Implementation of fuzzy logic control algorithm in embedded ...
African Journals Online (AJOL)
Fuzzy logic control algorithm solves problems that are difficult to address with traditional control techniques. This paper describes an implementation of fuzzy logic control algorithm using inexpensive hardware as well as how to use fuzzy logic to tackle a specific control problem without any special software tools. As a case ...
CSIR Research Space (South Africa)
Mkuzangwe, NNP
2015-08-01
Full Text Available This work implements two anomaly detection algorithms for detecting Transmission Control Protocol Synchronized (TCP SYN) flooding attack. The two algorithms are an adaptive threshold algorithm and a cumulative sum (CUSUM) based algorithm...
Optimal control of hybrid qubits: Implementing the quantum permutation algorithm
Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.
2018-03-01
The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.
Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed
Tian, Ye; Song, Qi; Cattafesta, Louis
2005-01-01
This report summarizes the activities on "Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed." The work summarized consists primarily of two parts. The first part summarizes our previous work and the extensions to adaptive ID and control algorithms. The second part concentrates on the validation of adaptive algorithms by applying them to a vibration beam test bed. Extensions to flow control problems are discussed.
Implementation of Genetic Algorithm in Control Structure of Induction Motor A.C. Drive
Directory of Open Access Journals (Sweden)
BRANDSTETTER, P.
2014-11-01
Full Text Available Modern concepts of control systems with digital signal processors allow the implementation of time-consuming control algorithms in real-time, for example soft computing methods. The paper deals with the design and technical implementation of a genetic algorithm for setting proportional and integral gain of the speed controller of the A.C. drive with the vector-controlled induction motor. Important simulations and experimental measurements have been realized that confirm the correctness of the proposed speed controller tuned by the genetic algorithm and the quality speed response of the A.C. drive with changing parameters and disturbance variables, such as changes in load torque.
Implementation Of Fuzzy Automated Brake Controller Using TSK Algorithm
Mittal, Ruchi; Kaur, Magandeep
2010-11-01
In this paper an application of Fuzzy Logic for Automatic Braking system is proposed. Anti-blocking system (ABS) brake controllers pose unique challenges to the designer: a) For optimal performance, the controller must operate at an unstable equilibrium point, b) Depending on road conditions, the maximum braking torque may vary over a wide range, c) The tire slippage measurement signal, crucial for controller performance, is both highly uncertain and noisy. A digital controller design was chosen which combines a fuzzy logic element and a decision logic network. The controller identifies the current road condition and generates a command braking pressure signal Depending upon the speed and distance of train. This paper describes design criteria, and the decision and rule structure of the control system. The simulation results present the system's performance depending upon the varying speed and distance of the train.
Design and implementation of adaptive inverse control algorithm for a micro-hand control system
Directory of Open Access Journals (Sweden)
Wan-Cheng Wang
2014-01-01
Full Text Available The Letter proposes an online tuned adaptive inverse position control algorithm for a micro-hand. First, the configuration of the micro-hand is discussed. Next, a kinematic analysis of the micro-hand is investigated and then the relationship between the rotor position of micro-permanent magnet synchronous motor and the tip of the micro-finger is derived. After that, an online tuned adaptive inverse control algorithm, which includes an adaptive inverse model and an adaptive inverse control, is designed. The online tuned adaptive inverse control algorithm has better performance than the proportional–integral control algorithm does. In addition, to avoid damaging the object during the grasping process, an online force control algorithm is proposed here as well. An embedded micro-computer, cRIO-9024, is used to realise the whole position control algorithm and the force control algorithm by using software. As a result, the hardware circuit is very simple. Experimental results show that the proposed system can provide fast transient responses, good load disturbance responses, good tracking responses and satisfactory grasping responses.
DC Voltage Droop Control Implementation in the AC/DC Power Flow Algorithm: Combinational Approach
DEFF Research Database (Denmark)
Akhter, F.; Macpherson, D.E.; Harrison, G.P.
2015-01-01
of operational flexibility, as more than one VSC station controls the DC link voltage of the MTDC system. This model enables the study of the effects of DC droop control on the power flows of the combined AC/DC system for steady state studies after VSC station outages or transient conditions without needing...... to use its complete dynamic model. Further, the proposed approach can be extended to include multiple AC and DC grids for combined AC/DC power flow analysis. The algorithm is implemented by modifying the MATPOWER based MATACDC program and the results shows that the algorithm works efficiently....
International Nuclear Information System (INIS)
Crawford, Kevan C.; Sandquist, Gary M.
1990-01-01
The emphasis of this work is the development and implementation of an automatic control philosophy which uses the classical operational philosophies as a foundation. Three control algorithms were derived based on various simplifying assumptions. Two of the algorithms were tested in computer simulations. After realizing the insensitivity of the system to the simplifications, the most reduced form of the algorithms was implemented on the computer control system at the University of Utah (UNEL). Since the operational philosophies have a higher priority than automatic control, they determine when automatic control may be utilized. Unlike the operational philosophies, automatic control is not concerned with component failures. The object of this philosophy is the movement of absorber rods to produce a requested power. When the current power level is compared to the requested power level, an error may be detected which will require the movement of a control rod to correct the error. The automatic control philosophy adds another dimension to the classical operational philosophies. Using this philosophy, normal operator interactions with the computer would be limited only to run parameters such as power, period, and run time. This eliminates subjective judgements, objective judgements under pressure, and distractions to the operator and insures the reactor will be operated in a safe and controlled manner as well as providing reproducible operations
A Flexible VHDL Floating Point Module for Control Algorithm Implementation in Space Applications
Padierna, A.; Nicoleau, C.; Sanchez, J.; Hidalgo, I.; Elvira, S.
2012-08-01
The implementation of control loops for space applications is an area with great potential. However, the characteristics of this kind of systems, such as its wide dynamic range of numeric values, make inadequate the use of fixed-point algorithms.However, because the generic chips available for the treatment of floating point data are, in general, not qualified to operate in space environments and the possibility of using an IP module in a FPGA/ASIC qualified for space is not viable due to the low amount of logic cells available for these type of devices, it is necessary to find a viable alternative.For these reasons, in this paper a VHDL Floating Point Module is presented. This proposal allows the design and execution of floating point algorithms with acceptable occupancy to be implemented in FPGAs/ASICs qualified for space environments.
Directory of Open Access Journals (Sweden)
B. SENTHILKUMAR
2015-05-01
Full Text Available A novel implementation of code based cryptography (Cryptocoding technique for multi-layer key distribution scheme is presented. VLSI chip is designed for storing information on generation of round keys. New algorithm is developed for reduced key size with optimal performance. Error Control Algorithm is employed for both generation of round keys and diffusion of non-linearity among them. Two new functions for bit inversion and its reversal are developed for cryptocoding. Probability of retrieving original key from any other round keys is reduced by diffusing nonlinear selective bit inversions on round keys. Randomized selective bit inversions are done on equal length of key bits by Round Constant Feedback Shift Register within the error correction limits of chosen code. Complexity of retrieving the original key from any other round keys is increased by optimal hardware usage. Proposed design is simulated and synthesized using VHDL coding for Spartan3E FPGA and results are shown. Comparative analysis is done between 128 bit Advanced Encryption Standard round keys and proposed round keys for showing security strength of proposed algorithm. This paper concludes that chip based multi-layer key distribution of proposed algorithm is an enhanced solution to the existing threats on cryptography algorithms.
Efficient Implementation Algorithms for Homogenized Energy Models
National Research Council Canada - National Science Library
Braun, Thomas R; Smith, Ralph C
2005-01-01
... for real-time control implementation. In this paper, we develop algorithms employing lookup tables which permit the high speed implementation of formulations which incorporate relaxation mechanisms and electromechanical coupling...
Global alignment algorithms implementations | Fatumo ...
African Journals Online (AJOL)
In this paper, we implemented the two routes for sequence comparison, that is; the dotplot and Needleman-wunsch algorithm for global sequence alignment. Our algorithms were implemented in python programming language and were tested on Linux platform 1.60GHz, 512 MB of RAM SUSE 9.2 and 10.1 versions.
Directory of Open Access Journals (Sweden)
Fayçal Chabni
2017-09-01
Full Text Available Harmonic pollution is a very common issue in the field of power electronics, Harmonics can cause multiple problems for power converters and electrical loads alike, this paper introduces a modulation method called selective harmonic elimination pulse width modulation (SHEPWM, this method allows the elimination of a specific order of harmonics and also control the amplitude of the fundamental component of the output voltage. In this work SHEPWM strategy is applied to a five level cascade inverter. The objective of this study is to demonstrate the total control provided by the SHEPWM strategy over any rank of harmonics using the simulated annealing optimization algorithm and also control the amplitude of the fundamental component at any desired value. Simulation and experimental results are presented in this work.
Elementary functions algorithms and implementation
Muller, Jean-Michel
2016-01-01
This textbook presents the concepts and tools necessary to understand, build, and implement algorithms for computing elementary functions (e.g., logarithms, exponentials, and the trigonometric functions). Both hardware- and software-oriented algorithms are included, along with issues related to accurate floating-point implementation. This third edition has been updated and expanded to incorporate the most recent advances in the field, new elementary function algorithms, and function software. After a preliminary chapter that briefly introduces some fundamental concepts of computer arithmetic, such as floating-point arithmetic and redundant number systems, the text is divided into three main parts. Part I considers the computation of elementary functions using algorithms based on polynomial or rational approximations and using table-based methods; the final chapter in this section deals with basic principles of multiple-precision arithmetic. Part II is devoted to a presentation of “shift-and-add” algorithm...
How to implement a quantum algorithm on a large number of qubits by controlling one central qubit
Zagoskin, Alexander; Ashhab, Sahel; Johansson, J. R.; Nori, Franco
2010-03-01
It is desirable to minimize the number of control parameters needed to perform a quantum algorithm. We show that, under certain conditions, an entire quantum algorithm can be efficiently implemented by controlling a single central qubit in a quantum computer. We also show that the different system parameters do not need to be designed accurately during fabrication. They can be determined through the response of the central qubit to external driving. Our proposal is well suited for hybrid architectures that combine microscopic and macroscopic qubits. More details can be found in: A.M. Zagoskin, S. Ashhab, J.R. Johansson, F. Nori, Quantum two-level systems in Josephson junctions as naturally formed qubits, Phys. Rev. Lett. 97, 077001 (2006); and S. Ashhab, J.R. Johansson, F. Nori, Rabi oscillations in a qubit coupled to a quantum two-level system, New J. Phys. 8, 103 (2006).
International Nuclear Information System (INIS)
Frassinetti, L.; Olofsson, K.E.J.; Brunsell, P.R.; Drake, J.R.
2011-01-01
The EXTRAP T2R feedback system (active coils, sensor coils and controller) is used to study and develop new tools for advanced control of the MHD instabilities in fusion plasmas. New feedback algorithms developed in EXTRAP T2R reversed-field pinch allow flexible and independent control of each magnetic harmonic. Methods developed in control theory and applied to EXTRAP T2R allow a closed-loop identification of the machine plant and of the resistive wall modes growth rates. The plant identification is the starting point for the development of output-tracking algorithms which enable the generation of external magnetic perturbations. These algorithms will then be used to study the effect of a resonant magnetic perturbation (RMP) on the tearing mode (TM) dynamics. It will be shown that the stationary RMP can induce oscillations in the amplitude and jumps in the phase of the rotating TM. It will be shown that the RMP strongly affects the magnetic island position.
Frassinetti, L.; Olofsson, K. E. J.; Brunsell, P. R.; Drake, J. R.
2011-06-01
The EXTRAP T2R feedback system (active coils, sensor coils and controller) is used to study and develop new tools for advanced control of the MHD instabilities in fusion plasmas. New feedback algorithms developed in EXTRAP T2R reversed-field pinch allow flexible and independent control of each magnetic harmonic. Methods developed in control theory and applied to EXTRAP T2R allow a closed-loop identification of the machine plant and of the resistive wall modes growth rates. The plant identification is the starting point for the development of output-tracking algorithms which enable the generation of external magnetic perturbations. These algorithms will then be used to study the effect of a resonant magnetic perturbation (RMP) on the tearing mode (TM) dynamics. It will be shown that the stationary RMP can induce oscillations in the amplitude and jumps in the phase of the rotating TM. It will be shown that the RMP strongly affects the magnetic island position.
Marusak, Piotr M.; Kuntanapreeda, Suwat
2018-01-01
The paper considers application of a neural network based implementation of a model predictive control (MPC) control algorithm to electromechanical plants. Properties of such control plants implicate that a relatively short sampling time should be used. However, in such a case, finding the control value numerically may be too time-consuming. Therefore, the current paper tests the solution based on transforming the MPC optimization problem into a set of differential equations whose solution is the same as that of the original optimization problem. This set of differential equations can be interpreted as a dynamic neural network. In such an approach, the constraints can be introduced into the optimization problem with relative ease. Moreover, the solution of the optimization problem can be obtained faster than when the standard numerical quadratic programming routine is used. However, a very careful tuning of the algorithm is needed to achieve this. A DC motor and an electrohydraulic actuator are taken as illustrative examples. The feasibility and effectiveness of the proposed approach are demonstrated through numerical simulations.
Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control.
1983-08-15
obtainable from real data, rather than relying on a stock database. Often, computer vision and image processing algorithms become subconsciously tuned to...two coils on the same mount structure. Since it was not possible to reprogram the binary system, we turned to the POPEYE system for both its grey
Ezra, Elishai; Maor, Idan; Bavli, Danny; Shalom, Itai; Levy, Gahl; Prill, Sebastian; Jaeger, Magnus S; Nahmias, Yaakov
2015-08-01
Microfluidic applications range from combinatorial synthesis to high throughput screening, with platforms integrating analog perfusion components, digitally controlled micro-valves and a range of sensors that demand a variety of communication protocols. Currently, discrete control units are used to regulate and monitor each component, resulting in scattered control interfaces that limit data integration and synchronization. Here, we present a microprocessor-based control unit, utilizing the MS Gadgeteer open framework that integrates all aspects of microfluidics through a high-current electronic circuit that supports and synchronizes digital and analog signals for perfusion components, pressure elements, and arbitrary sensor communication protocols using a plug-and-play interface. The control unit supports an integrated touch screen and TCP/IP interface that provides local and remote control of flow and data acquisition. To establish the ability of our control unit to integrate and synchronize complex microfluidic circuits we developed an equi-pressure combinatorial mixer. We demonstrate the generation of complex perfusion sequences, allowing the automated sampling, washing, and calibrating of an electrochemical lactate sensor continuously monitoring hepatocyte viability following exposure to the pesticide rotenone. Importantly, integration of an optical sensor allowed us to implement automated optimization protocols that require different computational challenges including: prioritized data structures in a genetic algorithm, distributed computational efforts in multiple-hill climbing searches and real-time realization of probabilistic models in simulated annealing. Our system offers a comprehensive solution for establishing optimization protocols and perfusion sequences in complex microfluidic circuits.
Directory of Open Access Journals (Sweden)
Mitrović Radomir B.
2016-01-01
Full Text Available Simulink is an important tool for modeling and simulation of process and control algorithms. It's expansion, PLC Coder, enables direct conversion of model subsystem into SCL, structured text code, which is then used by PLC IDE to create function blocks. This shortens developing time of algorithms for PLC controller. Also, this reduces possibility for a coding error. This paper describes Simulink PLC Coder and workflow for developing PID control algorithm for Siemens Simatic S7-1200 PLC. Control object used here is resonant vibratory feeder having electromagnetic drive.
National Research Council Canada - National Science Library
Floodeen, David
1998-01-01
The objective of this thesis is two-fold. The first goal is to expand the operational capabilities of the Ship's Service Converter Module control algorithm for a DC-to-DC converter using the Universal Controller...
International Nuclear Information System (INIS)
Kress, R.L.; Jansen, J.F.; Noakes, M.W.
1994-01-01
When suspended payloads are moved with an overhead crane, pendulum like oscillations are naturally introduced. This presents a problem any time a crane is used, especially when expensive and/or delicate objects are moved, when moving in a cluttered an or hazardous environment, and when objects are to be placed in tight locations. Damped-oscillation control algorithms have been demonstrated over the past several years for laboratory-scale robotic systems on dc motor-driven overhead cranes. Most overhead cranes presently in use in industry are driven by ac induction motors; consequently, Oak Ridge National Laboratory has implemented damped-oscillation crane control on one of its existing facility ac induction motor-driven overhead cranes. The purpose of this test was to determine feasibility, to work out control and interfacing specifications, and to establish the capability of newly available ac motor control hardware with respect to use in damped-oscillation-controlled systems. Flux vector inverter drives are used to investigate their acceptability for damped-oscillation crane control. The purpose of this paper is to describe the experimental implementation of a control algorithm on a full-sized, two-degree-of-freedom, industrial crane; describe the experimental evaluation of the controller including robustness to payload length changes; explain the results of experiments designed to determine the hardware required for implementation of the control algorithms; and to provide a theoretical description of the controller
Low Rank Approximation Algorithms, Implementation, Applications
Markovsky, Ivan
2012-01-01
Matrix low-rank approximation is intimately related to data modelling; a problem that arises frequently in many different fields. Low Rank Approximation: Algorithms, Implementation, Applications is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. A major part of the text is devoted to application of the theory. Applications described include: system and control theory: approximate realization, model reduction, output error, and errors-in-variables identification; signal processing: harmonic retrieval, sum-of-damped exponentials, finite impulse response modeling, and array processing; machine learning: multidimensional scaling and recommender system; computer vision: algebraic curve fitting and fundamental matrix estimation; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; ...
Concurrent applicative implementations of nondeterministic algorithms
Energy Technology Data Exchange (ETDEWEB)
Salter, R
1983-01-01
The author introduces a methodology for utilizing concurrency in place of backtracking in the implementation of nondeterministic algorithms. This is achieved in an applicative setting through the use of the Friedman-Wise multiprogramming primitive frons, and a paradigm which views the action of nondeterministic algorithms as one of data structure construction. The element by element nondeterminism arising from a linearized search is replaced by a control structure which is oriented towards constructing sets of partial computations. This point of view is facilitated by the use of suspensions, which allow control disciplines to be embodied in the form of conceptual data structures that in reality manifest themselves only for purposes of control. He applies this methodology to the class of problems usually solved through the use of simple backtracking (e.g. 'eight queens'), and to a problem presented by Lindstrom (1979) to illustrate the use of coroutine controlled backtracking, to produce backtrack-free solutions. The solution to the latter illustrates the coroutine capability of suspended structures, but also demonstrates a need for further investigations into resolving problems of process communication in applicative languages. 14 references.
An implementation of the Heaviside algorithm
International Nuclear Information System (INIS)
Dimovski, I.H.; Spiridonova, M.N.
2011-01-01
The so-called Heaviside algorithm based on the operational calculus approach is intended for solving initial value problems for linear ordinary differential equations with constant coefficients. We use it in the framework of Mikusinski's operational calculus. A description and implementation of the Heaviside algorithm using a computer algebra system are considered. Special attention is paid to the features making this implementation efficient. Illustrative examples are included
Adaptive Filtering Algorithms and Practical Implementation
Diniz, Paulo S R
2013-01-01
In the fourth edition of Adaptive Filtering: Algorithms and Practical Implementation, author Paulo S.R. Diniz presents the basic concepts of adaptive signal processing and adaptive filtering in a concise and straightforward manner. The main classes of adaptive filtering algorithms are presented in a unified framework, using clear notations that facilitate actual implementation. The main algorithms are described in tables, which are detailed enough to allow the reader to verify the covered concepts. Many examples address problems drawn from actual applications. New material to this edition includes: Analytical and simulation examples in Chapters 4, 5, 6 and 10 Appendix E, which summarizes the analysis of set-membership algorithm Updated problems and references Providing a concise background on adaptive filtering, this book covers the family of LMS, affine projection, RLS and data-selective set-membership algorithms as well as nonlinear, sub-band, blind, IIR adaptive filtering, and more. Several problems are...
Autonomous intelligent vehicles theory, algorithms, and implementation
Cheng, Hong
2011-01-01
Here is the latest on intelligent vehicles, covering object and obstacle detection and recognition and vehicle motion control. Includes a navigation approach using global views; introduces algorithms for lateral and longitudinal motion control and more.
A Cavity QED Implementation of Deutsch-Jozsa Algorithm
Guerra, E. S.
2004-01-01
The Deutsch-Jozsa algorithm is a generalization of the Deutsch algorithm which was the first algorithm written. We present schemes to implement the Deutsch algorithm and the Deutsch-Jozsa algorithm via cavity QED.
FPGA Implementation of Computer Vision Algorithm
Zhou, Zhonghua
2014-01-01
Computer vision algorithms, which play an significant role in vision processing, is widely applied in many aspects such as geology survey, traffic management and medical care, etc.. Most of the situations require the process to be real-timed, in other words, as fast as possible. Field Programmable Gate Arrays (FPGAs) have a advantage of parallelism fabric in programming, comparing to the serial communications of CPUs, which makes FPGA a perfect platform for implementing vision algorithms. The...
