatic compounds. Steps were taken in each case to disrupt that attraction; resulting in improved material properties. The dispersion of layered silicate clays into a thermosetting polyimide demonstrated that improved thermal oxidative stability was achieved only when the clay was modified with a combination of an aromatic diamine and an alkyl ammonium ion. When such a system was employed, the nanocomposite TOS improved by 25% over that of the base polyimide. Attention to the interactions between clay and aromatic containing compounds was also necessary for silicate modification and dispersion in an epoxy blend. Here, preferential contact between the clay and the aromatic containing sections of the blend was observed; resulting in nanocomposites exhibiting little enhancement to epoxy properties. By forcing the clay into the non-aromatic component, the material yield stress increased by up to 65%, Young's modulus increased by up to 80%, and increases in Tg of up to 11°C were observed relative to the base resin. Within nano-graphite containing materials, trade-offs in functionalization, dispersion, and properties were evaluated. Functionalization of graphite proved beneficial in terms of dispersion. For example, an epoxy functionalized graphite nanoparticle resulted in acceptable dispersion

  3. Effects of AI Addition on the Thermoelectric Properties of Zn-Sb Based Alloys

    Institute of Scientific and Technical Information of China (English)

    CUI Jiaolin; LIU Xianglian; YANG Wei; CHEN Dongyong; MAO Liding; QIAN Xin

    2009-01-01

    The β-Zn4Sb3, emerged as a compelling p-type thermoelectric material, is widely used in heat-electricity conversion in the 400-650 K range. In order to probe the effects of slight doping on the crystal structure and physical properties, we prepared the samples of Al-added Zn-Sb based alloys by spark plasma sintering and evaluated their microstructures and thermoelectric properties. After a limited Al addition into the Zn-Sb based alloys we observed many phases in the alloys, which include a major phase β-Zn4Sb3,intermetallic phases ZnSb and AISb. The major β-Zn4Sb3 phase plays a fundamental role in controlling the thermoelectric performance, the precipitated phases ZnSb and AISb are of great importance to tailor the transport properties, such as the gradual enhancement of lattice thermal conductivity, in spite of an increased phonon scattering in additional grain boundaries. The highest thermoelectric figure of merit of 0.55 is obtained for the alloy with a limited AI addition at 653 K, which is 0.08 higher than that of un-doped β-Zn4Sb3 at the corresponding temperature. Physical property experiments indicate that there is a potentiality for the improvement of thermoelectric properties if a proper elemental doping is carried out into the Zn-Sb based alloys, which was confirmed by AI addition in the present work.

  4. Study the effects of radon inhalation on biomechanical properties of blood in rats

    Directory of Open Access Journals (Sweden)

    Mostafa Fawzy Eissa

    2015-09-01

    Full Text Available Purpose: To investigate the effect of inhalation radon gas (Rn on the biomechanical properties of red blood cell of rats. Methods: 20 young healthy adult male albino rats were divided into equally 4 groups. The first group (0 served as control group, while the other three groups (I, II and III were exposed to Rn gas inside a chamber for 3, 5 and 7 weeks. The biomechanical properties of red blood cell of rats was performed by determine the rheological properties of blood and the osmotic fragility of red blood cells (RBCs. Results: The Rn doses received by every group of rats were found to 34.84, 58.07 and 81.30 mSv for 3, 5 and 7 weeks respectively (based on 12 exposure hours per week. The obtained results indicate that the viscosity, consistency index, yield stress and aggregation index increase with Rn doses. The osmotic fragility curves of irradiated groups shift toward lower values of NaCl concentration. The dispersion of hemolysis (S increased, at the same time an average osmotic fragility (H50% decreased. Conclusion: The results indicates that the exposure to radon alters the mechanical properties of red blood cells membrane (permeability and elasticity reflecting a change in its physiological properties. This mean that low levels of Rn gas are harmful to biological systems and the degree of damage was dose-dependent.

  5. Effects of melt and Pr on physical properties of forsterite

    Science.gov (United States)

    Dillman, A. M.; Kohlstedt, D. L.

    2011-12-01

    A small amount of melt can play a large role in controlling the kinetic properties of mantle rocks. Recent models predict that the presence of less than 1% melt can create an order of magnitude decrease in the viscosity. Current experimental studies of solid-melt phase assemblages for mantle rocks often involve adding a small amount of mid-ocean ridge basalt to a nominally melt-free rock. This addition adds not only a second phase, but also a wide range of incompatible elements from the melt, which change the chemical environment of the aggregate. The convolved problems of adding incompatible elements as well as a melt make it difficult to attribute changes in kinetic processes to the melt alone. This project addresses this difficulty by systematically adding an impurity to olivine and inducing melting. High-purity, synthetic forsterite is created though a solid state reaction of brucite and colloidal silica. An impurity, Pr, is added to this mix as a nitrate in ethanol, and the powders are calcined to remove elements such as N and C. Praseodymium is a highly incompatible element in forsterite and segregates strongly to the grain boundaries. The addition of 1 mol% Pr causes a melt film to form along most of the grain boundaries in the rock. If the concentration is decreased to 0.05 mol%, the melt film shrinks to occasional visible melt pockets along mostly melt-free grain boundaries. At 0.01 mol%, the Pr dissolves in the grain boundaries without a visible second phase. The effect of this impurity on grain growth depends on concentration. The 0.01mol% samples experience less grain growth than undoped samples under similar thermodynamic conditions. Once a melt is present, the rate of grain growth increases substantially. During sintering in vacuum at 1400°C for 5 hr, the grain size increased from an average of 2.8 μm for samples with 0.01 mol% Pr to >50 μm for the samples with 0.1 mol% Pr. An impurity level of 1 mol% resulted in a final grain size of ~100

  6. 75 FR 30060 - China: Effects of Intellectual Property Infringement and Indigenous Innovation Policies on the U...

    Science.gov (United States)

    2010-05-28

    ... COMMISSION China: Effects of Intellectual Property Infringement and Indigenous Innovation Policies on the U.S... investigation No. 332-519, China: Effects of Intellectual Property Infringement and Indigenous Innovation...: Intellectual Property Infringement, Indigenous Innovation Policies, and Frameworks for Measuring the Effects...

  7. Effect of Inulin and Stevia on Some Physical Properties of Chocolate Milk

    Directory of Open Access Journals (Sweden)

    Mohammad Asghari Jafarabadi

    2012-07-01

    Full Text Available Background: The aim of this study was to assess physical properties of dietetic chocolate milkproduced by stevia as a sugar replacer and inulin. Along with having prebiotic effect, inulin canalso participate in enhancing textural properties of beverages. Therefore, this novel food will beuseful for all people especially for diabetics.Methods: This study was carried out in Quality Control Laboratory of Food Science and TechnologyDepartment, Health and Nutrition Faculty, Tabriz University of Medical Science, during2011-2012. The assay was performed on nine treatments with three replications. Sugar was substitutedwith stevia in two proportions of sucrose to stevia; 50:50 and 0:100. Inulin, in four levelsof 0%, 2%, 4% and 6%, was added to the treatments of 50% and 100% stevia. The control samplecontained no stevia and no inulin, such as commercial ones. Precipitation amount and viscositywere measured 24 hours after production. Data analyzed by one-way ANOVA, at the significantlevel of 0.05, using SPSS software ver. 17.Results: Sugar replacement with stevia caused significant increase in precipitation and significantdecrease in viscosity (P0.05. The sample containing50% stevia and 6% inulin had the lowest precipitation while having a non-significantlydifference with the control.Conclusion: A thickener agent, such as inulin, should be used in the chocolate milk sweetenedby stevia to improve physical properties of the product.

  8. Effect of inulin and stevia on some physical properties of chocolate milk.

    Science.gov (United States)

    Homayouni Rad, Aziz; Delshadian, Zohre; Arefhosseini, Seyed Rafi; Alipour, Beitollah; Asghari Jafarabadi, Mohammad

    2012-01-01

    The aim of this study was to assess physical properties of dietetic chocolate milk produced by stevia as a sugar replacer and inulin. Along with having prebiotic effect, inulin can also participate in enhancing textural properties of beverages. Therefore, this novel food will be useful for all people especially for diabetics. This study was carried out in Quality Control Laboratory of Food Science and Technology Department, Health and Nutrition Faculty, Tabriz University of Medical Science, during 2011-2012. The assay was performed on nine treatments with three replications. Sugar was substituted with stevia in two proportions of sucrose to stevia; 50:50 and 0:100. Inulin, in four levels of 0%, 2%, 4% and 6%, was added to the treatments of 50% and 100% stevia. The control sample contained no stevia and no inulin, such as commercial ones. Precipitation amount and viscosity were measured 24 hours after production. Data analyzed by one-way ANOVA, at the significant level of 0.05, using SPSS software ver. 17. Sugar replacement with stevia caused significant increase in precipitation and significant decrease in viscosity (P0.05). The sample containing 50% stevia and 6% inulin had the lowest precipitation while having a non-significantly difference with the control. Conclusion A thickener agent, such as inulin, should be used in the chocolate milk sweetened by stevia to improve physical properties of the product.

  9. Effect of Inulin and Stevia on Some Physical Properties of Chocolate Milk

    Science.gov (United States)

    Homayouni Rad, Aziz; Delshadian, Zohre; Arefhosseini, Seyed Rafi; Alipour, Beitollah; Asghari Jafarabadi, Mohammad

    2012-01-01

    Background: The aim of this study was to assess physical properties of dietetic chocolate milk produced by stevia as a sugar replacer and inulin. Along with having prebiotic effect, inulin can also participate in enhancing textural properties of beverages. Therefore, this novel food will be useful for all people especially for diabetics. Methods: This study was carried out in Quality Control Laboratory of Food Science and Technology Department, Health and Nutrition Faculty, Tabriz University of Medical Science, during 2011-2012. The assay was performed on nine treatments with three replications. Sugar was substituted with stevia in two proportions of sucrose to stevia; 50:50 and 0:100. Inulin, in four levels of 0%, 2%, 4% and 6%, was added to the treatments of 50% and 100% stevia. The control sample contained no stevia and no inulin, such as commercial ones. Precipitation amount and viscosity were measured 24 hours after production. Data analyzed by one-way ANOVA, at the significant level of 0.05, using SPSS software ver. 17. Results: Sugar replacement with stevia caused significant increase in precipitation and significant decrease in viscosity (P0.05). The sample containing 50% stevia and 6% inulin had the lowest precipitation while having a non-significantly difference with the control. Conclusion A thickener agent, such as inulin, should be used in the chocolate milk sweetened by stevia to improve physical properties of the product. PMID:24688916

  10. Property.

    Science.gov (United States)

    Piele, Philip K.

