WorldWideScience

Sample records for control coatings installed

  1. Development and Application of Coating Weight Control Technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hyoung [Dongbu Steel, Incheon (Korea, Republic of)

    2010-08-15

    Precise coating weight control is very important issue on quality and minimizing operating costs on continuous galvanizing line. These days, many steel making companies are having a new understanding of cost importance by rise raw material prices and customers requirement for cost reduction. Dongbu steel also meets these situations and decided to develop the technologies. Dongbu Steel developed Integrated coating weight control system jointly with Objective Control Ltd. and installed 2CGL and 4CGL. Several technological functions were developed and realized to achieve true hands-off operation and maximum cost benefit by combining model-based preset and dynamic prediction models. We also installed it on 1 CGL on April, 2008. This paper will present the interface, functions and application result of the integrated coating weight control system including Zn saving and coating weight uniformity.

  2. Installation of a bitumen coating plant for high-activity concentrates; Installation pilote d'enrobage par le bitume de concentrats de haute activite

    Energy Technology Data Exchange (ETDEWEB)

    Rodier, J; Lefillatre, G; Seyfried, P [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1969-07-01

    Following the excellent results obtained on the industrial coating of radioactive sludges, the possibility of solidifying also the evaporation concentrates with bitumen has been considered. For high activity concentrates, the use of bitumen is however limited by two main parameters: temperature resistance, irradiation resistance. By making use of the characteristics of a blown bitumen, it has been possible to design a high activity coating pilot plant treating concentrations of several tens of curies per litre. This plant will make use of a screw-type extrusion machine capable of coating treated concentrates at a rate of 20 l/hr. Before being coated, the concentrates will be subjected to a coprecipitation treatment designed to make the radioelements insoluble. This installation will make possible, apart from technological studies, laboratory experiments on the coated material (measurements on self-heating, on electrical charges, on radiolytic gases, and also lixiviation tests. It is at present believed, on the basis of available data, that it is possible to coat concentrates having an activity of 20 Ci/l at a price of 1840 F per cubic metre. (authors) [French] A la suite des excellents resultats obtenus pour l'enrobage industriel des boues radioactives, il a ete envisage de solidifier egalement les concentrats d'evaporation par le bitume. Pour les concentrats de haute activite, l'emploi du bitume est cependant limite par deux parametres essentiels: tenue a la temperature, tenue a l'irradiation. Grace aux caracteristiques d'un bitume souffle, il a ete possible de concevoir une installation pilote d'enrobage haute activite contenant plusieurs dizaines de curies par litre. Cette installation utilisera une machine du type extrudeuse a vis qui peut enrober 20 l/h de concentrats traites. Avant leur enrobage, les concentrats subiront un traitement de coprecipitation destine a insolubiliser les radioelements. En dehors des etudes technologiques, cette installation

  3. Fuel followed control rod installation at AFRRI

    International Nuclear Information System (INIS)

    Moore, Mark; Owens, Chris; Forsbacka, Matt

    1992-01-01

    Fuel Followed Control Rods (FFCRs) were installed at the Armed Forces Radiobiology Research Institute's 1 MW TRIGA Reactor. The procedures for obtaining, shipping, and installing the FFCRs is described. As part of the FFCR installation, the transient rod drive was relocated. Core performance due to the addition of the fuel followed control rods is discussed. (author)

  4. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  5. Simulation to coating weight control for galvanizing

    Science.gov (United States)

    Wang, Junsheng; Yan, Zhang; Wu, Kunkui; Song, Lei

    2013-05-01

    Zinc coating weight control is one of the most critical issues for continuous galvanizing line. The process has the characteristic of variable-time large time delay, nonlinear, multivariable. It can result in seriously coating weight error and non-uniform coating. We develop a control system, which can automatically control the air knives pressure and its position to give a constant and uniform zinc coating, in accordance with customer-order specification through an auto-adaptive empirical model-based feed forward adaptive controller, and two model-free adaptive feedback controllers . The proposed models with controller were applied to continuous galvanizing line (CGL) at Angang Steel Works. By the production results, the precise and stability of the control model reduces over-coating weight and improves coating uniform. The product for this hot dip galvanizing line does not only satisfy the customers' quality requirement but also save the zinc consumption.

  6. Selection tests of rubber coatings for the purpose of washing towers and other components in flue gas desulfurization installations. Selectietesten van rubberdeklagen ten behoeve van wastorens en andere componenten in rookgasontzwavelingsinstallaties; Deel 1

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, B.A.; Van Manen, J. (KEMA Inspecties en Materialen, Arnhem (Netherlands))

    1993-01-01

    It has appeared that the service life of chloroprene-based rubber coatings in flue gas desulfurization (FGD) installations in coal-fired power plants in the Netherlands is short. A number of rubber coating types, applied in washing towers, pipelines, pumps and boilers of FGD installations, is tested on a laboratory scale. Use has been made of the KEMA-developed accelerated test method, the Delta-T-Tube Test. In this test a rubber foil is attached to the outside of a tube. The tube is internally cooled and the outside is exposed to a test medium. Also use has been made of the KEMA-FGD test facility to expose the pipes in the washing tank and in the flue gas canal. Plates, coated with a rubber foil, are tested in so-called Atlas cells. The tubes and the plates were controlled for blister and crack formation and for erosion. Thermal analyses methods and mechanical tests were carried out to characterize the plates and the tubes before and after the exposures. It is concluded that butyl-based rubbers show better results than chloroprene-based rubbers

  7. 49 CFR 192.461 - External corrosion control: Protective coating.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion control...

  8. Computer systems for nuclear installation data control

    International Nuclear Information System (INIS)

    1987-09-01

    The computer programs developed by Divisao de Instalacoes Nucleares (DIN) from Brazilian CNEN for data control on nuclear installations in Brazil are presented. The following computer programs are described: control of registered companies, control of industrial sources, irradiators and monitors; control of liable person; control of industry irregularities; for elaborating credence tests; for shielding analysis; control of waste refuge [pt

  9. Performance evaluation on force control for ITER blanket installation

    Energy Technology Data Exchange (ETDEWEB)

    Aburadani, A., E-mail: aburadani.atsushi@jaea.go.jp [Japan Atomic Energy Agency, Mukouyama 801-1, Naka, Ibaraki 311-0193 (Japan); Takeda, N.; Shigematsu, S.; Murakami, S.; Tanigawa, H.; Kakudate, S. [Japan Atomic Energy Agency, Mukouyama 801-1, Naka, Ibaraki 311-0193 (Japan); Nakahira, M.; Hamilton, D.; Tesini, A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► It is crucial issues to avoid any jamming between the blanket modules and the keys. ► Force control for AC servo motor was developed to reduce excessive loads. ► This jam prevention force control method is directly measured and controlled by AC servo motor controllers. ► In the recent test, the module was passively positioned onto keys using the torque control method. -- Abstract: The most critical issue for the ITER blanket installation is to avoid any jamming between the blanket modules and the keys as a result of excessive loading during the module installation process. This is complicated by the limited clearance of 0.5 mm between the modules and the keys. To solve these technical issues, force control, such as controlling the torque for the AC servo motors, was developed to reduce excessive loads which may have an impact on the end-effector and to defer the forces acting on the groove of the blanket. This jam prevention force control method is directly measured and controlled by AC servo motor controllers. The AC servo motors are equipped to move the manipulator and end-effector during module installation.

  10. Performance evaluation on force control for ITER blanket installation

    International Nuclear Information System (INIS)

    Aburadani, A.; Takeda, N.; Shigematsu, S.; Murakami, S.; Tanigawa, H.; Kakudate, S.; Nakahira, M.; Hamilton, D.; Tesini, A.

    2013-01-01

    Highlights: ► It is crucial issues to avoid any jamming between the blanket modules and the keys. ► Force control for AC servo motor was developed to reduce excessive loads. ► This jam prevention force control method is directly measured and controlled by AC servo motor controllers. ► In the recent test, the module was passively positioned onto keys using the torque control method. -- Abstract: The most critical issue for the ITER blanket installation is to avoid any jamming between the blanket modules and the keys as a result of excessive loading during the module installation process. This is complicated by the limited clearance of 0.5 mm between the modules and the keys. To solve these technical issues, force control, such as controlling the torque for the AC servo motors, was developed to reduce excessive loads which may have an impact on the end-effector and to defer the forces acting on the groove of the blanket. This jam prevention force control method is directly measured and controlled by AC servo motor controllers. The AC servo motors are equipped to move the manipulator and end-effector during module installation

  11. Use and regulatory control of dental X-ray installations

    International Nuclear Information System (INIS)

    1999-01-01

    In the guide the safety requirements concerning dental X-ray installations and their use, prerequisities for exemption from a safety licence, and regulatory control are presented. The guide applies to conventional dental X-ray installations, by which an image is created on an X-ray film or other image receptor placed inside the mouth, and panorama tomography installations for dentition and the cephalostats associated with these. The guide does not apply to multitechnique tomography installations intended for the special imaging of the skull or jaws

  12. Practices for improving the serviceability of linings installations in open systems

    Energy Technology Data Exchange (ETDEWEB)

    Spieres, G.V. [KTA - Tator Inc., Pittsburgh, PE (United States); Tombaugh, R.S. [PPL Susquehanna, LLC, PE (United States)

    2001-07-01

    Accelerated corrosion within nuclear plant raw water systems often necessitates in-place lining of corroded piping later in a plant's life to check corrosion. Linings are usually installed in-place, though some raw water piping and components can be lined in the site maintenance facility or even in an offsite shop. Coatings and linings have often been applied to tube sheets and channels in conjunction with re-tubing to prevent galvanic attack. Lining application practices necessary for reliability commensurate with the high quality expected in nuclear programs is often found wanting. Key process controls critical to the success of lining installations are often misunderstood or inadequately addressed. This paper reviews the critical process attributes essential to optimizing service life. These include: 1) Training workers in techniques required for a successful application; 2) Establishing and maintaining ambient controls; 3) Techniques for protecting against water intrusion; 4) Eliminating MIC and surface contaminants (e.g., chlorides); 5) Selecting the proper abrasive and blast system and containment and removal of blast debris; 6) Equipment for accelerated curing; and 7) Engineering tools essential to addressing the above key process variables. SWS linings represent the largest category of safety-related coatings outside containment. Revision 1 of U.S. Nuclear Regulatory Commission (USNRC) Regulatory Guide 1.54, which addresses safety-related coatings, was issued in July 2000. The original version only addressed containment coatings. Revision 1 references ASTM D5411-2000, which formalizes for the first time the existence of safety-related coatings both inside and outside containment. Rev. 1 of RG 1.54, on a going forward basis, links Appendix B QA/QC protocols heretofore established for containment coatings to safety-related coatings and linings outside containment. (authors)

  13. Practices for improving the serviceability of linings installations in open systems

    International Nuclear Information System (INIS)

    Spieres, G.V.; Tombaugh, R.S.

    2001-01-01

    Accelerated corrosion within nuclear plant raw water systems often necessitates in-place lining of corroded piping later in a plant's life to check corrosion. Linings are usually installed in-place, though some raw water piping and components can be lined in the site maintenance facility or even in an offsite shop. Coatings and linings have often been applied to tube sheets and channels in conjunction with re-tubing to prevent galvanic attack. Lining application practices necessary for reliability commensurate with the high quality expected in nuclear programs is often found wanting. Key process controls critical to the success of lining installations are often misunderstood or inadequately addressed. This paper reviews the critical process attributes essential to optimizing service life. These include: 1) Training workers in techniques required for a successful application; 2) Establishing and maintaining ambient controls; 3) Techniques for protecting against water intrusion; 4) Eliminating MIC and surface contaminants (e.g., chlorides); 5) Selecting the proper abrasive and blast system and containment and removal of blast debris; 6) Equipment for accelerated curing; and 7) Engineering tools essential to addressing the above key process variables. SWS linings represent the largest category of safety-related coatings outside containment. Revision 1 of U.S. Nuclear Regulatory Commission (USNRC) Regulatory Guide 1.54, which addresses safety-related coatings, was issued in July 2000. The original version only addressed containment coatings. Revision 1 references ASTM D5411-2000, which formalizes for the first time the existence of safety-related coatings both inside and outside containment. Rev. 1 of RG 1.54, on a going forward basis, links Appendix B QA/QC protocols heretofore established for containment coatings to safety-related coatings and linings outside containment. (authors)

  14. A Multifunctional Smart Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  15. Environmentally Friendly Coating Technology for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael; hide

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.

  16. Decontamination of Belarus research reactor installation by strippable coatings

    International Nuclear Information System (INIS)

    Voronik, N.I.; Shatilo, N.N.

    2002-01-01

    The goal of this study was to develop new strippable coatings using water-based solutions of polyvinyl alcohol and active additives for decontamination of research reactor equipment. The employment of strippable coatings makes it possible to minimize the quantity of liquid radioactive waste. The selection of strippable decontaminating coatings was carried out on the basis of general requirements to decontaminating solutions: successfully dissolve corrosion deposits; ensure the desorption of radionuclides from the surfaces and the absence of resorption; introduce minimal corrosion effect of construction materials; to be relatively cheap and available in reagents. The decontaminating ability and adhesion properties of these coatings depending on metal and deposit sorts were investigated. Research on the chemical stability of solid wastes was carried out. The data obtained were the base for recommendations on waste management procedure for used films and pastes. A full-scale case-study analysis was performed for comparing strippable coatings with decontaminating solutions. (author)

  17. Method for installing a control rod driving device in a reactor

    International Nuclear Information System (INIS)

    Sato, Haruo; Watanabe, Masatoshi.

    1975-01-01

    Object: To install a device using a wire rope, including individually moving up and down a control rod and a control rod driving device thereby enabling to install them within a low house and to reduce time required for installing operation. Structure: The control rod is temporarily attached to a support structure for the control rod driving device, the control rod driving device is suspended on a crane positioned upwardly of the support structure, a rope connected to the control rod driving device is connected to the control rod, a sagged portion of the rope is then wound about a rotary cylinder, the control rod is disconnected from its temporary attachment, and the wound rope is wound back while the rotary cylinder is rotated to move down the control rod. After the rope has been released from the rotary cylinder, the control rod driving device is moved down by the crane. (Kamimura, M.)

  18. PIT Coating Requirements Analysis

    International Nuclear Information System (INIS)

    MINTEER, D.J.

    2000-01-01

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products

  19. PIT Coating Requirements Analysis

    Energy Technology Data Exchange (ETDEWEB)

    MINTEER, D.J.

    2000-10-20

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

  20. Controlled release from drug microparticles via solventless dry-polymer coating.

    Science.gov (United States)

    Capece, Maxx; Barrows, Jason; Davé, Rajesh N

    2015-04-01

    A novel solvent-less dry-polymer coating process employing high-intensity vibrations avoiding the use of liquid plasticizers, solvents, binders, and heat treatments is utilized for the purpose of controlled release. The main hypothesis is that such process having highly controllable processing intensity and time may be effective for coating particularly fine particles, 100 μm and smaller via exploiting particle interactions between polymers and substrates in the dry state, while avoiding breakage yet achieving conformal coating. The method utilizes vibratory mixing to first layer micronized polymer onto active pharmaceutical ingredient (API) particles by virtue of van der Waals forces and to subsequently mechanically deform the polymer into a continuous film. As a practical example, ascorbic acid and ibuprofen microparticles, 50-500 μm, are coated with the polymers polyethylene wax or carnauba wax, a generally recognized as safe material, resulting in controlled release on the order of seconds to hours. As a novelty, models are utilized to describe the coating layer thickness and the controlled-release behavior of the API, which occurs because of a diffusion-based mechanism. Such modeling would allow the design and control of the coating process with application for the controlled release of microparticles, particularly those less than 100 μm, which are difficult to coat by conventional solvent coating methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Appendix report to project report: Coating of pumps; Bilagsrapport til projektrapport 'coating af pumper'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    Coating of pumps is a quite new activity. For many years pipes and containers have been coated inside in order to avoid corrosion, but the technology has only been used inside pumps for the last ten years. The technology comes from USA and is originally developed in the space technology industry as an exceptionally durable and corrosion constant coating. The project is a further development of results found in a previous R and D project in which measurements were performed before and after coating two different installations. Both installations showed large efficiency improvements. This project supplements the theory behind losses in pumps with measurements on more pumps. (BA)

  2. The control of base nuclear installations; Le controle des installations nucleaires de base (INB)

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2009-04-15

    The Authority of Nuclear Safety ( A.S.N). presents in this column the current events of the control of the nuclear base installations during november, december 2008 and january 2009, classified by nuclear site. This information is also available in real-time on the A.S.N. web site, www.asn.fr, in the column 'news'. We can consult all the notices of significant incident published as well as the following letters of inspection, the notices of information about the reactors shutdown, press releases and the A.S.N. information notes. (N.C.)

  3. Study of radioactivity diffusion for bitumen-coated blocks produced by an industrial coating plant

    International Nuclear Information System (INIS)

    Rodier, J.; Lefillatre, G.

    1969-01-01

    The solidification by bitumen of chemical coprecipitation sludges from the Marcoule waste treatment station has been studied in the laboratory and has led to the construction of an industrial coating plant. The quality of the coated material obtained has been controlled by the lixiviation test carried out with ordinary water and with sea-water on 45 ml laboratory samples and on industrial coated blocks of 150 litres. Tests on blocks of such a size have necessitated the installation of three special tanks. Two, each of 2000 litres capacity, contain ordinary and sea-water which was continuously recycled at a rate of 2.5 cm/hr and renewed periodically. In the third tank having a capacity of 11000 litres, the coated block was buried in earth and sprinkled with ordinary water with a view to studying the migration of radioelements in soil. The results of these tests confirm those obtained during the laboratory experiments. (authors) [fr

  4. Laboratory electron exposure of TSS-1 thermal control coating

    Science.gov (United States)

    Vaughn, J. A.; Mccollum, M.; Carruth, M. R., Jr.

    1995-01-01

    RM400, a conductive thermal control coating, was developed for use on the exterior shell of the tethered satellite. Testing was performed by the Engineering Physics Division to quantify effects of the space environment on this coating and its conductive and optical properties. Included in this testing was exposure of RM400 to electrons with energies ranging from 0.1 to 1 keV, to simulate electrons accelerated from the ambient space plasma when the tethered satellite is fully deployed. During this testing, the coating was found to luminesce, and a prolonged exposure of the coating to high-energy electrons caused the coating to darken. This report describes the tests done to quantify the degradation of the thermal control properties caused by electron exposure and to measure the luminescence as a function of electron energy and current density to the satellite.

  5. Feasible research on VLLW disposal in control area of nuclear installation

    International Nuclear Information System (INIS)

    Kong Jinsong; Guo Weiqun

    2013-01-01

    Based on the basic requirements on the VLLW landfill disposal specified by the national codes and standards, a on-site disposal of VLLW in the control area of nuclear installation was proposed. A detail analysis of the advantages and disadvantages about the disposal method and the problem to be solved were described. Results showed that the on-site disposal of VLLW in the control area of nuclear installation was feasible in practice. (authors)

  6. Product Control of Waste Products with New Coating Materials

    International Nuclear Information System (INIS)

    Krumbach, H.; Steinmetz, H.J.; Odoj, R.; Wartenberg, W.; Grunau, H.

    2009-01-01

    In Germany, with the shaft KONRAD a repository for low radioactive waste will be available at the earliest in the year 2013. The previously conditioned radioactive waste has to be suitable for a longer-term interim storage. They have to be treated in a way that they are chemically stable and that their integrity is guaranteed for a long time. That is why the waste product or the container is covered/ coated for special waste such as hygroscopic waste or waste that includes aluminium. The Product Control Group for radioactive waste (PKS) has to proof the suitability of the so-treated waste for the repository KONRAD on behalf of the Federal Office for Radiation Protection (BfS). This has to be done before the delivering. In this context the PKS also assesses the suitability of new coating materials for low radioactive waste products or containers and their correct technical application. The characteristics and the technical application of polyurethane coatings as well as the control of the so-coated waste for the disposal in the shaft KONRAD are described in this poster. The Poster shows the development stages of the coating and the filling. There are also shown the boundary conditions and the investigations of the Product Control Group for the use of the new coating material for radioactive waste. (authors)

  7. Poly(dimethylsiloxane) coatings for controlled drug release--polymer modifications.

    Science.gov (United States)

    Schulze Nahrup, J; Gao, Z M; Mark, J E; Sakr, A

    2004-02-11

    Modifications of endhydroxylated poly(dimethylsiloxane) (PDMS) formulations were studied for their ability to be applied onto tablet cores in a spray-coating process and to control drug release in zero-order fashion. Modifications of the crosslinker from the most commonly used tetraethylorthosilicate (TEOS) to the trifunctional 3-(2,3-epoxypropoxy)propyltrimethoxysilane (SIG) and a 1:1 mixture of the two were undertaken. Addition of methylpolysiloxane-copolymers were studied. Lactose, microcrystalline cellulose (MCC) and polyethylene glycol 8000 (PEG) were the channeling agents applied. The effects on dispersion properties were characterized by particle size distribution and viscosity. Mechanical properties of resulting free films were studied to determine applicability in a pan-coating process. Release of hydrochlorothiazide (marker drug) was studied from tablets coated in a lab-size conventional coating pan. All dispersions were found suitable for a spray-coating process. Preparation of free films showed that copolymer addition was not possible due to great decline in mechanical properties. Tablets coated with formulations containing PEG were most suitable to control drug release, at only 5% coating weight. Constant release rates could be achieved for formulations with up to 25% PEG; higher amounts resulted in a non-linear release pattern. Upon adding 50% PEG, a drug release of 63% over 24 h could be achieved.

  8. Design and development on automated control system of coated fuel particle fabrication process

    International Nuclear Information System (INIS)

    Liu Malin; Shao Youlin; Liu Bing

    2013-01-01

    With the development trend of the large-scale production of the HTR coated fuel particles, the original manual control system can not meet the requirement and the automation control system of coated fuel particle fabrication in modern industrial grade is needed to develop. The comprehensive analysis aiming at successive 4-layer coating process of TRISO type coated fuel particles was carried out. It was found that the coating process could be divided into five subsystems and nine operating states. The establishment of DCS-type (distributed control system) of automation control system was proposed. According to the rigorous requirements of preparation process for coated particles, the design considerations of DCS were proposed, including the principle of coordinated control, safety and reliability, integration specification, practical and easy to use, and open and easy to update. A complete set of automation control system for coated fuel particle preparation process was manufactured based on fulfilling the requirements of these principles in manufacture practice. The automated control system was put into operation in the production of irradiated samples for HTRPM demonstration project. The experimental results prove that the system can achieve better control of coated fuel particle preparation process and meet the requirements of factory-scale production. (authors)

  9. Launch Pad Coatings for Smart Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  10. Development of Process Analytical Technology (PAT) methods for controlled release pellet coating.

    Science.gov (United States)

    Avalle, P; Pollitt, M J; Bradley, K; Cooper, B; Pearce, G; Djemai, A; Fitzpatrick, S

    2014-07-01

    This work focused on the control of the manufacturing process for a controlled release (CR) pellet product, within a Quality by Design (QbD) framework. The manufacturing process was Wurster coating: firstly layering active pharmaceutical ingredient (API) onto sugar pellet cores and secondly a controlled release (CR) coating. For each of these two steps, development of a Process Analytical Technology (PAT) method is discussed and also a novel application of automated microscopy as the reference method. Ultimately, PAT methods should link to product performance and the two key Critical Quality Attributes (CQAs) for this CR product are assay and release rate, linked to the API and CR coating steps respectively. In this work, the link between near infra-red (NIR) spectra and those attributes was explored by chemometrics over the course of the coating process in a pilot scale industrial environment. Correlations were built between the NIR spectra and coating weight (for API amount), CR coating thickness and dissolution performance. These correlations allow the coating process to be monitored at-line and so better control of the product performance in line with QbD requirements. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. UNDERWATER COATINGS FOR CONTAMINATION CONTROL

    International Nuclear Information System (INIS)

    Julia L. Tripp; Kip Archibald; Ann Marie Phillips; Joseph Campbell

    2004-01-01

    The Idaho National Laboratory (INL) deactivated several aging nuclear fuel storage basins. Planners for this effort were greatly concerned that radioactive contamination present on the basin walls could become airborne as the sides of the basins became exposed during deactivation and allowed to dry after water removal. One way to control this airborne contamination was to fix the contamination in place while the pool walls were still submerged. There are many underwater coatings available on the market for marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives were easily applied and adhered well to the substrates (pool wall materials) found in INL fuel pools. Lab-scale experiments were conducted by applying fourteen different commercial underwater coatings to four substrate materials representative of the storage basin construction materials, and evaluating their performance. The coupons included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The evaluation criteria included ease of application, adherence to the four surfaces of interest, no change on water clarity or chemistry, non-hazardous in final applied form and be proven in underwater applications. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected from the underwater coatings tested for application to all four pools. Divers scrubbed loose contamination off the basin walls and floors using a ship hull scrubber and vacuumed up the sludge. The divers then applied the coating using a special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pools with no detectable airborne contamination releases

  12. Fabrication of Polymeric Coatings with Controlled Microtopographies Using an Electrospraying Technique.

    Directory of Open Access Journals (Sweden)

    Qiongyu Guo

    Full Text Available Surface topography of medical implants provides an important biophysical cue on guiding cellular functions at the cell-implant interface. However, few techniques are available to produce polymeric coatings with controlled microtopographies onto surgical implants, especially onto implant devices of small dimension and with complex structures such as drug-eluting stents. Therefore, the main objective of this study was to develop a new strategy to fabricate polymeric coatings using an electrospraying technique based on the uniqueness of this technique in that it can be used to produce a mist of charged droplets with a precise control of their shape and dimension. We hypothesized that this technique would allow facile manipulation of coating morphology by controlling the shape and dimension of electrosprayed droplets. More specifically, we employed the electrospraying technique to coat a layer of biodegradable polyurethane with tailored microtopographies onto commercial coronary stents. The topography of such stent coatings was modulated by controlling the ratio of round to stretched droplets or the ratio of round to crumped droplets under high electric field before deposition. The shape of electrosprayed droplets was governed by the stability of these charged droplets right after ejection or during their flight in the air. Using the electrospraying technique, we achieved conformal polymeric coatings with tailored microtopographies onto conductive surgical implants. The approach offers potential for controlling the surface topography of surgical implant devices to modulate their integration with surrounding tissues.

  13. Coating of reverse osmosis membranes with amphiphilic copolymers for biofouling control

    KAUST Repository

    Bucs, Szilard

    2017-05-30

    Surface coating of membranes may be a promising option to control biofilm development and biofouling impact on membrane performance of spiral-wound reverse osmosis (RO) systems. The objective of this study was to investigate the impact of an amphiphilic copolymer coating on biofilm formation and biofouling control. The coating was composed of both hydrophilic and hydrophobic monomers hydroxyethyl methacrylate (HEMA) and perfluorodecyl acrylate (PFA), respectively. Commercial RO membranes were coated with HEMA-PFA copolymer film. Long and short term biofouling studies with coated and uncoated membranes and feed spacer were performed using membrane fouling simulators (MFSs) operated in parallel, fed with water containing nutrients. For the long-term studies pressure drop development in time was monitored and after eight days the MFSs were opened and the accumulated biofilm on the membrane and spacer sheets was quantified and characterized. The presence of the membrane coating was determined using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Results showed that the amphiphilic coating (i) delayed biofouling (a lower pressure drop increase by a factor of 3 and a lower accumulated active biomass amount by a factor of 6), (ii) influenced the biofilm composition (23% lower polysaccharides and 132% higher protein content) and (iii) was still completely present on the membrane at the end of the biofouling study, showing that the coating was strongly attached to the membrane surface. Using coated membranes and feed spacers in combination with advanced cleaning strategies may be a suitable way to control biofouling.

  14. Coating of reverse osmosis membranes with amphiphilic copolymers for biofouling control

    KAUST Repository

    Bucs, Szilard; Valladares Linares, Rodrigo; Siddiqui, Amber; Matin, Asif; Khan, Zafarullah; van Loosdrecht, Mark C.M.; Yang, Rong; Wang, Minghui; Gleason, Karen K.; Kruithof, Joop C.; Vrouwenvelder, Johannes S.

    2017-01-01

    Surface coating of membranes may be a promising option to control biofilm development and biofouling impact on membrane performance of spiral-wound reverse osmosis (RO) systems. The objective of this study was to investigate the impact of an amphiphilic copolymer coating on biofilm formation and biofouling control. The coating was composed of both hydrophilic and hydrophobic monomers hydroxyethyl methacrylate (HEMA) and perfluorodecyl acrylate (PFA), respectively. Commercial RO membranes were coated with HEMA-PFA copolymer film. Long and short term biofouling studies with coated and uncoated membranes and feed spacer were performed using membrane fouling simulators (MFSs) operated in parallel, fed with water containing nutrients. For the long-term studies pressure drop development in time was monitored and after eight days the MFSs were opened and the accumulated biofilm on the membrane and spacer sheets was quantified and characterized. The presence of the membrane coating was determined using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Results showed that the amphiphilic coating (i) delayed biofouling (a lower pressure drop increase by a factor of 3 and a lower accumulated active biomass amount by a factor of 6), (ii) influenced the biofilm composition (23% lower polysaccharides and 132% higher protein content) and (iii) was still completely present on the membrane at the end of the biofouling study, showing that the coating was strongly attached to the membrane surface. Using coated membranes and feed spacers in combination with advanced cleaning strategies may be a suitable way to control biofouling.

  15. Data acquisition and control system in a heavy water detritiation installation

    International Nuclear Information System (INIS)

    Stefan, Iuliana; Balteanu, Ovidiu; Retevoi, Carmen; Stefan, Liviu

    2002-01-01

    The experimental installation for extracting tritium and deuterium from the tritiated heavy water used as moderator in CANDU type nuclear reactors is described. The separated tritium of high purity can be used in the fusion reactors of the future or in various laboratory researches. The fluids implied in operating this installation require special safety measures to be taken to protect both the operational personnel and the environment. Accordingly, in the technologic room no personnel is allowed and hence parameter monitoring, analyses and the testing must be done by remote control equipment. The computers for monitoring, warning and testing, as well as the sensors are housed in the data acquisition room, separated from the control room. The values generated by the process variables are converted in electrical or pneumatic signals and subsequently transmitted to the subsystems of monitoring, control and protection. Data acquisition in the control room is ensured by a computer provided with a FieldPoint interface. So, the connection between I/O modules from the data acquisition room and the computer ensures a 115.2 kb/s speed. Measured values of the parameters are recorded and displayed in the control room. Here these are compared with preset limits of the process parameters and in case of abnormal behavior, an alarm is triggered both optically and acoustically. At the same time, the program which controls the inputs and the outputs makes decisions and issues corrective or preventive commands for the technological process or installation protection, respectively. A diagram illustrating the monitoring, using a LabView platform is presented

  16. Preparation and characterization of controlled-release fertilizers coated with marine polysaccharide derivatives

    Science.gov (United States)

    Wang, Jing; Liu, Song; Qin, Yukun; Chen, Xiaolin; Xing, Rong'e.; Yu, Huahua; Li, Kecheng; Li, Pengcheng

    2017-09-01

    Encapsulation of water-soluble nitrogen fertilizers by membranes can be used to control the release of nutrients to maximize the fertilization effect and reduce environmental pollution. In this research, we formulated a new double-coated controlled-release fertilizer (CRF) by using food-grade microcrystalline wax (MW) and marine polysaccharide derivatives (calcium alginate and chitosan-glutaraldehyde copolymer). The pellets of water-soluble nitrogen fertilizer were coated with the marine polysaccharide derivatives and MW. A convenient and eco-friendly method was used to prepare the CRF. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the morphology and composition of the products. The nitrogen-release properties were determined in water using UV-Vis spectrophotometry. The controlled-release properties of the fertilizer were improved dramatically after coating with MW and the marine polysaccharide derivatives. The results show that the double-coated CRFs can release nitrogen in a controlled manner, have excellent controlled-release features, and meet the European Standard for CRFs.

  17. QLab 3 show control projects for live performances & installations

    CERN Document Server

    Hopgood, Jeromy

    2013-01-01

    Used from Broadway to Britain's West End, QLab software is the tool of choice for many of the world's most prominent sound, projection, and integrated media designers. QLab 3 Show Control: Projects for Live Performances & Installations is a project-based book on QLab software covering sound, video, and show control. With information on both sound and video system basics and the more advanced functions of QLab such as MIDI show control, new OSC capabilities, networking, video effects, and microphone integration, each chapter's specific projects will allow you to learn the software's capabilitie

  18. A neutron-absorbing porcelain enamel for coating nuclear equipment

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1988-01-01

    In 1985, nuclear safety analyses showed that under upset conditions, strict administrative controls were necessary to limit access to a new processing vessel for enriched uranium service at the Savannah River Plant (SRP). In order to increase the level of nuclear safety associated with that vessel, the traditional methods of incorporating neutron absorbers (borated stainless steel, boral, cadmium foil, etc.) were reviewed, however, process conditions did not permit their use. A neutron-absorbing porcelain enamel containing large amounts of cadmium and boron was developed as a safe, cost-effective alternative to traditional neutron-absorbing methods. Several pieces of coated process equipment have been installed or are planned for installation at SRP

  19. Nuclear ventilation installations. Method of control of the scrubbing coefficient of iodine trap

    International Nuclear Information System (INIS)

    1982-12-01

    The present standard aims at defining a method to control the scrubbing coefficient of radioactive iodine trapping systems, used in nuclear ventilation installations. It applies to the installations where the trapping, efficiency of radioactive iodine has to be known, tested and compared to a reference value generally included in the safety reports. It applies to the installations where the absolute pressure of the air in the ventilation systems is above 1,4. 10 5 Pa (1,4 Bar) [fr

  20. Controlling the Biodegradation of Magnesium Implants Through Nanostructured Calcium-Phosphate Coating

    Science.gov (United States)

    Iskandar, Maria Emil

    Magnesium (Mg) alloys, a novel class of degradable, metallic biomaterials, have attracted growing interest as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. Moreover, Mg is biodegradable in the physiological environments. However, the major obstacle for Mg to be used as medical implants is its rapid degradation in physiological fluids. Therefore, the present key challenge lies in controlling Mg degradation rate in the physiological environment. The objective of this study was to develop a nanostructured-hydroxyapatite (nHA) coating on polished Mg implants to control the degradation and bone tissue integration of the implants. The nHA coatings were deposited on Mg using the Spire's patented TPA process to moderate the aggressive degradation of Mg and to improve quick osteointegration between Mg and natural bone. Nanostructured-HA coatings mimic the nanostructure and chemistry of natural bone, which will provide a desirable environment for bone tissue regeneration. Surface morphology, element compositions, and crystal structures were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and x-ray diffractometry (XRD), respectively. SEM images of the deposited nHA-coating was analyzed using ImageJ's quantitative image analysis tool, to determine the nHA-coating particle size and thickness. The degradation of nHA-coated and non-coated Mg samples was investigated by incubating samples in phosphate buffered saline (PBS) and revised simulated body fluid (r-SBF), under standard cell culture conditions. To mimic the in vivo cell response in the physiological environment, rat bone marrow stromal cells (BMSC) were harvested and cultured with nHA-coated and non-coated polished Mg samples to determine cytocompatibilty. The degradation results suggested that the nanocoatings positively mediated Mg degradation. It can therefore be concluded that nHA-coatings

  1. Quality control of a virtual simulation installation. SFPM report nr 25, August 2009

    International Nuclear Information System (INIS)

    Foulquier, Jean-Noel; Allieres, Norbert; Batalla, Alain; Beaumont, Stephane; Di Bartolo, Cristelle; Khodri, Mustapha; Tauziede, Jean-Marc; Dedieu, Veronique; Bramoule, Celine; Caselles, Olivier; Lacaze, Brigitte; Mazurier, Jocelyne

    2009-08-01

    This report is a notably comprehensive guide for the different controls which can be performed on devices present in a Virtual Simulation installation. After a brief historical recall, the authors present the definition and organisation of a virtual simulation, the different components of a virtual simulation installation, and the different steps of virtual simulation process. Then, they address the quality control of the scanner-simulator (linearity and periodicity of controls, patient table or support, tolerance levels and periodicity of controls of this support). They address tracking systems (quality control of laser systems), the quality control of virtual simulation tools (iso-centre contouring and positioning, ballistic tools, tolerance levels, control periodicity), the quality control of data transfer or objects (elements to be analysed during an image transfer, tolerance levels and control periodicity), the imager quality control, and tests phantoms (the physical and digital phantoms)

  2. On Orientation Control of Suspended Blade During Installation in Wind Turbines

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Roemer, Daniel Beck; Pedersen, Henrik Clemmensen

    2015-01-01

    This paper discusses problems involved in the procedure for offshore installation of blades in wind turbines, due to wind loads. In general the high winds at sea provides for nearly optimal conditions for harvesting energy via wind turbines due to the often high wind speeds and low turbulence...... intensity. However, the very same features also call for great difficulties during installation of the wind turbine blades, making this process extremely difficult, expensive and time consuming. Often the blades are hoisted to the wind turbine hub via cranes and sought held in appropriate positions by so......-called taglines/wires, but still significant motion oscillations of blade root ends are experienced, even at rather low wind speeds. The paper considers the possibility to dampen the oscillating motions via control of the tagline lengths. The main control strategy considered, is the possibility to control...

  3. Sedimentary controls on modern sand grain coat formation

    Science.gov (United States)

    Dowey, Patrick J.; Worden, Richard H.; Utley, James; Hodgson, David M.

    2017-05-01

    Coated sand grains can influence reservoir quality evolution during sandstone diagenesis. Porosity can be reduced and fluid flow restricted where grain coats encroach into pore space. Conversely pore-lining grain coats can restrict the growth of pore-filling quartz cement in deeply buried sandstones, and thus can result in unusually high porosity in deeply buried sandstones. Being able to predict the distribution of coated sand grains within petroleum reservoirs is thus important to help find good reservoir quality. Here we report a modern analogue study of 12 sediment cores from the Anllóns Estuary, Galicia, NW Spain, collected from a range of sub-environments, to help develop an understanding of the occurrence and distribution of coated grains. The cores were described for grain size, bioturbation and sedimentary structures, and then sub-sampled for electron and light microscopy, laser granulometry, and X-ray diffraction analysis. The Anllóns Estuary is sand-dominated with intertidal sand flats and saltmarsh environments at the margins; there is a shallowing/fining-upwards trend in the estuary-fill succession. Grain coats are present in nearly every sample analysed; they are between 1 μm and 100 μm thick and typically lack internal organisation. The extent of grain coat coverage can exceed 25% in some samples with coverage highest in the top 20 cm of cores. Samples from muddy intertidal flat and the muddy saltmarsh environments, close to the margins of the estuary, have the highest coat coverage (mean coat coverage of 20.2% and 21.3%, respectively). The lowest mean coat coverage occurs in the sandy saltmarsh (10.4%), beyond the upper tidal limit and sandy intertidal flat environments (8.4%), close to the main estuary channel. Mean coat coverage correlates with the concentration of clay fraction. The primary controls on the distribution of fine-grained sediment, and therefore grain coat distribution, are primary sediment transport and deposition processes that

  4. Light controlled friction at a liquid crystal polymer coating with switchable patterning

    NARCIS (Netherlands)

    Liu, D.; Broer, D.J.

    2014-01-01

    We describe a new methodology that enables dynamically control of motion through modulating friction at coating surfaces by exposing with UV light. The principle is based on reversibly switching the surface topographies of the coating by light. The coating surface transfers from flat in the dark to

  5. Installing Omeka

    Directory of Open Access Journals (Sweden)

    Jonathan Reeve

    2016-07-01

    Full Text Available Omeka.net is a useful service for Omeka beginners, but there are a few reasons why you might want to install your own copy of Omeka. Reasons include: * Upgrades. By installing Omeka yourself, you can use the latest versions of Omeka as soon as they’re released, without having to wait for Omeka.net to upgrade their system. * Plugins and themes. You can install any plugin or theme you want, without being restricted to those provided by Omeka.net. * Customizations. You can buy a custom domain name, and customize your code to achieve your desired functionality. * Control. You have control over your own backups, and you can update the server yourself so that its security is always up-to-date. * Price. There are many low-cost Virtual Private Servers (VPSs now, some of which cost only $5 per month. * Storage. Many shared hosting providers now offer unlimited storage. This is useful if you have a large media library. In this tutorial, we’ll be entering a few commands on the command line. This tutorial assumes no prior knowledge of the command line, but if you want a concise primer, consult the Programming Historian introduction to BASH. There are other ways of installing Omeka, of course, some using exclusively GUI tools. Some hosting providers even offer “one-click installs” via their control panels. Many of those methods, however, will install older versions of Omeka which are then harder to upgrade and maintain. The method outlined below may not be the easiest way to install Omeka, but it will give you some good practice with using the command line, which is a skill that will be useful if you want to manually upgrade your install, or manually install other web frameworks. (For example, this installation method is very similar to WordPress’s “Five-Minute Install”. There are four steps to this process, and it should take about an hour.

  6. Quality control of fireproof coatings for reinforced concrete structures

    Science.gov (United States)

    Gravit, Marina; Dmitriev, Ivan; Ishkov, Alexander

    2017-10-01

    The article analyzes methods of quality inspection of fireproof coatings (work flow, measuring, laboratory, etc.). In modern construction there is a problem of lack of distinct monitoring for the fire protection testing. There is a description of this testing for reinforced concrete structures. The article shows the results of calculation quality control of hatches as an example of fireproof coating for reinforced concrete structures.

  7. Smart Multifunctional Coatings for Corrosion Detection and Control in the Aerospace Industry

    Science.gov (United States)

    Calle, Luz Marina

    2015-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  8. Manufacturing of 380/220 V 63 A power supply panel on UO2 kernel coating unit

    International Nuclear Information System (INIS)

    Triyono; Mudjiman, Supardjono; Hidayat, Nur

    2013-01-01

    The panel 380/220 Volts voltage source current 63 Amperes relay AC output on UO 2 kernel coating unit has been manufactured. The activities include: installation and function panel test. The electrical installation of load includes : 220 Volts temperature monitor/controller, 220 Volts scraber pump, 220 Volts vacuum pump, 220 Volts solenoid valve gas and 380 Volts induction furnace. The component of installation includes: 380 Volts earth leakage circuit breaker, 380 Volts relay AC, 220 Volts magnetic circuit breaker, 100/5 Amperes current transformator ratio, voltmeter, ampermeter and push button normally open-close and temperature monitor/control in the box size 70x50x20 cm. The testing of voltage source has been unload and full load to determine the performance of the tool. The result of manufacture and function test voltage source 380/220 Volts at the UO 2 kernel coating unit showed that: the voltage source can work without load and full load safely. The load includes: voltage 380-382 Volts current 4-4,1 Amperes of induction furnace, voltage 223 Volts current 0,5 Amperes of vacuum pump, voltage 223 Volts current 4 Amperes of scraber pump, voltage 223 Volts current 0,3 Amperes of solenoid valve gas and 222 Volts current 0,03 Amperes temperature monitor/control. (author)

  9. A Review of Tribological Coatings for Control Drive Mechanisms in Space Reactors

    International Nuclear Information System (INIS)

    CJ Larkin; JD Edington; BJ Close

    2006-01-01

    Tribological coatings must provide lubrication for moving components of the control drive mechanism for a space reactor and prevent seizing due to friction or diffusion welding to provide highly reliable and precise control of reflector position over the mission lifetime. Several coatings were evaluated based on tribological performance at elevated temperatures and in ultrahigh vacuum environments. Candidates with proven performance in the anticipated environment are limited primarily to disulfide materials. Irradiation data for these coatings is nonexistent. Compatibility issues between coating materials and structural components may require the use of barrier layers between the solid lubricant and structural components to prevent deleterious interactions. It would be advisable to consider possible lubricant interactions prior to down-selection of structural materials. A battery of tests was proposed to provide the necessary data for eventual solid lubricant/coating selection

  10. Surface coatings deposited by CVD and PVD

    International Nuclear Information System (INIS)

    Gabriel, H.M.

    1982-01-01

    The demand for wear and corrosion protective coatings is increasing due to economic facts. Deposition processes in gas atmospheres like the CVD and PVD processes attained a tremendous importance especially in the field of the deposition of thin hard refractory and ceramic coatings. CVD and PVD processes are reviewed in detail. Some examples of coating installations are shown and numerous applications are given to demonstrate the present state of the art. (orig.) [de

  11. ENGINEERING AND ECONOMIC FACTORS AFFECTING THE INSTALLATION OF CONTROL TECHNOLOGIES FOR MULTIPOLLUTANT STRATEGIES

    Science.gov (United States)

    The report evaluates the engineering and economic factors associated with installing air pollution control technologies to meet the requirements of strategies to control sulfur dioxide (SO2), oxides of nitrogen (NOX), and mercury under the Clear Skies Act multipollutant control s...

  12. Microencapsulation of Self Healing Agents for Corrosion Control Coatings

    Science.gov (United States)

    Jolley, S. T.; Li, W.; Buhrow, J. W.; Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, is a very costly problem that has a major impact on the global economy. Results from a 2-year breakthrough study released in 2002 by the U.S. Federal Highway Administration (FHWA) showed that the total annual estimated direct cost associated with metallic corrosion in nearly every U.S. industry sector was a staggering $276 billion, approximately 3.1% of the nation's Gross Domestic Product (GOP). Corrosion protective coatings are widely used to protect metallic structures from the detrimental effects of corrosion but their effectiveness can be seriously compromised by mechanical damage, such as a scratch, that exposes the metallic substrate. The incorporation of a self healing mechanism into a corrosion control coating would have the potential to significantly increase its effectiveness and useful lifetime. This paper describes work performed to incorporate a number of microcapsule-based self healing systems into corrosion control coatings. The work includes the preparation and evaluation of self-healing systems based on curable epoxy, acrylate, and siloxane resins, as well as, microencapsulated systems based on passive, solvent born, healing agent delivery. The synthesis and optimization of microcapsule-based self healing systems for thin coating (less than 100 micron) will be presented.

  13. Metal monitoring for process control of laser-based coating removal

    Science.gov (United States)

    Fraser, Mark E.; Hunter, Amy J.; Panagiotou, Thomai; Davis, Steven J.; Freiwald, David A.

    1999-12-01

    Cost-effective and environmentally-sound means of paint and coatings removal is a problem spanning many government, commercial, industrial and municipal applications. For example, the Department of Energy is currently engaged in removing paint and other coatings from concrete and structural steel as part of decommissioning former nuclear processing facilities. Laser-based coatings removal is an attractive new technology for these applications as it promises to reduce the waste volume by up to 75 percent. To function more efficiently, however, the laser-based systems require some form of process control.

  14. Dimensional control and check of field machining parts for reactor internals installation

    International Nuclear Information System (INIS)

    Zhang Caifang

    2010-01-01

    Some key issues of dimensional control for reactor internals installation are analyzed, and important technical requirements of crucial quality control elements on the measurement, machining, and checking of reactor internals filed machining parts are discussed. Moreover, provisions on quality control and risk prevention of reactor internals filed machining parts are presented in this paper. (author)

  15. Improvement of Zinc Coating Weight Control for Transition of Target Change

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chien Ming; Lin, Jeong Hwa; Hsu, Tse Wei; Lin, Rui Rong [China Steel Corporation, Kaohsiung (China)

    2010-06-15

    The product specification of the Continuous Hot Dip Galvanizing Line (CGL) changes and varies constantly with different customers' requirements, especially in the zinc coating weight which is from 30 to 150 g/m{sup 2} on each side. Since the coating weight of zinc changes often, it is very important to reduce time spent in the transfer of target values changed for low production cost and yield loss. The No.2 CGL in China Steel Corporation (CSC) has improved the control of the air knife which is designed by Siemens VAI. CSC proposed an experiment design which is an L{sub 9}(3{sup 4}) orthogonal array to find the relations between zinc coating weight and the process parameters, such as the line speed, air pressure, gap of air knife and air knife position. A non-linear regression formula was derived from the experimental results and applied in the mathematical model. A new air knife feedforward control system, which is coupled with the regression formula, the air knife control system and the process computer, is implemented into the line. The practical plant operation results have been presented to show the transfer time is obviously shortened while zinc coating weight target changing and the product rejected ratio caused by zinc coating weight out of specification is significantly reduced from 0.5% to 0.15%.

  16. Effect of lithium PFC coatings on NSTX density control

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Bell, R.; Bush, C.; Gates, D.; Gray, T.; Kaita, R.; Leblanc, B.; Maingi, R.; Majeski, R.; Mansfield, D.; Mueller, D.; Paul, S.; Raman, R.; Roquemore, A.L.; Sabbagh, S.; Skinner, C.H.; Soukhanovskii, V.; Stevenson, T.; Zakharov, L.

    2007-01-01

    Lithium coatings on the graphite plasma facing components (PFCs) in NSTX are being investigated as a tool for density profile control and reducing the recycling of hydrogen isotopes. Repeated lithium pellet injection into Center Stack Limited and Lower Single Null ohmic helium discharges were used to coat graphite surfaces that had been pre-conditioned with ohmic helium discharges of the same shape to reduce their contribution to hydrogen isotope recycling. The following deuterium NBI reference discharges exhibited a reduction in density by a factor of about 3 for limited and 2 for diverted plasmas, respectively, and peaked density profiles. Recently, a lithium evaporator has been used to apply thin coatings on conditioned and unconditioned PFCs. Effects on the plasma density and the impurities were obtained by pre-conditioning the PFCs with ohmic helium discharges, and performing the first deuterium NBI discharge as soon as possible after applying the lithium coating

  17. The effect of cleanliness control during installation work on the amount of accumulated dust in ducts of new HVAC installations.

    Science.gov (United States)

    Holopainen, R; Tuomainen, M; Asikainen, V; Pasanen, P; Säteri, J; Seppänen, O

    2002-09-01

    The aim of this study was to evaluate the amount of dust in supply air ducts in recently installed ventilation systems. The samples for the determination of dust accumulation were collected from supply air ducts in 18 new buildings that have been constructed according to two different cleanliness control levels classified as category P1 (low oil residues and protected against contaminations) and category P2, as defined in the Classification of Indoor Climate, Construction and Building Materials. In the ducts installed according to the requirements of cleanliness category P1 the mean amount of accumulated dust was 0.9 g/m2 (0.4-2.9 g/m2), and in the ducts installed according to the cleanliness category P2 it was 2.3 g/m2 (1.2-4.9 g/m2). A significant difference was found in the mean amounts of dust between ducts of categories P1 and P2 (P < 0.008). The cleanliness control procedure in category P1 proved to be a useful and effective tool for preventing dust accumulation in new air ducts during the construction process. Additionally, the ducts without residual oil had lower amounts of accumulated dust indicating that the demand for oil free components in the cleanliness classification is reasonable.

  18. 14 CFR Appendix I to Part 25 - Installation of an Automatic Takeoff Thrust Control System (ATTCS)

    Science.gov (United States)

    2010-01-01

    ... Appendix I to Part 25—Installation of an Automatic Takeoff Thrust Control System (ATTCS) I25.1General. (a... crew to increase thrust or power. I25.2Definitions. (a) Automatic Takeoff Thrust Control System (ATTCS... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Installation of an Automatic Takeoff Thrust...

  19. A new process control strategy for aqueous film coating of pellets in fluidised bed

    DEFF Research Database (Denmark)

    Larsen, C.C.; Sonnergaard, Jørn; Bertelsen, Pernille Scholdan

    2003-01-01

    The parameters with effect on maximum spray rate and maximum relative outlet air humidity when coating pellets in a fluidised bed were investigated. The tested variables include type of water based modified release film coating (Eudragit® NE 30D, Eudragit® RS 30D, Aquacoat ECD®) coating principle...... (top spray, bottom spray), inlet air humidity and type of pellets (sugar spheres, microcrystalline cellulose pellets). The maximum spray rate was not influenced by the coating principles. The highest spray rate was obtained for the film polymer with the lowest tackiness which is assumed...... to be the controlling factor. The type of pellets affected the maximum spray rate. A thermodynamic model for the coating process is employed throughout the process and not just during steady state. The thermodynamic model is incorporated into a new process control strategy. The process control strategy is based on in...

  20. Biocatalytic coatings for air pollution control: a proof of concept study on VOC biodegradation.

    Science.gov (United States)

    Estrada, José M; Bernal, Oscar I; Flickinger, Michael C; Muñoz, Raúl; Deshusses, Marc A

    2015-02-01

    Although biofilm-based biotechnologies exhibit a large potential as solutions for off-gas treatment, the high water content of biofilms often causes pollutant mass transfer limitations, which ultimately limit their widespread application. The present study reports on the proof of concept of the applicability of bioactive latex coatings for air pollution control. Toluene vapors served as a model volatile organic compound (VOC). The results showed that Pseudomonas putida F1 cells could be successfully entrapped in nanoporous latex coatings while preserving their toluene degradation activity. Bioactive latex coatings exhibited toluene specific biodegradation rates 10 times higher than agarose-based biofilms, because the thin coatings were less subject to diffusional mass transfer limitations. Drying and pollutant starvation were identified as key factors inducing a gradual deterioration of the biodegradation capacity in these innovative coatings. This study constitutes the first application of bioactive latex coatings for VOC abatement. These coatings could become promising means for air pollution control. © 2014 Wiley Periodicals, Inc.

  1. Solution Coating of Pharmaceutical Nanothin Films and Multilayer Nanocomposites with Controlled Morphology and Polymorphism.

    Science.gov (United States)

    Horstman, Elizabeth M; Kafle, Prapti; Zhang, Fengjiao; Zhang, Yifu; Kenis, Paul J A; Diao, Ying

    2018-03-28

    Nanosizing is rapidly emerging as an alternative approach to enhance solubility and thus the bioavailability of poorly aqueous soluble active pharmaceutical ingredients (APIs). Although numerous techniques have been developed to perform nanosizing of API crystals, precise control and modulation of their size in an energy and material efficient manner remains challenging. In this study, we present meniscus-guided solution coating as a new technique to produce pharmaceutical thin films of nanoscale thickness with controlled morphology. We demonstrate control of aspirin film thickness over more than 2 orders of magnitude, from 30 nm to 1.5 μm. By varying simple process parameters such as the coating speed and the solution concentration, the aspirin film morphology can also be modulated by accessing different coating regimes, namely the evaporation regime and the Landau-Levich regime. Using ellipticine-a poorly water-soluble anticancer drug-as another model compound, we discovered a new polymorph kinetically trapped during solution coating. Furthermore, the polymorphic outcome can be controlled by varying coating conditions. We further performed layer-by-layer coating of multilayer nanocomposites, with alternating thin films of ellipticine and a biocompatible polymer, which demonstrate the potential of additive manufacturing of multidrug-personalized dosage forms using this approach.

  2. Beryllium coating on Inconel tiles

    International Nuclear Information System (INIS)

    Bailescu, V.; Burcea, G.; Lungu, C.P.; Mustata, I.; Lungu, A.M.; Rubel, M.; Coad, J.P.; Matthews, G.; Pedrick, L.; Handley, R.

    2007-01-01

    Full text of publication follows: The Joint European Torus (JET) is a large experimental nuclear fusion device. Its aim is to confine and study the behaviour of plasma in conditions and dimensions approaching those required for a fusion reactor. The plasma is created in the toroidal shaped vacuum vessel of the machine in which it is confined by magnetic fields. In preparation for ITER a new ITER-like Wall (ILW) will be installed on Joint European Torus (JET), a wall not having any carbon facing the plasma [1]. In places Inconel tiles are to be installed, these tiles shall be coated with Beryllium. MEdC represented by the National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest and in direct cooperation with Nuclear Fuel Plant Pitesti started to coat Inconel tiles with 8 μm of Beryllium in accordance with the requirements of technical specification and fit for installation in the JET machine. This contribution provides an overview of the principles of manufacturing processes using thermal evaporation method in vacuum and the properties of the prepared coatings. The optimization of the manufacturing process (layer thickness, structure and purity) has been carried out on Inconel substrates (polished and sand blasted) The results of the optimization process and analysis (SEM, TEM, XRD, Auger, RBS, AFM) of the coatings will be presented. Reference [1] Takeshi Hirai, H. Maier, M. Rubel, Ph. Mertens, R. Neu, O. Neubauer, E. Gauthier, J. Likonen, C. Lungu, G. Maddaluno, G. F. Matthews, R. Mitteau, G. Piazza, V. Philipps, B. Riccardi, C. Ruset, I. Uytdenhouwen, R and D on full tungsten divertor and beryllium wall for JET TIER-like Wall Project, 24. Symposium on Fusion Technology - 11-15 September 2006 -Warsaw, Poland. (authors)

  3. Model-Based Control of a Continuous Coating Line for Proton Exchange Membrane Fuel Cell Electrode Assembly

    Directory of Open Access Journals (Sweden)

    Vikram Devaraj

    2015-01-01

    Full Text Available The most expensive component of a fuel cell is the membrane electrode assembly (MEA, which consists of an ionomer membrane coated with catalyst material. Best-performing MEAs are currently fabricated by depositing and drying liquid catalyst ink on the membrane; however, this process is limited to individual preparation by hand due to the membrane’s rapid water absorption that leads to shape deformation and coating defects. A continuous coating line can reduce the cost and time needed to fabricate the MEA, incentivizing the commercialization and widespread adoption of fuel cells. A pilot-scale membrane coating line was designed for such a task and is described in this paper. Accurate process control is necessary to prevent manufacturing defects from occurring in the coating line. A linear-quadratic-Gaussian (LQG controller was developed based on a physics-based model of the coating process to optimally control the temperature and humidity of the drying zones. The process controller was implemented in the pilot-scale coating line proving effective in preventing defects.

  4. Regionally differentiated air pollution control regulations in the installation-related emission control law of the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Buettner, T.W.