AES ALGORITHM IMPLEMENTATION IN PROGRAMMING LANGUAGES
Directory of Open Access Journals (Sweden)
Luminiţa DEFTA
2010-12-01
Full Text Available Information encryption represents the usage of an algorithm to convert an unknown message into an encrypted one. It is used to protect the data against unauthorized access. Protected data can be stored on a media device or can be transmitted through the network. In this paper we describe a concrete implementation of the AES algorithm in the Java programming language (available from Java Development Kit 6 libraries and C (using the OpenSSL library. AES (Advanced Encryption Standard is an asymmetric key encryption algorithm formally adopted by the U.S. government and was elected after a long process of standardization.
EV Charging Algorithm Implementation with User Price Preference
Energy Technology Data Exchange (ETDEWEB)
Wang, Bin; Hu, Boyang; Qiu, Charlie; Chu, Peter; Gadh, Rajit
2015-02-17
in this paper, we propose and implement a smart Electric Vehicle (EV) charging algorithm to control the EV charging infrastructures according to users’ price preferences. EVSE (Electric Vehicle Supply Equipment), equipped with bidirectional communication devices and smart meters, can be remotely monitored by the proposed charging algorithm applied to EV control center and mobile app. On the server side, ARIMA model is utilized to fit historical charging load data and perform day-ahead prediction. A pricing strategy with energy bidding policy is proposed and implemented to generate a charging price list to be broadcasted to EV users through mobile app. On the user side, EV drivers can submit their price preferences and daily travel schedules to negotiate with Control Center to consume the expected energy and minimize charging cost simultaneously. The proposed algorithm is tested and validated through the experimental implementations in UCLA parking lots.
International Nuclear Information System (INIS)
Vasudevan, M.; Arumugam, R.; Paramasivam, S.
2006-01-01
Field oriented control (FOC) and direct torque control (DTC) are becoming the industrial standards for induction motors torque and flux control. This paper aims to give a contribution for a detailed comparison between these two control techniques, emphasizing their advantages and disadvantages. The performance of these two control schemes is evaluated in terms of torque and flux ripple and their transient response to step variations of the torque command. Moreover, a new torque and flux ripple minimization technique is also proposed to improve the performance of the DTC drive. Based on the experimental results, the analysis has been presented
Parallel GPU implementation of iterative PCA algorithms.
Andrecut, M
2009-11-01
Principal component analysis (PCA) is a key statistical technique for multivariate data analysis. For large data sets, the common approach to PCA computation is based on the standard NIPALS-PCA algorithm, which unfortunately suffers from loss of orthogonality, and therefore its applicability is usually limited to the estimation of the first few components. Here we present an algorithm based on Gram-Schmidt orthogonalization (called GS-PCA), which eliminates this shortcoming of NIPALS-PCA. Also, we discuss the GPU (Graphics Processing Unit) parallel implementation of both NIPALS-PCA and GS-PCA algorithms. The numerical results show that the GPU parallel optimized versions, based on CUBLAS (NVIDIA), are substantially faster (up to 12 times) than the CPU optimized versions based on CBLAS (GNU Scientific Library).
Implementation of trigonometric function using CORDIC algorithms
Mokhtar, A. S. N.; Ayub, M. I.; Ismail, N.; Daud, N. G. Nik
2018-02-01
In 1959, Jack E. Volder presents a brand new formula to the real-time solution of the equation raised in navigation system. This new algorithm was the most beneficial replacement of analog navigation system by the digital. The CORDIC (Coordinate Rotation Digital Computer) algorithm are used for the rapid calculation associated with elementary operates like trigonometric function, multiplication, division and logarithm function, and also various conversions such as conversion of rectangular to polar coordinate including the conversion between binary coded information. In this current time CORDIC formula have many applications in the field of communication, signal processing, 3-D graphics, and others. This paper would be presents the trigonometric function implementation by using CORDIC algorithm in rotation mode for circular coordinate system. The CORDIC technique is used in order to generating the output angle between range 0o to 90o and error analysis is concern. The result showed that the average percentage error is about 0.042% at angles between ranges 00 to 900. But the average percentage error rose up to 45% at angle 90o and above. So, this method is very accurate at the 1st quadrant. The mirror properties method is used to find out an angle at 2nd, 3rd and 4th quadrant.
Alvarez-Guisasola, F
2014-01-01
In 2006, the American Diabetes Association and the European Association for the Study of Diabetes established a consensus algorithm (ADA/EASD-2006) for the adjustment of drug therapy for type 2 diabetes mellitus (T2DM). To study glycaemic control in T2DM patients and the implementation of the ADA/EASD-2006 recommendations in primary care centres in Spain. Prospective observational study in 1194 patients with T2DM conducted in 250 primary care centres in Spain. Patients were assessed at study inclusion (V0) and at 3 (V1) and 6 months (V2) post baseline. Information was collected at the level of DM control, HbA(1c) ADA/EASD-2006 guidelines. Type 2 diabetes mellitus patients (53% women; mean age 64.9 years) had a mean (SD) HbA(1c) 7.8 (1.4)% and HbC 25.2% at baseline, 95% of them were receiving oral antihyperglycaemic agents (AAs) only. At V1, HbA(1c) was 7.3 (1.1)% and HbC was 38.1%; 65.0% of patients were receiving oral AAs, 5.6% insulin and 27.9% oral AAs plus insulin. At V2, HbA(1c) was 7.1 (0.9)% and HbC was 48.0%; 57.1% of patients were receiving oral AAs, 5.0% insulin and 36.9% oral AAs plus insulin. The ADA/EASD-2006 algorithm was adhered to in 33% patients up to study month 3, vs. 17.2% throughout the entire 6-month period. In patients with T2DM seen in primary care, the HbA1c target was met in 48.0% after adjusting their AAs. However, this is not reflected in greater implementation of the ADA/EASD-2006 guidelines, which are adhered to in only 17%. © 2013 John Wiley & Sons Ltd.
Subcubic Control Flow Analysis Algorithms
DEFF Research Database (Denmark)
Midtgaard, Jan; Van Horn, David
We give the first direct subcubic algorithm for performing control flow analysis of higher-order functional programs. Despite the long held belief that inclusion-based flow analysis could not surpass the ``cubic bottleneck, '' we apply known set compression techniques to obtain an algorithm...... that runs in time O(n^3/log n) on a unit cost random-access memory model machine. Moreover, we refine the initial flow analysis into two more precise analyses incorporating notions of reachability. We give subcubic algorithms for these more precise analyses and relate them to an existing analysis from...
A very fast implementation of 2D iterative reconstruction algorithms
DEFF Research Database (Denmark)
Toft, Peter Aundal; Jensen, Peter James
1996-01-01
that iterative reconstruction algorithms can be implemented and run almost as fast as direct reconstruction algorithms. The method has been implemented in a software package that is available for free, providing reconstruction algorithms using ART, EM, and the Least Squares Conjugate Gradient Method...
Categorizing Variations of Student-Implemented Sorting Algorithms
Taherkhani, Ahmad; Korhonen, Ari; Malmi, Lauri
2012-01-01
In this study, we examined freshmen students' sorting algorithm implementations in data structures and algorithms' course in two phases: at the beginning of the course before the students received any instruction on sorting algorithms, and after taking a lecture on sorting algorithms. The analysis revealed that many students have insufficient…
A high performance hardware implementation image encryption with AES algorithm
Farmani, Ali; Jafari, Mohamad; Miremadi, Seyed Sohrab
2011-06-01
This paper describes implementation of a high-speed encryption algorithm with high throughput for encrypting the image. Therefore, we select a highly secured symmetric key encryption algorithm AES(Advanced Encryption Standard), in order to increase the speed and throughput using pipeline technique in four stages, control unit based on logic gates, optimal design of multiplier blocks in mixcolumn phase and simultaneous production keys and rounds. Such procedure makes AES suitable for fast image encryption. Implementation of a 128-bit AES on FPGA of Altra company has been done and the results are as follow: throughput, 6 Gbps in 471MHz. The time of encrypting in tested image with 32*32 size is 1.15ms.
Searching Algorithms Implemented on Probabilistic Systolic Arrays
Czech Academy of Sciences Publication Activity Database
Kramosil, Ivan
1996-01-01
Roč. 25, č. 1 (1996), s. 7-45 ISSN 0308-1079 R&D Projects: GA ČR GA201/93/0781 Keywords : searching algorithms * probabilistic algorithms * systolic arrays * parallel algorithms Impact factor: 0.214, year: 1996
Implementation of a Wavefront-Sensing Algorithm
Smith, Jeffrey S.; Dean, Bruce; Aronstein, David
2013-01-01
A computer program has been written as a unique implementation of an image-based wavefront-sensing algorithm reported in "Iterative-Transform Phase Retrieval Using Adaptive Diversity" (GSC-14879-1), NASA Tech Briefs, Vol. 31, No. 4 (April 2007), page 32. This software was originally intended for application to the James Webb Space Telescope, but is also applicable to other segmented-mirror telescopes. The software is capable of determining optical-wavefront information using, as input, a variable number of irradiance measurements collected in defocus planes about the best focal position. The software also uses input of the geometrical definition of the telescope exit pupil (otherwise denoted the pupil mask) to identify the locations of the segments of the primary telescope mirror. From the irradiance data and mask information, the software calculates an estimate of the optical wavefront (a measure of performance) of the telescope generally and across each primary mirror segment specifically. The software is capable of generating irradiance data, wavefront estimates, and basis functions for the full telescope and for each primary-mirror segment. Optionally, each of these pieces of information can be measured or computed outside of the software and incorporated during execution of the software.
Radiological control implementation guide
International Nuclear Information System (INIS)
Hamley, S.A.
1993-01-01
A manual is being developed to explain to line managers how radiological controls are designed and implemented. The manual also fills a gap in the Health Physics literature between textbooks and on-the-floor procedures. It may be helpful to new Health Physicists with little practical experience and to those wishing to improve self-assessment, audit, and appraisal processes. Many audits, appraisals, and evaluations have indicated a need for cultural change, increased vigor and example, and more effective oversight by line management. Inadequate work controls are a frequent and recurring problem identified in occurrence reports and accident investigations. Closer study frequently indicates that many line managers are willing to change and want to achieve excellence, but no effective guidance exists that will enable them to understand and implement a modern radiological control program
Algorithm for Controlling a Centrifugal Compressor
Benedict, Scott M.
2004-01-01
An algorithm has been developed for controlling a centrifugal compressor that serves as the prime mover in a heatpump system. Experimental studies have shown that the operating conditions for maximum compressor efficiency are close to the boundary beyond which surge occurs. Compressor surge is a destructive condition in which there are instantaneous reversals of flow associated with a high outlet-to-inlet pressure differential. For a given cooling load, the algorithm sets the compressor speed at the lowest possible value while adjusting the inlet guide vane angle and diffuser vane angle to maximize efficiency, subject to an overriding requirement to prevent surge. The onset of surge is detected via the onset of oscillations of the electric current supplied to the compressor motor, associated with surge-induced oscillations of the torque exerted by and on the compressor rotor. The algorithm can be implemented in any of several computer languages.
Parallel Implementation of the Terrain Masking Algorithm
1994-03-01
contains behavior rules which can define a computation or an algorithm. It can communicate with other process nodes, it can contain local data, and it can...terrain maskirg calculation is being performed. It is this algorithm that comsumes about seventy percent of the total terrain masking calculation time
Hardware realization of an SVM algorithm implemented in FPGAs
Wiśniewski, Remigiusz; Bazydło, Grzegorz; Szcześniak, Paweł
2017-08-01
The paper proposes a technique of hardware realization of a space vector modulation (SVM) of state function switching in matrix converter (MC), oriented on the implementation in a single field programmable gate array (FPGA). In MC the SVM method is based on the instantaneous space-vector representation of input currents and output voltages. The traditional computation algorithms usually involve digital signal processors (DSPs) which consumes the large number of power transistors (18 transistors and 18 independent PWM outputs) and "non-standard positions of control pulses" during the switching sequence. Recently, hardware implementations become popular since computed operations may be executed much faster and efficient due to nature of the digital devices (especially concurrency). In the paper, we propose a hardware algorithm of SVM computation. In opposite to the existing techniques, the presented solution applies COordinate Rotation DIgital Computer (CORDIC) method to solve the trigonometric operations. Furthermore, adequate arithmetic modules (that is, sub-devices) used for intermediate calculations, such as code converters or proper sectors selectors (for output voltages and input current) are presented in detail. The proposed technique has been implemented as a design described with the use of Verilog hardware description language. The preliminary results of logic implementation oriented on the Xilinx FPGA (particularly, low-cost device from Artix-7 family from Xilinx was used) are also presented.
Neural network fusion capabilities for efficient implementation of tracking algorithms
Sundareshan, Malur K.; Amoozegar, Farid
1997-03-01
The ability to efficiently fuse information of different forms to facilitate intelligent decision making is one of the major capabilities of trained multilayer neural networks that is now being recognized. While development of innovative adaptive control algorithms for nonlinear dynamical plants that attempt to exploit these capabilities seems to be more popular, a corresponding development of nonlinear estimation algorithms using these approaches, particularly for application in target surveillance and guidance operations, has not received similar attention. We describe the capabilities and functionality of neural network algorithms for data fusion and implementation of tracking filters. To discuss details and to serve as a vehicle for quantitative performance evaluations, the illustrative case of estimating the position and velocity of surveillance targets is considered. Efficient target- tracking algorithms that can utilize data from a host of sensing modalities and are capable of reliably tracking even uncooperative targets executing fast and complex maneuvers are of interest in a number of applications. The primary motivation for employing neural networks in these applications comes from the efficiency with which more features extracted from different sensor measurements can be utilized as inputs for estimating target maneuvers. A system architecture that efficiently integrates the fusion capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described. The innovation lies in the way the fusion of multisensor data is accomplished to facilitate improved estimation without increasing the computational complexity of the dynamical state estimator itself.
Developing and Implementing the Data Mining Algorithms in RAVEN
International Nuclear Information System (INIS)
Sen, Ramazan Sonat; Maljovec, Daniel Patrick; Alfonsi, Andrea; Rabiti, Cristian
2015-01-01
The RAVEN code is becoming a comprehensive tool to perform probabilistic risk assessment, uncertainty quantification, and verification and validation. The RAVEN code is being developed to support many programs and to provide a set of methodologies and algorithms for advanced analysis. Scientific computer codes can generate enormous amounts of data. To post-process and analyze such data might, in some cases, take longer than the initial software runtime. Data mining algorithms/methods help in recognizing and understanding patterns in the data, and thus discover knowledge in databases. The methodologies used in the dynamic probabilistic risk assessment or in uncertainty and error quantification analysis couple system/physics codes with simulation controller codes, such as RAVEN. RAVEN introduces both deterministic and stochastic elements into the simulation while the system/physics code model the dynamics deterministically. A typical analysis is performed by sampling values of a set of parameter values. A major challenge in using dynamic probabilistic risk assessment or uncertainty and error quantification analysis for a complex system is to analyze the large number of scenarios generated. Data mining techniques are typically used to better organize and understand data, i.e. recognizing patterns in the data. This report focuses on development and implementation of Application Programming Interfaces (APIs) for different data mining algorithms, and the application of these algorithms to different databases.
Developing and Implementing the Data Mining Algorithms in RAVEN
Energy Technology Data Exchange (ETDEWEB)
Sen, Ramazan Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maljovec, Daniel Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-09-01
The RAVEN code is becoming a comprehensive tool to perform probabilistic risk assessment, uncertainty quantification, and verification and validation. The RAVEN code is being developed to support many programs and to provide a set of methodologies and algorithms for advanced analysis. Scientific computer codes can generate enormous amounts of data. To post-process and analyze such data might, in some cases, take longer than the initial software runtime. Data mining algorithms/methods help in recognizing and understanding patterns in the data, and thus discover knowledge in databases. The methodologies used in the dynamic probabilistic risk assessment or in uncertainty and error quantification analysis couple system/physics codes with simulation controller codes, such as RAVEN. RAVEN introduces both deterministic and stochastic elements into the simulation while the system/physics code model the dynamics deterministically. A typical analysis is performed by sampling values of a set of parameter values. A major challenge in using dynamic probabilistic risk assessment or uncertainty and error quantification analysis for a complex system is to analyze the large number of scenarios generated. Data mining techniques are typically used to better organize and understand data, i.e. recognizing patterns in the data. This report focuses on development and implementation of Application Programming Interfaces (APIs) for different data mining algorithms, and the application of these algorithms to different databases.
PSO Algorithm for an Optimal Power Controller in a Microgrid
Al-Saedi, W.; Lachowicz, S.; Habibi, D.; Bass, O.
2017-07-01
This paper presents the Particle Swarm Optimization (PSO) algorithm to improve the quality of the power supply in a microgrid. This algorithm is proposed for a real-time selftuning method that used in a power controller for an inverter based Distributed Generation (DG) unit. In such system, the voltage and frequency are the main control objectives, particularly when the microgrid is islanded or during load change. In this work, the PSO algorithm is implemented to find the optimal controller parameters to satisfy the control objectives. The results show high performance of the applied PSO algorithm of regulating the microgrid voltage and frequency.
Object-Oriented Implementation of Adaptive Mesh Refinement Algorithms
Directory of Open Access Journals (Sweden)
William Y. Crutchfield
1993-01-01
Full Text Available We describe C++ classes that simplify development of adaptive mesh refinement (AMR algorithms. The classes divide into two groups, generic classes that are broadly useful in adaptive algorithms, and application-specific classes that are the basis for our AMR algorithm. We employ two languages, with C++ responsible for the high-level data structures, and Fortran responsible for low-level numerics. The C++ implementation is as fast as the original Fortran implementation. Use of inheritance has allowed us to extend the original AMR algorithm to other problems with greatly reduced development time.
Gradient algorithm applied to laboratory quantum control
International Nuclear Information System (INIS)
Roslund, Jonathan; Rabitz, Herschel
2009-01-01
The exploration of a quantum control landscape, which is the physical observable as a function of the control variables, is fundamental for understanding the ability to perform observable optimization in the laboratory. For high control variable dimensions, trajectory-based methods provide a means for performing such systematic explorations by exploiting the measured gradient of the observable with respect to the control variables. This paper presents a practical, robust, easily implemented statistical method for obtaining the gradient on a general quantum control landscape in the presence of noise. In order to demonstrate the method's utility, the experimentally measured gradient is utilized as input in steepest-ascent trajectories on the landscapes of three model quantum control problems: spectrally filtered and integrated second harmonic generation as well as excitation of atomic rubidium. The gradient algorithm achieves efficiency gains of up to approximately three times that of the standard genetic algorithm and, as such, is a promising tool for meeting quantum control optimization goals as well as landscape analyses. The landscape trajectories directed by the gradient should aid in the continued investigation and understanding of controlled quantum phenomena.
Secondary Coordinated Control of Islanded Microgrids Based on Consensus Algorithms
DEFF Research Database (Denmark)
Wu, Dan; Dragicevic, Tomislav; Vasquez, Juan Carlos
2014-01-01
systems. Nevertheless, the conventional decentralized secondary control, although does not need to be implemented in a microgrid central controller (MGCC), it has the limitation that all decentralized controllers must be mutually synchronized. In a clear cut contrast, the proposed secondary control......This paper proposes a decentralized secondary control for islanded microgrids based on consensus algorithms. In a microgrid, the secondary control is implemented in order to eliminate the frequency changes caused by the primary control when coordinating renewable energy sources and energy storage...... requires only a more simplified communication protocol and a sparse communication network. Moreover, the proposed approach based on dynamic consensus algorithms is able to achieve the coordinated secondary performance even when all units are initially out-of-synchronism. The control algorithm implemented...
Control algorithms for dynamic attenuators
Energy Technology Data Exchange (ETDEWEB)
Hsieh, Scott S., E-mail: sshsieh@stanford.edu [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States)
2014-06-15
Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current
Control algorithms for dynamic attenuators
International Nuclear Information System (INIS)
Hsieh, Scott S.; Pelc, Norbert J.
2014-01-01
Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current
Control algorithms for dynamic attenuators.
Hsieh, Scott S; Pelc, Norbert J
2014-06-01
The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without
Multiple Lookup Table-Based AES Encryption Algorithm Implementation
Gong, Jin; Liu, Wenyi; Zhang, Huixin
Anew AES (Advanced Encryption Standard) encryption algorithm implementation was proposed in this paper. It is based on five lookup tables, which are generated from S-box(the substitution table in AES). The obvious advantages are reducing the code-size, improving the implementation efficiency, and helping new learners to understand the AES encryption algorithm and GF(28) multiplication which are necessary to correctly implement AES[1]. This method can be applied on processors with word length 32 or above, FPGA and others. And correspondingly we can implement it by VHDL, Verilog, VB and other languages.