    Chapter 7 of a book on school law, this chapter deals with 1979 cases involving disputes over property. Cases involving taxpayer attempts to prevent the construction of school buildings dominate this year's property chapter, as they did last year's. Yet, paradoxically, there is also a significant increase in cases in which taxpayers tried to…

  11. Hydrophilic magnetic nanoclusters with thermo-responsive properties and their drug controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Meerod, Siraprapa [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Rutnakornpituk, Boonjira; Wichai, Uthai [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000 Thailand (Thailand); Rutnakornpituk, Metha, E-mail: methar@nu.ac.th [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000 Thailand (Thailand)

    2015-10-15

    Synthesis and drug controlled release properties of thermo-responsive magnetic nanoclusters grafted with poly(N-isopropylacrylamide) (poly(NIPAAm)) and poly(NIPAAm-co-poly(ethylene glycol) methyl ether methacrylate) (PEGMA) copolymers were described. These magnetic nanoclusters were synthesized via an in situ radical polymerization in the presence of acrylamide-grafted magnetic nanoparticles (MNPs). Poly(NIPAAm) provided thermo-responsive properties, while PEGMA played a role in good water dispersibility to the nanoclusters. The ratios of PEGMA to NIPAAm in the (co)polymerization in the presence of the MNPs were fine-tuned such that the nanoclusters with good water dispersibility, good magnetic sensitivity and thermo responsiveness were obtained. The size of the nanoclusters was in the range of 50–100 nm in diameter with about 100–200 particles/cluster. The nanoclusters were well dispersible in water at room temperature and can be suddenly agglomerated when temperature was increased beyond the lower critical solution temperature (LCST) (32 °C). The release behavior of an indomethacin model drug from the nanoclusters was also investigated. These novel magnetic nanoclusters with good dispersibility in water and reversible thermo-responsive properties might be good candidates for the targeting drug controlled release applications. - Highlights: • Nanoclusters with good water dispersibility and magnetic response were prepared. • They were grafted with thermo-responsive poly(NIPAAm) and/or poly(PEGMA). • Poly(NIPAAm) provided thermo-responsive properties to the nanoclusters. • Poly(PEGMA) provided good water dispersibilityto the nanoclusters. • Accelerated and controllable releases of a drug from the nanoclusters were shown.

  12. GaAs nanowires: from manipulation of defect formation to controllable electronic transport properties.

    Science.gov (United States)

    Han, Ning; Hou, Jared J; Wang, Fengyun; Yip, SenPo; Yen, Yu-Ting; Yang, Zai-Xing; Dong, Guofa; Hung, TakFu; Chueh, Yu-Lun; Ho, Johnny C

    2013-10-22

    Reliable control in the crystal quality of synthesized III-V nanowires (NWs) is particularly important to manipulate their corresponding electronic transport properties for technological applications. In this report, a "two-step" growth process is adopted to achieve single-crystalline GaAs NWs, where an initial high-temperature nucleation process is employed to ensure the formation of high Ga supersaturated Au7Ga3 and Au2Ga alloy seeds, instead of the low Ga supersaturated Au7Ga2 seeds observed in the conventional "single-step" growth. These two-step NWs are long (>60 μm) and thick (>80 nm) with the minimal defect concentrations and uniform growth orientations. Importantly, these NWs exhibit p-type conductivity as compared to the single-step grown n-type NWs for the same diameter range. This NW conductivity difference (p- versus n-channel) is shown to originate from the donor-like crystal defects, such as As precipitates, induced by the low Ga supersaturated multicrystalline Au7Ga2 alloy seeds. Then the well-controlled crystal quality for desired electronic properties is further explored in the application of large-scale p-type GaAs NW parallel array FETs as well as the integration of both p- and n-type GaAs NWs into CMOS inverters. All these illustrate the successful control of NW crystal defects and corresponding electronic transport properties via the manipulation of Ga supersaturation in the catalytic alloy tips with different preparation methods. The understanding of this relationship between NW crystal quality and electronic transport properties is critical and preferential to the future development of nanoelectronic materials, circuit design, and fabrication.

  13. Study of Helicopter Roll Control Effectiveness Criteria.

    Science.gov (United States)

    1986-04-01

    variety of helicopter configurations and control system types , and a wide range of flight tasks and maneuvers. The basis of the experimental design...represent a wide range of basic helicopter rotor hub and airframe designs and flight control system types . It was intended to generally limit

  14. Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.

    Science.gov (United States)

    Arcan, Iskender; Yemenicioğlu, Ahmet

    2014-08-13

    To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food.

  15. Effects of refrigeration and freezing on the electromechanical and biomechanical properties of articular cartilage.

    Science.gov (United States)

    Changoor, Adele; Fereydoonzad, Liah; Yaroshinsky, Alex; Buschmann, Michael D

    2010-06-01

    In vitro electromechanical and biomechanical testing of articular cartilage provide critical information about the structure and function of this tissue. Difficulties obtaining fresh tissue and lengthy experimental testing procedures often necessitate a storage protocol, which may adversely affect the functional properties of cartilage. The effects of storage at either 4°C for periods of 6 days and 12 days, or during a single freeze-thaw cycle at -20°C were examined in young bovine cartilage. Non-destructive electromechanical measurements and unconfined compression testing on 3 mm diameter disks were used to assess cartilage properties, including the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Cartilage disks were also examined histologically. Compared with controls, significant decreases in SPI (to 32.3±5.5% of control values, prefrigeration at 4°C, but no significant changes were detected at day 6. A trend toward detecting a decrease in SPI (to 94.2±6.2% of control values, p=0.083) was identified following a single freeze-thaw cycle, but no detectable changes were observed for any biomechanical parameters. All numbers are mean±95% confidence interval. These results indicate that fresh cartilage can be stored in a humid chamber at 4°C for a maximum of 6 days with no detrimental effects to cartilage electromechanical and biomechanical properties, while one freeze-thaw cycle produces minimal deterioration of biomechanical and electromechanical properties. A comparison to literature suggested that particular attention should be paid to the manner in which specimens are thawed after freezing, specifically by minimizing thawing time at higher temperatures.

  16. Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin

    Directory of Open Access Journals (Sweden)

    Ji-Sun Kim

    2013-02-01

    Full Text Available Objectives This study evaluated the antibacterial effect and mechanical properties of composite resins (LCR, MCR, HCR incorporating chitosan with three different molecular weights (L, Low; M, Medium; H, High. Materials and Methods Streptococcus (S. mutans 100 mL and each chitosan powder were inoculated in sterilized 10 mL Brain-Heart Infusion (BHI solution, and was centrifuged for 12 hr. Absorbance of the supernatent was measured at OD660 to estimate the antibacterial activities of chitosan. After S. mutans was inoculated in the disc shaped chitosan-containing composite resins, the disc was cleansed with BHI and diluted with serial dilution method. S. mutans was spread on Mitis-salivarius bacitracin agar. After then, colony forming unit (CFU was measured to verify the inhibitory effect on S. mutans biofilm. To ascertain the effect on the mechanical properties of composite resin, 3-point bending and Vickers hardness tests were done after 1 and 3 wk water storage, respectively. Using 2-way analysis of variance (ANOVA and Scheffe test, statistical analysis was done with 95% significance level. Results All chitosan powder showed inhibition effect against S. mutans. CFU number in chitosan-containing composite resins was smaller than that of control resin without chitosan. The chitosan containing composite resins did not show any significant difference in flexural strength and Vickers hardness in comparison with the control resin. However, the composite resin, MCR showed a slightly decreased flexural strength and the maximum load than those of control and the other composite resins HCR and LCR. Conclusions LCR and HCR would be recommended as a feasible antibacterial restorative due to its antibacterial nature and mechanical properties.

  17. Effectiveness and Effects of China's Capital Controls

    Institute of Scientific and Technical Information of China (English)

    FengjuanXiao; DonaldKimball

    2005-01-01

    Reductions in barriers to global trade have not been accompanied by a widespread loosening of restrictions on international flows of capital, especially in China. This study shows that China has some of the most restrictive controls and uses them effectively to bias flows of cross-border capital heavily in favor of foreign direct investment (FDI) and limit flows of portfolio and bank assets and liabilities, as well as reducing capital flow volatility. China is now facing pressure to speed up its opening to all forms of cross border capital. But since China is still struggling to strengthen its domestic financial structure, capital account liberalization would expose it to considerable risks and potentially high costs.

  18. Influence of soil properties on the bioaccumulation and effects of arsenic in the earthworm Eisenia andrei.

    Science.gov (United States)

    Romero-Freire, A; Peinado, F J Martín; Ortiz, M Díez; van Gestel, C A M

    2015-10-01

    This study aimed at assessing the influence of soil properties on the uptake and toxicity effects of arsenic in the earthworm Eisenia andrei exposed for 4 weeks to seven natural soils spiked with different arsenic concentrations. Water-soluble soil concentrations (AsW) and internal As concentrations in the earthworms (AsE) were greatly different between soils. These two variables were highly correlated and were key factors in earthworm toxicity response. AsW was explained by some soil properties, such as the pH, calcium carbonate content, ionic strength, texture or oxide forms. Toxicity showed a clear variation between soils, in some cases without achieving 50 % adverse effect at the highest As concentration added (600 mg kg(-1)). Nevertheless, soil properties did not show, in general, a high relation with studied toxicity endpoints, although the high correlation with AsW could greatly reduce indirectly As bioavailability and toxicity risk for earthworms. Obtained results suggest that soil properties should be part of the criteria to establishing thresholds for contaminated soils because they will be key in controlling As availability and thus result in different degrees of toxicity.

  19. Effect of inter-critical quenching on mechanical properties of casting low-alloy steel

    Directory of Open Access Journals (Sweden)

    Liu Zhongli

    2013-07-01

    Full Text Available For some casting low-alloy steels, traditional quenching and tempering heat treatments can improve the strength; however, sometimes the ductility is not satisfied. Therefore, some kind of effective heat treatment method seems necessary; one which could improve the ductility, but not seriously affect the strength. In this paper, the effect of inter-critical quenching (IQ on the mechanical properties of casting low-alloy steel was studied. IQ was added between quenching and tempering heat treatment; and the microstructure and mechanical properties were compared to the same steel with the traditional quenching and tempering treatments. The experimental results show that the microstructure comprises small-size ferrite and martensite when the IQ is adopted; and that different temperatures can control the ferrite quantity and distribution, and, as a result, influence the mechanical properties. In the case of IQ, the tensile strength decreases just a little, but the ductility increases a lot; and the strength-ductility product (its value is the arithmetic product of elongation and tensile strength increases by between 6% and 10%, which means the IQ heat treatment can improve comprehensive mechanical properties.