    1992-01-01

    The volume treats an issue from the boundary zone between environmental law and environmental economics, namely the regionalization of air pollution control standards in installation-related emission control law. In order to examine the question of whether this proposal, which originates in the field of environmental economics, can be adopted and is purposeful, the author initially performs a complete inventorization of applicable norms, this covering emission control law, the law of regional planning, and the provisions of international law. This status quo is then reviewed using conformity and optimization criteria developed by the political sciences. The assessment comes to the conclusion that the introduction of regionally differentiated air pollution control standards is not desirable. The author further submits proposals for the streamlining of the law of installation-related air pollution control in the Federal Republic of Germany. (orig.) [de

  5. Plasma effects on the passive external thermal control coating of Space Station Freedom

    Science.gov (United States)

    Carruth, Ralph, Jr.; Vaughn, Jason A.; Holt, James M.; Werp, Richard; Sudduth, Richard D.

    1992-01-01

    The current baseline chromic acid anodized thermal control coating on 6061-T6 aluminum meteoroid debris (M/D) shields for SSF has been evaluated. The degradation of the solar absorptance, alpha, and the thermal emittance, epsilon, of chromic acid anodized aluminum due to dielectric breakdown in plasma was measured to predict the on-orbit lifetime of the SSF M/D shields. The lifetime of the thermal control coating was based on the surface temperatures achieved with degradation of the thermal control properties, alpha and epsilon. The temperatures of each M/D shield from first element launch (FEL) through FEL+15 years were analyzed. It is shown that the baseline thermal control coating cannot withstand the -140 V potential between the conductive structure of the SSF and the current plasma environment.

  6. Quality control of thermal spray coatings in diesel engines; Qualitaetskontrolle an thermisch gespritzten Beschichtungen in Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Carstensen, Jesper Vejloe [MAN Diesel and Turbo, Copenhagen (Denmark). Material Technology and Research Dept.; Lindegren, Maria [Struers A/S, Ballerup (Denmark). Application Dept.

    2013-06-01

    Thermal spraying is a method, which is suitable for coating of large components. The coatings can e.g. improve the wear, friction and/or corrosion properties of components so that they can withstand the increased loads. The quality of the coatings is essential to ensure reliable operation of the components. However, quality control of thermally sprayed coatings is indeed nontrivial and sample preparation is a key issue. This paper shows examples of thermal spray coated components in large diesel engines and provides insight into the methods used in preparing samples for quality control. (orig.)

  7. Instrumental color control for metallic coatings

    Science.gov (United States)

    Chou, W.; Han, Bing; Cui, Guihua; Rigg, Bryan; Luo, Ming R.

    2002-06-01

    This paper describes work investigating a suitable color quality control method for metallic coatings. A set of psychological experiments was carried out based upon 50 pairs of samples. The results were used to test the performance of various color difference formulae. Different techniques were developed by optimising the weights and/or the lightness parametric factors of colour differences calculated from the four measuring angles. The results show that the new techniques give a significant improvement compared to conventional techniques.

  8. Controlling the radiative properties of cool black-color coatings pigmented with CuO submicron particles

    International Nuclear Information System (INIS)

    Gonome, Hiroki; Baneshi, Mehdi; Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao

    2014-01-01

    The objective of this study was to design a pigmented coating with dark appearance that maintains a low temperature while exposed to sunlight. The radiative properties of a black-color coating pigmented with copper oxide (CuO) submicron particles are described. In the present work, the spectral behavior of the CuO-pigmented coating was calculated. The radiative properties of CuO particles were evaluated, and the radiative transfer in the pigmented coating was modeled using the radiation element method by ray emission model (REM 2 ). The coating is made using optimized particles. The reflectivity is measured by spectroscopy and an integrating sphere in the visible (VIS) and near infrared (NIR) regions. By using CuO particles controlled in size, we were able to design a black-color coating with high reflectance in the NIR region. The coating substrate also plays an important role in controlling the reflectance. The NIR reflectance of the coating on a standard white substrate with appropriate coating thickness and volume fraction was much higher than that on a standard black substrate. From the comparison between the experimental and calculated results, we know that more accurate particle size control enables us to achieve better performance. The use of appropriate particles with optimum size, coating thickness and volume fraction on a suitable substrate enables cool and black-color coating against solar irradiation. -- Highlights: • A new approach in designing pigmented coatings was used. • The effects of particles size on both visible and near infrared reflectivities were studied. • The results of numerical calculation were compared with experimental ones for CuO powders

  9. 49 CFR 195.559 - What coating material may I use for external corrosion control?

    Science.gov (United States)

    2010-10-01

    ...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating... 49 Transportation 3 2010-10-01 2010-10-01 false What coating material may I use for external corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...

  10. High temperature glass thermal control structure and coating. [for application to spacecraft reusable heat shielding

    Science.gov (United States)

    Stewart, D. A.; Goldstein, H. E.; Leiser, D. B. (Inventor)

    1983-01-01

    A high temperature stable and solar radiation stable thermal control coating is described which is useful either as such, applied directly to a member to be protected, or applied as a coating on a re-usable surface insulation (RSI). It has a base coat layer and an overlay glass layer. The base coat layer has a high emittance, and the overlay layer is formed from discrete, but sintered together glass particles to give the overlay layer a high scattering coefficient. The resulting two-layer space and thermal control coating has an absorptivity-to-emissivity ratio of less than or equal to 0.4 at room temperature, with an emittance of 0.8 at 1200 F. It is capable of exposure to either solar radiation or temperatures as high as 2000 F without significant degradation. When used as a coating on a silica substrate to give an RSI structure, the coatings of this invention show significantly less reduction in emittance after long term convective heating and less residual strain than prior art coatings for RSI structures.

  11. Wear-resistance investigation of electro-screen coatings obtained using electroerosive powders of micro and nanofractions

    Science.gov (United States)

    Ageev, E. V.; Altukhov, A. Yu; Malneva, Yu V.; Novikov, A. N.

    2018-03-01

    The results of the wear resistance investigation of electro sparking coatings, applied using electrode material from electroerosive powders of hard alloy VK-8 (90%) with the addition of powder of high-speed steel of grade R6M5 (10%), are presented. Electro spark coatings were formed on samples of 30KhGSA steel using these electrodes and installation UR-121. The coefficient of friction and the wear rate of the surface of the sample and counterbody were measured on an automated friction machine “Tribometer” (CSM Instruments, Switzerland), controlled by a computer, according to the standard “ball-disk” test scheme.

  12. Fixation of the stressed state of glass plates by coating them with thin films using a plasma focus installation

    Science.gov (United States)

    Kolokoltsev, V. N.; Degtiarev, V. F.; Borovitskaya, I. V.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Eriskin, A. A.

    2018-01-01

    Elastic deformation in transparent mediums is usually studied by the photoelasticity method. For opaque mediums the method of film coating and strain gauge method are used. After the external load was removed, the interference pattern corresponding to elastic deformation of the material disappears. It is found that the elastic deformation state of the thin glass plate under the action of concentrated load can be fixed during the deposition of a thin metal film. Deposition of thin copper films was carried out by passing of plasma through the copper tube installed inside the Plasma Focus installation. After removing of the load, interference pattern on the glass plates was observed in the form of Newton’s rings and isogers in non-monochromatic light on the CCD scanners which uses uorescent lamps with cold cathode. It is supposed that the copper film fixes the relief of the surface of the glass plate at the time of deformation and saves it when the load is removed. In the case of a concentrated load, this relief has the shape of a thin lens of large radius. For this reason, the interference of coherent light rays in a thin air gap between the glass of the scanners atbed and the lens surface has the shape of Newton's rings. In this case, when scanning the back side of the plate, isogyres are observed. The presented method can be used in the analysis of the mechanical stress in a various optical elements.

  13. Some mathematical aspects of creation of the control system for a physical installation

    International Nuclear Information System (INIS)

    Efimov, K.M.; Efimova, T.E.; Zagurskij, A.B.

    1988-01-01

    The article presented is a result of investigations connected to the problems of the software creation for the linear accelerator automatic control system. The problems considered arise before each scientific group engaged in the development of the automatic control complex for a physical installation. The possible ways of solving such problems are discussed

  14. On niobium sputter coated cavities

    International Nuclear Information System (INIS)

    Arnolds-Mayer, G.; Kaufmann, U.; Downar, H.

    1988-01-01

    To coat copper cavities with a thin film of niobium, facilities for electropolishing and sputter deposition have been installed at Dornier. Experiments have been performed on samples to optimize electropolishing and deposition parameters. In this paper, characteristics concerning surface properties, adhesion of the niobium film to the copper substrate, and film properties were studied on planar samples. A 1.5 GHz single cell cavity made from oxygen free high conductivity (OFHC) copper was sputter coated twice. First rf measurements were performed in the temperature range from 300 K to 2 K

  15. Lignin based controlled release coatings

    NARCIS (Netherlands)

    Mulder, W.J.; Gosselink, R.J.A.; Vingerhoeds, M.H.; Harmsen, P.F.H.; Eastham, D.

    2011-01-01

    Urea is a commonly used fertilizer. Due to its high water-solubility, misuse easily leads to excess nitrogen levels in the soil. The aim of this research was to develop an economically feasible and biodegradable slow-release coating for urea. For this purpose, lignin was selected as coating

  16. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous microstructures and osteoblastic cell responses

    International Nuclear Information System (INIS)

    Huang Yi; Song Lei; Liu Xiaoguang; Xiao Yanfeng; Wu Yao; Chen Jiyong; Wu Fang; Gu Zhongwei

    2010-01-01

    Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 μm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.

  17. Coatings and floor covers for nuclear applications

    International Nuclear Information System (INIS)

    Kunze, S.

    1998-01-01

    To prevent damage to, or even the destruction of, components of very sensitive electrical equipment in rooms in which unsealed radioactive emitters are handled, floors must be antistatic and capable of being decontaminated. Conductive additives to the cover compounds achieve the desired leakage resistance of 5.10 4 to 10 6 Ω. Investigations have shown the decontamination capability of all floor covers and coatings to be excellent in most cases, and good in a few cases. Except for one coating, the coatings examined after radiation exposure also meet the requirements applying to nuclear installations. (orig.) [de

  18. Underwater Coatings for Contamination Control

    International Nuclear Information System (INIS)

    Julia L. Tripp; Kip Archibald; Ann-Marie Phillips; Joseph Campbell

    2004-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is deactivating several fuel storage basins. Airborne contamination is a concern when the sides of the basins are exposed and allowed to dry during water removal. One way of controlling this airborne contamination is to fix the contamination in place while the pool walls are still submerged. There are many underwater coatings available on the market that are used in marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives are easily applied and adhere well to the substrates (pool wall materials) found in INEEL fuel pools. The four pools considered included (1) Test Area North (TAN-607) with epoxy painted concrete walls; (2) Idaho Nuclear Technology and Engineering Center (INTEC) (CPP-603) with bare concrete walls; (3) Materials Test Reactor (MTR) Canal with stainless steel lined concrete walls; and (4) Power Burst Facility (PBF-620) with stainless steel lined concrete walls on the bottom and epoxy painted carbon steel lined walls on the upper portions. Therefore, the four materials chosen for testing included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The typical water temperature of the pools varies from 55 F to 80 F dependent on the pool and the season. These tests were done at room temperature. The following criteria were used during this evaluation. The underwater coating must: (1) Be easy to apply; (2) Adhere well to the four surfaces of interest; (3) Not change or have a negative impact on water chemistry or clarity; (4) Not be hazardous in final applied form; and (5) Be proven in other underwater applications. In addition, it is desirable for the coating to have a high pigment or high cross-link density to prevent radiation from penetrating. This paper will detail the testing completed and the test results. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates

  19. The performance of thermal control coatings on LDEF and implications to future spacecraft

    Science.gov (United States)

    Wilkes, Donald R.; Miller, Edgar R.; Mell, Richard J.; Lemaster, Paul S.; Zwiener, James M.

    1993-01-01

    The stability of thermal control coatings over the lifetime of a satellite or space platform is crucial to the success of the mission. With the increasing size, complexity, and duration of future missions, the stability of these materials becomes even more important. The Long Duration Exposure Facility (LDEF) offered an excellent testbed to study the stability and interaction of thermal control coatings in the low-Earth orbit (LEO) space environment. Several experiments on LDEF exposed thermal control coatings to the space environment. This paper provides an overview of the different materials flown and their stability during the extended LDEF mission. The exposure conditions, exposure environment, and measurements of materials properties (both in-space and postflight) are described. The relevance of the results and the implications to the design and operation of future space vehicles are also discussed.

  20. Design and Performance of Property Gradient Ternary Nitride Coating Based on Process Control.

    Science.gov (United States)

    Yan, Pei; Chen, Kaijie; Wang, Yubin; Zhou, Han; Peng, Zeyu; Jiao, Li; Wang, Xibin

    2018-05-09

    Surface coating is an effective approach to improve cutting tool performance, and multiple or gradient coating structures have become a common development strategy. However, composition mutations at the interfaces decrease the performance of multi-layered coatings. The key mitigation technique has been to reduce the interface effect at the boundaries. This study proposes a structure design method for property-component gradient coatings based on process control. The method produces coatings with high internal cohesion and high external hardness, which could reduce the composition and performance mutations at the interface. A ZrTiN property gradient ternary nitride coating was deposited on cemented carbide by multi-arc ion plating with separated Ti and Zr targets. The mechanical properties, friction behaviors, and cutting performances were systematically investigated, compared with a single-layer coating. The results indicated that the gradient coating had better friction and wear performance with lower wear rate and higher resistance to peeling off during sliding friction. The gradient coating had better wear and damage resistance in cutting processes, with lower machined surface roughness Ra. Gradient-structured coatings could effectively inhibit micro crack initiation and growth under alternating force and temperature load. This method could be extended to similar ternary nitride coatings.

  1. Electrically conductive, black thermal control coatings for spacecraft applications. III - Plasma-deposited ceramic matrix

    Science.gov (United States)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1987-01-01

    Five black, electrically-conductive thermal control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consist of both organic and inorganic systems applied on titanium, aluminum, and glass/epoxy composite surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation, convective and combustive heating, and cryogenic conditions over a temperature range between -196 C and 538 C. Mechanical, physical, thermal, electrical, and thermooptical properties are presented for one of these coatings. This paper describes the preparation, characteristics, and spraying of iron titanate on titanium and aluminum, and presents performance results.

  2. 30 CFR 57.4504 - Fan installations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fan installations. 57.4504 Section 57.4504... Control Installation/construction/maintenance § 57.4504 Fan installations. (a) Fan houses, fan bulkheads... of combustible materials, except installed wiring, ground and track support, headframes, and direct...

  3. Drag resistance of ship hulls: Effects of surface roughness of newly applied fouling control coatings, coating water absorption, and welding seams

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, Stefan Møller; Andrés, Eduardo

    2018-01-01

    selected, that a so-called fouling release (FR) coating caused approximately 5.6 % less skin friction (torque) over time than traditional biocide-based antifouling (AF) coatings at a tangential speed of 12 knots. Furthermore, results of immersion experiments and supporting “standard” water absorption......Fouling control coatings (FCCs) and irregularities (e.g. welding seams) on ship hull surfaces have significant effects on the overall drag performance of ships. In this work, skin frictions of four newly applied FCCs were compared using a pilot-scale rotary setup. Particular attention was given...

  4. Installation for producing sealed radioactive sources; Installation de fabrication de sources radioactives scellees

    Energy Technology Data Exchange (ETDEWEB)

    Fradin, J; Hayoun, C [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    This installation has been designed and built for producing sealed sources of fission elements: caesium 137, strontium 90, promethium 147, ruthenium 106 and cerium 144 in particular. The installation consists of sealed and protected cells, each being assigned to a particular production. The safety and the operational reliability of the equipment are the principal considerations which have governed this work. The report describes the installation and, in particular, the apparatus used as well as the various control devices. In conclusion, a review as presented of six years operation. (authors) [French] Cette installation a ete concue et realisee pour effectuer des fabrications de sources scellees d'elements de fission: caesium 137 - strontium 90 - promethium 147 - ruthenium 106 - cerium 144 en particulier. L'installation est composee de cellules etanches et protegees, chacune d'elles etant affectee a une fabrication particuliere. La securite et la surete de fonctionnement de l'ensemble sont parmi les elements principaux qui ont guide l'etude. Le rapport decrit l'installation et plus particulierement l'appareillage utilise ainsi que les divers controles et commandes. Le bilan de fonctionnement apres 6 ans d'exploitation sert de conclusion. (auteurs)

  5. Installation for producing sealed radioactive sources; Installation de fabrication de sources radioactives scellees

    Energy Technology Data Exchange (ETDEWEB)

    Fradin, J.; Hayoun, C. [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    This installation has been designed and built for producing sealed sources of fission elements: caesium 137, strontium 90, promethium 147, ruthenium 106 and cerium 144 in particular. The installation consists of sealed and protected cells, each being assigned to a particular production. The safety and the operational reliability of the equipment are the principal considerations which have governed this work. The report describes the installation and, in particular, the apparatus used as well as the various control devices. In conclusion, a review as presented of six years operation. (authors) [French] Cette installation a ete concue et realisee pour effectuer des fabrications de sources scellees d'elements de fission: caesium 137 - strontium 90 - promethium 147 - ruthenium 106 - cerium 144 en particulier. L'installation est composee de cellules etanches et protegees, chacune d'elles etant affectee a une fabrication particuliere. La securite et la surete de fonctionnement de l'ensemble sont parmi les elements principaux qui ont guide l'etude. Le rapport decrit l'installation et plus particulierement l'appareillage utilise ainsi que les divers controles et commandes. Le bilan de fonctionnement apres 6 ans d'exploitation sert de conclusion. (auteurs)

  6. Studies on black anodic coatings for spacecraft thermal control applications

    Energy Technology Data Exchange (ETDEWEB)

    Uma Rani, R.; Subba Rao, Y.; Sharma, A.K. [ISRO Satellite Centre, Bangalore (India). Thermal Systems Group

    2011-10-15

    An inorganic black colouring process using nickel sulphate and sodium sulphide was investigated on anodized aluminium alloy 6061 to provide a flat absorber black coating for spacecraft thermal control applications. Influence of colouring process parameters (concentration, pH) on the physico-optical properties of black anodic film was investigated. The nature of black anodic film was evaluated by the measurement of film thickness, micro hardness and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy studies confirmed the presence of nickel and sulphur in the black anodic coating. Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion resistance of the coating. The environmental tests, namely, humidity, corrosion resistance, thermal cycling and thermo vacuum performance tests were used to evaluate the space worthiness of the coating. Optical properties of the film were measured before and after each environmental test to ascertain its stability in harsh space environment. The black anodic films provide higher thermal emittance ({proportional_to} 0.90) and solar absorptance ({proportional_to} 0.96) and their high stability during the environmental tests indicated their suitability for space and allied applications. (orig.)

  7. Charged-particle coating

    International Nuclear Information System (INIS)

    Johnson, W.L.; Crane, J.K.; Hendricks, C.D.

    1980-01-01

    Advanced target designs require thicker (approx. 300 μm) coatings and better surface finishes that can be produced with current coating techniques. An advanced coating technique is proposed to provide maximum control of the coating flux and optimum manipulation of the shell during processing. In this scheme a small beam of ions or particles of known incident energy are collided with a levitated spherical mandrel. Precise control of the incident energy and angle of the deposition flux optimizes the control of the coating morphology while controlled rotation and noncontact support of the shell minimizes the possibility of particulate or damage generated defects. Almost infinite variability of the incident energy and material in this process provides increased flexibility of the target designs which can be physically realized

  8. Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering

    International Nuclear Information System (INIS)

    Chen, J.T.; Wang, J.; Zhang, F.; Zhang, G.A.; Fan, X.Y.; Wu, Z.G.; Yan, P.X.

    2009-01-01

    Titanium aluminum nitride (TiAlN) ternary coating is a potential material which is expected to be applied on satellite for thermal controlling. In order to investigate thermal controlling property, TiAlN coatings were deposited on Si wafers with different N 2 and Ar flux ratio by reactive magnetron co-sputtering. The structure, morphology, chemical composition and optical reflectance are investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), atom force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and spectrophotometer, respectively. The orientation of the coatings depends on the N 2 /Ar flux ratio. The coatings deposited with N 2 /Ar ratio of 10, 30 and 60% show the cubic-TiN [2 2 0] preferred orientation and the coating deposited with N 2 /Ar ratio of 100% exhibits the phase of hexagonal-AlN and cubic-TiN. The surface of the coatings becomes more compact and smoother with the N 2 /Ar ratios increase. XPS spectrum indicates that the oxides (TiO 2 and Al 2 O 3 ), oxynitride (TiN x O y ) and nitrides (TiN and AlN x ) appear at the surface of the coatings. Ignoring internal power, the optimum equilibrium temperature of TiAlN coatings is 18 deg. C and the equilibrium temperature after heat-treated has slight change, which provides the prospective application on thermal controlling

  9. Quality control of coated fuel particles for high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Kaneko, Mitsunobu

    1987-01-01

    The quality control of the coated fuel particles for high temperature gas-cooled reactors is characterized by the fact that the size of the target product to be controlled is very small, and the quantity is very large. Accordingly, the sampling plan and the method of evaluating the population through satisfically treating the measured data of the samples are the important subjects to see and evaluate the quality of a batch or a lot. This paper shows the fabrication process and the quality control procedure for the coated fuel particles. The development work of a HTGR was started by Japan Atomic Energy Research Institute in 1969, and as for the production technology for coated fuel particles, Nuclear Fuel Industries, Ltd. has continued the development work. The pilot plan with the capacity of about 40 kg/year was established in 1972. The fuel product fabricated in this plant was put to the irradiation experiment and out-of-pile evaluation test. In 1983, the production capacity was expanded to 200 kg/year, and the fuel compacts for the VHTRC in JAERI were produced for two years. The basic fuel design, the fabrication process, the quality control, the process control and the quality assurance are reported. For the commercial product, the studies from the viewpoint of production and quality control costs are required. (Kako, I.)

  10. Electron Cloud in Steel Beam Pipe vs Titanium Nitride Coated and Amorphous Carbon Coated Beam Pipes in Fermilab's Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Backfish, Michael

    2013-04-01

    This paper documents the use of four retarding field analyzers (RFAs) to measure electron cloud signals created in Fermilab’s Main Injector during 120 GeV operations. The first data set was taken from September 11, 2009 to July 4, 2010. This data set is used to compare two different types of beam pipe that were installed in the accelerator. Two RFAs were installed in a normal steel beam pipe like the rest of the Main Injector while another two were installed in a one meter section of beam pipe that was coated on the inside with titanium nitride (TiN). A second data run started on August 23, 2010 and ended on January 10, 2011 when Main Injector beam intensities were reduced thus eliminating the electron cloud. This second run uses the same RFA setup but the TiN coated beam pipe was replaced by a one meter section coated with amorphous carbon (aC). This section of beam pipe was provided by CERN in an effort to better understand how an aC coating will perform over time in an accelerator. The research consists of three basic parts: (a) continuously monitoring the conditioning of the three different types of beam pipe over both time and absorbed electrons (b) measurement of the characteristics of the surrounding magnetic fields in the Main Injector in order to better relate actual data observed in the Main Injector with that of simulations (c) measurement of the energy spectrum of the electron cloud signals using retarding field analyzers in all three types of beam pipe.

  11. Remote system for monitoring and control of controlled area of nuclear installation

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Daniel Gomes de; Minhoni, Danilo Carlos Rossetto [Departamento de Ciencias da Administracao e Tecnologia. Centro Universitario de Araraquara (UNIARA) Araraquara, SP (Brazil); Farias, Marcos Sant' anna de; Santos, Isaac J.A. Luquetti dos, E-mail: luquetti@ien.gov.br [Instituto Engenharia Nuclear (IEN/CNEN-RJ), Rio Janeiro, RJ (Brazil). Divisao de Instrumentacao e Confiabilidade Humana

    2011-07-01

    The maintenance activities in controlled areas of nuclear facilities require adequate planning and control so that these activities do not cause to the worker an undue exposure to radioactivity. For maximum safety of workers from these places, there are standards that determine the maximum radiation dose that a worker can receive. From this context, the objective of this research is to develop a remote system that shows remotely the maintenance tasks being carried out in this work environment; monitors information provided by radiation monitoring devices installed at workplace; tracks the time to carry out scheduled maintenance, reporting alarm if this time is exceeded or not. The system has video camera, radiation monitoring device, interface card to transmit data via ethernet and graphical user interface, developed using the LABVIEW application. The principal objective is to improve the safety and to preserve the worker's health. (author)

  12. Remote system for monitoring and control of controlled area of nuclear installation

    International Nuclear Information System (INIS)

    Assuncao, Daniel Gomes de; Minhoni, Danilo Carlos Rossetto; Farias, Marcos Sant'anna de; Santos, Isaac J.A. Luquetti dos

    2011-01-01

    The maintenance activities in controlled areas of nuclear facilities require adequate planning and control so that these activities do not cause to the worker an undue exposure to radioactivity. For maximum safety of workers from these places, there are standards that determine the maximum radiation dose that a worker can receive. From this context, the objective of this research is to develop a remote system that shows remotely the maintenance tasks being carried out in this work environment; monitors information provided by radiation monitoring devices installed at workplace; tracks the time to carry out scheduled maintenance, reporting alarm if this time is exceeded or not. The system has video camera, radiation monitoring device, interface card to transmit data via ethernet and graphical user interface, developed using the LABVIEW application. The principal objective is to improve the safety and to preserve the worker's health. (author)

  13. Investigation of phase-change coatings for variable thermal control of spacecraft

    Science.gov (United States)

    Kelliher, W. C.; Young, P. R.

    1972-01-01

    An investigation was conducted to determine the feasibility of producing a spacecraft coating system that could vary the ratio of its solar absorptance to thermal emittance to adjust automatically for changes in the thermal balance of a spacecraft. This study resulted in a new concept called the phase-change effect which uses the change that occurs in the optical properties of many materials during the phase transition from a crystalline solid to an amorphous material. A series of two-component model coatings was developed which, when placed on a highly reflecting substrate, exhibited a sharp decrease in solar absorptance within a narrow temperature range. A variable thermal control coating can have a significant amount of temperature regulation with the phase-change effect. Data are presented on several crystallite-polymer formulations, their physical and optical properties, and associated phase-change temperatures. Aspects pertaining to their use in a space environment and an example of the degree of thermal regulation attainable with these coatings is also given.

  14. Testing of beryllium marker coatings in PISCES-B for the JET ITER-like wall

    International Nuclear Information System (INIS)

    Widdowson, A.; Baldwin, M.J.; Coad, J.P.; Doerner, R.P.; Hanna, J.; Hole, D.E.; Matthews, G.F.; Rubel, M.; Seraydarian, R.; Xu, H.

    2009-01-01

    Beryllium has been chosen as the first wall material for ITER. In order to understand the issues of material migration and tritium retention associated with the use of beryllium, a largely beryllium first wall will be installed in JET. As part of the JET ITER-like wall, beryllium tiles with marker coatings are proposed as a diagnostic tool for studying the erosion and deposition of beryllium around the vessel. The nominal structure for these coatings is a ∼10 μm beryllium surface layer separated from the beryllium tile by a 2-3 μm metallic inter-layer. Two types of coatings are tested here; one with a nickel inter-layer and one with a copper/beryllium mixed inter-layer. The coating samples were deposited by DC magnetron sputtering at General Atomics and were exposed to deuterium plasma in PISCES-B. The results of this testing show that the beryllium/nickel marker coating would be suitable for installation in JET.

  15. Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.T. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, J. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); National Key Laboratory of Surface Engineering, Lanzhou Institute of Physics, Lanzhou 730000 (China); Zhang, F.; Zhang, G.A.; Fan, X.Y.; Wu, Z.G. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Yan, P.X. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute Chemical and Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: pxyan@lzu.edu.cn

    2009-03-20

    Titanium aluminum nitride (TiAlN) ternary coating is a potential material which is expected to be applied on satellite for thermal controlling. In order to investigate thermal controlling property, TiAlN coatings were deposited on Si wafers with different N{sub 2} and Ar flux ratio by reactive magnetron co-sputtering. The structure, morphology, chemical composition and optical reflectance are investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), atom force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and spectrophotometer, respectively. The orientation of the coatings depends on the N{sub 2}/Ar flux ratio. The coatings deposited with N{sub 2}/Ar ratio of 10, 30 and 60% show the cubic-TiN [2 2 0] preferred orientation and the coating deposited with N{sub 2}/Ar ratio of 100% exhibits the phase of hexagonal-AlN and cubic-TiN. The surface of the coatings becomes more compact and smoother with the N{sub 2}/Ar ratios increase. XPS spectrum indicates that the oxides (TiO{sub 2} and Al{sub 2}O{sub 3}), oxynitride (TiN{sub x}O{sub y}) and nitrides (TiN and AlN{sub x}) appear at the surface of the coatings. Ignoring internal power, the optimum equilibrium temperature of TiAlN coatings is 18 deg. C and the equilibrium temperature after heat-treated has slight change, which provides the prospective application on thermal controlling.

  16. Control over Coating Structure during Electromagnetic Welding and Application of HighSpeed Steel Powder

    Directory of Open Access Journals (Sweden)

    L. M. Kozhuro

    2004-01-01

    Full Text Available The paper considers peculiar features concerning coating formation in the process of electromagnetic welding of high-speed steel powder. The paper reveals how to control coating structure that ensures the required operational properties of working surfaces of machine parts. 

  17. Actual problems of ultrasonic control of welded anticorrosion coatings (ch. 1)

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Razygraev, N.P.; Runov, A.E.; Sobolev, Yu.A.; Kretov, E.F.; Tabakma, R.L.

    1988-01-01

    Results of investigations into heat treatment effect on the size of discontinuities revealed under ultrasonic control (USC) of welded anticorrosion coatings are presented. Comparison of dimensions of equivalent area of allowable and non-allowable reflector-discantinuities (defectiveness standards) in the alloying zone of melted anticorrosion coatings and bimetal sheet, applied in NPP equipment, is given. It is shown that USC on the side of basic metal monifest almost by an order more defects than USC on the side of melting surface

  18. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    Science.gov (United States)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  19. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.

    Science.gov (United States)

    Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang

    2017-09-15

    The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. LightLeaves: computer controlled kinetic reflection hologram installation and a brief discussion of earlier work

    International Nuclear Information System (INIS)

    Connors Chen, Betsy

    2013-01-01

    LightLeaves is an installation combining leaf shaped, white light reflection holograms of landscape images with a special kinetic lighting device that houses a lamp and moving leaf shaped masks. The masks are controlled by an Arduino microcontroller and servomotors that position the masks in front of the illumination source of the holograms. The work is the most recent in a long series of landscapes that combine multi-hologram installations with computer controlled devices that play with the motion of the holograms, the light, sound or other elements in the work. LightLeaves was first exhibited at the Peabody Essex Museum in Salem, Massachusetts in a show titled E ye Spy: Playing with Perception .

  1. LightLeaves: computer controlled kinetic reflection hologram installation and a brief discussion of earlier work

    Energy Technology Data Exchange (ETDEWEB)

    Connors Chen, Betsy, E-mail: acmeholo@gmail.com [ACME Holography, Somerville, Massachusetts USA 02144 (United States)

    2013-02-22

    LightLeaves is an installation combining leaf shaped, white light reflection holograms of landscape images with a special kinetic lighting device that houses a lamp and moving leaf shaped masks. The masks are controlled by an Arduino microcontroller and servomotors that position the masks in front of the illumination source of the holograms. The work is the most recent in a long series of landscapes that combine multi-hologram installations with computer controlled devices that play with the motion of the holograms, the light, sound or other elements in the work. LightLeaves was first exhibited at the Peabody Essex Museum in Salem, Massachusetts in a show titled {sup E}ye Spy: Playing with Perception{sup .}.

  2. Simulation of closed loop controlled boost converter for solar installation

    Directory of Open Access Journals (Sweden)

    Kalirasu Athimulam

    2010-01-01

    Full Text Available With the shortage of the energy and ever increasing of the oil price, research on the renewable and green energy sources, especially the solar arrays and the fuel cells, becomes more and more important. How to achieve high stepup and high efficiency DC/DC converters is the major consideration in the renewable power applications due to the low voltage of PV arrays and fuel cells. In this paper digital simulation of closed loop controlled boost converter for solar installation is presented. Circuit models for open loop and closed loop controlled systems are developed using the blocks of simulink. The simulation results are compared with the theoretical results. This converter has advantages like improved power factor, fast response and reduced hardware. .

  3. Influence of powder and spray parameters on erosion and corrosion properties of HVOF sprayed WC-Co-Cr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Berget, John

    1998-07-01

    Thermal spraying is a generic term including various processes used to deposit coatings on surfaces. The coating material is in the form of powder or a wire and is melted or softened by means of a heat source. A gas stream accelerates the material towards a prepared surface and deposits it there to form the coating. Examples of components being maintained by application of thermal spray coatings are gate valves and ball valves for the offshore industry and turbine blades in power generations installations. Recent investigation has shown that the commonly used coating material WC-Co is not corrosion resistant. But it can be improved by the addition of Cr. The main objective of this thesis is to study the influence of spray process control variables and powder characteristics on the erosion and erosion-corrosion properties of the coatings. Spray process variables investigated include energy input, powder feed rate and spray distance. Powder characteristics studied are average size of the WC particles, relative proportions of Co and Cr in the metal phase and powder grain size distribution.

  4. Thermal performance of a double pane window with a solar control coating for warm climate of Mexico

    International Nuclear Information System (INIS)

    Xamán, J.; Jiménez-Xamán, C.; Álvarez, G.; Zavala-Guillén, I.; Hernández-Pérez, I.; Aguilar, J.O.

    2016-01-01

    Highlights: • Pseudo-transient thermal performance of a double pane window (DPW) was determined. • The DPW was analyzed each 5 s by a period from 8:00 to 18:00 h. • 57,600 computational runs were necessary and the additive correction multigrid was implemented. • Solar control coating (SCC) in a DPW reduces 1073.79 W/m 2 with respect to the DPW without SCC. • SCC is highly recommended in a DPW because it reduces a 53.88% of the amount of energy gained. - Abstract: The pseudo-transient thermal performance (each 5 s) of a double pane window without and with a solar control coating was determined numerically. The study considers warm climatic conditions (Mexico) and a period from 8:00 to 18:00 h. The effect of varying the indoor air temperature (15–30 °C); and the incident solar radiation and the outdoor air temperature as functions of time is analyzed. The simulations were done with a self-developed ForTran program and it was verified with results from the literature. To obtain the results, 57,600 computational runs were necessary. From the results, the double pane window with a solar control coating allows a smaller heat flux to enter into a room than the corresponding without a solar control coating. The solar control coating in double glass window reduces the amount of 1073.79 W h/m 2 with respect to the case without a solar control coating, which represents a reduction of 53.88% of the heat gain.

  5. Sizewell 'B' cable installation

    International Nuclear Information System (INIS)

    Gemmell, D.R.

    1992-01-01

    N G Bailey and Co. Ltd., UK were awarded the contract for the procurement, manufacture, works testing, works finishing, supply, delivery, off-loading, storage, installation, site finishing, preservation, setting to work and site testing of the following; the main cable installation throughout the Station including the addition of the Radioactive Waste Building, earthing and lightning protection installation, cable supporting steelwork and carriers and glanding and termination of cables. The cabling installation comprises power distribution, control and instrumentation cabling including all the associated cabling accessories, terminal boxes and similar components. The way that the contract was set-up, awarded and is now being carried out is described. Planning and industrial relations have been key features of the contract. (Author)

  6. Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control

    KAUST Repository

    Araújo, Paula A.

    2012-06-01

    The influence of polydopamine- and polydopamine-. graft-poly(ethylene glycol)-coated feed spacers and membranes, copper-coated feed spacers, and commercially-available biostatic feed spacers on biofouling has been studied in membrane fouling simulators. Feed spacers and membranes applied in practical membrane filtration systems were used; biofouling development was monitored by feed channel pressure drop increase and biomass accumulation. Polydopamine and polydopamine-. g-PEG are hydrophilic surface modification agents expected to resist protein and bacterial adhesion, while copper feed spacer coatings and biocides infused in feed spacers are expected to restrict biological growth. Our studies showed that polydopamine and polydopamine-. g-PEG coatings on feed spacers and membranes, copper coatings on feed spacers, and a commercial biostatic feed spacer did not have a significant impact on feed channel pressure drop increase and biofilm accumulation as measured by ATP and TOC content. The studied spacer and membrane modifications were not effective for biofouling control; it is doubtful that feed spacer and membrane modification, in general, may be effective for biofouling control regardless of the type of applied coating. © 2012 Elsevier B.V.

  7. Controlled protein adsorption on PMOXA/PAA based coatings by thermally induced immobilization

    Science.gov (United States)

    Mumtaz, Fatima; Chen, Chaoshi; Zhu, Haikun; Pan, Chao; Wang, Yanmei

    2018-05-01

    In this work, poly(2-methyl-2-oxazoline-random-glycidyl methacrylate) (PMOXA-r-GMA) and poly(acrylic acid)-block-poly(glycidyl methacrylate) (PAA-b-PGMA) copolymers were synthesized via cationic ring-opening polymerization (CROP) of 2-methyl-2-oxazoline (MOXA) and reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylic acid (AA) followed by their random and block copolymerization with glycidyl methacrylate (GMA), respectively, and then characterized carefully. PMOXA/PAA based coatings were then prepared by simply spin coating the mixture of PMOXA-r-GMA and PAA-b-PGMA copolymer solutions onto silicon/glass substrates followed by annealing at 110 °C. The coatings were rigorously characterized by using X-ray photoelectron spectroscopy (XPS), the static water contact angle (WCA) test, ellipsometry and atomic force microscopy (AFM). The results demonstrated that the coating based mixed PMOXA/PAA brushes with desired surface composition could be attained by simply maintaining their percentage in the mixture of PMOXA-r-GMA and PAA-b-PGMA copolymer solutions. Finally, the switchable behavior of PMOXA/PAA based coatings toward bovine serum albumin (BSA) adsorption was investigated by fluorescein isothiocyanate-labelled BSA (FITC-BSA) assay and quartz crystal microbalance with dissipation monitoring (QCM-D), which indicated that the coating based mixed PMOXA/PAA brushes could control BSA adsorption/desorption from very low to high amount (>90% desorption) through adjusting the composition of PMOXA-r-GMA and PAA-b-PGMA solution used in preparing PMOXA/PAA based coatings upon pH and ionic strength change. Furthermore, PMOXA/PAA based coatings displayed efficient repeatability of reversible BSA adsorption/desorption cycles.

  8. Fluidization control in the wurster coating process

    Directory of Open Access Journals (Sweden)

    el Mafadi Samira

    2003-01-01

    Full Text Available Paniculate coating process in a fluidized bed involves different sub processes including particle wetting, spreading and also consolidation or drying of the coating applied. These sub processes are done simultaneously to particle fluidization and motion. All the parameters of fluidization are known to affect the coating quality. That is why the motion of particles in the Wurster coating process has been observed and described step by step. These observations have achieved a general understanding of phenomena which take place inside the bed during fluidization and have allowed the development of an easy method for optimizing all the parameters affecting this operation.

  9. Novel Base Metal-Palladium Catalytic Diesel Filter Coating with NO2 Reducing Properties

    DEFF Research Database (Denmark)

    Johansen, K.; Dahl, S.; Mogensen, G.

    2007-01-01

    A novel alternative base metal/palladium coat has been developed that has limited NO2 formation and which even removes NO2 in a wide temperature range.Soot combustion, HC conversion and CO conversion properties are comparable to current platinum based solutions but the coating has a more attracti...... solutions. Furthermore, durability results from base metal/Pd coated DPFs installed on operating taxis and related tests cycle data is given....

  10. Artificial chameleon skin that controls spectral radiation: Development of Chameleon Cool Coating (C3).

    Science.gov (United States)

    Gonome, Hiroki; Nakamura, Masashi; Okajima, Junnosuke; Maruyama, Shigenao

    2018-01-19

    Chameleons have a diagnostic thermal protection that enables them to live under various conditions. Our developed special radiative control therefore is inspired by the chameleon thermal protection ability by imitating its two superposed layers as two pigment particles in one coating layer. One particle imitates a chameleon superficial surface for color control (visible light), and another particle imitates a deep surface to reflect solar irradiation, especially in the near-infrared region. Optical modeling allows us to optimally design the particle size and volume fraction. Experimental evaluation shows that the desired spectral reflectance, i.e., low in the VIS region and high in NIR region, can be achieved. Comparison between the measured and calculated reflectances shows that control of the particle size and dispersion/aggregation of particle cloud is important in improving the thermal-protection performance of the coating. Using our developed coating, the interior temperature decreases and the cooling load is reduced while keeping the dark tone of the object.

  11. Powder ink coatings in nuclear medicine and nuclear technology

    International Nuclear Information System (INIS)

    Kunze, S.; Schlautek, H.

    1996-01-01

    Powder ink coatings are being used more and more frequently to protect the surfaces of movable objects of metal, such as machines, equipment, furniture, shelves, because this solvent-free coating technique, which produces almost no residues, helps to keep the environment clean. The white and grey baking coatings so far tested for decontaminability are presented in the article. Powder ink coatings of different shades and with different binders were tested for their ability to meet future standards. All systems under examination demonstrated excellent decontaminability before and after gamma exposure to 0.3 MGy. The same performance was obtained also after exposure to 3 MGy (ten times the level required for coatings in nuclear installations according to DIN 55991 Part 1), with the exception of one polyester metallic coating. After having been exposed to chemicals and decontamination solutions, all specimens showed only permissible discoloration. (orig.) [de

  12. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents.

    Science.gov (United States)

    Gu, Xinzhu; Mao, Zhongwei; Ye, Sang-Ho; Koo, Youngmi; Yun, Yeoheung; Tiasha, Tarannum R; Shanov, Vesselin; Wagner, William R

    2016-08-01

    Vascular stent design continues to evolve to further improve the efficacy and minimize the risks associated with these devices. Drug-eluting coatings have been widely adopted and, more recently, biodegradable stents have been the focus of extensive evaluation. In this report, biodegradable elastomeric polyurethanes were synthesized and applied as drug-eluting coatings for a relatively new class of degradable vascular stents based on Mg. The dynamic degradation behavior, hemocompatibility and drug release were investigated for poly(carbonate urethane) urea (PCUU) and poly(ester urethane) urea (PEUU) coated magnesium alloy (AZ31) stents. Poly(lactic-co-glycolic acid) (PLGA) coated and bare stents were employed as control groups. The PCUU coating effectively slowed the Mg alloy corrosion in dynamic degradation testing compared to PEUU-coated, PLGA-coated and bare Mg alloy stents. This was confirmed by electron microscopy, energy-dispersive x-ray spectroscopy and magnesium ion release experiments. PCUU-coating of AZ31 was also associated with significantly reduced platelet adhesion in acute blood contact testing. Rat vascular smooth muscle cell (rSMC) proliferation was successfully inhibited when paclitaxel was released from pre-loaded PCUU coatings. The corrosion retardation, low thrombogenicity, drug loading capacity, and high elasticity make PCUU an attractive option for drug eluting coating on biodegradable metallic cardiovascular stents. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Technology of Anticorrosive Protection of Steel Constructions by Coatings Based on Rapid-Hardening Bitumen-Latex Emulsion

    Directory of Open Access Journals (Sweden)

    Nykyforchyn, H.M.

    2016-01-01

    Full Text Available The recipes of rapid-hardening bitumen-latex emulsions and coatings on its base are created, in-laboratory tests of their physical, chemical and anticorrosive properties are carried out. The technology of anticorrosive protection and the installation technical documentation for making of aqueous bitumen-latex emulsion is developed, installation is mounted and a pilot lot of rapid-hardening emulsion is produced. Experimental-industrial approbation of the technology of coating formation on pipes in oil and gas industry is carried out.

  14. Microbiological quality control of single-walled carbon-nanotubes-coated surfaces experimentally contaminated

    International Nuclear Information System (INIS)

    Natalizi, T.; Frioni, A.; Passeri, D.; Pantanella, F.

    2013-01-01

    The emergence of new nanotechnologies involves the spreading of nanoparticles in various fields of human life. Nanoparticles in general and, more specifically, carbon nanotubes have been adopted for many practical approaches i.e.: coatings for medical devices, food process industry and drug delivery. Humans will be increasingly exposed to nanoparticles but the susceptibility of nanostructured materials to microbial colonization in process of manufacturing and storage has not been thoroughly considered. Therefore, the microbiological quality control of nanoparticles plays a pivotal role. Different analytical methods have been attempted for detecting bacterial population contaminating a surface, but no one can be considered fully appropriate. Here, BioTimer Assay (BTA) and conventional sonication followed by colony forming units method (S-CFU) were applied for microbiological quality control of single-walled carbon nanotubes (SWCNTs)-coated surfaces experimentally contaminated with Streptococcus mutans and Pseudomonas aeruginosa. Our results demonstrated that S-CFU is unreliable to actually determine the number of bacteria, contaminating abiotic surfaces, as it does not detach all adherent bacteria and kills part of the bacterial population. Instead, BTA is a reliable method to enumerate bacteria colonizing SWCNTs-coated surfaces and can be considered a useful tool for microbiological quality control of nanomaterials for human use.

  15. Application of Industrial XRF Coating Thickness Analyzer for Phosphate Coating Thickness on Steel

    Directory of Open Access Journals (Sweden)

    Aleksandr Sokolov

    2018-03-01

    Full Text Available The results of industrial application of an online X-ray fluorescence coating thickness analyzer for measuring the thickness of phosphate coatings on moving steel strips are considered in the article. The target range of coating thickness to be measured is from tens to hundreds of mg/m2 in a measurement time of 10 s. The measurement accuracy observed during long-duration factory acceptance test was 10–15%. The coating thickness analyzer consists of two XRF gauges, mounted above and below the steel strip and capable of moving across the moving strip system for their suspension and relocation and electronic control unit. Fully automated software was developed to automatically and continuously (24/7 control both gauges, scanning both sides of the steel strip, and develop and test methods for measuring new coatings. It allows performing offline storage and retrieval of the measurement results, remotely controlling the analyzer components and measurement modes from a control room. The developed XRF coating thickness analyzer can also be used for real-time measurement of other types of coatings, both metallic and non-metallic.

  16. Installation design of pump motor control systems for supplied of the RSG-GAS secondary raw water cooling system

    International Nuclear Information System (INIS)

    Kiswanto; Teguh Sulistyo; M-Taufik

    2013-01-01

    It has designed already of an installation of the pump motor control system for supplied of raw water to fulfil the RSG-GAS secondary cooling system. The installation design of this plant is used to supply electrical energy from PLN and 3 phase generator to operate the pump motor embedded multilevel type, capacity, Q = 30 m 3 /h; electric power, PN = 4 kW; voltage, 380V/3-/50Hz, and Y connections that can be operated manually or automatically by using the automatic transfer switch. The results obtained recapitulation total load of 4 kW, the magnitude of the nominal current of 9.5 A; kind of safety and capacity are used NFB 16 A, use of this type of cable to the control panel is PLN NYY 6 mm 2 diameter maximum current capacity of 25 A cable and use the control panel to the pump motor cable type NYY 4 mm 2 diameter maximum current capacity of 20 A. The design of the pump motor control system installation is ready to be implemented. (author)

  17. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    Science.gov (United States)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  18. Robotic weld overlay coatings for erosion control

    Science.gov (United States)

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.

  19. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    Science.gov (United States)

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  20. Development of control system of coating of rod hydraulic cylinders

    Science.gov (United States)

    Aizhambaeva, S. Zh; Maximova, A. V.

    2018-01-01

    In this article, requirements to materials of hydraulic cylinders and methods of eliminating the main factors affecting the quality of the applied coatings rod hydraulic cylinders. The chromium plating process - one of ways of increase of anti-friction properties of coatings rods, stability to the wear and corrosion. The article gives description of differences of the stand-speed chromium plating process from other types of chromium plating that determines a conclusion about cutting time of chromium plating process. Conducting the analysis of technological equipment suggested addressing the modernization of high-speed chromium plating processes by automation and mechanization. Control system developed by design of schematic block diagram of a modernized and stand-speed chromium plating process.

  1. Preliminary evaluation of an aqueous wax emulsion for controlled-release coating.

    Science.gov (United States)

    Walia, P S; Stout, P J; Turton, R

    1998-02-01

    The purpose of this work was to evaluate the use of an aqueous carnauba wax emulsion (Primafresh HS, Johnson Wax) in a spray-coating process. This involved assessing the effectiveness of the wax in sustaining the release of the drug, theophylline. Second, the process by which the drug was released from the wax-coated pellets was modeled. Finally, a method to determine the optimum blend of pellets with different wax thicknesses, in order to yield a zero-order release profile of the drug, was addressed. Nonpareil pellets were loaded with theophylline using a novel powder coating technique. These drug-loaded pellets were then coated with different levels of carnauba wax in a 6-in. diameter Plexiglas fluid bed with a 3.5-in. diameter Wurster partition. Drug release was measured using a spin-filter dissolution device. The study resulted in continuous carnauba wax coatings which showed sustained drug release profile characteristics typical of a barrier-type, diffusion-controlled system. The effect of varying wax thickness on the release profiles was investigated. It was observed that very high wax loadings would be required to achieve long sustained-release times. The diffusion model, developed to predict the release of the drug, showed good agreement with the experimental data. However, the data exhibited an initial lag-time for drug release which could not be predicted a priori based on the wax coating thickness. A method of mixing pellets with different wax thicknesses was proposed as a way to approximate zero-order release.

  2. Mechanical particle coating using polymethacrylate nanoparticle agglomerates for the preparation of controlled release fine particles: The relationship between coating performance and the characteristics of various polymethacrylates.

    Science.gov (United States)

    Kondo, Keita; Kato, Shinsuke; Niwa, Toshiyuki

    2017-10-30

    We aimed to understand the factors controlling mechanical particle coating using polymethacrylate. The relationship between coating performance and the characteristics of polymethacrylate powders was investigated. First, theophylline crystals were treated using a mechanical powder processor to obtain theophylline spheres (grindability of the agglomerates were attributed to differences in particle structure, resulting from consolidation between colloidal particles. High-grindability agglomerates exhibited higher pulverization as their glass transition temperature (T g ) increased and the further pulverization promoted coating. We therefore conclude that the minimization of polymethacrylate powder by pulverization is an important factor in mechanical particle coating using polymethacrylate with low deformability. Meanwhile, when product temperature during coating approaches T g of polymer, polymethacrylate was soften to show high coating performance by plastic deformation. The effective coating by this mechanism may be accomplished by adjusting the temperature in the processor to the T g . Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Study of radioactivity diffusion for bitumen-coated blocks produced by an industrial coating plant; Etude de la diffusion de la radioactivite de blocs d'enrobes bitumineux en provenance d'un atelier d'enrobage industriel

    Energy Technology Data Exchange (ETDEWEB)

    Rodier, J; Lefillatre, G [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1969-07-01

    The solidification by bitumen of chemical coprecipitation sludges from the Marcoule waste treatment station has been studied in the laboratory and has led to the construction of an industrial coating plant. The quality of the coated material obtained has been controlled by the lixiviation test carried out with ordinary water and with sea-water on 45 ml laboratory samples and on industrial coated blocks of 150 litres. Tests on blocks of such a size have necessitated the installation of three special tanks. Two, each of 2000 litres capacity, contain ordinary and sea-water which was continuously recycled at a rate of 2.5 cm/hr and renewed periodically. In the third tank having a capacity of 11000 litres, the coated block was buried in earth and sprinkled with ordinary water with a view to studying the migration of radioelements in soil. The results of these tests confirm those obtained during the laboratory experiments. (authors) [French] La solidification par le bitume des boues de coprecipitation chimique de la station de traitement des effluents du Centre de Marcoule, etudiee en laboratoire, a conduit a la realisation d'une installation industrielle d'enrobage. La qualite de l'enrobe obtenu a ete controlee par le test de lixiviation qui a ete effectue en eau ordinaire et en eau de mer sur des echantillons de laboratoire de 45 ml et sur des blocs d'enrobe industriel de 150 litres. L'experimentation sur des blocs de telles dimensions a necessite l'installation de 3 cuves speciales. Deux, d'une capacite de 2000 litres, contiennent de l'eau ordinaire et de l'eau de mer recyclees en permanence a une vitesse de 2.5 cm/h et renouvelees periodiquement. Dans la 3eme cuve d'une capacite de 11000 litres, le bloc d'enrobe a ete enfoui dans de la terre et asperge d'eau ordinaire afin d'etudier la migration des radioelements dans le sol. Les resultats de ces essais confirment ceux obtenus au cours des tests de laboratoire. (auteurs)

  4. European coatings conference - Marine coatings. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This volume contains 13 lectures (manuscripts or powerpoint foils) with the following topics: 1. Impact of containerization on polyurethane and polyurea in marine and protective coatings (Malte Homann); 2. The application of combinatorial/high-throughput methods to the development of marine coatings (Bret Chisholm); 3. Progress and perspectives in the AMBIO (advanced nanostructured surfaces for the control of biofouling) Project (James Callow); 4. Release behaviour due to shear and pull-off of silicone coatings with a thickness gradient (James G. Kohl); 5. New liquid rheology additives for high build marine coatings (Andreas Freytag); 6. Effective corrosion protection with polyaniline, polpyrrole and polythiophene as anticorrosice additives for marine paints (Carlos Aleman); 7. Potential applications of sol gel technology for marine applications (Robert Akid); 8: Performance of biocide-free Antifouling Coatings for leisure boats (Bernd Daehne); 9. Novel biocidefree nanostructured antifouling coatings - can nano do the job? (Corne Rentrop); 10. One component high solids, VOC compliant high durability finish technology (Adrian Andrews); 11. High solid coatings - the hybrid solution (Luca Prezzi); 12. Unique organofunctional silicone resins for environmentally friendly high-performance coatings (Dieter Heldmann); 13. Silicone-alkyd paints for marine applications: from battleship-grey to green (Thomas Easton).

  5. An automatic system for controlling the quality of straws installed in the ATLAS TRT detector

    CERN Document Server

    Golunov, A O; Gousakov, Yu V; Kekelidze, G D; Livinski, V V; Mouraviev, S V; Parzycki, S S; Peshekhonov, V D; Price, M J; Savenkov, A A

    2004-01-01

    This article describes an automatic system to control the quality of straws installed in the wheels of the end-cap Transition Radiation Tracker of the ATLAS experiment. The system tests both the straightness and the electrical insulation of the straws during installation. The testing time per straw is 9s; consequently it takes about 2h to measure one layer of straws. The off-line analysis takes 20s per straw. With this system defects can be immediately detected and corrected. This clearly influences the future performance of the detector.

  6. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    Science.gov (United States)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  7. Osseointegration of implants with dendrimers surface characteristics installed conventionally or with Piezosurgery®. A comparative study in the dog.

    Science.gov (United States)

    Bengazi, Franco; Lang, Niklaus P; Canciani, Elena; Viganò, Paolo; Velez, Joaquin Urbizo; Botticelli, Daniele

    2014-01-01

    The first aim of the present experiment was to compare bone healing at implants installed in recipient sites prepared with conventional drills or a piezoelectric device. The second aim was to compare implant osseointegration onto surfaces with and without dendrimers coatings. Six Beagles dogs were used in this study. Five implants with two different surfaces, three with a ZirTi(®) surface (zirconia sand blasted, acid etched), and two with a ZirTi(®)-modified surface with dendrimers of phosphoserine and polylysine were installed in the right side of the mandible. In the most anterior region (P2, P3), two recipient sites were prepared with drills, and one implant ZirTi(®) surface and one coated with dendrimers implants were installed at random. In the posterior region (P4 and M1), three recipient sites were randomly prepared: two sites with a Piezosurgery(®) instrument and one site with drill and two ZirTi(®) surface and one coated with dendrimers implants installed. Three months after the surgery, the animals were sacrificed for histological analysis. No complications occurred during the healing period. Three implants were found not integrated and were excluded from analysis. However, n = 6 was obtained. The distance IS-B at the buccal aspect was 2.2 ± 0.8 and 1.8 ± 0.5 mm, while IS-C was 1.5 ± 0.9 and 1.4 ± 0.6 mm at the Piezosurgery(®) and drill groups, respectively. Similar values were obtained between the dendrimers-coated and ZirTi(®) surface implants. The BIC% values were higher at the drill (72%) compared to the Piezosurgery(®) (67%) sites. The BIC% were also found to be higher at the ZirTi(®) (74%) compared to the dendrimers-coated (65%) implants, the difference being statistically significant. This study has revealed that oral implants may osseointegrate equally well irrespective of whether their bed was prepared utilizing conventional drills with abundant cooling or Piezosurgery(®). Moreover, the surface coating of implants with dendrimers

  8. Installation of the LHC experimental insertions

    CERN Document Server

    Bartolome-Jimenez, S

    2004-01-01

    The installation of the LHC experimental insertions, and particularly the installation of the low-beta quadrupoles, raises many technical challenges due to the stringent alignment specifications and to the difficulty of access in very confined areas. The compact layout with many lattice elements, vacuum components, beam control instrumentation and the presence of shielding does not allow for any improvisation in the installation procedure. This paper reviews all the constraints that need to be taken into account when installing the experimental insertions. It describes the chronological sequence of installation and discusses the technical solutions that have been adopted.

  9. INSTALLATION OF THE LHC EXPERIMENTAL INSERTIONS

    CERN Document Server

    Bartolome-Jimenez, S

    2004-01-01

    The installation of the LHC experimental insertions, and particularly the installation of the Low-Beta quadrupoles, raises many technical challenges due to the stringent alignment specifications and to the difficulty of access in very confined areas. The compact layout with many lattice elements, vacuum components, beam control instrumentation and the presence of shielding does not allow for any improvisation in the installation procedure. This paper reviews all the constraints that need to be taken into account when installing the experimental insertions. It describes the chronological sequence of installation and discusses the technical solutions that have been adopted.

  10. The effect of solvents and hydrophilic additive on stable coating and controllable sirolimus release system for drug-eluting stent.