Implementation of Chaid Algorithm: A Hotel Case
Directory of Open Access Journals (Sweden)
Celal Hakan Kagnicioglu
2016-01-01
Full Text Available Today, companies are planning their own activities depending on efficiency and effectiveness. In order to have plans for the future activities they need historical data coming from outside and inside of the companies. However, this data is in huge amounts to understand easily. Since, this huge amount of data creates complexity in business for many industries like hospitality industry, reliable, accurate and fast access to this data is to be one of the greatest problems. Besides, management of this data is another big problem. In order to analyze this huge amount of data, Data Mining (DM tools, can be used effectively. In this study, after giving brief definition about fundamentals of data mining, Chi Squared Automatic Interaction Detection (CHAID algorithm, one of the mostly used DM tool, will be introduced. By CHAID algorithm, the most used materials in room cleaning process and the relations of these materials based on in a five star hotel data are tried to be determined. At the end of the analysis, it is seen that while some variables have strong relation with the number of rooms cleaned in the hotel, the others have no or weak relation.
Implementation of Chaid Algorithm: A Hotel Case
Directory of Open Access Journals (Sweden)
Celal Hakan Kağnicioğlu
2014-11-01
Full Text Available Today, companies are planning their own activities depending on efficiency and effectiveness. In order to have plans for the future activities they need historical data coming from outside and inside of the companies. However, this data is in huge amounts to understand easily. Since, this huge amount of data creates complexity in business for many industries like hospitality industry, reliable, accurate and fast access to this data is to be one of the greatest problems. Besides, management of this data is another big problem. In order to analyze this huge amount of data, Data Mining (DM tools, can be used effectively. In this study, after giving brief definition about fundamentals of data mining, Chi Squared Automatic Interaction Detection (CHAID algorithm, one of the mostly used DM tool, will be introduced. By CHAID algorithm, the most used materials in room cleaning process and the relations of these materials based on in a five star hotel data are tried to be determined. At the end of the analysis, it is seen that while some variables have strong relation with the number of rooms cleaned in the hotel, the others have no or weak relation.
Directory of Open Access Journals (Sweden)
Bull Eva M
2008-01-01
Full Text Available Abstract Background Strict glycaemic control (SGC has become a contentious issue in modern intensive care. Physicians and nurses are concerned about the increased workload due to SGC as well as causing harm through hypoglycaemia. The objective of our study was to evaluate our existing degree of glycaemic control, and to implement SGC safely in our ICU through a nurse-led implementation of an algorithm for intensive insulin-therapy. Methods The study took place in the adult general intensive care unit (11 beds of a 44-bed department of intensive care at a tertiary care university hospital. All patients admitted during the 32 months of the study were enrolled. We retrospectively analysed all arterial blood glucose (BG results from samples that were obtained over a period of 20 months prior to the implementation of SGC. We then introduced an algorithm for intensive insulin therapy; aiming for arterial blood-glucose at 4.4 – 6.1 mmol/L. Doctors and nurses were trained in the principles and potential benefits and risks of SGC. Consecutive statistical analyses of blood samples over a period of 12 months were used to assess performance, provide feedback and uncover incidences of hypoglycaemia. Results Median BG level was 6.6 mmol/L (interquartile range 5.6 to 7.7 mmol/L during the period prior to implementation of SGC (494 patients, and fell to 5.9 (IQR 5.1 to 7.0 mmol/L following introduction of the new algorithm (448 patients. The percentage of BG samples > 8 mmol/L was reduced from 19.2 % to 13.1 %. Before implementation of SGC, 33 % of samples were between 4.4 to 6.1 mmol/L and 12 patients (2.4 % had one or more episodes of severe hypoglycaemia ( Conclusion The retrospective part of the study indicated ample room for improvement. Through the implementation of SGC the fraction of samples within the new target range increased from 33% to 45.8%. There was also a significant increase in severe hypoglycaemic episodes. There continues to be potential
Comparison of tracking algorithms implemented in OpenCV
Directory of Open Access Journals (Sweden)
Janku Peter
2016-01-01
Full Text Available Computer vision is very progressive and modern part of computer science. From scientific point of view, theoretical aspects of computer vision algorithms prevail in many papers and publications. The underlying theory is really important, but on the other hand, the final implementation of an algorithm significantly affects its performance and robustness. For this reason, this paper tries to compare real implementation of tracking algorithms (one part of computer vision problem, which can be found in the very popular library OpenCV. Moreover, the possibilities of optimizations are discussed.
FPGA Implementation of a Frame Synchronization Algorithm for Powerline Communications
Directory of Open Access Journals (Sweden)
S. Tsakiris
2009-09-01
Full Text Available This paper presents an FPGA implementation of a pilot–based time synchronization scheme employing orthogonal frequency division multiplexing for powerline communication channels. The functionality of the algorithm is analyzed and tested over a real powerline residential network. For this purpose, an appropriate transmitter circuit, implemented by an FPGA, and suitable coupling circuits are constructed. The system has been developed using VHDL language on Nallatech XtremeDSP development kits. The communication system operates in the baseband up to 30 MHz. Measurements of the algorithm's good performance in terms of the number of detected frames and timing offset error are taken and compared to simulations of existing algorithms.
Automatic control algorithm effects on energy production
Mcnerney, G. M.
1981-01-01
A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.
Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
Walter, Florian; Röhrbein, Florian; Knoll, Alois
2015-12-01
The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. Copyright © 2015 Elsevier Ltd. All rights reserved.
Super-Encryption Implementation Using Monoalphabetic Algorithm and XOR Algorithm for Data Security
Rachmawati, Dian; Andri Budiman, Mohammad; Aulia, Indra
2018-03-01
The exchange of data that occurs offline and online is very vulnerable to the threat of data theft. In general, cryptography is a science and art to maintain data secrecy. An encryption is a cryptography algorithm in which data is transformed into cipher text, which is something that is unreadable and meaningless so it cannot be read or understood by other parties. In super-encryption, two or more encryption algorithms are combined to make it more secure. In this work, Monoalphabetic algorithm and XOR algorithm are combined to form a super- encryption. Monoalphabetic algorithm works by changing a particular letter into a new letter based on existing keywords while the XOR algorithm works by using logic operation XOR Since Monoalphabetic algorithm is a classical cryptographic algorithm and XOR algorithm is a modern cryptographic algorithm, this scheme is expected to be both easy-to-implement and more secure. The combination of the two algorithms is capable of securing the data and restoring it back to its original form (plaintext), so the data integrity is still ensured.
Modification of MSDR algorithm and ITS implementation on graph clustering
Prastiwi, D.; Sugeng, K. A.; Siswantining, T.
2017-07-01
Maximum Standard Deviation Reduction (MSDR) is a graph clustering algorithm to minimize the distance variation within a cluster. In this paper we propose a modified MSDR by replacing one technical step in MSDR which uses polynomial regression, with a new and simpler step. This leads to our new algorithm called Modified MSDR (MMSDR). We implement the new algorithm to separate a domestic flight network of an Indonesian airline into two large clusters. Further analysis allows us to discover a weak link in the network, which should be improved by adding more flights.
Research and Implementation of the Practical Texture Synthesis Algorithms
Institute of Scientific and Technical Information of China (English)
孙家广; 周毅
1991-01-01
How to generate pictures real and esthetic objects is an important subject of computer graphics.The techniques of mapping textures onto the surfaces of an object in the 3D space are efficient approaches for the purpose.We developed and implemented algorithms for generating objects with appearances stone,wood grain,ice lattice,brick,doors and windows on Apollo workstations.All the algorithms have been incorporated into the 3D grometry modelling system (GEMS) developed by the CAD Center of Tsinghua University.This paper emphasizes the wood grain and the ice lattice algorithms.
Study of hardware implementations of fast tracking algorithms
International Nuclear Information System (INIS)
Song, Z.; Huang, G.; Wang, D.; Lentdecker, G. De; Dong, J.; Léonard, A.; Robert, F.; Yang, Y.
2017-01-01
Real-time track reconstruction at high event rates is a major challenge for future experiments in high energy physics. To perform pattern-recognition and track fitting, artificial retina or Hough transformation methods have been introduced in the field which have to be implemented in FPGA firmware. In this note we report on a case study of a possible FPGA hardware implementation approach of the retina algorithm based on a Floating-Point core. Detailed measurements with this algorithm are investigated. Retina performance and capabilities of the FPGA are discussed along with perspectives for further optimization and applications.
PID controller tuning using metaheuristic optimization algorithms for benchmark problems
Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.
2017-11-01
This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.
Comparison of multihardware parallel implementations for a phase unwrapping algorithm
Hernandez-Lopez, Francisco Javier; Rivera, Mariano; Salazar-Garibay, Adan; Legarda-Sáenz, Ricardo
2018-04-01
Phase unwrapping is an important problem in the areas of optical metrology, synthetic aperture radar (SAR) image analysis, and magnetic resonance imaging (MRI) analysis. These images are becoming larger in size and, particularly, the availability and need for processing of SAR and MRI data have increased significantly with the acquisition of remote sensing data and the popularization of magnetic resonators in clinical diagnosis. Therefore, it is important to develop faster and accurate phase unwrapping algorithms. We propose a parallel multigrid algorithm of a phase unwrapping method named accumulation of residual maps, which builds on a serial algorithm that consists of the minimization of a cost function; minimization achieved by means of a serial Gauss-Seidel kind algorithm. Our algorithm also optimizes the original cost function, but unlike the original work, our algorithm is a parallel Jacobi class with alternated minimizations. This strategy is known as the chessboard type, where red pixels can be updated in parallel at same iteration since they are independent. Similarly, black pixels can be updated in parallel in an alternating iteration. We present parallel implementations of our algorithm for different parallel multicore architecture such as CPU-multicore, Xeon Phi coprocessor, and Nvidia graphics processing unit. In all the cases, we obtain a superior performance of our parallel algorithm when compared with the original serial version. In addition, we present a detailed comparative performance of the developed parallel versions.
On a new implementation of the Lanczos algorithm
International Nuclear Information System (INIS)
Caurier, E.; Zuker, A.P.; Poves, A.
1991-01-01
The new implementation proposed is based on a block labelling scheme described in detail. Time reversal, f-projection, sum rule pivots and strength functions are discussed by the aid of the new implementation of the Lanczos algorithm. Energetics and magnetic dipole behaviour of 48 Ti are studied as examples illustrating the applications of the method. (G.P.) 9 refs.; 4 figs.; 1 tab
An analytic parton shower. Algorithms, implementation and validation
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Sebastian
2012-06-15
The realistic simulation of particle collisions is an indispensable tool to interpret the data measured at high-energy colliders, for example the now running Large Hadron Collider at CERN. These collisions at these colliders are usually simulated in the form of exclusive events. This thesis focuses on the perturbative QCD part involved in the simulation of these events, particularly parton showers and the consistent combination of parton showers and matrix elements. We present an existing parton shower algorithm for emissions off final state partons along with some major improvements. Moreover, we present a new parton shower algorithm for emissions off incoming partons. The aim of these particular algorithms, called analytic parton shower algorithms, is to be able to calculate the probabilities for branchings and for whole events after the event has been generated. This allows a reweighting procedure to be applied after the events have been simulated. We show a detailed description of the algorithms, their implementation and the interfaces to the event generator WHIZARD. Moreover we discuss the implementation of a MLM-type matching procedure and an interface to the shower and hadronization routines from PYTHIA. Finally, we compare several predictions by our implementation to experimental measurements at LEP, Tevatron and LHC, as well as to predictions obtained using PYTHIA. (orig.)
An analytic parton shower. Algorithms, implementation and validation
International Nuclear Information System (INIS)
Schmidt, Sebastian
2012-06-01
The realistic simulation of particle collisions is an indispensable tool to interpret the data measured at high-energy colliders, for example the now running Large Hadron Collider at CERN. These collisions at these colliders are usually simulated in the form of exclusive events. This thesis focuses on the perturbative QCD part involved in the simulation of these events, particularly parton showers and the consistent combination of parton showers and matrix elements. We present an existing parton shower algorithm for emissions off final state partons along with some major improvements. Moreover, we present a new parton shower algorithm for emissions off incoming partons. The aim of these particular algorithms, called analytic parton shower algorithms, is to be able to calculate the probabilities for branchings and for whole events after the event has been generated. This allows a reweighting procedure to be applied after the events have been simulated. We show a detailed description of the algorithms, their implementation and the interfaces to the event generator WHIZARD. Moreover we discuss the implementation of a MLM-type matching procedure and an interface to the shower and hadronization routines from PYTHIA. Finally, we compare several predictions by our implementation to experimental measurements at LEP, Tevatron and LHC, as well as to predictions obtained using PYTHIA. (orig.)
Implementation of a partitioned algorithm for simulation of large CSI problems
Alvin, Kenneth F.; Park, K. C.
1991-01-01
The implementation of a partitioned numerical algorithm for determining the dynamic response of coupled structure/controller/estimator finite-dimensional systems is reviewed. The partitioned approach leads to a set of coupled first and second-order linear differential equations which are numerically integrated with extrapolation and implicit step methods. The present software implementation, ACSIS, utilizes parallel processing techniques at various levels to optimize performance on a shared-memory concurrent/vector processing system. A general procedure for the design of controller and filter gains is also implemented, which utilizes the vibration characteristics of the structure to be solved. Also presented are: example problems; a user's guide to the software; the procedures and algorithm scripts; a stability analysis for the algorithm; and the source code for the parallel implementation.
Baksaas-Aasen, Kjersti; Gall, Lewis; Eaglestone, Simon; Rourke, Claire; Juffermans, Nicole P; Goslings, J Carel; Naess, Paal Aksel; van Dieren, Susan; Ostrowski, Sisse Rye; Stensballe, Jakob; Maegele, Marc; Stanworth, Simon J; Gaarder, Christine; Brohi, Karim; Johansson, Per I
2017-10-18
Traumatic injury is the fourth leading cause of death globally. Half of all trauma deaths are due to bleeding and most of these will occur within 6 h of injury. Haemorrhagic shock following injury has been shown to induce a clotting dysfunction within minutes, and this early trauma-induced coagulopathy (TIC) may exacerbate bleeding and is associated with higher mortality and morbidity. In spite of improved resuscitation strategies over the last decade, current transfusion therapy still fails to correct TIC during ongoing haemorrhage and evidence for the optimal management of bleeding trauma patients is lacking. Recent publications describe increasing the use of Viscoelastic Haemostatic Assays (VHAs) in trauma haemorrhage; however, there is insufficient evidence to support their superiority to conventional coagulation tests (CCTs). This multicentre, randomised controlled study will compare the haemostatic effect of an evidence-based VHA-guided versus an optimised CCT-guided transfusion algorithm in haemorrhaging trauma patients. A total of 392 adult trauma patients will be enrolled at major trauma centres. Participants will be eligible if they present with clinical signs of haemorrhagic shock, activate the local massive haemorrhage protocol and initiate first blood transfusion. Enrolled patients will be block randomised per centre to either VHA-guided or CCT-guided transfusion therapy in addition to that therapy delivered as part of standard care, until haemostasis is achieved. Patients will be followed until discharge or 28 days. The primary endpoint is the proportion of subjects alive and free of massive transfusion (less than 10 units of red blood cells) at 24 h. Secondary outcomes include the effect of CCT- versus VHA-guided therapy on organ failure, total hospital and intensive care lengths of stay, health care resources needed and mortality. Surviving patients will be asked to complete a quality of life questionnaire (EuroQol EQ-5D TM ) at day 90. CCTs have
Efficient Implementation of Nested-Loop Multimedia Algorithms
Directory of Open Access Journals (Sweden)
Kittitornkun Surin
2001-01-01
Full Text Available A novel dependence graph representation called the multiple-order dependence graph for nested-loop formulated multimedia signal processing algorithms is proposed. It allows a concise representation of an entire family of dependence graphs. This powerful representation facilitates the development of innovative implementation approach for nested-loop formulated multimedia algorithms such as motion estimation, matrix-matrix product, 2D linear transform, and others. In particular, algebraic linear mapping (assignment and scheduling methodology can be applied to implement such algorithms on an array of simple-processing elements. The feasibility of this new approach is demonstrated in three major target architectures: application-specific integrated circuit (ASIC, field programmable gate array (FPGA, and a programmable clustered VLIW processor.
An algorithm, implementation and execution ontology design pattern
Lawrynowicz, A.; Esteves, D.; Panov, P.; Soru, T.; Dzeroski, S.; Vanschoren, J.
2016-01-01
This paper describes an ontology design pattern for modeling algorithms, their implementations and executions. This pattern is derived from the research results on data mining/machine learning ontologies, but is more generic. We argue that the proposed pattern will foster the development of
Implementing Modifed Burg Algorithms in Multivariate Subset Autoregressive Modeling
Directory of Open Access Journals (Sweden)
A. Alexandre Trindade
2003-02-01
Full Text Available The large number of parameters in subset vector autoregressive models often leads one to procure fast, simple, and efficient alternatives or precursors to maximum likelihood estimation. We present the solution of the multivariate subset Yule-Walker equations as one such alternative. In recent work, Brockwell, Dahlhaus, and Trindade (2002, show that the Yule-Walker estimators can actually be obtained as a special case of a general recursive Burg-type algorithm. We illustrate the structure of this Algorithm, and discuss its implementation in a high-level programming language. Applications of the Algorithm in univariate and bivariate modeling are showcased in examples. Univariate and bivariate versions of the Algorithm written in Fortran 90 are included in the appendix, and their use illustrated.
Design and Implementation of Frequency-responsive Thermostat Control
DEFF Research Database (Denmark)
Nyeng, Preben; Østergaard, Jacob; Togeby, Mikael
2010-01-01
properties and needs of each application, and on the other hand the requirements of the system operator. The control algorithms are implemented on a microcontroller unit that is interfaced with existing thermostats for each application. To validate the control algorithms and overall system design, a series...
Joint control algorithm in access network
Institute of Scientific and Technical Information of China (English)
2008-01-01
To deal with long probing delay and inaccurate probing results in the endpoint admission control method,a joint local and end-to-end admission control algorithm is proposed,which introduces local probing of access network besides end-to-end probing.Through local probing,the algorithm accurately estimated the resource status of the access network.Simulation shows that this algorithm can improve admission control performance and reduce users' average waiting time when the access network is heavily loaded.
Implementation of the Grover search algorithm with Josephson charge qubits
International Nuclear Information System (INIS)
Zheng Xiaohu; Dong Ping; Xue Zhengyuan; Cao Zhuoliang
2007-01-01
A scheme of implementing the Grover search algorithm based on Josephson charge qubits has been proposed, which would be a key step to scale more complex quantum algorithms and very important for constructing a real quantum computer via Josephson charge qubits. The present scheme is simple but fairly efficient, and easily manipulated because any two-charge-qubit can be selectively and effectively coupled by a common inductance. More manipulations can be carried out before decoherence sets in. Our scheme can be realized within the current technology
Land Use Control Implementation Plan
Starr, Andrew Scott
2015-01-01
This Land Use Control Implementation Plan (LUCIP) has been prepared to inform current and potential future users of Building M7-505 of institutional controls that have been implemented at the site. Although there are no current unacceptable risks to human health or the environment associated with Building M7-505, institutional land use controls (LUCs) are necessary to prohibit the use of groundwater from the site. LUCs are also necessary to prevent access to soil under electrical equipment in the northwest portion of the site. Controls necessary to prevent human exposure will include periodic inspection, condition certification, and agency notification.
Algorithms for orbit control on SPEAR
International Nuclear Information System (INIS)
Corbett, J.; Keeley, D.; Hettel, R.; Linscott, I.; Sebek, J.
1994-06-01
A global orbit feedback system has been installed on SPEAR to help stabilize the position of the photon beams. The orbit control algorithms depend on either harmonic reconstruction of the orbit or eigenvector decomposition. The orbit motion is corrected by dipole corrector kicks determined from the inverse corrector-to-bpm response matrix. This paper outlines features of these control algorithms as applied to SPEAR
Fuzzy power control algorithm for a pressurized water reactor
International Nuclear Information System (INIS)
Hah, Y.J.; Lee, B.W.