  20. Effects of mucokinetic drugs on rheological properties of reconstituted human nasal mucus.

    Science.gov (United States)

    Rhee, C S; Majima, Y; Cho, J S; Arima, S; Min, Y G; Sakakura, Y

    1999-01-01

    To investigate the effects of mucokinetic drugs on the rheological properties of human nasal mucus in patients with chronic sinusitis. We reconstituted human nasal mucus obtained from 74 patients with chronic sinusitis and determined the effects of 4 mucokinetic drugs, including acetylcysteine, deoxynuclease I, 2% sodium bicarbonate, and a combination product containing tyloxapol (Alevaire), on rheological properties of reconstituted human nasal mucus (RHNM). We used 5% RHNM dissolved in phosphate-buffered solution as the optimal buffer and concentration of RHNM for the study because it showed a viscoelastic response similar to that of freshly collected nasal mucus from patients with chronic sinusitis. Four experiments were performed to determine the influence of each drug on dynamic viscosity and elasticity of 5% RHNM. Distilled water was used as a control. Acetylcysteine and deoxynuclease I significantly decreased both dynamic viscosity and elastic modulus, while distilled water had no effect on rheological properties of 5% RHNM in vitro. Alevaire significantly reduced both dynamic viscosity and elastic modulus. Sodium bicarbonate significantly reduced elastic modulus but not dynamic viscosity. Reduction of elastic modulus by Alevaire was significantly greater than that by sodium bicarbonate, while there was no difference in reduction of dynamic viscosity between them. Our results indicate that RHNM may be useful for studying the topical effects of various drugs on nasal mucus from patients with chronic sinusitis.

  1. The Effect of Cold Work on Properties of Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    Alloy 617 is approved for non-nuclear construction in the ASME Boiler and Pressure Vessel Code Section I and Section VIII, but is not currently qualified for nuclear use in ASME Code Section III. A draft Code Case was submitted in 1992 to qualify the alloy for nuclear service but efforts were stopped before the approval process was completed.1 Renewed interest in high temperature nuclear reactors has resulted in a new effort to qualify Alloy 617 for use in nuclear pressure vessels. The mechanical and physical properties of Alloy 617 were extensively characterized for the VHTR programs in the 1980’s and incorporated into the 1992 draft Code Case. Recently, the properties of modern heats of the alloy that incorporate an additional processing step, electro-slag re-melting, have been characterized both to confirm that the properties of contemporary material are consistent with those in the historical record and to increase the available database. A number of potential issues that were identified as requiring further consideration prior to the withdrawal of the 1992 Code Case are also being re-examined in the current R&D program. Code Cases are again being developed to allow use of Alloy 617 for nuclear design within the rules of the ASME Boiler and Pressure Vessel Code. In general the Code defines two temperature ranges for nuclear design with austenitic and nickel based alloys. Below 427°C (800°F) time dependent behavior is not considered, while above this temperature creep and creep-fatigue are considered to be the dominant life-limiting deformation modes. There is a corresponding differentiation in the treatment of the potential for effects associated with cold work. Below 427°C the principal issue is the relationship between the level of cold work and the propensity for stress corrosion cracking and above that temperature the primary concern is the impact of cold work on creep-rupture behavior.

  2. Morphology Control and Optical Absorption Properties of Ag Nanoparticles by Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    G.X. Cai; F. Ren; X.H. Xiao; L.X. Fan; X.D. Zhou; C.Z. Jiang

    2009-01-01

    Ion implantation is a powerful method for fabricating nanoparticles in dielectric. For the actual application of nanoparticle composites, a careful control of nanoparticles has to be achieved. In this letter, the size, distribution and morphology of Ag nanoparticles are controlled by controlling the ion current density, ion implantation sequence and ion irradiation dose. Single layer Ag nanoparticles are formed by Ag~+ ion implantation at current density of 2.5 μA/cm~2. By Ag and Cu ions sequential implantation, the size of single layer Ag nanoparticles increases. While, by Cu and Ag ions sequential implantation, uniform Ag nanoparticles with wide distribution are formed. The morphology of Ag nanoparticles changes to hollow and sandwiched nanoparticles by Cu~+ ion irradiation to doses of 3×10~(16) and 5×10~(16) ions/cm~2. The optical absorption properties of Ag nanoparticles are also tailored by these ways.

  3. Surface-Controlled Properties of Myosin Studied by Electric Field Modulation.

    Science.gov (United States)

    van Zalinge, Harm; Ramsey, Laurence C; Aveyard, Jenny; Persson, Malin; Mansson, Alf; Nicolau, Dan V

    2015-08-04

    The efficiency of dynamic nanodevices using surface-immobilized protein molecular motors, which have been proposed for diagnostics, drug discovery, and biocomputation, critically depends on the ability to precisely control the motion of motor-propelled, individual cytoskeletal filaments transporting cargo to designated locations. The efficiency of these devices also critically depends on the proper function of the propelling motors, which is controlled by their interaction with the surfaces they are immobilized on. Here we use a microfluidic device to study how the motion of the motile elements, i.e., actin filaments propelled by heavy mero-myosin (HMM) motor fragments immobilized on various surfaces, is altered by the application of electrical loads generated by an external electric field with strengths ranging from 0 to 8 kVm(-1). Because the motility is intimately linked to the function of surface-immobilized motors, the study also showed how the adsorption properties of HMM on various surfaces, such as nitrocellulose (NC), trimethylclorosilane (TMCS), poly(methyl methacrylate) (PMMA), poly(tert-butyl methacrylate) (PtBMA), and poly(butyl methacrylate) (PBMA), can be characterized using an external field. It was found that at an electric field of 5 kVm(-1) the force exerted on the filaments is sufficient to overcome the frictionlike resistive force of the inactive motors. It was also found that the effect of assisting electric fields on the relative increase in the sliding velocity was markedly higher for the TMCS-derivatized surface than for all other polymer-based surfaces. An explanation of this behavior, based on the molecular rigidity of the TMCS-on-glass surfaces as opposed to the flexibility of the polymer-based ones, is considered. To this end, the proposed microfluidic device could be used to select appropriate surfaces for future lab-on-a-chip applications as illustrated here for the almost ideal TMCS surface. Furthermore, the proposed methodology can

  4. The Effects of Parental Firm Control: A Reinterpretation of Findings.

    Science.gov (United States)

    Lewis, Catherine C.

    1981-01-01

    Evidence that parental firm control promotes effective socialization of children (i.e., promotes self-control, social responsibility) is examined, and a reinterpretation of existing measures of firm control that is consistent with attribution theory is offered. It is concluded that the notion that parental firm control promotes effective…

  5. Effect of Solar Radiation on Viscoelastic Properties of Bovine Leather: Temperature and Frequency Scans

    Science.gov (United States)

    Nalyanya, Kallen Mulilo; Rop, Ronald K.; Onyuka, Arthur S.

    2017-04-01

    This work presents both analytical and experimental results of the effect of unfiltered natural solar radiation on the thermal and dynamic mechanical properties of Boran bovine leather at both pickling and tanning stages of preparation. Samples cut from both pickled and tanned pieces of leather of appropriate dimensions were exposed to unfiltered natural solar radiation for time intervals ranging from 0 h (non-irradiated) to 24 h. The temperature of the dynamic mechanical analyzer was equilibrated at 30°C and increased to 240°C at a heating rate of 5°C \\cdot Min^{-1}, while its oscillation frequency varied from 0.1 Hz to 100 Hz. With the help of thermal analysis (TA) control software which analyzes and generates parameter means/averages at temperature/frequency range, the graphs were created by Microsoft Excel 2013 from the means. The viscoelastic properties showed linear frequency dependence within 0.1 Hz to 30 Hz followed by negligible frequency dependence above 30 Hz. Storage modulus (E') and shear stress (σ ) increased with frequency, while loss modulus (E''), complex viscosity (η ^{*}) and dynamic shear viscosity (η) decreased linearly with frequency. The effect of solar radiation was evident as the properties increased initially from 0 h to 6 h of irradiation followed by a steady decline to a minimum at 18 h before a drastic increase to a maximum at 24 h. Hence, tanning industry can consider the time duration of 24 h for sun-drying of leather to enhance the mechanical properties and hence the quality of the leather. At frequencies higher than 30 Hz, the dynamic mechanical properties are independent of the frequency. The frequency of 30 Hz was observed to be a critical value in the behavior in the mechanical properties of bovine hide.

  6. Effects of sodium on electrical properties in Cu{sub 2}ZnSnS{sub 4} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Akira; Yoshino, Kenji, E-mail: t0b114u@cc.miyazaki-u.ac.jp [Department of Applied Physics and Electronic Engineering, University of Miyazaki, Miyazaki 889-2192 (Japan); Miyake, Hideto [Department of Electrical and Electronic Engineering, Mie University, Tsu 514-8507 (Japan); Taniyama, Tomoyasu [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Kakimoto, Koichi [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan); Nose, Yoshitaro [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Scarpulla, Michael A. [Materials Science and Electrical Engineering Departments, University of Utah, Salt Lake City, Utah 84112 (United States)

    2014-04-14

    We have studied the effect of sodium on the electrical properties of Cu{sub 2}ZnSnS{sub 4} (CZTS) single crystal by using temperature dependence of Hall effect measurement. The sodium substitution on the cation site in CZTS is observed from the increasing of unit-cell size by powder X-ray diffraction. Sodium increases the effective hole concentration and makes the thermal activation energy smaller. The degree of compensation decreases with sodium incorporation, thus the hole mobility is enhanced. We revealed that sodium is important dopant in CZTS to control the electrical properties.

  7. Formation of quasiperiodic bimetal thin films with controlled optical and electrical properties

    Science.gov (United States)

    Arakelian, S.; Vartanyan, T.; Istratov, A.; Kutrovskaya, S.; Kucherik, A.; Itina, T.; Osipov, A.

    2016-04-01

    Synthesis of transparent conductive coatings is a promising direction of modern nanotechnological research. Thin nanostructured noble-metallic films demonstrate nonlinear optical effects in visible spectral range because of their plasmonic properties [1]. In addition, optical characteristics of these thin films strongly depend on the period of the formed surface structures [2]. If the distance between deposited particles almost equals their sizes, the optical properties of the randomly deposited structures may considerably differ from these for periodical structures [3]. In this work, we have studied the degree of the morphology influence (particle diameter in the colloid, the distance between the deposited particles, the number of layers etc.) on the optical and electrical properties of the deposited thin film of bimetallic gold and silver clusters. In this work we used CW-laser with moderate intensity in liquid (water or ethanol) for synthesis nanoparticles of noble metals. For the formation of quasi-periodically arranged clusters, particle deposition from the colloidal systems is used. The optical properties of the deposited bimetallic films are shown to change as a function of composition and geometry in agreement with the modeling of the optical properties.

  8. Landslide properties Controlled by the Denudation degree on Granite area in Japan

    Science.gov (United States)

    Matsuzawa, Makoto; Takahara, Teruyoshi; Kinoshita, Atsuhiko; Ishizuka, Tadanori

    2014-05-01

    a 'flat plate type'. The L-slope area was covered by thick weathered residual soils. The M-slope and H-slope areas were covered by colluvial soils. The M-slope area had a thick soil layer. In contrast, the H-slope area was dotted with rocks, and the soil depth was, therefore, low. We found that these differences in landslide density and form, according to the soil layer structure and slope angles, were controlled by the degree of mountain denudation. In other words, the M-slope area was distributed in regions of thick soils and steep angles, causing landslides to occur most frequently. The H-slope area had steep angles but the soil depth was thin, so landslides occurred infrequently. These results suggested that classification of the slopes based on the degree of mountain denudation contributes to effective landslide risk assessment.