    Science.gov (United States)

    Kim, Seong Min; Park, Sung-Bin; Bedair, Tarek M; Kim, Man-Ho; Park, Bang Ju; Joung, Yoon Ki; Han, Dong Keun

    2017-09-01

    Various drug-eluting stents (DESs) have been developed to prevent restenosis after stent implantation. However, DES still needs to improve the drug-in-polymer coating stability and control of drug release for effective clinical treatment. In this study, the cobalt-chromium (CoCr) alloy surface was coated with biodegradable poly(D,L-lactide) (PDLLA) and sirolimus (SRL) mixed with hydrophilic Pluronic F127 additive by using ultrasonic spray coating system in order to achieve a stable coating surface and control SRL release. The degradation of PDLLA/SRL coating was studied under physiological solution. It was found that adding F127 reduced the degradation of PDLLA and improved the coating stability during 60days. The effects of organic solvent such as chloroform and tetrahydrofuran (THF) on the coating uniformity were also examined. It was revealed that THF produced a very smooth and uniform coating compared to chloroform. The patterns of in vitro drug release according to the type of organic solvent and hydrophilic additive proposed the possibility of controllable drug release design in DES. It was found that using F127 the drug release was sustained regardless of the organic solvent used. In addition, THF was able to get faster and controlled release profile when compared to chloroform. The structure of SRL molecules in different organic solvents was investigated using ultra-small angle neutron scattering. Furthermore, the structure of SRL is concentration-dependent in chloroform with tight nature under high concentration, but concentration-independent in THF. These results strongly demonstrated that coating stability and drug release patterns can be changed by physicochemical properties of various parameters such as organic solvents, additive, and coating strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Outgassing characteristics of TiC coated materials

    International Nuclear Information System (INIS)

    Sukenobu, S.; Gomay, Y.

    1982-01-01

    The outgassing characteristics of TiC-coated materials (POCO graphite, and molybdenum) were studied. In the case of molybdenum substrate, thin TiN layer was coated before TiC coating to avoid molybdenum carbide formation. The outgassing characteristics of the sample materials were studied by a baking process at 250 degree C for 24 hours. The samples were inserted in a 304 stainless steel vacuum chamber with a thin aperture, and the gas through-put from this chamber was estimated by measuring the pressure before and after the aperture. A residual gas analyzer was installed on the low pressure side of the aperture. It can be concluded that the out-gassing rate of these TiC-coated materials was about 10 -12 Torr.Fl/s.Fcm"2 after baking at 250 degree C for 24 hours. Residual gas analysis showed that the main outgas species were H 2 and CO after baking. The TiC-coated POCO graphite and molybdenum are applicable to fusion devices as far as the outgassing characteristics are concerned. (Kato, T.)

  12. EMISSION AND TRENDS IN RECLAIMING WASTE HEAT IN INDUSTRIAL INSTALATIONS

    Directory of Open Access Journals (Sweden)

    Lech Hys

    2013-04-01

    Full Text Available The article presents the analysis of waste heat emission in a typical industrial installation. On the basis of the process monitoring system, periodic analyses of fumes composition, installation process manual and the conducted measurements of the heat fluxes from individual sources emitting heat on the way of natural convection from the devices’ coats and forced convection in the fumes flux were calculated. According to the authors the heat of temperature 140–155 °C and surface power density 860–970 W/m2 emitted by devices’ covers can be reclaimed in ORC techniques, Peltier’s modules and the systems realising Stirling cycle. Part of the waste heat included in fumes, which makes c.a. 76% of the total emission from the installation, should be returned to the process of fuel oxidation, what will reduce the emission by c.a. 18% and the volume of consumed fuel by c.a. 25 m3 CH4/h, according to the presented calculations.

  13. Safety of nuclear installations in Slovakia

    International Nuclear Information System (INIS)

    1998-01-01

    In this part next aspects are described: (1) Site selection (Legislation related to site selection; Meeting criteria at Bohunice and Mochovce sites; International agreements); (2) Design preparation and construction (Designing and construction-relevant legislation; Nuclear installation project preparation of nuclear installation at Mochovce site); (3) Operation (Operator licensing procedure; Operation limits and conditions; Maintenance testing and control documentation for management and operation; Technical support of operation; Analysis of events at nuclear installations and Radioactive waste production); (4) Planned safety upgrading activities at nuclear installations

  14. Use of a thin-film evaporator for bitumen coating of radioactive concentrates

    International Nuclear Information System (INIS)

    Lefillatre, G.; Rodier, J.; Hullo, R.; Cudel, Y.; Rodi, L.

    1969-01-01

    Following the development in the laboratory of a process for coating evaporation concentrates with bitumen, a technological study of this coating process has been undertaken. The report describes a pilot installation for the bitumen coating of concentrates, which uses a thin-film evaporator LUWA L 150. The first, inactive series of tests was designed to determine the maximum and optimum capacities of the evaporator by varying the amounts of bitumen and of concentrate, the rotor speed and the thermo-fluid temperature. Two rotors were tested, one of conventional type, the other a model especially designed for high viscosity products. The maximum capacity of evaporation of the apparatus is 72 kg/hr for a heating temperature of 221 deg. C. During normal operation, the evaporator can produce 50 kg/hr of coated product containing 55 to 60 per cent of bitumen (Mexphalte 40/50), the water content of the product remaining under 0.5 per cent. A second series of tests will shortly be carried out on this pilot installation using, in particular, bituminous emulsions containing mainly Mexphalte 40/50 and 80/100. (authors) [fr

  15. Bioinspired synthesis of a soft-nanofilament-based coating consisting of polysilsesquioxanes/polyamine and its divergent surface control.

    Science.gov (United States)

    Yuan, Jian-Jun; Kimitsuka, Nobuo; Jin, Ren-Hua

    2013-04-24

    The synthesis of polysilsesquioxanes coating with controllable one-dimensional nanostructure on substrates remains a major long-term challenge by conventional solution-phase method. The hydrolytic polycondensation of organosilanes in solution normally produces a mixture of incomplete cages, ladderlike, and network structures, resulting in the poor control of the formation of specific nanostructure. This paper describes a simple aqueous process to synthesize nanofilament-based coatings of polysilsesquioxanes possessing various organo-functional groups (for example, thiol, methyl, phenyl, vinyl, and epoxy). We utilized a self-assembled nanostructured polyamine layer as a biomimetically catalytic scaffold/template to direct the formation of one-dimensional nanofilament of polysilsesquioxanes by temporally and spatially controlled hydrolytic polycondensation of organosilane. The surface nanostructure and morphology of polysilsesquioxane coating could be modulated by changing hydrolysis and condensation reaction conditions, and the orientation of nanofilaments of polysilsesquioxanes on substrates could be controlled by simply adjusting the self-assembly conditions of polyamine layer. The nanostructure and polyamine@polysilsesquioxane hybrid composition of nanofilament-based coatings were examined by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The template role of nanostructured polyamine layer for the formation of polysilsesquioxane nanofilament was confirmed by combining thin film X-ray diffraction (XRD) and XPS measurements. Moreover, these nanotextured coatings with various organo-functional groups could be changed into superhydrophobic surfaces after surface modification with fluorocarbon molecule.

  16. Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, Emma, E-mail: emma.harkonen@helsinki.fi [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Tervakangas, Sanna; Kolehmainen, Jukka [DIARC-Technology Inc., Espoo (Finland); Díaz, Belén; Światowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe [Laboratoire de Physico-Chimie des Surfaces, CNRS (UMR 7075) – Chimie ParisTech (ENSCP), F-75005 Paris (France); Fenker, Martin [FEM Research Institute, Precious Metals and Metals Chemistry, D-73525 Schwäbisch Gmünd (Germany); Tóth, Lajos; Radnóczi, György [Research Centre for Natural Sciences HAS, (MTA TKK), Budapest (Hungary); Ritala, Mikko [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland)

    2014-10-15

    Sublayers grown with filtered cathodic arc deposition (FCAD) were added under atomic layer deposited (ALD) oxide coatings for interface control and improved corrosion protection of low alloy steel. The FCAD sublayer was either Ta:O or Cr:O–Ta:O nanolaminate, and the ALD layer was Al{sub 2}O{sub 3}–Ta{sub 2}O{sub 5} nanolaminate, Al{sub x}Ta{sub y}O{sub z} mixture or graded mixture. The total thicknesses of the FCAD/ALD duplex coatings were between 65 and 120 nm. Thorough analysis of the coatings was conducted to gain insight into the influence of the FCAD sublayer on the overall coating performance. Similar characteristics as with single FCAD and ALD coatings on steel were found in the morphology and composition of the duplex coatings. However, the FCAD process allowed better control of the interface with the steel by reducing the native oxide and preventing its regrowth during the initial stages of the ALD process. Residual hydrocarbon impurities were buried in the interface between the FCAD layer and steel. This enabled growth of ALD layers with improved electrochemical sealing properties, inhibiting the development of localized corrosion by pitting during immersion in acidic NaCl and enhancing durability in neutral salt spray testing. - Highlights: • Corrosion protection properties of ALD coatings were improved by FCAD sublayers. • The FCAD sublayer enabled control of the coating-substrate interface. • The duplex coatings offered improved sealing properties and durability in NSS. • The protective properties were maintained during immersion in a corrosive solution. • The improvements were due to a more ideal ALD growth on the homogeneous FCAD oxide.

  17. The calibration procedure of the radiation monitoring system installed in radiation controlled area of KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Kyun; Min, Yi-Sub; Park, Jeong-Min; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2016-10-15

    The spaces, where these accelerators are installed, are defined as the radiation controlled area and the levels of the radiation in this area are monitored by the radiation monitoring system (RMS) to protect radiation workers and experiment users from the hazards of the ionizing radiation and the surface and air contamination tests are carried out periodically by the radiation secure team. The most of RMS instruments are installed in the accelerator building, where the 100-MeV proton linear accelerator is installed. All detectors of RMS should be calibrated every year to prove the reliability of RMS and almost all instruments for RMS was calibrated during this summer maintenance period of KOMAC this year. Almost all RMS instruments installed in KOMAC is calibrated between 2016-07-13 and 2016-08-24. As the calibration result, if the current reading value are within the 5% of the reference dose rate value, this RMS instrument can be used one more year. Otherwise, the detector of that RMS instrument should be repaired or replaced. The self-calibration certificate for each RMS instrument will be published only for the instrument to satisfy the condition.

  18. Electron curing of surface coatings

    International Nuclear Information System (INIS)

    Nablo, S.V.

    1974-01-01

    The technical development of electron curing of surface coatings has received great impetus since 1970 from dramatic changes in the economics of the conventional thermal process. The most important of these changes are reviewed, including: the Clear Air Act, increasing cost and restrictive allocation of energy, decreased availability and increased costs of solvents, competitive pressure for higher line productivity. The principles of free-radical initiated curing as they pertain to industrial coatings are reviewed. Although such electron initiated processes have been under active development for at least two decades, high volume production applications on an industrial scale have only recently appeared. These installations are surveyed with emphasis on the developments in machinery and coatings which have made this possible. The most significant economic advantages of electron curing are presented. In particular, the ability of electron curing to eliminate substrate damage and to eliminate the curing station (oven) as the pacing element for most industrial surface coating curing applications is discussed. Examples of several new processes of particular interest in the textile industry are reviewed, including the curing of transfer cast urethane films, flock adhesives, and graftable surface finishes

  19. Novel hybrid coatings with controlled wettability by composite nanoparticle aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Hritcu, Doina, E-mail: dhritcu@ch.tuiasi.ro; Dodi, Gianina; Iordache, Mirabela L.; Draganescu, Dan; Sava, Elena; Popa, Marcel I.

    2016-11-30

    Highlights: • Magnetite-grafted chitosan composite nanoparticles were synthesized. • The particles are able to assemble under the influence of a silane derivative. • Thin films containing composites, chitosan and hydrolyzed silane were optimized. • The novel hybrid coatings show hierarchical roughness and high wetting angle. - Abstract: The aim of this study is to evaluate novel hybrid materials as potential candidates for producing coatings with hierarchical roughness and controlled wetting behaviour. Magnetite (Fe{sub 3}O{sub 4}) nanoparticles obtained by co-precipitation were embedded in matrices synthesized by radical graft co-polymerization of butyl acrylate (BA), butyl methacrylate (BMA), hexyl acrylate (HA) or styrene (ST) with ethylene glycol di-methacrylate (EGDMA) onto previously modified chitosan bearing surface vinyl groups. The resulting composite particles were characterized regarding their average size, composition and magnetic properties. Hybrid thin films containing suspension of composite particles in ethanol and pre-hydrolysed hexadecyltrimethoxysilane (HDTS) as a coupling/crosslinking agent were deposited by spin coating or spraying. The films were cured by heating and subsequently characterized regarding their morphology (scanning electron microscopy), contact angle with water and adhesion to substrate (scratch test). The structure-property relationship is discussed.

  20. The search for low photodesorption coatings

    International Nuclear Information System (INIS)

    Foerster, C.L.; Korn, G.

    1990-01-01

    Low photo desorption (PSD) from surfaces of vacuum chambers increases the beam lifetime and reduces the cost of the pumping system of any storage ring. In compact rings where all radiated power (∼10 kW) is incident on a few meters only, low PSD and good thermal conductivity of photon absorbers are of particular importance. An experimental chamber in which one meter long bars can be exposed to white photon beam with 500 eV critical energy has been built and installed on the U10B beamline in the VUV ring at the NSLS. Several reference bars made of high purity copper and a TiN coating on copper have been measured. Subsequent runs will include gold coating on copper, aluminum (200 degree C baked), diamond coating on copper and uncoated beryllium bars. In this paper the desorption coefficients will be measured and compared. 6 refs., 4 figs

  1. Controlled reactions between chromia and coating on alloy surface

    DEFF Research Database (Denmark)

    Linderoth, Søren

    1996-01-01

    An electrically conducting Sr-doped lanthanum chromite (LSC) coating has been produced by reacting a coating of fine particles of La oxide and Sr oxide with chromia formed as an external scale on a metallic alloy. In addition to the formation of LSC the coating also resulted in much reduced...... buckling of the underlying chromia layer compared with a non-coated alloy....

  2. A database system for the control of radioactive effluents generated by the IPEN-CNEN/SP installations

    International Nuclear Information System (INIS)

    Maduar, M.F.

    1992-01-01

    A PC-compatible database system has been developed in order to optimize the control of liquid and gaseous effluents generated by the installations of IPEN-CNEN/SP. The system implements source-term generation, optimizes the discharge control of the effluents and allows several ways for the retrieval of data concerning to the effluents. (author)

  3. Modernization Of Electrical Installation By Using Wireless Remote Control

    Directory of Open Access Journals (Sweden)

    Mawlood M Al – Hamad

    2013-05-01

    Full Text Available Great benefits can be achieved by using wireless remote control in electrical wiring systems of buildings.     Probably the main advantage of this application is the drastic saving in wiring installations, which in turn will give higher reliability, safety and economy.     The idea of this application can be summarized in the following explanation. '' Instead off connecting each point of electrical system to individual switch by wires, a remote receiver can be situated in a place near to the point. The transmitter is used to operate the point remotely. The mains are connected to the receiver which will connect or disconnect the load as required. Many points can be connected to one receiver and can be operated by one or more transmitter.

  4. Recent Experimental Results on Amorphous Carbon Coatings for Electron Cloud Mitigation

    CERN Document Server

    Yin Vallgren, C; Chiggiato, P; Costa Pinto, P; Neupert, H; Taborelli, M; Rumolo, G; Shaposhnikova, E; Vollenberg, W

    2011-01-01

    Amorphous carbon (a-C) thin films, produced in different coating configurations by using DC magnetron sputtering, have been investigated in laboratory for low secondary electron yield (SEY) applications. After the coatings had shown a reliable low initial SEY, the a-C thin films have been applied in the CERN Super Proton Synchrotron (SPS) and tested with Large Hadron Collider (LHC) type beams.Currently, we have used a-C thin film coated in so-called liner configuration for the electron cloud monitors. In addition the vacuum chambers of three dipole magnets have been coated and inserted into the machine. After describing the different configurations used for the coatings, results of the tests in the machine and a summary of the analyses after extraction will be presented. Based on comparison between different coating configurations, a new series of coatings has been applied on three further dipole magnet vacuum chambers. They have been installed and will be tested in coming machine development runs.

  5. Installation and management of the SPS and LEP control system computers

    International Nuclear Information System (INIS)

    Bland, Alastair

    1994-01-01

    Control of the CERN SPS and LEP accelerators and service equipment on the two CERN main sites is performed via workstations, file servers, Process Control Assemblies (PCAs) and Device Stub Controllers (DSCs). This paper describes the methods and tools that have been developed to manage the file servers, PCAs and DSCs since the LEP startup in 1989. There are five operational DECstation 5000s used as file servers and boot servers for the PCAs and DSCs. The PCAs consist of 90 SCO Xenix 386 PCs, 40 LynxOS 486 PCs and more than 40 older NORD 100s. The DSCs consist of 90 OS-968030 VME crates and 10 LynxOS 68030 VME crates. In addition there are over 100 development systems. The controls group is responsible for installing the computers, starting all the user processes and ensuring that the computers and the processes run correctly. The operators in the SPS/LEP control room and the Services control room have a Motif-based X window program which gives them, in real time, the state of all the computers and allows them to solve problems or reboot them. ((orig.))

  6. NEG coating of the non-standard LSS vacuum chambers

    CERN Document Server

    Costa-Pinto, P

    2005-01-01

    The vacuum chambers of nearly all the warm magnets of the LHC (MBXW, MQW, MSI, MSD, etc…) will be coated with a Ti-Zr-V thin film by magnetron sputtering. The NEG coating is necessary to provide uniform pumping speed along the chambers and to suppress electron cloud instabilities and dynamic outgassing. The about 300 chambers will be coated using the existing facility, developed for the production of the standard LSS chambers, after minor modifications mainly due to the different cross sections. In order to cope with the present installation schedule, the production planning will allow processing of different families of chambers in parallel by using two or three coating systems simultaneously. After a brief introduction to the Ti-Zr-V characteristics and performances, the coating facility and strategy will be illustrated as well as the possible conflicts due to uncertainties in the planning of the experimental beam pipes and the standard LSS chambers.

  7. Precise Morphology Control and Continuous Fabrication of Perovskite Solar Cells Using Droplet-Controllable Electrospray Coating System.

    Science.gov (United States)

    Hong, Seung Chan; Lee, Gunhee; Ha, Kyungyeon; Yoon, Jungjin; Ahn, Namyoung; Cho, Woohyung; Park, Mincheol; Choi, Mansoo

    2017-03-08

    Herein, we developed a novel electrospray coating system for continuous fabrication of perovskite solar cells with high performance. Our system can systemically control the size of CH 3 NH 3 PbI 3 precursor droplets by modulating the applied electrical potential, shown to be a crucial factor for the formation of perovskite films. As a result, we have obtained pinhole-free and large grain-sized perovskite solar cells, yielding the best PCE of 13.27% with little photocurrent hysteresis. Furthermore, the average PCE through the continuous coating process was 11.56 ± 0.52%. Our system demonstrates not only the high reproducibility but also a new way to commercialize high-quality perovskite solar cells.

  8. Monitoring by Control Technique - Compliant (Low/No VOC/HAP) Inks and Coatings

    Science.gov (United States)

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Compliant (Low/No VOC/HAP) Inks and Coatings control techniques used to reduce pollutant emissions.

  9. DAQ INSTALLATION IN USC COMPLETED

    CERN Multimedia

    A. Racz

    After one year of work at P5 in the underground control rooms (USC55-S1&S2), the DAQ installation in USC55 is completed. The first half of 2006 was dedicated to the DAQ infrastructures installation (private cable trays, rack equipment for a very dense cabling, connection to services i.e. water, power, network). The second half has been spent to install the custom made electronics (FRLs and FMMs) and place all the inter-rack cables/fibers connecting all sub-systems to central DAQ (more details are given in the internal pages). The installation has been carried out by DAQ group members, coming from the hardware and software side as well. The pictures show the very nice team spirit !

  10. Simple roll coater with variable coating and temperature control for printed polymer solar cells

    DEFF Research Database (Denmark)

    Dam, Henrik Friis; Krebs, Frederik C

    2012-01-01

    of solution, enabling roll coating testing of new polymers where only small amounts are often available. We demonstrate the formation of >50 solar cells (each with an active area of 1 cm2) with printed metal back electrodes using as little as 0.1 mL of active layer solution. This approach outperforms spin...... coating with respect to temperature control, ink usage, speed and is directly compatible with industrial processing and upscaling....

  11. Installation of PMV Operation Program in DDC Controller and Air Conditioning Control Using PMV Directly as Set Point

    Science.gov (United States)

    Haramoto, Ken-Ichi

    In general, air conditioning control in a building is operated mainly by indoor air temperature control. Although the operators of the machine in the building accepted a claim for indoor air temperature presented by the building inhabitants, the indoor conditions have been often too cool or warm. Therefore, in an attempt to create better thermal environments, the author paid attention to the PMV that is a thermal comfort index. And then, the possibility of air conditioning control using the PMV directly as the set point was verified by employing actual equipment in an air conditioning testing room and an office building. Prior to the execution of this control, the operation program of the PMV was installed in a DDC controller for the air conditioning control. And information from indoor sensors and so on was inputted to the controller, and the computed PMV was used as the feedback variable.

  12. Preparation of niobium coated copper superconducting rf cavities for the large electron positron collider

    International Nuclear Information System (INIS)

    Benvenuti, C.; Bloess, D.; Chiaveri, E.; Hilleret, N.; Minestrini, M.; Weingarten, W.

    1988-01-01

    Since 1980 development work has been carried out at CERN aiming at producing niobium coated superconducting RF cavities in the framework of the foreseen LEP energy upgrading above the initial 55 GeV. During 1987 a 4-cell LEP cavity without coupling ports has been successfully coated for the first time. Meanwhile, cathodes for coating the coupling ports were built and tested. The effort has been subsequently directed to preparing at least one (possibly 2) coated cavity(ies) to be installed in LEP during 1989. In this paper the various production steps of these cavities are reconsidered in view of industrial production

  13. The inspection of (collective) tapwater installations in 2009. Progress report; De controle van collectieve leidingwaterinstallaties in 2009. Voortgang controletaak

    Energy Technology Data Exchange (ETDEWEB)

    Dik, H.H.J.

    2011-02-15

    For the first time since 2004, less newly build collective tap water installations show shortcomings. This is true for both the first inspection and the follow-up inspections preformed by the water companies. This seems to indicate a break in the trend of previous years where less newly build installations pass inspection without shortcomings. Still, one-third of the inspected installations do not comply with legionella regulations when first inspected. These non-compliances can be the cause of high to very high risk of contamination of the installation or the public mains system. These conclusions are drawn from the inspections preformed in 2009 by the drinking water companies in newly build and existing installations. By order of the Dutch Ministry of Infrastructure and the Environment and the VROM Inspectorate, the Institute for Public Health and the Environment of the Netherlands (RIVM) compile a yearly report since 2004 on the inspection of tap water installations. In 2009 more than 47.000 newly build and existing installations were inspected. The inspections have found and resolved more than 8000 situations of high to very high risk for public health. In existing installations, the number of non-compliance found at first inspections has decreased over the years. At the second inspection of installations that do not comply, the number of non-complying installations increases. The cause of this trend is unknown, and should be investigated. Only a quarter of the installations that must comply with special regulations for the prevention of Legionella (high-priority installations like hospitals, swimming pools, etc.) comply at first inspection. Starting from 2009, these installations are inspected according to a special intervention strategy. It is still too early to see results from this strategy. [Dutch] Voor het eerst sinds 2004 vertonen minder collectieve leidingwaterinstallaties in nieuwbouw gebreken. Dit geldt voor zowel de eerste (basis)controle als de

  14. Cross Coating Weight Control by Electromagnetic Strip Stabilization at the Continuous Galvanizing Line of ArcelorMittal Florange

    Science.gov (United States)

    Guelton, Nicolas; Lopès, Catherine; Sordini, Henri

    2016-08-01

    In hot dip galvanizing lines, strip bending around the sink roll generates a flatness defect called crossbow. This defect affects the cross coating weight distribution by changing the knife-to-strip distance along the strip width and requires a significant increase in coating target to prevent any risk of undercoating. The already-existing coating weight control system succeeds in eliminating both average and skew coating errors but cannot do anything against crossbow coating errors. It has therefore been upgraded with a flatness correction function which takes advantage of the possibility of controlling the electromagnetic stabilizer. The basic principle is to split, for every gage scan, the coating weight cross profile of the top and bottom sides into two, respectively, linear and non-linear components. The linear component is used to correct the skew error by realigning the knives with the strip, while the non-linear component is used to distort the strip in the stabilizer in such a way that the strip is kept flat between the knives. Industrial evaluation is currently in progress but the first results have already shown that the strip can be significantly flattened between the knives and the production tolerances subsequently tightened without compromising quality.

  15. Installation for analytic chemistry under irradiation; Installation de chimie analytique sous rayonnement

    Energy Technology Data Exchange (ETDEWEB)

    Fradin, J; Azoeuf, P; Guillon, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    An installation has been set up for carrying out manipulations and chemical analyses on radioactive products. It is completely remote-controlled and is of linear shape, 15 metres long; it is made up of three zones: - an active zone containing the apparatus, - a rear zone giving access to the active zone, - a forward zone independent of the two others and completely protected from which the remote-control of the apparatus is effected. The whole assembly has been designed so that each apparatus corresponding to an analytical technique is set up in a sealed enclosure. The sealed enclosures are interconnected by a conveyor. After three years operation, a critical review is now made of the installation. (authors) [French] L'installation a ete realisee pour effectuer des manipulations et des analyses chimiques sur des produits radioactifs. Elle est totalement telecommandee et se presente sous une forme lineaire de 15 metres de longueur et comporte trois zones: - une zone active d'appareillage, - une zone arriere d'intervention, - une zone avant independante des deux premieres et totalement protegee, ou s'operent les telecommandes de l'appareillage. L'ensemble a ete concu de facon a ce que chaque appareillage correspondant a une technique d'analyse soit implante dans une enceinte etanche. Les enceintes etanches sont reliees entre elles par un convoyeur. Apres trois annees de fonctionnement nous faisons le bilan et les critiques de l'installation. (auteurs)

  16. Development of NEG Coating for RHIC Experimental Beamtubes

    CERN Document Server

    Weiss, Daniel; Hseuh Hsiao Chaun; Todd, Robert J

    2005-01-01

    As RHIC beam intensity increases beyond original scope, pressure rises in some regions have been observed. The luminosity limiting pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam induced desorption. Non-Evaporable Getter (NEG) coated beampipes have been proven effective to suppress pressure rise in synchrotron radiation facilities. Standard beampipes have been NEG coated by a vendor and added to many RHIC UHV regions. BNL is developing a cylindrical magnetron sputtering system to NEG coat special beryllium beampipes installed in RHIC experimental regions. It features a hollow, liquid cooled cathode producing power density of 500W/m and deposition rate of 5000 Angstrom/hr on 7.5cm OD beampipe. The cathode, a titanium tube partially covered with zirconium and vanadium ribbons, is oriented for horizontal coating of 4m long chambers. Ribbons and magnets are arranged to provide uniform sputtering distribution and deposited NEG composition. Vacuum performance of NE...

  17. Morphology control in thin films of PS:PLA homopolymer blends by dip-coating deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vital, Alexane [Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 1B Rue de la Férollerie, C.S. 40059, 45071 Orléans Cedex 2 (France); Groupe de recherches sur l’énergétique des milieux ionisés (GREMI), CNRS-Université d’Orléans, UMR 7344, 14 rue d' Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Vayer, Marylène [Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d’Orléans, UMR 7374, 1B Rue de la Férollerie, C.S. 40059, 45071 Orléans Cedex 2 (France); Tillocher, Thomas; Dussart, Rémi [Groupe de recherches sur l’énergétique des milieux ionisés (GREMI), CNRS-Université d’Orléans, UMR 7344, 14 rue d' Issoudun, B.P. 6744, F45067 Orléans Cedex 2 (France); Boufnichel, Mohamed [STMicroelectronics, 16, rue Pierre et Marie Curie, B.P. 7155, 37071 Tours Cedex 2 (France); and others

    2017-01-30

    Highlights: • A process to control the morphology of polymer blends thin film is described. • It is based on the use of dip-coating at various withdrawal speeds. • The process is examined within the capillary and the draining regimes. • The final dried morphology is controlled by the regime of deposition. • This study is of high interest for the preparation of advanced functional surfaces. - Abstract: In this work, smooth polymer films of PS, PLA and their blends, with thicknesses ranging from 20 nm up to 400 nm and very few defects on the surface were obtained by dip-coating. In contrast to the process of spin-coating which is conventionally used to prepare thin films of polymer blends, we showed that depending on the deposition parameters (withdrawal speed and geometry of the reservoir), various morphologies such as layered films and laterally phase-separated domains could be formed for a given blend/solvent pair, offering much more opportunities compared to the spin-coating process. This diversity of morphologies was explained by considering the superposition of different phenomena such as phase separation process, dewetting and vitrification in which parameters such as the drying time, the compatibility of the polymer/solvent pairs and the affinity of the polymer towards the interfaces were suspected to play a significant role. For that purpose, the process of dip-coating was examined within the capillary and the draining regimes (for low and high withdrawal speed respectively) in order to get a full description of the thickness variation and evaporation rate as a function of the deposition parameters.

  18. Microstructural control of TiC/a-C nanocomposite coatings with pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    Pei, Y.T.; Chen, C.Q.; Shaha, K.P.; De Hosson, J.Th.M.; Bradley, J.W.; Voronin, S.A.; Cada, M.

    2008-01-01

    In this paper, we report some striking results on the microstructural control of TiC/a-C nanocomposite coatings with pulsed direct current (DC) magnetron sputtering. The interface morphology and microstructure evolution as a function of pulse frequency and duty cycle were scrutinized using atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscopy techniques. It is shown that, with increasing pulse frequency, the nanocomposite coatings exhibit evolutions in morphology of the growing interface from rough to smooth and in the microstructure from strongly columnar to fully columnar-free. In addition, the smoothly growing interface favors the formation of a tailor-made multilayered nanocomposite structure. The fundamental mechanisms are analyzed with the assistance of plasma diagnostic experiments. Ion mass/energy spectrometry measurements reveal that, depending on the frequency and duty cycle of DC pulses, pulsing of the magnetrons can control the flux and energy distribution of Ar + ions over a very broad range for concurrent impingement on the growing interface of deposited coatings, in comparison with DC sputtering. The significantly enhanced energy flux density is thought to be responsible for the 'adatom transfer' in interface smoothening and thus the restraint of columnar growth

  19. Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles

    Science.gov (United States)

    Rivas Rojas, P. C.; Tancredi, P.; Moscoso Londoño, O.; Knobel, M.; Socolovsky, L. M.

    2018-04-01

    Single and fixed size core, core-shell nanoparticles of iron oxides coated with a silica layer of tunable thickness were prepared by chemical routes, aiming to generate a frame of study of magnetic nanoparticles with controlled dipolar interactions. The batch of iron oxides nanoparticles of 4.5 nm radii, were employed as cores for all the coated samples. The latter was obtained via thermal decomposition of organic precursors, resulting on nanoparticles covered with an organic layer that was subsequently used to promote the ligand exchange in the inverse microemulsion process, employed to coat each nanoparticle with silica. The amount of precursor and times of reaction was varied to obtain different silica shell thicknesses, ranging from 0.5 nm to 19 nm. The formation of the desired structures was corroborated by TEM and SAXS measurements, the core single-phase spinel structure was confirmed by XRD, and superparamagnetic features with gradual change related to dipolar interaction effects were obtained by the study of the applied field and temperature dependence of the magnetization. To illustrate that dipolar interactions are consistently controlled, the main magnetic properties are presented and analyzed as a function of center to center minimum distance between the magnetic cores.

  20. System design and installation for RS600 programmable control system for solar heating and cooling

    Science.gov (United States)

    1978-01-01

    Procedures for installing, operating, and maintaining a programmable control system which utilizes a F8 microprocessor to perform all timing, control, and calculation functions in order to customize system performance to meet individual requirements for solar heating, combined heating and cooling, and/or hot water systems are described. The manual discusses user configuration and options, displays, theory of operation, trouble-shooting procedures, and warranty and assistance. Wiring lists, parts lists, drawings, and diagrams are included.

  1. Modern electrical installation for craft students

    CERN Document Server

    Scaddan, Brian

    2013-01-01

    Modern Electrical Installation for Craft Students, Volume 2, Third Edition discusses several topics concerning electrical installations. The book is comprised of eight chapters that deal with craft theory, associated subjects, and electrical industries. Chapter 1 covers inductors and inductance, while Chapter 2 tackles capacitors and capacitance. Chapter 3 deals with inductance and capacitance in installation work. The book also discusses cells, batteries, and transformers. The electrical industries, control and earthing, and testing are also dealt with. The last chapter discusses the basic el

  2. In situ measurement of ceramic vacuum chamber conductive coating quality

    International Nuclear Information System (INIS)

    Doose, C.; Harkay, K.; Kim, S.; Milton, S.

    1997-01-01

    A method for measuring the relative surface resistivity and quality of conductive coatings on ceramic vacuum chambers was developed. This method is unique in that it allows one to test the coating even after the ceramic chamber is installed in the accelerator and under vacuum; furthermore, the measurement provides a localized surface reading of the coating conductance. The method uses a magnetic probe is calibrated using the measured DC end-to-end resistance of the tube under test and by comparison to a high quality test surface. The measurement method has also been verified by comparison to high frequency impedance measurements. A detailed description, results, and sensitivity of the technique are given here

  3. Durable Residual Wall Lining (DL) Installation Concepts and Acceptability as an IRS Replacement Tool for Malaria Vector Control

    DEFF Research Database (Denmark)

    Larsen, Marie Louise; Lenau, Torben Anker

    that will eliminate the need for repeated spraying of walls over a period of 3-4 years after installation. The objective of this project was to evaluate a variety of methods for attaching DL to various wall surfaces found in traditional, rural African housing. Assessments were made as to strength of attachment under...... various stresses and appearance after installation. The experiments took place in Anwona village near Obuasi, Ghana with the support and cooperation of AngloGold Ashanti’s Malaria Control Center. 55 mechanical and adhesive products were tested for their ability to hold a static load (simulating long...... observations were included in the DL Installation Manual, the final delivery of this project....

  4. Design, manufacture and installation of measuring and control equipments for the advanced thermal prototype reactor 'Fugen'

    International Nuclear Information System (INIS)

    Hirota, Shigeo; Kawabata, Yoshinori

    1979-01-01

    The advanced thermal prototype reactor ''Fugen'' attained the criticality on March 20, 1978, and 100% output operation on November 13, 1978. On March 20, 1979, it passed the final inspection, and since then, it has continued the smooth operation up to now. The measuring and control equipments are provided for grasping the operational conditions of the plant and operating it safely and efficiently. At the time of designing, manufacturing and installing the measuring and control equipments for Fugen, it was required to clarify the requirements of the plant design, to secure the sufficient functions, and to improve the operational process, maintainability and the reliability and accuracy of the equipments. Many design guidelines and criteria were decided in order to coordinate the conditions among five manufacturers and give the unified state as one plant. The outline of the instrumentations for neutrons, radiation monitoring and process data, the control systems for reactivity, reactor output, pressure and water supply, the safety protection system, and the process computer are described. Finally, the installations and tests of the measuring and control equipments are explained. The aseismatic capability of the equipments was confirmed. (Kako, I.)

  5. The evaluation of arterial stiffness of essential hypertension and white coat hypertension in children: a case-control study.

    Science.gov (United States)

    Tokgöz, Semiha Terlemez; Yılmaz, Dilek; Tokgöz, Yavuz; Çelik, Bülent; Bulut, Yasin

    2018-03-01

    The aim of this study was to determine and compare cardiovascular risks by assessing arterial stiffness in children with essential hypertension and white coat hypertension. Paediatric patients followed up with essential hypertension and white coat hypertension diagnoses and with no established end organ damage were involved in the study. Arterial stiffness in children included in the study was evaluated and compared by using the oscillometric device (Mobil-O-Graph) method. A total of 62 essential hypertension (34 male, 28 female), 38 white coat hypertension (21 male, 17 female), and 60 healthy controls (33 male, 27 female) were assessed in the present study. Pulse wave velocity of the essential hypertension, white coat hypertension, and control group was, respectively, as follows: 5.3±0.6 (m/s), 5.1±0.4 (m/s), 4.3±0.4 (m/s) (pcoat hypertension were found to be higher compared with the control group. This level was identified as correlated with the duration of hypertension in both patient groups (pcoat hypertension was impaired compared with healthy children. This finding has made us think that white coat hypertension is not an innocent clinical situation. This information should be taken into consideration in the follow-up and treatment approaches of the patients.

  6. Effect of Coating Parameters of the Buffer Layer on the Shape Ratio of TRISO-Coated Particles

    International Nuclear Information System (INIS)

    KIm, Weon Ju; Park, Jong Hoon; Park, Ji Yeon; Lee, Young Woo; Chang, Jong Hwa

    2005-01-01

    Fuel for high temperature gas-cooled reactors (HTGR's) consists of TRISO-coated particles. Fluidized bed chemical vapor deposition (FBCVD) has been applied to fabricate the TRISO-coated fuel particles. The TRISO particles consist of UO 2 microspheres coated with layers of porous pyrolytic carbon (PyC), inner dense PyC (IPyC), SiC, and outer dense PyC (OPyC). The porous PyC coating layer, called the buffer layer, attenuates fission recoils and provides void volume for gaseous fission products and carbon monoxide. The buffer layer, which has the highest coating rate among the coating layers, shows the largest variation of the coating thickness within a particle and a batch. This could be the most plausible source of an asphericity in the TRISO particles. The aspherical particles are expected to have an inferior fuel performance. Miller et al. have predicted that a larger stress is developed within the coating layers and thus the failure probability increases in the particles with high aspect ratios. Therefore, the shape of the TRISO-coated particles should be controlled properly and has been one of the important inspection items for the quality control of the fabrication process. In this paper, we investigated the effect of coating parameters of the buffer layer on the shape of the TRISO particles. The flow rate of coating gas and the coating temperature were varied to control the buffer layer. The asphericity of the TRISO-coated particles was evaluated for the various coating conditions of the buffer layer, but at constant coating parameters for the IPyC/SiC/OPyC layers

  7. Carbon-coated NiPt, CoPt nanoalloys: size control and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    El-Gendy, A.A. [Kirchhoff Institute for Physics, University of Heidelberg, D-69120 Heidelberg (Germany); Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany); Hampel, S.; Leonhardt, A.; Khavrus, V.; Buechner, B. [Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany); Klingeler, R. [Kirchhoff Institute for Physics, University of Heidelberg, D-69120 Heidelberg (Germany)

    2011-07-01

    Controlled synthesis of magnetic nanoparticles with well-defined size and composition is always a challenge in material-based nanoscience. Here, we apply the high pressure chemical vapour deposition technique (HPCVD) to obtain carbon-shielded magnetic alloy nanoparticles under control of the particle size. Carbon encapsulated NiPt, CoPt (NiPt rate at C, CoPt rate at C) nanoalloys were synthesized by means of HPCVD starting from sublimating appropriate metal-organic precursors. Structural characterization by means of high resolution transmission electron microscopy, energy dispersive X-ray analysis and X-ray diffraction indicated the formation of coated bimetallic Ni{sub x}Pt{sub 100-x} and CoxPt{sub 100-x} nanoparticles. Adjusting the sublimation temperature of the different precursors allowed tuning the core sizes with small size distribution. In addition, detailed studies of the magnetic properties are presented. AC magnetic heating studies imply the potential of the coated nanoalloys for hyperthermia therapy.

  8. Enhancement of osteogenesis and biodegradation control by brushite coating on Mg-Nd-Zn-Zr alloy for mandibular bone repair.

    Science.gov (United States)

    Guan, Xingmin; Xiong, Meiping; Zeng, Feiyue; Xu, Bin; Yang, Lingdi; Guo, Han; Niu, Jialin; Zhang, Jian; Chen, Chenxin; Pei, Jia; Huang, Hua; Yuan, Guangyin

    2014-12-10

    To diminish incongruity between bone regeneration and biodegradation of implant magnesium alloy applied for mandibular bone repair, a brushite coating was deposited on a matrix of a Mg-Nd-Zn-Zr (hereafter, denoted as JDBM) alloy to control the degradation rate of the implant and enhance osteogenesis of the mandible bone. Both in vitro and in vivo evaluations were carried out in the present work. Viability and adhesion assays of rabbit bone marrow mesenchyal stem cells (rBM-MSCs) were applied to determine the biocompatibility of a brushite-coated JDBM alloy. Osteogenic gene expression was characterized by quantitative real-time polymerase chain reaction (RT-PCR). Brushite-coated JDBM screws were implanted into mandible bones of rabbits for 1, 4, and 7 months, respectively, using 316L stainless steel screws as a control group. In vivo biodegradation rate was determined by synchrotron radiation X-ray microtomography, and osteogenesis was observed and evaluated using Van Gieson's picric acid-fuchsin. Both the naked JDBM and brushite-coated JDBM samples revealed adequate biosafety and biocompatibility as bone repair substitutes. In vitro results showed that brushite-coated JDBM considerably induced osteogenic differentiation of rBM-MSCs. And in vivo experiments indicated that brushite-coated JDBM screws presented advantages in osteoconductivity and osteogenesis of mandible bone of rabbits. Degradation rate was suppressed at a lower level at the initial stage of implantation when new bone tissue formed. Brushite, which can enhance oeteogenesis and partly control the degradation rate of an implant, is an appropriate coating for JDBM alloys used for mandibular repair. The Mg-Nd-Zn-Zr alloy with brushite coating possesses great potential for clinical applications for mandibular repair.

  9. Identifying the best locations to install flow control devices in sewer networks to enable in-sewer storage

    Science.gov (United States)

    Leitão, J. P.; Carbajal, J. P.; Rieckermann, J.; Simões, N. E.; Sá Marques, A.; de Sousa, L. M.

    2018-01-01

    The activation of available in-sewer storage volume has been suggested as a low-cost flood and combined sewer overflow mitigation measure. However, it is currently unknown what the attributes for suitable objective functions to identify the best location for flow control devices are and the impact of those attributes on the results. In this study, we present a novel location model and efficient algorithm to identify the best location(s) to install flow limiters. The model is a screening tool that does not require hydraulic simulations but rather considers steady state instead of simplistic static flow conditions. It also maximises in-sewer storage according to different reward functions that also considers the potential impact of flow control device failure. We demonstrate its usefulness on two real sewer networks, for which an in-sewer storage potential of approximately 2,000 m3 and 500 m3 was estimated with five flow control devices installed.

  10. Silica coating of PbS quantum dots and their position control using a nanohole on Si substrate

    Science.gov (United States)

    Mukai, Kohki; Okumura, Isao; Nishizaki, Yuta; Yamashita, Shuzo; Niwa, Keisuke

    2018-04-01

    We succeeded in controlling the apparent size of a colloidal PbS quantum dot (QD) in the range of 20 to 140 nm by coating with silica and trapping the coated QDs in a nanohole prepared by scanning probe microscope lithography. Photoluminescence intensity was improved by controlling the process of adding the silica source material of tetraethoxysilane for the coating. Nanoholes of different sizes were formed on a single substrate by scanning probe oxidation with the combination of SF6 dry etching and KOH wet etching. QDs having an arbitrary energy structure can be arranged at an arbitrary position on the semiconductor substrate using this technique, which will aid in the fabrication of future nanosize solid devices such as quantum information circuits.

  11. Metrology and quality assurance for European XFEL long flat mirrors installation

    Science.gov (United States)

    Freijo Martín, Idoia; Vannoni, Maurizio; Sinn, Harald

    2017-06-01

    The European XFEL is a large-scale user facility under construction in Hamburg, Germany. It will provide a transversally fully coherent X-ray radiation with outstanding characteristics: high repetition rate (up to 2700 pulses with a 0.6 milliseconds long pulse train at 10Hz), short wavelength (down to 0.05 nm), short pulses (in the femtoseconds scale) and high average brilliance (1.6x1025 photons / s / mm2 / mrad2/ 0.1% bandwidth)1. Due to the short wavelength and high pulse energies, mirrors need to have a high-quality surface, have to be very long (1 m), and at the same time an effective cooling system has to be implemented. Matching these tight specifications and assessing them with high precision optical measurements is very challenging. The mirrors go through a complicated and long process, starting from classical polishing to deterministic polishing, ending with a special coating and a final metrology assessment inside their mechanical mounts just before the installation. The installation itself is also difficult for such big mirrors and needs special care. In this contribution we will explain how we implemented the installation process, how we used the metrology information to optimize the installation procedure and we will show some preliminary results with the first mirrors installed in the European XFEL beam transport.

  12. Installation of foundation fieldbus to KUR

    International Nuclear Information System (INIS)

    Ishihara, Shinji; Fujita, Yoshiaki

    1999-11-01

    The instrumentation and control system for the research reactor in Research Reactor Institute, Kyoto University has been used for the safe and steady operation since the initial critical attainment in 1964. It has been modified and added many devices in the chance of increasing the reactor power from 1 MW to 5 MW, installing new experimental facilities or fitting to modified nuclear regulations. In order to avoid the unscheduled shutdown of the research reactor by cause the failure of the devices, most of instrumentation system was renewed in 1999. Operating the research reactor more safely and reliably, Supervisory Control Automation and Data Acquisition System which employed personal computers with the Windows NT operating system was added to the conventional instrumentation system, and the fieldbus system called Foundation Fieldbus was installed. Compared with conventional instrumentation system, each fieldbus system has some advantages. Many kinds of fieldbus systems have been developed and sold on the markets in some countries. Foundation Fieldbus standardizing international, which was able to use the devices made by multi-vendor was tentatively installed to study particular techniques about Foundation Fieldbus. The primary coolant flow rate, the temperature difference between the reactor tank inlet and outlet temperatures, the calorimetric power and the reactor power in nuclear instrumentation are monitored on human-machine interface devices on the fieldbus. The programmable logic controller is employed to control the information system for the reactor. This paper introduces Foundation Fieldbus installed. (author)

  13. Control of Flux Pinning in MOD YBCO Coated Conductor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W. [American Superconductor Corporation, Westborough, MA; Huang, Y. [American Superconductor Corporation, Westborough, MA; Li, X. [American Superconductor Corporation, Westborough, MA; Kodenkandath, Thomas [American Superconductor Corporation, Westborough, MA; Rupich, Marty [American Superconductor Corporation, Westborough, MA; Schoop, U. [American Superconductor Corporation, Westborough, MA; Verebelyi, D. T. [American Superconductor Corporation, Westborough, MA; Thieme, C. L. H. [American Superconductor Corporation, Westborough, MA; Siegal, E. E. [American Superconductor Corporation, Westborough, MA; Holesinger, T. G. [Los Alamos National Laboratory (LANL); Maiorov, B. [Los Alamos National Laboratory (LANL); Miller, D. J. [Argonne National Laboratory (ANL); Maroni, V. A. [Argonne National Laboratory (ANL); Goyal, Amit [ORNL; Specht, Eliot D [ORNL; Paranthaman, Mariappan Parans [ORNL

    2007-01-01

    Two different types of defect structures have been identified to be responsible for the enhanced pinning in metal organic deposited YBCO films. Rare earth additions result in the formation of nanodots in the YBCO matrix, which form uncorrelated pinning centers, increasing pinning in all magnetic field orientations. 124-type intergrowths, which form as laminar structures parallel to the ab-plane, are responsible for the large current enhancement when the magnetic field is oriented in the ab-plane. TEM studies showed that the intergrowths emanate from cuprous containing secondary phase particles, whose density is partially controlled by the rare earth doping level. Critical process parameters have been identified to control this phase formation, and therefore, control the f 24 intergrowth formation. This work has shown that through process control and proper conductor design, either by adjusting the composition or by multiple coatings of different functional layers, the desired angular dependence can be achieved.

  14. Control of flux pinning in MOD YBCO coated conductor.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Huang, Y.; Li, X.; Kodenkandath, T.; Rupich, M. W.; Schoop, U.; Verebelyi, D. T.; Thieme, C. L. H.; Siegal, E.; Holesinger, T. G.; Maiorov, B.; Civale, L.; Miller, D. J.; Maroni, V. A.; Li, J.; Martin, P. M.; Specht, E. D.; Goyal, A.; Paranthaman, M. P.; American Superconductor Corp.; LANL; ORNL

    2007-06-01

    NTwo different types of defect structures have been identified to be responsible for the enhanced pinning in metal organic deposited YBCO films. Rare earth additions result in the formation of nanodots in the YBCO matrix, which form uncorrelated pinning centers, increasing pinning in all magnetic field orientations. 124-type intergrowths, which form as laminar structures parallel to the ab-plane, are responsible for the large current enhancement when the magnetic field is oriented in the ab-plane. TEM studies showed that the intergrowths emanate from cuprous containing secondary phase particles, whose density is partially controlled by the rare earth doping level. Critical process parameters have been identified to control this phase formation, and therefore, control the f 24 intergrowth formation. This work has shown that through process control and proper conductor design, either by adjusting the composition or by multiple coatings of different functional layers, the desired angular dependence can be achieved.

  15. Installation for producing sealed radioactive sources

    International Nuclear Information System (INIS)

    Fradin, J.; Hayoun, C.

    1969-01-01

    This installation has been designed and built for producing sealed sources of fission elements: caesium 137, strontium 90, promethium 147, ruthenium 106 and cerium 144 in particular. The installation consists of sealed and protected cells, each being assigned to a particular production. The safety and the operational reliability of the equipment are the principal considerations which have governed this work. The report describes the installation and, in particular, the apparatus used as well as the various control devices. In conclusion, a review as presented of six years operation. (authors) [fr

  16. Risk Control of Offshore Installations. A Framework for the Establishment of Risk Indicators

    Energy Technology Data Exchange (ETDEWEB)

    Oeien, Knut

    2001-07-01

    Currently quantitative risk assessments are carried out to analyze the risk level of offshore installations and to evaluate whether or not the risk level is acceptable. By way of the quantitative risk analysis the risk status of a given installation is obtained. However, the risk status is obtained so infrequently that it is inadequate for risk control. It can be compared to economic control having the economic status presented about each fifth year, which is obviously inadequate. It is important to know the risk status because this may provide an early warning about the need for remedial actions. Without frequent information about the risk status, control of risk cannot be claimed. The main objective of this thesis has been the development of a framework for the establishment of risk indicators. These risk indicators provide a status of the risk level through measuring of changes in technical, operational and organizational factors important to risk, and is thus a means to control risk during operation of offshore petroleum installations. The framework consists of a technical methodology using the quantitative risk assessment as a basis, an organizational model, and an organizational quantification methodology. Technical risk indicators are established from the technical methodology covering the risk factors explicitly included in the quantitative risk assessment. Organizational risk indicators measure changes in the organizational risk factors included in the organizational model, but not included in the quantitative risk assessment. The organizational model is an extension to the risk model in the quantitative risk assessment. The organizational quantification methodology calculates the effect of the changes measured by the organizational risk indicators. The organizational model may also be applied as a qualitative tool for root cause analysis of incidents (process leaks). Other results are an intermediate-level expert judgment procedure applicable for

  17. The gridless plasma ion source (GIS) for plasma ion assisted optical coating

    International Nuclear Information System (INIS)

    You Dawei; Li Xiaoqian; Wang Yu; Lin Yongchang

    2004-01-01

    High-quality optical coating is a key technology for modern optics. Ion-assisted deposition technology was used to improve the vaporized coating in 1980's. The GIS (gridless ion source), which is an advanced plasma source for producing a high-quality optical coating in large area, can produce a large area uniformity>1000 mm (diameter), a high ion current density ∼0.5 mA/cm 2 , 20 eV-200 eV energetic plasma ions and can activate reactive gas and film atoms. Now we have developed a GIS system. The GIS and the plasma ion-assisted deposition technology are investigated to achieve a high-quality optical coating. The GIS is a high power and high current source with a power of 1 kW-7.5 kW, a current of 10 A- 70 A and an ion density of 200 μA/cm 2 -500 μA/cm 2 . Because of the special magnetic structure, the plasma-ion extraction efficiency has been improved to obtain a maximum ion density of 500 μA/cm 2 in the medium power (∼4 kW) level. The GIS applied is of a special cathode structure, so that the GIS operation can be maintained under a rather low power and the lifetime of cathode will be extended. The GIS has been installed in the LPSX-1200 type box coating system. The coated TiO 2 , SiO 2 films such as antireflective films with the system have the same performance reported by Leybold Co, 1992, along with a controllable refractive index and film structure. (authors)

  18. Physical protection of nuclear installations

    International Nuclear Information System (INIS)

    Toepfer, K.

    1989-01-01

    This contribution investigates the possible danger and the legal basis of physical protection and explains the current, integrated system provided for, as well as the underlying possible scenarios of an assault: (1) by a violent crowd of aggressors outside the installation, (2) by a small group of aggressors outside the installation, (3) by a person allowed to enter (internal assault). The physical protection system supplements the internal safety measures to enhance protection against hypothetical and possible acts of terrorism or other criminal assault. The system covers external and internal controlled areas, access monitoring, physical protection control room and service, security checks of the personnel, and activities to disclose sabotage. Some reflections on the problem field between security controls and the constitutional state conclude this contribution. (orig./HSCH) [de

  19. Fabrication of tubed functionally graded material by slurry dipping process. Thickness control of dip-coated layer

    International Nuclear Information System (INIS)

    Watanabe, Ryuzo

    1997-03-01

    In order to obtain long life fuel cladding tubes for the fast breeder reactor, the concept of functionally graded material was applied for the material combination of Molybdenum/stainless steel/Titanium, in which Titanium and Molybdenum were placed at the inner and outer sides, respectively. Slurry dipping method was employed because of its capability of shape forming and microstructural control. We have hitherto reported the design criteria for the graded layers, preparation of the slurry, and microstructural control of the dip-coated layers. In the present report, the thickness control of the dip-coated layer is described in detail. The thickness of the dip-coated layer depends primarily on the viscosity of the slurry. Nevertheless, for the stable dispersion of the powder in the slurry, which dominates the microstructural homogeneity, an optimum viscosity value is present for the individual slurries. With stable slurries of Ti, Mo, stainless steel powders and their mixtures, the thicknesses of dip-coated layers were controlled in dependence of their viscosities and yield values. For Ti and stainless steel powders and their mixture a PAANa was used as a dispersing agent. A NaHMP was found to be effective for the dispersion of Mo powder and Mo/stainless steel powder mixture. For all slurries tested in the present investigation PVA addition was helpful for the viscosity control. Dip-coating maps have been drawn for the stabilization of the slurries and for the formation of films with a sufficient strength for further manipulation for the slurries with low viscosity (∼10 mPa s). The final film thickness for the low-viscosity slurry with the optimum condition was about 200 μm. The slurries with high viscosities of several hundreds mPa s had a good stability and the yield value was easy to be controlled. The film thickness was able to be adjusted in the size range between several tens and several hundreds μm. The final thickness of the graded layer was determined

  20. Planning and installing photovoltaic systems a guide for installers, architects and engineers

    CERN Document Server

    Deutsche Gesellschaft für Sonnenenergie (DGS)

    2013-01-01

    New third edition of the bestselling manual from the German Solar Energy Society (DGS), showing you the essential steps to plan and install a solar photovoltaic system. With a global focus, it has been updated to include sections on new technology and concepts, new legislation and the current PV market.Updates cover:new developments in inverter and module technologymarket situation worldwide and outlookintegration to the grid (voltage stabilization, frequency, remote control)new legal requirements for installation and planningoperational costs for dismantling and recyclingfeed-in managementnew requirements for fire protectionnew requirements in Europe for electric waste (Waste Electrical and Electronic Equipment, WEEE) and the restriction of the use of certain hazardous substances (RoHS).Also providing information on current developments in system design, economic analysis, operation and maintenance of PV systems, as well as new software tools, hybrid and tracking systems.An essential manual for installers, e...

  1. The control of base nuclear facilities (I.N.B.); Le controle des installations nucleaires de base (INB)

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2009-02-15

    The Authority of Nuclear Safety ( A.S.N). presents in this column the current events of the control of the nuclear basic installations during august, september, october 2008, classified by nuclear site. This information is also available in real-time on the A.S.N. web site, www.asn.fr, in the column 'news'. We can consult all the notices of significant incident published as well as the following letters of inspection, the notices of information about the reactors shutdown, press releases and the A.S.N. information notes. (N.C.)

  2. Microplasma jet treatment of bovine serum albumin coatings for controlling enzyme and cell attachmenttype="fn" rid="FN1">

    Science.gov (United States)

    Szili, Endre J.; Becker, Stefanie; Short, Robert D.; Al-Bataineh, Sameer A.

    2017-08-01

    We investigated a new approach to control protein and cell attachment inside 96-well polystyrene plates. The wells were first coated with bovine serum albumin (BSA) to inhibit cell and protein attachment. The BSA-coated wells were then treated with a helium microplasma jet for increasing times that resulted in gradual removal of BSA from the surface. It was found that the amount of enzyme and cell attachment could be controlled in the wells where BSA was only partially removed by the microplasma jet. In addition to the surface coverage of BSA, the new surface chemistry induced by the microplasma jet treatment also had an important role in the control of enzyme and cell attachment. In summary, microplasma jet treatment of BSA-coated polystyrene wells is a simple and effective method for controlling enzyme and cell attachment. This might find use for high-throughput screening of new cell culture platforms where control over the level protein, enzyme or cell adherence is needed in order to maintain a specific cell function.

  3. Control of surface topography in biomimetic calcium phosphate coatings.

    Science.gov (United States)

    Costa, Daniel O; Allo, Bedilu A; Klassen, Robert; Hutter, Jeffrey L; Dixon, S Jeffrey; Rizkalla, Amin S

    2012-02-28

    The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold. © 2012 American Chemical Society

  4. Achieving Control of Coating Process in your Foundry

    DEFF Research Database (Denmark)

    Di Muoio, G. L.; Tiedje, N. S.

    2015-01-01

    process is prerequisite for a stable drying process. In this study, we analyse the effect of different variables on the coating layer properties. We start by considering four critical variables identified in a previous study such as sand compaction, coating density, dipping time and gravity and then we...