1994-01-01
A fuzzy power control algorithm is presented for automatic reactor power control in a pressurized water reactor (PWR). Automatic power shape control is complicated by the use of control rods with a conventional proportional-integral-differential controller because it is highly coupled with reactivity compensation. Thus, manual shape controls are usually employed even for the limited capability needed for load-following operations including frequency control. In an attempt to achieve automatic power shape control without any design modifications to the core, a fuzzy power control algorithm is proposed. For the fuzzy control, the rule base is formulated based on a multiple-input multiple-output system. The minimum operation rule and the center of area method are implemented for the development of the fuzzy algorithm. The fuzzy power control algorithm has been applied to Yonggwang Nuclear Unit 3. The simulation results show that the fuzzy control can be adapted as a practical control strategy for automatic reactor power control of PWRs during the load-following operations
FPGA-Based Implementation of Lithuanian Isolated Word Recognition Algorithm
Directory of Open Access Journals (Sweden)
Tomyslav Sledevič
2013-05-01
Full Text Available The paper describes the FPGA-based implementation of Lithuanian isolated word recognition algorithm. FPGA is selected for parallel process implementation using VHDL to ensure fast signal processing at low rate clock signal. Cepstrum analysis was applied to features extraction in voice. The dynamic time warping algorithm was used to compare the vectors of cepstrum coefficients. A library of 100 words features was created and stored in the internal FPGA BRAM memory. Experimental testing with speaker dependent records demonstrated the recognition rate of 94%. The recognition rate of 58% was achieved for speaker-independent records. Calculation of cepstrum coefficients lasted for 8.52 ms at 50 MHz clock, while 100 DTWs took 66.56 ms at 25 MHz clock.Article in Lithuanian
Pipeline Implementation of Polyphase PSO for Adaptive Beamforming Algorithm
Directory of Open Access Journals (Sweden)
Shaobing Huang
2017-01-01
Full Text Available Adaptive beamforming is a powerful technique for anti-interference, where searching and tracking optimal solutions are a great challenge. In this paper, a partial Particle Swarm Optimization (PSO algorithm is proposed to track the optimal solution of an adaptive beamformer due to its great global searching character. Also, due to its naturally parallel searching capabilities, a novel Field Programmable Gate Arrays (FPGA pipeline architecture using polyphase filter bank structure is designed. In order to perform computations with large dynamic range and high precision, the proposed implementation algorithm uses an efficient user-defined floating-point arithmetic. In addition, a polyphase architecture is proposed to achieve full pipeline implementation. In the case of PSO with large population, the polyphase architecture can significantly save hardware resources while achieving high performance. Finally, the simulation results are presented by cosimulation with ModelSim and SIMULINK.
Implementation of several mathematical algorithms to breast tissue density classification
International Nuclear Information System (INIS)
Quintana, C.; Redondo, M.; Tirao, G.
2014-01-01
The accuracy of mammographic abnormality detection methods is strongly dependent on breast tissue characteristics, where a dense breast tissue can hide lesions causing cancer to be detected at later stages. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. This paper presents the implementation and the performance of different mathematical algorithms designed to standardize the categorization of mammographic images, according to the American College of Radiology classifications. These mathematical techniques are based on intrinsic properties calculations and on comparison with an ideal homogeneous image (joint entropy, mutual information, normalized cross correlation and index Q) as categorization parameters. The algorithms evaluation was performed on 100 cases of the mammographic data sets provided by the Ministerio de Salud de la Provincia de Córdoba, Argentina—Programa de Prevención del Cáncer de Mama (Department of Public Health, Córdoba, Argentina, Breast Cancer Prevention Program). The obtained breast classifications were compared with the expert medical diagnostics, showing a good performance. The implemented algorithms revealed a high potentiality to classify breasts into tissue density categories. - Highlights: • Breast density classification can be obtained by suitable mathematical algorithms. • Mathematical processing help radiologists to obtain the BI-RADS classification. • The entropy and joint entropy show high performance for density classification
FPGA implementation of image dehazing algorithm for real time applications
Kumar, Rahul; Kaushik, Brajesh Kumar; Balasubramanian, R.
2017-09-01
Weather degradation such as haze, fog, mist, etc. severely reduces the effective range of visual surveillance. This degradation is a spatially varying phenomena, which makes this problem non trivial. Dehazing is an essential preprocessing stage in applications such as long range imaging, border security, intelligent transportation system, etc. However, these applications require low latency of the preprocessing block. In this work, single image dark channel prior algorithm is modified and implemented for fast processing with comparable visual quality of the restored image/video. Although conventional single image dark channel prior algorithm is computationally expensive, it yields impressive results. Moreover, a two stage image dehazing architecture is introduced, wherein, dark channel and airlight are estimated in the first stage. Whereas, transmission map and intensity restoration are computed in the next stages. The algorithm is implemented using Xilinx Vivado software and validated by using Xilinx zc702 development board, which contains an Artix7 equivalent Field Programmable Gate Array (FPGA) and ARM Cortex A9 dual core processor. Additionally, high definition multimedia interface (HDMI) has been incorporated for video feed and display purposes. The results show that the dehazing algorithm attains 29 frames per second for the image resolution of 1920x1080 which is suitable of real time applications. The design utilizes 9 18K_BRAM, 97 DSP_48, 6508 FFs and 8159 LUTs.
VIRTEX-5 Fpga Implementation of Advanced Encryption Standard Algorithm
Rais, Muhammad H.; Qasim, Syed M.
2010-06-01
In this paper, we present an implementation of Advanced Encryption Standard (AES) cryptographic algorithm using state-of-the-art Virtex-5 Field Programmable Gate Array (FPGA). The design is coded in Very High Speed Integrated Circuit Hardware Description Language (VHDL). Timing simulation is performed to verify the functionality of the designed circuit. Performance evaluation is also done in terms of throughput and area. The design implemented on Virtex-5 (XC5VLX50FFG676-3) FPGA achieves a maximum throughput of 4.34 Gbps utilizing a total of 399 slices.
Implementation and statistical analysis of Metropolis algorithm for SU(3)
International Nuclear Information System (INIS)
Katznelson, E.; Nobile, A.
1984-12-01
In this paper we study the statistical properties of an implementation of the Metropolis algorithm for SU(3) gauge theory. It is shown that the results have normal distribution. We demonstrate that in this case error analysis can be carried on in a simple way and we show that applying it to both the measurement strategy and the output data analysis has an important influence on the performance and reliability of the simulation. (author)
Algorithm of parallel: hierarchical transformation and its implementation on FPGA
Timchenko, Leonid I.; Petrovskiy, Mykola S.; Kokryatskay, Natalia I.; Barylo, Alexander S.; Dembitska, Sofia V.; Stepanikuk, Dmytro S.; Suleimenov, Batyrbek; Zyska, Tomasz; Uvaysova, Svetlana; Shedreyeva, Indira
2017-08-01
In this paper considers the algorithm of laser beam spots image classification in atmospheric-optical transmission systems. It discusses the need for images filtering using adaptive methods, using, for example, parallel-hierarchical networks. The article also highlights the need to create high-speed memory devices for such networks. Implementation and simulation results of the developed method based on the PLD are demonstrated, which shows that the presented method gives 15-20% better prediction results than similar methods.
Pinning impulsive control algorithms for complex network
International Nuclear Information System (INIS)
Sun, Wen; Lü, Jinhu; Chen, Shihua; Yu, Xinghuo
2014-01-01
In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms
Model based development of engine control algorithms
Dekker, H.J.; Sturm, W.L.
1996-01-01
Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed
Control algorithms for autonomous robot navigation
International Nuclear Information System (INIS)
Jorgensen, C.C.
1985-01-01
This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced
Multiangle Implementation of Atmospheric Correction (MAIAC): 2. Aerosol Algorithm
Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J. S.
2011-01-01
An aerosol component of a new multiangle implementation of atmospheric correction (MAIAC) algorithm is presented. MAIAC is a generic algorithm developed for the Moderate Resolution Imaging Spectroradiometer (MODIS), which performs aerosol retrievals and atmospheric correction over both dark vegetated surfaces and bright deserts based on a time series analysis and image-based processing. The MAIAC look-up tables explicitly include surface bidirectional reflectance. The aerosol algorithm derives the spectral regression coefficient (SRC) relating surface bidirectional reflectance in the blue (0.47 micron) and shortwave infrared (2.1 micron) bands; this quantity is prescribed in the MODIS operational Dark Target algorithm based on a parameterized formula. The MAIAC aerosol products include aerosol optical thickness and a fine-mode fraction at resolution of 1 km. This high resolution, required in many applications such as air quality, brings new information about aerosol sources and, potentially, their strength. AERONET validation shows that the MAIAC and MOD04 algorithms have similar accuracy over dark and vegetated surfaces and that MAIAC generally improves accuracy over brighter surfaces due to the SRC retrieval and explicit bidirectional reflectance factor characterization, as demonstrated for several U.S. West Coast AERONET sites. Due to its generic nature and developed angular correction, MAIAC performs aerosol retrievals over bright deserts, as demonstrated for the Solar Village Aerosol Robotic Network (AERONET) site in Saudi Arabia.
The selection and implementation of hidden line algorithms
International Nuclear Information System (INIS)
Schneider, A.
1983-06-01
One of the most challenging problems in the field of computer graphics is the elimination of hidden lines in images of nontransparent bodies. In the real world the nontransparent material hinders the light ray coming from hidden regions to the observer. In the computer based image formation process there is no automatic visibility regulation of this kind. So many lines are created which result in a poor quality of the spacial representation. Therefore a three-dimensional representation on the screen is only meaningfull if the hidden lines are eliminated. For this process many algorithms have been developed in the past. A common feature of these codes is the large amount of computer time needed. In the first generation of algorithms, which are commonly used today, the bodies are modeled by plane polygons. More recently, however, also algorithms are in use, which are able to treat curved surfaces without discretisation by plane surfaces. In this paper the first group of algorithms is reviewed, and the most important codes are described. The experience obtained during the implementation of two algorithms is presented. (orig.) [de
Classon, Johan; Andersson, Viktor
2016-01-01
This thesis describes the implementation and evaluation of a genetic algorithm (GA) for procedurally generating levels with controllable difficulty for a motion-based 2D platform game. Manually creating content can be time-consuming, and it may be desirable to automate this process with an algorithm, using Procedural Content Generation (PCG). An algorithm was implemented and then refined with an iterative method by conducting user tests. The resulting algorithm is considered a success and sho...
Directory of Open Access Journals (Sweden)
W. H. Kwong
2000-06-01
Full Text Available The development of a new simplified model predictive control algorithm has been proposed in this work. The algorithm is developed within the framework of internal model control, and it is easy to understanding and implement. Simulation results for a continuous fermenter, which show that the proposed control algorithm is robust for moderate variations in plant parameters, are presented. The algorithm shows a good performance for setpoint tracking.
ALGORITHM OF PLACEMENT OF VIDEO SURVEILLANCE CAMERAS AND ITS SOFTWARE IMPLEMENTATION
Directory of Open Access Journals (Sweden)
Loktev Alexey Alexeevich
2012-10-01
Full Text Available Comprehensive distributed safety, control, and monitoring systems applied by companies and organizations of different ownership structure play a substantial role in the present-day society. Video surveillance elements that ensure image processing and decision making in automated or automatic modes are the essential components of new systems. This paper covers the modeling of video surveillance systems installed in buildings, and the algorithm, or pattern, of video camera placement with due account for nearly all characteristics of buildings, detection and recognition facilities, and cameras themselves. This algorithm will be subsequently implemented as a user application. The project contemplates a comprehensive approach to the automatic placement of cameras that take account of their mutual positioning and compatibility of tasks. The project objective is to develop the principal elements of the algorithm of recognition of a moving object to be detected by several cameras. The image obtained by different cameras will be processed. Parameters of motion are to be identified to develop a table of possible options of routes. The implementation of the recognition algorithm represents an independent research project to be covered by a different article. This project consists in the assessment of the degree of complexity of an algorithm of camera placement designated for identification of cases of inaccurate algorithm implementation, as well as in the formulation of supplementary requirements and input data by means of intercrossing sectors covered by neighbouring cameras. The project also contemplates identification of potential problems in the course of development of a physical security and monitoring system at the stage of the project design development and testing. The camera placement algorithm has been implemented as a software application that has already been pilot tested on buildings and inside premises that have irregular dimensions. The
Application of epidemic algorithms for smart grids control
International Nuclear Information System (INIS)
Krkoleva, Aleksandra
2012-01-01
Smart Grids are a new concept for electricity networks development, aiming to provide economically efficient and sustainable power system by integrating effectively the actions and needs of the network users. The thesis addresses the Smart Grids concept, with emphasis on the control strategies developed on the basis of epidemic algorithms, more specifically, gossip algorithms. The thesis is developed around three Smart grid aspects: the changed role of consumers in terms of taking part in providing services within Smart Grids; the possibilities to implement decentralized control strategies based on distributed algorithms; and information exchange and benefits emerging from implementation of information and communication technologies. More specifically, the thesis presents a novel approach for providing ancillary services by implementing gossip algorithms. In a decentralized manner, by exchange of information between the consumers and by making decisions on local level, based on the received information and local parameters, the group achieves its global objective, i. e. providing ancillary services. The thesis presents an overview of the Smart Grids control strategies with emphasises on new strategies developed for the most promising Smart Grids concepts, as Micro grids and Virtual power plants. The thesis also presents the characteristics of epidemic algorithms and possibilities for their implementation in Smart Grids. Based on the research on epidemic algorithms, two applications have been developed. These applications are the main outcome of the research. The first application enables consumers, represented by their commercial aggregators, to participate in load reduction and consequently, to participate in balancing market or reduce the balancing costs of the group. In this context, the gossip algorithms are used for aggregator's message dissemination for load reduction and households and small commercial and industrial consumers to participate in maintaining
Internal quality control: planning and implementation strategies.
Westgard, James O
2003-11-01
The first essential in setting up internal quality control (IQC) of a test procedure in the clinical laboratory is to select the proper IQC procedure to implement, i.e. choosing the statistical criteria or control rules, and the number of control measurements, according to the quality required for the test and the observed performance of the method. Then the right IQC procedure must be properly implemented. This review focuses on strategies for planning and implementing IQC procedures in order to improve the quality of the IQC. A quantitative planning process is described that can be implemented with graphical tools such as power function or critical-error graphs and charts of operating specifications. Finally, a total QC strategy is formulated to minimize cost and maximize quality. A general strategy for IQC implementation is recommended that employs a three-stage design in which the first stage provides high error detection, the second stage low false rejection and the third stage prescribes the length of the analytical run, making use of an algorithm involving the average of normal patients' data.
Implementation of several mathematical algorithms to breast tissue density classification
Quintana, C.; Redondo, M.; Tirao, G.
2014-02-01
The accuracy of mammographic abnormality detection methods is strongly dependent on breast tissue characteristics, where a dense breast tissue can hide lesions causing cancer to be detected at later stages. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. This paper presents the implementation and the performance of different mathematical algorithms designed to standardize the categorization of mammographic images, according to the American College of Radiology classifications. These mathematical techniques are based on intrinsic properties calculations and on comparison with an ideal homogeneous image (joint entropy, mutual information, normalized cross correlation and index Q) as categorization parameters. The algorithms evaluation was performed on 100 cases of the mammographic data sets provided by the Ministerio de Salud de la Provincia de Córdoba, Argentina—Programa de Prevención del Cáncer de Mama (Department of Public Health, Córdoba, Argentina, Breast Cancer Prevention Program). The obtained breast classifications were compared with the expert medical diagnostics, showing a good performance. The implemented algorithms revealed a high potentiality to classify breasts into tissue density categories.
A pipelined FPGA implementation of an encryption algorithm based on genetic algorithm
Thirer, Nonel
2013-05-01
With the evolution of digital data storage and exchange, it is essential to protect the confidential information from every unauthorized access. High performance encryption algorithms were developed and implemented by software and hardware. Also many methods to attack the cipher text were developed. In the last years, the genetic algorithm has gained much interest in cryptanalysis of cipher texts and also in encryption ciphers. This paper analyses the possibility to use the genetic algorithm as a multiple key sequence generator for an AES (Advanced Encryption Standard) cryptographic system, and also to use a three stages pipeline (with four main blocks: Input data, AES Core, Key generator, Output data) to provide a fast encryption and storage/transmission of a large amount of data.
Kodiak: An Implementation Framework for Branch and Bound Algorithms
Smith, Andrew P.; Munoz, Cesar A.; Narkawicz, Anthony J.; Markevicius, Mantas
2015-01-01
Recursive branch and bound algorithms are often used to refine and isolate solutions to several classes of global optimization problems. A rigorous computation framework for the solution of systems of equations and inequalities involving nonlinear real arithmetic over hyper-rectangular variable and parameter domains is presented. It is derived from a generic branch and bound algorithm that has been formally verified, and utilizes self-validating enclosure methods, namely interval arithmetic and, for polynomials and rational functions, Bernstein expansion. Since bounds computed by these enclosure methods are sound, this approach may be used reliably in software verification tools. Advantage is taken of the partial derivatives of the constraint functions involved in the system, firstly to reduce the branching factor by the use of bisection heuristics and secondly to permit the computation of bifurcation sets for systems of ordinary differential equations. The associated software development, Kodiak, is presented, along with examples of three different branch and bound problem types it implements.
Computationally efficient model predictive control algorithms a neural network approach
Ławryńczuk, Maciej
2014-01-01
This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include: · A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction. · Implementation details of the MPC algorithms for feedforward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models. · The MPC algorithms based on neural multi-models (inspired by the idea of predictive control). · The MPC algorithms with neural approximation with no on-line linearization. · The MPC algorithms with guaranteed stability and robustness. · Cooperation between the MPC algorithms and set-point optimization. Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require d...
Evaluation of train-speed control algorithms
Energy Technology Data Exchange (ETDEWEB)
Slavik, M.M. [BKS Advantech (Pty.) Ltd., Pretoria (South Africa)
2000-07-01
A relatively simple and fast simulator has been developed and used for the preliminary testing of train cruise-control algorithms. The simulation is done in software on a PC. The simulator is used to gauge the consequences and feasibility of a cruise-control strategy prior to more elaborate testing and evaluation. The tool was used to design and pre-test a train-cruise control algorithm called NSS, which does not require knowledge of exact train mass, vertical alignment, or actual braking force. Only continuous measurements on the speed of the train and electrical current are required. With this modest input, the NSS algorithm effected speed changes smoothly and efficiently for a wide range of operating conditions. (orig.)
Stall Recovery Guidance Algorithms Based on Constrained Control Approaches
Stepanyan, Vahram; Krishnakumar, Kalmanje; Kaneshige, John; Acosta, Diana
2016-01-01
Aircraft loss-of-control, in particular approach to stall or fully developed stall, is a major factor contributing to aircraft safety risks, which emphasizes the need to develop algorithms that are capable of assisting the pilots to identify the problem and providing guidance to recover the aircraft. In this paper we present several stall recovery guidance algorithms, which are implemented in the background without interfering with flight control system and altering the pilot's actions. They are using input and state constrained control methods to generate guidance signals, which are provided to the pilot in the form of visual cues. It is the pilot's decision to follow these signals. The algorithms are validated in the pilot-in-the loop medium fidelity simulation experiment.
VLSI PARTITIONING ALGORITHM WITH ADAPTIVE CONTROL PARAMETER
Directory of Open Access Journals (Sweden)
P. N. Filippenko
2013-03-01
Full Text Available The article deals with the problem of very large-scale integration circuit partitioning. A graph is selected as a mathematical model describing integrated circuit. Modification of ant colony optimization algorithm is presented, which is used to solve graph partitioning problem. Ant colony optimization algorithm is an optimization method based on the principles of self-organization and other useful features of the ants’ behavior. The proposed search system is based on ant colony optimization algorithm with the improved method of the initial distribution and dynamic adjustment of the control search parameters. The experimental results and performance comparison show that the proposed method of very large-scale integration circuit partitioning provides the better search performance over other well known algorithms.
International Nuclear Information System (INIS)
Cheng Sheng-Yi; Liu Wen-Jin; Chen Shan-Qiu; Dong Li-Zhi; Yang Ping; Xu Bing
2015-01-01
Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n 2 ) ∼ O(n 3 ) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ∼ (O(n) 3/2 ), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. (paper)
Quantum control using genetic algorithms in quantum communication: superdense coding
International Nuclear Information System (INIS)
Domínguez-Serna, Francisco; Rojas, Fernando
2015-01-01
We present a physical example model of how Quantum Control with genetic algorithms is applied to implement the quantum superdense code protocol. We studied a model consisting of two quantum dots with an electron with spin, including spin-orbit interaction. The electron and the spin get hybridized with the site acquiring two degrees of freedom, spin and charge. The system has tunneling and site energies as time dependent control parameters that are optimized by means of genetic algorithms to prepare a hybrid Bell-like state used as a transmission channel. This state is transformed to obtain any state of the four Bell basis as required by superdense protocol to transmit two bits of classical information. The control process protocol is equivalent to implement one of the quantum gates in the charge subsystem. Fidelities larger than 99.5% are achieved for the hybrid entangled state preparation and the superdense operations. (paper)
Diamond turning machine controller implementation
Energy Technology Data Exchange (ETDEWEB)
Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.
1988-12-01
The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.
GPGPU Implementation of a Genetic Algorithm for Stereo Refinement
Directory of Open Access Journals (Sweden)
Álvaro Arranz
2015-03-01
Full Text Available During the last decade, the general-purpose computing on graphics processing units Graphics (GPGPU has turned out to be a useful tool for speeding up many scientific calculations. Computer vision is known to be one of the fields with more penetration of these new techniques. This paper explores the advantages of using GPGPU implementation to speedup a genetic algorithm used for stereo refinement. The main contribution of this paper is analyzing which genetic operators take advantage of a parallel approach and the description of an efficient state- of-the-art implementation for each one. As a result, speed-ups close to x80 can be achieved, demonstrating to be the only way of achieving close to real-time performance.
A radiological control implementation guide
International Nuclear Information System (INIS)
Hamley, S.A.