  9. Trust with Private and Common Property: Effects of Stronger Property Right Entitlements

    Directory of Open Access Journals (Sweden)

    James C. Cox

    2010-11-01

    Full Text Available Is mutually beneficial cooperation in trust games more prevalent with private property or common property? Does the strength of property right entitlement affect the answer? Cox, Ostrom, Walker, et al. [1] report little difference between cooperation in private and common property trust games. We assign stronger property right entitlements by requiring subjects to meet a performance quota in a real effort task to earn their endowments. We report experiment treatments with sequential choice and strategy responses. We find that cooperation is lower in common property trust games than in private property trust games, which is an idiosyncratic prediction of revealed altruism theory [2]. Demonstrable differences and similarities between our strategy response and sequential choice data provide insight into the how these protocols can yield different results from hypothesis tests even when they are eliciting the same behavioral patterns across treatments.

  10. Robust adaptive integrated translation and rotation finite-time control of a rigid spacecraft with actuator misalignment and unknown mass property

    Science.gov (United States)

    Zhang, Feng; Duan, Guang-Ren

    2014-05-01

    This paper tackles the problem of integrated translation and rotation finite-time control of a rigid spacecraft with actuator misalignment and unknown mass property. Due to the system natural couplings, the coupled translational and rotational dynamics of the spacecraft is developed, where a thruster configuration with installation misalignment and unknown mass property are taken into account. By solving an equivalent designated trajectory tracking problem via backstepping philosophy, a robust adaptive integrated finite-time control scheme is proposed to enable the spacecraft track command position and attitude in a pre-determined time, despite of external disturbance, unknown mass property and thruster misalignment. The finite-time closed-loop stability is guaranteed within the Lyapunov framework. Two scenario numerical simulations demonstrate the effect of the designed controller.

  11. EFFECTS OF GAMMA RADIATION ON ELECTROCHEMICAL PROPERTIES OF IONIC LIQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Visser, A; Nicholas Bridges, N; Thad Adams, T; John Mickalonis, J; Mark02 Williamson, M

    2009-04-21

    The electrochemical properties of ionic liquids (ILs) make them attractive for possible replacement of inorganic salts in high temperature molten salt electrochemical processing of nuclear fuel. To be a feasible replacement solvent, ILs need to be stable in moderate and high doses of radiation without adverse chemical and physical effects. Here, we exposed seven different ILs to a 1.2 MGy dose of gamma radiation to investigate their physical and chemical properties as they related to radiological stability. The azolium-based ILs experienced the greatest change in appearance, but these ILs were chemically more stable to gamma radiation than some of the other classes of ILs tested, due to the presence of aromatic electrons in the azolium ring. All the ILs exhibited a decrease in their conductivity and electrochemical window (at least 1.1 V), both of which could affect the utility of ILs in electrochemical processing. The concentration of the irradiation decomposition products was less than 3 mole %, with no impurities detectable using NMR techniques.

  12. THE EFFECT OF TRANSGLUTAMINASE ON THE RHEOLOGICAL PROPERTIES OF YOGURT

    Directory of Open Access Journals (Sweden)

    Iuliana Aprodu

    2011-05-01

    Full Text Available The aim of this study was to investigate the rheological characteristics of yogurts obtained from milk treated with transglutaminase prior to fermentation with Streptococus theromophilus and Lactobacillus delbrueckii subsp. Bulgaricus. A set of 36 experiments were carried out to test the influence of various enzyme concentrations ranging from 0 to 0.04%, different setting temperatures (35, 40 and 45 oC, and setting time (60, 90 and 120 min. The cross-linking of milk proteins influenced the post-acidification process as well as the stability of the yogurt samples. The enzymatic treatment of milk allowed avoiding the syneresis phenomena during yogurt storage at 4 oC; the water holding capacity during centrifugation was also improved. Concerning the rheological properties, the apparent viscosity of yogurt increased by increasing the enzyme concentration and the setting time for the entire tested domain of shear rates. The results indicate that transglutaminase catalyzed cross-linking is an effective tool for improving functional properties of yogurt.

  13. Effect of fiber types on relevant properties of porous asphalt

    Institute of Scientific and Technical Information of China (English)

    WU Shao-peng; LIU Gang; MO Lian-tong; CHEN Zheng; YE Qun-shan

    2006-01-01

    The research was conducted to evaluate the effects of cellulose and polyester fibers on the properties of porous asphalt mixes,using the tests of draindown,abrasion,volumetric properties,rutting,and moisture damage. Images of scanning electron microscopy and X-ray computerized tomography were adopted to identify the microstructure of the fiber and inner stone skeleton of porous asphalt. The influence of rutting parameter (G*/sinδ) of asphalt modified by different fibers on the rutting resistance of the mixes was investigated. Based upon Mohr-Coulomb theory,the cohesion and the angle of internal friction of the mixes were derived from both indirect tension and unconfined compression strength. The experimental results indicate that fibers mainly stabilize asphalt binder and thicken asphalt film around aggregates. Furthermore,they result in the improved mechanical strength of porous asphalt mixes at high temperature slightly. From comparison analysis,cellulose fibers appear to perform better than polyester fibers in porous asphalt mixes.

  14. Effect of vegetation change from native broadleaf forest to coniferous plantation on selected soil properties.

    Science.gov (United States)

    Hızal, Ahmet; Gökbulak, Ferhat; Zengin, Mustafa; Ercan, Mehmet; Karakaş, Ahmet; Tuğrul, Dilek

    2013-12-01

    The objective of this study was to examine the effects of vegetation change from a native broadleaf forest to a coniferous plantation on selected soil properties, including soil texture, pH, organic matter, total nitrogen (N), total phosphorus (P), exchangeable cations (Ca(2+), K(+), Na(+)), and cation exchange capacity (CEC). Results showed that the amount of clay particles, Ca(2+), and K(+) values significantly increased, whereas Na(+), total N, and organic matter and soil pH values decreased on the treatment plot after vegetation change. Soil acidity also increased and soil textural group changed from moderately fine-textured soils (clay loam) to medium-textured soils (loam) under both control and treatment plots. Organic matter, total N, and Na(+) values increased, whereas Ca(2+) concentration decreased through time on the control plot. Soil pH, total P, K(+), and CEC did not show significant changes through time on the control plot.

  15. Differential flatness properties and multivariable adaptive control of ovarian system dynamics

    Science.gov (United States)

    Rigatos, Gerasimos

    2016-12-01

    The ovarian system exhibits nonlinear dynamics which is modeled by a set of coupled nonlinear differential equations. The paper proposes adaptive fuzzy control based on differential flatness theory for the complex dynamics of the ovarian system. It is proven that the dynamic model of the ovarian system, having as state variables the LH and the FSH hormones and their derivatives, is a differentially flat one. This means that all its state variables and its control inputs can be described as differential functions of the flat output. By exploiting differential flatness properties the system's dynamic model is written in the multivariable linear canonical (Brunovsky) form, for which the design of a state feedback controller becomes possible. After this transformation, the new control inputs of the system contain unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning procedure for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Moreover, Lyapunov stability analysis shows that H-infinity tracking performance is succeeded for the feedback control loop and this assures improved robustness to the aforementioned model uncertainty as well as to external perturbations. The efficiency of the proposed adaptive fuzzy control scheme is confirmed through simulation experiments.

  16. Impact of a low intensity controlled-fire in some chemical soil properties.

    Science.gov (United States)

    Martínez-Murillo, Juan F.; Hueso-González, Paloma; Aranda-Gómez, Francisco; Damián Ruiz-Sinoga, José

    2014-05-01

    Some changes in chemical soil properties can be observed after fires of low intensities. pH and electric conductivity tend to increase, while C/N ratio decrease. In the case of organic matter, the content can increase due to the massive incorporation of necromass including, especially, plants and roots. The aim of this study is to assess the impact of low intensity and controlled fire in some soil properties in field conditions. El Pinarillo experimental area is located in South of Spain. Two set of closed plots were installed (24 m2: 12 m length x 2 m width). One of them was remained as control with the original vegetation cover (Mediterranean matorral: Rosmarinus officinalis, Cistus clusii, Lavandula stoechas, Chamaeropos humilis, Thymus baetica), and the other one was burnt in a controlled-fire in 2011. Weather conditions and water content of vegetation influenced in the intensity of fire (low). After the controlled-fire, soil surface sample (0-5 cm) were taken in both set of plots (B, burnt soil samples; C, control soil samples). Some soil chemical properties were analysed: organic matter content (OM), C/N ratio, pH and electrical conductivity (EC). Some changes were observed in B corroborating a controlled-fire of low intensity. pH remained equal after fire (B: pH=7.7±0.11; C: pH=7.7±0.04). An increment was obtained in the case of EC (B: EC=0.45 mScm-1±0.08 mScm-1; C: EC=0.35 mScm-1±0.07 mScm-1) and OM (B: OM=8.7%±3.8%; C: pH=7.3%±1.5%). Finally, C/N ratio decreased after fire respect to the control and initial conditions (B: C/N=39.0±14.6; C: C/N =46.5±10.2).

  17. The effects of formulation and processing on surface characteristics and functional properties of dairy powders

    OpenAIRE

    Kelly, Grace M.

    2016-01-01

    The objectives of this thesis were to (i) study the effect of increasing protein concentration in milk protein concentrate (MPC) powders on surface composition and sorption properties; (ii) examine the effect of increasing protein content on the rehydration properties of MPC; (iii) study the physicochemical properties of spraydried emulsion-containing powders having different water and oil contents; (iv) analyse the effect of protein type on water sorption and diffusivity properties in a prot...

  18. Matching business-level strategic controls to strategy: Impact on control system effectiveness

    National Research Council Canada - National Science Library

    Fiegener, Mark K

    1994-01-01

    ... if they are to lead their organizations toward long-term strategic objectives. The contingent relationships between strategic control, business-level strategy, and the perceived effectiveness of the strategic control system are explored...

  19. Effectiveness of the Primextra Gold in controlling weeds of ...

    African Journals Online (AJOL)

    Effectiveness of the Primextra Gold in controlling weeds of Cucumber ( Cucumis Sativus L. ) ... Journal of Applied Sciences and Environmental Management ... The efficacy of Primextra Gold herbicide in controlling weeds in cucumber was ...