  5. Coatings for laser fusion

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  6. Error Analysis of Ceramographic Sample Preparation for Coating Thickness Measurement of Coated Fuel Particles

    International Nuclear Information System (INIS)

    Liu Xiaoxue; Li Ziqiang; Zhao Hongsheng; Zhang Kaihong; Tang Chunhe

    2014-01-01

    The thicknesses of four coatings of HTR coated fuel particle are very important parameters. It is indispensable to control the thickness of four coatings of coated fuel particles for the safety of HTR. A measurement method, ceramographic sample-microanalysis method, to analyze the thickness of coatings was developed. During the process of ceramographic sample-microanalysis, there are two main errors, including ceramographic sample preparation error and thickness measurement error. With the development of microscopic techniques, thickness measurement error can be easily controlled to meet the design requirements. While, due to the coated particles are spherical particles of different diameters ranged from 850 to 1000μm, the sample preparation process will introduce an error. And this error is different from one sample to another. It’s also different from one particle to another in the same sample. In this article, the error of the ceramographic sample preparation was calculated and analyzed. Results show that the error introduced by sample preparation is minor. The minor error of sample preparation guarantees the high accuracy of the mentioned method, which indicates this method is a proper method to measure the thickness of four coatings of coated particles. (author)

  7. 40 CFR 1042.130 - Installation instructions for vessel manufacturers.

    Science.gov (United States)

    2010-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES...-speed operation, tell vessel manufacturers not to install the engines in variable-speed applications or... vessel manufacturers. (a) If you sell an engine for someone else to install in a vessel, give the engine...

  8. Authorization procedure for the construction and operation of nuclear installations within the EC Member States, including supervision and control

    International Nuclear Information System (INIS)

    Amaducci, Sandro; Didier, J.M.

    1978-01-01

    This report is an updating of the report EUR 5284, Authorization procedure for the construction and operation of nuclear installations within the EEC Member States, prepared in 1974 by J.M. Didier and Associates. Recent developments regarding the authorization procedure for the construction and operation of nuclear installations have taken place in Italy (introduction of a site approval procedure) and in Denmark (adoption of an overall legislation on the subject, however not yet in force). With respect to supervision and control of nuclear installations during construction and operation, competences of, as well as their exercise by, supervisory authorities in all EC Member States, with the exception of Ireland, are also analysed in the current study

  9. "Thunderstruck": Plasma-Polymer-Coated Porous Silicon Microparticles As a Controlled Drug Delivery System.

    Science.gov (United States)

    McInnes, Steven J P; Michl, Thomas D; Delalat, Bahman; Al-Bataineh, Sameer A; Coad, Bryan R; Vasilev, Krasimir; Griesser, Hans J; Voelcker, Nicolas H

    2016-02-01

    Controlling the release kinetics from a drug carrier is crucial to maintain a drug's therapeutic window. We report the use of biodegradable porous silicon microparticles (pSi MPs) loaded with the anticancer drug camphothecin, followed by a plasma polymer overcoating using a loudspeaker plasma reactor. Homogenous "Teflon-like" coatings were achieved by tumbling the particles by playing AC/DC's song "Thunderstruck". The overcoating resulted in a markedly slower release of the cytotoxic drug, and this effect correlated positively with the plasma polymer coating times, ranging from 2-fold up to more than 100-fold. Ultimately, upon characterizing and verifying pSi MP production, loading, and coating with analytical methods such as time-of-flight secondary ion mass spectrometry, scanning electron microscopy, thermal gravimetry, water contact angle measurements, and fluorescence microscopy, human neuroblastoma cells were challenged with pSi MPs in an in vitro assay, revealing a significant time delay in cell death onset.

  10. Solution Coating of Superior Large-Area Flexible Perovskite Thin Films with Controlled Crystal Packing

    KAUST Repository

    Li, Jianbo

    2017-05-08

    Solution coating of organohalide lead perovskites offers great potential for achieving low-cost manufacturing of large-area flexible optoelectronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of crystal packing. Herein, this study reports using solution shearing to confine crystal nucleation and growth in large-area printed MAPbI3 thin films. Near single-crystalline perovskite microarrays are demonstrated with a high degree of controlled macroscopic alignment and crystal orientation, which exhibit significant improvements in optical and optoelectronic properties comparing with their random counterparts, spherulitic, and nanograined films. In particular, photodetectors based on the confined films showing intense anisotropy in charge transport are fabricated, and the device exhibits significantly improved performance in all aspects by one more orders of magnitude relative to their random counterparts. It is anticipated that perovskite films with controlled crystal packing may find applications in high-performance, large-area printed optoelectronics, and solar cells.

  11. Solution Coating of Superior Large-Area Flexible Perovskite Thin Films with Controlled Crystal Packing

    KAUST Repository

    Li, Jianbo; Liu, Yucheng; Ren, Xiaodong; Yang, Zhou; Li, Ruipeng; Su, Hang; Yang, Xiaoming; Xu, Junzhuo; Xu, Hua; Hu, Jian-Yong; Amassian, Aram; Zhao, Kui; Liu, Shengzhong Frank

    2017-01-01

    Solution coating of organohalide lead perovskites offers great potential for achieving low-cost manufacturing of large-area flexible optoelectronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of crystal packing. Herein, this study reports using solution shearing to confine crystal nucleation and growth in large-area printed MAPbI3 thin films. Near single-crystalline perovskite microarrays are demonstrated with a high degree of controlled macroscopic alignment and crystal orientation, which exhibit significant improvements in optical and optoelectronic properties comparing with their random counterparts, spherulitic, and nanograined films. In particular, photodetectors based on the confined films showing intense anisotropy in charge transport are fabricated, and the device exhibits significantly improved performance in all aspects by one more orders of magnitude relative to their random counterparts. It is anticipated that perovskite films with controlled crystal packing may find applications in high-performance, large-area printed optoelectronics, and solar cells.

  12. Experience in the installation of a microprocessor system for controlling converter units of the Vyborg substation

    International Nuclear Information System (INIS)

    Gusakovskii, K. B.; Zmaznov, E. Yu.; Katantsev, S. V.; Mazurenko, A. K.; Mestergazi, V. A.; Prochan, G. G.; Funtikova, S. F.

    2006-01-01

    The experience in the installation of modern digital systems for controlling converter units at the Vyborg converter substation on the basis of advanced microprocessor devices is considered. It is shown that debugging of a control and protection system on mathematical and physical models does not guarantee optimum control of actual converter devices. Examples of advancing the control and protection system are described, the necessity for which has become obvious in tests of actual equipment. Comparison of oscillograms of processes before optimization of the control system and after its optimization and adjustment shows that the digital control system makes it possible to improve substantially the algorithms of control and protection in the short term and without changing the hardware component

  13. Logistics of LEP installation

    International Nuclear Information System (INIS)

    Genier, C.; Capper, S.

    1988-01-01

    The size of the LEP project, coupled with the tight construction schedules, calls for organized planning, logistics, monitoring and control. This is being carried out at present using tools such as ORACLE the Relational Database Management System, running on a VAX cluster for data storage and transfer, micro-computers for on-site follow-up, and PC's running Professional ORACLE, DOS and XENIX linked to a communications network to receive data feedback concerning transport and handling means. Following over 2 years of installations, this paper presents the methods used for the logistics of installation and their results

  14. Simulation and parametric study of a film-coated controlled-release pharmaceutical.

    Science.gov (United States)

    Borgquist, Per; Zackrisson, Gunnar; Nilsson, Bernt; Axelsson, Anders

    2002-04-23

    Pharmaceutical formulations can be designed as Multiple Unit Systems, such as Roxiam CR, studied in this work. The dose is administrated as a capsule, which contains about 100 individual pellets, which in turn contain the active drug remoxipride. Experimental data for a large number of single pellets can be obtained by studying the release using microtitre plates. This makes it possible to study the release of the individual subunits making up the total dose. A mathematical model for simulating the release of remoxipride from single film-coated pellets is presented including internal and external mass transfer hindrance apart from the most important film resistance. The model can successfully simulate the release of remoxipride from single film-coated pellets if the lag phase of the experimental data is ignored. This was shown to have a minor influence on the release rate. The use of the present model is demonstrated by a parametric study showing that the release process is film-controlled, i.e. is limited by the mass transport through the polymer coating. The model was used to fit the film thickness and the drug loading to the experimental release data. The variation in the fitted values was similar to that obtained in the experiments.

  15. Wind power installations in Switzerland - Checklist for investors in large-scale installations; Eoliennes en Suisse. Liste de controle pour investisseurs de grandes installations

    Energy Technology Data Exchange (ETDEWEB)

    Ott, W.; Kaufmann, Y.; Steiner, P. [Econcept AG, Zuerich (Switzerland); Gilgen, K.; Sartoris, A. [IRAP-HSR, Institut fuer Raumentwicklung an der Hochschule fuer Technik Rapperswil, Rapperswil (Switzerland)

    2008-07-01

    This report published by the Swiss Federal Office of Energy (SFOE) takes a look at a checklist for investors in large-scale wind-power installations. The authors state that the same questions are often posed in the course of the planning and realisation of wind turbine installations. This document presents a checklist that will help achieve the following goals: Tackling the steps involved in the planning and implementation phases, increasing planning security, systematic implementation in order to reduce risks for investors and to shorten time-scales as well as the reduction of costs. Further, participative processes can be optimised by using comprehensively prepared information in order to reduce the risk of objections during project approval. The structure of the check-list is described and discussed.

  16. Installation package for the Solaron solar subsystem

    Science.gov (United States)

    1979-01-01

    Information that is intended to be a guide for installation, operation, and maintenance of the various solar subsystems is presented. The subsystems consist of the following: collectors, storage, transport (air handler) and controller for heat pump and peak storage. Two prototype residential systems were installed at Akron, Ohio, and Duffield, Virginia.

  17. Invasive Species Guidebook for Department of Defense Installations in the Chesapeake Bay Watershed: Identification, Control, and Restoration

    Science.gov (United States)

    2007-11-01

    Crown vetch Coronilla varia MD, VA 14 Leafy spurge Euphorbia esula VA 15 Ground ivy Glechoma hederacea DC, MD, PA, VA, WV 17 Cogongrass Imperata ...INSTALLATIONS IN THE CHESAPEAKE BAY WATERSHED IDENTIFICATION AND CONTROL METHODS Cogongrass ( Imperata cylindrica) Description & Biology – A large

  18. Competent person for radiation protection. Practical radiation protection for base nuclear installations and installations classified for the environment protection

    International Nuclear Information System (INIS)

    Pin, A.; Perez, S.; Videcoq, J.; Ammerich, M.

    2008-01-01

    This book corresponds to the practical module devoted to the base nuclear installations and to the installations classified for the environment protection, that is to say the permanent nuclear installations susceptible to present risks for the public, environment or workers. Complied with the legislation that stipulates this module must allow to apply the acquired theoretical training to practical situations of work, it includes seven chapters as follow: generalities on access conditions in regulated areas of nuclear installation,s or installations classified for environment protection and clothing against contamination; use of control devices and management of damaged situations; methodology of working place studies, completed by the application to a real case of a study on an intervention on a containment wall; a part entitled 'take stock of the situation' ends every chapter and proposes to the reader to check its understanding and acquisition of treated knowledge. (N.C.)

  19. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    International Nuclear Information System (INIS)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi

    2013-01-01

    A new crystal-mounting method has been developed that involves a combination of controlled humid air and polymer glue for crystal coating. This method is particularly useful when applied to fragile protein crystals that are known to be sensitive to subtle changes in their physicochemical environment. Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection

  20. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi, E-mail: kumasaka@spring8.or.jp [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2013-09-01

    A new crystal-mounting method has been developed that involves a combination of controlled humid air and polymer glue for crystal coating. This method is particularly useful when applied to fragile protein crystals that are known to be sensitive to subtle changes in their physicochemical environment. Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection.

  1. Application of a tablet film coating model to define a process-imposed transition boundary for robust film coating.

    Science.gov (United States)

    van den Ban, Sander; Pitt, Kendal G; Whiteman, Marshall

    2018-02-01

    A scientific understanding of interaction of product, film coat, film coating process, and equipment is important to enable design and operation of industrial scale pharmaceutical film coating processes that are robust and provide the level of control required to consistently deliver quality film coated product. Thermodynamic film coating conditions provided in the tablet film coating process impact film coat formation and subsequent product quality. A thermodynamic film coating model was used to evaluate film coating process performance over a wide range of film coating equipment from pilot to industrial scale (2.5-400 kg). An approximate process-imposed transition boundary, from operating in a dry to a wet environment, was derived, for relative humidity and exhaust temperature, and used to understand the impact of the film coating process on product formulation and process control requirements. This approximate transition boundary may aid in an enhanced understanding of risk to product quality, application of modern Quality by Design (QbD) based product development, technology transfer and scale-up, and support the science-based justification of critical process parameters (CPPs).

  2. Phase Transition Control for High-Performance Blade-Coated Perovskite Solar Cells

    KAUST Repository

    Li, Jianbo

    2018-05-07

    Summary Here, we have identified that the key issue for rational transitioning from spin-coating to blade-coating processes of perovskite films arises from whether intermediate phases participate in the phase transition. In situ characterizations were carried out to provide a comprehensive picture of structural evolution and crystal growth mechanisms. These findings present opportunities for designing an effective process for blade-coating perovskite film: a large-grained dense perovskite film with high crystal quality and photophysical properties can be obtained only via direct crystallization for both spin-coating and blade-coating processes. As a result, the blade-coated MAPbI3 films deliver excellent charge-collection efficiency at both short circuit and open circuit, and photovoltaic properties with efficiencies of 18.74% (0.09 cm2) and 17.06% (1 cm2) in planar solar cells. The significant advances in understanding how the phase transition links spin-coating and blade-coating processes should provide a path toward high-performance printed perovskite devices.

  3. Functioning strategy study on control systems of large physical installations used with a digital computer

    International Nuclear Information System (INIS)

    Bel'man, L.B.; Lavrikov, S.A.; Lenskij, O.D.

    1975-01-01

    A criterion to evaluate the efficiency of a control system functioning of large physical installations by means of a control computer. The criteria are the object utilization factor and computer load factor. Different strategies of control system functioning are described, and their comparative analysis is made. A choice of such important parameters as sampling time and parameter correction time is made. A single factor to evaluate the system functioning efficiency is introduced and its dependence on the sampling interval value is given. Using diagrams attached, it is easy to find the optimum value of the sampling interval and the corresponding maximum value of the single efficiency factor proposed

  4. Neutral hydrophilic coatings for capillary electrophoresis prepared by controlled radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Fabián H.; Gómez, Jorge E.; Espinal, José H.; Sandoval, Junior E., E-mail: junior.sandoval@correounivalle.edu.co

    2016-12-15

    In the present study, porous silica particles as well as impervious fused-silica wafers and capillary tubes were modified with hydrophilic polymers (hydroxylated polyacrylamides and polyacrylates), using a surface-confined grafting procedure based on atom transfer radical polymerization (ATRP) which was also surface-initiated from α-bromoisobutyryl groups. Initiator immobilization was achieved by hydrosilylation of allyl alcohol on hydride silica followed by esterification of the resulting propanol-bonded surface with α-bromoisobutyryl bromide. Elemental analysis, IR and NMR spectroscopies on silica micro-particles, atomic force microscopy, ellipsometry and profilometry on fused-silica wafers, as well as CE on fused-silica tubes were used to characterize the chemically modified silica substrate at different stages. We studied the effect of monomer concentration as well as cross-linker on the ability of the polymer film to reduce electroosmosis and to prevent protein adsorption (i. e., its non-fouling capabilities) and found that the former was rather insensitive to both parameters. Surface deactivation towards adsorption was somewhat more susceptible to monomer concentration and appeared also to be favored by a low concentration of the cross-linker. The results show that hydrophilic polyacrylamide and polyacrylate coatings of controlled thickness can be prepared by ATRP under very mild polymerization conditions (aqueous solvent, room temperature and short reaction times) and that the coated capillary tubes exhibit high efficiencies for protein separations (0.3–0.6 million theoretical plates per meter) as well as long-term hydrolytic stability under the inherently harsh conditions of capillary isoelectric focusing. Additionally, there was no adsorption of lysozyme on the coated surface as indicated by a complete recovery of the basic enzyme. Furthermore, since polymerization is confined to the inner capillary surface, simple precautions (e.g., solution

  5. Black molecular adsorber coatings for spaceflight applications

    Science.gov (United States)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  6. Smart Coatings for Corrosion Protection

    Science.gov (United States)

    Calle, Luz Marina; Li, Wendy; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  7. Utilization of wheat straw for the preparation of coated controlled-release fertilizer with the function of water retention.

    Science.gov (United States)

    Xie, Lihua; Liu, Mingzhu; Ni, Boli; Wang, Yanfang

    2012-07-18

    With the aim of improving fertilizer use efficiency and minimizing the negative impact on the environment, a new coated controlled-release fertilizer with the function of water retention was prepared. A novel low water solubility macromolecular fertilizer, poly(dimethylourea phosphate) (PDUP), was "designed" and formulated from N,N'-dimethylolurea (DMU) and potassium dihydrogen phosphate. Simultaneously, an eco-friendly superabsorbent composite based on wheat straw (WS), acrylic acid (AA), 2-acryloylamino-2-methyl-1-propanesulfonic acid (AMPS), and N-hydroxymethyl acrylamide (NHMAAm) was synthesized and used as the coating to control the release of nutrient. The nitrogen release profile and water retention capacity of the product were also investigated. The degradation of the coating material in soil solution was studied. Meanwhile, the impact of the content of N-hydroxymethyl acrylamide on the degradation extent was examined. The experimental data showed that the product with good water retention and controlled-release capacities, being economical and eco-friendly, could be promising for applications in agriculture and horticulture.

  8. Development of 6.6 kV/600 A superconducting fault current limiter using coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Yazawa, T., E-mail: takashi.yazawa@toshiba.co.j [Toshiba Corporation, Power Systems Company (Japan); Koyanagi, K.; Takahashi, M.; Toba, K.; Takigami, H.; Urata, M. [Toshiba Corporation, Power Systems Company (Japan); Iijima, Y.; Saitoh, T. [Fujikura Ltd. (Japan); Amemiya, N. [Superconductivity Research Laboratory, ISTEC (Japan); Shiohara, Y. [Department of Electrical Engineering, Kyoto University (Japan); Ito, T. [Tokyo Gas Co., Ltd. (Japan)

    2009-10-15

    As one of the programs in the Ministry of Economy, Trade and Industry (METI) project regarding R and D on superconducting coated conductor, three-phase superconducting fault current limiter (SFCL) for 6.6 kV application was developed and successfully tested. The developed SFCL was mainly comprised three-phase set of current limiting coils installed in a sub-cooled nitrogen cryostat with a GM cryocooler, circuit breakers and a sequence circuit. The whole system was installed in a cubicle. Two tapes of coated conductor were wound in parallel in each coil to obtain the rated current of 72 A rms. After developing the whole SFCL system, short circuit experiments were implemented with a short circuit generator. In a three-line ground fault test, the SFCL successfully restricted the prospected short circuit current over 1.6 kA to about 800 A by the applied voltage of 6.6 kV. The SFCL was installed in a user field and connected with a gas engine generator, followed by a consecutive operation. In this program, 600 A class FCL coil, with which four coated conductor tapes were wound, was also developed. The coil showed sufficiently low AC loss at the rated current. With these results, the program attained the planned target of the fundamentals for the 6.6 kV/600 A SFCL.

  9. Stress controlled gas-barrier oxide coatings on semi-crystalline polymers

    International Nuclear Information System (INIS)

    Rochat, G.; Leterrier, Y.; Fayet, P.; Manson, J.-A.E.

    2005-01-01

    Thin silicon oxide (SiO x ) barrier coatings formed by plasma enhanced chemical vapor deposition on poly(ethylene terephthalate) (PET) substrates were subjected to post-deposition annealing treatments in the temperature range for orientation relaxation of the polymer. The resulting change in coating internal stress state was measured by means of thermo-mechanical analyses, and its effect on the coating cohesive properties and coating/polymer adhesion was determined from the analysis of uniaxial fragmentation tests in situ in a scanning electron microscope, assuming a Weibull-type probability of failure and a perfectly plastic stress transfer at the SiO x /PET interface. The strain to failure and intrinsic fracture toughness of the ultrathin oxide coating were found to be as high as 5.7% and 10 J/m 2 , respectively, and its interfacial shear strength with PET was found to be close to 100 MPa. Annealing for 10 min at 150 deg. C did not modify the oxygen permeation properties of the SiO x /PET film, which suggests that the defect population of the oxide was not affected by the thermal treatment. In contrast, the coating internal compressive stress resulting from annealing was shown to increase by 40% the apparent coating cohesive properties and adhesion to the polymer

  10. Adhesive strength of hydroxyl apatite(HA) coating and biomechanics behavior of HA-coated prosthesis:an experimental study

    OpenAIRE

    Tian-yang ZHANG; Yong-hong DUAN; Shu ZHU; Jin-yu ZHU; Qing-sheng ZHU

    2011-01-01

    Objective To explore the influence of adhesive strength of hydroxyapatite(HA) coating on the post-implantation stability of HA-coated prosthesis.Methods The adhesive strength and biomechanics behavior of HA coating were studied by histopathological observation,material parameters and biomechanical testing,the titanium(Ti)-coated prosthesis was employed as control.Results Scratch test showed that the adhesive strength of HA coating was significantly lower than that of Ti coating(P < 0.01).Hist...

  11. Control of the Saclay CEA's base nuclear installations - Inspection n. INS-2010-CEASAC-0006 31 May 2010-4 June 2010 - Safety management

    International Nuclear Information System (INIS)

    2010-01-01

    This document reports an inspection dedicated to safety management, and performed by the ASN (the French Nuclear Safety Authority) on several nuclear installations present on the CEA's Saclay site. The inspected installations have been the INBs (base nuclear installations) number 35 (STEL), 40 (Osiris), 49 (LHA), 50 (LECI), 77 (Poseidon) and 101 (Orphee), and four departments (CCSIMN, USL2TI, SP2S and DANS) involved in safety or in charge of it. The report describes the requested corrective actions about the quality of the internal diagnosis, about the follow-up of actions and directives, about internal authorizations, about the follow-up of commitments, about second level control, about the management of the return on experience, about interesting events, about the control of subcontractors. Some additional information requests are also formulated

  12. Photolithography of thick photoresist coating for electrically controlled liquid crystal photonic bandgap fibre devices

    DEFF Research Database (Denmark)

    Wei, Lei; Khomtchenko, Elena; Alkeskjold, Thomas Tanggaard

    2009-01-01

    Thick photoresist coating for electrode patterning in an anisotropically etched V-groove is investigated for electrically controlled liquid crystal photonic bandgap fibre devices. The photoresist step coverage at the convex corners is compared with and without soft baking after photoresist spin...

  13. Improvement of deposition efficiency and control of hardness for cold-sprayed coatings using high carbon steel/mild steel mixture powder

    International Nuclear Information System (INIS)

    Ogawa, Kazuhiro; Amao, Satoshi; Yokoyama, Nobuyuki; Ootaki, Kousuke

    2011-01-01

    In this study, in order to make high carbon steel coating by cold spray technique, spray conditions such as carrier gas temperature and pressure etc. were investigated. And also, in order to improve deposition efficiency and control coating hardness of cold-sprayed high carbon steel, high carbon and mild steel mixed powder and its mechanical milled powder were developed and were optimized. By using the cold-spray technique, particle deposition of a high carbon steel was successful. Moreover, by applying mixed and mechanical milled powders, the porosity ratio was decreased and deposition efficiency was improved. Furthermore, using these powders, it is possible to control the hardness value. Especially, when using mechanical milled powder, it is very difficult to identify the interface between the coating and the substrate. The bonding between the coating and the substrate is thus considered to be excellent. (author)

  14. Installation of the product transport system and control system for the Co-60 irradiator at the Institute of Investigations of the Alimentary Industry (IIIA), La Havana, Cuba

    International Nuclear Information System (INIS)

    Tran Khac An; Le Minh Tuan; Pham Thi Thu Hong; Nguyen Thanh Cuong; Huynh Dong Phuong; Ha Thanh Viet; Truong Vu Thanh Nhan

    2016-01-01

    Under the protocol of international cooperation in science and technology between Vietnam and Cuba - “Installation of the product transport system and control system for the Cobalt-60 irradiator at the Institute of Investigations of the Alimentary Industry (IIIA)”, the renovation of the irradiator has been started since 2012 and carried out by Research and Development Center for Radiation Technology (VINAGAMMA). The renovation work comprises the installation of the tote box transport system that was designed and constructed by Isotope Institute Budapest, Hungary, the installation of the PLC based control system which were designed and constructed by VINAGAMMA, installations of technological systems and training Cuban irradiator operators. The project has been successfully implemented and the industrial Co-60 irradiator with new control system has been put into operation. (author)

  15. Development of antimicrobial coating by later-by-layer dip coating of chlorhexidine-loaded micelles.

    Science.gov (United States)

    Tambunlertchai, Supreeda; Srisang, Siriwan; Nasongkla, Norased

    2017-06-01

    Layer-by-layer (LbL) dip coating, accompanying with the use of micelle structure, allows hydrophobic molecules to be coated on medical devices' surface via hydrogen bonding interaction. In addition, micelle structure also allows control release of encapsulated compound. In this research, we investigated methods to coat and maximize the amount of chlorhexidine (CHX) on silicone surface through LbL dip coating method utilizing hydrogen bonding interaction between PEG on micelle corona and PAA. The number of coated cycles was varied in the process and 90 coating cycles provided the maximum amount of CHX loaded onto the surface. In addition, pre-coating the surface with PAA enhanced the amount of coated CHX by 20%. Scanning electron microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used to validate and characterize the coating. For control release aspect, the coated film tended to disrupt at physiological condition; hence chemical crosslinking was performed to minimize the disruption and maximize the release time. Chemical crosslinking at pH 2.5 and 4.5 were performed in the process. It was found that chemical crosslinking could help extend the release period up to 18 days. This was significantly longer when compared to the non-crosslinking silicone tube that could only prolong the release for 5 days. In addition, chemical crosslinking at pH 2.5 gave higher and better initial burst release, release period and antimicrobial properties than that of pH 4.5 or the normal used pH for chemical crosslinking process.

  16. BATING A REFERENCE INSTALLATION BASED ON CONTROLLED-POTENTIAL COULOMETRY METOD IN THE FRAME OF IMPROVING THE STATE PRIMARY STANDARD GET 176 AND ITS MEASUREMENT CAPABILITIES

    Directory of Open Access Journals (Sweden)

    V. M. Zyskin

    2016-01-01

    Full Text Available The results of developing of reference installation, based on a controlled-potential coulometry, in the frame of improving the State primary standard of the units of mass (molar fraction and mass (molar concentration of a component in the liquid and solid substances and materials GET 176 are presented. The physical principles of controlled-potential coulometry, content and metrological characteristics of the developed installation are considered. Measurement results of copper, iron and lead contents in the certified reference materials of metals' solutions and CRM of brass produced by BAM, Germany, obtained using reference installation are given.

  17. Manual on quality assurance for installation and commissioning of instrumentation, control and electrical equipment in nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    The present Manual on Quality Assurance (QA) for Installation and Commissioning of Instrumentation, Control and Electrical (ICE) Equipment of Nuclear Power Plants contains supporting material and illustrative examples for implementing basic requirements of the quality assurance programme in procurement, receiving, installation and commissioning of this equipment. The Manual on Quality Assurance for Installation and Commissioning of ICE Equipment is designed to supplement and be consistent with the Guidebook as well as with the IAEA Code and Safety Guides on Quality Assurance. It is intended for the use of managerial staff and QA personnel of nuclear power plant owners or the organizations respectively responsible for the legal, technical, administrative and financial aspects of a nuclear power plant. The information provided in the Manual will also be useful to the inspection staff of the regulatory organization in the planning and performance of regulatory inspections at nuclear power plants

  18. 30 CFR 57.4131 - Surface fan installations and mine openings.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface fan installations and mine openings. 57... Fire Prevention and Control Prohibitions/precautions/housekeeping § 57.4131 Surface fan installations... stored within 100 feet of mine openings or within 100 feet of fan installations used for underground...

  19. Optical Coating Performance and Thermal Structure Design for Heat Reflectors of JWST Electronic Control Unit

    Science.gov (United States)

    Quijada, Manuel A.; Threat, Felix; Garrison, Matt; Perrygo, Chuck; Bousquet, Robert; Rashford, Robert

    2008-01-01

    The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling system.

  20. Controlling the degradation rate of AZ91 magnesium alloy via sol–gel derived nanostructured hydroxyapatite coating

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-10-15

    Magnesium (Mg) alloys have been introduced as new generation of biodegradable orthopedic materials in recent years since it has been proved that Mg is one of the main minerals required for osseous tissue revival. The main goal of the present study was to establish a desired harmony between the necessities of orthopedic patient body to Mg{sup 2+} ions and degradation rate of the Mg based implants as a new class of biodegradable/bioresorbable materials. This prospect was followed by providing a sol–gel derived nanostructured hydroxyapatite (n-HAp) coating on AZ91 alloy using dip coating technique. Phase structural analysis, morphology study, microstructure characterization, and functional group identification were performed using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The prepared samples were immersed in simulated body fluid in order to study the formation of apatite-like precipitations, barricade properties of the n-HAp coating, and to estimate the dosage of released Mg{sup 2+} ions within a specified and limited time of implantation. Electrochemical polarization tests were carried out to evaluate and compare the corrosion behavior of the n-HAp coated and uncoated samples. The changes of the in vitro pH values were also evaluated. Results posed the noticeable capability of n-HAp coating on stabilizing alkalization behavior and improving the corrosion resistance of AZ91 alloy. It was concluded that n-HAp coated AZ91 alloy could be a good candidate as a type of biodegradable implant material for biomedical applications. - Highlights: • Nanostructured hydroxyapatite coatings were applied on Mg based alloy. • The whole corrosion process of Mg based alloy was controlled in body fluid. • This coating was able to act as a barrier against further release of Mg{sup 2+} ions. • The coating improved the stabilization of Mg alkalization behavior.

  1. Controlling the degradation rate of AZ91 magnesium alloy via sol–gel derived nanostructured hydroxyapatite coating

    International Nuclear Information System (INIS)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-01-01

    Magnesium (Mg) alloys have been introduced as new generation of biodegradable orthopedic materials in recent years since it has been proved that Mg is one of the main minerals required for osseous tissue revival. The main goal of the present study was to establish a desired harmony between the necessities of orthopedic patient body to Mg 2+ ions and degradation rate of the Mg based implants as a new class of biodegradable/bioresorbable materials. This prospect was followed by providing a sol–gel derived nanostructured hydroxyapatite (n-HAp) coating on AZ91 alloy using dip coating technique. Phase structural analysis, morphology study, microstructure characterization, and functional group identification were performed using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The prepared samples were immersed in simulated body fluid in order to study the formation of apatite-like precipitations, barricade properties of the n-HAp coating, and to estimate the dosage of released Mg 2+ ions within a specified and limited time of implantation. Electrochemical polarization tests were carried out to evaluate and compare the corrosion behavior of the n-HAp coated and uncoated samples. The changes of the in vitro pH values were also evaluated. Results posed the noticeable capability of n-HAp coating on stabilizing alkalization behavior and improving the corrosion resistance of AZ91 alloy. It was concluded that n-HAp coated AZ91 alloy could be a good candidate as a type of biodegradable implant material for biomedical applications. - Highlights: • Nanostructured hydroxyapatite coatings were applied on Mg based alloy. • The whole corrosion process of Mg based alloy was controlled in body fluid. • This coating was able to act as a barrier against further release of Mg 2+ ions. • The coating improved the stabilization of Mg alkalization behavior

  2. Thin coatings for heavy industry: Advanced coatings for pipes and valves

    Science.gov (United States)

    Vernhes, Luc

    Pipes and valves are pressure vessels that regulate the flow of materials (liquids, gases, and slurries) by controlling the passageways. To optimize processes, reduce costs, and comply with government regulations, original equipment manufacturers (OEMs) must maintain their products in state-of-the-art condition. The first valves were invented over 3,000 years ago to supply water to farms and cities. They were made with bronze alloys, providing good corrosion resistance and acceptable tribological performance. The industrial revolution drove manufacturers to develop new and improved tribological materials. In the 20th century, innovative alloys such as Monel copper-nickel and Stellite cobalt-chrome as well as hard chrome plating were introduced to better control tribological properties and maximize in-service life. Since then, new materials have been regularly introduced to extend the range of applications for valves. For example, Teflon fluoropolymers are used in corrosive chemical and petrochemical processes, the nickel-based superalloys Hastelloy and Inconel for petrochemical applications, and creep-resistant chromium-rich F91 steel for supercritical power plants. Recently, the valve industry has embraced the use of hard thermal sprayed coatings for the most demanding applications, and is investing heavily in research to develop the most suitable coatings for specific uses. There is increasing evidence that the optimal solution to erosive, corrosive, and fretting wear problems lies in the design and manufacture of multi-layer, graded, and/or nanostructured coatings and coating systems that combine controlled hardness with high elastic modulus, high toughness, and good adhesion. The overall objectives of this thesis were 1) to report on advances in the development of structurally controlled hard protective coatings with tailored mechanical, elastoplastic, and thermal properties; and 2) to describe enhanced wear-, erosion-, and corrosion-resistance and other

  3. Anticorrosion and halobios control for tidal power generating units

    International Nuclear Information System (INIS)

    Shen, J C; Ding, L X

    2012-01-01

    The anticorrosion and halobios control is the key techniquesrelated to the safety and durability of tidal power generating units. The technique of material application, antifouling coating and cathodic protection are often adopted. The technical research, application, updating and development are carried on Jiangxia Tidal Power Station, which is based on the old Unit 1-Unit 5 operated for nearly 30 years, and the new Unit 6 operated in 2007. It is found that stainless steeland the antifouling coating used in Unit 1- Unit 5 are very effective, but cathodic protection is often likely to fail because of the limitation of structure and installation. Analyses and studies for anticorrosion and halobios control techniques of tidal power generating units according to theory, experience and actual effects have been done, which can be for reference to the tidal power station designers and builders.

  4. Analog Fixed Maximum Power Point Control for a PWM Step-downConverter for Water Pumping Installations

    DEFF Research Database (Denmark)

    Beltran, H.; Perez, E.; Chen, Zhe

    2009-01-01

    This paper describes a Fixed Maximum Power Point analog control used in a step-down Pulse Width Modulated power converter. The DC/DC converter drives a DC motor used in small water pumping installations, without any electric storage device. The power supply is provided by PV panels working around....... The proposed Optimal Power Point fix voltage control system is analyzed in comparison to other complex controls....... their maximum power point, with a fixed operating voltage value. The control circuit implementation is not only simple and cheap, but also robust and reliable. System protections and adjustments are also proposed. Simulations and hardware are reported in the paper for a 150W water pumping application system...

  5. IE Information Notice No. 85-75: Improperly installed instrumentation, inadequate quality control and inadequate postmodification testing

    International Nuclear Information System (INIS)

    Jordan, E.L.

    1992-01-01

    On June 10, 1985, the licensee informed the NRC Resident Inspector that for approximately 5 days LaSalle Unit 2 had been without the capability of automatic actuation of emergency core cooling (ECCS) and that for approximately 3 days during this period the plant had been without secondary containment integrity. The major cause of this condition was improper installation (the variable and reference legs were reversed) of the two reactor vessel level actuation switches which control Division 1 automatic depressurization system (ADS), low pressure core spray (LPCS), and reactor core isolation cooling (RCIC). On July 20, 1985, the Trojan Nuclear Power Plant tripped from 100% power because of a turbine trip that was caused by the loss of the unit auxiliary transformer. All systems functioned normally except that low suction pressure caused one auxiliary feedwater pump to trip and then the other auxiliary feedwater pump to trip after restart of the first auxiliary feedwater pump. The cause of the trips of the auxiliary feedwater pumps can be traced back to improper postmodification adjustment and inadequate postmodification testing following retrofit of environmentally qualified controllers for the auxiliary feedwater system. The auxiliary feedwater pump trips on low suction pressure were caused by excessive combined flow from the two auxiliary feedwater pumps that draw from a single header from the condensate storage tank. The flow control valves were open farther than required after new environmentally qualified controllers had been installed during a recent refueling outage

  6. Installation for analytic chemistry under irradiation

    International Nuclear Information System (INIS)

    Fradin, J.; Azoeuf, P.; Guillon, A.

    1966-01-01

    An installation has been set up for carrying out manipulations and chemical analyses on radioactive products. It is completely remote-controlled and is of linear shape, 15 metres long; it is made up of three zones: - an active zone containing the apparatus, - a rear zone giving access to the active zone, - a forward zone independent of the two others and completely protected from which the remote-control of the apparatus is effected. The whole assembly has been designed so that each apparatus corresponding to an analytical technique is set up in a sealed enclosure. The sealed enclosures are interconnected by a conveyor. After three years operation, a critical review is now made of the installation. (authors) [fr

  7. Phase Transition Control for High-Performance Blade-Coated Perovskite Solar Cells

    KAUST Repository

    Li, Jianbo; Munir, Rahim; Fan, Yuanyuan; Niu, Tianqi; Liu, Yucheng; Zhong, Yufei; Yang, Zhou; Tian, Yuansi; Liu, Bo; Sun, Jie; Smilgies, Detlef-M.; Thoroddsen, Sigurdur T; Amassian, Aram; Zhao, Kui; Liu, Shengzhong (Frank)

    2018-01-01

    with high crystal quality and photophysical properties can be obtained only via direct crystallization for both spin-coating and blade-coating processes. As a result, the blade-coated MAPbI3 films deliver excellent charge-collection efficiency at both short

  8. Electrophoretic deposition of sol-gel-derived ceramic coatings

    International Nuclear Information System (INIS)

    Zhang, Y.; Crooks, R.M.

    1992-01-01

    In this paper the physical, optical, and chemical characteristics of electrophoretically and dip-coated sol-gel ceramic films are compared. The results indicate that electrophoresis may allow a higher level of control over the chemistry and structure of ceramic coatings than dip-coating techniques. For example, controlled-thickness sol-gel coatings can be prepared by adjusting the deposition time or voltage. Additionally, electrophoretic coatings can be prepared in a four-component alumino-borosilicate sol display interesting optical characteristics. For example, the ellipsometrically-measured refractive indices of electrophoretic coatings are higher than the refractive indices of dip-coated films cast from identical sols, and they are also higher than any of the individual sol components. This result suggests that there are physical and/or chemical differences between films prepared by dip-coating and electrophoresis

  9. Application of Molecular Adsorber Coatings in Chamber A for the James Webb Space Telescope

    Science.gov (United States)

    Abraham, Nithin S.

    2017-01-01

    As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination. As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test

  10. Reduction of coating induced polarization aberrations by controlling the polarization state variation

    International Nuclear Information System (INIS)

    Li, Yanghui; Shen, Weidong; Zheng, Zhenrong; Zhang, Yueguang; Liu, Xu; Hao, Xiang

    2011-01-01

    The mechanism of coating induced polarization state variation is analysed by the Jones matrix. Pauli spin matrices are used to establish the relationship between coating induced polarization state variation and polarization aberrations. To reduce coating induced polarization aberrations, we propose that δ = 0 and T s = T p at arbitrary incident angle should be appended as two additional optimization goals of optical coating design when the requirements of transmittance are met. Two typical anti-reflection (AR) coatings are designed and the polarization state variation induced by them is simulated. The MTF (modulation transfer function) calculated by polarization ray tracing is applied to evaluate the polarization aberrations of the practical lithography objective system with the two AR coatings. All the obtained results show that the coating induced polarization aberrations can be reduced by optimizing the angle dependent properties of the optical coating without additional optical elements

  11. Implementation of Carbon Thin Film Coatings in the Super Proton Synchrotron (SPS) for Electron Cloud Mitigation

    CERN Document Server

    Costa Pinto, P; Basso, T; Edwards, P; Mensi, M; Sublet, A; Taborelli, M

    2014-01-01

    Low Secondary Electron Yield (SEY) carbon thin films eradicate electron multipacting in accelerator beam pipes. Two magnetic cells of the SPS were coated with such material and installed. In total more than forty vacuum vessels and magnet interconnections were treated. The feasibility of the coating process was validated. The performance of the carbon thin film will be tested with LHC nominal beams after the end of the long shutdown 1. Particular attention will be drawn to the long term behaviour. This paper presents the sputtering techniques used to coat the different components; their characterization (SEY measurements on coupons, RF multipacting tests and pump down curves); and the technology to etch the carbon film in case of a faulty coating. The strategy to coat the entire SPS will also be described.

  12. Safety report concerning the reactor Pegase - volume 1 - Description of the installation - volume 2 - Safety of the installations; Rapport de surete du reacteur pegase - tome 1 - Description des installations - tome 2 - Surete des installations

    Energy Technology Data Exchange (ETDEWEB)

    Lacour, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Legoin, P. [S.E.M. Hispano-Suiza, 92 - Colombes (France)

    1964-07-01

    In the first volume: This report is a description of the reactor Pegase, given with a view to examine the safety of the installations. The Cadarache site at which they are situated is briefly described, in particular because of the consequences on the techniques employed for building Pegase. A description is also given of the original aspects of the reactor. The independent loops which are designed for full-scale testing of fuel elements used in natural uranium-gas-graphite reactor systems are described in this report, together with their operational and control equipment. In the second volume: In the present report are examined the accidents which could cause damage to the Pegase reactor installation. Among possible causes of accidents considered are the seismicity of the region, an excessive power excursion of the reactor and a fracture in the sealing of an independent loop. Although all possible precautions have been taken to offset the effects of such accidents, their ultimate consequences are considered here. The importance is stressed of the security action and regulations which, added to the precautions taken for the construction, ensure the safety of the installations. (authors) [French] Dans le volume 1: Ce rapport est une description du reacteur Pegase, afin d'examiner la surete des installations. Le site de CADARACHE ou elles sont situees, a ete sommairement decrit, en particulier, a cause des consequences sur les techniques mises en oeuvre pour la realisation de Pegase. Nous nous sommes egalement attache a decrire les aspects originaux du reacteur. Les boucles autonomes destinees a tester en vraie grandeur des elements combustibles de la filiere uranium naturel graphite-gaz, ainsi que leurs dispositifs de controle et d'exploitation, figurent egalement dans ce rapport. Dans le volume 2: Dans le present rapport, nous examinons des accidents pouvant endommager des installations du reacteur Pegase. Les origines d'accidents examines

  13. Safety report concerning the reactor Pegase - volume 1 - Description of the installation - volume 2 - Safety of the installations; Rapport de surete du reacteur pegase - tome 1 - Description des installations - tome 2 - Surete des installations

    Energy Technology Data Exchange (ETDEWEB)

    Lacour, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Legoin, P [S.E.M. Hispano-Suiza, 92 - Colombes (France)

    1964-07-01

    In the first volume: This report is a description of the reactor Pegase, given with a view to examine the safety of the installations. The Cadarache site at which they are situated is briefly described, in particular because of the consequences on the techniques employed for building Pegase. A description is also given of the original aspects of the reactor. The independent loops which are designed for full-scale testing of fuel elements used in natural uranium-gas-graphite reactor systems are described in this report, together with their operational and control equipment. In the second volume: In the present report are examined the accidents which could cause damage to the Pegase reactor installation. Among possible causes of accidents considered are the seismicity of the region, an excessive power excursion of the reactor and a fracture in the sealing of an independent loop. Although all possible precautions have been taken to offset the effects of such accidents, their ultimate consequences are considered here. The importance is stressed of the security action and regulations which, added to the precautions taken for the construction, ensure the safety of the installations. (authors) [French] Dans le volume 1: Ce rapport est une description du reacteur Pegase, afin d'examiner la surete des installations. Le site de CADARACHE ou elles sont situees, a ete sommairement decrit, en particulier, a cause des consequences sur les techniques mises en oeuvre pour la realisation de Pegase. Nous nous sommes egalement attache a decrire les aspects originaux du reacteur. Les boucles autonomes destinees a tester en vraie grandeur des elements combustibles de la filiere uranium naturel graphite-gaz, ainsi que leurs dispositifs de controle et d'exploitation, figurent egalement dans ce rapport. Dans le volume 2: Dans le present rapport, nous examinons des accidents pouvant endommager des installations du reacteur Pegase. Les origines d'accidents examines comprennent la seismicite

  14. The size control of silver nanocrystals with different polyols and its application to low-reflection coating materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keum Hwan; Park, O Ok [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Im, Sang Hyuk, E-mail: imromy@krict.re.kr, E-mail: ookpark@kaist.ac.kr [Korea Research Institute of Chemical Technology (KRICT), 19 Singsungno, Yuseong-gu, Daejeon 305-600 (Korea, Republic of)

    2011-01-28

    The size of silver nanocrystals in polyol synthesis can be simply controlled by tuning the viscosity of the reaction medium such as ethylene glycol, 1,2-propanediol, 1,4-butanediol and 1,5-pentanediol. We found that a higher viscose medium (1,5-pentanediol) led to monodispersed smaller particles thanks to the slow addition of silver atoms into the nuclei. Size-controlled silver nanocrystals of 30 nm were obtained in a viscosity controlled medium of 1,5-pentanediol to synthesize a low refractive index filler by coating with silica and subsequent etching of the silver core. The coated low-reflection layer from the hollow silica nanoparticles on polyethylene terephthalate (PET) film can greatly reduce the reflection of the PET film from 10% to 2% over the entire visible region.

  15. The irradiation curing of coatings

    International Nuclear Information System (INIS)

    Autio, T.

    1974-01-01

    The electron beam irradiation curing of coatings has been technically feasible for over a decade. A brief description of the process is presented. The progress in this field has been astonishingly slow in comparison with the use of UV lamps as radiation source. The primary reason for this has been the great advantage in terms of capital cost of the UV curing lines and their ready adaptability to low or high production rates. A literature survey is given concerning basic and applied research in the electron curing area, patents, economics and existing installations around the world. (author)

  16. An acoustically controlled tetherless underwater vehicle for installation and maintenance of neutrino detectors in the deep ocean

    International Nuclear Information System (INIS)

    Ballou, Philip J.

    1997-01-01

    The task of installing and servicing high energy neutrino detectors in the deep ocean from a surface support vessel is problematic using conventional tethered systems. An array of multiple detector strings rising 500 m from the ocean floor, and forming a grid with 50 m spacing between the strings, presents a substantial entanglement hazard for equipment cables deployed from the surface. Such tasks may be accomplished with fewer risks using a tetherless underwater remotely operated vehicle that has a local acoustic telemetry link to send control commands and sensor data between the vehicle and a stationary hydrophone suspended above or just outside the perimeter of the work site. The Phase I effort involves the development of an underwater acoustic telemetry link for vehicle control and sensor feedback, the evaluation of video compression methods for real-time acoustic transmission of video through the water, and the defining of local control routines on board the vehicle to allow it to perform certain basic maneuvering tasks autonomously, or to initiate a self-rescue if the acoustic control link should be lost. In Phase II, a prototype tetherless vehicle system will be designed and constructed to demonstrate the ability to install cable interconnections within a detector array at 4 km depth. The same control technology could be used with a larger more powerful vehicle to maneuver the detector strings into desired positions as they are being lowered to the ocean floor

  17. Study of silica coatings degradation under laser irradiation and in controlled environment

    International Nuclear Information System (INIS)

    Becker, S.

    2006-11-01

    Performances of optical components submitted to high laser intensities are usually determined by their laser-induced damage threshold. This value represents the highest density of energy (fluence) sustainable by the component before its damage. When submitted to laser fluences far below this threshold, optical performances may also decrease with time. The degradation processes depend on laser characteristics, optical materials, and environment around the component. Silica being the most used material in optics, the aim of this study was to describe and analyse the physical-chemical mechanisms responsible for laser-induced degradation of silica coatings in controlled environment. Experimental results show that degradation is due to the growth of a carbon deposit in the irradiated zone. From these results, a phenomenological model has been proposed and validated with numerical simulations. Then, several technological solutions have been tested in order to reduce the laser-induced contamination of silica coatings. (author)

  18. Smart Microgrid Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations

    Science.gov (United States)

    2013-05-01

    reduced greenhouse gas (GHG) emissions; 2. Increased energy efficiency; and 3. Increased energy surety. This demonstration will also directly impact ...megawatt (MW), as well as a gas-fired cogeneration plant in excess of 7 MW. In the future, additional solar PV, fuel cells and advanced energy storage... Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations May 2013 Report Documentation Page Form

  19. IPPC installations in France and limit values of emission

    International Nuclear Information System (INIS)

    Soleille, S.

    2004-05-01

    The IPPC directive of the 24 September 1996 asked for the main european industrial installations an authorization. This authorization fixes limit values for pollutant emissions. In France, the main industrial installations are controlled since many years in the framework of the regulation on classified installations for the environment protection (ICPE). This report compares the limit values of emissions for the national and prefectorial orders and for the IPPC directive. (A.L.B.)

  20. Changes in radiological protection and quality control in Spanish dental installations: 1996-2003.

    Science.gov (United States)

    Alcaraz-Baños, Miguel; Parra-Pérez, María del Carmen; Armero-Barranco, David; Velasco-Hidalgo, Francisco; Velasco-Hidalgo, Esteban

    2009-10-01

    The European Union has established specific directives concerning radiological protection which are obligatory for member States. In addition, all Spanish dental clinics with radiological equipment are required to have an annual quality control check. To analyze the effect of new European legislation on dental radiological practice in Spain and to determine whether it has resulted in lower doses being administered to patients. A total of 10,171 official radiological quality control reports on Spanish dental clinics, covering 16 autonomous regions, were studied following the passing of Royal Decree 2071/1995 on quality criteria in radiodiagnostic installations. The reports, compiled by U.T.P.R Asigma S.A., a company authorised by the Nuclear Safety Council, cover the years 1996 to 2003, which has enabled us to monitor the evolution of radiological procedures in dental clinics over a seven year period. According to the reports for 2003, 77.3 % of clinics complied with EU requirements, using equipment of 70 kVp, 8 mA, 1.5 mm Al filters, with a collimator length of 20 cm. However, non-compliance was detected in approximately a third (30.8%) of the equipment inspected: alterations in the kilovoltage used, exposure time, performance of the tubing, dosage, linearity/intensity of current and acoustic-luminous signal 6.86%. The mean skin dose reached 3.11 mGy for patients who received an x-ray of an upper molar, representing a decrease of 18% over the seven years studied. there has obviously been a general improvement in the parameters studied, but only 77.3% of the installations complied fully with official EU regulations concerning dental radiological protection.

  1. Cabin fuselage structural design with engine installation and control system

    Science.gov (United States)

    Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike

    1994-01-01

    Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.

  2. Programmable DSP-based multi-bunch feedback--operational experience from six installations

    International Nuclear Information System (INIS)

    Fox, J.; Prabhakar, S.; Teytelman, D.; Young, A.; Stover, G.; Drago, A.; Serio, M.; Khan, S.; Knuth, T.; Kim, Y.; Park, M.

    2000-01-01

    A longitudinal instability control system, originally developed for the PEP-II, DAΦNE and ALS machines has in the last two years been commissioned for use at the PLS and BESSY-II light sources. All of the installations are running identical hardware and use a common software distribution package. This common structure is beneficial in sharing expertise among the labs, and allows rapid commissioning of each new installation based on well-understood diagnostic and operational techniques. While the installations share the common instability control system, there are significant differences in machine dynamics between the various colliders and light sources. These differences require careful specification of the feedback algorithm and system configuration at each installation to achieve good instability control and useful operational margins. This paper highlights some of the operational experience at each installation, using measurements from each facility to illustrate the challenges unique to each machine. Our experience on the opportunities and headaches of sharing development and operational expertise among labs on three continents is also offered

  3. Installation package for a sunspot cascade solar water heating system

    Science.gov (United States)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  4. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zomorodian, A., E-mail: amir.zomorodian@ist.utl.pt [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Garcia, M.P. [Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto (Portugal); Moura e Silva, T. [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); ISEL, Department of Mechanical Engineering, 1959-007 Lisboa (Portugal); Fernandes, J.C.S. [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Fernandes, M.H. [Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto (Portugal); Montemor, M.F. [ICEMS-DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2015-03-01

    In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. - Highlights: • A biofunctional coating architecture for bioresorbable AZ31 Mg alloys is proposed. • The composite coating provides corrosion protection of the bare material. • The coating enhances alkaline phosphatase activity of osteoblastic cells. • The presence of hydroxyapatite results in higher osteoblastic differentiation.

  5. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy

    International Nuclear Information System (INIS)

    Zomorodian, A.; Garcia, M.P.; Moura e Silva, T.; Fernandes, J.C.S.; Fernandes, M.H.; Montemor, M.F.

    2015-01-01

    In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. - Highlights: • A biofunctional coating architecture for bioresorbable AZ31 Mg alloys is proposed. • The composite coating provides corrosion protection of the bare material. • The coating enhances alkaline phosphatase activity of osteoblastic cells. • The presence of hydroxyapatite results in higher osteoblastic differentiation

  6. Anhydrous polymer-based coating with sustainable controlled release functionality for facile, efficacious impregnation, and delivery of antimicrobial peptides.

    Science.gov (United States)

    Lim, Kaiyang; Saravanan, Rathi; Chong, Kelvin K L; Goh, Sharon H M; Chua, Ray R Y; Tambyah, Paul A; Chang, Matthew W; Kline, Kimberly A; Leong, Susanna S J

    2018-04-17

    Anhydrous polymers are actively explored as alternative materials to overcome limitations of conventional hydrogel-based antibacterial coating. However, the requirement for strong organic solvent in polymerization reactions often necessitates extra protection steps for encapsulation of target biomolecules, lowering encapsulation efficiency, and increasing process complexity. This study reports a novel coating strategy that allows direct solvation and encapsulation of antimicrobial peptides (HHC36) into anhydrous polycaprolactone (PCL) polymer-based dual layer coating. A thin 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) film is layered onto the peptide-impregnated PCL as a diffusion barrier, to modulate and enhance release kinetics. The impregnated peptides are eventually released in a controlled fashion. The use of 2,2,2-trifluoroethanol (TFE), as polymerization and solvation medium, induces the impregnated peptides to adopt highly stable turned conformation, conserving peptide integrity, and functionality during both encapsulation and subsequent release processes. The dual layer coating showed sustained antibacterial functionality, lasting for 14 days. In vivo assessment using an experimental mouse wounding model demonstrated good biocompatibility and significant antimicrobial efficacy of the coating under physiological conditions. The coating was translated onto silicone urinary catheters and showed promising antibacterial efficacy, even outperforming commercial silver-based Dover cather. This anhydrous polymer-based platform holds immense potential as an effective antibacterial coating to prevent clinical device-associated infections. The simplicity of the coating process enhances its industrial viability. © 2018 Wiley Periodicals, Inc.

  7. Controllable mineral coatings on PCL scaffolds as carriers for growth factor release.

    Science.gov (United States)

    Suárez-González, Darilis; Barnhart, Kara; Migneco, Francesco; Flanagan, Colleen; Hollister, Scott J; Murphy, William L

    2012-01-01

    In this study, we have developed mineral coatings on polycaprolactone scaffolds to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO(3)) concentration in mSBF of 4.2 mm, 25 mm, and 100 mm. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite, the major inorganic constituent of human bone tissue in coatings formed in all HCO(3) concentrations. Mineral coatings with increased HCO(3) substitution showed more rapid dissolution kinetics in an environment deficient in calcium and phosphate but showed re-precipitation in an environment with the aforementioned ions. The mineral coating provided an effective mechanism for growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral mineral-coated PCL scaffolds. We also demonstrated sustained release of all growth factors with release kinetics that were strongly dependent in the solubility of the mineral coating. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Requirements for Vertically Installed Runoff Control Boards for the “Paddy Field Dam” and Appropriate Orifice Shapes

    Science.gov (United States)

    Natsuki, Yoshikawa; Hideyuki, Koide; Shin-Ichi, Misawa

    While the “Paddy Field Dam” project has been recognized as an effective flood control measure, there are some cases in which the runoff control boards are vertically installed on the opening of the drainage boxes without careful consideration of the orifice shape and size. The important criteria for the runoff control boards to be satisfied are: 1. to maintain a sufficient peak runoff control function, 2. to avoid excessive ponding causing overflow, 3. to minimize the influence to the ordinary water management, and 4. to reserve sufficient orifice area to avoid blockage of the orifice with floating litters. The purpose of this study is to examine proper shapes and sizes of the orifice to satisfy the criteria for the vertically installed runoff control boards through experiments and simulations. Given the condition that the orifice has sufficient area to avoid overflow with 10 and 20 year return period rainfall event (criteria 2), the simulation results show that the orifice with horizontally wider shapes has advantages over the square or circular shapes in terms of the criteria 1 and 3. The disadvantage of the horizontally wider shapes is the blockage of the orifice with floating litters (criteria 4). In conclusion, we proposed to secure sufficient vertical distance to avoid this problem by setting a lower limit on the vertical distance and then determine the widest horizontal distance to optimize all the criteria. In addition, we have constructed the “Orifice Design Assist Tool” on the basis of the examinations in this study.

  9. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy.

    Science.gov (United States)

    Zomorodian, A; Garcia, M P; Moura E Silva, T; Fernandes, J C S; Fernandes, M H; Montemor, M F

    2015-03-01

    In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Multispectral Image Analysis for Astaxanthin Coating Classification

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Ersbøll, Bjarne Kjær; Nielsen, Michael Engelbrecht

    2012-01-01

    Industrial quality inspection using image analysis on astaxanthin coating in aquaculture feed pellets is of great importance for automatic production control. The pellets were divided into two groups: one with pellets coated using synthetic astaxanthin in fish oil and the other with pellets coated...

  11. Installation report - Lidar

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Villanueva, Héctor

    The report describes the installation, configuration and data transfer for the ground-based lidar. The unit is provided by a customer but is installed and operated by DTU while in this project.......The report describes the installation, configuration and data transfer for the ground-based lidar. The unit is provided by a customer but is installed and operated by DTU while in this project....

  12. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    Science.gov (United States)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi

    2013-01-01

    Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection. PMID:23999307

  13. Technical - economical opportunity of replacing rubber coated steel in tubes and reinforcements by polyethylene of high density for corrosive media

    International Nuclear Information System (INIS)

    Alessandrescu, A.; Dogaru, D.