1993-01-01
A manual is being developed to explain to line managers how radiological controls are designed and implemented. The manual also fills a gap in the Health Physics literature between textbooks and on-the-floor procedures. It may be helpful to new Health Physicists with little practical experience and to those wishing to improve self-assessment, audit, and appraisal processes. Many audits, appraisals, and evaluations have indicated a need for cultural change, increased vigor and example, and more effective oversight by line management. Inadequate work controls are a frequent and recurring problem identified in occurrence reports and accident investigations. Closer study frequently indicates that many line managers are willing to change and want to achieve excellence, but no effective guidance exists that will enable them to understand and implement a modern radiological control program. The manual is now in draft form and includes information that will be of use to line managers dealing with improving radiological performance and the practical aspects of radiological controls implementation. The manual is expected to be completed by the fall of 1993 and to be used in conjunction with a performance-based self-assessment training program at the Oak Ridge National Laboratory
Implementation and analysis of an adaptive multilevel Monte Carlo algorithm
Hoel, Hakon; Von Schwerin, Erik; Szepessy, Anders; Tempone, Raul
2014-01-01
We present an adaptive multilevel Monte Carlo (MLMC) method for weak approximations of solutions to Itô stochastic dierential equations (SDE). The work [11] proposed and analyzed an MLMC method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a single level Euler-Maruyama Monte Carlo method from O(TOL-3) to O(TOL-2 log(TOL-1)2) for a mean square error of O(TOL2). Later, the work [17] presented an MLMC method using a hierarchy of adaptively re ned, non-uniform time discretizations, and, as such, it may be considered a generalization of the uniform time discretizationMLMC method. This work improves the adaptiveMLMC algorithms presented in [17] and it also provides mathematical analysis of the improved algorithms. In particular, we show that under some assumptions our adaptive MLMC algorithms are asymptotically accurate and essentially have the correct complexity but with improved control of the complexity constant factor in the asymptotic analysis. Numerical tests include one case with singular drift and one with stopped diusion, where the complexity of a uniform single level method is O(TOL-4). For both these cases the results con rm the theory, exhibiting savings in the computational cost for achieving the accuracy O(TOL) from O(TOL-3) for the adaptive single level algorithm to essentially O(TOL-2 log(TOL-1)2) for the adaptive MLMC algorithm. © 2014 by Walter de Gruyter Berlin/Boston 2014.
Purgatorio - A new implementation of the Inferno algorithm
Energy Technology Data Exchange (ETDEWEB)
Wilson, B; Sonnad, V; Sterne, P; Isaacs, W
2005-03-29
For astrophysical applications, as well as modeling laser-produced plasmas, there is a continual need for equation-of-state data over a wide domain of physical conditions. This paper presents algorithmic aspects for computing the Helmholtz free energy of plasma electrons for temperatures spanning from a few Kelvin to several KeV, and densities ranging from essentially isolated ion conditions to such large compressions that most bound orbitals become delocalized. The objective is high precision results in order to compute pressure and other thermodynamic quantities by numerical differentiation. This approach has the advantage that internal thermodynamic self-consistency is ensured, regardless of the specific physical model, but at the cost of very stringent numerical tolerances for each operation. The computational aspects we address in this paper are faced by any model that relies on input from the quantum mechanical spectrum of a spherically symmetric Hamiltonian operator. The particular physical model we employ is that of INFERNO; of a spherically averaged ion embedded in jellium. An overview of PURGATORIO, a new implementation of the INFERNO equation of state model, is presented. The new algorithm emphasizes a novel decimation scheme for automatically resolving the structure of the continuum density of states, circumventing limitations of the pseudo-R matrix algorithm previously utilized.
High-speed parallel implementation of a modified PBR algorithm on DSP-based EH topology
Rajan, K.; Patnaik, L. M.; Ramakrishna, J.
1997-08-01
Algebraic Reconstruction Technique (ART) is an age-old method used for solving the problem of three-dimensional (3-D) reconstruction from projections in electron microscopy and radiology. In medical applications, direct 3-D reconstruction is at the forefront of investigation. The simultaneous iterative reconstruction technique (SIRT) is an ART-type algorithm with the potential of generating in a few iterations tomographic images of a quality comparable to that of convolution backprojection (CBP) methods. Pixel-based reconstruction (PBR) is similar to SIRT reconstruction, and it has been shown that PBR algorithms give better quality pictures compared to those produced by SIRT algorithms. In this work, we propose a few modifications to the PBR algorithms. The modified algorithms are shown to give better quality pictures compared to PBR algorithms. The PBR algorithm and the modified PBR algorithms are highly compute intensive, Not many attempts have been made to reconstruct objects in the true 3-D sense because of the high computational overhead. In this study, we have developed parallel two-dimensional (2-D) and 3-D reconstruction algorithms based on modified PBR. We attempt to solve the two problems encountered by the PBR and modified PBR algorithms, i.e., the long computational time and the large memory requirements, by parallelizing the algorithm on a multiprocessor system. We investigate the possible task and data partitioning schemes by exploiting the potential parallelism in the PBR algorithm subject to minimizing the memory requirement. We have implemented an extended hypercube (EH) architecture for the high-speed execution of the 3-D reconstruction algorithm using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PEs) and dual-port random access memories (DPR) as channels between the PEs. We discuss and compare the performances of the PBR algorithm on an IBM 6000 RISC workstation, on a Silicon
Figuring Control in the Algorithmic Era
DEFF Research Database (Denmark)
Markham, Annette; Bossen, Claus
Drawing on actor network theory, we follow how algorithms, information, selfhood and identity-for-others tangle in interesting and unexpected ways. Starting with simple moments in everyday life that might be described as having implications for ‘control,’ we focus attention on the ways in which t...
Fuzzy model predictive control algorithm applied in nuclear power plant
International Nuclear Information System (INIS)
Zuheir, Ahmad
2006-01-01
The aim of this paper is to design a predictive controller based on a fuzzy model. The Takagi-Sugeno fuzzy model with an Adaptive B-splines neuro-fuzzy implementation is used and incorporated as a predictor in a predictive controller. An optimization approach with a simplified gradient technique is used to calculate predictions of the future control actions. In this approach, adaptation of the fuzzy model using dynamic process information is carried out to build the predictive controller. The easy description of the fuzzy model and the easy computation of the gradient sector during the optimization procedure are the main advantages of the computation algorithm. The algorithm is applied to the control of a U-tube steam generation unit (UTSG) used for electricity generation. (author)
Implementation of four layer automatic elevator controller
Prasad, B. K. V.; Kumar, P. Satish; Charles, B. S.; Srilakshmi, G.
2017-07-01
In this modern era, elevators have become an integral part of any commercial or public complex. It facilitates the faster movement of people and luggage between floors. The lift control system is one among the keenest aspects in electronics controlling module that are used in auto motive filed. Usually elevators are designed for a specific building taking into account the main factors like the measure of the building, the count of persons travelling to each floor and the expected periods of large usage. The lift system was designed with different control strategies. This implementation is based on FPGA, which could be used for any building with any number of floors, with the necessary inputs and outputs. This controller can be implemented based on the required number of floors by merely changing a control variable from the HDL code. This approach is based on an algorithm which reduces the number of computation necessary, on concentrating only on the relevant principles that improves the score and ability of the club of elevator structure. The elevator controller is developed using Verilog HDL and is perfectly executed on a Xilinx ISE 12.4 and Spartan -3E FPGA.
A Traffic Prediction Algorithm for Street Lighting Control Efficiency
Directory of Open Access Journals (Sweden)
POPA Valentin
2013-01-01
Full Text Available This paper presents the development of a traffic prediction algorithm that can be integrated in a street lighting monitoring and control system. The prediction algorithm must enable the reduction of energy costs and improve energy efficiency by decreasing the light intensity depending on the traffic level. The algorithm analyses and processes the information received at the command center based on the traffic level at different moments. The data is collected by means of the Doppler vehicle detection sensors integrated within the system. Thus, two methods are used for the implementation of the algorithm: a neural network and a k-NN (k-Nearest Neighbor prediction algorithm. For 500 training cycles, the mean square error of the neural network is 9.766 and for 500.000 training cycles the error amounts to 0.877. In case of the k-NN algorithm the error increases from 8.24 for k=5 to 12.27 for a number of 50 neighbors. In terms of a root means square error parameter, the use of a neural network ensures the highest performance level and can be integrated in a street lighting control system.
Pinning impulsive control algorithms for complex network
Energy Technology Data Exchange (ETDEWEB)
Sun, Wen [School of Information and Mathematics, Yangtze University, Jingzhou 434023 (China); Lü, Jinhu [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Shihua [College of Mathematics and Statistics, Wuhan University, Wuhan 430072 (China); Yu, Xinghuo [School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001 (Australia)
2014-03-15
In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.
Chemical optimization algorithm for fuzzy controller design
Astudillo, Leslie; Castillo, Oscar
2014-01-01
In this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmark functions is used to evaluate the performance of the algorithm. Simulation results show that the proposed optimization algorithm can outperform other methods in a set of benchmark functions. This chemical reaction optimization paradigm is also applied to solve the tracking problem for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application
Search algorithms, hidden labour and information control
Directory of Open Access Journals (Sweden)
Paško Bilić
2016-06-01
Full Text Available The paper examines some of the processes of the closely knit relationship between Google’s ideologies of neutrality and objectivity and global market dominance. Neutrality construction comprises an important element sustaining the company’s economic position and is reflected in constant updates, estimates and changes to utility and relevance of search results. Providing a purely technical solution to these issues proves to be increasingly difficult without a human hand in steering algorithmic solutions. Search relevance fluctuates and shifts through continuous tinkering and tweaking of the search algorithm. The company also uses third parties to hire human raters for performing quality assessments of algorithmic updates and adaptations in linguistically and culturally diverse global markets. The adaptation process contradicts the technical foundations of the company and calculations based on the initial Page Rank algorithm. Annual market reports, Google’s Search Quality Rating Guidelines, and reports from media specialising in search engine optimisation business are analysed. The Search Quality Rating Guidelines document provides a rare glimpse into the internal architecture of search algorithms and the notions of utility and relevance which are presented and structured as neutral and objective. Intertwined layers of ideology, hidden labour of human raters, advertising revenues, market dominance and control are discussed throughout the paper.
Implementation of PHENIX trigger algorithms on massively parallel computers
International Nuclear Information System (INIS)
Petridis, A.N.; Wohn, F.K.
1995-01-01
The event selection requirements of contemporary high energy and nuclear physics experiments are met by the introduction of on-line trigger algorithms which identify potentially interesting events and reduce the data acquisition rate to levels that are manageable by the electronics. Such algorithms being parallel in nature can be simulated off-line using massively parallel computers. The PHENIX experiment intends to investigate the possible existence of a new phase of matter called the quark gluon plasma which has been theorized to have existed in very early stages of the evolution of the universe by studying collisions of heavy nuclei at ultra-relativistic energies. Such interactions can also reveal important information regarding the structure of the nucleus and mandate a thorough investigation of the simpler proton-nucleus collisions at the same energies. The complexity of PHENIX events and the need to analyze and also simulate them at rates similar to the data collection ones imposes enormous computation demands. This work is a first effort to implement PHENIX trigger algorithms on parallel computers and to study the feasibility of using such machines to run the complex programs necessary for the simulation of the PHENIX detector response. Fine and coarse grain approaches have been studied and evaluated. Depending on the application the performance of a massively parallel computer can be much better or much worse than that of a serial workstation. A comparison between single instruction and multiple instruction computers is also made and possible applications of the single instruction machines to high energy and nuclear physics experiments are outlined. copyright 1995 American Institute of Physics
Numerical methods design, analysis, and computer implementation of algorithms
Greenbaum, Anne
2012-01-01
Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects--design, analysis, or computer implementation--of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book a...
An efficient control algorithm for nonlinear systems
International Nuclear Information System (INIS)
Sinha, S.
1990-12-01
We suggest a scheme to step up the efficiency of a recently proposed adaptive control algorithm, which is remarkably effective for regulating nonlinear systems. The technique involves monitoring of the ''stiffness of control'' to get maximum gain while maintaining a predetermined accuracy. The success of the procedure is demonstrated for the case of the logistic map, where we show that the improvement in performance is often factors of tens, and for small control stiffness, even factors of hundreds. (author). 4 refs, 1 fig., 1 tab
An Implementation and Parallelization of the Scale Space Meshing Algorithm
Directory of Open Access Journals (Sweden)
Julie Digne
2015-11-01
Full Text Available Creating an interpolating mesh from an unorganized set of oriented points is a difficult problemwhich is often overlooked. Most methods focus indeed on building a watertight smoothed meshby defining some function whose zero level set is the surface of the object. However in some casesit is crucial to build a mesh that interpolates the points and does not fill the acquisition holes:either because the data are sparse and trying to fill the holes would create spurious artifactsor because the goal is to explore visually the data exactly as they were acquired without anysmoothing process. In this paper we detail a parallel implementation of the Scale-Space Meshingalgorithm, which builds on the scale-space framework for reconstructing a high precision meshfrom an input oriented point set. This algorithm first smoothes the point set, producing asingularity free shape. It then uses a standard mesh reconstruction technique, the Ball PivotingAlgorithm, to build a mesh from the smoothed point set. The final step consists in back-projecting the mesh built on the smoothed positions onto the original point set. The result ofthis process is an interpolating, hole-preserving surface mesh reconstruction.
GPU implementations of online track finding algorithms at PANDA
Energy Technology Data Exchange (ETDEWEB)
Herten, Andreas; Stockmanns, Tobias; Ritman, James [Institut fuer Kernphysik, Forschungszentrum Juelich GmbH (Germany); Adinetz, Andrew; Pleiter, Dirk [Juelich Supercomputing Centre, Forschungszentrum Juelich GmbH (Germany); Kraus, Jiri [NVIDIA GmbH (Germany); Collaboration: PANDA-Collaboration
2014-07-01
The PANDA experiment is a hadron physics experiment that will investigate antiproton annihilation in the charm quark mass region. The experiment is now being constructed as one of the main parts of the FAIR facility. At an event rate of 2 . 10{sup 7}/s a data rate of 200 GB/s is expected. A reduction of three orders of magnitude is required in order to save the data for further offline analysis. Since signal and background processes at PANDA have similar signatures, no hardware-level trigger is foreseen for the experiment. Instead, a fast online event filter is substituting this element. We investigate the possibility of using graphics processing units (GPUs) for the online tracking part of this task. Researched algorithms are a Hough Transform, a track finder involving Riemann surfaces, and the novel, PANDA-specific Triplet Finder. This talk shows selected advances in the implementations as well as performance evaluations of the GPU tracking algorithms to be used at the PANDA experiment.
Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing
2015-08-01
Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).
Adaptive Control Algorithm of the Synchronous Generator
Directory of Open Access Journals (Sweden)
Shevchenko Victor
2017-01-01
Full Text Available The article discusses the the problem of controlling a synchronous generator, namely, maintaining the stability of the control object in the conditions of occurrence of noise and disturbances in the regulatory process. The model of a synchronous generator is represented by a system of differential equations of Park-Gorev, where state variables are computed relative to synchronously rotating d, q-axis. Management of synchronous generator is proposed to organize on the basis of the position-path control using algorithms to adapt with the reference model. Basic control law directed on the stabilizing indicators the frequency generated by the current and the required power level, which is achieved by controlling the mechanical torque on the shaft of the turbine and the value of the excitation voltage of the synchronous generator. Modification of the classic adaptation algorithm using the reference model, allowing to minimize the error of the reference regulation and the model under investigation within the prescribed limits, produced by means of the introduction of additional variables controller adaptation in the model. Сarried out the mathematical modeling of control provided influence on the studied model of continuous nonlinear and unmeasured the disturbance. Simulation results confirm the high level accuracy of tracking and adaptation investigated model with respect to the reference, and the present value of the loop error depends on parameters performance of regulator.
DOOCS environment for FPGA-based cavity control system and control algorithms development
International Nuclear Information System (INIS)
Pucyk, P.; Koprek, W.; Kaleta, P.; Szewinski, J.; Pozniak, K.T.; Czarski, T.; Romaniuk, R.S.
2005-01-01
The paper describes the concept and realization of the DOOCS control software for FPGAbased TESLA cavity controller and simulator (SIMCON). It bases on universal software components, created for laboratory purposes and used in MATLAB based control environment. These modules have been recently adapted to the DOOCS environment to ensure a unified software to hardware communication model. The presented solution can be also used as a general platform for control algorithms development. The proposed interfaces between MATLAB and DOOCS modules allow to check the developed algorithm in the operation environment before implementation in the FPGA. As the examples two systems have been presented. (orig.)
The implement of Talmud property allocation algorithm based on graphic point-segment way
Cen, Haifeng
2017-04-01
Under the guidance of the Talmud allocation scheme's theory, the paper analyzes the algorithm implemented process via the perspective of graphic point-segment way, and designs the point-segment way's Talmud property allocation algorithm. Then it uses Java language to implement the core of allocation algorithm, by using Android programming to build a visual interface.
A parallel row-based algorithm for standard cell placement with integrated error control
Sargent, Jeff S.; Banerjee, Prith
1989-01-01
A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel approaches to control error in parallel cell-placement algorithms: (1) Heuristic Cell-Coloring; (2) Adaptive Sequence Length Control.
Particle filters for object tracking: enhanced algorithm and efficient implementations
International Nuclear Information System (INIS)
Abd El-Halym, H.A.
2010-01-01
Object tracking and recognition is a hot research topic. In spite of the extensive research efforts expended, the development of a robust and efficient object tracking algorithm remains unsolved due to the inherent difficulty of the tracking problem. Particle filters (PFs) were recently introduced as a powerful, post-Kalman filter, estimation tool that provides a general framework for estimation of nonlinear/ non-Gaussian dynamic systems. Particle filters were advanced for building robust object trackers capable of operation under severe conditions (small image size, noisy background, occlusions, fast object maneuvers ..etc.). The heavy computational load of the particle filter remains a major obstacle towards its wide use.In this thesis, an Excitation Particle Filter (EPF) is introduced for object tracking. A new likelihood model is proposed. It depends on multiple functions: position likelihood; gray level intensity likelihood and similarity likelihood. Also, we modified the PF as a robust estimator to overcome the well-known sample impoverishment problem of the PF. This modification is based on re-exciting the particles if their weights fall below a memorized weight value. The proposed enhanced PF is implemented in software and evaluated. Its results are compared with a single likelihood function PF tracker, Particle Swarm Optimization (PSO) tracker, a correlation tracker, as well as, an edge tracker. The experimental results demonstrated the superior performance of the proposed tracker in terms of accuracy, robustness, and occlusion compared with other methods Efficient novel hardware architectures of the Sample Important Re sample Filter (SIRF) and the EPF are implemented. Three novel hardware architectures of the SIRF for object tracking are introduced. The first architecture is a two-step sequential PF machine, where particle generation, weight calculation and normalization are carried out in parallel during the first step followed by a sequential re
A comparison of three self-tuning control algorithms developed for the Bristol-Babcock controller
International Nuclear Information System (INIS)
Tapp, P.A.
1992-04-01
A brief overview of adaptive control methods relating to the design of self-tuning proportional-integral-derivative (PID) controllers is given. The methods discussed include gain scheduling, self-tuning, auto-tuning, and model-reference adaptive control systems. Several process identification and parameter adjustment methods are discussed. Characteristics of the two most common types of self-tuning controllers implemented by industry (i.e., pattern recognition and process identification) are summarized. The substance of the work is a comparison of three self-tuning proportional-plus-integral (STPI) control algorithms developed to work in conjunction with the Bristol-Babcock PID control module. The STPI control algorithms are based on closed-loop cycling theory, pattern recognition theory, and model-based theory. A brief theory of operation of these three STPI control algorithms is given. Details of the process simulations developed to test the STPI algorithms are given, including an integrating process, a first-order system, a second-order system, a system with initial inverse response, and a system with variable time constant and delay. The STPI algorithms' performance with regard to both setpoint changes and load disturbances is evaluated, and their robustness is compared. The dynamic effects of process deadtime and noise are also considered. Finally, the limitations of each of the STPI algorithms is discussed, some conclusions are drawn from the performance comparisons, and a few recommendations are made. 6 refs
Configuration-defined control algorithms with the ASDEX Upgrade DCS
Energy Technology Data Exchange (ETDEWEB)
Treutterer, Wolfgang, E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Cole, Richard [Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf Germany (Germany); Gräter, Alexander [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Lüddecke, Klaus [Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf Germany (Germany); Neu, Gregor; Rapson, Christopher; Raupp, Gerhard; Zehetbauer, Thomas [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)
2016-11-15
Highlights: • Control algorithm built from combination of pre-fabricated standard function blocks. • Seamless integration in multi-threaded computation context. • Block composition defined by configuration data, only. - Abstract: The ASDEX Upgrade Discharge Control System (DCS) is a distributed real-time control system executing complex control and monitoring tasks. Up to now, DCS control algorithms have been implemented by coding dedicated application processes with the C++ programming language. Algorithm changes required code modification, compilation and commissioning which only experienced programmers could perform. This was a significant constraint of flexibility for both control system operation and design. The new approach extends DCS with the capability of configuration-defined control algorithms. These are composed of chains of small, configurable standard function blocks providing general purpose functions like algebraic operations, filters, feedback controllers, output limiters and decision logic. In a later phase a graphical editor could help to compose and modify such configuration in a Simulink-like fashion. Building algorithms from standard functions can result in a high number of elements. In order to achieve a similar performance as with C++ coding, it is essential to avoid administrative bottlenecks by design. As a consequence, DCS executes a function block chain in the context of a single real-time thread of an application process. No concurrency issues as in a multi-threaded context need to be considered resulting in strongly simplified signal handling and zero performance overhead for inter-block communication. Instead of signal-driven synchronization, a block scheduler derives the execution sequence automatically from the block dependencies as defined in the configuration. All blocks and connecting signals are instantiated dynamically, based on definitions in a configuration file. Algorithms thus are not defined in the code but only in
Kaizen planning, implementing and controlling
García-Alcaraz, Jorge Luis; Maldonado-Macías, Aidé Aracely
2017-01-01
This book reports a literature review on kaizen, its industrial applications, critical success factors, benefits gained, journals that publish about it, main authors (research groups) and universities. Kaizen is treated in this book in three stages: planning, implementation and control. The authors provide a questionnaire designed with activities in every stage, highlighting the benefits gained in each stage. The study has been applied to more than 400 managers and leaders in continuous improvement in Mexican maquiladoras. A univariate analysis is provided to the activities in every stage. Moreover, structural equation models associating those activities with the benefits gained are presented for a statistical validation. Such a relationship between activities and benefits helps managers to identify the most important factor affecting their benefits and financial income.