  20. Effect of temperature on tribological properties of palm biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A.; Sia, S.Y.; Fazal, M.A.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-03-15

    Biodiesel, as an alternative fuel is steadily gaining attention to replace petroleum diesel partially or completely. The tribological performance of biodiesel is crucial for its application in automobiles. In the present study, effect of temperature on the tribological performance of palm biodiesel was investigated by using four ball wear machine. Tests were conducted at temperatures 30, 45, 60 and 75 C, under a normal load of 40 kg for 1 h at speed 1200 rpm. For each temperature, the tribological properties of petroleum diesel (B0) and three biodiesel blends like B10, B20, B50 were investigated and compared. During the wear test, frictional torque was recorded on line. Wear scars in tested ball were investigated by optical microscopy. Results show that friction and wear increase with increasing temperature. (author)

  1. Effect of pressure on the phonon properties of europium chalcogenides

    Indian Academy of Sciences (India)

    U K Sakalle; P K Jha; S P Sanyal

    2000-06-01

    Lattice vibrational properties of europium chalcogenides have been investigated at high pressure by using a simple lattice dynamical model theory viz. the three-body force rigid ion model (TRIM) which includes long range three-body interaction arising due to charge transfer effects. The dispersion curves for the four Eu-chalcogenides agree reasonably well with the available experimental data. Variation of LO, TO, LA and TA phonons with pressure have also been studied at the symmetry points of the brillouin zone (BZ) for Euchalcogenides for the first time by using a lattice dynamical model theory. We have also calculated the one phonon density of states and compared them with the first order Raman scattering results. The calculation of one phonon density of states for Eu-chalcogenides has also been extended up to the phase transition pressure. We observed a pronounced shift in phonon spectrum as pressure is increased.

  2. Drying effects on the antioxidant properties of tomatoes and ginger.

    Science.gov (United States)

    Gümüşay, Özlem Aktürk; Borazan, Alev Akpınar; Ercal, Nuran; Demirkol, Omca

    2015-04-15

    In this study, the effects of four different drying processes, sun drying (SD), oven drying (OD), vacuum oven drying (VOD) and freeze drying (FD) for tomatoes (Solanum lycopersicum) and ginger (Zingiber officinale) in terms of thiolic and phenolic contents have been studied. Thiol content, total phenolic content (TPC), ascorbic acid (AA) content, and cupric ion reducing antioxidant capacity (CUPRAC) were determined in fresh and dried samples. Glutathione (GSH) and cysteine (Cys) were determined as the thiol contents of tomatoes and ginger. Significant losses were observed in the contents of TPC, AA, GSH and Cys and CUPRAC values in all samples that were dried using the thermal method. There was a statistically significant difference in the losses of the TPC, AA, and thiol contents between the use of thermal drying and freeze drying (except Cys in tomatoes) methods. Freeze dried tomato and ginger samples have been found to have better antioxidant properties.

  3. Effective field theory for long-range properties of bottomonium

    Science.gov (United States)

    Krein, Gastão

    2017-03-01

    In this communication we present selected results from a recent study [N. Brambilla, G. Krein, J. Tarrús Castellà and A. Vairo, Phys. Rev. D 93, 054002 (2016)] of long-range properties of bottomonium. An analytical expression for the chromopolarizability of 1S bottomonium states is derived within the framework of potential nonrelativistic QCD (pNRQCD). Next, after integrating out the ultrasoft scale associated with the binding energy of bottomonium, the QCD trace anomaly is used to obtain the two-pion production amplitude for the chromopolarizability operator and the result is matched to a chiral effective field theory having bottomonium states and pions as degrees of freedom. We present results for the leading chiral logarithm correction to the mass of the 1S bottomonium and the van der Waals potential between two bottomonium states.

  4. Effects of cell size on compressive properties of aluminum foam

    Institute of Scientific and Technical Information of China (English)

    CAO Xiao-qing; WANG Zhi-hua; MA Hong-wei; ZHAO Long-mao; YANG Gui-tong

    2006-01-01

    The effects of cell size on the quasi-static and dynamic compressive properties of open cell aluminum foams produced by infiltrating process were studied experimentally. The quasi-static and dynamic compressive tests were carried out on MTS 810 system and SHPB(split Hopkinson pressure bar) respectively. It is found that the elastic moduli and compressive strengths of the studied aluminum foam are not only dependent on the relative density but also dependent on the cell size of the foam under both quasi-static loading and dynamic loading. The foams studied show a significant strain rate sensitivity, the flow strength can be improved as much as 112%, and the cell size also has a sound influence on the strain rate sensitivity of the foams. The foams of middle cell size exhibit the highest elastic modulus, the highest flow strength and the most significant strain rate sensitivity.

  5. Effects of biodrying process on municipal solid waste properties.

    Science.gov (United States)

    Tambone, F; Scaglia, B; Scotti, S; Adani, F

    2011-08-01

    In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas.

  6. Evaluating the effect of magnetocaloric properties on magnetic refrigeration performance

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Bahl, Christian Robert Haffenden

    2010-01-01

    Active magnetic regenerator (AMR) refrigerators represent an alternative to vapor compression technology that relies on the magnetocaloric effect in a solid refrigerant. Magnetocaloric materials are in development and properties are reported regularly. Recently, there has been an emphasis...... on developing materials with a high entropy change with magnetization while placing lower emphasis on the adiabatic temperature change. This work uses model magnetocaloric materials and a numerical AMR model to predict how the temperature change and entropy change with magnetization interact and how they affect...... that exhibits a sharp peak in isothermal entropy change was shown to produce a significantly lower cooling power than a material with a wide peak in a practical AMR system. © 2010 American Institute of Physics...

  7. Effects of Factors on Open-End Rotor Yarn Properties

    Directory of Open Access Journals (Sweden)

    Gözde BUHARALI

    2013-08-01

    Full Text Available Open-end rotor spinning system, which was begun to be used commercially during late 1960s, is now used as successfully as the conventional ring spinning system. Thanks to open-end rotor yarn spinning machines are very suitable to automation and have high production speeds, use of these machines have increased permanently and today open-end rotor yarn spinning in the world has a share of about 30%. In open-end rotor spinning system yarn properties and production are effected from three main parameters. They are material, sliver preparing process and machine parameters. In this system which manufacture with very high-speed and uses a high-tech, parameters must be selected carefully to ensure best yarn quality with high performance in yarn production

  8. Effect of corylus clusters on the physicochemical properties of soil

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Soil sample plots were specified and the soil in layer A0, A1 and AB were collected in MaoershanForest Experiment Farm of Northeast Forestry University for study of the effect of corylus clusters on soil in 1999. The result shows that the pH value, contents of organic matter, total nitrogen, alkali-discomposed nitrogen and total phosphorus under the corylus clusters are higher than that under the non-corylus clusters, except the available phosphorus content. The number of soil granular aggregates or the water stable aggregates under corylus clusters is more than that under the non-corylus clusters. The corylus clusters play an important role in improving the physicochemical properties of the soil, which should be conserved and developed in the forestry production.

  9. Effect of paracasein degradation on sensory properties of Gouda cheese.

    Science.gov (United States)

    Cichosz, Grazyna; Zalecka, Anna; Kornacki, Mariusz

    2003-12-01

    The relation between the sensory quality of Gouda cheese and the extent of paracasein degradation, i. e., the content of soluble N, peptide N, amino acid N and amine N, was studied. The above-mentioned parameters of paracasein degradation differently determined the sensory properties of Gouda cheese. The flavour of cheese after 6-week ripening depended to the largest extent on the content of amine N and soluble N. The effect of the content of peptide N on cheese flavour was smaller but statistically significant. Also the smell of Gouda cheese was to the largest extent correlated to the content of amine N. A dependence between smell and the content of peptide N was found only in the cheeses after 4-week ripening. None of the sensory quality parameters of the examined cheeses depended on the content of amino acid N.

  10. Effect of pressurization on antibacterial properties of Lactobacillus strains

    Science.gov (United States)

    Jankowska, Agnieszka; Grześkiewicz, Aleksandra; Wiśniewska, Krystyna; Reps, Arnold

    2010-03-01

    The objective of the study was to determine the effect of high pressures on antibacterial properties of selected strains of the Lactobacillus species. Cultures of 22 strains were subjected to high-pressure treatment at 30, 60, 90, and 300 MPa/1 min/18 °C. The susceptibility of the bacteria pressurized at 30-90 MPa was diversified and depended on the strain and not on its species affiliation. When compared with pressures of 30-90 MPa, the pressure treatment at 300 MPa caused the inhibition of the acidifying activity of the strains analyzed. In turn, the pressures applied had no impact on the quantity of hydrogen peroxide synthesized. An increase in pressure was accompanied by a diminishing antibacterial activity of the investigated Lactobacillus strains.

  11. Analytical fuel property effects, small combustors, phase 1

    Science.gov (United States)

    Cohen, J. D.

    1983-01-01

    The effects of nonstandard aviation fuels on a typical small gas turbine combustor was analyzed. The T700/CT7 engine family was chosen as being representative of the class of aircraft power plants desired. Fuel properties, as specified by NASA, are characterized by low hydrogen content and high aromatics levels. Higher than normal smoke output and flame radiation intensity for the current T700 combustor which serves as a baseline were anticipated. It is, therefore, predicted that out of specification smoke visibility and higher than normal shell temperatures will exist when using NASA ERBS fuels with a consequence of severe reduction in cyclic life. Three new designs are proposed to compensate for the deficiencies expected with the existing design. They have emerged as the best of the eight originally proposed redesigns or combinations thereof. After the five choices that were originally made by NASA on the basis of competing performance factors, General Electric narrowed the field to the three proposed.

  12. Effects of extraction procedures on metal binding properties of extracellular polymeric substances (EPS) from anaerobic granular sludges

    NARCIS (Netherlands)

    Abzac, D' P.; Bordas, F.; Hullebusch, E.; Lens, P.N.L.; Guibaud, G.

    2010-01-01

    The effects of the extraction procedure of extracellular polymeric substances (EPS) on their proton/metal binding properties were studied. Nine extraction procedures (one control, four physical and four chemical procedures) were applied to four types of anaerobic granular sludges. The binding capaci

  13. Effects of surfactant on properties of MIM feedstock

    Institute of Scientific and Technical Information of China (English)

    LI Yi-min; LIU Xiang-quan; LUO Feng-hua; YUE Jian-ling

    2007-01-01

    Effects of the surfactant for improving the properties of MIM feedstock were investigated. Feedstocks were prepared by 17-4PH stainless steel(SS) powder and paraffin wax-based binder containing different contents of stearic acid(SA) as the surfactant. The viscosity of the feedstock decreases significantly when the SA is added. Besides, the wetting angle of the binder against the 17-4PH SS powder decreases greatly and the critical solid loading increases with the adding of the SA. Fourier transformation infrared spectroscopy(FTIR) analysis was used to prove the interaction between the SA and the 17-4PH SS powder. Chemical bonding is found on the surface of 17-4PH SS powder after mixing and it helps a lot to enhance the interacting force between the binder and the powder. Then an adsorbing model was adopted to estimate the least content of the surfactant that formed a monolayer adsorption on the mono-sized spherical powder (with smooth surface). The least content of the surfactant is calculated to be 0.19%. Whereas, the experiments indicate that about 5% is the optimal value to improve the properties of the feedstock. The reason may come from two aspects: firstly, the powders used in current experiment are not all mono-sized spheres and the coarse surface of the powder has a great effect on the adsorptive capacity of the powder; secondly, multilayer adsorption is likely to occur on the powder surface, which will also increase the adsorptive capacity.