    2004-01-01

    The polyethylene of high density, PEHD, is currently used for methane gas, drinking water (hot and cool) tube systems as well as for interior and exterior installations for domestic and industrial consumers. In this paper one proposes an extension of the range of PEHD utilizations to irrigation grids, transport and distribution of the food and industrial liquids, for coating the optical fibres, replacing the systems of tubes with anti corrosive properties (stainless steels, carbon steels coated with rubber), protection of hot fluid transport tubes, fire extinguishers, etc.). To evidence the advantages of replacing the rubber coated steel tubing by PEHD tubes a comparative technical-economical thorough analysis was conducted in the Heavy Water Plant . The paper presents: - the PEHD, a thermoplastic material for fluid transport under pressure; - physico-chemical and mechanical properties of the PEHD products; - types of characteristic dimensions of the PEHD products; - techniques of joining used in mounting PEHD grids; - tools and devices used in welding. Presented are the general properties and computing elements for tubes, assembling procedures, testing and quality control in the mountings of PEHD tube systems. In conclusion, using PEHD in the fields mentioned is advantageous from both technical and economical point of view as compared with rubber coated tubing

  14. Method for coating substrates and mask holder

    NARCIS (Netherlands)

    Bijkerk, Frederik; Yakshin, Andrey; Louis, Eric; Kessels, M.J.H.; Maas, Edward Lambertus Gerardus; Bruineman, Caspar

    2004-01-01

    When coating substrates it is frequently desired that the layer thickness should be a certain function of the position on the substrate to be coated. To control the layer thickness a mask is conventionally arranged between the coating particle source and the substrate. This leads to undesirable

  15. Does hydroxyapatite coating have no advantage over porous coating in primary total hip arthroplasty? A meta-analysis.

    Science.gov (United States)

    Chen, Yun-Lin; Lin, Tiao; Liu, An; Shi, Ming-Min; Hu, Bin; Shi, Zhong-Li; Yan, Shi-Gui

    2015-01-28

    There are some arguments between the use of hydroxyapatite and porous coating. Some studies have shown that there is no difference between these two coatings in total hip arthroplasty (THA), while several other studies have shown that hydroxyapatite has advantages over the porous one. We have collected the studies in Pubmed, MEDLINE, EMBASE, and the Cochrane library from the earliest possible years to present, with the search strategy of "(HA OR hydroxyapatite) AND ((total hip arthroplasty) OR (total hip replacement)) AND (RCT* OR randomiz* OR control* OR compar* OR trial*)". The randomized controlled trials and comparative observation trials that evaluated the clinical and radiographic effects between hydroxyapatite coating and porous coating were included. Our main outcome measurements were Harris hip score (HHS) and survival, while the secondary outcome measurements were osteolysis, radiolucent lines, and polyethylene wear. Twelve RCTs and 9 comparative observation trials were included. Hydroxyapatite coating could improve the HHS (p hydroxyapatite coating had no advantages on survival (p = 0.32), polyethylene wear (p = 0.08), and radiolucent lines (p = 0.78). Hydroxyapatite coating has shown to have an advantage over porous coating. The HHS and survival was duration-dependent-if given the sufficient duration of follow-up, hydroxyapatite coating would be better than porous coating for the survival. The properties of hydroxyapatite and the implant design had influence on thigh pain incidence, femoral osteolysis, and polyethylene wear. Thickness of 50 to 80 μm and purity larger than 90% increased the thigh pain incidence. Anatomic design had less polyethylene wear.

  16. Cratering Equations for Zinc Orthotitanate Coated Aluminum

    Science.gov (United States)

    Hyde, James; Christiansen, Eric; Liou, Jer-Chyi; Ryan, Shannon

    2009-01-01

    The final STS-125 servicing mission (SM4) to the Hubble Space Telescope (HST) in May of 2009 saw the return of the 2nd Wide Field Planetary Camera (WFPC2) aboard the shuttle Discovery. This hardware had been in service on HST since it was installed during the SM1 mission in December of 1993 yielding one of the longest low Earth orbit exposure times (15.4 years) of any returned space hardware. The WFPC2 is equipped with a 0.8 x 2.2 m radiator for thermal control of the camera electronics (Figure 1). The space facing surface of the 4.1 mm thick aluminum radiator is coated with Z93 zinc orthotitanate thermal control paint with a nominal thickness of 0.1 0.2 mm. Post flight inspections of the radiator panel revealed hundreds of micrometeoroid/orbital debris (MMOD) impact craters ranging in size from less than 300 to nearly 1000 microns in diameter. The Z93 paint exhibited large spall areas around the larger impact sites (Figure 2) and the craters observed in the 6061-T651 aluminum had a different shape than those observed in uncoated aluminum. Typical hypervelocity impact craters in aluminum have raised lips around the impact site. The craters in the HST radiator panel had suppressed crater lips, and in some cases multiple craters were present instead of a single individual crater. Humes and Kinard observed similar behavior after the WFPC1 post flight inspection and assumed the Z93 coating was acting like a bumper in a Whipple shield. Similar paint behavior (spall) was also observed by Bland2 during post flight inspection of the International Space Station (ISS) S-Band Antenna Structural Assembly (SASA) in 2008. The SASA, with similar Z93 coated aluminum, was inspected after nearly 4 years of exposure on the ISS. The multi-crater phenomena could be a function of the density, composition, or impact obliquity angle of the impacting particle. For instance, a micrometeoroid particle consisting of loosely bound grains of material could be responsible for creating the

  17. Hard coatings

    International Nuclear Information System (INIS)

    Dan, J.P.; Boving, H.J.; Hintermann, H.E.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  18. Controlled Distribution and Clustering of Silver in Ag-DLC Nanocomposite Coatings Using a Hybrid Plasma Approach.

    Science.gov (United States)

    Cloutier, M; Turgeon, S; Busby, Y; Tatoulian, M; Pireaux, J-J; Mantovani, D

    2016-08-17

    Incorporation of selected metallic elements into diamond-like carbon (DLC) has emerged as an innovative approach to add unique functional properties to DLC coatings, thus opening up a range of new potential applications in fields as diverse as sensors, tribology, and biomaterials. However, deposition by plasma techniques of metal-containing DLC coatings with well-defined structural properties and metal distribution is currently hindered by the limited understanding of their growth mechanisms. We report here a silver-incorporated diamond-like carbon coating (Ag-DLC) prepared in a hybrid plasma reactor which allowed independent control of the metal content and the carbon film structure and morphology. Morphological and chemical analyses of Ag-DLC films were performed by atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. The vertical distribution of silver from the surface toward the coating bulk was found to be highly inhomogeneous due to top surface segregation and clustering of silver nanoparticles. Two plasma parameters, the sputtered Ag flux and ion energy, were shown to influence the spatial distribution of silver particles. On the basis of these findings, a mechanism for Ag-DLC growth by plasma was proposed.

  19. Controlling the scattering properties of thin, particle-doped coatings

    Science.gov (United States)

    Rogers, William; Corbett, Madeleine; Manoharan, Vinothan

    2013-03-01

    Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.

  20. Coating thickness measuring device

    International Nuclear Information System (INIS)

    Joffe, B.B.; Sawyer, B.E.; Spongr, J.J.

    1984-01-01

    A device especially adapted for measuring the thickness of coatings on small, complexly-shaped parts, such as, for example, electronic connectors, electronic contacts, or the like. The device includes a source of beta radiation and a radiation detector whereby backscatter of the radiation from the coated part can be detected and the thickness of the coating ascertained. The radiation source and detector are positioned in overlying relationship to the coated part and a microscope is provided to accurately position the device with respect to the part. Means are provided to control the rate of descent of the radiation source and radiation detector from its suspended position to its operating position and the resulting impact it makes with the coated part to thereby promote uniformity of readings from operator to operator, and also to avoid excessive impact with the part, thereby improving accuracy of measurement and eliminating damage to the parts

  1. Licensing system for primary category radioactive installations

    International Nuclear Information System (INIS)

    Ramirez Riquelme, Angelica Beatriz

    1997-01-01

    The development of a licensing system for primary category radioactive installations is described, which aims to satisfy the needs of the Chilean Nuclear Energy Commission's Department of Nuclear and Radiological Safety, particularly the sections for Licensing Outside Radioactive Installations and Safety Control. This system involves the identification, control and inspection of the installations, their personnel and connected activities, for the purpose of protecting the population's health and the environment. Following the basic cycle methodology, a systems analysis and engineering stage was prepared, establishing the functions of the system's elements and defining the requirements, based on interviews with the users. This stage was followed by the design stage, focusing on the data structure, the software architecture and the procedural detail. The codification stage followed, which translated the design into legible machine-readable format. In the testing stage, the entries that were defined were proven to produce the expected data. Finally and operational and maintenance stage was developed, when the system was installed and put to use. All the above generated a useful system for the Licensing section of the Department of Nuclear and Radiological Safety, since it provides faster and easier access to information. A project is described that introduces new development tools in the Computer department following standards established by the C.CH.E.N. (author)

  2. Vapor deposition on doublet airfoil substrates: Control of coating thickness and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G., E-mail: haydn@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., P.O. Box 400745, Charlottesville, Virginia 22904 (United States)

    2015-11-15

    Gas jet assisted vapor deposition processes for depositing coatings are conducted at higher pressures than conventional physical vapor deposition methods, and have shown promise for coating complex shaped substrates including those with non-line-of-sight (NLS) regions on their surface. These regions typically receive vapor atoms at a lower rate and with a wider incident angular distribution than substrate regions in line-of-sight (LS) of the vapor source. To investigate the coating of such substrates, the thickness and microstructure variation along the inner (curved) surfaces of a model doublet airfoil containing both LS and NLS regions has been investigated. Results from atomistic simulations and experiments confirm that the coating's thickness is thinner in flux-shadowed regions than in other regions for all the coating processes investigated. They also indicated that the coatings columnar microstructure and pore volume fraction vary with surface location through the LS to NLS transition zone. A substrate rotation strategy for optimizing the thickness over the entire doublet airfoil surface was investigated, and led to the identification of a process that resulted in only small variation of coating thickness, columnar growth angle, and pore volume fraction on all doublet airfoil surfaces.

  3. Vesicle coating and uncoating: controlling the formation of large COPII-coated carriers.

    Science.gov (United States)

    Townley, Anna K; Stephens, David J

    2009-08-26

    The basic mechanisms underlying the formation of coated vesicles are now defined in considerable detail. This article highlights recent developments in our understanding of the problem of exporting large macromolecular cargo such as procollagen from the endoplasmic reticulum and discusses the implications that this has for cell and tissue organisation and human disease.

  4. Emerging Nanotechnology-based Corrosion Control Coatings

    Science.gov (United States)

    2009-02-01

    Carbon black Calcium carbonate Carbon nanotubes Cerium oxide Dendrimers, hyperbranched and supramolecules Indium... Microcapsule with Bisphenol A epoxy Microcapsule with Ketimine O O O O O O O H O n Selected SEM images of various microcapsules SEM and optical...microscopy images of cross-section of self-healing coating Microcapsule rupture and healing agent release is triggered by: T> Tm

  5. Microencapsulation Technologies for Corrosion Protective Coating Applications

    Science.gov (United States)

    Li, Wenyan; Buhrow, Jerry; Jolley, Scott; Calle, Luz; Pearman, Benjamin; Zhang, Xuejun

    2015-01-01

    Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance.

  6. Precision Optical Coatings for Large Space Telescope Mirrors

    Science.gov (United States)

    Sheikh, David

    This proposal “Precision Optical Coatings for Large Space Telescope Mirrors” addresses the need to develop and advance the state-of-the-art in optical coating technology. NASA is considering large monolithic mirrors 1 to 8-meters in diameter for future telescopes such as HabEx and LUVOIR. Improved large area coating processes are needed to meet the future requirements of large astronomical mirrors. In this project, we will demonstrate a broadband reflective coating process for achieving high reflectivity from 90-nm to 2500-nm over a 2.3-meter diameter coating area. The coating process is scalable to larger mirrors, 6+ meters in diameter. We will use a battery-driven coating process to make an aluminum reflector, and a motion-controlled coating technology for depositing protective layers. We will advance the state-of-the-art for coating technology and manufacturing infrastructure, to meet the reflectance and wavefront requirements of both HabEx and LUVOIR. Specifically, we will combine the broadband reflective coating designs and processes developed at GSFC and JPL with large area manufacturing technologies developed at ZeCoat Corporation. Our primary objectives are to: Demonstrate an aluminum coating process to create uniform coatings over large areas with near-theoretical aluminum reflectance Demonstrate a motion-controlled coating process to apply very precise 2-nm to 5- nm thick protective/interference layers to large areas, Demonstrate a broadband coating system (90-nm to 2500-nm) over a 2.3-meter coating area and test it against the current coating specifications for LUVOIR/HabEx. We will perform simulated space-environment testing, and we expect to advance the TRL from 3 to >5 in 3-years.

  7. Installation dismantling system, working process and hood utilizable in this system

    International Nuclear Information System (INIS)

    Poirier, J.C.; Mulcey, P.; Morel, P.; Vavasseur, C.

    1989-01-01

    The system for dismantling an installation under a controlled atmosphere is made by a tool polluting the atmosphere, a gas blanket creating a continement zone around the tool, an extractor removing polluted gas from the zone, a purifier for the extracted gas and a controller regulating the flow of gas in the blanket and keeping the installation at constant pressure [fr

  8. Glass/ceramic coatings for implants

    Science.gov (United States)

    Tomsia, Antoni P [Pinole, CA; Saiz, Eduardo [Berkeley, CA; Gomez-Vega, Jose M [Nagoya, JP; Marshall, Sally J [Larkspur, CA; Marshall, Grayson W [Larkspur, CA

    2011-09-06

    Glass coatings on metals including Ti, Ti6A14V and CrCo were prepared for use as implants. The composition of the glasses was tailored to match the thermal expansion of the substrate metal. By controlling the firing atmosphere, time, and temperature, it was possible to control the reactivity between the glass and the alloy and to fabricate coatings (25-150 .mu.m thick) with excellent adhesion to the substrate. The optimum firing temperatures ranged between 800 and 840.degree. C. at times up to 1 min in air or 15 min in N.sub.2. The same basic technique was used to create multilayered coatings with concentration gradients of hydroxyapatite (HA) particles and SiO.sub.2.

  9. Coatings for fusion reactor environments

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1979-01-01

    The internal surfaces of a tokamak fusion reactor control the impurity injection and gas recycling into the fusion plasma. Coating of internal surfaces may provide a desirable and possibly necessary design flexibility for achieving the temperatures, ion densities and containment times necessary for net energy production from fusion reactions to take place. In this paper the reactor environments seen by various componentare reviewed along with possible materials responses. Characteristics of coating-substrate systems, important to fusion applications, are delineated and the present status of coating development for fusion applications is reviewed. Coating development for fusion applications is just beginning and poses a unique and important challenge for materials development

  10. Assembly of an Oxalate Decarboxylase Produced under σK Control into the Bacillus subtilis Spore Coat

    Science.gov (United States)

    Costa, Teresa; Steil, Leif; Martins, Lígia O.; Völker, Uwe; Henriques, Adriano O.

    2004-01-01

    Over 30 polypeptides are synthesized at various times during sporulation in Bacillus subtilis, and they are assembled at the surface of the developing spore to form a multilayer protein structure called the coat. The coat consists of three main layers, an amorphous undercoat close to the underlying spore cortex peptidoglycan, a lamellar inner layer, and an electron-dense striated outer layer. The product of the B. subtilis oxdD gene was previously shown to have oxalate decarboxylase activity when it was produced in Escherichia coli and to be a spore constituent. In this study, we found that OxdD specifically associates with the spore coat structure, and in this paper we describe regulation of its synthesis and assembly. We found that transcription of oxdD is induced during sporulation as a monocistronic unit under the control of σK and is negatively regulated by GerE. We also found that localization of a functional OxdD-green fluorescent protein (GFP) at the surface of the developing spore depends on the SafA morphogenetic protein, which localizes at the interface between the spore cortex and coat layers. OxdD-GFP localizes around the developing spore in a cotE mutant, which does not assemble the spore outer coat layer, but it does not persist in spores produced by the mutant. Together, the data suggest that OxdD-GFP is targeted to the interior layers of the coat. Additionally, we found that expression of a multicopy allele of oxdD resulted in production of spores with increased levels of OxdD that were able to degrade oxalate but were sensitive to lysozyme. PMID:14973022

  11. Antifouling coating with controllable and sustained silver release for long-term inhibition of infection and encrustation in urinary catheters.

    Science.gov (United States)

    Wang, Rong; Neoh, Koon Gee; Kang, En-Tang; Tambyah, Paul Anantharajah; Chiong, Edmund

    2015-04-01

    Urinary tract infections constitute a large proportion of nosocomial infections, and the urinary catheter is the most important predisposing factor. Encrustation induced by urease-producing uropathogens like Proteus mirabilis causes further complications. In the present work, a strategy for controllable and sustained release of silver over several weeks has been developed for combating bacterial infection and encrustation in urinary devices. Silver nanoparticles (AgNPs) were first immobilized on polydopamine (PDA) pre-treated silicone catheter surface and this was followed by another PDA coating. The number of AgNP-PDA bilayers could be manipulated to control the amount of silver loaded and its subsequent release. Poly(sulfobetaine methacrylate-co-acrylamide) was then grafted to provide an antifouling outer layer, and to ensure free diffusion of Ag from the surface. The micron-scale combination of an antifouling coating with AgNP-PDA bilayers reduced colonization of the urinary catheter by uropathogens by approximately two orders of magnitude. With one and two AgNP-PDA bilayers, the coated catheter could resist encrustation for 12 and 45 days, respectively, compared with approximately 6 days with the Dover™ silver-coated catheter. Such anti-infective and anti-encrustation catheters can potentially have a large impact on reducing patient morbidity and healthcare expenditure. © 2014 Wiley Periodicals, Inc.

  12. Electrotechnical installations. Transformer stations. Construction; transformer rooms. Elektrotechnische Anlagen. Transformatorenstationen. Bauliche Ausfuehrung; Raeume fuer Transformatoren

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    The data sheet to standardize the construction of transformer rooms for stationary transformers and takes into account the replacement of transformers by units made by different manufacturers. It contains information about the position, dimensions, load assumptions, construction of ceilings, walls and floors, cable routes, electric installations for lighting and ventilation systems, windows and doors, venting, paint and surface protection coatings, arrangement and design of oil catch pans, and calculation of the venting cross sections. Pertinent VDE rules are listed.

  13. Apparatus for installing and removing a control rod drive in a nuclear reactor

    International Nuclear Information System (INIS)

    Turner, A.P.L.; Ward, R.

    1989-01-01

    This patent describes an apparatus for installing and removing a control rod drive from beneath the pressure vessel of a nuclear reactor. It consists of elevator carriage for carrying the control rod drive into and out of the region beneath the pressure vessel in a generally horizontal position, an elevator cradle mounted on the carriage for pivotal movement about an axis between horizontal and vertical positions and for vertical movement, when in the vertical position, means for securing the control rod drive to the elevator cradle, and a winch cart movable horizontally between a first position spaced from the pivot axis and a second position near the pivot axis. The cart has a winch cable supporting the lower end of the elevator carriage for moving the elevator carriage and the control rod drive between horizontal and vertical positions on the elevator carriage when the cart is spaced from the pivot axis and for raising and lowering the elevator cradle and the control rod drive when the cart is positioned near the pivot axis. The control rod drive is mounted on the elevator cradle by a bearing permitting rotational and horizontal movement of the control rod drive when the drive is in a vertical position, a swing arm, a pneumatically actuated cylinder in axial alignment with the control rod drive for raising and lowering the control rod drive, and means pivotally mounting the cylinder on the swing arm for movement about an axis spaced from and generally parallel to the vertically extending axis so that the position of the cylinder and the control rod drive can be shifted horizontally about the vertically extending axes

  14. Correcting and coating thin walled X-ray Optics via a combination of controlled film deposition and magnetic smart materials

    Science.gov (United States)

    Ulmer, Melville

    The project goal is to demonstrate that thin walled (price. Since the desired surface area for the next generation X-ray telescope is >10x that of Chandra, the >10x requirement is then for >200 m^2 of surface area with a surface finish of better than 0.5 nm. Therefore, replication of some sort is called for. Because no replication technology has been shown to achieve ≤1" angular resolution, post fabrication figure corrections are likely going to be necessary. Some have proposed to do this in orbit and others prelaunch including us. Our prelaunch approach is to apply in-plane stresses to the thin walled mirror shells via a magnetic field. The field will be held in by some magnetically hard material such as NiCo. By use of a so called magnetic smart material (MSM) such as Terfenol-D, we already shown that strong enough stresses can be generated. Preliminary work has also shown that the magnetic field can be held in well enough to apply the figure correcting stresses pre-launch. What we call "set-it and forget-it." However, what is unique about our approach is that at the cost of complexity and some areal coverage, our concept will also accommodate in-orbit adjustments. Furthermore, to the best of our knowledge ours is one of two known stress modification processes that are bi-axial. Our plan is first to validate set-it and forget-it first on cantilevers and then to expand this to working on 5 cm x 5 cm pieces. We will work both with NiCo and glass or Si coated with Terfenol-D. Except for the NiCo, substrates we will also coat the samples with NiCo in order to have a film that will hold in the magnetic field. As part of the coating process, we will control the stress of the film by varying the voltage bias while coating. The bias stress control can be used to apply films with minimal stress such as Terfenol-D and X-ray reflecting coatings such as Ir. Ir is a highly desirable coating for soft X-ray astronomy mirrors that can have significant built in stress unless

  15. Endothelial function in children with white-coat hypertension.

    Science.gov (United States)

    Jurko, Alexander; Jurko, Tomas; Minarik, Milan; Mestanik, Michal; Mestanikova, Andrea; Micieta, Vladimir; Visnovcova, Zuzana; Tonhajzerova, Ingrid

    2018-01-29

    Several studies have demonstrated endothelial dysfunction in patients with essential hypertension. However, the presence of endothelial dysfunction in children with white-coat hypertension has not been studied. We evaluated the endothelial function in children with white-coat hypertension and essential hypertension using a novel method based on the assessment of flow-mediated dilation (FMD). Study involved 106 children: 30 white-coat hypertensives (age 16.3 ± 1.3 years, mean ± SD), 30 essential hypertensives (age 16.4 ± 1.3 years), and 46 healthy controls (age 16.2 ± 1.4 years). Ultrasound scans of the right brachial artery were performed using Prosound F75 Aloka system during protocol: baseline (1 min), forearm ischemia (5 min), and post-occlusion phase (3 min). FMD (%) was expressed as a change of the arterial diameter from baseline to maximum post-occlusion value and the values coat hypertension compared to control group (p coat hypertensives compared to controls (p coat hypertension could help to elucidate the mechanisms of the increased cardiovascular risk that could be similar as found in essential hypertension; therefore, white-coat hypertension should not be considered a benign phenomenon.

  16. Modified sol-gel coatings for biotechnological applications

    Energy Technology Data Exchange (ETDEWEB)

    Beganskiene, A [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania); Raudonis, R [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania); Jokhadar, S Zemljic [Faculty of Medicine, Institute of Biophysics, Lipiceva 2, Ljubljana SI-1000 (Slovenia); Batista, U [Faculty of Medicine, Institute of Biophysics, Lipiceva 2, Ljubljana SI-1000 (Slovenia); Kareiva, A [Department of General and Inorganic Chemistry, Vilnius University, Vilnius LT-03225 (Lithuania)

    2007-12-15

    The modified sol-gel derived silica coatings were prepared and characterized. The amino and methyl groups were introduced onto the colloidal silica. The silica coatings with different wettability properties: coloidal silica (water contact angle 17 deg.), polysiloxane (61 deg.), methyl-modified (158 deg. and 46 deg.) coatings samples were tested for CaCo-2 cells proliferation. Methyl-modified coating (46 deg.) proved to be the best substrate for cell proliferation. CaCo-2 cell proliferation two days post seeding was significantly faster on almost laminine, fibronectin and collagen-1 coated samples compared to corresponding controls.

  17. Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS): A rapid test for enteric coating thickness and integrity of controlled release pellet formulations.

    Science.gov (United States)

    Alfarsi, Anas; Dillon, Amy; McSweeney, Seán; Krüse, Jacob; Griffin, Brendan; Devine, Ken; Sherry, Patricia; Henken, Stephan; Fitzpatrick, Stephen; Fitzpatrick, Dara

    2018-04-12

    There are no rapid dissolution based tests for determining coating thickness, integrity and drug concentration in controlled release pellets either during production or post-production. The manufacture of pellets requires several coating steps depending on the formulation. The sub-coating and enteric coating steps typically take up to six hours each followed by additional drying steps. Post production regulatory dissolution testing also takes up to six hours to determine if the batch can be released for commercial sale. The thickness of the enteric coating is a key factor that determines the release rate of the drug in the gastro-intestinal tract. Also, the amount of drug per unit mass decreases with increasing thickness of the enteric coating. In this study, the coating process is tracked from start to finish on an hourly basis by taking samples of pellets during production and testing those using BARDS (Broadband Acoustic Resonance Dissolution Spectroscopy). BARDS offers a rapid approach to characterising enteric coatings with measurements based on reproducible changes in the compressibility of a solvent due to the evolution of air during dissolution. This is monitored acoustically via associated changes in the frequency of induced acoustic resonances. A steady state acoustic lag time is associated with the disintegration of the enteric coatings in basic solution. This lag time is pH dependent and is indicative of the rate at which the coating layer dissolves. BARDS represents a possible future surrogate test for conventional USP dissolution testing as its data correlates directly with the thickness of the enteric coating, its integrity and also with the drug loading as validated by HPLC. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. LHC installation planning

    CERN Document Server

    Weisz, S

    2005-01-01

    installation of the general services, the installation of the cryogenic line (QRL), the installation of the machine elements and the hardware commissioning. While the installation of the general services is now almost finished (see presentation by Katy Foraz and Serge Grillot), several problems and delays with the QRL made it unavoidable to revise the installation strategy and to schedule a number tasks in parallel. A new compressed installation planning has been issued, that fulfils the strategic objectives and allows starting new activities with minimal delays in sectors 7-8 and 8-1. However, the shortcuts that are introduced increase the level of risk that we will have to face and the coordination of such a large and complex variety of simultaneous activities makes the project even more challenging. The document will describe how the input from the different equipment groups is taken into account by the master schedule planning team with respect to equipment availability and production as well as logistics...

  19. Acceleration of aneurysm healing by P(DLLA-co-TMC)-coated coils enabling the controlled release of vascular endothelial growth factor

    International Nuclear Information System (INIS)

    Wang, Qiujing; Gao, Yuyuan; Sun, Xinlin; Ji, Bin; Cui, Xubo; Liu, Yaqi; Zheng, Tao; Chen, Chengwei; Jiang, Xiaodan; Zhu, Aiping; Quan, Daping

    2014-01-01

    Since the introduction of the detachable coil in endovascular treatment of intracranial aneurysms, the in-hospital mortality rate has been significantly decreased. Recurrence of the aneurysm remains the major drawback of using detachable coils. We prepared a bioactive coil coated with poly(d,l-lactide)-7co-(1,3-trimethylene carbonate) (P(DLLA-co-TMC)), a novel copolymer for controlling the release of vascular endothelial growth factor (VEGF). Platinum coils were prepared by successive coating with cationic P(DLLA-co-TMC) and anionic heparin. Then, recombinant human VEGF-165 (rhVEGF) was immobilized by affinity binding to heparin. The morphological characteristics and sustained in vitro release of rhVEGF were examined using scanning electron microscopy and enzyme-linked immunosorbent assay, respectively. The efficacy of these novel coils modified by P(DLLA-co-TMC)/rhVEGF was tested using a common carotid artery aneurysm model in rats. Experimental aneurysms were embolized with unmodified, P(DLLA-co-TMC)/heparin-coated or P(DLLA-co-TMC)/rhVEGF-coated platinum coils (n = 18). The coils were removed on days 15, 30 and 90 after insertion, and the histological and immunohistochemical analysis of factor VIII was performed to confirm the presence of endothelial cells in the organized area. In addition, the controlled in vivo release of VEGF was confirmed by Western blotting analysis. The release of VEGF tended to increase during the whole period and no burst release was observed. In the group treated with P(DLLA-co-TMC)/rhVEGF-coated platinum coils, clot organization and endothelial cell proliferation were accelerated. The immunohistochemistry study showed that the expression of factor VIII was found in the P(DLLA-co-TMC)/rhVEGF-coated coil group but not in the other two groups. Furthermore, Western blotting analysis confirmed that the major released VEGF in the aneurysm sac was from the P(DLLA-co-TMC)/VEGF-coated coil. P(DLLA-co-TMC)/rhVEGF-coated platinum coils can

  20. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.

    Science.gov (United States)

    Lin, Dan; Yang, Kai; Tang, Wei; Liu, Yutong; Yuan, Yuan; Liu, Changsheng

    2015-07-01

    Various requirements in the field of tissue engineering have motivated the development of three-dimensional scaffold with adjustable physicochemical properties and biological functions. A series of multiparameter-adjustable mesoporous bioactive glass (MBG) scaffolds with uncrosslinked poly(glycerol sebacate) (PGS) coating was prepared in this article. MBG scaffold was prepared by a modified F127/PU co-templating process and then PGS was coated by a simple adsorption and lyophilization process. Through controlling macropore parameters and PGS coating amount, the mechanical strength, degradation rate, controlled-release and cell behavior of the composite scaffold could be modulated in a wide range. PGS coating successfully endowed MBG scaffold with improved toughness and adjustable mechanical strength covering the bearing range of trabecular bone (2-12MPa). Multilevel degradation rate of the scaffold and controlled-release rate of protein from mesopore could be achieved, with little impact on the protein activity owing to an "ultralow-solvent" coating and "nano-cavity entrapment" immobilization method. In vitro studies indicated that PGS coating promoted cell attachment and proliferation in a dose-dependent manner, without affecting the osteogenic induction capacity of MBG substrate. These results first provide strong evidence that uncrosslinked PGS might also yield extraordinary achievements in traditional MBG scaffold. With the multiparameter adjustability, the composite MBG/PGS scaffolds would have a hopeful prospect in bone tissue engineering. The design considerations and coating method of this study can also be extended to other ceramic-based artificial scaffolds and are expected to provide new thoughts on development of future tissue engineering materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Electrochemical corrosion of cermet coatings in artificial marine water

    International Nuclear Information System (INIS)

    Cabot, P.L.; Fernandez, J.; Guilemany, J.M.

    1998-01-01

    The electrochemical corrosion of different WC+12Co coatings sprayed on 34CrMo4 (UNS-G41350) steel by the high velocity oxygen fuel technique has been studied by corrosion potential and impedance measurements considering previous SEM observations and EDX microanalysis. The experiments were conducted in artificial marine water at 20 C and the impedance spectra were obtained at the corresponding corrosion potentials for the substrate, coating and substrate-coating systems. The impedance diagrams indicated that the electrochemical corrosion of the steel-coating systems is controlled by oxygen diffusion through a porous film of corrosion products, as in the case of the shot-blasted steel. In contrast, the corrosion of the coating appeared to be controlled by diffusion of oxygen through the electrolyte. The impedance diagrams obtained for the steel-coating systems depended on the porosities of the cermet coatings, thus being an useful procedure to characterize metals coated by cermets. (orig.)

  2. Application of an active alginate coating to control the growth of Listeria monocytogenes on poached and deli turkey products.

    Science.gov (United States)

    Juck, Greg; Neetoo, Hudaa; Chen, Haiqiang

    2010-09-01

    The relatively high prevalence of Listeria monocytogenes in ready-to-eat (RTE) turkey products is of great concern. The overall objective of this study was to develop antimicrobial edible coating formulations to effectively control the growth of this pathogen. The antimicrobials studied were nisin (500IU/g), Novagard CB 1 (0.25%), Guardian NR100 (500ppm), sodium lactate (SL, 2.4%), sodium diacetate (SD, 0.25%), and potassium sorbate (PS, 0.3%). These were incorporated alone or in binary combinations into five edible coatings: alginate, kappa-carrageenan, pectin, xanthan gum, and starch. The coatings were applied onto the surface of home-style poached and processed deli turkey discs inoculated with ~3log CFU/g of L. monocytogenes. The turkey samples were then stored at 22 degrees C for 7days. For poached and processed deli turkey, the coatings were found to be equally effective, with pectin being slightly less effective than the others. The most effective poached turkey treatments seemed to be SL (2.4%)/SD (0.25%) and Nisin (500IU/g)/SL (2.4%), which yielded final populations of 3.0 and 4.9log CFU/g respectively compared to the control which was 7.9log CFU/g. For processed deli turkey, the most effective antimicrobial treatments seemed to be Nisin (500IU/g)/SD (0.25%) and Nisin (500IU/g)/SL (2.4%) with final populations of 1.5 and 1.7log CFU/g respectively compared to the control which was 6.5log CFU/g. In the second phase of the study, home-style poached and store-purchased roasted (deli) turkey inoculated with the pathogen at a level of ~3log CFU/g were coated with alginate incorporating selected antimicrobial combinations and stored for 8weeks at 4 degrees C. Alginate coatings supplemented with SL (2.4%)/PS (0.3%) delayed the growth of L. monocytogenes with final counts reaching 4.3log CFU/g (home-style poached turkey) and 6.5log CFU/g (roasted deli turkey) respectively while the counts in their untreated counterparts were significantly higher (P<0.05) reaching 9

  3. Fabrication of hydrogel-coated single conical nanochannels exhibiting controllable ion rectification characteristics.

    Science.gov (United States)

    Wang, Linlin; Zhang, Huacheng; Yang, Zhe; Zhou, Jianjun; Wen, Liping; Li, Lin; Jiang, Lei

    2015-03-07

    Heterogeneous nanochannel materials that endow new functionalities different to the intrinsic properties of two original nanoporous materials have wide potential applications in nanofluidics, energy conversion, and biosensors. Herein, we report novel, interesting hydrogel-composited nanochannel devices with regulatable ion rectification characteristics. The heterogeneous nanochannel devices were constructed by selectively coating the tip side, base side, or both sides of a single conical nanochannel membrane with thin agar hydrogel layers. The tunable ion current rectification of the nanochannels in the three different coating states was systematically demonstrated by current-voltage (I-V) curves. The asymmetric ionic transport property of the conical nanochannel was further strengthened in the tip-coating state and weakened in the base-coating state, whereas the conical nanochannel showed nearly symmetric ionic transport in the dual-coating state. Repeated experiments presented insight into the good stability and reversibility of the three coating states of the hydrogel-nanochannel-integrated systems. This work, as an example, may provide a new strategy to further design and develop multifunctional gel-nanochannel heterogeneous smart porous nanomaterials.

  4. Fuel efficiency and fouling control coatings in maritime transport

    DEFF Research Database (Denmark)

    Lindholdt, Asger

    . As a result, it was determined that other methods must be explored in order to accurately measure the long-term drag performance of FCCs in conditions that mimic those encountered by ships’ hulls during actual voyages. In an experimental study, five commercial FCC systems were applied to smooth disks......, compared to the two SPC coatings. Furthermore, the drag performances of two different FCC systems with varying substrate roughness values (i.e., the roughness below the coating system) were measured in the newly applied condition.An increase in the substrate roughness led to increased drag for both FCC......’s hull, and a second, laboratory part measured the torque (drag) of coated cylinders in a rotary setup. Four commercial FCCs were exposed for 53 weeks in Roskilde Fjord, Denmark, i.e., in relatively cold seawater (salinity of 1.2 wt%), from the spring of 2013 to the autumn of 2014. The in situ immersion...

  5. Properties of Lightning Strike Protection Coatings

    Science.gov (United States)

    Gagne, Martin

    Composite materials are being increasingly used by many industries. In the case of aerospace companies, those materials are installed on their aircraft to save weight, and thus, fuel costs. These aircraft are lighter, but the loss of electrical conductivity makes aircraft vulnerable to lightning strikes, which hit commercial aircrafts on average once per year. This makes lightning strike protection very important, and while current metallic expanded copper foils offer good protection, they increase the weight of composites. Therefore, under the CRIAQ COMP-502 project, a team of industrial partners and academic researchers are investigating new conductive coatings with the following characteristics: High electromagnetic protection, high mechanical resistance, good environmental protection, manufacturability and moderate cost. The main objectives of this thesis, as part of this project, was to determine the main characteristics, such as electrical and tribomechanical properties, of conductive coatings on composite panels. Their properties were also to be tested after destructive tests such as current injection and environmental testing. Bombardier Aerospace provided the substrate, a composite of carbon fiber reinforced epoxy matrix, and the current commercial product, a surfacing film that includes an expanded copper foil used to compare with the other coatings. The conductive coatings fabricated by the students are: silver nanoparticles inside a binding matrix (PEDOT:PSS or a mix of Epoxy and PEDOT:PSS), silvered carbon nanofibers embedded in the surfacing film, cold sprayed tin, graphene oxide functionalized with silver nanowires, and electroless plated silver. Additionally as part of the project and thesis, magnetron sputtered aluminum coated samples were fabricated. There are three main types of tests to characterize the conductive coatings: electrical, mechanical and environmental. Electrical tests consist of finding the sheet resistance and specific resistivity

  6. The Upgraded Plasma Focus Installation > - The Installation >

    International Nuclear Information System (INIS)

    Krokhin, O.N.; Nikulin, V.Ya.; Babenko, B.A.; Gorbunov, D.N.; Gurei, A.E.; Kalachev, N.V.; Kozlova, T.A.; Malafeev, Yu.S.; Polukhin, S.N.; Sychev, A.A.; Tikhomirov, A.A.; Tsybenko, S.P.; Volobuev, I.V.

    1999-01-01

    The paper presents the upgraded plasma focus installation > - the installation > and some preliminary experimental results. The total energy stored in capacity bank is now 400 kJ, current - 5 MA with the rise time 3.5 μs. The investigation is targeted on the study of near electrode processes and its influence on plasma dynamics in a special operating regime of Filippov type PF - Hard X-ray regime. (author)

  7. The dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Lacoste, A.C.; Duthe, M.; Mignon, H.; Lambert, F.; Pradel, Ph.; Hillewaere, J.P.; Dupre la Tour, St.; Mandil, C.; Weil, L.; Eickelpasch, N.; Finsterwalder, L.

    1997-01-01

    for nuclear installations, the dismantling is an important part of their exploitation. The technology of dismantling is existing and to get a benefit from the radioactive decay, it seems more easy for operating company such E.D.F. to wait for fifty years before dismantling. But in order to get the knowledge of this operation, the Safety Authority wanted to devote this issue of 'Controle'to the dismantling method. This issue includes: the legal aspects, the risks assessment, the dismantling policy at E.D.F., the site of Brennilis (first French experience of dismantling), the dismantling techniques, the first dismantling of a fuel reprocessing plant, comparison with classical installations, economic aspect, some German experiences, the cleansing of the american site of Handford. (N.C.)

  8. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus.

    Science.gov (United States)

    Wang, Fulin; He, Jiewang; Shi, Jianghua; Zheng, Tao; Xu, Fei; Wu, Guanting; Liu, Renhu; Liu, Shengyi

    2016-04-07

    Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects). In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1). Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP). It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT) genes were mapped in silico to 19 chromosomes of B. napus Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the embryo. The pigment

  9. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus

    Directory of Open Access Journals (Sweden)

    Fulin Wang

    2016-04-01

    Full Text Available Seed coat color is determined by the type of pigment deposited in the seed coat cells. It is related to important agronomic traits of seeds such as seed dormancy, longevity, oil content, protein content and fiber content. In Brassica napus, inheritance of seed coat color is related to maternal effects and pollen effects (xenia effects. In this research we isolated a mutation of yellow seeded B. napus controlled by a single Mendelian locus, which is named Embryonal Control of Yellow seed coat 1 (Ecy1. Microscopy of transverse sections of the mature seed show that pigment is deposited only in the outer layer of the seed coat. Using Illumina Hisequation 2000 sequencing technology, a total of 12 GB clean data, 116× coverage of coding sequences of B. napus, was achieved from seeds 26 d after pollination (DAP. It was assembled into 172,238 independent transcripts, and 55,637 unigenes. A total of 139 orthologous genes of Arabidopsis transparent testa (TT genes were mapped in silico to 19 chromosomes of B. napus. Only 49 of the TT orthologous genes are transcribed in seeds. However transcription of all orthologs was independent of embryonal control of seed coat color. Only 55 genes were found to be differentially expressed between brown seeds and the yellow mutant. Of these 55, 50 were upregulated and five were downregulated in yellow seeds as compared to their brown counterparts. By KEGG classification, 14 metabolic pathways were significantly enriched. Of these, five pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, plant hormone signal transduction, metabolic pathways, and biosynthesis of secondary metabolites, were related with seed coat pigmentation. Free amino acid quantification showed that Ala and Phe were present at higher levels in the embryos of yellow seeds as compared to those of brown seeds. This increase was not observed in the seed coat. Moreover, the excess amount of free Ala was exactly twice that of Phe in the

  10. Natural gas fuelling stations installation code

    Energy Technology Data Exchange (ETDEWEB)

    Barrigar, C; Burford, G; Adragna, M; Hawryn, S

    2004-07-01

    This Canadian Standard applies to natural gas fuelling stations that can be used for fleet and public dispensing operations. This document is divided into 11 sections that address the scope of the Standard; definitions and reference publications; general requirements; compressors; storage; dispensing; flow control devices; storage vessel dispatch and receiving; design, installation and testing of piping, tubing and fittings; and installation of vehicle refuelling appliances (VRAs) connected to storage piping. The most recent revision to the Standard includes requirements for indoor fuelling of natural gas vehicles. This Standard, like all Canadian Standards, was subject to periodic review and was most recently reaffirmed in 2004. tabs., figs.

  11. Tolley's industrial and commercial gas installation practice

    CERN Document Server

    Hazlehurst, John

    2010-01-01

    This is the third of three essential reference volumes for those concerned with the installation and servicing of domestic and industrial gas equipment. This volume explains the basic principles underlying the practical and theoretical aspects of installing and servicing gas appliances and associated equipment, from the basics of combustion, to burners, pressure and flow, transfer of heat, controls, as well as materials and processes, electrical aspects, and metering and measuring devices. Covering both Natural Gas and Liquefied Petroleum Gas, the many illustrations and worked examples include

  12. Magnetron co-sputtering system for coating ICF targets

    International Nuclear Information System (INIS)

    Hsieh, E.J.; Meyer, S.F.; Halsey, W.G.; Jameson, G.T.; Wittmayer, F.J.

    1981-01-01

    Fabrication of Inertial Confinement Fusion (ICF) targets requires deposition of various types of coatings on microspheres. The mechanical strength, and surface finish of the coatings are of concern in ICF experiments. The tensile strength of coatings can be controlled through grain refinement, selective doping and alloy formation. We have constructed a magnetron co-sputtering system to produce variable density profile coatings with high tensile strength on microspheres

  13. Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies

    Science.gov (United States)

    Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine

    2012-09-01

    The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.

  14. Thermally joining and/or coating or thermally separating the workpieces having heat-sensitive coating, comprises restoring coating by thermally coating the coating material after thermally joining and/or coating or thermally separating

    OpenAIRE

    Riedel, Frank; Winkelmann, Ralf; Puschmann, Markus

    2011-01-01

    The method for thermally joining and/or coating or thermally separating the workpieces (1), which have a heat-sensitive coating (2), comprises restoring the coating by thermally coating a coating material (3) after thermally joining and/or coating or thermally separating the workpieces. A part of the thermal energy introduced in the workpiece for joining and/or coating or separating or in the workpieces is used for thermally coating the coating material. Two workpieces are welded or soldered ...

  15. Solar Water Heater Installation Package

    Science.gov (United States)

    1982-01-01

    A 48-page report describes water-heating system, installation (covering collector orientation, mounting, plumbing and wiring), operating instructions and maintenance procedures. Commercial solar-powered water heater system consists of a solar collector, solar-heated-water tank, electrically heated water tank and controls. Analysis of possible hazards from pressure, electricity, toxicity, flammability, gas, hot water and steam are also included.

  16. Nanophase hardfaced coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reisgen, U.; Stein, L.; Balashov, B.; Geffers, C. [RWTH Aachen University (Germany). ISF - Welding and Joining Institute

    2009-08-15

    This paper demonstrates the possibility of producing iron or chromium-based nanophase hardfaced coatings by means of common arc welding methods (TIG, PTA). The appropriate composition of the alloys to be deposited allows to control the structural properties and thus also the coating properties of the weld metal. Specific variations of the alloying elements allow also the realisation of a nanostructured solidification of the carbides and borides with cooling rates that are common for arc surfacing processes. The hardfaced coatings, which had been thus produced, showed phase dimensions of approximately 100-300 nm. Based on the results it is established that the influence of the surfacing parameters and of the coating thickness and thus the influence of the heat control on the nanostructuring process is, compared with the influence of the alloy composition, of secondary importance. The generation of nanoscale structures in hardfaced coatings allows the improvement of mechanical properties, wear resistance and corrosion resistance. Potential applications for these types of hardfaced coatings lie, in particular, in the field of cutting tools that are exposed to corrosion and wear. (Abstract Copyright [2009], Wiley Periodicals, Inc.) [German] Diese Arbeit demonstriert die Moeglichkeit zur Herstellung Eisen- und Chrom-basierter nanophasiger Hartauftragschweissschichten mithilfe ueblicher Lichtbogenschweissverfahren (WIG-, Plasma-Pulver-Auftragschweissen - PPA). Eine geeignete Zusammensetzung der aufzutragenden Legierungen ermoeglicht es, die Gefuegeeigenschaften und damit die Schichteigenschaften des Schweissgutes zu kontrollieren. Gezielte Variationen der Legierungselemente erlauben die Realisierung einer nanostrukturierten Erstarrung der Karbide und Boride bei fuer Lichtbogen-Auftragschweissprozessen ueblichen Abkuehlgeschwindigkeiten. In den so erzeugten Hartschichten werden Phasengroessen von ca. 100-300 nm erreicht. Auf Basis der gewonnenen Ergebnisse kann

  17. Adhesive strength of hydroxyl apatite(HA coating and biomechanics behavior of HA-coated prosthesis:an experimental study

    Directory of Open Access Journals (Sweden)

    Tian-yang ZHANG

    2011-05-01

    Full Text Available Objective To explore the influence of adhesive strength of hydroxyapatite(HA coating on the post-implantation stability of HA-coated prosthesis.Methods The adhesive strength and biomechanics behavior of HA coating were studied by histopathological observation,material parameters and biomechanical testing,the titanium(Ti-coated prosthesis was employed as control.Results Scratch test showed that the adhesive strength of HA coating was significantly lower than that of Ti coating(P < 0.01.Histopathological examination and bone morphometry showed that,at the early stage of prosthesis implantation,the bony growth around HA-coated prosthesis was significantly higher than that around Ti-coated prosthesis(P < 0.01,but the ultimate shear strength of HA-coated prosthesis was much lower than that of Ti-coated prosthesis(P < 0.01.After the push-out test with prosthesis,histopathological observation showed that there were accumulations of clump-and strip-like granular residues on the surface of bones that newly grew around the HA-coated prosthesis,and surface energy-dispersive X-ray spectroscopy(EDX analysis also confirmed that the shear stress induced HA decohesion from the substrate of prosthesis.Conclusions Although HA coating showed a satisfactory effect on early bone formation and prosthetic stability,due to the deficiencies of adhesive strength,the early stability of prosthesis may be gradually destroyed by the shear loads of human body and coating degradation.

  18. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol

    2014-01-01

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  19. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  20. Design, construction and installation of the electromechanical components of the current control of filament of the Pelletron Electron Accelerator

    International Nuclear Information System (INIS)

    Aguilar J, R.A.; Valdovinos A, M.; Lopez V, H.

    1985-01-01

    For the operation of the Pelletron electron accelerator is required to have control of the filament current. For it was designed, built and installed an electromechanical system located in the Acceleration Unit inside the Accelerator tank and operated from the Control console. All the components located inside the tank operated under the following conditions: Pressure: until 7.03 Kg/cm 2 ; High voltage: 10 6 V (only the insulating arrow); Atmosphere: mixture of N 2 and CO 2 or SF 6 . (Author)

  1. ELABORATION OF HIGH-VOLTAGE PULSE INSTALLATIONS AND PROVIDING THEIR OPERATION PROTECTIVE MEASURES

    Directory of Open Access Journals (Sweden)

    А. М. Hashimov

    2016-01-01

    Full Text Available The article presents design engineering methods for the high-voltage pulse installations of technological purpose for disinfection of drinking water, sewage, and edible liquids by high field micro- and nanosecond pulsing exposure. Designing potentialities are considered of the principal elements of the high-voltage part and the discharge circuit of the installations towards assuring the best efficient on-load utilization of the source energy and safe operation of the high-voltage equipment. The study shows that for disinfection of drinking water and sewage it is expedient to apply microsecond pulse actions causing the electrohydraulic effect in aqueous media with associated complex of physical processes (ultraviolet emission, generation of ozone and atomic oxygen, mechanical compression waves, etc. having detrimental effect on life activity of the microorganisms. In case of disinfecting edible liquids it is recommended to use the nanosecond pulses capable of straight permeating the biological cell nucleus, inactivating it. Meanwhile, the nutritive and biological values of the foodstuffs are saved and their organoleptic properties are improved. It is noted that in elaboration process of high-frequency pulse installations special consideration should be given to issues of the operating personnel safety discipline and securing conditions for the entire installation uninterrupted performance. With this objective in view the necessary requirements should be fulfilled on shielding the high- and low-voltage installation parts against high-frequency electromagnetic emissions registered by special differential sensors. Simultaneously, the abatement measures should be applied on the high-voltage equipment operational noise level. The authors offer a technique for noise abatement to admissible levels (lower than 80 dB A by means of coating the inside surface with shielded enclosure of densely-packed abutting sheets of porous electro-acoustic insulating

  2. Ultra thin metallic coatings to control near field radiative heat transfer

    Science.gov (United States)

    Esquivel-Sirvent, R.

    2016-09-01

    We present a theoretical calculation of the changes in the near field radiative heat transfer between two surfaces due to the presence of ultra thin metallic coatings on semiconductors. Depending on the substrates, the radiative heat transfer is modulated by the thickness of the ultra thin film. In particular we consider gold thin films with thicknesses varying from 4 to 20 nm. The ultra-thin film has an insulator-conductor transition close to a critical thickness of dc = 6.4 nm and there is an increase in the near field spectral heat transfer just before the percolation transition. Depending on the substrates (Si or SiC) and the thickness of the metallic coatings we show how the near field heat transfer can be increased or decreased as a function of the metallic coating thickness. The calculations are based on available experimental data for the optical properties of ultrathin coatings.

  3. Installation of a second superconducting wiggler at SAGA-LS

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, T., E-mail: kaneyasu@saga-ls.jp; Takabayashi, Y.; Iwasaki, Y.; Koda, S. [SAGA Light Source, 8-7 Yayoigaoka, Tosu 841-0005 (Japan)

    2016-07-27

    The SAGA Light Source is a synchrotron radiation facility consisting of a 255 MeV injector linac and a 1.4 GeV storage ring with a circumference of 75.6 m. A superconducting wiggler (SCW) with a peak magnetic field of 4 T has been routinely operating for generating hard X-rays since its installation in 2010. In light of this success, it was decided to install a second SCW as a part of the beamline construction by Sumitomo Electric Industries. To achieve this, machine modifications including installation of a new magnet power supply, improvement of the magnet control system, and replacement of the vacuum chambers in the storage ring were carried out. Along with beamline construction, installation and commissioning of the second SCW are scheduled to take place in 2015.

  4. FY 1989 report on the results of the development of the entrained bed coal gasification power plant. Part 3. Fabrication/installation of pilot plant (Fabrication/installation drawings and fabrication/installation pictures - 2/2); 1989 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 3. Pilot plant seisaku suetsuke hen (Seisaku suetsukezu oyobi seisaku suetsuke shashin) (2/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, the fabrication, installation work, etc. were conducted of a 200t/d entrained bed coal gasification pilot plant, and fabrication/installation drawings and fabrication/installation pictures were summarized. In fabrication/installation drawings, drawings of the following were included: safety environmental equipment (total system diagram, layout scheme drawing, layout of electric room equipment, layout of control equipment room, etc.), total control system (structural drawing of the total control system, outline drawing of operation control panel, operator console of the integrated load pressure control system, operator console of the integrated sequential control system, central control panel, etc.), 66kV/6.9kV indoor switching station facilities (layout of equipment of indoor switching station facilities, outline drawing of the main transformer, outline drawing of cooler control panel of the main transformer, etc.), common facilities (total layout, diagram of the equipment cooling water pipe system, diagram of the fire-extinguishing water pipe system, etc.) In pictures of fabrication/installation, pictures of the following were included: gasifier equipment, gas refining facilities, gas turbine facilities, actual-pressure/actual-size combustor test equipment, safety environmental equipment, total control system, common facilities, etc. (NEDO)

  5. Study: control of atomic energy power plant; Etude de la regulation d'une installation atomique productrice d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Dautray, R; Leny, J C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    We are studying the control of a very flexible atomic power plant, able to supply an independent network. Two systems have been examined: in the first the moderator pre-heats the light water, in the second, this preheating is dispensed with, subsequent to a study of the dynamics of the plant. Very complete linear approximation study is being effected on the model of the second system, all effects being taken into account. The reactor is stable at all power levels, though slight reactivity or load variations cause undamped power oscillations around the equilibrium level. (author)Fren. [French] Nous etudions la regulation d'une installation atomique d'une grande souplesse, pouvant eventuellement fournir de l'energie a un reseau isole. Deux versions de l'installation sont etudiees: dans la premiere le moderateur sert a rechauffer l'eau industrielle, mais l'etude dynamique conduit a supprimer ce rechauffage, ce qui donne la deuxieme version. On effectue sur celle-ci une etude en approximation lineaire tres complete ou l'on tient compte de differents effets. L'installation se montre stable a tous les niveaux de puissance. Toutefois, de petites perturbations de reactivite ou de charge entrainent des oscillations de puissance mal amorties autour de la position d'equilibre. (auteur)

  6. The Role Of Quality Assurance Program For Safety Operation Of Nuclear Installations

    International Nuclear Information System (INIS)

    Harjanto, N.T.; Purwadi, K.P.; Boru, D.S.; Farida; Suharni

    2000-01-01

    Nuclear installations expose potential hazard of radiation, therefore in their construction, operation and maintenance, it is necessary to consider safety aspect, in which the safety requirements which has been determined must be met. One of the requirements that is absolutely needed is quality assurance, which covers arrangement of quality assurance program, organization and administration of the implementation of quality assurance, and supervision. Quality Assurance program is a guideline containing quality policies and basic determination on the realization of activities that effect the quality of equipment's and items used in the operation of nuclear installations in order that the operation of nuclear installation can run safety and in accordance with their design aims and operation limits. Quality Assurance Program includes document control, design control, supply control, control of equipment s and items, operation/process control, inspection and control of equipment test, and control of nonconformance and corrections. General system of nuclear installation operation is equipped with safety and supporting systems. These systems must apply the quality assurance program that cover control of activities in the systems. In the implementation of the quality assurance program, it is necessary to establish procedures, work guidelines/instructions, and quality recording that constitutes documents of quality system 2 nd , 3 th , and 4 th level after the quality assurance program. To ensure the effectivity and to prove whether the realization of the program has been pursuant to the determined requirements, an internal audit must be conducted accordingly

  7. Can administrative referenda be an instrument of control over large-scale technical installations?

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1986-01-01

    An administrative referendum offers the possibility of direct participation of the citizens in decisions concerning large-scale technical installations. The article investigates the legal status of such a referendum on the basis of constitutional and democratic principles. The conclusion drawn is that any attempt to realize more direct democracy in a concrete field of jurisdiction of the state will meet with very large difficulties. On the other hand, the author clearly states more direct democracy for control over the establishment of large-scale technology to be sensible in terms of politics and principles of democracy, and possible within the constitutional system. Developments towards more direct democracy would mean an enhancement of representative democracy and would be adequate vis a vis the problems posed by large-scale technology. (HSCH) [de

  8. Advanced ceramic coating development for industrial/utility gas turbines. Final report, 11 Mar 1979-1 Sep 1981

    International Nuclear Information System (INIS)

    Vogan, J.W.; Stetson, A.R.

    1982-01-01

    A program was conducted with the objective of developing advanced thermal barrier coating (TBC) systems. Coating application was by plasma spray. Duplex, triplex and graded coatings were tested. Coating systems incorporated both NiCrAly and CoCrAly bond coats. Four ceramic overlays were tested: ZrO 2 .82O 3 , CaO.TiO 2 , 2CaO.SiO 2 , and MgO.Al 2 O 3 . The best overall results were obtained with a CaO.TiO 2 coating applied to a NiCrAly bond coat. This coating was less sensitive than the ZrO 2 .8Y 2 O 3 coating to process variables and part geometry. Testing with fuels contaminated with compounds containing sulfur, phosphorus and alkali metals showed the zirconia coatings were destabilized. The calcium titanate coatings were not affected by these contaminants. However, when fuels were used containing 50 ppm of vanadium and 150 ppm of magnesium, heavy deposits were formed on the test specimens and combustor components that required frequent cleaning of the test rig. During the program Mars engine first-stage turbine blades were coated and installed for an engine cyclic endurance run with the zirconia, calcium titanate, and calcium silicate coatings. Heavy spalling developed with the calcium silicate system. The zirconia and calcium titanate systems survived the full test duration. It was concluded that these two TBC's showed potential for application in gas turbines

  9. Development of Aloe vera based edible coating for tomato

    Science.gov (United States)

    Athmaselvi, K. A.; Sumitha, P.; Revathy, B.

    2013-12-01

    The effect of formulated Aloe vera based edible coating on mass loss, colour, firmness, pH, acidity, total soluble solid, ascorbic acid and lycopene on the coated tomato was investigated. The tomato in control showed a rapid deterioration with an estimated shelf life period of 19 days, based on the mass loss, colour changes, accelerated softening and ripening. On the contrary, the coating on tomatoes delayed the ripening and extended the shelf life up to 39 days. The physiological loss in weight was 7.6 and 15.1%, firmness was 36 and 46.2 N on 20th day for control and coated tomatoes, respectively. From the results, it was concluded that the use of Aloe vera based edible coating leads to increased tomato shelf-life.