Robotics, vision and control fundamental algorithms in Matlab
Corke, Peter
2017-01-01
Robotic vision, the combination of robotics and computer vision, involves the application of computer algorithms to data acquired from sensors. The research community has developed a large body of such algorithms but for a newcomer to the field this can be quite daunting. For over 20 years the author has maintained two open-source MATLAB® Toolboxes, one for robotics and one for vision. They provide implementations of many important algorithms and allow users to work with real problems, not just trivial examples. This book makes the fundamental algorithms of robotics, vision and control accessible to all. It weaves together theory, algorithms and examples in a narrative that covers robotics and computer vision separately and together. Using the latest versions of the Toolboxes the author shows how complex problems can be decomposed and solved using just a few simple lines of code. The topics covered are guided by real problems observed by the author over many years as a practitioner of both robotics and compu...
Hard Ware Implementation of Diamond Search Algorithm for Motion Estimation and Object Tracking
International Nuclear Information System (INIS)
Hashimaa, S.M.; Mahmoud, I.I.; Elazm, A.A.
2009-01-01
Object tracking is very important task in computer vision. Fast search algorithms emerged as important search technique to achieve real time tracking results. To enhance the performance of these algorithms, we advocate the hardware implementation of such algorithms. Diamond search block matching motion estimation has been proposed recently to reduce the complexity of motion estimation. In this paper we selected the diamond search algorithm (DS) for implementation using FPGA. This is due to its fundamental role in all fast search patterns. The proposed architecture is simulated and synthesized using Xilinix and modelsim soft wares. The results agree with the algorithm implementation in Matlab environment.
Application of genetic algorithm to control design
International Nuclear Information System (INIS)
Lee, Yoon Joon; Cho, Kyung Ho
1995-01-01
A classical PID controller is designed by applying the GA (Genetic Algorithm) which searches the optimal parameters through three major operators of reproduction, crossover and mutation under the given constraints. The GA could minimize the designer's interference and the whole design process could easily be automated. In contrast with other traditional PID design methods which allows for the system output responses only, the design with the GA can take account of the magnitude or the rate of change of control input together with the output responses, which reflects the more realistic situations. Compared with other PIDs designed by the traditional methods such as Ziegler and analytic, the PID by the GA shows the superior response characteristics to those of others with the least control input energy
Nonlinear model predictive control theory and algorithms
Grüne, Lars
2017-01-01
This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...
MPPT algorithm for voltage controlled PV inverters
DEFF Research Database (Denmark)
Kerekes, Tamas; Teodorescu, Remus; Liserre, Marco
2008-01-01
This paper presents a novel concept for an MPPT that can be used in case of a voltage controlled grid connected PV inverters. In case of single-phase systems, the 100 Hz ripple in the AC power is also present on the DC side. Depending on the DC link capacitor, this power fluctuation can be used t...... to track the MPP of the PV array, using the information that at MPP the power oscillations are very small. In this way the algorithm can detect the fact that the current working point is at the MPP, for the current atmospheric conditions....
Fuzzy algorithm for an automatic reactor power control in a PWR
International Nuclear Information System (INIS)
Hah, Yung Joon; Song, In Ho; Yu, Sung Sik; Choi, Jung In; Lee, Byong Whi
1994-01-01
A fuzzy algorithm is presented for automatic reactor power control in a pressurized water reactor. Automatic power shape control is complicated by the use of control rods because it is highly coupled with reactivity compensation. Thus, manual shape controls are usually employed even for the limited capability for the load - follow operation including frequency control. In an attempt to achieve automatic power shape control without any design modification of the core, a fuzzy power control algorithm is proposed. For the fuzzy control, the rule base is formulated based on a multi - input multi - output system. The minimum operation rule and the center of area method are implemented for the development of the fuzzy algorithm. The fuzzy power control algorithm has been applied to the Yonggwang Nuclear Unit 3. The simulation results show that the fuzzy control can be adapted as a practical control strategy for automatic reactor power control of the pressurized water reactor during the load - follow operation
Control of baker’s yeast fermentation : PID and fuzzy algorithms
Machado, Carlos; Gomes, Pedro; Soares, Rui; Pereira, Silvia; Soares, Filomena
2001-01-01
A MATLAB/SIMULINK-based simulator was employed for studies concerning the control of baker’s yeast fed-batch fermentation. Four control algorithms were implemented and compared: the classical PID control, two discrete versions- modified velocity and position algorithms, and a fuzzy law. The simulation package was seen to be an efficient tool for the simulation and tests of control strategies of the non-linear process.
Improvement of ECM Techniques through Implementation of a Genetic Algorithm
National Research Council Canada - National Science Library
Townsend, James D
2008-01-01
This research effort develops the necessary interfaces between the radar signal processing components and an optimization routine, such as genetic algorithms, to develop Electronic Countermeasure (ECM...
Seismic active control by a heuristic-based algorithm
International Nuclear Information System (INIS)
Tang, Yu.
1996-01-01
A heuristic-based algorithm for seismic active control is generalized to permit consideration of the effects of control-structure interaction and actuator dynamics. Control force is computed at onetime step ahead before being applied to the structure. Therefore, the proposed control algorithm is free from the problem of time delay. A numerical example is presented to show the effectiveness of the proposed control algorithm. Also, two indices are introduced in the paper to assess the effectiveness and efficiency of control laws
Control algorithms and applications of the wavefront sensorless adaptive optics
Ma, Liang; Wang, Bin; Zhou, Yuanshen; Yang, Huizhen
2017-10-01
Compared with the conventional adaptive optics (AO) system, the wavefront sensorless (WFSless) AO system need not to measure the wavefront and reconstruct it. It is simpler than the conventional AO in system architecture and can be applied to the complex conditions. Based on the analysis of principle and system model of the WFSless AO system, wavefront correction methods of the WFSless AO system were divided into two categories: model-free-based and model-based control algorithms. The WFSless AO system based on model-free-based control algorithms commonly considers the performance metric as a function of the control parameters and then uses certain control algorithm to improve the performance metric. The model-based control algorithms include modal control algorithms, nonlinear control algorithms and control algorithms based on geometrical optics. Based on the brief description of above typical control algorithms, hybrid methods combining the model-free-based control algorithm with the model-based control algorithm were generalized. Additionally, characteristics of various control algorithms were compared and analyzed. We also discussed the extensive applications of WFSless AO system in free space optical communication (FSO), retinal imaging in the human eye, confocal microscope, coherent beam combination (CBC) techniques and extended objects.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment
Improvement and implementation for Canny edge detection algorithm
Yang, Tao; Qiu, Yue-hong
2015-07-01
Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.
FPGA implementation of bit controller in double-tick architecture
Kobylecki, Michał; Kania, Dariusz
2017-11-01
This paper presents a comparison of the two original architectures of programmable bit controllers built on FPGAs. Programmable Logic Controllers (which include, among other things programmable bit controllers) built on FPGAs provide a efficient alternative to the controllers based on microprocessors which are expensive and often too slow. The presented and compared methods allow for the efficient implementation of any bit control algorithm written in Ladder Diagram language into the programmable logic system in accordance with IEC61131-3. In both cases, we have compared the effect of the applied architecture on the performance of executing the same bit control program in relation to its own size.
An implementation of Kovacic's algorithm for solving ordinary differential equations in FORMAC
International Nuclear Information System (INIS)
Zharkov, A.Yu.
1987-01-01
An implementation of Kovacic's algorithm for finding Liouvillian solutions of the differential equations y'' + a(x)y' + b(x)y = 0 with rational coefficients a(x) and b(x) in the Computer Algebra System FORMAC is described. The algorithm description is presented in such a way that one can easily implement it in a suitable Computer Algebra System
Intelligent control with implementation on the wind energy conversion system
International Nuclear Information System (INIS)
Basma, Mohamad Khalil
1997-05-01
In this thesis our main job is to compare intelligent control and conventional control algorithms, by applying each scheme to the same control problem. Based on simulation, we analyze and compare the results of applying fuzzy logic and neural networks controllers on a popular control problem: variable speed wind energy conversion system. The reason behind our choice is the challenging nature of the problem where the plant should be controlled to maximize the power generated, while respecting its hardware constraints under varying operating conditions and disturbances. We have shown the effectiveness of fuzzy logic exciter controller for the adopted wind energy generator when compared to a conventional PI exciter. It showed better performance in the whole operating range. However, in the high wind speeds region, both controllers were unable to deliver the rpm requirements. We proposed the use of neural network intelligent techniques to supply us the optimal pitch. Our aim was to develop a simple and reliable controller that can deliver this optimal output, while remaining adaptive to system uncertainties and disturbances. The proposed fuzzy controller with a neural pitch controller showed best dynamic and robust performance as compared to the adaptive pitch controller together with the PI exciter. This study has shown that artificial neural networks and fuzzy logic control algorithms can be implemented for real time control implementations. the neuro-fuzzy control approach is robust and its performance is superior to that of traditional control methods. (author)
Error tolerance in an NMR implementation of Grover's fixed-point quantum search algorithm
International Nuclear Information System (INIS)
Xiao Li; Jones, Jonathan A.
2005-01-01
We describe an implementation of Grover's fixed-point quantum search algorithm on a nuclear magnetic resonance quantum computer, searching for either one or two matching items in an unsorted database of four items. In this algorithm the target state (an equally weighted superposition of the matching states) is a fixed point of the recursive search operator, so that the algorithm always moves towards the desired state. The effects of systematic errors in the implementation are briefly explored
Packet-Based Control Algorithms for Cooperative Surveillance and Reconnaissance
National Research Council Canada - National Science Library
Murray, Richard M
2007-01-01
..., and repeated transmissions. Results include analysis and design of estimation and control algorithms in the presence of packet loss and across multi-hop data networks, distributed estimation and sensor fusion algorithms...
Multiobjective Genetic Algorithm applied to dengue control.
Florentino, Helenice O; Cantane, Daniela R; Santos, Fernando L P; Bannwart, Bettina F
2014-12-01
Dengue fever is an infectious disease caused by a virus of the Flaviridae family and transmitted to the person by a mosquito of the genus Aedes aegypti. This disease has been a global public health problem because a single mosquito can infect up to 300 people and between 50 and 100 million people are infected annually on all continents. Thus, dengue fever is currently a subject of research, whether in the search for vaccines and treatments for the disease or efficient and economical forms of mosquito control. The current study aims to study techniques of multiobjective optimization to assist in solving problems involving the control of the mosquito that transmits dengue fever. The population dynamics of the mosquito is studied in order to understand the epidemic phenomenon and suggest strategies of multiobjective programming for mosquito control. A Multiobjective Genetic Algorithm (MGA_DENGUE) is proposed to solve the optimization model treated here and we discuss the computational results obtained from the application of this technique. Copyright © 2014 Elsevier Inc. All rights reserved.
Implementing embedded artificial intelligence rules within algorithmic programming languages
Feyock, Stefan
1988-01-01
Most integrations of artificial intelligence (AI) capabilities with non-AI (usually FORTRAN-based) application programs require the latter to execute separately to run as a subprogram or, at best, as a coroutine, of the AI system. In many cases, this organization is unacceptable; instead, the requirement is for an AI facility that runs in embedded mode; i.e., is called as subprogram by the application program. The design and implementation of a Prolog-based AI capability that can be invoked in embedded mode are described. The significance of this system is twofold: Provision of Prolog-based symbol-manipulation and deduction facilities makes a powerful symbolic reasoning mechanism available to applications programs written in non-AI languages. The power of the deductive and non-procedural descriptive capabilities of Prolog, which allow the user to describe the problem to be solved, rather than the solution, is to a large extent vitiated by the absence of the standard control structures provided by other languages. Embedding invocations of Prolog rule bases in programs written in non-AI languages makes it possible to put Prolog calls inside DO loops and similar control constructs. The resulting merger of non-AI and AI languages thus results in a symbiotic system in which the advantages of both programming systems are retained, and their deficiencies largely remedied.
DNA algorithms of implementing biomolecular databases on a biological computer.
Chang, Weng-Long; Vasilakos, Athanasios V
2015-01-01
In this paper, DNA algorithms are proposed to perform eight operations of relational algebra (calculus), which include Cartesian product, union, set difference, selection, projection, intersection, join, and division, on biomolecular relational databases.
Rate-control algorithms testing by using video source model
DEFF Research Database (Denmark)
Belyaev, Evgeny; Turlikov, Andrey; Ukhanova, Anna
2008-01-01
In this paper the method of rate control algorithms testing by the use of video source model is suggested. The proposed method allows to significantly improve algorithms testing over the big test set.......In this paper the method of rate control algorithms testing by the use of video source model is suggested. The proposed method allows to significantly improve algorithms testing over the big test set....
IMPLEMENTATION OF INCIDENT DETECTION ALGORITHM BASED ON FUZZY LOGIC IN PTV VISSIM
Directory of Open Access Journals (Sweden)
Andrey Borisovich Nikolaev
2017-05-01
Full Text Available Traffic incident management is a major challenge in the management of movement, requiring constant attention and significant investment, as well as fast and accurate solutions in order to re-establish normal traffic conditions. Automatic control methods are becoming an important factor for the reduction of traffic congestion caused by an arising incident. In this paper, the algorithm of automatic detection incident based on fuzzy logic is implemented in the software PTV VISSIM. 9 different types of tests were conducted on the two lane road section segment with changing traffic conditions: the location of the road accident, loading of traffic. The main conclusion of the research is that the proposed algorithm for the incidents detection demonstrates good performance in the time of detection and false alarms
Data-driven gradient algorithm for high-precision quantum control
Wu, Re-Bing; Chu, Bing; Owens, David H.; Rabitz, Herschel
2018-04-01
In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., grape) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by deterministic or random errors in the system model and the control electronics. In this paper, we show that grape can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-grape) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-grape algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit controlled-not gate.
Research and implementation of finger-vein recognition algorithm
Pang, Zengyao; Yang, Jie; Chen, Yilei; Liu, Yin
2017-06-01
In finger vein image preprocessing, finger angle correction and ROI extraction are important parts of the system. In this paper, we propose an angle correction algorithm based on the centroid of the vein image, and extract the ROI region according to the bidirectional gray projection method. Inspired by the fact that features in those vein areas have similar appearance as valleys, a novel method was proposed to extract center and width of palm vein based on multi-directional gradients, which is easy-computing, quick and stable. On this basis, an encoding method was designed to determine the gray value distribution of texture image. This algorithm could effectively overcome the edge of the texture extraction error. Finally, the system was equipped with higher robustness and recognition accuracy by utilizing fuzzy threshold determination and global gray value matching algorithm. Experimental results on pairs of matched palm images show that, the proposed method has a EER with 3.21% extracts features at the speed of 27ms per image. It can be concluded that the proposed algorithm has obvious advantages in grain extraction efficiency, matching accuracy and algorithm efficiency.
Automatic Tuning of PID Controller for a 1-D Levitation System Using a Genetic Algorithm
DEFF Research Database (Denmark)
Yang, Zhenyu; Pedersen, Gerulf K.m.
2006-01-01
The automatic PID control design for a onedimensional magnetic levitation system is investigated. The PID controller is automatically tuned using the non-dominated sorting genetic algorithm (NSGA-II) based on a nonlinear system model. The developed controller is digitally implemented and tested...
RSA Algorithm. Features of the C # Object Programming Implementation
Directory of Open Access Journals (Sweden)
Elena V. Staver
2012-08-01
Full Text Available Public-key algorithms depend on the encryption key and the decoding key, connected with the first one. For data public key encryption, the text is divided into blocks, each of which is represented as a number. To decrypt the message a secret key is used.
Computationally efficient algorithms for statistical image processing : implementation in R
Langovoy, M.; Wittich, O.
2010-01-01
In the series of our earlier papers on the subject, we proposed a novel statistical hypothesis testing method for detection of objects in noisy images. The method uses results from percolation theory and random graph theory. We developed algorithms that allowed to detect objects of unknown shapes in
Implementing the conjugate gradient algorithm on multi-core systems
Wiggers, W.A.; Bakker, Vincent; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria; Nurmi, J.; Takala, J.; Vainio, O.
2007-01-01
In linear solvers, like the conjugate gradient algorithm, sparse-matrix vector multiplication is an important kernel. Due to the sparseness of the matrices, the solver runs relatively slow. For digital optical tomography (DOT), a large set of linear equations have to be solved which currently takes
Implementations of back propagation algorithm in ecosystems applications
Ali, Khalda F.; Sulaiman, Riza; Elamir, Amir Mohamed
2015-05-01
Artificial Neural Networks (ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is in solving problems which are too complex for conventional technologies, that do not have an algorithmic solutions or their algorithmic Solutions is too complex to be found. In general, because of their abstraction from the biological brain, ANNs are developed from concept that evolved in the late twentieth century neuro-physiological experiments on the cells of the human brain to overcome the perceived inadequacies with conventional ecological data analysis methods. ANNs have gained increasing attention in ecosystems applications, because of ANN's capacity to detect patterns in data through non-linear relationships, this characteristic confers them a superior predictive ability. In this research, ANNs is applied in an ecological system analysis. The neural networks use the well known Back Propagation (BP) Algorithm with the Delta Rule for adaptation of the system. The Back Propagation (BP) training Algorithm is an effective analytical method for adaptation of the ecosystems applications, the main reason because of their capacity to detect patterns in data through non-linear relationships. This characteristic confers them a superior predicting ability. The BP algorithm uses supervised learning, which means that we provide the algorithm with examples of the inputs and outputs we want the network to compute, and then the error is calculated. The idea of the back propagation algorithm is to reduce this error, until the ANNs learns the training data. The training begins with random weights, and the goal is to adjust them so that the error will be minimal. This research evaluated the use of artificial neural networks (ANNs) techniques in an ecological system analysis and modeling. The experimental results from this research demonstrate that an artificial neural network system can be trained to act as an expert
Photovoltaic Cells Mppt Algorithm and Design of Controller Monitoring System
Meng, X. Z.; Feng, H. B.
2017-10-01
This paper combined the advantages of each maximum power point tracking (MPPT) algorithm, put forward a kind of algorithm with higher speed and higher precision, based on this algorithm designed a maximum power point tracking controller with ARM. The controller, communication technology and PC software formed a control system. Results of the simulation and experiment showed that the process of maximum power tracking was effective, and the system was stable.
Implementing peak load reduction algorithms for household electrical appliances
International Nuclear Information System (INIS)
Dlamini, Ndumiso G.; Cromieres, Fabien
2012-01-01
Considering household appliance automation for reduction of household peak power demand, this study explored aspects of the interaction between household automation technology and human behaviour. Given a programmable household appliance switching system, and user-reported appliance use times, we simulated the load reduction effectiveness of three types of algorithms, which were applied at both the single household level and across all 30 households. All three algorithms effected significant load reductions, while the least-to-highest potential user inconvenience ranking was: coordinating the timing of frequent intermittent loads (algorithm 2); moving period-of-day time-flexible loads to off-peak times (algorithm 1); and applying short-term time delays to avoid high peaks (algorithm 3) (least accommodating). Peak reduction was facilitated by load interruptibility, time of use flexibility and the willingness of users to forgo impulsive appliance use. We conclude that a general factor determining the ability to shift the load due to a particular appliance is the time-buffering between the service delivered and the power demand of an appliance. Time-buffering can be ‘technologically inherent’, due to human habits, or realised by managing user expectations. There are implications for the design of appliances and home automation systems. - Highlights: ► We explored the interaction between appliance automation and human behaviour. ► There is potential for considerable load shifting of household appliances. ► Load shifting for load reduction is eased with increased time buffering. ► Design, human habits and user expectations all influence time buffering. ► Certain automation and appliance design features can facilitate load shifting.