  14. Substituent Effects on the Absorption and Fluorescence Properties of Anthracene.

    Science.gov (United States)

    Abou-Hatab, Salsabil; Spata, Vincent A; Matsika, Spiridoula

    2017-02-16

    Substitution can be used to efficiently tune the photophysical properties of chromophores. In this study, we examine the effect of substituents on the absorption and fluorescence properties of anthracene. The effects of mono-, di-, and tetrasubstitution of electron-donating and -withdrawing functional groups were explored. In addition, the influence of a donor-acceptor substituent pair and the position of substitution were investigated. Eleven functional groups were varied on positions 1, 2, and 9 of anthracene, and on position 6 of 2-methoxyanthracene and 2-carboxyanthracene. Moreover, the donor-acceptor pair NH2/CO2H was added on different positions of anthracene for additional studies of doubly substituted anthracenes. Finally, we looked into quadruple substitutions on positions 1,4,5,8 and 2,3,6,7. Vertical excitation energies and oscillator strengths were computed using density functional theory with the hybrid CAM-B3LYP functional and 6-311G(d) basis set. Correlations between the excitation energies or oscillator strengths of the low-lying bright La state and the Hammett sigma parameter, σp(+), of the substituents were examined. The energy is red-shifted for all cases of substitution. Oscillator strengths increase when substituents are placed along the direction of the transition dipole moment of the bright La excited state. Substitution of long chain conjugated groups significantly increases the oscillator strength in comparison to the cases for other substituents. In addition, the results of quadruply substituted geometries reveal symmetric substitution at the 1,4,5,8 positions significantly increases the oscillator strength and can lower the band gap compared to that of the unsubstituted anthracene molecule by up to 0.5 eV.

  15. Effect of guar and xanthan gums on functional properties of mango (Mangifera indica) kernel starch.

    Science.gov (United States)

    Nawab, Anjum; Alam, Feroz; Haq, Muhammad Abdul; Hasnain, Abid

    2016-12-01

    The effects of different concentrations of guar and xanthan gums on functional properties of mango kernel starch (MKS) were studied. Both guar and xanthan gum enhanced the water absorption of MKS. The addition of xanthan gum appeared to reduce the SP (swelling power) and solubility at higher temperatures while guar gum significantly enhanced the SP as well as solubility of MKS. The addition of both gums produced a reinforcing effect on peak viscosity of MKS as compared to control. Pasting temperature of MKS was higher than that of starch modified by gums indicating ease of gelatinization. Guar gum played an accelerative effect on setback but xanthan gum delayed the setback phenomenon during the cooling of the starch paste. Both gums were found to be effective in reducing the syneresis while gel firmness was markedly improved. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effect of solids on pulp and froth properties in flotation

    Institute of Scientific and Technical Information of China (English)

    张炜

    2014-01-01

    Froth flotation is a widely used process of particle separation exploiting differences in surface properties. It is important to point out that overall flotation performance (grade and recovery) is a consequence of the quality and quantity of the solid particles collected from the pulp phase, transported into the froth phase, and surviving as bubble-particle aggregates into the overflow. This work will focus on studying these phenomena and will incorporate the effects of particle hydrophobicities in the 3-phase system. Solids are classed as either hydrophilic non-sulphide gangue (e.g. silica, talc), hydrophilic sulphide (e.g. pyrite), or hydrophobic sulphide (e.g. sphalerite). Talc is a surface-active species of gangue that has been shown to behave differently from silica (frother adsorbs on the surface of talc particles). Both are common components of ores and will be studied in detail. The focus of this work is to investigate the role of solids on pulp hydrodynamics, froth bubble coalescence intensity, water overflow rate with solids present, and in particular, the interactions between solids, frother and gas on the gas dispersion parameters. The results show that in the pulp zone there is no effect of solids on bubble size and gas holdup;in the froth zone, although hydrophilic particles solely do not effect on the water overflow rate, hydrophobic particles produce higher intensity of rates on water overflow and bubble coalescence, and many be attributed to the water reattachment.

  17. Nuclear Quantum Effects on Aqueous Electron Attachment and Redox Properties.

    Science.gov (United States)

    Rybkin, Vladimir V; VandeVondele, Joost

    2017-03-17

    Nuclear quantum effects (NQEs) on the reduction and oxidation properties of small aqueous species (CO2, HO2, and O2) are quantified and rationalized by first-principles molecular dynamics and thermodynamic integration. Vertical electron attachment, or electron affinity, and detachment energies (VEA and VDE) are strongly affected by NQEs, decreasing in absolute value by 0.3 eV going from a classical to a quantum description of the nuclei. The effect is attributed to NQEs that lessen the solvent response upon oxidation/reduction. The reduction of solvent reorganization energy is expected to be general for small solutes in water. In the thermodynamic integral that yields the free energy of oxidation/reduction, these large changes enter with opposite sign, and only a small net effect (0.1 eV) remains. This is not obvious for CO2, where the integrand is strongly influenced by NQEs due to the onset of interaction of the reduced orbital with the conduction band of the liquid during thermodynamic integration. We conclude that NQEs might not have to be included in the computation of redox potentials, unless high accuracy is needed, but are important for VEA and VDE calculations.

  18. SteamTablesGrid: An ActiveX control for thermodynamic properties of pure water

    Science.gov (United States)

    Verma, Mahendra P.

    2011-04-01

    An ActiveX control, steam tables grid ( StmTblGrd) to speed up the calculation of the thermodynamic properties of pure water is developed. First, it creates a grid (matrix) for a specified range of temperature (e.g. 400-600 K with 40 segments) and pressure (e.g. 100,000-20,000,000 Pa with 40 segments). Using the ActiveX component SteamTables, the values of selected properties of water for each element (nodal point) of the 41×41 matrix are calculated. The created grid can be saved in a file for its reuse. A linear interpolation within an individual phase, vapor or liquid is implemented to calculate the properties at a given value of temperature and pressure. A demonstration program to illustrate the functionality of StmTblGrd is written in Visual Basic 6.0. Similarly, a methodology is presented to explain the use of StmTblGrd in MS-Excel 2007. In an Excel worksheet, the enthalpy of 1000 random datasets for temperature and pressure is calculated using StmTblGrd and SteamTables. The uncertainty in the enthalpy calculated with StmTblGrd is within ±0.03%. The calculations were performed on a personal computer that has a "Pentium(R) 4 CPU 3.2 GHz, RAM 1.0 GB" processor and Windows XP. The total execution time for the calculation with StmTblGrd was 0.3 s, while it was 60.0 s for SteamTables. Thus, the ActiveX control approach is reliable, accurate and efficient for the numerical simulation of complex systems that demand the thermodynamic properties of water at several values of temperature and pressure like steam flow in a geothermal pipeline network.

  19. Shape control of colloidal Mn doped ZnO nanocrystals and their visible light photocatalytic properties.

    Science.gov (United States)

    Yang, Yefeng; Li, Yaguang; Zhu, Liping; He, Haiping; Hu, Liang; Huang, Jingyun; Hu, Fengchun; He, Bo; Ye, Zhizhen

    2013-11-07

    For colloidal semiconductor nanocrystals (NCs), shape control and doping as two widely applied strategies are crucial for enhancing and manipulating their functional properties. Here we report a facile and green synthetic approach for high-quality colloidal Mn doped ZnO NCs with simultaneous control over composition, shape and optical properties. Specifically, the shape of doped ZnO NCs can be finely modulated from three dimensional (3D) tetrapods to 0D spherical nanoparticles in a single reaction scheme. The growth mechanism of doped ZnO NCs with interesting shape transition is explored. Furthermore, we demonstrate the tunable optical absorption features of Mn doped ZnO NCs by varying the Mn doping levels, and the enhanced photocatalytic performance of Mn doped ZnO NCs under visible light, which can be further optimized by delicately controlling their shapes and Mn doping concentrations. Our results provide an improved understanding of the growth mechanism of doped NCs during the growth process and can be potentially extended to ZnO NCs doped with other metal ions for various applications.

  20. Traffic Accident Propagation Properties and Control Measures for Urban Links Based on Cellular Automata

    Directory of Open Access Journals (Sweden)

    Xian-sheng Li

    2013-01-01

    Full Text Available With the rapid development of urban transport and the sharp increase in vehicle population, traffic accidents form one of the most important causes of urban traffic congestion other than the imbalance between traffic supply and demand. Traffic congestion causes severe problems, such as environment contamination and energy dissipation. Therefore, it would be useful to analyze the congestion propagation characteristics after traffic accidents. Numerical analysis and computer simulation were two of the typical methods used at present to study the traffic congestion propagation properties. The latter was more widespread as it is more consistent with the actual traffic flow and more visual than the former. In this paper, an improved cellular automata (CA model was presented to analyze traffic congestion propagation properties and to evaluate control strategies. In order to apply them to urban traffic flow simulation, the CA models have been improved and expanded on. Computer simulations were built for congestion not only extending to the upstream intersection, but also the upstream intersection and the entire road network, respectively. Congestion propagation characteristics after road traffic accidents were obtained, and controls of different severities and durations were analyzed. The results provide the theoretical foundation and practical means for the control of congestion.

  1. Effects of historic charcoal burning on soil properties

    Science.gov (United States)

    Hirsch, Florian; Schneider, Anna; Raab, Alexandra; Raab, Thomas; Buras, Allan; van der Maaten, Ernst; Takla, Melanie; Räbiger, Christin; Cruz Garcia, Roberto; Wilmking, Martin

    2015-04-01

    In Northeastern Germany the production of ironware between the 16th and 19th century left behind a remarkable amount of charcoal kiln remains. At the study site in the forests north of Cottbus, Rubic Brunic Arenosols are developed on Weichselian glaciofluvial deposits. Remote sensing surveys, underpinned by archaeological studies, show that charcoal was gained from several thousand kilns. The round charcoal kiln remains with inner diameters up to 20 m are smooth platforms elevated a few decimeters higher than the surrounding area. The remaining mounds consist of an about 40 cm thick sheet containing residuals of the charcoal production process such as charcoal fragments, ash but also organic material covering the Rubic Brunic Arenosols. The charcoal kiln remains are distanced only up to 100 m from each other. For the 32 square kilometers large study site, the ground area covered by such charcoal production residuals is about 0.5 square kilometer, i.e. 1.5% of the study area. The charcoal kiln sites are a remarkable carbon accumulator on the sandy parent material. Against this background, we aim to characterize the effects of pyrolysis and the enrichment of carbon, induced by the charcoal production, on soil properties. Field work was done during archaeological rescue excavations on three charcoal kiln relicts having diameters of about 15 m. We applied 150 l of Brilliant Blue solution on six 1 square meter plots (three inside, three outside of the charcoal kiln mound) and afterwards trenched horizontal and vertical profiles for recording the staining patterns. Undisturbed soil samples to study soil micromorphology and further undisturbed samples for characterizing soil physical and hydraulic properties were taken. Outside of the charcoal kiln remain the Brilliant Blue solution drained within less than 10 minutes, whereas on the charcoal kiln remains the draining took between 20 and 40 minutes. Preliminary laboratory analyses underline the findings from the field and

  2. The Effects of Program Control, Learner Control, and Learner Control with Advisement Lesson Control Strategies on Anxiety and Learning from Computer-Assisted Instruction.