  10. Compatibility of dip-coated Er2O3 coating by MOD method with liquid Li

    International Nuclear Information System (INIS)

    Zhang Dongxun; Kondo, Masatoshi; Tanaka, Teruya; Muroga, Takeo; Valentyn, Tsisar

    2011-01-01

    An electrical insulating ceramic coating on the self-cooled lithium blanket is a promising technology for suppressing MHD pressure drop in the blanket system. Er 2 O 3 is thought to be one of the potential candidate materials for ceramic coatings because of their high electrical resistivity and high compatibility with liquid lithium. In this study, Er 2 O 3 coating was fabricated on the ferritic steels by dip-coating method with MOD (metal organic decomposition) liquid precursor followed by baking in different atmosphere. The coated specimens were immersed at 500 o C in the static liquid lithium to test the compatibility. It was shown that the compatibility of the coating was degraded when Fe 2 O 3 or Fe 3 O 4 was formed as the main composition of the substrate oxidation layer during the baking. On the other hand, thin Cr 2 O 3 layer in the substrate oxidation layer did not influence the stability of Er 2 O 3 coating. Atmosphere controlling for suppressing the substrate oxidation, especially Fe 2 O 3 or Fe 3 O 4 , during the baking is shown to be essential for the compatibility of MOD Er 2 O 3 coating on ferritic steels.

  11. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    International Nuclear Information System (INIS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.

    2014-01-01

    Highlights: • Synthesis and processing of PMMA-co-MAA spin-coatings on silicon wafers. • Surface chemistry and morphology as a function of tailored co-polymer structure. • Polymer coatings with controlled number of surface carboxyl groups. - Abstract: The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface –COOH groups (determined with UV–vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure

  12. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samira; Ibrahim, Fatimah [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Djordjevic, Ivan, E-mail: ivan.djordjevic@um.edu.my [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Koole, Leo H. [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Biomedical Engineering, Faculty of Health. Medicine and Life Science, Maastricht University, PO Box 616, NL 6200 MD Maastricht (Netherlands)

    2014-05-01

    Highlights: • Synthesis and processing of PMMA-co-MAA spin-coatings on silicon wafers. • Surface chemistry and morphology as a function of tailored co-polymer structure. • Polymer coatings with controlled number of surface carboxyl groups. - Abstract: The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface –COOH groups (determined with UV–vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  13. Microfouling on biocidal and non-biocidal antifouling coatings

    Directory of Open Access Journals (Sweden)

    Thirumahal Muthukrishnan

    2015-01-01

    Full Text Available Although antifouling marine paints have been used to prevent biofouling, not much is known about their effectiveness in preventing attachment of microorganisms. The current study aims at estimating the abundance of bacteria within biofilms developed on various commercial antifouling coatings in Marina Bandar Rowdha and Marina Shangri La, Oman. Coatings tested included Pettit #1863 and #1792, West Marine #11046620, #5566252 and #10175206, Hempel Hard Racing #76484, Hempel Olympic #86950, Hempasil X3 and International YBA920. All coatings were applied on clean plastic slides. Slides without any coating were used as controls. Microbial biofilms were harvested after 2, 7 and 14 days of biofouling. Bacterial density was estimated using epifluorescence microscopy. There was a significant difference between the various treatments (coatings and control after 2, 7 and 14 days of biofouling. Although there were significant differences between both locations after 2 and 14 days of biofouling, no significant difference was observed after 7 days of biofouling at both locations. At Shangri La, the lowest bacterial density was found on International YBA920, Pettit #1792 and Hempasil X3 after 2 days, 7 days and 14 days respectively in comparison to the control treatments. However at Bandar Rowdha, International YBA920 showed the lowest bacterial density after 2 days while West Marine #10175206 showed the lowest bacterial density after both 7 days and 14 days of biofouling in comparison to the control treatment. The differential performance of tested antifouling coatings may be attributed to several factors including varying environmental conditions, difference in microfouling communities, time of exposure and physical and chemical properties of antifouling coating.

  14. The Application of Timer 555 for Pulse Generator in the Process Control of the D-Gun Coating

    International Nuclear Information System (INIS)

    Machmud, Farid W.; Diah Intani; Isnaeni; Cece

    2002-01-01

    Many instrumentation of control that using electronic pulse has been found utilized to control manufacturing process in industry. The pulses were produced by oscillator circuit act as input for logic circuit then adjusts pulse properly to the process. In this work, a simple digital control instrumentation was designed and implemented for the D G un coating process. Timer 555 for adjusting oscillator pulse width could control the gas, powder feeder, and detonation frequency. The other logic circuit that was consists of one synchronize counter and some logic gate XOR, OR, AND, and NOT were adjusting pulses to produce pulses for actuator related to the processes queue. The pulses characterization show that high and low pulse width will be the same if the comparison of the two resistors of bandwidth controller almost half for a value of outer capacitor. The implementation shows that the detonation frequency was greater than 1 Hz when the capacitors value is 20μF or less, while the adjustment of pulse width to fuel actuators and O 2 describe the comparison of the gas, and pulse width to powder feeder describe the amount of powder that have been injected to fire chamber of D G un. From the characterizations and the implementation we conclude that some parameters of the D G un coating can be controlled by the bandwidth of the timer. (author)

  15. The latest electrical installation (I)

    International Nuclear Information System (INIS)

    Won, Jong Su

    1976-04-01

    This book deals with the latest electrical installation. The contents of this book are construction electrical installation, regulations related electrical installation, foundation and principle of wiring, main line feeder, lighting installation, power of wiring, main line feeder, lighting installation, power installation, method to read structure drawing for electrical construct drawing electric lamp wiring diagram, working drawing, material and tools and method of construction of electrical installation on types of wiring construction, metallic conduit, rigid poly-vinyl conduit wiring, bus duct work, cable work and insulation out of metal lathed.

  16. Structural considerations for solar installers : an approach for small, simplified solar installations or retrofits.

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Elizabeth H.; Schindel, Kay (City of Madison, WI); Bosiljevac, Tom; Dwyer, Stephen F.; Lindau, William (Lindau Companies, Inc., Hudson, WI); Harper, Alan (City of Madison, WI)

    2011-12-01

    Structural Considerations for Solar Installers provides a comprehensive outline of structural considerations associated with simplified solar installations and recommends a set of best practices installers can follow when assessing such considerations. Information in the manual comes from engineering and solar experts as well as case studies. The objectives of the manual are to ensure safety and structural durability for rooftop solar installations and to potentially accelerate the permitting process by identifying and remedying structural issues prior to installation. The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systems are properly specified and installed with respect to the continuing structural integrity of the building.

  17. On–off switch-controlled doxorubicin release from thermo- and pH-responsive coated bimagnetic nanocarriers

    Energy Technology Data Exchange (ETDEWEB)

    Hammad, Mohaned; Nica, Valentin; Hempelmann, Rolf, E-mail: r.hempelmann@mx.uni-saarland.de [Saarland University, Department of Physical Chemistry (Germany)

    2016-08-15

    A switch-controlled drug release system is designed by coating of core/shell bimagnetic nanoparticles with a pH- and thermo-responsive polymer shell, which can be used as hyperthermic agent, drug carrier, and for controlled release. Doxorubicin is loaded onto the surface of the last coating layer, and a high loading efficiency of 90.5 % is obtained. The nanocarriers are characterized by FTIR, dynamic light scattering, Zeta potential, TEM, In vitro hyperthermia, and vibrating sample magnetometry. The core/shell magnetic nanoparticles (Zn{sub 0.4}Co{sub 0.6}Fe{sub 2}O{sub 4}@Zn{sub 0.4}Mn{sub 0.6}Fe{sub 2}O{sub 4}) exhibit a superparamagnetic behavior with a saturation magnetization around 45.6 emu/g and a high specific absorption rate of up to 360 W/g. The in vitro drug release experiments confirm that only a small amount of doxorubicin is released at body temperature and physiological pH, whereas a high drug release is obtained at acidic tumor pH under hyperthermia conditions (43 °C). The functionalized core/shell bimagnetic nanocarriers facilitate controllable release of doxorubicin as an effect of induced thermo- and pH-responsiveness of the polymer when are subjected to a high-frequency alternating magnetic field at acidic pH; thereby the drug release rate is controlled using on–off cycles of the applied field.Graphical Abstract.

  18. Comparative crossover controlled study using poly sulphone and Vitamin E coated dialyzers

    International Nuclear Information System (INIS)

    Al-Jonderby, Mohammad S.; Cabaguing, IoIani; Pajarillo, Amillata A.

    2003-01-01

    There is relatively little clinical experience reported on the use of vitamin E coated dialyzer (CL-EE 12, Terumo). This study compares its efficacy and intradialytic symptoms with a poly sulphone dialyzer in 2 group of patients in a controlled crossover trial design. This study was carried out at at Armed Forces Hospital, Riyadh, Kingdom of Saudi Arabia, during time period from January to March 2002. In group A, 34 patients were dialyzed for 4 weeks with vitamin E dialyzer and then switched over to Fresenius 60 ( F60)for 4 weeks .In group B, 41 patients were dialyzed with F60 for 4 weeks then switched over to vitamin E coated dialyzers for 4 weeks .The following parameters were measured weekly ,hemoglobin level ,urea reduction ratio (URR), urea clarence ratio (Kt/V), pre and post dialysis diastolic blood pressure (DBP)and diastolic blood pressure (DBP), interdialytic weight gain. The patients were observed for interdialytic hypertension or symptoms.No significant findings were found in any of the parameters except more dialyzer clotting was observed with vitamin E dialyzer than in F60 dialyzers(1.6%of dialysis sessions versus 0.1% P<0.03).The interdialytic weight gain tended to be less in vitamin E group but did not reach statistically significant difference.The Kt / V and URR were slightly higher when using vitamin E dialyzer only in the second and third weeks hypotensive episodes( P<,007)less leg cramp (P<.31) and less itching (P<,0.2) in the vitamin E coated treated group within group. There were only minor differences noted between between the 2 dialyzers in the parameters measured. (author)

  19. Installation of concrete expansion anchors at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Clark, G.L.

    1980-01-01

    Installation criteria utilized at the Fast Flux Test Facility for concrete expansion anchors are presented. Static and dynamic load capabilities of various anchor types are discussed in relation to design loads, with particular emphasis placed on the yield load (the proportional limit). Effects of several variables (i.e., installation torque, hole diameter) are also investigated. Resolution and documentation of field problems (e.g., improper spacing, embedment, angularity) are also described. Recommendations for improving and controlling future installations are given

  20. Preparation of selenium coatings onto beryllium foils

    International Nuclear Information System (INIS)

    Erikson, E.D.; Tassano, P.L.; Reiss, R.H.; Griggs, G.E.

    1984-09-01

    A technique for preparing selenium films onto 50.8 microns thick beryllium foils is described. The selenium was deposited in vacuum from a resistance heated evaporation source. Profilometry measurements of the coatings indicate deposit thicknesses of 5.5, 12.9, 37.5, 49.8 and 74.5 microns. The control of deposition rate and of coating thickness was facilitated using a commercially available closed-loop programmable thin film controller. The x-ray transmission of the coated substrates was measured using a tritiated zirconium source. The transmissivities of the film/substrate combination are presented for the range of energies from 4 to 20 keV. 15 references, 3 figures

  1. Development of Coated Particle Fuel Technology

    International Nuclear Information System (INIS)

    Cho, Moon Sung; Kim, B. G.; Kim, Y. K.

    2009-04-01

    UO 2 kernel fabrication technology was developed at the lab sacle(20∼30g-UO 2 /batch). The GSP technique, modified method of sol-gel process, was used in the preparation of spherical ADU gel particle and these particles were converted to UO 3 and UO 2 phases in calcination furnace and sintering furnace respectively. Based on the process variables optimized using simulant kernels in 1-2 inch beds, SiC TRISO-coated particles were fabricated using UO 2 kernel. Power densities of TRISO coated particle fuels and gamma heat of the tubes are calculated as functions of vertical location of the fuel specimen in the irradiation holes by using core physics codes, MCNP and Helios. A finite model was developed for the calculations of temperatures and stresses of the specimen and the irradiation tubes. Dimensions of the test tubes are determined based on the temperatures and stresses as well as the gamma heat generated at the given condition. 9 modules of the COPA code (MECH, FAIL, TEMTR, TEMBL, TEMPEB, FPREL, MPRO, BURN, ABAQ), the MECH, FAIL, TEMTR, TEMBL, TEMPEB, and FPREL were developed. The COPA-FPREL was verified through IAEA CRP-6 accident benchmarking problems. KAERI participated in the round robin test of IAEA CRP-6 program to characterize the diameter, sphericity, coating thickness, density and anisotropy of coated particles provided by Korea, USA and South Africa. The inspection and test plan describing specifications and inspection method of coated particles was developed to confirm the quality standard of coated particles. The quality inspection instructions were developed for the inspection of coated particles by particle size analyzer, density inspection of coating layers by density gradient column, coating thickness inspection by X-ray, and inspection of optical anistropy factor of PyC layer. The quality control system for the TRISO-coated particle fuel was derived based on the status of quality control systems of other countries

  2. Control Rod Drive Mechanism Installed in the Internal of Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. H.; Choi, S.; Park, J. S.; Lee, J. S.; Kim, D. O.; Hur, N. S.; Hur, H.; Yu, J. Y

    2008-09-15

    This report describes the review results and important technologies related to the in-vessel type control rod drive mechanism. Generally, most of the CRDMs used in the PWR are attached outside of the reactor pressure vessel, and the pernetration of the vessel head can not avoid. However, in-vessel type CRDMs, which are installed inside the reactor vessel, can eliminate the possibility of rod ejection accidents and the penetration of the vessel head, and provide a compact design of the reactor vessel and containment. There are two kinds of in-vessel type CRDM concerning the driving force-driven by a driving motor and by a hydraulic force. Motor driven CRDMs have been mainly investigated in Japan(MRX, IMR, DRX, next generation BWR etc.), and developed the key components such as a canned motor, an integrated rod position indicator, a separating ball-nut and a ball bearing that can operate under the water conditions of a high temperature and pressure. The concept of hydraulically driven CRDMs have been first reported by KWU and Siemens for KWU 200 reactor, and Argentina(CAREM) and China(NHR-5, NHR-200) have been developed the internal CRDM with the piston and cylinder of slightly different geometries. These systems are driven by the hydraulic force which is produced by pumps outside of the reactor vessel and transmitted through a pipe penetrating the reactor vessel, and needs complicated control and piping systems including pumps, valves and pipes etc.. IRIS has been recently decided the internal CRDMs as the reference design, and an analytical and experimental investigations of the hydraulic drive concept are performed by POLIMI in Italy. Also, a small French company, MP98 has been developed a new type of control rods, called 'liquid control rods', where reactivity is controlled by the movement of a liquid absorber in a manometer type device.

  3. Method of manufacturing a graphite coated fuel can

    International Nuclear Information System (INIS)

    Saito, Koichi; Uchida, Shunsuke.

    1984-01-01

    Purpose: To improve the close bondability and homogeneity of a graphite coating formed at the inner surface of a fuel can. Method: A coating containing graphite dispersed in a volatile organic solvent is used and a graphite coating is formed to the inner surface of a fuel can by way of a plunger method. After applying graphite coating, an inert gas is caused to flow at a certain flow rate to the inside of the fuel can horizontally rotaged so that gassification and evaporation of the volatile organic solvent contained in the graphite coating may be promoted. Since drying of the graphite coating coated to the inner surface of the fuel can thus be controlled, a graphite coating with satisfactory close bondability and homogeneity can be formed. (Kawakami, Y.)

  4. Installation and initial operation of the Suss Advanced Lithography Model 4 X-ray Stepper

    International Nuclear Information System (INIS)

    Wells, G.M.; Wallace, J.P.; Brodsky, E.L.; Leonard, Q.J.; Reilly, M.T.; Anderson, P.D.; Lee, W.K.; Cerrina, F.; Simon, K.

    1996-01-01

    A Suss Advanced Lithography X-ray Stepper designed as a production tool for high throughput in the sub-quarter-micron device range has been installed and is being commissioned at the University of Wisconsin close-quote s Center for X-ray Lithography (CXrL). Illumination for the stepper is provided by a scanning beamline designed and constructed at CXrL. The beamline optical components are a gold-coated plane mirror, a 1-micron-thick silicon carbide window, and a 25-micron-thick beryllium exit window. Beamline features include synchronized scanning of the mirror and exit window, variable scan velocity to compensate for reflectivity changes as a function of incident angle, and a horizontal oscillation of the beryllium window during vertical scanning to average the effects of nonuniform beryllium window transmission. A helium purged snout transports the x-rays from the beamline exit window, to the exposure plane in the stepper. This snout is retractable to allow for the loading and unloading of masks into the stepper. The motions of the mirror, exit window, and snout are computer controlled by a LABVIEW program that communicates with the stepper control software. The design of the beamline and initial operating experiences with the beamline and stepper will be discussed. copyright 1996 American Institute of Physics

  5. Superhydrophobic Post Treatment and Coating Extenders for Improved Asset Sustainability

    Science.gov (United States)

    Trigwell, Steven; Montgomery, Eliza L.; Calle, Luz M.

    2015-01-01

    Launch structures, hardware, and ground support equipment, at NASA's John F. Kennedy Space Center in Florida, are exposed to a highly corrosive natural coastal marine environment. In addition, during launches, rocket exhaust deposition is also highly corrosive. Superhydrophobic coatings are being considered for additional corrosion protection on existing structures to enhance corrosion resistance and add an additional layer of protection against harsh environmental elements. These coatings have come into their own recently, and are now being investigated as corrosion protective coatings due to their water repelling capability. These coatings can be used on existing coatings, newly coated materials, or used on bare substrates. The coatings are not suitable for permanent corrosion protection, but can be used where additional corrosion control is desired or only when temporary corrosion control is needed, such as in hardware sitting on a launch pad for 30-45 days prior to a launch. In this study, superhydrophobic coatings were applied on various coated and uncoated substrates and exposed to the spaceport environment for various times up to 60 days. This paper highlights the current results of the superhydrophobic coatings performance evaluated by X-ray photoelectron spectroscopy, and contact angle measurements.

  6. Corrosion performance of epoxy-coated reinforcement in aggressive environments

    Science.gov (United States)

    Vaca Cortes, Enrique

    coating adhesion after production. An adhesion test procedure was developed and is recommended for quality control. A set of recommendations for proper quality control, design, and construction practice of structures with epoxy-coated reinforcement was proposed.

  7. Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers

    Science.gov (United States)

    Oksa, M.; Metsäjoki, J.; Kärki, J.

    2015-01-01

    There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.

  8. Optimizing operation costs of the heating system of a household using model predictive control considering a local PV installation

    DEFF Research Database (Denmark)

    Koch-Ciobotaru, Cosmin; Isleifsson, Fridrik Rafn; Gehrke, Oliver

    2012-01-01

    This paper presents a model predictive controller developed in order to minimize the cost of grid energy consumption and maximize the amount of energy consumed from a local photovoltaic (PV) installation. The usage of as much locally produced renewable energy sources (RES) as possible, diminishes...... the effects of their large penetration in the distribution grid and reduces overloading the grid capacity, which is an increasing problem for the power system. The controller uses 24 hour prediction data for the ambient temperature, the solar irradiance, and for the PV output power. Simulation results...

  9. Optical coatings:trends and challenges

    Institute of Scientific and Technical Information of China (English)

    Norbert Kaiser; Torsten Feigl; Olaf Stenzel; Ulrike Schulz; Ming-hong Yang

    2005-01-01

    New applications in optoelectronics, photonics, telecommunication, displays, optical data processing, biomedicine, sensors, energy control, automobile, aerospace, and architecture stimulation are important developments in physics and technology of optical coatings. This paper will focus on the latest advances in the areas of new optical film systems and devices, new optical coating materials and film fabrication techniques, process control and monitoring, and different advanced applications. Particularly, focus is on optical films that combine optical design with microstructural features tailored on the nanometer and micrometer scales. Evaluation of film stability and integrity in harsh industrial environments and their compatibility with organic polymers are important as well.

  10. Cellulose nanofibers use in coated paper

    Science.gov (United States)

    Richmond, Finley

    Cellulose Nanofibers (CNF) are materials that can be obtained by the mechanical breakdown of natural fibers. CNF have the potential to be produced at low cost in a paper mill and may provide novel properties to paper, paper coatings, paints, or other products. However, suspensions have a complex rheology even at low solid contents. To be able to coat, pump, or mix CNF at moderate solids, it is critical to understand the rheology of these suspensions and how they flow in process equipment; current papers only report the rheology up to 6% solids. Few publications are available that describe the coating of CNF onto paper or the use of CNF as an additive into a paper coating. The rheology of CNF suspensions and coatings that contain CNF were characterized with parallel-disk geometry in a controlled stress rheometer. The steady shear viscosity, the complex viscosity, the storage modulus, and the yield stress were determined for the range of solids or concentrations (2.5-10.5%). CNF were coated onto paper with a laboratory rod coater, a size press and a high speed cylindrical laboratory coater (CLC). For each case, the coat weights were measures and the properties of the papers were characterized. CNF water base suspension was found to be a shear thinning with a power law index of around 0.1. Oscillatory tests showed a linear viscoelastic region at low strains and significant storage and loss moduli even at low solids. The Cox Merz rule does not hold for CNF suspensions or coating formulations that contain CNF with complex viscosities that are about 100 times larger than the steady shear viscosities. Paper coating formulations that contain CNF were found to have viscosities and storage and loss moduli that are over ten times larger than coatings that contain starch at similar solids. CNF suspensions were coated on papers with low amount transferred on paper either at high solids or high nip loadings. The amount transferred appears to be controlled by an interaction of

  11. Conceptual design report for the project to install leak detection in FAST-FT-534/548/549

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, K.J.

    1992-07-01

    This report provides conceptual designs and design recommendations for installing secondary containment and leak detection systems for three sumps at the Fluorinel and Storage Facility (FAST), CPP-666. The FAST facility is located at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). The three sumps receive various materials from the FAST water treatment process. This project involves sump upgrades to meet appropriate environmental requirements. The steps include: providing sump modifications or designs for the installation of leak chases and/or leakage accumulation, coating the sump concrete with a chemical resistant sealant (except for sump VES-FT-534 which is already lined with stainless steel) to act as secondary containment, lining the sumps with a primary containment system, and providing a means to detect and remove primary containment leakage that may occur.

  12. Conceptual design report for the project to install leak detection in FAST-FT-534/548/549

    International Nuclear Information System (INIS)

    Galloway, K.J.

    1992-07-01

    This report provides conceptual designs and design recommendations for installing secondary containment and leak detection systems for three sumps at the Fluorinel and Storage Facility (FAST), CPP-666. The FAST facility is located at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). The three sumps receive various materials from the FAST water treatment process. This project involves sump upgrades to meet appropriate environmental requirements. The steps include: providing sump modifications or designs for the installation of leak chases and/or leakage accumulation, coating the sump concrete with a chemical resistant sealant (except for sump VES-FT-534 which is already lined with stainless steel) to act as secondary containment, lining the sumps with a primary containment system, and providing a means to detect and remove primary containment leakage that may occur

  13. Installation package for a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  14. Edge coating apparatus with movable roller applicator for solar cell substrates

    Science.gov (United States)

    Pavani, Luca; Abas, Emmanuel

    2012-12-04

    A non-contact edge coating apparatus includes an applicator for applying a coating material on an edge of a solar cell substrate and a control system configured to drive the applicator. The control system may drive the applicator along an axis to maintain a distance with an edge of the substrate as the substrate is rotated to have the edge coated with a coating material. The applicator may include a recessed portion into which the edge of the substrate is received for edge coating. For example, the applicator may be a roller with a groove. Coating material may be introduced into the groove for application onto the edge of the substrate. A variety of coating materials may be employed with the apparatus including hot melt ink and UV curable plating resist.

  15. Levitation, coating, and transport of particulate materials

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1981-01-01

    Several processes in various fields require uniformly thick coatings and layers on small particles. The particles may be used as carriers of catalytic materials (platinum or other coatings), as laser fusion targets (various polymer or metallic coatings), or for biological or other tracer or interactive processes. We have devised both molecular beam and electro-dynamic techniques for levitation of the particles during coating and electrodynamic methods of controlling and transporting the particles between coating steps and to final use locations. Both molecular beam and electrodynamic techniques are described and several advantages and limitations of each will be discussed. A short movie of an operating electrodynamic levitation and transport apparatus will be shown

  16. Capping off installation

    CERN Multimedia

    2006-01-01

    Installation of the cathode strip chambers for the muon system on the CMS positive endcap has been completed. Technicians install one of the last muon system cathode strip chambers on the CMS positive endcap. Like successfully putting together the pieces of a giant puzzle, installation of the muon system cathode strip chambers on one of the CMS endcaps has been completed. Total installation of the cathode strip chambers (CSC) is now 91 percent complete; only one ring of chambers needs to be mounted on the remaining endcap to finish installation of the entire system. To guarantee a good fit for the 468 total endcap muon system CSCs, physicists and engineers from the collaboration spent about 10 years carefully planning the design. The endcap muon system's cables, boxes, pipes and other parts were designed and integrated using a 3D computerized model. 'It took a long time to do all the computer modelling, but in the long run it saved us an enormous amount of time because it meant that everything fit together,...

  17. Proposal for the award of a blanket contract for the supply, installation and maintenance of the LHC access control system

    CERN Document Server

    2004-01-01

    This document concerns the award of a blanket contract for the supply, installation and maintenance of the LHC access control system. Following a market survey carried out among 134 firms in fifteen Member States, a call for tenders (IT-3026/TS/LHC) was sent on 22 January 2004 to eight firms and eight consortia in six Member States. By the closing date, CERN had received nine tenders from two firms and seven consortia in five Member States. The Finance Committee is invited to agree to the negotiation of a blanket contract with the consortium CEGELEC CENTRE EST (FR) - CEGELEC (NL), the lowest technically compliant bidder, for the supply, installation and maintenance of the LHC access control system for a total amount not exceeding 4 600 000 euros (7 141 000 Swiss francs), subject to revision for inflation from 1 January 2007. The rate of exchange used is that stipulated in the tender. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: FR - ...

  18. Active Packaging Coatings

    Directory of Open Access Journals (Sweden)

    Luis J. Bastarrachea

    2015-11-01

    Full Text Available Active food packaging involves the packaging of foods with materials that provide an enhanced functionality, such as antimicrobial, antioxidant or biocatalytic functions. This can be achieved through the incorporation of active compounds into the matrix of the commonly used packaging materials, or by the application of coatings with the corresponding functionality through surface modification. The latter option offers the advantage of preserving the packaging materials’ bulk properties nearly intact. Herein, different coating technologies like embedding for controlled release, immobilization, layer-by-layer deposition, and photografting are explained and their potential application for active food packaging is explored and discussed.

  19. Degradation of gas turbine coatings and life assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cheruvu, N S [Southwest Research Institute, San Antonio, TX (United States)

    1999-12-31

    MCrAlY coatings are widely used on hot section components of gas turbines to provide hot corrosion and/or oxidation protection by formation of an oxide layer on the surface. As the protective oxide scale exfoliates during service, aluminum from the coating diffuses outward for reformation of the protective scale. Aluminum may also diffuse inward due to the differences in composition between the coating and the substrate. Thus, the coatings degrade due to oxidation, oxide scale spallation, and inward and outward diffusion of aluminum. Service life of these coatings is controlled by the aluminum content in the coating, operating temperature and start- shutdown cycles. In-service degradation of CoCrAlY and CoNiCrAlY coatings is presented. A procedure to predict the remaining service life of coatings under oxidizing conditions is discussed. (orig.) 12 refs.

  20. Degradation of gas turbine coatings and life assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cheruvu, N.S. [Southwest Research Institute, San Antonio, TX (United States)

    1998-12-31

    MCrAlY coatings are widely used on hot section components of gas turbines to provide hot corrosion and/or oxidation protection by formation of an oxide layer on the surface. As the protective oxide scale exfoliates during service, aluminum from the coating diffuses outward for reformation of the protective scale. Aluminum may also diffuse inward due to the differences in composition between the coating and the substrate. Thus, the coatings degrade due to oxidation, oxide scale spallation, and inward and outward diffusion of aluminum. Service life of these coatings is controlled by the aluminum content in the coating, operating temperature and start- shutdown cycles. In-service degradation of CoCrAlY and CoNiCrAlY coatings is presented. A procedure to predict the remaining service life of coatings under oxidizing conditions is discussed. (orig.) 12 refs.

  1. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  2. Anti-freeze coatings for the rotor blades of wind turbines; Anti-freeze Beschichtungen fuer Rotorblaetter von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Siegmann, K.; Kaufmann, A.; Hirayama, M.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at projects involving the development of suggestions for coatings for the rotor blades of wind turbines. The coatings are to reduce the formation of hoarfrost on the leading edges of the blades. Various coatings are described and the mechanisms involved in the formation of the frost and in keeping the blades as free as possible from frost are discussed. Global know-how on the subject is discussed, as is know-how available in Europe and Switzerland. Manufacturers, planning offices and installation operators are listed, as are research institutes who are dealing with this problem. In the summary, the authors stress the importance of choosing the coating most suitable for the actual climatic conditions at the wind turbine's location. A suggestion is made for further work in this area.

  3. Performance evaluation of one coat systems for new steel bridges.

    Science.gov (United States)

    2011-06-01

    In an effort to address cost issues associated with shop application of conventional three-coat systems, the Federal : Highway Administration completed a study to investigate the performance of eight one-coat systems and two control : coatings for co...

  4. Poultry farming buildings. Natural gas heating. Guidebook of installation rules; Batiments d`elevage avicole. Chauffage au gaz. Guide des regles d`installation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The technical and economical performances of a poultry farm are greatly influenced by the mastery of ambient temperature during the first days of husbandry. The natural gas space heating installation must answer these requirements and also respect all safety rules concerning the personnel and the animals. In order to answer the questions of poultry farming professionals, the technical association of the natural gas industry (ATG) in France and the Groupama insurance company have redefined the new version of this brochure which integrates the recent technological advances and defines the minimum quality and safety rules required to achieve a natural gas heating installation. The different topics presented are: the gas supply (aerial fixed reservoirs), the general distribution panel (location, command systems, regulation systems for LPG installations, electrical equipments), the distribution pipes (general supply, indoor pipes, flexible pipes, pipe fittings), the heating systems (power, choice, power supply, fastening, air renewal), the check and sign and the start-up of the installation, the periodical control and maintenance operations. (J.S.)

  5. DoD Needs to Improve Screening and Access Controls for General Public Tenants Leasing Housing on Military Installations (REDACTED)

    Science.gov (United States)

    2016-04-01

    helps enhance service members’ quality of life by improving the condition of military-owned housing faster and more economically than traditional...DEPARTMENT OF THE ARMY SUBJECT: DoD Needs to Improve Screening and Access Controls for General Public Tenants Leasing Housing on Military...public tenants who leased DoD privatized housing before granting those tenants unescorted access to military installations. In addition, DoD officials

  6. Electrical installation calculations basic

    CERN Document Server

    Kitcher, Christopher

    2013-01-01

    All the essential calculations required for basic electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practice. A step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3Fo

  7. Nuclear Installations Act 1965

    International Nuclear Information System (INIS)

    1965-01-01

    This Act governs all activities related to nuclear installations in the United Kingdom. It provides for the licensing procedure for nuclear installations, the duties of licensees, the competent authorities and carriers of nuclear material in respect of nuclear occurrences, as well as for the system of third party liability and compensation for nuclear damage. The Act repeals the Nuclear Installations (Licensing and Insurance) Act 1959 and the Nuclear Installations (Amendment Act) 1965 except for its Section 17(2). (NEA) [fr

  8. Geodetic alignment of laser power installations

    International Nuclear Information System (INIS)

    Shtorm, V.V.; Gostev, A.M.; Drobikov, A.V.

    1989-01-01

    Main problems occuring in applied geodesy under initial alignment of laser power installation optical channel are considered. Attention is paid to alignment of lens beamguide telescopic pairs and alignment quality control. Methods and means of geodetic measurements under alignment are indicated. Conclusions are made about the degree of working through certain aspects of the problem

  9. Childhood cancer and nuclear installations: a review

    International Nuclear Information System (INIS)

    Muirhead, C.R.

    1998-01-01

    Many epidemiological studies of childhood cancer around nuclear installations have been conducted in recent years. This article reviews results from Great Britain and elsewhere. Geographical studies have indicated raised risks of childhood leukaemia around some British nuclear installations. However, environmental assessments suggest that the findings are unlikely to be due to radioactive releases from the sites. Case-control studies have allowed more detailed investigation of putative risk factors than is possible from geographical studies. In particular, a recent national study in Britain does not support the hypothesis raised by an earlier study in West Cumbria that paternal radiation exposure prior to conception may increase the risk of leukaemia and non-Hodgkin's lymphoma in offspring. Other studies suggest that childhood leukaemia may have an infective basis, although there is still uncertainty about whether this would explain the findings around nuclear installations. The UK Childhood Cancer Study may provide more information on the causes of these diseases. (author)

  10. Evaluating the Effect of a Mechanical Adjunct to Improve the Installation of Child Restraint Systems to Vehicles.

    Science.gov (United States)

    Mirman, Jessica H; Seifert, Sara J; Zonfrillo, Mark R; Metzger, Kristi; Durbin, Dennis R; Arbogast, Kristy B

    2015-01-01

    We explored if an alternative CRS design that utilized a mechanical adjunct to amplify the force applied to the adult seat belt (intervention CRS) results in more accurate and secure attachment between the CRS and the vehicle compared to similar CRS models that use LATCH or the existing adult seat belt. We conducted three separate studies to address this question and additionally explored: (1) the contribution of prior CRS installation experience (Study 1), (2) the value-added of CRS labeling (Study 2), and (3) paper-based vs. video instructions (Study 3). In Studies 1 and 2 we assessed a forward facing combination CRS design (intervention CRS) compared to a commercially available LATCH equipped model (control CRS) and in Study 3 we conducted a similar study using a convertible model of both the intervention and control CRS. Participants installed both CRS in a contemporary minivan and could choose which type of attachment to use for the control CRS (LATCH or seat belt); order of installation was counter-balanced. Evaluators systematically examined installations for accuracy and security. Study 1: A greater proportion of participants in both the experienced and inexperienced groups was able to securely install the intervention CRS compared to the control CRS: (45% vs. 16%, p =.0001 for experienced) and (37% vs. 6%, p =.003 for inexperienced). No differences between the CRS were observed for accuracy of installation in either user group. Study 2: A greater proportion of participants were able to securely install the enhanced intervention CRS compared to the control CRS: (62% vs. 9%, p =.001). The intervention CRS demonstrated reduced installation accuracy: (30% vs. 61%, p =.001). Study 3: A greater proportion of participants was able to securely install the intervention CRS compared to the control CRS: 79% vs. 66% p =.03, but this effect was smaller than in the previous studies. Participants were less likely to achieve an accurate installation with the intervention

  11. Electrical installation calculations advanced

    CERN Document Server

    Kitcher, Christopher

    2013-01-01

    All the essential calculations required for advanced electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practiceA step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3For apprentices and electrical installatio

  12. Electrical installations and regulations

    CERN Document Server

    Whitfield, J F

    1966-01-01

    Electrical Installations and Regulations focuses on the regulations that apply to electrical installations and the reasons for them. Topics covered range from electrical science to alternating and direct current supplies, as well as equipment for providing protection against excess current. Cables, wiring systems, and final subcircuits are also considered, along with earthing, discharge lighting, and testing and inspection.Comprised of 12 chapters, this book begins with an overview of electrical installation work, traits of a good electrician, and the regulations governing installations. The r

  13. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering.

    Science.gov (United States)

    Liu, Xiuju; Gan, Kang; Liu, Hong; Song, Xiaoqing; Chen, Tianjie; Liu, Chenchen

    2017-09-01

    We aimed to investigate the cytotoxicity and antibacterial properties of nano-silver-coated polyetheretherketone (PEEK) produced through magnetron sputtering and provide a theoretical basis for its use in clinical applications. The surfaces of PEEKs were coated with nano-silver at varying thicknesses (3, 6, 9, and 12nm) through magnetron sputtering technology. The resulting coated PEEK samples were classified into the following groups according to the thickness of the nano-silver coating: PEEK-3 (3nm), PEEK-6 (6nm), PEEK-9 (9nm), PEEK-12 (12nm), and PEEK control group. The surface microstructure and composition of each sample were observed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive spectrum (EDS) analysis. The water contact angle of each sample was then measured by contact angle meters. A cell counting kit (CCK-8) was used to analyze the cytotoxicity of the mouse fibroblast cells (L929) in the coated groups (n=5) and group test samples (n=6), negative control (polyethylene, PE) (n=6), and positive control group (phenol) (n=6). The antibacterial properties of the samples were tested by co-culturing Streptococcus mutans and Straphylococcus aureus. The bacteria that adhered to the surface of samples were observed by SEM. The antibacterial adhesion ability of each sample was then evaluated. SEM and AFM analysis results showed that the surfaces of control group samples were smooth but compact. Homogeneous silver nano-particles (AgNPs) and nano-silver coating were uniformly distributed on the surface of the coated group samples. Compared with the control samples, the nano-silver coated samples had a significant increase in surface roughness (Pnano-silver coating increased. EDS analysis showed that not only C and O but also Ag were present on the surface of the coated samples. Moreover, the water contact angle of modified samples significantly increased after nano-silver coating modification (Pnano-silver coating can

  14. Installation of wireless LAN system into the SuperKEKB accelerator tunnel

    International Nuclear Information System (INIS)

    Iwasaki, Masako; Satoh, Masanori

    2014-01-01

    We have installed a wireless LAN system of the accelerator control network into the accelerator tunnel for SuperKEKB, which is the upgrade plan of the KEKB B-factory project. The wireless LAN system is used for the construction and maintenance of the accelerator components. The leaky coaxial cable (LCX) antennas are installed into the arc sections of SuperKEKB tunnel, and the collinear antennas are installed into the straight sections and the injector Linac. We have selected the LCX and collinear antennas with good radiation hardness of more than 1 MGy. After the installation, we evaluated the wireless LAN system and obtained the good network speed performance in the whole tunnel area. (author)

  15. Installing Git under MacOS

    OpenAIRE

    Fitzpatrick, Benjamin

    2015-01-01

    Step by step guide to installing the version control software Git under the Macintosh Operating System MacOS X (and later). Includes a seqeunce of screenshots with hand drawn arrows ;-) These slides are part of the materials for an Introductory course on the R language and environment for statistial computing. Free and Open Source materials for this course hosted on GitHub: https://github.com/brfitzpatrick/Intro_to_R

  16. Experimental setup for producing tungsten coated graphite tiles using plasma enhanced chemical vapor deposition technique for fusion plasma applications

    International Nuclear Information System (INIS)

    Chauhan, Sachin Singh; Sharma, Uttam; Choudhary, K.K.; Sanyasi, A.K.; Ghosh, J.; Sharma, Jayshree

    2013-01-01

    Plasma wall interaction (PWI) in fusion grade machines puts stringent demands on the choice of materials in terms of high heat load handling capabilities and low sputtering yields. Choice of suitable material still remains a challenge and open topic of research for the PWI community. Carbon fibre composites (CFC), Beryllium (Be), and Tungsten (W) are now being considered as first runners for the first wall components of future fusion machines. Tungsten is considered to be one of the suitable materials for the job because of its superior properties than carbon like low physical sputtering yield and high sputter energy threshold, high melting point, fairly high re-crystallization temperature, low fuel retention capabilities, low chemical sputtering with hydrogen and its isotopes and most importantly the reparability with various plasma techniques both ex-situ and in-situ. Plasma assisted chemical vapour deposition is considered among various techniques as the most preferable technique for fabricating tungsten coated graphite tiles to be used as tokamak first wall and target components. These coated tiles are more favourable compared to pure tungsten due to their light weight and easier machining. A system has been designed, fabricated and installed at SVITS, Indore for producing tungsten coated graphite tiles using Plasma Enhanced Chemical Vapor Deposition (PE-CVD) technique for Fusion plasma applications. The system contains a vacuum chamber, a turbo-molecular pump, two electrodes, vacuum gauges, mass analyzer, mass flow controllers and a RF power supply for producing the plasma using hydrogen gas. The graphite tiles will be put on one of the electrodes and WF6 gas will be inserted in a controlled manner in the hydrogen plasma to achieve the tungsten-coating with WF6 dissociation. The system is integrated at SVITS, Indore and a vacuum of the order of 3*10 -6 is achieved and glow discharge plasma has been created to test all the sub-systems. The system design with

  17. Gum arabic based composite edible coating on green chillies

    Science.gov (United States)

    Valiathan, Sreejit; Athmaselvi, K. A.

    2018-04-01

    Green chillies were coated with a composite edible coating composed of gum arabic (5%), glycerol (1%), thyme oil (0.5%) and tween 80 (0.05%) to preserve the freshness and quality of green chillies and thus reduce the cost of preservation. In the present work, the chillies were coated with the composite edible coating using the dipping method with three dipping times (1, 3 and 5 min). The physicochemical parameters of the coated and control chillies stored at room temperature (28±2ºC) were evaluated at regular intervals of storage. There was a significant difference (p≤0.05) in the physicochemical properties between the control chillies and coated chillies with 1, 3 and 5 min dipping times. The coated green chillies showed significantly (p≤0.05) lower weight loss, phenolic acid production, capsaicin production and significantly (p≤0.05) higher retention of ascorbic acid, total chlorophyll content, colour, firmness and better organoleptic properties. The composite edible coating of gum arabic and thyme oil with 3 min dipping was effective in preserving the desirable physico-chemical and organoleptic properties of the green chillies up to 12 days, compared to the uncoated chillies that had a shelf life of 6 days at room temperature.

  18. Biomedical coatings on magnesium alloys - a review.

    Science.gov (United States)

    Hornberger, H; Virtanen, S; Boccaccini, A R

    2012-07-01

    This review comprehensively covers research carried out in the field of degradable coatings on Mg and Mg alloys for biomedical applications. Several coating methods are discussed, which can be divided, based on the specific processing techniques used, into conversion and deposition coatings. The literature review revealed that in most cases coatings increase the corrosion resistance of Mg and Mg alloys. The critical factors determining coating performance, such as corrosion rate, surface chemistry, adhesion and coating morphology, are identified and discussed. The analysis of the literature showed that many studies have focused on calcium phosphate coatings produced either using conversion or deposition methods which were developed for orthopaedic applications. However, the control of phases and the formation of cracks still appear unsatisfactory. More research and development is needed in the case of biodegradable organic based coatings to generate reproducible and relevant data. In addition to biocompatibility, the mechanical properties of the coatings are also relevant, and the development of appropriate methods to study the corrosion process in detail and in the long term remains an important area of research. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. The installation welding of pressure water reactor coolant piping

    International Nuclear Information System (INIS)

    Deng Feng

    2010-01-01

    Large pressure water reactor nuclear power plants are constructing in our country. There are three symmetry standard loops in reactor coolant system. Each loop possesses a steam generator and a primary poop, in which one of the loops is equipped with a pressurizer. These components are connected with reactor pressure vessel by installation welding of the coolant piping. The integrity of reactor coolant pressure boundary is the second barrier to protect the radioactive substance from release to outside, so the safe operation of nuclear power plant is closely related to the quality of coolant piping installation welding. The heavy tube with super low carbon content austenitic stainless steel is selected for coolant piping. This kind of material has good welding behavior, but the poor thermal conductivity, the big liner expansion coefficient and the big welding deformation will cause bigger welding stress. To reduce the welding deformation, to control the dimension precision, to reduce the residual stress and to ensure the welding quality the installation sequence should be properly designed and the welding technology should be properly controlled. (authors)

  20. TESLA accelerator installation

    International Nuclear Information System (INIS)

    Neskovic, N.; Ostojic, R.; Susini, A.; Milinkovic, Lj.; Ciric, D.; Dobrosavljevic, A.; Brajuskovic, B.; Cirkovic, S.; Bojovic, B.; Josipovic, M.

    1992-01-01

    The TESLA accelerator Installation is described. Its main parts are the VINCY Cyclotron, the multiply charged heavy-ion mVINIS Ion Source, and the negative light-ion pVINIS Ion Source. The Installation should be the principal installation of a regional center for basic and applied research in nuclear physics, atomic physics, surface physics and solid state physics, for production of radioisotopes, for research and therapy in nuclear medicine. The first extraction of the ion beam from the Cyclotron is planned for 1995. (R.P.) 3 refs.; 1 fig

  1. Testing on air cleaning systems: Testing of the components in-place tests; Controle des installations d'epuration de l'air essais de conformite des elements: Tests in situ

    Energy Technology Data Exchange (ETDEWEB)

    Billard, F; Brion, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    The reliability of air cleaning systems is dependent on testing they are submitted to. Although in-place tests are the most important as they act as final tests upon achieved plants, component tests are necessary too. They allow detection of defective units before they are installed, partition of unit defects from mounting defects and they are more sensitive. For similar reasons, material teats are most useful. The various tests are described, about aerosol filters for one part, iodine trap for the other. The checked features are: materials nature, units sizes, efficiency, air resistance, flammability, humidity resistance, temperature resistance, adsorbent friability, etc... On iodine trapping systems, small check traps, working by-pass with the main trap are periodically subjected to efficiency test. This control allow to cut down the in-place tests frequency, particularly when poisoning from organic vapours is to be feared. (authors) [French] La surete de fonctionnement des installations d'epuratition de l'air esf fonction des controles auxquels ces installations sont soumises. Si les tests in situ sont les plus importants puisqu'ils constituent le controle final de l'installation terminee, les essais de conformite des elements constitutifs sont egalement necessaires. Ils permettent l'elimination d'elements defectueux avant leur mise en place, la discrimination des defauts du montage de ceux de l'element et sont en outre plus sensibles. De meme, le controle des materiaux constitutifs de l'element s'avere fort utile. On decrit les differents controles, d'une part, pour les fittres a aerosols, d'autre part, pour les pieges a iode. Les caracteristiques verifiees sont: nature des materiaux, dimenesions des elements, efficacite, perte de charge, resistance mecanique, inflammabilite, tenue a l'humidite, tenue a la temperature, resistance au detassement des pieges a iode, friabilite du materiau adsorbant, etc... En ce qui concerne les installations de piegeage d

  2. Planning and installing micro-hydro systems a guide for designers, installers and engineers

    CERN Document Server

    Elliott, Chris

    2014-01-01

    An essential addition to the Earthscan Planning & Installing series, Planning and Installing Micro-Hydro Systems provides vital diagrams, pictures and tables detailing the planning and installing of a micro-hydro system, including information on the maintenance and economics once an installation is running. The book covers subjects such as measuring head and flow, ecological impacts, scheme layouts, practical advice, calculations and turbine choice. Archimedes screws are also covered in detail, as well as the main conventional choices relevant to small sites.Micro-hydro refers to hydropower sy

  3. MANAGEMENT OF GAS-AIR ENERGY INSTALLATION OF INDUSTRIAL ENTERPRISE

    Directory of Open Access Journals (Sweden)

    V. Y. Lobov

    2018-02-01

    Full Text Available Purpose. The goal of the work is to substantiate the issue of effective use of kinetic energy of gas-air flows used by the technological installation for generating electric power, which will allow developing a new control algorithm and creating new software for controlling the gas-air power plant. To test the adequacy of the developed control algorithms and software, to develop a laboratory gas-air power plant. Methodology. To investigate the distribution of air-gas mass in process plants used industrial plant simulation method performed in software SolidWorks Flow Simulation. The method of simulation allowed to develop a new control algorithm and create new software taking into account the basic technical requirements for the management of the gas-air power plant. To test the efficiency of the developed algorithms and control software for the gas-air power plant, a physical modeling method was used on a developed laboratory installation connected via a USB interface with a computer and has a virtual model of the SCADA system presented in the LabVIEW environment. Findings. Based on the modeling of gas-air flows on the developed mathematical model, the optimal ratios of pipeline sizes are rationally determined, the gas-air mixture costs necessary for the most efficient operation of the gas-air power plant, that is, in the working zone of the gas-air path, the generator screw contacts the most significant flows, providing the maximum effect rotation. The obtained results of research of gas-air flows of technological installations of an industrial enterprise in the software environment of SolidWorks Flow Simulation and on their basis the basic technical requirements for the management of a gas-air power plant are developed. An optimal control algorithm has been developed that enabled it to be introduced into the control scheme of a gas-air power plant with a microprocessor or a specialized microcontroller. Originality. New possibilities for

  4. Installation Art

    DEFF Research Database (Denmark)

    Petersen, Anne Ring

    . In Installation Art: Between Image and Stage, Anne Ring Petersen aims to change that. She begins by exploring how installation art developed into an interdisciplinary genre in the 1960s, and how its intertwining of the visual and the performative has acted as a catalyst for the generation of new artistic......Despite its large and growing popularity – to say nothing of its near-ubiquity in the world’s art scenes and international exhibitions of contemporary art –installation art remains a form whose artistic vocabulary and conceptual basis have rarely been subjected to thorough critical examination...... phenomena. It investigates how it became one of today’s most widely used art forms, increasingly expanding into consumer, popular and urban cultures, where installation’s often spectacular appearance ensures that it meets contemporary demands for sense-provoking and immersive cultural experiences. The main...

  5. Installation Art

    DEFF Research Database (Denmark)

    Petersen, Anne Ring

    Despite its large and growing popularity – to say nothing of its near-ubiquity in the world’s art scenes and international exhibitions of contemporary art –installation art remains a form whose artistic vocabulary and conceptual basis have rarely been subjected to thorough critical examination....... In Installation Art: Between Image and Stage, Anne Ring Petersen aims to change that. She begins by exploring how installation art developed into an interdisciplinary genre in the 1960s, and how its intertwining of the visual and the performative has acted as a catalyst for the generation of new artistic...... phenomena. It investigates how it became one of today’s most widely used art forms, increasingly expanding into consumer, popular and urban cultures, where installation’s often spectacular appearance ensures that it meets contemporary demands for sense-provoking and immersive cultural experiences. The main...

  6. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    Science.gov (United States)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  7. The role of installers for thermo-technical installations when buying gas boilers

    Directory of Open Access Journals (Sweden)

    Jovičić Dragoljub

    2013-01-01

    Full Text Available This study presents the research of role installers for thermo-technical installations when buying gas boilers in the Serbian market. Considering the fact that installers are significantly different, they are grouped by specific, relevant characteristics. The research is focused on the evaluation of marketing mix instruments by nine identified segments of installers. Moreover, research has been explored deeper through conclusion installers about the most important and most credible sources of information on gas boilers. During the research were used secondary and primary data sources. Besides the research at the table, field research has been also done by unstructured personal communication. All collected data were analyzed in details and both hypothesis were tested, where one of them is partially confirmed, and another one fully confirm. Given results can be useful for marketers and their anticipation of demand. Also these results can be used for creating optimal marketing strategy in the Serbian market of gas boilers.

  8. Transfer coating by electron initiated polymerization

    International Nuclear Information System (INIS)

    Nablo, S.V.

    1985-01-01

    The high speed and depth of cure possible with electron initiated monomer/oligomer coating systems provide many new opportunities for approaches to product finishing. Moreover, the use of transfer or cast coating using films or metallic surfaces offers the ability to precisely control the surface topology of liquid film surfaces during polymerization. Transfer coating such as with textiles has been a commercial process for many years and the synergistic addition of EB technology permits the manufacture of unusual new products. One of these, the casting paper used in the manufacture of vinyl and urethane fabrics, is the first EB application to use a drum surface for pattern replication in the coating. In this case the coated paper is cured against, and then released from, an engraved drum surface. Recent developments in the use of plastic films for transfer have been applied to the manufacture of transfer metallized and coated paper and paperboard products for packaging. Details of these and related processes will be presented as well as a discussion of the typical product areas using this high speed transfer technology. (author)

  9. Reduction of organic solvent emission by industrial use of electron-beam curable coatings

    International Nuclear Information System (INIS)

    Haering, E.

    1982-01-01

    Most industrial finishing processes operate by the use of liquid organic coating materials drying by solvent evaporation and subsequent chemical crosslinking reactions, in many cases also releasing cleavage products. These organic emissions contribute to air pollution and therefore many countries have issued restrictions in order to protect the environment. Complementary to other modern methods for reducing this problem, radiation chemistry enables an approach by radical chain polymerization which can be induced by exposure to electron radiation. This procedure is known as electron-beam curing of coatings or the EBC process. It utilizes well-developed accelerator equipment with voltages of 150 to 400kV at a minimum energy consumption. There is no necessity to use irradiation facilities based on the decay of radioisotopes. Free radical polymerization requires unsaturated resins as pain binders and polymerizable liquid compounds (monomers) as reactive diluents. Their crosslinking yields a high molecular network, the coating, without any emission of organic solvents or cleavage products. Moreover, the radiochemical formation of the paint film occurs extremely rapidly. The technical application of EBC coatings began by coating automotive plastic parts; a little later the finishing of wood products gained more industrial use as a non-polluting and energy-saving coating technology. Application methods in coating plastic foils in combination with vacuum metallizing and the production of decorative laminating papers for furniture followed. In 1981 new EBC pilot lines were installed for curing top coats on PVC foil and also for the coating of prefinished steel wheels for automobiles. In comparison with conventional solvent-based methods the industrial EBC process results in a nearly complete reduction of organic solvent emission avoiding air pollution and saving valuable petrochemical raw materials. This paper reviews the development of EBC during the last decade. (author)

  10. Automated installation methods for photovoltaic arrays

    Science.gov (United States)

    Briggs, R.; Daniels, A.; Greenaway, R.; Oster, J., Jr.; Racki, D.; Stoeltzing, R.

    1982-11-01

    Since installation expenses constitute a substantial portion of the cost of a large photovoltaic power system, methods for reduction of these costs were investigated. The installation of the photovoltaic arrays includes all areas, starting with site preparation (i.e., trenching, wiring, drainage, foundation installation, lightning protection, grounding and installation of the panel) and concluding with the termination of the bus at the power conditioner building. To identify the optimum combination of standard installation procedures and automated/mechanized techniques, the installation process was investigated including the equipment and hardware available, the photovoltaic array structure systems and interfaces, and the array field and site characteristics. Preliminary designs of hardware for both the standard installation method, the automated/mechanized method, and a mix of standard installation procedures and mechanized procedures were identified to determine which process effectively reduced installation costs. In addition, costs associated with each type of installation method and with the design, development and fabrication of new installation hardware were generated.

  11. Corrosion Control of Central Vehicle Wash Facility Pump Components Using Alternative Alloy Coatings

    Science.gov (United States)

    2016-07-01

    bles near the metal/solution interface that is especially prevalent in pump impellers (Fontana 1986). When the bubbles implode due to high pressure...defective in total area). The coatings were nonsacrificial protective materials of the sort that ASTM B537 is in- tended to evaluate. In addition, cavitation...be considered detrimental, but not a protec- tion defect. The new pump coatings are protective, non-sacrificial coatings of the sort that ASTM B537 is

  12. Installation of the MAXIMUM microscope at the ALS

    International Nuclear Information System (INIS)

    Ng, W.; Perera, R.C.C.; Underwood, J.H.; Singh, S.; Solak, H.; Cerrina, F.

    1995-10-01

    The MAXIMUM scanning x-ray microscope, developed at the Synchrotron Radiation Center (SRC) at the University of Wisconsin, Madison was implemented on the Advanced Light Source in August of 1995. The microscope's initial operation at SRC successfully demonstrated the use of multilayer coated Schwarzschild objective for focusing 130 eV x-rays to a spot size of better than 0.1 micron with an electron energy resolution of 250meV. The performance of the microscope was severely limited, because of the relatively low brightness of SRC, which limits the available flux at the focus of the microscope. The high brightness of the ALS is expected to increase the usable flux at the sample by a factor of 1,000. The authors will report on the installation of the microscope on bending magnet beamline 6.3.2 at the ALS and the initial measurement of optical performance on the new source, and preliminary experiments with surface chemistry of HF etched Si will be described

  13. Electroless silver coating of rod-like glass particles.

    Science.gov (United States)

    Moon, Jee Hyun; Kim, Kyung Hwan; Choi, Hyung Wook; Lee, Sang Wha; Park, Sang Joon

    2008-09-01

    An electroless silver coating of rod-like glass particles was performed and silver glass composite powders were prepared to impart electrical conductivity to these non-conducting glass particles. The low density Ag-coated glass particles may be utilized for manufacturing conducting inorganic materials for electromagnetic interference (EMI) shielding applications and the techniques for controlling the uniform thickness of silver coating can be employed in preparation of biosensor materials. For the surface pretreatment, Sn sensitization was performed and the coating powders were characterized by scanning electron microscopy (SEM), focused ion beam microscopy (FIB), and atomic force microscopy (AFM) along with the surface resistant measurements. In particular, the use of FIB technique for determining directly the Ag-coating thickness was very effective on obtaining the optimum conditions for coating. The surface sensitization and initial silver loading for electroless silver coating could be found and the uniform and smooth silver-coated layer with thickness of 46 nm was prepared at 2 mol/l of Sn and 20% silver loading.

  14. Mathematical model and computer code for coated particles performance at normal operating conditions

    International Nuclear Information System (INIS)

    Golubev, I.; Kadarmetov, I.; Makarov, V.