Design and implementation of robust controllers for a gait trainer.
Wang, F C; Yu, C H; Chou, T Y
2009-08-01
This paper applies robust algorithms to control an active gait trainer for children with walking disabilities. Compared with traditional rehabilitation procedures, in which two or three trainers are required to assist the patient, a motor-driven mechanism was constructed to improve the efficiency of the procedures. First, a six-bar mechanism was designed and constructed to mimic the trajectory of children's ankles in walking. Second, system identification techniques were applied to obtain system transfer functions at different operating points by experiments. Third, robust control algorithms were used to design Hinfinity robust controllers for the system. Finally, the designed controllers were implemented to verify experimentally the system performance. From the results, the proposed robust control strategies are shown to be effective.
Maintenance of Process Control Algorithms based on Dynamic Program Slicing
DEFF Research Database (Denmark)
Hansen, Ole Fink; Andersen, Nils Axel; Ravn, Ole
2010-01-01
Today’s industrial control systems gradually lose performance after installation and must be regularly maintained by means of adjusting parameters and modifying the control algorithm, in order to regain high performance. Industrial control algorithms are complex software systems, and it is partic...
Comparison Of Hybrid Sorting Algorithms Implemented On Different Parallel Hardware Platforms
Directory of Open Access Journals (Sweden)
Dominik Zurek
2013-01-01
Full Text Available Sorting is a common problem in computer science. There are lot of well-known sorting algorithms created for sequential execution on a single processor. Recently, hardware platforms enable to create wide parallel algorithms. We have standard processors consist of multiple cores and hardware accelerators like GPU. The graphic cards with their parallel architecture give new possibility to speed up many algorithms. In this paper we describe results of implementation of a few different sorting algorithms on GPU cards and multicore processors. Then hybrid algorithm will be presented which consists of parts executed on both platforms, standard CPU and GPU.
IMPLEMENTATION OF OBJECT TRACKING ALGORITHMS ON THE BASIS OF CUDA TECHNOLOGY
Directory of Open Access Journals (Sweden)
B. A. Zalesky
2014-01-01
Full Text Available A fast version of correlation algorithm to track objects on video-sequences made by a nonstabilized camcorder is presented. The algorithm is based on comparison of local correlations of the object image and regions of video-frames. The algorithm is implemented in programming technology CUDA. Application of CUDA allowed to attain real time execution of the algorithm. To improve its precision and stability, a robust version of the Kalman filter has been incorporated into the flowchart. Tests showed applicability of the algorithm to practical object tracking.
Comparison of spike-sorting algorithms for future hardware implementation.
Gibson, Sarah; Judy, Jack W; Markovic, Dejan
2008-01-01
Applications such as brain-machine interfaces require hardware spike sorting in order to (1) obtain single-unit activity and (2) perform data reduction for wireless transmission of data. Such systems must be low-power, low-area, high-accuracy, automatic, and able to operate in real time. Several detection and feature extraction algorithms for spike sorting are described briefly and evaluated in terms of accuracy versus computational complexity. The nonlinear energy operator method is chosen as the optimal spike detection algorithm, being most robust over noise and relatively simple. The discrete derivatives method [1] is chosen as the optimal feature extraction method, maintaining high accuracy across SNRs with a complexity orders of magnitude less than that of traditional methods such as PCA.
Implementation of dictionary pair learning algorithm for image quality improvement
Vimala, C.; Aruna Priya, P.
2018-04-01
This paper proposes an image denoising on dictionary pair learning algorithm. Visual information is transmitted in the form of digital images is becoming a major method of communication in the modern age, but the image obtained after transmissions is often corrupted with noise. The received image needs processing before it can be used in applications. Image denoising involves the manipulation of the image data to produce a visually high quality image.
Fuzzy logic and A* algorithm implementation on goat foraging games
Harsani, P.; Mulyana, I.; Zakaria, D.
2018-03-01
Goat foraging is one of the games that apply the search techniques within the scope of artificial intelligence. This game involves several actors including players and enemies. The method used in this research is fuzzy logic and Algorithm A*. Fuzzy logic is used to determine enemy behaviour. The A* algorithm is used to search for the shortest path. There are two input variables: the distance between the player and the enemy and the anger level of the goat. The output variable that has been defined is the enemy behaviour. The A* algorithm is used to determine the closest path between the player and the enemy and define the enemy's escape path to avoid the player. There are 4 types of enemies namely farmers, planters, farmers and sellers of plants. Players are goats that aims to find a meal that is a plant. In this game goats aim to spend grass in the garden in the form of a maze while avoiding the enemy. The game provides an application of artificial intelligence and is made in four difficulty levels.
An implementation of signal processing algorithms for ultrasonic NDE
International Nuclear Information System (INIS)
Ericsson, L.; Stepinski, T.
1994-01-01
Probability of detection flaws during ultrasonic pulse-echo inspection is often limited by the presence of backscattered echoes from the material structure. A digital signal processing technique for removal of this material noise, referred to as split spectrum processing (SSP), has been developed and verified using laboratory experiments during the last decade. The authors have performed recently a limited scale evaluation of various SSP techniques for ultrasonic signals acquired during the inspection of welds in austenitic steel. They have obtained very encouraging results that indicate promising capabilities of the SSP for inspection of nuclear power plants. Thus, a more extensive investigation of the technique using large amounts of ultrasonic data is motivated. This analysis should employ different combinations of materials, flaws and transducers. Due to the considerable number of ultrasonic signals required to verify the technique for future practical use, a custom-made computer software is necessary. At the request of the Swedish nuclear power industry the authors have developed such a program package. The program provides a user-friendly graphical interface and is intended for processing of B-scan data in a flexible way. Assembled in the program are a number of signal processing algorithms including traditional Split Spectrum Processing and the more recent Cut Spectrum Processing algorithm developed by them. The program and some results obtained using the various algorithms are presented in the paper
Implementation of Period-Finding Algorithm by Means of Simulating Quantum Fourier Transform
Directory of Open Access Journals (Sweden)
Zohreh Moghareh Abed
2010-01-01
Full Text Available In this paper, we introduce quantum fourier transform as a key ingredient for many useful algorithms. These algorithms make a solution for problems which is considered to be intractable problems on a classical computer. Quantum Fourier transform is propounded as a key for quantum phase estimation algorithm. In this paper our aim is the implementation of period-finding algorithm.Quantum computer solves this problem, exponentially faster than classical one. Quantum phase estimation algorithm is the key for the period-finding problem .Therefore, by means of simulating quantum Fourier transform, we are able to implement the period-finding algorithm. In this paper, the simulation of quantum Fourier transform is carried out by Matlab software.
Optimal Pid Controller Design Using Adaptive Vurpso Algorithm
Zirkohi, Majid Moradi
2015-04-01
The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.
Research on intelligent algorithm of electro - hydraulic servo control system
Wang, Yannian; Zhao, Yuhui; Liu, Chengtao
2017-09-01
In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.
Caliko: An Inverse Kinematics Software Library Implementation of the FABRIK Algorithm
Lansley, Alastair; Vamplew, Peter; Smith, Philip; Foale, Cameron
2016-01-01
The Caliko library is an implementation of the FABRIK (Forward And Backward Reaching Inverse Kinematics) algorithm written in Java. The inverse kinematics (IK) algorithm is implemented in both 2D and 3D, and incorporates a variety of joint constraints as well as the ability to connect multiple IK chains together in a hierarchy. The library allows for the simple creation and solving of multiple IK chains as well as visualisation of these solutions. It is licensed under the MIT software license...
International Nuclear Information System (INIS)
Bastiens, K.; Lemahieu, I.
1994-01-01
The application of a maximum entropy reconstruction algorithm to PET images requires a lot of computing resources. A parallel implementation could seriously reduce the execution time. However, programming a parallel application is still a non trivial task, needing specialized people. In this paper a programming environment based on a visual programming language is used for a parallel implementation of the reconstruction algorithm. This programming environment allows less experienced programmers to use the performance of multiprocessor systems. (authors)
Energy Technology Data Exchange (ETDEWEB)
Bastiens, K; Lemahieu, I [University of Ghent - ELIS Department, St. Pietersnieuwstraat 41, B-9000 Ghent (Belgium)
1994-12-31
The application of a maximum entropy reconstruction algorithm to PET images requires a lot of computing resources. A parallel implementation could seriously reduce the execution time. However, programming a parallel application is still a non trivial task, needing specialized people. In this paper a programming environment based on a visual programming language is used for a parallel implementation of the reconstruction algorithm. This programming environment allows less experienced programmers to use the performance of multiprocessor systems. (authors). 8 refs, 3 figs, 1 tab.
Implementation of hierarchical control in DC microgrids
DEFF Research Database (Denmark)
Jin, Chi; Wang, Peng; Xiao, Jianfang
2014-01-01
of Technology, Singapore. The coordination control among multiple dc sources and energy storages is implemented using a novel hierarchical control technique. The bus voltage essentially acts as an indicator of supply-demand balance. A wireless control is implemented for the reliable operation of the grid....... A reasonable compromise between the maximum power harvest and effective battery management is further enhanced using the coordination control based on a central energy management system. The feasibility and effectiveness of the proposed control strategies have been tested by a dc microgrid in WERL....
Power inverter implementing phase skipping control
Somani, Utsav; Amirahmadi, Ahmadreza; Jourdan, Charles; Batarseh, Issa
2016-10-18
A power inverter includes a DC/AC inverter having first, second and third phase circuitry coupled to receive power from a power source. A controller is coupled to a driver for each of the first, second and third phase circuitry (control input drivers). The controller includes an associated memory storing a phase skipping control algorithm, wherein the controller is coupled to receive updating information including a power level generated by the power source. The drivers are coupled to control inputs of the first, second and third phase circuitry, where the drivers are configured for receiving phase skipping control signals from the controller and outputting mode selection signals configured to dynamically select an operating mode for the DC/AC inverter from a Normal Control operation and a Phase Skipping Control operation which have different power injection patterns through the first, second and third phase circuitry depending upon the power level.
Algorithms and Methods for High-Performance Model Predictive Control
DEFF Research Database (Denmark)
Frison, Gianluca
routines employed in the numerical tests. The main focus of this thesis is on linear MPC problems. In this thesis, both the algorithms and their implementation are equally important. About the implementation, a novel implementation strategy for the dense linear algebra routines in embedded optimization...... is proposed, aiming at improving the computational performance in case of small matrices. About the algorithms, they are built on top of the proposed linear algebra, and they are tailored to exploit the high-level structure of the MPC problems, with special care on reducing the computational complexity....
Implementation of perceptual aspects in a face recognition algorithm
International Nuclear Information System (INIS)
Crenna, F; Bovio, L; Rossi, G B; Zappa, E; Testa, R; Gasparetto, M
2013-01-01
Automatic face recognition is a biometric technique particularly appreciated in security applications. In fact face recognition presents the opportunity to operate at a low invasive level without the collaboration of the subjects under tests, with face images gathered either from surveillance systems or from specific cameras located in strategic points. The automatic recognition algorithms perform a measurement, on the face images, of a set of specific characteristics of the subject and provide a recognition decision based on the measurement results. Unfortunately several quantities may influence the measurement of the face geometry such as its orientation, the lighting conditions, the expression and so on, affecting the recognition rate. On the other hand human recognition of face is a very robust process far less influenced by the surrounding conditions. For this reason it may be interesting to insert perceptual aspects in an automatic facial-based recognition algorithm to improve its robustness. This paper presents a first study in this direction investigating the correlation between the results of a perception experiment and the facial geometry, estimated by means of the position of a set of repere points
Clinical implementation and evaluation of the Acuros dose calculation algorithm.
Yan, Chenyu; Combine, Anthony G; Bednarz, Greg; Lalonde, Ronald J; Hu, Bin; Dickens, Kathy; Wynn, Raymond; Pavord, Daniel C; Saiful Huq, M
2017-09-01
The main aim of this study is to validate the Acuros XB dose calculation algorithm for a Varian Clinac iX linac in our clinics, and subsequently compare it with the wildely used AAA algorithm. The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were validated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6 cm × 6 cm to 40 cm × 40 cm. Central axis and off-axis points with different depths were chosen for the comparison. In addition, the accuracy of Acuros was evaluated for wedge fields with wedge angles from 15 to 60°. Similarly, variable field sizes for an inhomogeneous phantom were chosen to validate the Acuros algorithm. In addition, doses calculated by Acuros and AAA at the center of lung equivalent tissue from three different VMAT plans were compared to the ion chamber measured doses in QUASAR phantom, and the calculated dose distributions by the two algorithms and their differences on patients were compared. Computation time on VMAT plans was also evaluated for Acuros and AAA. Differences between dose-to-water (calculated by AAA and Acuros XB) and dose-to-medium (calculated by Acuros XB) on patient plans were compared and evaluated. For open 6 MV photon beams on the homogeneous water phantom, both Acuros XB and AAA calculations were within 1% of measurements. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. Testing on the inhomogeneous phantom demonstrated that AAA overestimated doses by up to 8.96% at a point close to lung/solid water interface, while Acuros XB reduced that to 1.64%. The test on QUASAR phantom showed that Acuros achieved better agreement in lung equivalent tissue while AAA underestimated dose for all VMAT plans by up to 2.7%. Acuros XB computation time was about three times faster than AAA for VMAT plans, and
Prototype Implementation of Two Efficient Low-Complexity Digital Predistortion Algorithms
Directory of Open Access Journals (Sweden)
Timo I. Laakso
2008-01-01
Full Text Available Predistortion (PD lineariser for microwave power amplifiers (PAs is an important topic of research. With larger and larger bandwidth as it appears today in modern WiMax standards as well as in multichannel base stations for 3GPP standards, the relatively simple nonlinear effect of a PA becomes a complex memory-including function, severely distorting the output signal. In this contribution, two digital PD algorithms are investigated for the linearisation of microwave PAs in mobile communications. The first one is an efficient and low-complexity algorithm based on a memoryless model, called the simplicial canonical piecewise linear (SCPWL function that describes the static nonlinear characteristic of the PA. The second algorithm is more general, approximating the pre-inverse filter of a nonlinear PA iteratively using a Volterra model. The first simpler algorithm is suitable for compensation of amplitude compression and amplitude-to-phase conversion, for example, in mobile units with relatively small bandwidths. The second algorithm can be used to linearise PAs operating with larger bandwidths, thus exhibiting memory effects, for example, in multichannel base stations. A measurement testbed which includes a transmitter-receiver chain with a microwave PA is built for testing and prototyping of the proposed PD algorithms. In the testing phase, the PD algorithms are implemented using MATLAB (floating-point representation and tested in record-and-playback mode. The iterative PD algorithm is then implemented on a Field Programmable Gate Array (FPGA using fixed-point representation. The FPGA implementation allows the pre-inverse filter to be tested in a real-time mode. Measurement results show excellent linearisation capabilities of both the proposed algorithms in terms of adjacent channel power suppression. It is also shown that the fixed-point FPGA implementation of the iterative algorithm performs as well as the floating-point implementation.
Directory of Open Access Journals (Sweden)
Jinzhi Feng
2015-02-01
Full Text Available A new hierarchical control strategy for active hydropneumatic suspension systems is proposed. This strategy considers the dynamic characteristics of the actuator. The top hierarchy controller uses a combined control scheme: a genetic algorithm- (GA- based self-tuning proportional-integral-derivative controller and a fuzzy logic controller. For practical implementations of the proposed control scheme, a GA-based self-learning process is initiated only when the defined performance index of vehicle dynamics exceeds a certain debounce time threshold. The designed control algorithm is implemented on a virtual prototype and cosimulations are performed with different road disturbance inputs. Cosimulation results show that the active hydropneumatic suspension system designed in this study significantly improves riding comfort characteristics of vehicles. The robustness and adaptability of the proposed controller are also examined when the control system is subjected to extremely rough road conditions.
The research on algorithms for optoelectronic tracking servo control systems
Zhu, Qi-Hai; Zhao, Chang-Ming; Zhu, Zheng; Li, Kun
2016-10-01
The photoelectric servo control system based on PC controllers is mainly used to control the speed and position of the load. This paper analyzed the mathematical modeling and the system identification of the servo system. In the aspect of the control algorithm, the IP regulator, the fuzzy PID, the Active Disturbance Rejection Control (ADRC) and the adaptive algorithms were compared and analyzed. The PI-P control algorithm was proposed in this paper, which not only has the advantages of the PI regulator that can be quickly saturated, but also overcomes the shortcomings of the IP regulator. The control system has a good starting performance and the anti-load ability in a wide range. Experimental results show that the system has good performance under the guarantee of the PI-P control algorithm.
An architecture for implementation of multivariable controllers
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Stoustrup, Jakob
1999-01-01
Browse > Conferences> American Control Conference, Prev | Back to Results | Next » An architecture for implementation of multivariable controllers 786292 searchabstract Niemann, H. ; Stoustrup, J. ; Dept. of Autom., Tech. Univ., Lyngby This paper appears in: American Control Conference, 1999....... Proceedings of the 1999 Issue Date : 1999 Volume : 6 On page(s): 4029 - 4033 vol.6 Location: San Diego, CA Meeting Date : 02 Jun 1999-04 Jun 1999 Print ISBN: 0-7803-4990-3 References Cited: 7 INSPEC Accession Number: 6403075 Digital Object Identifier : 10.1109/ACC.1999.786292 Date of Current Version : 06...... august 2002 Abstract An architecture for implementation of multivariable controllers is presented in this paper. The architecture is based on the Youla-Jabr-Bongiorno-Kucera parameterization of all stabilizing controllers. By using this architecture for implementation of multivariable controllers...
Vision Based Autonomous Robot Navigation Algorithms and Implementations
Chatterjee, Amitava; Nirmal Singh, N
2013-01-01
This book is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book descri...
An implementation of the relational k-means algorithm
Szalkai, Balázs
2013-01-01
A C# implementation of a generalized k-means variant called relational k-means is described here. Relational k-means is a generalization of the well-known k-means clustering method which works for non-Euclidean scenarios as well. The input is an arbitrary distance matrix, as opposed to the traditional k-means method, where the clustered objects need to be identified with vectors.
Model-Free Adaptive Control Algorithm with Data Dropout Compensation
Directory of Open Access Journals (Sweden)
Xuhui Bu
2012-01-01
Full Text Available The convergence of model-free adaptive control (MFAC algorithm can be guaranteed when the system is subject to measurement data dropout. The system output convergent speed gets slower as dropout rate increases. This paper proposes a MFAC algorithm with data compensation. The missing data is first estimated using the dynamical linearization method, and then the estimated value is introduced to update control input. The convergence analysis of the proposed MFAC algorithm is given, and the effectiveness is also validated by simulations. It is shown that the proposed algorithm can compensate the effect of the data dropout, and the better output performance can be obtained.
On distribution reduction and algorithm implementation in inconsistent ordered information systems.
Zhang, Yanqin
2014-01-01
As one part of our work in ordered information systems, distribution reduction is studied in inconsistent ordered information systems (OISs). Some important properties on distribution reduction are studied and discussed. The dominance matrix is restated for reduction acquisition in dominance relations based information systems. Matrix algorithm for distribution reduction acquisition is stepped. And program is implemented by the algorithm. The approach provides an effective tool for the theoretical research and the applications for ordered information systems in practices. For more detailed and valid illustrations, cases are employed to explain and verify the algorithm and the program which shows the effectiveness of the algorithm in complicated information systems.
Implementation of software-based sensor linearization algorithms on low-cost microcontrollers.
Erdem, Hamit
2010-10-01
Nonlinear sensors and microcontrollers are used in many embedded system designs. As the input-output characteristic of most sensors is nonlinear in nature, obtaining data from a nonlinear sensor by using an integer microcontroller has always been a design challenge. This paper discusses the implementation of six software-based sensor linearization algorithms for low-cost microcontrollers. The comparative study of the linearization algorithms is performed by using a nonlinear optical distance-measuring sensor. The performance of the algorithms is examined with respect to memory space usage, linearization accuracy and algorithm execution time. The implementation and comparison results can be used for selection of a linearization algorithm based on the sensor transfer function, expected linearization accuracy and microcontroller capacity. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Jin, Minglei; Jin, Weiqi; Li, Yiyang; Li, Shuo
2015-08-01
In this paper, we propose a novel scene-based non-uniformity correction algorithm for infrared image processing-temporal high-pass non-uniformity correction algorithm based on grayscale mapping (THP and GM). The main sources of non-uniformity are: (1) detector fabrication inaccuracies; (2) non-linearity and variations in the read-out electronics and (3) optical path effects. The non-uniformity will be reduced by non-uniformity correction (NUC) algorithms. The NUC algorithms are often divided into calibration-based non-uniformity correction (CBNUC) algorithms and scene-based non-uniformity correction (SBNUC) algorithms. As non-uniformity drifts temporally, CBNUC algorithms must be repeated by inserting a uniform radiation source which SBNUC algorithms do not need into the view, so the SBNUC algorithm becomes an essential part of infrared imaging system. The SBNUC algorithms' poor robustness often leads two defects: artifacts and over-correction, meanwhile due to complicated calculation process and large storage consumption, hardware implementation of the SBNUC algorithms is difficult, especially in Field Programmable Gate Array (FPGA) platform. The THP and GM algorithm proposed in this paper can eliminate the non-uniformity without causing defects. The hardware implementation of the algorithm only based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay: less than 20 lines, it can be transplanted to a variety of infrared detectors equipped with FPGA image processing module, it can reduce the stripe non-uniformity and the ripple non-uniformity.