    Science.gov (United States)

    Coorough, Randall P.

    The purpose of this study was to examine the effects of three computer-assisted instruction (CAI) locus of instructional control strategies--learner control, learner control with advisement, and program control--on posttest performance and anxiety. The instructional content was a lesson addressing the effects of alcohol on the body. To examine the…

  3. On the properties and mechanisms of microjet arrays in crossflow for the control of flow separation

    Science.gov (United States)

    Fernandez, Erik J.

    By utilizing passive and active methods of flow control, the aerodynamic performance of external and internal components can be greatly improved. Recently however, the benefits of applying active flow control methods to turbomachinery components for improved fuel efficiency, reduced engine size, and greater operational envelope has sparked a renewed interest in some of these flow control techniques. The more attractive of these, is active control in the form of jets in cross flow. With their ability to be turned on and off, as well as their negligible effect on drag when not being actuated, they are well suited for applications such as compressor and turbine blades, engine inlet diffusers, internal engine passages, and general external aerodynamics. This study consists of two parts. The first is the application of active control on a low-pressure turbine (LPT) cascade to determine the effectiveness of microjet actuators on flow separation at relatively low speeds. The second study, motivated by the first, involves a parametric study on a more canonical model to examine the effects of various microjet parameters on the efficacy of separation control and to provide a better understanding of the relevant flow physics governing this control approach. With data obtained from velocity measurements across the wide parametric range, correlations for the growth of the counter-rotating vortex pairs generated by these actuators are deduced. From the information and models obtained throughout the study, basic suggestions for microjet actuator design are presented.

  4. Physicochemical and antimicrobial properties of copaiba oil: implications on product quality control

    Directory of Open Access Journals (Sweden)

    Renata G. Fonseca

    2015-09-01

    Full Text Available Background. The copaiba oil is a common natural product used in cosmetic industry and as a nutraceutical product. However, lack of quality control and scarce knowledge about its antimicrobial activity is a point of concern. The proposal of this study was to investigate the physicochemical properties and the antimicrobial activity of five commercial brands of copaiba oil. Material and methods. Acidity and ester index, refractory index, solubility in alcohol, and thin layer chromatography were performed to verify the physicochemical properties of five commercial copaiba oils sold in local pharmacies. Ultra performance liquid chromatography coupled with diode-array detection and electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-DAD/ESI-Q-TOF-MS was used to investigate diterpene acids while the volatile compounds were analysed by gas chromatography-mass spectrometry (GC-MS. Antibacterial and antifungal activities were also evaluated by agar diffusion technique; and minimal inhibitory concentration and maximal bactericidal concentration were defi ned for each sample and bacteria. Results. The physical-chemical analysis revealed heterogeneity between all samples analysed. The A1 sample showed characteristics of copaiba oil and was mainly composed by hydrocarbon sesquiterpenes (29.95% β-bisabolene, 25.65% Z-α-bergamotene and 10.27% β-cariophyllene. Among diterpene acids, the UPLCDAD/ESI-Q-TOF-MS data are compatible with presence of copalic and/or kolavenic acid (m/z 305 [M + H]+. Candida albicans was sensitive to almost all samples at high concentration and Saccaromyces. Cerevisiae showed sensitivity to A1 sample at 100 mg/mL. Although variable, all samples showed antibacterial activity. Significant activity was seen for A3 (19.0 ±0 and 15.6 ±0.5 mm, A4 (16.6 ±0.5 and 15.6 ±0 mm, and A5 (17.1 ±0 and 17.1 ±0 mm on Staphylococcus saprophyticus and S. aureus, respectively. All samples were active against Klebsiella

  5. Physicochemical and antimicrobial properties of copaiba oil: implications on product quality control.

    Science.gov (United States)

    Fonseca, Renata G; Barros, Francisco M; Apel, Miriam A; Poser, Gilsane L von; Andriolli, Jo O L; Filho, Pedro C Campos; Sousa, Dhierlate F; Lobo, Ivon P; Conceiç O, Aline O

    2015-01-01

    The copaiba oil is a common natural product used in cosmetic industry and as a nutraceutical product. However, lack of quality control and scarce knowledge about its antimicrobial activity is a point of concern. The proposal of this study was to investigate the physicochemical properties and the antimicrobial activity of five commercial brands of copaiba oil. Acidity and ester index, refractory index, solubility in alcohol, and thin layer chromatography were performed to verify the physicochemical properties of five commercial copaiba oils sold in local pharmacies. Ultra performance liquid chromatography coupled with diode-array detection and electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-DAD/ESI-Q-TOF-MS) was used to investigate diterpene acids while the volatile compounds were analysed by gas chromatography-mass spectrometry (GC-MS). Antibacterial and antifungal activities were also evaluated by agar diffusion technique; and minimal inhibitory concentration and maximal bactericidal concentration were defined for each sample and bacteria. The physical-chemical analysis revealed heterogeneity between all samples analysed. The A1 sample showed characteristics of copaiba oil and was mainly composed by hydrocarbon sesquiterpenes (29.95% β-bisabolene, 25.65% Z-α-bergamotene and 10.27% β-cariophyllene). Among diterpene acids, the UPLCDAD/ESI-Q-TOF-MS data are compatible with presence of copalic and/or kolavenic acid (m/z 305 [M + H]+). Candida albicans was sensitive to almost all samples at high concentration and Saccaromyces. Cerevisiae showed sensitivity to A1 sample at 100 mg/mL. Although variable, all samples showed antibacterial activity. Significant activity was seen for A3 (19.0 ±0 and 15.6 ±0.5 mm), A4 (16.6 ±0.5 and 15.6 ±0 mm), and A5 (17.1 ±0 and 17.1 ±0 mm) on Staphylococcus saprophyticus and S. aureus, respectively. All samples were active against Klebsiella pneumoniae showing ≥15 mm diameter halo inhibition; and only A

  6. Effects of pig slurry application on soil physical and chemical properties and glyphosate mobility

    Directory of Open Access Journals (Sweden)

    Daniela Aparecida de Oliveira

    2014-10-01

    Full Text Available Pig slurry applied to soil at different rates may affect soil properties and the mobility of chemical compounds within the soil. The purpose of this study was to evaluate the effects of rates of pig slurry application in agricultural areas on soil physical and chemical properties and on the mobility of glyphosate through the soil profile. The study was carried out in the 12th year of an experiment with pig slurry applied at rates of 0 (control, 50, 100 and 200 m³ ha-1 yr-1 on a Latossolo Vermelho distrófico (Hapludox soil. In the control, the quantities of P and K removed by harvested grains were replaced in the next crop cycle. Soil physical properties (bulk density, porosity, texture, and saturated hydraulic conductivity and chemical properties (organic matter, pH, extractable P, and exchangeable K were measured. Soil solution samples were collected at depths of 20, 40 and 80 cm using suction lysimeters, and glyphosate concentrations were measured over a 60-day period after slurry application. Soil physical and chemical properties were little affected by the pig slurry applications, but soil pH was reduced and P levels increased in the surface layers. In turn, K levels were increased in sub-surface layers. Glyphosate concentrations tended to decrease over time but were not affected by pig slurry application. The concentrations of glyphosate found in different depths show that the pratice of this application in agricultural soils has the potential for contamination of groundwater, especially when the water table is the surface and heavy rains occur immediately after application.

  7. Effects of Silicon Fertilizer in Different Application Ways on Powdery Mildew Control, Starch Content and Farinographical Properties of Wheat (Triticum aestivum L.)%硅肥施用方式对小麦白粉病防治效果及籽粒淀粉含量与粉质特性的影响

    Institute of Scientific and Technical Information of China (English)

    王东勇; 杨习文; 贺德先; 吴寅

    2014-01-01

    以西农979和周麦18为材料,在大田条件下研究了硅肥不同施用方式对小麦白粉病防控效果及籽粒淀粉含量和粉质特性的影响。结果表明,增施硅肥能显著降低白粉病感病植株的病情指数,提高抗病能力,尤其是底施硅肥+挑旗期喷施硅肥处理的防控效果为最佳,灌浆中后期效果最为明显。硅肥不同施用方式均能提高籽粒总淀粉和支链淀粉的含量,其中底施硅肥+挑旗期喷施硅肥处理增幅分别达到10.4%和24.7%,降低直链淀粉的含量;同时可延长面团形成时间和稳定时间,提高面粉吸水率,降低弱化度。%Field experiments were conducted to investigate the effects of silicon fertilizer in various appli-cation ways on prevention and control of wheat powdery mildew , grain starch content and farinographical prop-erties with the cultivars Xinong 979 and Zhoumai 18 as experimental materials .The results showed that the disease index was decreased and the disease resistance was increased significantly under the silicon fertilization treatments, especially the treatment of bottom fertilization +foliar application at flag stage;the control effect of powdery mildew at late grain -filling stage was the best .The silicon fertilization treatments could increase the contents of total starch and amylopectin , and water absorption of flour , prolong the time of dough development and stability , but decrease the amylose content and weakening degree .The contents of total starch and amyl-opectin increased by 10 .4%and 24 .7%respectively under the treatment of bottom fertilization +foliar appli-cation at flag stage .

  8. A Percolation Study of Wettability Effect on the Electrical Properties of Reservoir Rocks

    DEFF Research Database (Denmark)

    Zhou, Dengen; Arbabi, Sepehr; Stenby, Erling Halfdan

    1997-01-01

    Measurements of the electrical resistivity of oil reservoirs are commonly used to estimate other properties of reservoirs, such as porosity and hydrocarbon reserves. However, the interpretation of the measurements is based on empirical correlations, because the underlying mechanisms that control...... the electrical properties of oil bearing rocks have not been well understood. In this paper, we employ percolation concepts to investigate the effect of wettability on the electrical conductivity of a reservoir formation. A three-dimensional simple cubic network is used to represent an ideal reservoir formation...... behavior of reservoir resistivities of different wettabilities. It demonstrates that the resistivity index depends on saturation history and wettability. For strongly oil-wet systems, significant hysteresis is expected, while there is little hysteresis for strongly water-wet systems, and some hysteresis...