    2002-01-01

    Computer modeling of thermo-mechanical behavior of coated particles during operating both at normal and off-normal conditions has a very significant role particularly on a stage of new reactors development. In Russia a big experience has been accumulated on fabrication and reactor tests of CP and fuel elements with UO 2 kernels. However, this experience cannot be using in full volume for development of a new reactor installation GT-MHR. This is due to very deep burn-up of the fuel based on plutonium oxide (up to 70% fima). Therefore the mathematical modeling of CP thermal-mechanical behavior and failure prediction becomes particularly important. The authors have a clean understanding that serviceability of fuel with high burn-ups are defined not only by thermo-mechanics, but also by structured changes in coating materials, thermodynamics of chemical processes, 'amoeba-effect', formation CO etc. In the report the first steps of development of integrate code for numerical modeling of coated particles behavior and some calculating results concerning the influence of various design parameters on fuel coated particles endurance for GT-MHR normal operating conditions are submitted. A failure model is developed to predict the fraction of TRISO-coated particles. In this model it is assumed that the failure of CP depends not only on probability of SiC-layer fracture but also on the PyC-layers damage. The coated particle is considered as a uniform design. (author)

  15. Approaches in controllable generation of artificial pinning center in REBa2Cu3O y -coated conductor for high-flux pinning

    Science.gov (United States)

    Yoshida, Y.; Miura, S.; Tsuchiya, Y.; Ichino, Y.; Awaji, S.; Matsumoto, K.; Ichinose, A.

    2017-10-01

    This paper reviews the progress of studies to determine optimum shapes of the artificial pinning center (APC) of REBa2Cu3O y thin films and coated conductors towards superconducting magnets operating at temperatures of 77 K or less. Superconducting properties vary depending on the kind and quantity of BaMO3 materials. Therefore, we study changes in the shapes of nanorods that are due to the difference in the quality of additives and growth temperature. In addition, we aim to control the APC using an optimum shape that matches the operating temperature. In particular, we describe the shape control of nanorods in SmBCO thin films and coated conductors by employing lower temperature growth (LTG) technology using seed layers. From the cross-sectional transmission electron microscopy observations, we confirmed that using the LTG method, the BaHfO3 (BHO) nanorods, which were comparatively thin and short in length, formed a firework structure in the case of SmBCO films with coated conductors. The superconducting properties in the magnetic field of the SmBCO-coated conductor with the optimum amount of BHO showed that {F}{{p}}\\max = 1.6 TN m-3 on a single crystalline substrate and 1.5 TN m-3 on metallic substrate with a biaxially textured MgO layer fabricated by ion-beam assisted deposition method tape 4.2 K.

  16. Application of Coating Technology for Accident Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. As an improved coating technology compared to a previous study, a 3D laser coating technology supplied with Cr powders is considered to make a coated cladding because it is possible to make a coated layer on the tubular cladding surface by controlling the 3-diminational axis. We are systematically studying the laser beam power, inert gas flow, cooling of the cladding tube, and powder control as key points to develop 3D laser coating technology. After Cr-coating on the Zr-based cladding, ring compression and ring tensile tests were performed to evaluate the adhesion property between a coated layer and Zr-based alloy tube at room temperature (RT), and a high-temperature oxidation test was conducted to evaluate the oxidation behavior at 1200 .deg. C of the coated tube samples. A 3D laser coating method supplied with Cr powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a Cr-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured.

  17. Radiation monitoring in a self-shielded cyclotron installation

    International Nuclear Information System (INIS)

    Capaccioli, L.; Gori, C.; Mazzocchi, S.; Spano, G.

    2002-01-01

    As nuclear medicine is approaching a new era with the spectacular growth of PET diagnosis, the number of medical cyclotrons installed within the major hospitals is increasing accordingly. Therefore modern medical cyclotron are highly engineered and highly reliable apparatus, characterised with reduced accelerating energies (as the major goal is the production of fluorine 18) and often self-shielded. However specific dedicated monitors are still necessary in order to assure the proper radioprotection. At the Careggi University Hospital in Florence a Mini trace 10 MeV self-shielded cyclotron produced by General Electric has been installed in 2000. In a contiguous radiochemistry laboratory, the preparation and quality control of 1 8F DG and other radiopharmaceuticals takes place. Aim of this work is the characterisation and the proper calibration of the above mentioned monitors and control devices

  18. Border installations

    International Nuclear Information System (INIS)

    Lenaerts, Koen

    1988-01-01

    Border installations cover all nuclear plants located near the border with a neighbouring state. However, the actual distance depends on the context. The distance can vary considerably. Also the prohibition on siting near a heavily populated area also defines the actual distance variably. The distance criteria may be modified by other factors of topography, prevailing climate and so on. Various examples which illustrate the problems are given. For example, the Creys-Melville nuclear power plant is 80km from Geneva and the Cattonam installation is 12km from the French border with Luxembourg and Germany. The Cattenom case is explained and the legal position within the European Institutions is discussed. The French licensing procedures for nuclear power stations are described with special reference to the Cattenom power plant. Border installations are discussed in the context of European Community Law and Public International Law. (U.K.)

  19. Decommissioning of offshore installations

    Energy Technology Data Exchange (ETDEWEB)

    Oeen, Sigrun; Iversen, Per Erik; Stokke, Reidunn; Nielsen, Frantz; Henriksen, Thor; Natvig, Henning; Dretvik, Oeystein; Martinsen, Finn; Bakke, Gunnstein

    2010-07-01

    New legislation on the handling and storage of radioactive substances came into force 1 January 2011. This version of the report is updated to reflect this new regulation and will therefore in some chapters differ from the Norwegian version (see NEI-NO--1660). The Ministry of the Environment commissioned the Climate and Pollution Agency to examine the environmental impacts associated with the decommissioning of offshore installations (demolition and recycling). This has involved an assessment of the volumes and types of waste material and of decommissioning capacity in Norway now and in the future. This report also presents proposals for measures and instruments to address environmental and other concerns that arise in connection with the decommissioning of offshore installations. At present, Norway has four decommissioning facilities for offshore installations, three of which are currently involved in decommissioning projects. Waste treatment plants of this kind are required to hold permits under the Pollution Control Act. The permit system allows the pollution control authority to tailor the requirements in a specific permit by evaluating conditions and limits for releases of pollutants on a case-to-case basis, and the Act also provides for requirements to be tightened up in line with the development of best available techniques (BAT). The environmental risks posed by decommissioning facilities are much the same as those from process industries and other waste treatment plants that are regulated by means of individual permits. Strict requirements are intended to ensure that environmental and health concerns are taken into account. The review of the four Norwegian decommissioning facilities in connection with this report shows that the degree to which requirements need to be tightened up varies from one facility to another. The permit for the Vats yard is newest and contains the strictest conditions. The Climate and Pollution Agency recommends a number of measures

  20. Modulating drug release from gastric-floating microcapsules through spray-coating layers.

    Directory of Open Access Journals (Sweden)

    Wei Li Lee

    Full Text Available Floating dosage forms with prolonged gastric residence time have garnered much interest in the field of oral delivery. However, studies had shown that slow and incomplete release of hydrophobic drugs during gastric residence period would reduce drug absorption and cause drug wastage. Herein, a spray-coated floating microcapsule system was developed to encapsulate fenofibrate and piroxicam, as model hydrophobic drugs, into the coating layers with the aim of enhancing and tuning drug release rates. Incorporating fenofibrate into rubbery poly(caprolactone (PCL coating layer resulted in a complete and sustained release for up to 8 h, with outermost non-drug-holding PCL coating layer serving as a rate-controlling membrane. To realize a multidrug-loaded system, both hydrophilic metformin HCl and hydrophobic fenofibrate were simultaneously incorporated into these spray-coated microcapsules, with metformin HCl and fenofibrate localized within the hollow cavity of the capsule and coating layer, respectively. Both drugs were observed to be completely released from these coated microcapsules in a sustained manner. Through specific tailoring of coating polymers and their configurations, piroxicam loaded in both the outer polyethylene glycol and inner PCL coating layers was released in a double-profile manner (i.e. an immediate burst release as the loading dose, followed by a sustained release as the maintenance dose. The fabricated microcapsules exhibited excellent buoyancy in simulated gastric fluid, and provided controlled and sustained release, thus revealing its potential as a rate-controlled oral drug delivery system.

  1. Preliminary coating design and coating developments for ATHENA

    DEFF Research Database (Denmark)

    Jakobsen, Anders Clemen; Ferreira, Desiree Della Monica; Christensen, Finn Erland

    2011-01-01

    We present initial novel coating design for ATHENA. We make use of both simple bilayer coatings of Ir and B4C and more complex constant period multilayer coatings to enhance the effective area and cover the energy range from 0.1 to 10 keV. We also present the coating technology used...... for these designs and present test results from coatings....

  2. Regulation for installation and operation of marine reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The regulation is defined under the law for the regulations of nuclear source materials, nuclear fuel materials and reactors and the provisions of the order for execution of the law. The regulation is applied to marine reactors and reactors installed in foreign nuclear ships. Basic concepts and terms are explained, such as: radioactive waste; fuel assembly; exposure dose; accumulative dose; controlled area; safeguarded area; inspected surrounding area and employee. The application for permission of installation of reactors shall list maximum continuous thermal power, location and general structure of reactor facilities, structure and equipment of reactors and treatment and storage facilities of nuclear fuel materials, etc. The application for permission of reactors installed in foreign ships shall describe specified matters according to the provisions for domestic reactors. The operation program of reactors for three years shall be filed to the Minister of Transportation for each reactor every fiscal year from that year when the operation is expected to start. Records shall be made for each reactor and kept for particular periods on inspection of reactor facilities, operation, fuel assembly, control of radiation, maintenance and others. Exposure doses, inspection and check up of reactor facilities, operation of reactors, transport and storage of nuclear fuel materials, etc. are designated in detail. (Okada, K.)

  3. Electrochemical deposition of mineralized BSA/collagen coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Junjun [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Lin, Jun; Li, Juan; Wang, Huiming [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003 (China); Cheng, Kui [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170–0.173 mg/cm{sup 2}, enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold). - Highlights: • BSA is incorporated into mineralized collagen coating by electrochemical deposition. • The loading amount of BSA in coatings can be adjusted in the range of 0-173 ng. • The BSA/collagen coating shows good cytocompatibility with free-albumin culture. • The incorporation process is put forward for some other molecules deposition.

  4. Electrocurtain coating process for coating solar mirrors

    Science.gov (United States)

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  5. Decorative properties of annealed Ti N coatings

    International Nuclear Information System (INIS)

    Klubovich, V.V.; Rubanik, V.V.; Bagrets, D.A.

    2012-01-01

    The decorative properties of annealed TiN coatings on austenitic stainless steel which were formed by vacuum-arc deposition wen investigated. It was shown the principal possibility to control colour characteristics of TiN films due to heat treatment at different temperature and time that expand their usage as decorative coatings. (authors).

  6. Automated pharmaceutical tablet coating layer evaluation of optical coherence tomography images

    International Nuclear Information System (INIS)

    Markl, Daniel; Sacher, Stephan; Khinast, Johannes G; Hannesschläger, Günther; Leitner, Michael; Buchsbaum, Andreas

    2015-01-01

    Film coating of pharmaceutical tablets is often applied to influence the drug release behaviour. The coating characteristics such as thickness and uniformity are critical quality parameters, which need to be precisely controlled. Optical coherence tomography (OCT) shows not only high potential for off-line quality control of film-coated tablets but also for in-line monitoring of coating processes. However, an in-line quality control tool must be able to determine coating thickness measurements automatically and in real-time. This study proposes an automatic thickness evaluation algorithm for bi-convex tables, which provides about 1000 thickness measurements within 1 s. Beside the segmentation of the coating layer, optical distortions due to refraction of the beam by the air/coating interface are corrected. Moreover, during in-line monitoring the tablets might be in oblique orientation, which needs to be considered in the algorithm design. Experiments were conducted where the tablet was rotated to specified angles. Manual and automatic thickness measurements were compared for varying coating thicknesses, angles of rotations, and beam displacements (i.e. lateral displacement between successive depth scans). The automatic thickness determination algorithm provides highly accurate results up to an angle of rotation of 30°. The computation time was reduced to 0.53 s for 700 thickness measurements by introducing feasibility constraints in the algorithm. (paper)

  7. Microneedle Coating Techniques for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Rita Haj-Ahmad

    2015-11-01

    Full Text Available Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates.

  8. Performance of ceramic coatings on diesel engines

    International Nuclear Information System (INIS)

    MacAdam, S.; Levy, A.

    1986-01-01

    Partially stabilized zirconia ceramic thermal barrier coatings were plasma sprayed on the valve faces and tulips and the piston crowns and cylinder heads of a locomotive size diesel engine at a designated thickness of 375μm (0.015''). They were tested over a range of throttle settings for 500 hours using No. 2 diesel oil fuel. Properly applied coatings performed with no change in composition, morphology or thickness. Improperly applied coatings underwent spalling durability was dependent on quality control of the plasma spray process

  9. Floating tablets for controlled release of ofloxacin via compression coating of hydroxypropyl cellulose combined with effervescent agent.

    Science.gov (United States)

    Qi, Xiaole; Chen, Haiyan; Rui, Yao; Yang, Fengjiao; Ma, Ning; Wu, Zhenghong

    2015-07-15

    To prolong the residence time of dosage forms within gastrointestinal trace until all drug released at desired rate was one of the real challenges for oral controlled-release drug delivery system. Herein, we developed a fine floating tablet via compression coating of hydrophilic polymer (hydroxypropyl cellulose) combined with effervescent agent (sodium bicarbonate) to achieve simultaneous control of release rate and location of ofloxacin. Sodium alginate was also added in the coating layer to regulate the drug release rate. The effects of the weight ratio of drug and the viscosity of HPC on the release profile were investigated. The optimized formulations were found to immediately float within 30s and remain lastingly buoyant over a period of 12 h in simulated gastric fluid (SGF, pH 1.2) without pepsin, indicating a satisfactory floating and zero-order drug release profile. In addition, the oral bioavailability experiment in New Zealand rabbits showed that, the relative bioavailability of the ofloxacin after administrated of floating tablets was 172.19%, compared to marketed common release tablets TaiLiBiTuo(®). These results demonstrated that those controlled-released floating tables would be a promising gastro-retentive delivery system for drugs acting in stomach. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. THE INVESTIGATION OF INFLUENCE OF LASER RADIATION ON THE STRUCTURE AND MECHANICAL PROPERTIES OF COMPOSITE ELECTROLYTIC NICKEL COATING

    Directory of Open Access Journals (Sweden)

    V. A. Zabludovsky

    2013-09-01

    Full Text Available Purpose. Investigation of laser radiation effect on the structure and mechanical properties of electrodeposited nickel composite coatings containing ultrafine diamonds. Methodology. Electrodeposition of nickel films was carried out with the addition of a standard solution of ultrafine diamonds (UFD on laser-electrolytic installation, built on the basis of the gas-discharge CO2 laser. Mechanical testing the durability of coatings were performed on a machine with reciprocating samples in conditions of dry friction against steel. The spectral microanalysis of the elemental composition of the film - substrate was performed on REMMA-102-02. Findings. Research of nickel coatings and modified ultrafine diamond electrodeposited under external stimulation laser demonstrated the dependence of the structure and mechanical properties of composite electrolytic coating (CEC, and the qualitative and quantitative distribution of nanodiamond coprecipitated from an electrodeposition method. Originality. The effect of laser light on the process of co-precipitation of the UFD, which increases the micro-hardness and wear resistance of electrolytic nickel coatings was determined. Practical value. The test method of laser-stimulated composite electrolytic nickel electrodeposition coating is an effective method of local increase in wear resistance of metal coatings, which provides durability save performance (functional properties of the surface.

  11. The Management System for Nuclear Installations (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a)To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b)As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c)To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a)Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b)Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c)Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d)Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e)Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear installation. (f

  12. The Management System for Nuclear Installations Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a)To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b)As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c)To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a)Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b)Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c)Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d)Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e)Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear installation. (f

  13. Fiscal year 1996 well installation program summary, Y-12 Plant Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-04-01

    This report summarizes the well installation activities conducted during the federal fiscal year (FY) 1996 drilling program at the Oak Ridge Y-12 Plant, Oak Ridge Tennessee. Synopses of monitoring well construction/well development data, well location rationale, geological/hydrological observations, quality assurance/quality control methods, and health and safety monitoring are included. Two groundwater monitoring wells were installed during the FY 1996 drilling program. One of the groundwater monitoring wells was installed in the Lake Reality area and was of polyvinyl chloride screened construction. The other well, installed near the Ash Disposal Basin, was of stainless steel construction

  14. Protective coatings for commercial particulates

    DEFF Research Database (Denmark)

    Kindl, B.; Teng, Y.H.; Liu, Y.L.

    1994-01-01

    SiC/Al composites are in large-scale production with Al-Si alloy matrices. The same composites with pure Al or low Si matrices need diffusion barriers on the SiC reinforcement to control the interfacial reaction. The present paper describes various approaches taken to obtain protective coatings...... of alumina and zirconia on SiC particulates by sol-gel techniques. Aqueous and organic precursors have been used. The extent of the reaction, i.e., the Si and Al4C3 content in the matrix, was determined by differential thermal analysis and X-ray diffraction. The reaction rates of some coated particulates...... in liquid Al are decreased by as much as one order of magnitude during the first 15 min of immersion. Pretreatments of the SiC surface, the composition and thickness of the coating interphase and heat treatments of the coated materials have been studied, and are discussed in relation to their effect...

  15. Size-Controlled Dissolution of Organic-Coated Silver Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Rui; Levard, Clément; Marinakos, Stella M.; Cheng, Yingwen; Liu, Jie; Michel, F. Marc; Brown, Jr., Gordon E.; Lowry, Gregory V. (Duke)

    2012-04-02

    The solubility of Ag NPs can affect their toxicity and persistence in the environment. We measured the solubility of organic-coated silver nanoparticles (Ag NPs) having particle diameters ranging from 5 to 80 nm that were synthesized using various methods, and with different organic polymer coatings including poly(vinylpyrrolidone) and gum arabic. The size and morphology of Ag NPs were characterized by transmission electron microscopy (TEM). X-ray absorption fine structure (XAFS) spectroscopy and synchrotron-based total X-ray scattering and pair distribution function (PDF) analysis were used to determine the local structure around Ag and evaluate changes in crystal lattice parameters and structure as a function of NP size. Ag NP solubility dispersed in 1 mM NaHCO{sub 3} at pH 8 was found to be well correlated with particle size based on the distribution of measured TEM sizes as predicted by the modified Kelvin equation. Solubility of Ag NPs was not affected by the synthesis method and coating as much as by their size. Based on the modified Kelvin equation, the surface tension of Ag NPs was found to be {approx}1 J/m{sup 2}, which is expected for bulk fcc (face centered cubic) silver. Analysis of XAFS, X-ray scattering, and PDFs confirm that the lattice parameter, {alpha}, of the fcc crystal structure of Ag NPs did not change with particle size for Ag NPs as small as 6 nm, indicating the absence of lattice strain. These results are consistent with the finding that Ag NP solubility can be estimated based on TEM-derived particle size using the modified Kelvin equation for particles in the size range of 5-40 nm in diameter.

  16. A dual-task design of corrosion-controlling and osteo-compatible hexamethylenediaminetetrakis- (methylene phosphonic acid) (HDTMPA) coating on magnesium for biodegradable bone implants application.

    Science.gov (United States)

    Zhao, Sheng; Chen, Yingqi; Liu, Bo; Chen, Meiyun; Mao, Jinlong; He, Hairuo; Zhao, Yuancong; Huang, Nan; Wan, Guojiang

    2015-05-01

    Magnesium as well as its alloys appears increasingly as a revolutionary bio-metal for biodegradable implants application but the biggest challenges exist in its too fast bio-corrosion/degradation. Both corrosion-controllable and bio-compatible Mg-based bio-metal is highly desirable in clinic. In present work, hexamethylenediaminetetrakis (methylenephosphonic acid) [HDTMPA, (H2 O3 P-CH2 )2 -N-(CH2 )6 -N-(CH2 -PO3 H2 )2 ], as a natural and bioactive organic substance, was covalently immobilized and chelating-deposited onto Mg surface by means of chemical conversion process and dip-coating method, to fullfill dual-task performance of corrosion-protective and osteo-compatible functionalities. The chemical grafting of HDTMPA molecules, by participation of functional groups on pretreated Mg surface, ensured a firmly anchored base layer, and then sub-sequential chelating reactions of HDTMPA molecules guaranteed a homogenous and dense HDTMPA coating deposition on Mg substrate. Electrochemical corrosion and immersion degradation results reveal that the HDTMPA coated Mg provides a significantly better controlled bio-corrosion/degradation behavior in phosphate buffer saline solution as compared with untreated Mg from perspective of clinic requirement. Moreover, the HDTMPA coated Mg exhibits osteo-compatible in that it induces not only bioactivity of bone-like apatite precipitation but also promotes osteoblast cells adhesion and proliferation. Our well-controlled biodegradable and biocompatible HDTMPA modified Mg might bode well for next generation bone implant application. © 2014 Wiley Periodicals, Inc.

  17. Method of installing well conductors

    International Nuclear Information System (INIS)

    Houser, D.M.

    1991-01-01

    This patent describes a method of installing a well conductor in a marine environment. It comprises sealing a well conductor with a watertight plug; submerging the conductor from an elevated platform; adding additional conductor lengths to the conductor as needed thereby forming a conductor string; adjusting the buoyancy of the string to control the lowering of the string to the sea floor; and drilling through the plug after the conductor string has achieved the desired penetration depth

  18. Effect of implant design and bioactive glass coating on biomechanical properties of fiber-reinforced composite implants.

    Science.gov (United States)

    Ballo, Ahmed M; Akca, Eralp; Ozen, Tuncer; Moritz, Niko; Lassila, Lippo; Vallittu, Pekka; Närhi, Timo

    2014-08-01

    This study aimed to evaluate the influence of implant design and bioactive glass (BAG) coating on the response of bone to fiber-reinforced composite (FRC) implants. Three different FRC implant types were manufactured for the study: non-threaded implants with a BAG coating; threaded implants with a BAG coating; and threaded implants with a grit-blasted surface. Thirty-six implants (six implants for each group per time point) were installed in the tibiae of six pigs. After an implantation period of 4 and 12 wk, the implants were retrieved and prepared for micro-computed tomography (micro-CT), push-out testing, and scanning electron microscopy analysis. Micro-CT demonstrated that the screw-threads and implant structure remained undamaged during the installation. The threaded FRC/BAG implants had the highest bone volume after 12 wk of implantation. The push-out strengths of the threaded FRC/BAG implants after 4 and 12 wk (463°N and 676°N, respectively) were significantly higher than those of the threaded FRC implants (416°N and 549°N, respectively) and the nonthreaded FRC/BAG implants (219°N and 430°N, respectively). Statistically significant correlation was found between bone volume and push-out strength values. This study showed that osseointegrated FRC implants can withstand the static loading up to failure without fracture, and that the addition of BAG significantly improves the push-out strength of FRC implants. © 2014 Eur J Oral Sci.

  19. Evaluation of Aqua-Ammonia Chiller Technologies and Field Site Installation

    Energy Technology Data Exchange (ETDEWEB)

    Zaltash, Abdolreza [ORNL

    2007-09-01

    The Naval Facilities Engineering Service Center (NFESC) has sponsored Oak Ridge National Laboratory (ORNL) to review, select, and evaluate advanced, gas-fired, 5-ton, aqua-ammonia, chiller technologies. The selection criteria was that units have COP values of 0.67 or better at Air-conditioning and Refrigeration Institute (ARI) 95 F outdoor rating conditions, an active refrigerant flow control, and a variable-speed condenser fan. These features are expected to allow these units to operate at higher ambient temperatures (up to the maximum operating temperature of 110 F) with minimal degradation in performance. ORNL evaluated three potential manufacturers of advanced, gas-fired, 5-ton, aqua-ammonia chillers-Robur, Ambian, and Cooling Technologies. Unfortunately, Robur did not meet the COP requirements and Cooling Technologies could not deliver a unit to be tested at the U.S. Department of Energy (DOE)-ORNL environmental chamber testing facility for thermally activated heat pumps. This eliminated these two technologies from further consideration, leaving only the Ambian chillers for evaluation. Two Ambian chillers were evaluated at the DOE-ORNL test facility. Overall these chillers operated well over a wide range of ambient conditions with minimal degradation in performance due to several control strategies used such as a variable speed condenser fan, a modulating burner, and active refrigerant flow control. These Ambian pre-commercial units were selected for installation and field testing at three federal facilities. NFESC worked with ORNL to assist with the site selection for installation and evaluation of these chillers. Two sites (ORNL and Naval Surface Warfare Center [NSWC] Corona) had a single chiller unit installed; and at one site (Naval Amphibious Base [NAB] Little Creek), two 5-ton chillers linked together were installed to provide 10 tons of cooling. A chiller link controller developed under this project was evaluated in the field test at Little Creek.

  20. Integrated installation for offshore wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Way, J.; Bowerman, H.

    2003-07-01

    A project to investigate the feasibility of integrating the offshore installation of foundation, turbine and tower for offshore wind turbines into one operation is described. Three separate objectives are listed. They are: (1) Telescopic tower study - reversible process incorporating lift and lock mechanisms; (2) Transportation study - technical and economic feasibility of transporting and installing a wind turbine unit via a standard barge with minimal conversion and (3) Self-burial system study - to demonstrate the feasibility of self burial of a slab foundation via controlled jetting beneath the slab. The background to the study and the proposed concepts are discussed. The work carried out to date and the costs are reported together with the findings. Recommendations for future work are listed. The work was carried out by Corus UK Ltd and is managed by Future Energy Solutions for the DTI.

  1. Efficacy of a coating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits

    Directory of Open Access Journals (Sweden)

    Evandro eDe Souza

    2015-07-01

    Full Text Available Cherry tomato (Lycopersicon esculentum Mill fruits are susceptible to contamination by Aspergillus flavus, which may cause the development of fruit rot and significant postharvest losses. Currently there are significant drawbacks for the use of synthetic fungicides to control pathogenic fungi in tomato fruits, and it has increased the interest in exploring new alternatives to control the occurrence of fungal infections in these fruits. This study evaluated the efficacy of chitosan (CHI from M. circinelloides in combination with carvacrol (CAR in inhibiting A. flavus in laboratory media and as a coating on cherry tomato fruits (25 °C, 12 days and 12 °C, 24 days. During a period of storage, the effect of coatings composed of CHI and CAR on autochthonous microflora, as well as on some quality characteristics of the fruits such as weight loss, color, firmness, soluble solids and titratable acidity was evaluated. CHI and CAR displayed MIC values of 7.5 mg/mL and 10 µL/mL, respectively, against A. flavus. The combined application of CHI (7.5 or 3.75 mg/mL and CAR (5 or 2.5 µL/mL strongly inhibited the mycelial growth and spore germination of A. flavus. The coating composed of CHI (3.75 mg/mL and CAR (2.5 or 1.25 µL/mL inhibited the growth of A. flavus in artificially contaminated fruits, as well as the native fungal microflora of the fruits stored at room or low temperature. The application of the tested coatings preserved the quality of cherry tomato fruits as measured by some physicochemical attributes. From this, composite coatings containing CHI and CAR offer a promising alternative to control postharvest infection caused by A. flavus or native fungal microflora in fresh cherry tomato fruits without negatively affecting their quality over storage.

  2. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil, E-mail: hgkim@kaeri.re.kr; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-10-15

    A 3D laser coating technology using Cr powder was developed for Zr-based alloys considering parameters such as: the laser beam power, inert gas flow, cooling of Zr-based alloys, and Cr powder control. This technology was then applied to Zr cladding tube samples to study the effect of Cr coating on the high-temperature oxidation of Zr-based alloys in a steam environment of 1200 °C for 2000s. It was revealed that the oxide layer thickness formed on the Cr-coated tube surface was about 25-times lower than that formed on a Zircaloy-4 tube surface. In addition, both the ring compression and the tensile tests were performed to evaluate the adhesion properties of the Cr-coated sample. Although some cracks were formed on the Cr-coated layer, the Cr-coated layer had not peeled off after the two tests.

  3. Transfer coating by electron initiated polymerization

    International Nuclear Information System (INIS)

    Nablo, S.V.

    1984-01-01

    The high speed and depth of cure possible with electron initiated monomer/oligomer coating systems provide many new opportunities for approaches to product finishing. Moreover, the use of transfer or cast coating using films or metallic surfaces offers the ability to precisely control the surface topology of liquid film surfaces during polymerization. Transfer coating such as with textiles has been a commercial process for many years and the synergistic addition of EB technology permits the manufacture of unusual new products. One of these, the casting paper used in the manufacture of vinyl and urethane fabrics, is the first EB application to use a drum surface for pattern replication in the coating. In this case the coated paper is cured against, and then released from, an engraved drum surface. Recent developments in the use of plastic films for transfer have been applied to the manufacture of transfer metallized and coated paper and paperboard products for packaging. Details of these and related processes are presented as well as a discussion of the typical product areas (e.g. photographic papers, release papers, magnetic media) using this high speed transfer technology

  4. Active coatings technologies for tailorable military coating systems

    Science.gov (United States)

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  5. Real-time corrosion control system for cathodic protection of buried pipes for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Kim, Hae Woong; Kim, Young Sik [School of Materials Science and Engineering, Andong National University, Andong (Korea, Republic of); Chang, Hyun Young; Lim, Bu Taek; Park, Heung Bae [Power Engineering Research Institute, KEPCO Engineering and Construction Company, Seongnam (Korea, Republic of)

    2015-02-15

    Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.)

  6. Real-time corrosion control system for cathodic protection of buried pipes for nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Ki Tae; Kim, Hae Woong; Kim, Young Sik; Chang, Hyun Young; Lim, Bu Taek; Park, Heung Bae

    2015-01-01

    Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.)

  7. Conventional radiology. Mobile installations in medical environment: radiographies in bed

    International Nuclear Information System (INIS)

    2011-01-01

    This document presents the different procedures, the different types of specific hazards, the analysis of risks, their assessment and the preventive methods with regard to radioprotection in the case of mobile installations used in a medical environment to perform radiographies on patients lying on a bed. It indicates and describes the concerned personnel, the course of procedures, the hazards, the identification of the risk associated with ionizing radiation, the risk assessment and the determination of exposure levels, the strategy aimed at controlling the risk (risk reduction, technical measures concerning the installation or the personnel, teaching and information, prevention, incident), the different measures of medical monitoring, the assessment of risk control, and other risks

  8. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    Science.gov (United States)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion

  9. Guidelines for safety related telecommunications systems on normally unattended fixed offshore installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    Guidance is given on the design of telecommunications systems required for safety purposes on normally unattended offshore installations associated with oil and gas production on the United Kingdom continental shelf. The guidelines are mainly concerned with ensuring that: while the installation is unattended, its operation can be remotely monitored and controlled effectively to prevent the escalation of any abnormal situation; the installation can be safely approached when it is necessary to transfer personnel on board; persons on board, for example for inspection or maintenance activities, are safe. (UK)

  10. Mineral insulated thermocouples - installation in steam generating plant

    International Nuclear Information System (INIS)

    Bridges, W.J.; Brown, J.F.

    1980-01-01

    The main areas of interest considered are Central Station Fossil Fuel fired boilers of around 500 MW capacity, AGR Boilers, and Industrial and Research Development projects. While the requirement for temperature measurement in each of these areas may vary the techniques adopted to overcome installation and protection problems created by thermal, chemical and mechanical hazards remain basically the same. The reasons for temperature measurement are described together with methods of attachment development and procedures for protection of the thermocouple along its route length until its exit from the hazardous environment. These relative accuracies of the different attachments are discussed along with factors influencing the life of the thermocouple. In many instances thermocouple installation is either a once only opportunity and/or an expensive exercise. It is therefore essential to develop and apply an effective quality control system during the installation phase. An effective system is described. Finally, a brief outline of possible future trends is given. (author)

  11. Porous Structure Characterization in Titanium Coating for Surgical Implants

    Directory of Open Access Journals (Sweden)

    M.V. Oliveira

    2002-09-01

    Full Text Available Powder metallurgy techniques have been used to produce controlled porous structures, such as the porous coatings applied for dental and orthopedic surgical implants, which allow bony tissue ingrowth within the implant surface improving fixation. This work presents the processing and characterization of titanium porous coatings of different porosity levels, processed through powder metallurgy techniques. Pure titanium sponge powders were used for coating and Ti-6Al7Nb powder metallurgy rods were used as substrates. Characterization was made through quantitative metallographic image analysis using optical light microscope for coating porosity data and SEM analysis for evaluation of the coating/substrate interface integrity. The results allowed optimization of the processing parameters in order to obtain porous coatings that meet the requirements for use as implants.

  12. Flow coating apparatus and method of coating

    Science.gov (United States)

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  13. Materials interaction tests to identify base and coating materials for an enhanced in-vessel core catcher design

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Knudson, D.L.; Condie, K.G.; Swank, W.D. [Idaho National Engineering and Environmental Laboratory, Idaho Falls ID (United States); Cheung, F.B. [Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park PA (United States); Suh, K.Y. [Seoul National University, Department of Nuclear Engineering, Seoul (Korea, Republic of); Kim, S.B. [Korea Atomic Energy Research Institute, Severe Accident Research Project, Taejon (Korea, Republic of)

    2004-07-01

    An enhanced in-vessel core catcher is being designed and evaluated, it must ensure In-Vessel Retention of core materials that may relocate under severe accident conditions in advanced reactors. To reduce cost and simplify manufacture and installation, this new core catcher design consists of several interlocking sections that are machined to fit together when inserted into the lower head. If needed, the core catcher can be manufactured with holes to accommodate lower head penetrations. Each section of the core catcher consists of two material layers with an option to add a third layer (if deemed necessary): a base material, which has the capability to support and contain the mass of core materials that may relocate during a severe accident; an insulating oxide coating material on top of the base material, which resists interactions with high-temperature core materials; and an optional coating on the bottom side of the base material to prevent any potential oxidation of the base material during the lifetime of the reactor. Initial evaluations suggest that a thermally-sprayed oxide material is the most promising candidate insulator coating for a core catcher. Tests suggest that 2 coatings can provide adequate protection to a stainless steel core catcher: -) a 500 {mu}m thick zirconium dioxide coating over a 100-200 {mu}m Inconel 718 bond coating, and -) a 500 {mu}m thick magnesium zirconate coating.

  14. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernSTAR Building America Partnership, St. Paul, MN (United States)

    2017-03-01

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  15. Measure Guideline: Combined Space and Water Heating Installation and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, D. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Huelman, P. [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-03-03

    Combined space and water heater (combi or combo) systems are defined by their dual functionality. Combi systems provide both space heating and water heating capabilities with a single heat source. This guideline will focus on the installation and operation of residential systems with forced air heating and domestic hot water (DHW) functionality. Past NorthernSTAR research has used a combi system to replace a natural gas forced air distribution system furnace and tank type water heater (Schoenbauer et al. 2012; Schoenbauer, Bohac, and McAlpine 2014). The combi systems consisted of a water heater or boiler heating plant teamed with a hydronic air handler that included an air handler, water coil, and water pump to circulate water between the heating plant and coil. The combi water heater or boiler had a separate circuit for DHW. Past projects focused on laboratory testing, field characterization, and control optimization of combi systems. Laboratory testing was done to fully characterize and test combi system components; field testing was completed to characterize the installed performance of combi systems; and control methodologies were analyzed to understand the potential of controls to simplify installation and design and to improve system efficiency and occupant comfort. This past work was relied upon on to create this measure guideline.

  16. Safety report concerning the reactor Pegase - volume 1 - Description of the installation - volume 2 - Safety of the installations

    International Nuclear Information System (INIS)

    Lacour, J.

    1964-01-01

    In the first volume: This report is a description of the reactor Pegase, given with a view to examine the safety of the installations. The Cadarache site at which they are situated is briefly described, in particular because of the consequences on the techniques employed for building Pegase. A description is also given of the original aspects of the reactor. The independent loops which are designed for full-scale testing of fuel elements used in natural uranium-gas-graphite reactor systems are described in this report, together with their operational and control equipment. In the second volume: In the present report are examined the accidents which could cause damage to the Pegase reactor installation. Among possible causes of accidents considered are the seismicity of the region, an excessive power excursion of the reactor and a fracture in the sealing of an independent loop. Although all possible precautions have been taken to offset the effects of such accidents, their ultimate consequences are considered here. The importance is stressed of the security action and regulations which, added to the precautions taken for the construction, ensure the safety of the installations. (authors) [fr

  17. Tailoring degradation of AZ31 alloy by surface pre-treatment and electrospun PCL fibrous coating

    Energy Technology Data Exchange (ETDEWEB)

    Hanas, T. [Medical Materials Laboratory, Indian Institute of Technology Madras, Chennai 600036 (India); School of Nano Science and Technology, National Institute of Technology Calicut, Calicut, Kerala 673601 (India); Sampath Kumar, T.S., E-mail: tssk@iitm.ac.in [Medical Materials Laboratory, Indian Institute of Technology Madras, Chennai 600036 (India); Perumal, Govindaraj; Doble, Mukesh [Department of Biotechnology - Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-08-01

    AZ31 magnesium alloy was coated with polycaprolactone (PCL) nano-fibrous layer using electrospinning technique so as to control degradation in physiological environment. Before coating, the alloy was treated with HNO{sub 3} to have good adhesion between the coating and substrate. To elucidate the role of pre-treatment and coating, samples only with PCL coating as well as HNO{sub 3} treatment only were prepared for comparison. Best coating adhesion of 4B grade by ASTM D3359–09 tape test was observed for pre-treated samples. The effect of coating on in vitro degradation and biomineralization was studied using supersaturated simulated body fluid (SBF 5 ×). The weight loss and corrosion results obtained by immersion test showed that the combination of HNO{sub 3} pre-treatment and PCL coating is very effective in controlling the degradation rate and improving bioactivity. Cytotoxicity studies using L6 cells showed that PCL coated sample has better cell adhesion and proliferation compared to uncoated samples. Nano-fibrous PCL coating combined with prior acid treatment seems to be a promising method to tailor degradation rate with enhanced bioactivity of Mg alloys. - Highlights: • PCL electrospun coating on HNO{sub 3} pre-treated AZ31 alloy controls biodegradation. • Acid pre-treatment stabilizes the substrate - coating interface. • Electrospun porous coating improves biomineralization. • Coating similar to extracellular matrix enhances cell adhesion.

  18. Temporal and spatial variation in the fouling of silicone coatings in Pearl Harbor, Hawaii.

    Science.gov (United States)

    Holm, E R; Nedved, B T; Phillips, N; Deangelis, K L; Hadfield, M G; Smith, C M

    2000-01-01

    An antifouling or foul-release coating cannot be globally effective if it does not perform well in a range of environmental conditions, against a diversity of fouling organisms. From 1996 to 1998, the field test sites participating in the United States Navy's Office of Naval Research 6.2 Biofouling program examined global variation in the performance of 3 silicone foul-release coatings, viz. GE RTV11, Dow Corning RTV 3140, and Intersleek (International Coatings Ltd), together with a control anticorrosive coating (Ameron Protective Coatings F-150 series). At the University of Hawaii's test site in Pearl Harbor, significant differences were observed among the coatings in the rate of accumulation of fouling. The control coating failed rapidly; after 180-220 d immersion a community dominated by molluscs and sponges developed that persisted for the remainder of the experiment. Fouling of the GE and Dow Corning silicone coatings was slower, but eventually reached a similar community structure and coverage as the control coatings. The Intersleek coating remained lightly fouled throughout the experiment. Spatial variation in the structure of the community fouling the coatings was observed, but not in the extent of fouling. The rate of accumulation of fouling reflected differences among the coatings in adhesion of the tubeworm Hydroides elegans. The surface properties of these coatings may have affected the rate of fouling and the structure of the fouling community through their influence on larval settlement and subsequent interactions with other residents, predators, and the physical environment.

  19. Spinel-based coatings for metal supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Stefan, Elena; Neagu, Dragos; Blennow Tullmar, Peter

    2017-01-01

    Metal supports and metal supported half cells developed at DTU are used for the study of a solution infiltration approach to form protective coatings on porous metal scaffolds. The metal particles in the anode layer, and sometimes even in the support may undergo oxidation in realistic operating...... conditions leading to severe cell degradation. Here, a controlled oxidation of the porous metal substrate and infiltration of Mn and/or Ce nitrate solutions are applied for in situ formation of protective coatings. Our approach consists of scavenging the FeCr oxides formed during the controlled oxidation...... into a continuous and well adhered coating. The effectiveness of coatings is the result of composition and structure, but also of the microstructure and surface characteristics of the metal scaffolds....

  20. Enhanced corrosion protective PANI-PAA/PEI multilayer composite coatings for 316SS by spin coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Syed, Junaid Ali; Lu, Hongbin; Tang, Shaochun; Meng, Xiangkang, E-mail: mengxk@nju.edu.cn

    2015-01-15

    Highlights: • PANI-PAA/PEI multilayers with controllable thickness were fabricated by spin assembly. • PAA matrix results in the homogeneous dispersion of PANI in the composite coatings. • Spin coating combined with heating assures the linear increase in thickness with n. • The corrosion protection property of PANI-PAA/PEI coatings were optimized at n = 20. • Enhanced protection owing to multilayer structure that lengthens the diffusion pathway of ions. - Abstract: In the present study, polyaniline-polyacrylic acid/polyethyleneimine (PANI-PAA/PEI) composite coatings with a multilayer structure for corrosion protection of 316 stainless steels (316SS) were prepared by an alternate deposition. Spin coating combined with heating assists removal of residual water that result in a linear increase in thickness with layer number (n). The combination of PANI-PAA composite with PEI and their multilayer structure provides a synergistic enhancement of corrosion resistance properties as determined by electrochemical measurements in 3.5% NaCl solution. Importantly, the PANI-PAA/PEI coating with an optimized layer number of n = 20 shows improved corrosion protection. The superior performance was attributed to the formation of an interfacial oxide layer as well as the multilayer structure that extend the diffusion pathway of corrosive ions.

  1. Corrosion and corrosion control

    International Nuclear Information System (INIS)

    Khanna, A.S.; Totlani, M.K.

    1995-01-01

    Corrosion has always been associated with structures, plants, installations and equipment exposed to aggressive environments. It effects economy, safety and product reliability. Monitoring of component corrosion has thus become an essential requirement for the plant health and safety. Protection methods such as appropriate coatings, cathodic protection and use of inhibitors have become essential design parameters. High temperature corrosion, especially hot corrosion, is still a difficult concept to accommodate in corrosion allowance; there is a lack of harmonized system of performance testing of materials at high temperatures. In order to discuss and deliberate on these aspects, National Association for Corrosion Engineers International organised a National Conference on Corrosion and its Control in Bombay during November 28-30, 1995. This volume contains papers presented at the symposium. Paper relevant to INIS is indexed separately. refs., figs., tabs

  2. Lithium coatings on NSTX plasma facing components and its effects on boundary control, core plasma performance, and operation

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H.W., E-mail: hkugel@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Bell, M.G.; Schneider, H. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Allain, J.P. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47907 (United States); Bell, R.E.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P.; Mansfield, D. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Nygren, R.E. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Menard, J.; Mueller, D.; Ono, M.; Paul, S.; Gerhardt, S. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Raman, R. [University of Washington, Seattle, WA 98195 (United States); Sabbagh, S. [Columbia University, New York, NY 10027 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States)

    2010-11-15

    NSTX high power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following the wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a liquid lithium divertor surface on the outer part of the lower divertor.

  3. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    Energy Technology Data Exchange (ETDEWEB)

    H.W.Kugel, M.G.Bell, H.Schneider, J.P.Allain, R.E.Bell, R Kaita, J.Kallman, S. Kaye, B.P. LeBlanc, D. Mansfield, R.E. Nygen, R. Maingi, J. Menard, D. Mueller, M. Ono, S. Paul, S.Gerhardt, R.Raman, S.Sabbagh, C.H.Skinner, V.Soukhanovskii, J.Timberlake, L.E.Zakharov, and the NSTX Research Team

    2010-01-25

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  4. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    International Nuclear Information System (INIS)

    Kugel, H.W.; Bell, M.G.; Schneider, H.; Allain, J.P.; Bell, R.E.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.P.; Mansfield, D.; Nygen, R.E.; Maingi, R.; Menard, J.; Mueller, D.; Ono, M.; Paul, S.; Gerhardt, S.; Raman, R.; Sabbagh, S.; Skinner, C.H.; Soukhanovskii, V.; Timberlake, J.; Zakharov, L.E.; NSTX Research Team

    2010-01-01

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  5. Microstructure and micromechanical properties of electrodeposited Zn–Mo coatings on steel

    Energy Technology Data Exchange (ETDEWEB)

    Kazimierczak, Honorata, E-mail: h.kazimierczak@imim.pl [Institute of Metallurgy and Material Science, Polish Academy of Sciences, 30-059 Krakow, Reymonta 25 (Poland); Ozga, Piotr [Institute of Metallurgy and Material Science, Polish Academy of Sciences, 30-059 Krakow, Reymonta 25 (Poland); Berent, Katarzyna [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Mickiewicza Av. 30 (Poland); Kot, Marcin [Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30-059 Krakow, Mickiewicza Av. 30 (Poland)

    2015-07-05

    Highlights: • The conditions for electrodeposition of uniform and compact Zn–Mo coatings have been studied. • Zn–Mo coatings microstructure can be controlled by the molybdenum content. • Surface roughness can be controlled by the content of Mo in coatings. • The value of microhardness grows gradually with the increase of Mo content up to 3 wt.%. - Abstract: The aim of the work was to characterise the new coating material based on zinc with the addition of molybdenum, electrodeposited on steel substrate from nontoxic, citrate based electrolytes. The surface composition of deposits was ascertained by chemical analysis (WDXRF). The morphology of coatings was studied by SEM. The surface morphology and roughness of Zn–Mo coatings on steel was investigated by AFM. The microhardness and Young modulus were determined by indentation technique, whereas the coating adhesion to the substrate was examined by means of scratch test. The optimal ranges of electrodeposition parameters, enabling the preparation of good quality coatings (i.e. uniform, compact, with good adhesion to the substrate), was specified. The morphology of deposits depends significantly on the content of molybdenum and on the thickness of electrodeposited layer. The microhardness of Zn–Mo coating increases with the increase of molybdenum content up to 3 wt.% and then reaches about 3.5 GPa, which is almost five times that of the value of the microhardness of the Zn coating studied.

  6. Microencapsulation of Corrosion Indicators for Smart Coatings

    Science.gov (United States)

    Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.

    2011-01-01

    A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint

  7. Engineered bio-inspired coating for reduction of flow separation

    Science.gov (United States)

    Bocanegra Evans, Humberto; Hamed, Ali M.; Gorumlu, Serdar; Doosttalab, Ali; Aksak, Burak; Chamorro, Leonardo P.; Castillo, Luciano

    2017-11-01

    Flow control using passive strategies has received notable attention in the last decades as a way to increase mixing and reduce skin drag, among others. Here, we present a bio-inspired coating, composed by uniformly distributed pillars with diverging tips, that is able to reduce the recirculation region in highly separated flows. This is demonstrated with laboratory experiments in a refractive index-matching flume at Reynolds number Reθ 1200 . The flow over an expanding channel following a S835 wing section was characterized with the coating and with smooth walls. High-resolution, wall-normal particle image velocimetry show a significant reduction of the reversed flow with the coating, where the region with reverse flow was reduced by 60 % . The performance of the micro-scale coating is surprising since the size of the fibers are nearly coincident with the viscous length scale (k+ 1). Additionally, the flow control properties of the surface do not depend on hydrophobicity, giving the coating the capability to work in both air and water media.

  8. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  9. The regulation of radioactive effluent release in France (mainly from large nuclear installations)

    International Nuclear Information System (INIS)

    Hebert, Jean.

    1978-01-01

    In parallel with the licensing system for construction and operation of classified or so-called large nuclear installations (INB) there are in France regulations for the release of radioactive effuents from such installations. The regulations applicable to installations other than INBs are not specifically of a nuclear nature, while those covering INBs, which are analysed in this study, in particular, cover effluent release in liquid or gaseous form. The licensing and control procedures for such release are analysed in detail. (NEA) [fr

  10. Design of barrier coatings on kink-resistant peripheral nerve conduits

    Directory of Open Access Journals (Sweden)

    Basak Acan Clements

    2016-02-01

    Full Text Available Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1 electrospinning a layer of polymer fibers onto the surface of the conduit and (2 coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery.

  11. Tablet coating by injection molding technology - Optimization of coating formulation attributes and coating process parameters.

    Science.gov (United States)

    Desai, Parind M; Puri, Vibha; Brancazio, David; Halkude, Bhakti S; Hartman, Jeremy E; Wahane, Aniket V; Martinez, Alexander R; Jensen, Keith D; Harinath, Eranda; Braatz, Richard D; Chun, Jung-Hoon; Trout, Bernhardt L

    2018-01-01

    We developed and evaluated a solvent-free injection molding (IM) coating technology that could be suitable for continuous manufacturing via incorporation with IM tableting. Coating formulations (coating polymers and plasticizers) were prepared using hot-melt extrusion and screened via stress-strain analysis employing a universal testing machine. Selected coating formulations were studied for their melt flow characteristics. Tablets were coated using a vertical injection molding unit. Process parameters like softening temperature, injection pressure, and cooling temperature played a very important role in IM coating processing. IM coating employing polyethylene oxide (PEO) based formulations required sufficient room humidity (>30% RH) to avoid immediate cracks, whereas other formulations were insensitive to the room humidity. Tested formulations based on Eudrajit E PO and Kollicoat IR had unsuitable mechanical properties. Three coating formulations based on hydroxypropyl pea starch, PEO 1,000,000 and Opadry had favorable mechanical (35% elongation, >95×10 4 J/m 3 toughness) and melt flow (>0.4g/min) characteristics, that rendered acceptable IM coats. These three formulations increased the dissolution time by 10, 15 and 35min, respectively (75% drug release), compared to the uncoated tablets (15min). Coated tablets stored in several environmental conditions remained stable to cracking for the evaluated 8-week time period. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evaluation of stability for monolayer injection molding tools coating

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    We tested and characterized molecular coating of Aluminium and Nickel prototype molds and mold inserts for polymer replication via injection molding (IM). X-Ray photoelectron spectroscopy (XPS) data, sessile drop contact angles with multiple fluids, surface energy and roughness data have been...... collected and used to predict coating lifetimes. Samples have been characterized immediately after coating, after 500+ IM cycles to test durability and after 7 months to test temporal stability. Sessile drop contact angle was measured for multiple fluids, namely water, di-iodomethane and benzylacohol....... Detectable coating presence was indicated by an increased angle on all post IM samples. To conclude, we present mold coating evaluation method, which is well suited for ultrathin, controlable, covalently bonded coating, that is reasonably durable, affordable, scalable to production, detectable on surface...

  13. Vancomycin–chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chi-Chuan [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Lin, Chien-Chung [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Department of Orthopaedic Surgery, Taichung Armed Force General Hospital, 348, Sec. 2, Jhongshan Road, Taiping City, Taichung 411, Taiwan (China); Liao, Jiunn-Wang [Graduate Institute of Veterinary Pathobiology, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China); Yen, Shiow-Kang, E-mail: skyen@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing, University 250, Kuo-Kuang Road, Taichung 40227, Taiwan (China)

    2013-05-01

    Through the hydrogen bonds and the deprotonation, the vancomycin–chitosan composite has been originally deposited on Ti4Al4V by electrochemical technology. However, the rapid destruction of the hydrogen bonding between them by polar water molecules during immersion tests revealed 80% drug burst in a few hours. In this study, the post porous hydroxyapatite (HA) coated Ti4Al4V is prepared for the subsequent electrolytic deposition of vancomycin–chitosan composite to control the drug release. As expected, the initial burst is reduced to 55%, followed by a steady release about 20% from day 1 to day 5 and a slower release of the retained 25% after day 6, resulting in bacterial inhibition zone diameter of 30 mm which can last for more than a month in antibacterial tests, compared with the coated specimen without HA gradually loosing inhibition zone after 21 days. Besides, the cell culture indicates that the vancomycin–chitosan/HA composite coated has enhanced the proliferation, the differentiation and the mineralization of the osteoblast-like cell. In general, it is helpful for the osteointegration on permanent implants. Consistently, it effectively provides the prophylaxis and therapy of osteomyelitis according to the results of the rabbit infection animal model. - Highlights: ► The releasing curve of the vancomycin–chitosan/HA composite revealed three periods. ► The drug release sustained one month due to the effect of post porous HA coating. ► The composite coating could treat the osteomyelitis in the rabbit infection model.

  14. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article ...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  15. The effect of coatings and coating weight by two types of PCC on barrier and optical properties and roughness of paper

    Directory of Open Access Journals (Sweden)

    rouzbeh asadi khansari

    2017-08-01

    Full Text Available The objective of this work is to investigate the use of PCC, and the impact of its coating weight on paper coating. In this study, two base papers from Mazandaran Wood and Paper Industries (APC and NS, and two coating compositions with the solid content of 25% containing PCC filler (100 parts, PVA binder (14 parts and dispersant (1 part were used. The first composition included PCC B102 for opacity increment, and the second one PCC 9020 for the improvement of brightness. Two rod RDS14 and RDS30 were used for different coating weights. After coating, the treated samples were dried in room conditions at air temperature of 25◦C and relative humidity of 54%. Physical and optical properties of control and treated samples such as air resistance, thickness, Cobb60, brightness, yellowness, opacity and roughness were determined. In comparison to the control group, all the treated samples showed improvement in brightness, opacity, yellowness and air resistance. By the two different formulations and two rods, paper roughness was increased, and the increment of water absorption was due to capillary development in coating texture. The analysis of variances showed that the usage of PCC 9020 had considerable effect on roughness of papers. In NS papers, change of PCC caused significant difference in brightness and roughness, but in APC papers did not. The change of coating rod in APC papers had significant effect on water absorption, brightness and opacity but did not show in NS.

  16. Bio-Based Coatings for Paper Applications

    Directory of Open Access Journals (Sweden)

    Vibhore Kumar Rastogi

    2015-11-01

    Full Text Available The barrier resistance and wettability of papers are commonly controlled by the application of petroleum-based derivatives such as polyethylene, waxes and/or fluor- derivatives as coating. While surface hydrophobicity is improved by employing these polymers, they have become disfavored due to limitations in fossil-oil resources, poor recyclability, and environmental concerns on generated waste with lack of biodegradation. Alternatively, biopolymers including polysaccharides, proteins, lipids and polyesters can be used to formulate new pathways for fully bio-based paper coatings. However, difficulties in processing of most biopolymers may arise due to hydrophilicity, crystallization behavior, brittleness or melt instabilities that hinder a full exploitation at industrial scale. Therefore, blending with other biopolymers, plasticizers and compatibilizers is advantageous to improve the coating performance. In this paper, an overview of barrier properties and processing of bio-based polymers and their composites as paper coating will be discussed. In particular, recent technical advances in nanotechnological routes for bio-based nano- composite coatings will be summarized, including the use of biopolymer nanoparticles, or nanofillers such as nanoclay and nanocellulose. The combination of biopolymers along with surface modification of nanofillers can be used to create hierarchical structures that enhance hydrophobicity, complete barrier protection and functionalities of coated papers.

  17. Energy Optimization Assessment at U.S. Army Installations: Fort Bliss, TX

    Science.gov (United States)

    2008-09-01

    Log dampers, temperatures, actuator signals, and other parameters to identify problems. Adjust chiller and boiler setpoints and control curves...installation. The lowest setpoints were found in the Centennial Club, with 52 °F during unoccupied hours (morn- ing). The chillers ran pretty much fully loaded...ER D C/ CE R L TR -0 8 -1 5 Energy Optimization Assessment at U.S. Army Installations Fort Bliss, TX David M. Underwood, Alexander M

  18. Corrosion Protection of Phenolic-Epoxy/Tetraglycidyl Metaxylediamine Composite Coatings in a Temperature-Controlled Borax Environment

    Science.gov (United States)

    Xu, Wenhua; Wang, Zhenyu; Han, En-Hou; Liu, Chunbo

    2017-12-01

    The failure behavior for two kinds of phenolic-epoxy/tetraglycidyl metaxylediamine composite coatings in 60 °C borax aqueous solution was evaluated using electrochemical methods (EIS) combined with scanning electron microscopy, confocal laser scanning microscope, water immersion test, and Raman spectrum. The main focus was on the effect of curing agent on the corrosion protection of coatings. Results revealed that the coating cured by phenolic modified aromatic amine possessed more compact cross-linked structure, better wet adhesion, lower water absorption (0.064 mg h-1 cm-2) and its impedance values was closed to 108 Ω cm2 after immersion for 576 h, while the coating cured by modified aromatic ring aliphatic amine was lower than 105 Ω cm2. The corrosion mechanism of the two coatings is discussed.

  19. Polymer Coatings Reduce Electro-osmosis

    Science.gov (United States)

    Herren, Blair J.; Snyder, Robert; Shafer, Steven G.; Harris, J. Milton; Van Alstine, James M.

    1989-01-01

    Poly(ethylene glycol) film controls electrostatic potential. Electro-osmosis in quartz or glass chambers reduced or reversed by coating inside surface of chambers with monomacromolecular layers of poly(ethylene glycol). Stable over long times. Electrostatic potential across surface of untreated glass or plastic chamber used in electro-phoresis is negative and attracts cations in aqueous electrolyte. Cations solvated, entrains flow of electrolyte migrating toward cathode. Electro-osmotic flow interferes with desired electrophoresis of particles suspended in electrolyte. Polymer coats nontoxic, transparent, and neutral, advantageous for use in electrophoresis.