  9. Effect of whey and casein protein hydrolysates on rheological, textural and sensory properties of cookies.

    Science.gov (United States)

    Gani, Adil; Broadway, A A; Ahmad, Mudasir; Ashwar, Bilal Ahmad; Wani, Ali Abas; Wani, Sajad Mohd; Masoodi, F A; Khatkar, Bupinder Singh

    2015-09-01

    Milk proteins were hydrolyzed by papain and their effect on the rheological, textural and sensory properties of cookies were investigated. Water absorption (%) decreased significantly as the amount of milk protein concentrates and hydrolysates increased up to a level of 15 % in the wheat flour. Dough extensibility decreased with inrease in parental proteins and their hydrolysates in wheat flour, significantly. Similarly, the pasting properties also varied significantly in direct proportion to the quantity added in the wheat flour. The colour difference (ΔE) of cookies supplemented with milk protein concentrates and hydrolysates were significantly higher than cookies prepared from control. Physical and sensory characteristics of cookies at 5 % level of supplementation were found to be acceptable. Also the scores assigned by the judges for texture and colour were in good agreement with the measurements derived from the physical tests.

  10. Effect of estrogen on tendon collagen synthesis, tendon structural characteristics, and biomechanical properties in postmenopausal women

    DEFF Research Database (Denmark)

    Hansen, M.; Kongsgaard, M; Holm, Lars

    2009-01-01

    The knowledge about the effect of estradiol on tendon connective tissue is limited. Therefore, we studied the influence of estradiol on tendon synthesis, structure, and biomechanical properties in postmenopausal women. Nonusers (control, n = 10) or habitual users of oral estradiol replacement...... therapy (ERT, n = 10) were studied at rest and in response to one-legged resistance exercise. Synthesis of tendon collagen was determined by stable isotope incorporation [fractional synthesis rate (FSR)] and microdialysis technique (NH(2)-terminal propeptide of type I collagen synthesis). Tendon area...... and fibril characteristics were determined by MRI and transmission electron microscopy, whereas tendon biomechanical properties were measured during isometric maximal voluntary contraction by ultrasound recording. Tendon FSR was markedly higher in ERT users (P

  11. Effect of Desalination on Physicochemical and Functional Properties of Duck (Anas plotyrhyncus Egg Whites

    Directory of Open Access Journals (Sweden)

    Mhamadi Mmadi

    2014-06-01

    Full Text Available Desalted Duck Egg Whites (DDEW was prepared by electrodialysis desalination using Salted Duck Egg Whites (SDEW. DDEW and SDEW (used as control were subjected to freeze drying process. Freeze Dried Desalted and Salted Duck Egg Whites (FDDEW and FSDEW, respectively were assessed for functional properties (turbidity, foaming, emulsifying and gelation and some physicochemical characteristics. Among the physicochemical parameters, the proximate composition, amino acid composition, pH, particle sizes, microstructure and color attributes were studied. The electrodialysis desalination process had significant effect on the physicochemical characteristics of FDDEW and FSDEW except for amino acids composition. Thus, the pH decreased from 8.07 to 7.40 while the NaCl content decreased from 3.76 to 0.18%. The same trend was observed for protein and ash contents. The functional properties were variable among the two samples. For instance, the gel characteristics decreased sharply after electrodialysis desalination treatment.

  12. Effect of sputtering pressure on some properties of chromium thin films obliquely deposited

    Energy Technology Data Exchange (ETDEWEB)

    Besnard, A; Martin, N; Millot, C; Gavoille, J; Salut, R, E-mail: aurelien.besnard@ens2m.fr [Institut FEMTO-ST, UMR 6174 CNRS, Universite de Franche-Comte, ENSMM, UTBM, 32 avenue de l' observatoire, 25044 Besancon (France)

    2010-06-15

    Oriented columnar thin films provide a wide range of new properties linked to the large panel of available microstructures. The efficiency of the technique and thus the resulting structure, based on an incident flux of particles impinging on the substrate, depends on the distribution of the vapour source. The deposition pressure, which acts on the sputtered particles mean free path, is an important parameter, especially for sputtering processes. This study reports on the effect of different deposition pressures combined to a systematic change of the incidence angle of the sputtered particles, on the structural properties and electrical behaviours of obliquely sputtered chromium thin films. The results revealed higher performances and an enhanced control of the process at low sputtering pressure.

  13. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood.

    Science.gov (United States)

    Korkut, Süleyman; Akgül, Mehmet; Dündar, Turker

    2008-04-01

    Heat treatment is often applied to wood species to improve their dimensional stability. This study examined the effect of heat treatment on certain mechanical properties of Scots pine (Pinus sylvestris L.), which has industrially high usage potential and large plantations in Turkey. Wood specimens obtained from Bolu, Turkey, were subjected to heat treatment under atmospheric pressure at varying temperatures (120, 150 and 180 degrees C) for varying durations (2, 6 and 10h). The test results of heat-treated Scots pine and control samples showed that technological properties including compression strength, bending strength, modulus of elasticity in bending, janka-hardness, impact bending strength and tension strength perpendicular to grain suffered with heat treatment, and increase in temperature and duration further diminished technological strength values of the wood specimens.

  14. Effect of injection molding cycle time on surface properties of polypropylene

    Science.gov (United States)

    Kobayashi, Yutaka; Kanai, Toshitaka

    This paper deals with the effect of shortening injection molding cycle time on morphology and properties of the compounded materials of polypropylene (PP), ethylene propylene rubber (EPR) and talc. Recently, shear rate and cooling speed in injection molding for automotive parts have been increasing because of higher productivity. Orientation and crystallinity in the skin layer, which were measured by a polarizing optical microscope and wide angle X-ray diffraction, increased when shortening the cycle time. Phenomenon of bleeding out additives was observed for the evaluation of surface properties by ATR-FTIR. For decreasing resin temperature, higher crystallinity restricted diffusion of additives at the same position in the injection molded plaques. But comparing the gate with the flow end, the difference of bleeding in the position was controlled by the other factors.

  15. Kinetic Control of Aqueous Hydrolysis: Modulating Structure/Property Relationships in Inorganic Crystals

    Science.gov (United States)

    Neilson, James R.

    2011-12-01

    A grand challenge in materials science and chemistry revolves around the preparation of materials with desired properties by controlling structure on multiple length scales. Biology approaches this challenge by evolving tactics to transform soluble precursors into materials and composites with macro-scale and atomic precision. Studies of biomineralization in siliceous sponges led to the discovery of slow, catalytic hydrolysis of molecular precursors in the biogenesis of silica skeletal elements with well defined micro- and nano-scale architectures. However, the role of aqueous hydrolysis in the limit of kinetic control is not well understood; this allows us to form a central hypothesis: that the kinetics of hydrolysis modulate the structures of materials and their properties. As a model system, the diffusion of a simple hydrolytic catalyst (such as ammonia) across an air-water interface into a metal salt solution reproduces some aspects of the chemistry found in biomineralization, namely kinetic and vectorial control. Variation of the catalyst concentration modulates the hydrolysis rate, and thus alters the resulting structure of the inorganic crystals. Using aqueous solutions of cobalt(II) chloride, each product (cobalt hydroxide chloride) forms with a unique composition, despite being prepared from identical mother liquors. Synchrotron X-ray total scattering methods are needed to locate the atomic positions in the material, which are not aptly described by a traditional crystallographic unit cell due to structural disorder. Detailed definition of the structure confirms that the hydrolysis conditions systematically modulate the arrangement of atoms in the lattice. This tightly coupled control of crystal formation and knowledge of local and average structures of these materials provides insight into the unusual magnetic properties of these cobalt hydroxides. The compounds studied show significant and open magnetization loops with little variation with composition

  16. Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation

    Science.gov (United States)

    MacDonald, K. F.; Fedotov, V. A.; Pochon, S.; Stevens, G.; Kusmartsev, F. V.; Emel'yanov, V. I.; Zheludev, N. I.

    2004-08-01

    We have observed reversible structural transformations, induced by optical excitation at 1.55 μm, between the β, γ and liquid phases of gallium in self-assembled gallium nanoparticles, with a narrow size distribution around 50 nm, on the tip of an optical fiber. Only a few tens of nanowatts of optical excitation per particle are required to control the transformations, which take the form of a dynamic phase coexistence and are accompanied by substantial changes in the optical properties of the nanoparticle film. The time needed to achieve phase equilibrium is in the microsecond range, and increases sharply near the transition temperatures.

  17. Enhanced Cu-to-Cu direct bonding by controlling surface physical properties

    Science.gov (United States)

    Chiang, Po-Hao; Liang, Sin-Yong; Song, Jenn-Ming; Huang, Shang-Kun; Chiu, Ying-Ta; Hung, Chih-Pin

    2017-03-01

    Cu-to-Cu direct bonding is one of the key technologies for three-dimensional (3D) chip stacking. This research proposes a new concept to enhance Cu-to-Cu direct bonding through the control of surface physical properties. A linear relationship between bonding strength and the H/\\sqrt{R} value of the bonding face (H: subsurface hardness, R: surface roughness) was found. Low vacuum air plasma and thermal annealing were adopted to adjust the surface physical conditions. Instead of surface activation, an acceleration in copper atom diffusion due to plasma-induced compressive stress accounts for the improvement in bonding strength.

  18. Magnetically Controlled Electronic Transport Properties of a Ferromagnetic Junction on the Surface of a Topological Insulator

    Science.gov (United States)

    Liu, Zheng-Qin; Wang, Rui-Qiang; Deng, Ming-Xun; Hu, Liang-Bin

    2015-06-01

    We have investigated the transport properties of the Dirac fermions through a ferromagnetic barrier junction on the surface of a strong topological insulator. The current-voltage characteristic curve and the tunneling conductance are calculated theoretically. Two interesting transport features are predicted: observable negative differential conductances and linear conductances tunable from unit to nearly zero. These features can be magnetically manipulated simply by changing the spacial orientation of the magnetization. Our results may contribute to the development of high-speed switching and functional applications or electrically controlled magnetization switching. Supported by National Natural Science Foundation of China under Grant Nos. 11174088, 11175067, 11274124

  19. Controlling steady-state and dynamical properties of atomic optical bistability

    CERN Document Server

    Joshi, Amitabh

    2012-01-01

    This book provides a comprehensive introduction to the theoretical and experimental studies of atomic optical bistability and multistability, and their dynamical properties in systems with two- and three-level inhomogeneously-broadened atoms inside an optical cavity. By making use of the modified linear absorption and dispersion, as well as the greatly enhanced nonlinearity in the three-level electromagnetically induced transparency system, the optical bistablity and efficient all-optical switching can be achieved at relatively low laser powers, which can be well controlled and manipulated. Un

  20. An in situ growth method for property control of LPCVD polysilicon film

    Institute of Scientific and Technical Information of China (English)

    Hongbin Yu(余洪斌); Haiqinq Chen(陈海清); Jun Li(李俊); Chao Wang(汪超)

    2004-01-01

    Polysilicon films deposited by low-pressure chemical vapor deposition(LPCVD)exhibit large residual stress and stress gradient,depending on the deposition condition.An in situ growth method based on multilayer concept is presented to control the property for as-deposited polysilicon.A 3-μm thick polysilicon film with nine layers structure is demonstrated under the detailed analysis of multi-layer theory and material characteristic of polysilicon.The results show that a 3-μm-thick polysilicon film with 8-MPa overall residual tensile stress and 2.125-MPa/μm stress gradient through the film thickness is fabricated successfully.