  20. FY 1990 report on the results of the development of the entrained bed coal gasification power plant. Part 3. Fabrication/installation of pilot plant (Fabrication/installation drawings and fabrication/installation pictures - 2/2); 1990 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 3. Pilot plant seisaku suetsuke hen (Seisaku suetsukezu oyobi seisaku suetsuke shashin) (2/2)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, the fabrication, installation work, etc. were conducted of a 200t/d entrained bed coal gasification pilot plant, and fabrication/installation drawings and fabrication/installation pictures were summarized. In fabrication/installation drawings, drawings of the following were included: actual-pressure/actual-size combustor test equipment (structural drawing of exhaust temperature reducing device, structural drawing of hot air device, system diagram of piping, etc.), safety environmental equipment (total system diagram, layout of electric room equipment, layout of control equipment room, etc.), total control system (structural drawing of the total control system, front view of auxiliary panel of safety environment equipment, etc.), 66kV/6.9kV indoor switching station facilities (layout of equipment of indoor switching station facilities, outline drawing of the main transformer, outline drawing of gas circuit breaker, etc.), common facilities (total layout, diagram of the nitrogen gas pipe system, system diagram of utility equipment, etc.) In pictures of fabrication/installation, pictures of the following were included: state of the construction work, gasifier equipment, gas refining facilities, gas turbine facilities, actual-pressure/actual-size combustor test equipment, safety environmental equipment, total control system, 66kV/6.9kV indoor switching station facilities, common facilities. (NEDO)

  1. Relevant aspects in licensing of radioactive installations at petroleum and gas well logging

    International Nuclear Information System (INIS)

    Miranda, Marcia Valeria da E. Sa

    2002-01-01

    The importance of the various factors considered during the process of licensing of radioactive installation for petroleum and gas well logging. This process involves the issuing of some public power acts, the co called Administrative Acts. For the radioactive installations the Administrative Acts are related to the Norm CNEN-NE-6.02 'Licensing of Radioactive Installation'. In the conduction of the licensing of radioactive installation of mobile nuclear measurement devices the safety evaluation of radioactive installation and equipment containing incorporated radiation source are included; certification of radioprotection supervisors; programing and evaluation of the radioprotection inspections; and the conduction of conformal inspection according to the project, safety analysis and audits. An evaluation of the impact of the importance grade attributed to each factor in the optimization of licensing process is related. Finally, the prediction of implantation of a control system for the displacement of radioactive sources in the installation is approached comprehending the up-to-date localization of each source at different work front of the Basis

  2. Inhibition of the corrosion of mild steel by phosphate conversion coatings

    International Nuclear Information System (INIS)

    Ashraf, W.; Khalid, S.; Rashid, A.; Arshad, M.

    1993-01-01

    Phosphating is the treatment of a metal surface to provide a coating of insoluble metal phosphate crystals which strongly adhere to the base material. Such coatings affect the appearance, surface hardness, and electrical conductivity of the metal. Phosphating is major industrial importance in the production of iron and steel surfaces, e.g., in automotive and appliance industries. The present article discusses a novel description of process controlling parameters. The process may be termed as hot phosphate (95-100 deg. C) and it employs the use of low cost chemicals and entirely new accelerator. Effective layer thickness is found to be 0.72 mg/cm /sup 2/ and can withstand moist and mild chemical conditions. The thickness of coating depends upon dipping time and temperature of the working bath. It seems to increase with increasing dipping time but then reaches a maxima. Any more dipping causes stripping and uneven coating layers. In our system most appropriate dipping time was found to be 45 minutes. The stability and completeness of coating was tested by Ferro Test and Tape Pull Test and was found to be satisfactory. The quality control parameters, such as free and total acidity have been controlled for optimum coating thickness and stability. (author)

  3. Coating and Characterization of Mock and Explosive Materials

    Directory of Open Access Journals (Sweden)

    Emily M. Hunt

    2012-01-01

    Full Text Available This project develops a method of manufacturing plastic-bonded explosives by using use precision control of agglomeration and coating of energetic powders. The energetic material coating process entails suspending either wet or dry energetic powders in a stream of inert gas and contacting the energetic powder with atomized droplets of a lacquer composed of binder and organic solvent. By using a high-velocity air stream to pneumatically convey the energetic powders and droplets of lacquer, the energetic powders are efficiently wetted while agglomerate drying begins almost immediately. The result is an energetic powder uniformly coated with binder, that is, a PBX, with a high bulk density suitable for pressing. Experiments have been conducted using mock explosive materials to examine coating effectiveness and density. Energetic materials are now being coated and will be tested both mechanically and thermally. This allows for a comprehensive comparison of the morphology and reactivity of the newly coated materials to previously manufactured materials.

  4. ZnO Coatings with Controlled Pore Size, Crystallinity and Electrical Conductivity

    Directory of Open Access Journals (Sweden)

    Roman SCHMACK

    2016-05-01

    Full Text Available Zinc oxide is a wide bandgap semiconductor with unique optical, electrical and catalytic properties. Many of its practical applications rely on the materials pore structure, crystallinity and electrical conductivity. We report a synthesis method for ZnO films with ordered mesopore structure and tuneable crystallinity and electrical conductivity. The synthesis relies on dip-coating of solutions containing micelles of an amphiphilic block copolymer and complexes of Zn2+ ions with aliphatic ligands. A subsequent calcination at 400°C removes the template and induces crystallization of the pore walls. The pore structure is controlled by the template polymer, whereas the aliphatic ligands control the crystallinity of the pore walls. Complexes with a higher thermal stability result in ZnO films with a higher content of residual carbon, smaller ZnO crystals and therefore lower electrical conductivity. The paper discusses the ability of different types of ligands to assist in the synthesis of mesoporous ZnO and relates the structure and thermal stability of the precursor complexes to the crystallinity and electrical conductivity of the zinc oxide.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.8634

  5. Corrosion resistance and development length of steel reinforcement with cementitious coatings

    Science.gov (United States)

    Pei, Xiaofei

    This research program focused on the corrosion resistance and development length of reinforcing steel coated with Cementitious Capillary Crystalline Waterproofing (CCCW) materials. The first part of this research program involved using the half-cell potential method to evaluate the corrosion resistance of CCCW coating materials. One hundred and two steel bars were embedded in concrete cylinders and monitored. In total, 64 steel reinforcing bars were coated with CCCW prior to embedment, 16 mortar cylinders were externally coated with CCCW, and 22 control (uncoated) samples were tested. All the samples were immersed in a 3.5% concentration chloride solution for a period of one year. Three coating types were studied: CCCW-B, CCCW-B+ C and CCCW-C+D. The test results showed that the CCCW coating materials delayed the corrosion activity to varying degrees. In particular, CCCW-C+D applied on the reinforcing steel surface dramatically delayed the corrosion activity when compared to the control samples. After being exposed to the chloride solution for a period of one year, no sign of corrosion was observed for the cylinders where the concrete surface was coated. The second part of this research evaluated the bond strength and development length of reinforcing steel coated with two types of CCCW coating materials (CCCW-B+C and CCCW-C+D) using a modified pull-out test method. A self-reacting inverted T-shaped beam was designed to avoid compression in the concrete surrounding the reinforcing steel. Steel reinforcing bars were embedded along the web portion of the T-beam with various embedded lengths and were staggered side by side. In total, six T-beams were fabricated and each beam contained 8 samples. Both short-term (7 days) and long-term (3 months) effects of water curing were evaluated. The reinforcing steel bars coated with CCCW-B+C demonstrated a higher bond strength than did samples coated with CCCW-C+D. However, the bond strengths of samples with coating materials

  6. Carbon film coating of abutment surfaces: effect on the abutment screw removal torque.

    Science.gov (United States)

    Corazza, Pedro Henrique; de Moura Silva, Alecsandro; Cavalcanti Queiroz, José Renato; Salazar Marocho, Susana María; Bottino, Marco Antonia; Massi, Marcos; de Assunção e Souza, Rodrigo Othávio

    2014-08-01

    To evaluate the effect of diamond-like carbon (DLC) coating of prefabricated implant abutment on screw removal torque (RT) before and after mechanical cycling (MC). Fifty-four abutments for external-hex implants were divided among 6 groups (n = 9): S, straight abutment (control); SC, straight coated abutment; SCy, straight abutment and MC; SCCy, straight coated abutment and MC; ACy, angled abutment and MC; and ACCy, angled coated abutment and MC. The abutments were attached to the implants by a titanium screw. RT values were measured and registered. Data (in Newton centimeter) were analyzed with analysis of variance and Dunnet test (α = 0.05). RT values were significantly affected by MC (P = 0.001) and the interaction between DLC coating and MC (P = 0.038). SCy and ACy showed the lowest RT values, statistically different from the control. The abutment coated groups had no statistical difference compared with the control. Scanning electron microscopy analysis showed DLC film with a thickness of 3 μm uniformly coating the hexagonal abutment. DLC film deposited on the abutment can be used as an alternative procedure to reduce abutment screw loosening.

  7. Simulation of the coating film appearance for spray application

    OpenAIRE

    Seeler, Fabian; Hager, Christian; Schneider, Matthias; Tiedje, Oliver

    2015-01-01

    The coating film topography depends on the substrate structure, the application parameters and the coating material’s levelling properties. Substrates consisting of several materials with different surface structures and differently inclined areas make a homogenous coating film structure difficult. By means of simulations, the paint film structure is intended to be controlled so that the theoretical optimum is reached and the experimental effort can be reduced. The focus is on spray applicati...

  8. Installations for radiation therapy with remote controlled afterloading technique. Ferngesteuerte Applikationsanlagen zur Therapie mit umschlossenen radioaktiven Stoffen

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Installations for radiation therapy with remote controlled afterloading technique; radiation protection rules for fabrication and construction; amendment 1 to draft standard (DIN) 6853. Compared to the draft standard of Semptember 1980, the following modifications are planned as amendment 1: a. Paragraph no. 1: In the title, the word ''scope'' is changed into ''field of application''. The words ''by moving the radiation source electromecanically'' are deleted. b. Paragraph no. 2'' Standards also applicable'' and the list of ''Additional standards'' are summarized under the heading ''Standards and supporting documents'' (without any paragraph number). c. Paragraph no. 3 ''Terms'' is completed by additional terms and their definitions.

  9. Advances in edible coatings for fresh fruits and vegetables: a review.

    Science.gov (United States)

    Dhall, R K

    2013-01-01

    Edible coatings are an environmentally friendly technology that is applied on many products to control moisture transfer, gas exchange or oxidation processes. Edible coatings can provide an additional protective coating to produce and can also give the same effect as modified atmosphere storage in modifying internal gas composition. One major advantage of using edible films and coatings is that several active ingredients can be incorporated into the polymer matrix and consumed with the food, thus enhancing safety or even nutritional and sensory attributes. But, in some cases, edible coatings were not successful. The success of edible coatings for fresh products totally depends on the control of internal gas composition. Quality criteria for fruits and vegetables coated with edible films must be determined carefully and the quality parameters must be monitored throughout the storage period. Color change, firmness loss, ethanol fermentation, decay ratio and weight loss of edible film coated fruits need to be monitored. This review discusses the use of different edible coatings (polysaccharides, proteins, lipids and composite) as carriers of functional ingredients on fresh fruits and vegetables to maximize their quality and shelf life. This also includes the recent advances in the incorporation of antimicrobials, texture enhancers and nutraceuticals to improve quality and functionality of fresh-cut fruits. Sensory implications, regulatory status and future trends are also reviewed.

  10. The Effect of Substrate Topography on Coating Cathodic Delamination

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Sørensen, Per A.; Kiil, Søren

    2011-01-01

    This article describes the effect of steel substrate topography on coating cathodic delamination. The study showed that the surface preparation can be used to control and minimize the rate of cathodic delamination. The coating should have maximum wetting properties so that substrates with high...

  11. Characterization of Secondary Mineral Grain Coatings and their Role as Diffusion-controlled Sinks and Sources for Metal Contaminants

    Science.gov (United States)

    Davis, J. A.; Guo, H.; Lai, B.; Kemner, K. M.; Ercius, P.; Fox, P. M.; Singer, D. M.; Minor, A.; Waychunas, G.

    2012-12-01

    ) tomography, it can be seen that there are large numbers of pore throat sizes less than 10 nm within the coatings. We hypothesize that diffusion through these pores, which likely have electrically charged surfaces, controls the observed macroscopic rates of U(VI) sorption in batch experiments with sand grains. Evidence to support this hypothesis was observed by studying U and Fe fluorescence spatial variation within FIB samples (1 micron thick) at 200 nm spatial resolution. With this greater spatial resolution, it is possible to see U concentration variations within the coatings that are dependent on the time of sorption reaction, and illustrates how the coating environment constitutes a diffusion constraint to achieve adsorptive equilibrium between an aqueous phase and the mineral surfaces. Including this diffusion constraint within conceptual models for reactive contaminant transport may be significant at the field scale, because secondary mineral coatings are potentially both sinks and sources of contaminants depending on the history of a contaminated site. This is important in resolving long-term transport predictions at DOE sites, such as Hanford and Savannah River, where equilibrium versus kinetic reactive transport models are being evaluated.

  12. Optical Design of COATLI: A Diffraction-Limited Visible Imager with Fast Guiding and Active Optics Correction

    Science.gov (United States)

    Fuentes-Fernández, J.; Cuevas, S.; Watson, A. M.

    2018-04-01

    We present the optical design of COATLI, a two channel visible imager for a comercial 50 cm robotic telescope. COATLI will deliver diffraction-limited images (approximately 0.3 arcsec FWHM) in the riz bands, inside a 4.2 arcmin field, and seeing limited images (approximately 0.6 arcsec FWHM) in the B and g bands, inside a 5 arcmin field, by means of a tip-tilt mirror for fast guiding, and a deformable mirror for active optics, both located on two optically transferred pupil planes. The optical design is based on two collimator-camera systems plus a pupil transfer relay, using achromatic doublets of CaF2 and S-FTM16 and one triplet of N-BK7 and CaF2. We discuss the effciency, tolerancing, thermal behavior and ghosts. COATLI will be installed at the Observatorio Astronómico Nacional in Sierra San Pedro Mártir, Baja California, Mexico, in 2018.

  13. Anti-reflection coatings applied by acid leaching process

    Science.gov (United States)

    Pastirik, E.

    1980-01-01

    The Magicote C process developed by S.M. Thompsen was evaluated for use in applying an antireflective coating to the cover plates of solar panels. The process uses a fluosilicic acid solution supersaturated with silica at elevated temperature to selectively attack the surface of soda-lime glass cover plates and alter the physical and chemical composition of a thin layer of glass. The altered glass layer constitutes an antireflective coating. The process produces coatings of excellent optical quality which possess outstanding resistance to soiling and staining. The coatings produced are not resistant to mechanical abrasion and are attacked to some extent by glass cleansers. Control of the filming process was found to be difficult.

  14. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis

    Science.gov (United States)

    Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui

    2015-05-01

    Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.

  15. Weathering durability of commercial polymeric coatings tested by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Chen, H.; Peng, Q.; Huang, Y.Y.; Zhang, R.; Li, Y.; Zhang, J.; Wu, Y.C.; Richardson, J.R.; Sandreczki, T.C.; Jean, Y.C.

    2003-01-01

    A series of commercial coatings were prepared according to the industrial specifications and were exposed to Florida natural weathering and controlled UVA irradiation. The Doppler broadening energy spectra (DBES) of positron annihilation were measured as a function of incident positron energy at different periods of weathering. A significant decrease in the S parameter was observed and it was used as an indicator to test coating durability in micro-scale. Application to weathering durability of commercial polymeric coatings under natural weathering and controlled UVA irradiation is investigated by using the S parameter from the DBES

  16. Arc-discharge and magnetron sputtering combined equipment for nanocomposite coating deposition

    International Nuclear Information System (INIS)

    Koval, N.N.; Borisov, D.P.; Savostikov, V.M.

    2005-01-01

    It is known that characteristics of nanocomposite coatings produced by reactive magnetron sputtering undergo an essential influence on the following parameters such as original component composition of targets being sputtered, as well as abundance ratio of such components in the coatings deposited, relative content of inert and reactionary gases in a gas mixture used and a value of operating pressure in a chamber, substrate temperature, and a value of substrate bias potential, determining energy of ionized atoms, ionized atoms flow density, i.e. ion current density on a substrate. The multifactor character of production process of nanocomposite coatings with certain physical and mechanical properties demands a purposeful and complex control on all above-mentioned parameters. To solve such a problem, an arc-discharge and magnetron sputtering combined equipment including a vacuum chamber of approximately ∼ 0.5 m 3 with a built-in low-pressure plasma generator made on the basis of non-self-sustained discharge with a thermal cathode and a planar magnetron combined with two sputtered targets has been created. Construction of such a complex set-up provides both an autonomous mode of operation and simultaneous operation of an arc plasma generator and magnetron sputtering system. Magnetron sputtering of either one or two targets simultaneously is provided as well. An arc plasma generator enables ions current density control on a substrate in a wide range due to discharge current varying from 1 to 100 A. Energy of ions is also being controlled in a wide range by a negative bias potential from 0 to 1000 V applied to a substrate. The wide control range of gas plasma density of a arc discharge of approximately 10 9 -10 11 cm -3 and high uniformity of its distribution over the total volume of an operating chamber (about 15% error with regard to the mean value) provides a purposeful and simultaneous control either of magnetron discharge characteristics (operating pressure of

  17. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    International Nuclear Information System (INIS)

    Goto, Masahiro; Sasaki, Michiko; Xu, Yibin; Zhan, Tianzhuo; Isoda, Yukihiro; Shinohara, Yoshikazu

    2017-01-01

    Highlights: • p- and n-type bismuth telluride thin films have been synthesized using a combinatorial sputter coating system (COSCOS) while changing only one of the experimental conditions, the RF power. • The dimensionless figure of merit (ZT) was optimized by the technique. • The fabrication of a Π-structured TE device was demonstrated. - Abstract: p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p–n modules of bismuth telluride without any doping process.

  18. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masahiro, E-mail: goto.masahiro@nims.go.jp [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sasaki, Michiko [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Yibin [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Materials Database Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhan, Tianzhuo [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Isoda, Yukihiro [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Shinohara, Yoshikazu [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2017-06-15

    Highlights: • p- and n-type bismuth telluride thin films have been synthesized using a combinatorial sputter coating system (COSCOS) while changing only one of the experimental conditions, the RF power. • The dimensionless figure of merit (ZT) was optimized by the technique. • The fabrication of a Π-structured TE device was demonstrated. - Abstract: p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p–n modules of bismuth telluride without any doping process.

  19. The influence of Sr content in calcium phosphate coatings

    International Nuclear Information System (INIS)

    Lindahl, Carl; Pujari-Palmer, Shiuli; Hoess, Andreas; Ott, Marjam; Engqvist, Håkan; Xia, Wei

    2015-01-01

    In this study calcium phosphate coatings with different amounts of strontium (Sr) were prepared using a biomineralization method. The incorporation of Sr changed the composition and morphology of coatings from plate-like to sphere-like morphology. Dissolution testing indicated that the solubility of the coatings increased with increased Sr concentration. Evaluation of extracts (with Sr concentrations ranging from 0 to 2.37 μg/mL) from the HA, 0.06Sr, 0.6Sr, and 1.2Sr coatings during in vitro cell cultures showed that Sr incorporation into coatings significantly enhanced the ALP activity in comparison to cells treated with control and HA eluted media. These findings show that calcium phosphate coatings could promote osteogenic differentiation even in a low amount of strontium. - Highlights: • Calcium phosphate coating doping with low Sr contents was prepared via a biomineralization process. • The solubility of the coatings increased with increased Sr concentration. • Present findings show the potential that Sr has on promoting osteogenic differentiation even in a low amount

  20. Corrosion protection by organic coatings in gas and oil industry

    International Nuclear Information System (INIS)

    Hussain, A.

    2008-01-01

    The drive to improve performance of coatings as protection against corrosion for automotive, aerospace and oil and gas industries is a never-ending story. Surface preparation is the most important single factor when a substrate surface e.g. steel is to be protected with a coating. This implies an extremely accurate and reliable characterisation of the substrate-surface prior to coating process and the investigation of polymeric coating materials. In order to have a durable adhesive bonding between the polymeric coating materials and the substrate i.e. to ensure prolonged life time and fewer maintenance intervals of coated products, a pre-treatment of the substrate is required in many cases. Sand blasting, corona /plasma pre.treatment of the substrate and the use of coupling agents like organo silanes are well accepted recent methods. Advanced surface analytical techniques like ESCA and TOFSIMS are proving to be extremely helpful in the chemical characterisation of the substrate surface. Contamination e.g. fat residues, tensides etc. on the substrate is one of the most serious enemies of adhesive bonding and the above mentioned techniques are playing a vital role in combating the enemy. Modern thermal analytical methods have made tremendous contribution to the development and quality control of high-performance polymeric coatings. MDSC, DMA and DETA are proving to be very useful tools for the characterisation of high-performance coating materials. An in-depth understanding of the structure-property relationship of these materials, predominantly epoxy and polyurethane coating systems, is a pre-requisite for their successful application and subsequent Quality Control. (author)

  1. Laser deposition of coatings for aeronautical and industrials turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Teleginski, V. [Instituto Federal de Sao Paulo (IFSP), SP (Brazil); Silva, S.A.; Riva, R.; Vasconcelos, G. [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil); Silva Pita, G.R. [Universidade Braz Cubas, Mogi das Cruzes, SP (Brazil); Yamin, L.S. [Escola Tecnica Everardo Passos (ETEP), Sao Jose dos Campos, DP (Brazil)

    2016-07-01

    Full text: Zirconium-based ceramic materials are widely employed as Thermal Barrier Coatings (TBC), due to its excellent wear and corrosion resistance at high temperatures. The application of TBC includes aeronautical and industrials turbine blades. The working conditions include oxidizing environments and temperatures above 1000°C. The zirconium-based ceramics are developed in such a way that the microstructural control is possible through the control of chemical composition, fabrication route and, thermal treatment. The present paper proposes a laser route to deposit the TBC coating, where the microstructural control is a function of power density and interaction time between the laser beam and the material. The main objective of this work is to study the influence of the CO2 laser beam (Synrad Evolution 125) parameters: power density and interaction time, on the deposition process of yttria-stabilized zirconia (YSZ) powders on NiCrAlY/AISI 316L substrates. The resulting coating surface and interface were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The results indicate that is possible to match laser parameters of scanning speed and intensity to produce homogenous coatings. The X-Ray analyses show that the obtained ceramic coating has reduced number of phases, with prevalence of tetragonal phase.(author)

  2. Solar hot water system installed at Las Vegas, Nevada. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The solar hot water system installed at LaQuinta Motor Inn Inc., at Las Vegas, Nevada is described. The Inn is a three-story building with a flat roof for installation of the solar panels. The system consists of 1200 square feet of liquid flat plate collectors, a 2500 gallon insulated vertical steel storage tank, two heat exchangers and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.

  3. Nano-suspension coating as a technique to modulate the drug release from controlled porosity osmotic pumps for a soluble agent.

    Science.gov (United States)

    Bahari, Leila Azharshekoufeh; Javadzadeh, Yousef; Jalali, Mohammad Barzegar; Johari, Peyvand; Nokhodchi, Ali; Shokri, Javad

    2017-05-01

    In controlled porosity osmotic pumps (CPOP), usually finding a single solvent with a capability to dissolve both film former (hydrophobic) and pore former (hydrophilic) is extremely challenging. Therefore, the aim of the present investigation was to tackle the issue associated with controlled porosity osmotic pump (CPOP) system using nano-suspension coating method. In the present study 4-Amino pyridine was used as a highly water soluble drug. In this method, a hydrophilic pore former (sucrose or mannitol) in nano range was suspended in polymeric coating solution using ball-mill. The performance of the prepared formulations was assessed in terms of D 12h (cumulative release percent after 12h), Dev zero (mean percent deviation of drug release from zero order kinetic), t L (lag time of the drug release) and RSQ zero . The results revealed that gelling agent amount (HPMC E 15LV ) in core and pore former concentration in SPM had crucial effect on SPM integrity. All the optimised formulations showed a burst drug release due to fast dissolving nature of the pore formers. Results obtained from scanning electron microscopy demonstrated the formation of nanopores in the membrane where the drug release takes place via these nanopores. Nano suspension coating method can be introduced as novel method in formulation of CPOPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    Science.gov (United States)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  5. Solar heating and hot water system installed at Charlotte Memorial Hospital, Charlotte, North Carolina

    Science.gov (United States)

    1981-01-01

    Detailed information regarding the design and installation of a heating and hot water system in a commercial application is given. This information includes descriptions of system and building, design philosophy, control logic operation modes, design and installation drawing and a brief description of problems encountered and their solutions.

  6. Ministerial Decree of 30 March 1978 on the exclusion of nuclear installations from the application of the requirements on combustion control

    International Nuclear Information System (INIS)

    1978-01-01

    This Decree was made by the Italian Minister for Industry, Commerce and Crafts; it lays down that nuclear installations governed by Act No. 1860 of 31 December 1962 on the Peaceful Uses of Nuclear Energy and by Presidential Decree No. 185 of 13 February 1964 on Radiation Protection and excluded from the scope of are Royal Order No. 824 of 12 May 1927 on combustion control. (NEA) [fr

  7. Study on the characteristics of the impingement erosion-corrosion for Cu-Ni Alloy sprayed coating(I)

    International Nuclear Information System (INIS)

    Lee, Sang Yeol; Lim, Uh Joh; Yun, Byoung Du

    1998-01-01

    Impingement erosion-corrosion test and electrochemical corrosion test in tap water(5000Ω-cm) and seawater(25Ω-cm). Thermal spraying coated Cu-Ni alloy on the carbon steel was carried out. The impingement erosion-corrosion behavior and electrochemical corrosion characteristics of the substrate(SS41) and Cu-Ni thermal spray coating were investigated. The erosion-corrosion control efficiency of Cu-Ni coating to substrate was also estimated quantitatively. Main results obtained are as follows : 1) Under the flow velocity of 13m/s, impingement erosion-corrosion of Cu-Ni coating is under the control of electrochemical corrosion factor rather than that of mechanical erosion. 2) The corrosion potential of Cu-Ni coating becomes more noble than that of substrate, and the current density of Cu-Ni coating under the corrosion potential is drained lowly than that of substrate. 3) The erosion-corrosion control efficiency of Cu-Ni coating to substrate is excellent in the tap water of high specific resistance solution, but it becomes dull in the seawater of low specific resistance. 4) The corrosion control efficiency of Cu-Ni coating to substrate in the seawater appears to be higher than that in the tap water

  8. Controllable mineral coatings on scaffolds as carriers for growth factor release for bone tissue engineering

    Science.gov (United States)

    Saurez-Gonzalez, Darilis

    The work presented in this document, focused on the development and characterization of mineral coatings on scaffold materials to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO3) concentration in mSBF of 4.2 mM, 25mM, and 100mM. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite. FTIR data confirmed the substitution of HCO3 in the mineral. As the extent of HCO3 substitution increased, the coating exhibited more rapid dissolution kinetics in an environment deficient in calcium and phosphate. The mineral coatings provided an effective mechanism for bioactive growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral-coated PCL scaffolds. Recombinant human vascular endothelial growth factor (rhVEGF) also bound to mineral coated scaffolds with lower efficiency (20%) and released with faster release kinetics compared to peptides growth factor. Released rhVEGF induced human umbilical vein endothelial cell (HUVEC) proliferation in vitro and enhanced blood vessel formation in vivo in an intramuscular sheep model. In addition to the use the mineral coatings for single growth factor release, we expanded the concept and bound both an angiogenic (rhVEGF) and osteogenic (mBMP2) growth factor by a simple double dipping process. Sustained release of both growth factors was demonstrated for over 60 days. Released rhVEGF enhanced blood vessel formation in vivo in sheep and its biological activity was

  9. One-stage exchange with antibacterial hydrogel coated implants provides similar results to two-stage revision, without the coating, for the treatment of peri-prosthetic infection.

    Science.gov (United States)

    Capuano, Nicola; Logoluso, Nicola; Gallazzi, Enrico; Drago, Lorenzo; Romanò, Carlo Luca

    2018-03-16

    Aim of this study was to verify the hypothesis that a one-stage exchange procedure, performed with an antibiotic-loaded, fast-resorbable hydrogel coating, provides similar infection recurrence rate than a two-stage procedure without the coating, in patients affected by peri-prosthetic joint infection (PJI). In this two-center case-control, study, 22 patients, treated with a one-stage procedure, using implants coated with an antibiotic-loaded hydrogel [defensive antibacterial coating (DAC)], were compared with 22 retrospective matched controls, treated with a two-stage revision procedure, without the coating. At a mean follow-up of 29.3 ± 5.0 months, two patients (9.1%) in the DAC group showed an infection recurrence, compared to three patients (13.6%) in the two-stage group. Clinical scores were similar between groups, while average hospital stay and antibiotic treatment duration were significantly reduced after one-stage, compared to two-stage (18.9 ± 2.9 versus 35.8 ± 3.4 and 23.5 ± 3.3 versus 53.7 ± 5.6 days, respectively). Although in a relatively limited series of patients, our data shows similar infection recurrence rate after one-stage exchange with DAC-coated implants, compared to two-stage revision without coating, with reduced overall hospitalization time and antibiotic treatment duration. These findings warrant further studies in the possible applications of antibacterial coating technologies to treat implant-related infections. III.

  10. Recent developments in high temperature coatings for gas turbine airfoils

    Science.gov (United States)

    Goward, G. W.

    1983-01-01

    The importance of coatings for hot section airfoils has increased with the drive for more cost-effective use of fuel in a wide variety of gas turbine engines. Minor additions of silicon have been found to appreciably increase the oxidation resistance of plasma-sprayed NiCoCrAlY coatings on a single crystal nickel-base superalloy. Increasing the chromium content of MCrAlY coatings substantially increases the resistance to acidic (Na2SO4-SO3) hot corrosion at temperatures of about 1300 F (704 C) but gives no significant improvement beyond contemporary coatings in the range of 1600 F (871 C). Surface enrichment of MCrAlY coatings with silicon also gives large increases in resistance to acidic hot corrosion in the 1300 F region. The resistance to the thermal stress-induced spalling of zirconia-based thermal barrier coatings has been improved by lowering coating stresses with segmented structures and by controlling the substrate temperature during coating fabrication.

  11. Pixelated coatings and advanced IR coatings

    Science.gov (United States)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  12. Iron oxide coating films in soda-lime glass by triboadhesion

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J. O.; Arjona, M. J. [Boulevard Bahia s/n esq. Ignacio Comonfort, Chetumal (Mexico); Rodriguez-Lelis, J. M. [Interior Internado Palmira s/n, Cuernavaca, Morelos (Mexico)

    2009-04-15

    In the triboadhesion process the coating material is passed through a rotating cotton mop and the substrate to be coated. The cotton mop rotates at high velocity and exerts pressure on the surface of the substrate. The combined effect of pressure and velocity of the coating mop on the substrate increases its temperature close to the melting point, allowing deposition and diffusion of the coating material within the substrate. After it is deposited, its particles are embedded within the base material forming a thin film composite. The amount of the coating material deposited on the substrate has its maximum at the surface and then decreases as a function of the local temperature within the base material. Bearing this in mind, in the present work, triboadhesion is employed to deposit iron oxide in a substrate of soda-lime glass, with the purpose of determining the feasibility of using this technique for solar control coatings. It was found, through electronic scan microscopy, that a composite material film is formed following the coating direction. Reflectance and transmittance tests were carried out on the glass samples. A 20% difference was found in the visible spectral region (VIS), and a reduction between 10 and 20% in the Near Infrared Region (NIR). These results showed that the triboadhesion is a promising technique for the application of thin films for solar control or solar cells

  13. Iron oxide coating films in soda-lime glass by triboadhesion

    International Nuclear Information System (INIS)

    Aguilar, J. O.; Arjona, M. J.; Rodriguez-Lelis, J. M.

    2009-01-01

    In the triboadhesion process the coating material is passed through a rotating cotton mop and the substrate to be coated. The cotton mop rotates at high velocity and exerts pressure on the surface of the substrate. The combined effect of pressure and velocity of the coating mop on the substrate increases its temperature close to the melting point, allowing deposition and diffusion of the coating material within the substrate. After it is deposited, its particles are embedded within the base material forming a thin film composite. The amount of the coating material deposited on the substrate has its maximum at the surface and then decreases as a function of the local temperature within the base material. Bearing this in mind, in the present work, triboadhesion is employed to deposit iron oxide in a substrate of soda-lime glass, with the purpose of determining the feasibility of using this technique for solar control coatings. It was found, through electronic scan microscopy, that a composite material film is formed following the coating direction. Reflectance and transmittance tests were carried out on the glass samples. A 20% difference was found in the visible spectral region (VIS), and a reduction between 10 and 20% in the Near Infrared Region (NIR). These results showed that the triboadhesion is a promising technique for the application of thin films for solar control or solar cells

  14. Software safety analysis practice in installation phase

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. W.; Chen, M. H.; Shyu, S. S., E-mail: hwhwang@iner.gov.t [Institute of Nuclear Energy Research, No. 1000 Wenhua Road, Chiaan Village, Longtan Township, 32546 Taoyuan County, Taiwan (China)

    2010-10-15

    This work performed a software safety analysis in the installation phase of the Lung men nuclear power plant in Taiwan, under the cooperation of Institute of Nuclear Energy Research and Tpc. The US Nuclear Regulatory Commission requests licensee to perform software safety analysis and software verification and validation in each phase of software development life cycle with Branch Technical Position 7-14. In this work, 37 safety grade digital instrumentation and control systems were analyzed by failure mode and effects analysis, which is suggested by IEEE standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The failure mode and effects analysis showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (Author)

  15. Software safety analysis practice in installation phase

    International Nuclear Information System (INIS)

    Huang, H. W.; Chen, M. H.; Shyu, S. S.

    2010-10-01

    This work performed a software safety analysis in the installation phase of the Lung men nuclear power plant in Taiwan, under the cooperation of Institute of Nuclear Energy Research and Tpc. The US Nuclear Regulatory Commission requests licensee to perform software safety analysis and software verification and validation in each phase of software development life cycle with Branch Technical Position 7-14. In this work, 37 safety grade digital instrumentation and control systems were analyzed by failure mode and effects analysis, which is suggested by IEEE standard 7-4.3.2-2003. During the installation phase, skew tests for safety grade network and point to point tests were performed. The failure mode and effects analysis showed all the single failure modes can be resolved by the redundant means. Most of the common mode failures can be resolved by operator manual actions. (Author)

  16. Installing Python Modules with pip

    OpenAIRE

    Fred Gibbs

    2013-01-01

    This lesson shows you how to download and install Python modules. There are many ways to install external modules, but for the purposes of this lesson, we’re going to use a program called pip. As of Python 2.7.9 and newer, pip is installed by default. This tutorial will be helpful for anyone using older versions of Python (which are still quite common).

  17. Installation package for a domestic solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    The installation of two prototype solar heating and hot water systems is described. The systems consists of the following subsystems: solar collector, storage, control, transport, and auxiliary energy.

  18. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.; Aldhahri, Musab A.; Abdel-wahab, Mohamed Shaaban; Tamayol, Ali; Moghaddam, K. Mollazadeh; Ben Rached, Fathia; Pain, Arnab; Khademhosseini, Ali; Memic, Adnan; Chaieb, Saharoui

    2017-01-01

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  19. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.

    2017-07-07

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  20. HVOF-Sprayed Nano TiO2-HA Coatings Exhibiting Enhanced Biocompatibility

    Science.gov (United States)

    Lima, R. S.; Dimitrievska, S.; Bureau, M. N.; Marple, B. R.; Petit, A.; Mwale, F.; Antoniou, J.

    2010-01-01

    Biomedical thermal spray coatings produced via high-velocity oxy-fuel (HVOF) from nanostructured titania (n-TiO2) and 10 wt.% hydroxyapatite (HA) (n-TiO2-10wt.%HA) powders have been engineered as possible future alternatives to HA coatings deposited via air plasma spray (APS). This approach was chosen due to (i) the stability of TiO2 in the human body (i.e., no dissolution) and (ii) bond strength values on Ti-6Al-4V substrates more than two times higher than those of APS HA coatings. To explore the bioperformance of these novel materials and coatings, human mesenchymal stem cells (hMSCs) were cultured from 1 to 21 days on the surface of HVOF-sprayed n-TiO2 and n-TiO2-10 wt.%HA coatings. APS HA coatings and uncoated Ti-6Al-4V substrates were employed as controls. The profiles of the hMSCs were evaluated for (i) cellular proliferation, (ii) biochemical analysis of alkaline phosphatase (ALP) activity, (iii) cytoskeleton organization (fluorescent/confocal microscopy), and (iv) cell/substrate interaction via scanning electron microscopy (SEM). The biochemical analysis indicated that the hMSCs cultured on n-TiO2-10 wt.%HA coatings exhibited superior levels of bioactivity than hMSCs cultured on APS HA and pure n-TiO2 coatings. The cytoskeleton organization demonstrated a higher degree of cellular proliferation on the HVOF-sprayed n-TiO2-10wt.%HA coatings when compared to the control coatings. These results are considered promising for engineering improved performance in the next generation of thermally sprayed biomedical coatings.

  1. Boron nitride nanosheets as oxygen-atom corrosion protective coatings

    International Nuclear Information System (INIS)

    Yi, Min; Shen, Zhigang; Zhao, Xiaohu; Liang, Shuaishuai; Liu, Lei

    2014-01-01

    The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion

  2. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice.

    Science.gov (United States)

    Oyewumi, Moses O; Yokel, Robert A; Jay, Michael; Coakley, Tricia; Mumper, Russell J

    2004-03-24

    The purpose of these studies was to compare the cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium (Gd) nanoparticles. Gd is a potential agent for neutron capture therapy (NCT) of tumors. Gd nanoparticles were engineered from oil-in-water microemulsion templates. To obtain folate-coated nanoparticles, a folate ligand [folic acid chemically linked to distearoylphosphatidylethanolamine (DSPE) via a PEG spacer MW 3350] was included in nanoparticle preparations. Similarly, control nanoparticles were coated with DSPE-PEG-MW 3350 (PEG-coated). Nanoparticles were characterized based on size, size distribution, morphology, biocompatibility and tumor cell uptake. In vivo studies were carried out in KB (human nasopharyngeal carcinoma) tumor-bearing athymic mice. Biodistribution and tumor retention studies were carried out at pre-determined time intervals after injection of nanoparticles (10 mg/kg). Gd nanoparticles did not aggregate platelets or activate neutrophils. The retention of nanoparticles in the blood 8, 16 and 24 h post-injection was 60%, 13% and 11% of the injected dose (ID), respectively. A maximum Gd tumor localization of 33+/-7 microg Gd/g was achieved. Both folate-coated and PEG-coated nanoparticles had comparable tumor accumulation. However, the cell uptake and tumor retention of folate-coated nanoparticles was significantly enhanced over PEG-coated nanoparticles. Thus, the benefits of folate ligand coating were to facilitate tumor cell internalization and retention of Gd-nanoparticles in the tumor tissue. The engineered nanoparticles may have potential in tumor-targeted delivery of Gd thereby enhancing the therapeutic success of NCT.

  3. Biocompatibility of Ir/Ti-oxide coatings: Interaction with platelets, endothelial and smooth muscle cells

    Science.gov (United States)

    Habibzadeh, Sajjad; Li, Ling; Omanovic, Sasha; Shum-Tim, Dominique; Davis, Elaine C.

    2014-05-01

    Applying surface coatings on a biomedical implant is a promising modification technique which can enhance the implant's biocompatibility via controlling blood constituents- or/and cell-surface interaction. In this study, the influence of composition of IrxTi1-x-oxide coatings (x = 0, 0.2, 0.4, 0.6, 0.8, 1) formed on a titanium (Ti) substrate on the responses of platelets, endothelial cells (ECs) and smooth muscle cells (SMCs) was investigated. The results showed that a significant decrease in platelet adhesion and activation was obtained on Ir0.2Ti0.8-oxide and Ir0.4Ti0.6-oxide coatings, rendering the surfaces more blood compatible, in comparison to the control (316L stainless steel, 316L-SS) and other coating compositions. Further, a substantial increase in the EC/SMC surface count ratio after 4 h of cell attachment to the Ir0.2Ti0.8-oxide and Ir0.4Ti0.6-oxide coatings, relative to the 316L-SS control and the other coating compositions, indicated high potential of these coatings for the enhancement of surface endothelialization. This indicates the capability of the corresponding coating compositions to promote EC proliferation on the surface, while inhibiting that of SMCs, which is important in cardiovascular stents applications.

  4. Magnetic compatibility of standard components for electrical installations: Computation of the background field and consequences on the design of the electrical distribution boards and control boards for the ITER Tokamak building

    International Nuclear Information System (INIS)

    Benfatto, I.; Bettini, P.; Cavinato, M.; Lorenzi, A. De; Hourtoule, J.; Serra, E.

    2005-01-01

    Inside the proposed Tokamak building, the ITER poloidal field magnet system would produce a stray magnetic field up to 70 mT. This is a very unusual environmental condition for electrical installation equipment and limited information is available on the magnetic compatibility of standard components for electrical distribution boards and control boards. Because this information is a necessary input for the design of the electrical installation inside the proposed ITER Tokamak building specific investigations have been carried out by the ITER European Participant Team. The paper reports on the computation of the background magnetic field map inside the ITER Tokamak building and the consequences on the design of the electrical installations of this building. The effects of the steel inside the building structure and the feasibility of magnetic shields for electrical distribution boards and control boards are also reported in the paper. The results of the test campaigns on the magnetic field compatibility of standard components for electrical distribution boards and control boards are reported in companion papers published in these proceedings

  5. Progress Toward Meeting NIF Specifications for Vapor Deposited Polyimide Ablator Coatings

    International Nuclear Information System (INIS)

    Letts, Stephan A.; Anthamatten, Mitchell; Buckley, Steven R.; Fearon, Evelyn; Nissen, April E.H.; Cook, Robert C.

    2004-01-01

    We are developing an evaporative coating technique for deposition of thick polyimide (PI) ablator layers on ICF targets. The PI coating technique utilizes stoichiometrically controlled fluxes from two Knudsen cell evaporators containing a dianhydride and a diamine to deposit a polyamic acid (PAA) coating. Heating the PAA coating to 300 deg. C converts the PAA coating to a polyimide. Coated shells are rough due to particles on the substrate mandrels and from damage to the coating caused by the agitation used to achieve a uniform coating. We have developed a smoothing process that exposes an initially rough PAA coated shell to solvent vapor using gas levitation. We found that after smoothing the coatings developed a number of wide (low-mode) defects. We have identified two major contributors to low-mode roughness: surface hydrolysis, and deformation during drying/curing. By minimizing air exposure prior to vapor smoothing, avoiding excess solvent sorption during vapor smoothing, and using slow drying we are able to deposit and vapor smooth coatings 160 μm thick with a surface roughness less than 20 nm RMS

  6. Displacement pile installation effects in sand

    NARCIS (Netherlands)

    Beijer-Lundberg, A.

    2015-01-01

    Installation effects govern the post-installation behaviour of displacement piles in sand. These effects are currently not completely understood. Suitable experimental techniques to model these installation effects include field, laboratory and experimental models. In the current thesis a

  7. Biocompatibility of Ir/Ti-oxide coatings: Interaction with platelets, endothelial and smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Habibzadeh, Sajjad [Department of Chemical Engineering, McGill University, Montreal, QC (Canada); Li, Ling [Department of Anatomy and Cell Biology, McGill University, Montreal, QC (Canada); Omanovic, Sasha [Department of Chemical Engineering, McGill University, Montreal, QC (Canada); Shum-Tim, Dominique [Divisions of Cardiac Surgery and Surgical Research, Department of Surgery, McGill University, Montreal, QC (Canada); Davis, Elaine C., E-mail: elaine.davis@mcgill.ca [Department of Anatomy and Cell Biology, McGill University, Montreal, QC (Canada)

    2014-05-01

    Graphical abstract: - Highlights: • Ir/Ti-oxide coated surfaces are characterized by the so-called “cracked-mud” morphology. • 40% Ir in the coating material results in a morphologically uniform coating. • ECs and SMCs showed a desirable response to the Ir/Ti-oxide coated surfaces. • Ir/Ti-oxide coated surfaces are more bio/hemocompatible than the untreated 316L stainless steel. - Abstract: Applying surface coatings on a biomedical implant is a promising modification technique which can enhance the implant's biocompatibility via controlling blood constituents- or/and cell-surface interaction. In this study, the influence of composition of Ir{sub x}Ti{sub 1−x}-oxide coatings (x = 0, 0.2, 0.4, 0.6, 0.8, 1) formed on a titanium (Ti) substrate on the responses of platelets, endothelial cells (ECs) and smooth muscle cells (SMCs) was investigated. The results showed that a significant decrease in platelet adhesion and activation was obtained on Ir{sub 0.2}Ti{sub 0.8}-oxide and Ir{sub 0.4}Ti{sub 0.6}-oxide coatings, rendering the surfaces more blood compatible, in comparison to the control (316L stainless steel, 316L-SS) and other coating compositions. Further, a substantial increase in the EC/SMC surface count ratio after 4 h of cell attachment to the Ir{sub 0.2}Ti{sub 0.8}-oxide and Ir{sub 0.4}Ti{sub 0.6}-oxide coatings, relative to the 316L-SS control and the other coating compositions, indicated high potential of these coatings for the enhancement of surface endothelialization. This indicates the capability of the corresponding coating compositions to promote EC proliferation on the surface, while inhibiting that of SMCs, which is important in cardiovascular stents applications.

  8. pH responsive controlled release of anti-cancer hydrophobic drugs from sodium alginate and hydroxyapatite bi-coated iron oxide nanoparticles.

    Science.gov (United States)

    Manatunga, Danushika C; de Silva, Rohini M; de Silva, K M Nalin; de Silva, Nuwan; Bhandari, Shiva; Yap, Yoke Khin; Costha, N Pabakara

    2017-08-01

    Developing a drug carrier system which could perform targeted and controlled release over a period of time is utmost concern in the pharmaceutical industry. This is more relevant when designing drug carriers for poorly water soluble drug molecules such as curcumin and 6-gingerol. Development of a drug carrier system which could overcome these limitations and perform controlled and targeted drug delivery is beneficial. This study describes a promising approach for the design of novel pH sensitive sodium alginate, hydroxyapatite bilayer coated iron oxide nanoparticle composite (IONP/HAp-NaAlg) via the co-precipitation approach. This system consists of a magnetic core for targeting and a NaAlg/HAp coating on the surface to accommodate the drug molecules. The nanocomposite was characterized using FT-IR spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis. The loading efficiency and loading capacity of curcumin and 6-gingerol were examined. In vitro drug releasing behavior of curcumin and 6-gingerol was studied at pH 7.4 and pH 5.3 over a period of seven days at 37°C. The mechanism of drug release from the nanocomposite of each situation was studied using kinetic models and the results implied that, the release is typically via diffusion and a higher release was observed at pH 5.3. This bilayer coated system can be recognized as a potential drug delivery system for the purpose of curcumin and 6-gingerol release in targeted and controlled manner to treat diseases such as cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Tokamak first-wall coating program development

    International Nuclear Information System (INIS)

    Davis, M.J.; Langley, R.A.; Prevender, T.S.

    1977-08-01

    The development of a research program to study coatings for control of impurities originating from the first wall of a Tokamak reactor is extensively discussed. The first wall environment and sputtering, temperature, surface chemical, and bulk radiation damage effects are reviewed. Candidate materials and application techniques are discussed. The philosophy and flow chart of a recommended coating development plan are presented and discussed. Projected impacts of the proposed plan include benefits to other aspects of confinement experiments. A list of 45 references is appended

  10. Coating and melt induced agglomeration in a poultry litter fired fluidized bed combustor

    International Nuclear Information System (INIS)

    Billen, Pieter; Creemers, Benji; Costa, José; Van Caneghem, Jo; Vandecasteele, Carlo

    2014-01-01

    The combustion of poultry litter, which is rich in phosphorus, in a fluidized bed combustor (FBC) is associated with agglomeration problems, which can lead to bed defluidization and consequent shutdown of the installation. Whereas earlier research indicated coating induced agglomeration as the dominant mechanism for bed material agglomeration, it is shown experimentally in this paper that both coating and melt induced agglomeration occur. Coating induced agglomeration mainly takes place at the walls of the FBC, in the freeboard above the fluidized bed, where at the prevailing temperature the bed particles are partially molten and hence agglomerate. In the ash, P 2 O 5 forms together with CaO thermodynamically stable Ca 3 (PO 4 ) 2 , thus reducing the amount of calcium silicates in the ash. This results in K/Ca silicate mixtures with lower melting points. On the other hand, in-bed agglomeration is caused by thermodynamically unstable, low melting HPO 4 2− and H 2 PO 4 − salts present in the fuel. In the hot FBC these salts may melt, may cause bed particles to stick together and may subsequently react with Ca salts from the bed ash, forming a solid bridge of the stable Ca 3 (PO 4 ) 2 between multiple particles. - Highlights: • Coating induced agglomeration not due to K phosphates, but due to K silicates. • Melt induced agglomeration due to H 2 PO 4 − and HPO 4 2− salts in the fuel. • Wall agglomeration corresponds to coating induced mechanism. • In-bed agglomeration corresponds to melt induced mechanism

  11. [The cytotoxicity of N48 NdFeB magnets coated with titanium-nitride].

    Science.gov (United States)

    Cao, Xiao-Ming; Hou, Zhi-Ming; Chu, Ming

    2008-04-01

    To evaluate the effect of N48 NdFeB magnets coated with titanium-nitride on the growth and apoptosis of L929 mouse fibroblast cells, and to determine the material biocompatibility. The NdFeB magnets coated with titanium-nitride, bare NdFeB magnets and ordinary brackets were put into RPMI-1640 to prepare fusions. L929 mouse fibroblast cells were cultivated in the negative control liquid, positive control liquid, 100%, 50% and 25% sample fusions, respectively. The cell proliferation vitality was detected by MTT assay and the relative growth rate was calculated.Cell scatter diagrams of the negative control liquid, 100% titanium-nitride coated magnets fusion and bare magnets fusion were detected by flow cytometry Annexin V/PI double staining method. The ratios of normal cells, early apoptosis, advanced apoptosis and necrosis cells were calculated. The results were analyzed for paired t test using SPSS11.5 software package. The toxic levels of N48 NdFeB coated with titanium-nitride were ranked as 0-1. The toxic levels of bare magnets were ranked as 2. The cell scatter diagrams showed that there was no significant difference in living cell, early apoptosis and necrosis between magnets coated with titanium-nitride and control group. But there was significant difference between the bare magnets group and control group. The N48 NdFeB magnets coated with titanium-nitride have good biocompatibility.

  12. Preparation and mechanism analysis of an environment-friendly maize seed coating agent.

    Science.gov (United States)

    Zeng, Defang; Fan, Zhao; Tian, Xu; Wang, Wenjin; Zhou, Mingchun; Li, Haochuan

    2018-06-01

    Traditional seed coating agents often contain toxic ingredients, which contaminate the environment and threaten human health. This paper expounds a method of preparing a novel environment-friendly seed coating agent for maize and researches its mechanism of action. The natural polysaccharide polymer, which is the main active ingredient of this environment-friendly seed coating agent, has the characteristics of innocuity and harmlessness, and it can replace the toxic ingredients used in traditional seed coating agents. This environment-friendly seed coating agent for maize was mainly made up of the natural polysaccharide polymer and other additives. The field trials results showed that the control efficacy of Helminthosporium maydis came to 93.72%, the anti-feeding rate of cutworms came to 81.29%, and the maize yield was increased by 17.75%. Besides, the LD 50 value (half the lethal dose in rats) of this seed coating agent was 10 times higher than that of the traditional seed coating agents. This seed coating agent could improve the activity of plant protective enzymes (peroxidase, catalase and superoxidase dismutase) and increase the chlorophyll content. This seed coating agent has four characteristics of disease prevention, desinsectization, increasing yield and safety. Results of mechanism analyses showed that this seed coating agent could enhance disease control effectiveness by improving plant protective enzymes activity and increase maize yield by improving chlorophyll content. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Using Residential Solar PV Quote Data to Analyze the Relationship Between Installer Pricing and Firm Size

    Energy Technology Data Exchange (ETDEWEB)

    O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    The vast majority of U.S. residential solar PV installers are small local-scale companies, however the industry is relatively concentrated in a few large national-scale installers. We develop a novel approach using solar PV quote data to study the price behavior of large solar PV installers in the United States. Through a paired differences approach, we find that large installer quotes are about higher, on average, than non-large installer quotes made to the same customer. The difference is statistically significant and robust after controlling for factors such as system size, equipment quality, and time effects. The results suggest that low prices are not the primary value proposition of large installer systems. We explore several hypotheses for this finding, including that large installers are able to exercise some market power and/or earn returns from reputations.

  14. New fast reactor installation concept

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The large size and complexity of fast reactor installations are emphasised and these difficulties will be increased with the advent of fast reactors of higher power. In this connection a new concept of fast reactor installation is described with a view to reducing the size of the installation and enabling most components, including even the primary vessel, to be constructed within the confines of a workshop. Full constructional details are given. (U.K.)

  15. Numerical Control Device for Preparation Nano-Carbon Granule Coating Superhydrophobic Template and Its Application

    Science.gov (United States)

    Shang, G. R.; Li, Y.

    2017-12-01

    It is one of the ways for changing surface property by fabricating superhydrophibic coating with the help of template that is made of depositing nano-carbon particles of fuel flame on substrate such as pure copper or aluminium alloy. In the process of making template, it is difficult to keep the deposition layer uniformed. In this work, the problem was solved by manufacturing a set of numerical control equipment. It has been proved by application test that the deposition layer was uniformed by means of this facility. The contact angle is more than 150°. A new way has been developed for making superhydrohibic template.

  16. Caregivers’ Use of Child Passenger Safety Resources and Quality of Future Child Restraint System Installations

    Directory of Open Access Journals (Sweden)

    Jessica H. Mirman

    2017-10-01

    Full Text Available Objectives: Child Restraint System (CRS misuse is common. We characterized caregivers’ use of child passenger safety informational and instructional resources and determined whether there were differences in the quality of CRS installations associated with prior exposure to specific resources as evaluated in a standardized CRS installation environment. Methods: Caregivers completed self-report surveys and installed a forward-facing CRS in a controlled environment. Installations were evaluated for security (tightness and accuracy (no errors by a child passenger safety technician (CPST. Results: CRS manuals were the most common way caregivers learned to install a CRS. Primary care providers (PCPs were the most frequently endorsed source of CRS safety information. There was no strong pattern of associations between prior exposure to resources and installation quality (security or accuracy, although some evidence supports protective effects of learning from CPSTs; 13% (19 out of 151 installations were secure and 57% (86 out of 151 installations were accurate. Conclusions: A focus on developing effective and lasting behavioral interventions is needed.

  17. Delayed condensation and frost formation on superhydrophobic carbon soot coatings by controlling the presence of hydrophilic active sites

    Science.gov (United States)

    Esmeryan, Karekin D.; Castano, Carlos E.; Mohammadi, Reza; Lazarov, Yuliyan; Radeva, Ekaterina I.

    2018-02-01

    Condensation frosting is an undesired natural phenomenon that could be impeded efficiently using appropriate wettability and morphologically patterned surfaces. The icephobic properties of carbon soot and the fabrication scalability of its synthesis method are a good foundation for anti-frosting applications; however, the fundamentals of frost growth and spreading on sooted surfaces have not been examined yet. In this study, we investigate the anti-frosting performance of three groups of superhydrophobic soot coatings by means of 16 MHz quartz crystal microbalances (QCMs). The analysis of the real-time sensor signal of each soot coated QCM pattern shows that frost formation and its propagation velocity depend on the quantity of oxygen functionalities and structural defects in the material. In turn, the reduction of both parameters shifts the onset of frost growth to temperatures below  -20 °C, whereas the interdroplet ice bridging is slowed by a factor of four. Moreover, high-resolution scanning electron micrographs of the samples imply delamination upon defrosting of the soot with spherical-like morphology via polar interactions driven mechanism. These results reveal an opportunity for control of frost incipiency on sooted surfaces by adjusting the synthesis conditions and depositing soot coatings with as low as possible content of hydrophilic active sites.

  18. Hydrogen permeation through sol-gel-coated iron during galvanostatic charging

    International Nuclear Information System (INIS)

    Zakorchemna, I.; Carmona, N.; Zakroczymski, T.

    2008-01-01

    One-layer sol-gel silica-zirconia and two-layer silica-zirconia and zirconia coatings were deposited on one side of iron membranes by spin-coating, densified in air and annealed up to 800 deg. C in vacuum. Hydrogen permeation through the membranes, coated and uncoated, polarised cathodically under galvanostatic control in 0.1 M NaOH solution was studied using the electrochemical permeation technique. During the initial period, the effect of the sol-gel coatings was insignificant. However, the coatings quite efficiently prevented the iron surface become more active to hydrogen entry during a long-lasting cathodic polarisation. In addition, the electrochemical-corrosion behaviour of the coated iron and the effect of the sol-gel coatings on the effective diffusivity of hydrogen in the coated membranes were studied. On the basis of the polarisation curves and the hydrogen permeation data it was proved that the sol-gel coatings blocked the iron surface for the hydrogen evolution reaction and, consequently, for the hydrogen entry into iron. The effective coating coverage was determined by comparison of the hydrogen fluxes permeating the coated and uncoated membranes. Finally the real concentration of hydrogen beneath the uncoated iron sites and the amount of hydrogen stored in a membrane were evaluated

  19. Quality Assessment of Refractory Protective Coatings Using Multi-Frequency Eddy Current MWM-Arrays

    International Nuclear Information System (INIS)

    Zilberstein, Vladimir; Evans, Leslie; Huguenin, Carolene; Grundy, David; Lyons, Robert; Goldfine, Neil; Mulligan, Christopher

    2006-01-01

    Demands for increased range, rate of fire, and muzzle velocity have prompted development of new refractory metal coatings. Nondestructive measurement of coating electrical conductivity and thickness is crucial to the process development and statistical process control. This paper presents absolute property coating characterization results for Ta coatings obtained with a Meandering Winding Magnetometer (MWM registered ) eddy-current sensor and MWM-Array sensor. The measured coating conductivity indicates the ratio of the intended α-Ta to the undesirable β-Ta

  20. X-ray diagnostic installation with an image intensifier TV chain and a dose rate control device

    Energy Technology Data Exchange (ETDEWEB)

    Duemmling, K; Schott, O

    1977-04-28

    The person performing the examination can key up the dose rate briefly via the X-ray tube current, e.g., if the movement of a contrast medium is to be observed on the video screen and only certain phases in this movement, which are of diagnostic significance, are to be viewed more closely. The upward change necessary to reduce quantum noise by a certain factor is made by means of a switch. This at the same time results in a reduction of brightness (over-exposure) of the X-ray image on the video screen by actuating an aperture system between the image intensifier, and the TV camera. To prevent the X-ray tube from being overloaded during key-up of the dose rate, a time limit switch is installed in the control system.