A GPU-paralleled implementation of an enhanced face recognition algorithm
Chen, Hao; Liu, Xiyang; Shao, Shuai; Zan, Jiguo
2013-03-01
Face recognition algorithm based on compressed sensing and sparse representation is hotly argued in these years. The scheme of this algorithm increases recognition rate as well as anti-noise capability. However, the computational cost is expensive and has become a main restricting factor for real world applications. In this paper, we introduce a GPU-accelerated hybrid variant of face recognition algorithm named parallel face recognition algorithm (pFRA). We describe here how to carry out parallel optimization design to take full advantage of many-core structure of a GPU. The pFRA is tested and compared with several other implementations under different data sample size. Finally, Our pFRA, implemented with NVIDIA GPU and Computer Unified Device Architecture (CUDA) programming model, achieves a significant speedup over the traditional CPU implementations.
International Nuclear Information System (INIS)
Jalmuzna, W.
2006-02-01
The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short Xray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF system in VUV FEL experiment based on modern FPGA chips It is being developed by ELHEP group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryomodule in the experiment. The device can be also used as the simulator of the cavity and testbench for other devices. Flexibility and computation power of this device allow implementation of fast mathematical algorithms. This paper describes the concept, implementation and tests of universal mathematical library for FPGA algorithm implementation. It consists of many useful components such as IQ demodulator, division block, library for complex and floating point operations, etc. It is able to speed up implementation time of many complicated algorithms. Library have already been tested using real accelerator signals and the performance achieved is satisfactory. (Orig.)
Energy Technology Data Exchange (ETDEWEB)
Jalmuzna, W.
2006-02-15
The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short Xray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF system in VUV FEL experiment based on modern FPGA chips It is being developed by ELHEP group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryomodule in the experiment. The device can be also used as the simulator of the cavity and testbench for other devices. Flexibility and computation power of this device allow implementation of fast mathematical algorithms. This paper describes the concept, implementation and tests of universal mathematical library for FPGA algorithm implementation. It consists of many useful components such as IQ demodulator, division block, library for complex and floating point operations, etc. It is able to speed up implementation time of many complicated algorithms. Library have already been tested using real accelerator signals and the performance achieved is satisfactory. (Orig.)
DEFF Research Database (Denmark)
Dollerup, Niels; Jepsen, Michael S.; Damkilde, Lars
2013-01-01
The artide describes a robust and effective implementation of the interior point optimization algorithm. The adopted method includes a precalculation step, which reduces the number of variables by fulfilling the equilibrium equations a priori. This work presents an improved implementation of the ...
Quantum algorithms and quantum maps - implementation and error correction
International Nuclear Information System (INIS)
Alber, G.; Shepelyansky, D.
2005-01-01
Full text: We investigate the dynamics of the quantum tent map under the influence of errors and explore the possibilities of quantum error correcting methods for the purpose of stabilizing this quantum algorithm. It is known that static but uncontrollable inter-qubit couplings between the qubits of a quantum information processor lead to a rapid Gaussian decay of the fidelity of the quantum state. We present a new error correcting method which slows down this fidelity decay to a linear-in-time exponential one. One of its advantages is that it does not require redundancy so that all physical qubits involved can be used for logical purposes. We also study the influence of decoherence due to spontaneous decay processes which can be corrected by quantum jump-codes. It is demonstrated how universal encoding can be performed in these code spaces. For this purpose we discuss a new entanglement gate which can be used for lowest level encoding in concatenated error-correcting architectures. (author)
Implementation of a virtual laryngoscope system using efficient reconstruction algorithms.
Luo, Shouhua; Yan, Yuling
2009-08-01
Conventional fiberoptic laryngoscope may cause discomfort to the patient and in some cases it can lead to side effects that include perforation, infection and hemorrhage. Virtual laryngoscopy (VL) can overcome this problem and further it may lower the risk of operation failures. Very few virtual endoscope (VE) based investigations of the larynx have been described in the literature. CT data sets from a healthy subject were used for the VL studies. An algorithm of preprocessing and region-growing for 3-D image segmentation is developed. An octree based approach is applied in our VL system which facilitates a rapid construction of iso-surfaces. Some locating techniques are used for fast rendering and navigation (fly-through). Our VL visualization system provides for real time and efficient 'fly-through' navigation. The virtual camera can be arranged so that it moves along the airway in either direction. Snap shots were taken during fly-throughs. The system can automatically adjust the direction of the virtual camera and prevent collisions of the camera and the wall of the airway. A virtual laryngoscope (VL) system using OpenGL (Open Graphics Library) platform for interactive rendering and 3D visualization of the laryngeal framework and upper airway is established. OpenGL is supported on major operating systems and works with every major windowing system. The VL system runs on regular PC workstations and was successfully tested and evaluated using CT data from a normal subject.
Implementation of neural network based non-linear predictive control
DEFF Research Database (Denmark)
Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole
1999-01-01
This paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems, including open-loop unstable and non-minimum phase systems, but has also been proposed to be extended for the control...... of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...... on an efficient quasi-Newton algorithm. The performance is demonstrated on a pneumatic servo system....
Energy Optimal Control Strategy of PHEV Based on PMP Algorithm
Directory of Open Access Journals (Sweden)
Tiezhou Wu
2017-01-01
Full Text Available Under the global voice of “energy saving” and the current boom in the development of energy storage technology at home and abroad, energy optimal control of the whole hybrid electric vehicle power system, as one of the core technologies of electric vehicles, is bound to become a hot target of “clean energy” vehicle development and research. This paper considers the constraints to the performance of energy storage system in Parallel Hybrid Electric Vehicle (PHEV, from which lithium-ion battery frequently charges/discharges, PHEV largely consumes energy of fuel, and their are difficulty in energy recovery and other issues in a single cycle; the research uses lithium-ion battery combined with super-capacitor (SC, which is hybrid energy storage system (Li-SC HESS, working together with internal combustion engine (ICE to drive PHEV. Combined with PSO-PI controller and Li-SC HESS internal power limited management approach, the research proposes the PHEV energy optimal control strategy. It is based on revised Pontryagin’s minimum principle (PMP algorithm, which establishes the PHEV vehicle simulation model through ADVISOR software and verifies the effectiveness and feasibility. Finally, the results show that the energy optimization control strategy can improve the instantaneity of tracking PHEV minimum fuel consumption track, implement energy saving, and prolong the life of lithium-ion batteries and thereby can improve hybrid energy storage system performance.
A controllable sensor management algorithm capable of learning
Osadciw, Lisa A.; Veeramacheneni, Kalyan K.
2005-03-01
Sensor management technology progress is challenged by the geographic space it spans, the heterogeneity of the sensors, and the real-time timeframes within which plans controlling the assets are executed. This paper presents a new sensor management paradigm and demonstrates its application in a sensor management algorithm designed for a biometric access control system. This approach consists of an artificial intelligence (AI) algorithm focused on uncertainty measures, which makes the high level decisions to reduce uncertainties and interfaces with the user, integrated cohesively with a bottom up evolutionary algorithm, which optimizes the sensor network"s operation as determined by the AI algorithm. The sensor management algorithm presented is composed of a Bayesian network, the AI algorithm component, and a swarm optimization algorithm, the evolutionary algorithm. Thus, the algorithm can change its own performance goals in real-time and will modify its own decisions based on observed measures within the sensor network. The definition of the measures as well as the Bayesian network determine the robustness of the algorithm and its utility in reacting dynamically to changes in the global system.
Hardware Implementation of a Modified Delay-Coordinate Mapping-Based QRS Complex Detection Algorithm
Directory of Open Access Journals (Sweden)
Andrej Zemva
2007-01-01
Full Text Available We present a modified delay-coordinate mapping-based QRS complex detection algorithm, suitable for hardware implementation. In the original algorithm, the phase-space portrait of an electrocardiogram signal is reconstructed in a two-dimensional plane using the method of delays. Geometrical properties of the obtained phase-space portrait are exploited for QRS complex detection. In our solution, a bandpass filter is used for ECG signal prefiltering and an improved method for detection threshold-level calculation is utilized. We developed the algorithm on the MIT-BIH Arrhythmia Database (sensitivity of 99.82% and positive predictivity of 99.82% and tested it on the long-term ST database (sensitivity of 99.72% and positive predictivity of 99.37%. Our algorithm outperforms several well-known QRS complex detection algorithms, including the original algorithm.
Signal processing for 5G algorithms and implementations
Luo, Fa-Long
2016-01-01
A comprehensive and invaluable guide to 5G technology, implementation and practice in one single volume. For all things 5G, this book is a must-read. Signal processing techniques have played the most important role in wireless communications since the second generation of cellular systems. It is anticipated that new techniques employed in 5G wireless networks will not only improve peak service rates significantly, but also enhance capacity, coverage, reliability , low-latency, efficiency, flexibility, compatibility and convergence to meet the increasing demands imposed by applications such as big data, cloud service, machine-to-machine (M2M) and mission-critical communications. This book is a comprehensive and detailed guide to all signal processing techniques employed in 5G wireless networks. Uniquely organized into four categories, New Modulation and &n sp;Coding, New Spatial Processing, New Spectrum Opportunities and New System-level Enabling Technologies, it covers everything from network architecture...
FUZZY LOGIC CONTROLLER IMPLEMENTATION FOR PHOTOVOLTAIC STATION
Directory of Open Access Journals (Sweden)
Imad Zein
2014-01-01
Full Text Available Solar panels have a nonlinear voltage-current characteristic, with a distinct maximum power point (MPP, which depends on the environmental factors, such as temperature and irradiation. In order to continuously harvest maximum power from the solar panels, they have to operate at their MPP despite the inevitable changes in the environment. This is why the controllers of all solar power electronic converters employ some method for maximum power point tracking (MPPT . Over the past years many MPPT techniques have been published and based on that the main paper’s objective is to analyze one of the most promising MPPT control algorithms: fuzzy logic controller.
A Novel Method to Implement the Matrix Pencil Super Resolution Algorithm for Indoor Positioning
Directory of Open Access Journals (Sweden)
Tariq Jamil Saifullah Khanzada
2011-10-01
Full Text Available This article highlights the estimation of the results for the algorithms implemented in order to estimate the delays and distances for the indoor positioning system. The data sets for the transmitted and received signals are captured at a typical outdoor and indoor area. The estimation super resolution algorithms are applied. Different state of art and super resolution techniques based algorithms are applied to avail the optimal estimates of the delays and distances between the transmitted and received signals and a novel method for matrix pencil algorithm is devised. The algorithms perform variably at different scenarios of transmitted and received positions. Two scenarios are experienced, for the single antenna scenario the super resolution techniques like ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique and theMatrix Pencil algorithms give optimal performance compared to the conventional techniques. In two antenna scenario RootMUSIC and Matrix Pencil algorithm performed better than other algorithms for the distance estimation, however, the accuracy of all the algorithms is worst than the single antenna scenario. In all cases our devised Matrix Pencil algorithm achieved the best estimation results.
Algorithm improvement for phase control of subharmonic buncher
International Nuclear Information System (INIS)
Zhang Junqiang; Yu Luyang; Yin Chongxian; Zhao Minghua; Zhong Shaopeng
2011-01-01
To realize digital phase control of subharmonic buncher,a low level radio frequency control system using down converter, IQ modulator and demodulator techniques, and commercial PXI system, was developed on the platform of LabVIEW. A single-neuron adaptive PID (proportional-integral-derivative) control algorithm with ability of self learning was adopted, satisfying the requirements of phase stability. By comparison with the traditional PID algorithm in field testing, the new algorithm has good stability, fast response and strong anti-interference ability. (authors)
Numerical Algorithms for Deterministic Impulse Control Models with Applications
Grass, D.; Chahim, M.
2012-01-01
Abstract: In this paper we describe three different algorithms, from which two (as far as we know) are new in the literature. We take both the size of the jump as the jump times as decision variables. The first (new) algorithm considers an Impulse Control problem as a (multipoint) Boundary Value
Implementation of an Algorithm for Prosthetic Joint Infection: Deviations and Problems.
Mühlhofer, Heinrich M L; Kanz, Karl-Georg; Pohlig, Florian; Lenze, Ulrich; Lenze, Florian; Toepfer, Andreas; von Eisenhart-Rothe, Ruediger; Schauwecker, Johannes
The outcome of revision surgery in arthroplasty is based on a precise diagnosis. In addition, the treatment varies based on whether the prosthetic failure is caused by aseptic or septic loosening. Algorithms can help to identify periprosthetic joint infections (PJI) and standardize diagnostic steps, however, algorithms tend to oversimplify the treatment of complex cases. We conducted a process analysis during the implementation of a PJI algorithm to determine problems and deviations associated with the implementation of this algorithm. Fifty patients who were treated after implementing a standardized algorithm were monitored retrospectively. Their treatment plans and diagnostic cascades were analyzed for deviations from the implemented algorithm. Each diagnostic procedure was recorded, compared with the algorithm, and evaluated statistically. We detected 52 deviations while treating 50 patients. In 25 cases, no discrepancy was observed. Synovial fluid aspiration was not performed in 31.8% of patients (95% confidence interval [CI], 18.1%-45.6%), while white blood cell counts (WBCs) and neutrophil differentiation were assessed in 54.5% of patients (95% CI, 39.8%-69.3%). We also observed that the prolonged incubation of cultures was not requested in 13.6% of patients (95% CI, 3.5%-23.8%). In seven of 13 cases (63.6%; 95% CI, 35.2%-92.1%), arthroscopic biopsy was performed; 6 arthroscopies were performed in discordance with the algorithm (12%; 95% CI, 3%-21%). Self-critical analysis of diagnostic processes and monitoring of deviations using algorithms are important and could increase the quality of treatment by revealing recurring faults.
Quantum computation: algorithms and implementation in quantum dot devices
Gamble, John King
In this thesis, we explore several aspects of both the software and hardware of quantum computation. First, we examine the computational power of multi-particle quantum random walks in terms of distinguishing mathematical graphs. We study both interacting and non-interacting multi-particle walks on strongly regular graphs, proving some limitations on distinguishing powers and presenting extensive numerical evidence indicative of interactions providing more distinguishing power. We then study the recently proposed adiabatic quantum algorithm for Google PageRank, and show that it exhibits power-law scaling for realistic WWW-like graphs. Turning to hardware, we next analyze the thermal physics of two nearby 2D electron gas (2DEG), and show that an analogue of the Coulomb drag effect exists for heat transfer. In some distance and temperature, this heat transfer is more significant than phonon dissipation channels. After that, we study the dephasing of two-electron states in a single silicon quantum dot. Specifically, we consider dephasing due to the electron-phonon coupling and charge noise, separately treating orbital and valley excitations. In an ideal system, dephasing due to charge noise is strongly suppressed due to a vanishing dipole moment. However, introduction of disorder or anharmonicity leads to large effective dipole moments, and hence possibly strong dephasing. Building on this work, we next consider more realistic systems, including structural disorder systems. We present experiment and theory, which demonstrate energy levels that vary with quantum dot translation, implying a structurally disordered system. Finally, we turn to the issues of valley mixing and valley-orbit hybridization, which occurs due to atomic-scale disorder at quantum well interfaces. We develop a new theoretical approach to study these effects, which we name the disorder-expansion technique. We demonstrate that this method successfully reproduces atomistic tight-binding techniques
Dynamic Algorithm for LQGPC Predictive Control
DEFF Research Database (Denmark)
Hangstrup, M.; Ordys, A.W.; Grimble, M.J.
1998-01-01
In this paper the optimal control law is derived for a multi-variable state space Linear Quadratic Gaussian Predictive Controller (LQGPC). A dynamic performance index is utilized resulting in an optimal steady state controller. Knowledge of future reference values is incorporated into the control......In this paper the optimal control law is derived for a multi-variable state space Linear Quadratic Gaussian Predictive Controller (LQGPC). A dynamic performance index is utilized resulting in an optimal steady state controller. Knowledge of future reference values is incorporated...... into the controller design and the solution is derived using the method of Lagrange multipliers. It is shown how well-known GPC controller can be obtained as a special case of the LQGPC controller design. The important advantage of using the LQGPC framework for designing predictive, e.g. GPS is that LQGPC enables...
International Nuclear Information System (INIS)
Russell, K.R.; Saxner, M.; Ahnesjoe, A.; Montelius, A.; Grusell, E.; Dahlgren, C.V.
2000-01-01
The implementation of two algorithms for calculating dose distributions for radiation therapy treatment planning of intermediate energy proton beams is described. A pencil kernel algorithm and a depth penetration algorithm have been incorporated into a commercial three-dimensional treatment planning system (Helax-TMS, Helax AB, Sweden) to allow conformal planning techniques using irregularly shaped fields, proton range modulation, range modification and dose calculation for non-coplanar beams. The pencil kernel algorithm is developed from the Fermi-Eyges formalism and Moliere multiple-scattering theory with range straggling corrections applied. The depth penetration algorithm is based on the energy loss in the continuous slowing down approximation with simple correction factors applied to the beam penumbra region and has been implemented for fast, interactive treatment planning. Modelling of the effects of air gaps and range modifying device thickness and position are implicit to both algorithms. Measured and calculated dose values are compared for a therapeutic proton beam in both homogeneous and heterogeneous phantoms of varying complexity. Both algorithms model the beam penumbra as a function of depth in a homogeneous phantom with acceptable accuracy. Results show that the pencil kernel algorithm is required for modelling the dose perturbation effects from scattering in heterogeneous media. (author)
Hybrid sparse blind deconvolution: an implementation of SOOT algorithm to real data
Pakmanesh, Parvaneh; Goudarzi, Alireza; Kourki, Meisam
2018-06-01
Getting information of seismic data depends on deconvolution as an important processing step; it provides the reflectivity series by signal compression. This compression can be obtained by removing the wavelet effects on the traces. The recently blind deconvolution has provided reliable performance for sparse signal recovery. In this study, two deconvolution methods have been implemented to the seismic data; the convolution of these methods provides a robust spiking deconvolution approach. This hybrid deconvolution is applied using the sparse deconvolution (MM algorithm) and the Smoothed-One-Over-Two algorithm (SOOT) in a chain. The MM algorithm is based on the minimization of the cost function defined by standards l1 and l2. After applying the two algorithms to the seismic data, the SOOT algorithm provided well-compressed data with a higher resolution than the MM algorithm. The SOOT algorithm requires initial values to be applied for real data, such as the wavelet coefficients and reflectivity series that can be achieved through the MM algorithm. The computational cost of the hybrid method is high, and it is necessary to be implemented on post-stack or pre-stack seismic data of complex structure regions.
Vela, Adan Ernesto
2011-12-01
From 2010 to 2030, the number of instrument flight rules aircraft operations handled by Federal Aviation Administration en route traffic centers is predicted to increase from approximately 39 million flights to 64 million flights. The projected growth in air transportation demand is likely to result in traffic levels that exceed the abilities of the unaided air traffic controller in managing, separating, and providing services to aircraft. Consequently, the Federal Aviation Administration, and other air navigation service providers around the world, are making several efforts to improve the capacity and throughput of existing airspaces. Ultimately, the stated goal of the Federal Aviation Administration is to triple the available capacity of the National Airspace System by 2025. In an effort to satisfy air traffic demand through the increase of airspace capacity, air navigation service providers are considering the inclusion of advisory conflict-detection and resolution systems. In a human-in-the-loop framework, advisory conflict-detection and resolution decision-support tools identify potential conflicts and propose resolution commands for the air traffic controller to verify and issue to aircraft. A number of researchers and air navigation service providers hypothesize that the inclusion of combined conflict-detection and resolution tools into air traffic control systems will reduce or transform controller workload and enable the required increases in airspace capacity. In an effort to understand the potential workload implications of introducing advisory conflict-detection and resolution tools, this thesis provides a detailed study of the conflict event process and the implementation of conflict-detection and resolution algorithms. Specifically, the research presented here examines a metric of controller taskload: how many resolution commands an air traffic controller issues under the guidance of a conflict-detection and resolution decision-support tool. The goal
Lashkin, S. V.; Kozelkov, A. S.; Yalozo, A. V.; Gerasimov, V. Yu.; Zelensky, D. K.
2017-12-01
This paper describes the details of the parallel implementation of the SIMPLE algorithm for numerical solution of the Navier-Stokes system of equations on arbitrary unstructured grids. The iteration schemes for the serial and parallel versions of the SIMPLE algorithm are implemented. In the description of the parallel implementation, special attention is paid to computational data exchange among processors under the condition of the grid model decomposition using fictitious cells. We discuss the specific features for the storage of distributed matrices and implementation of vector-matrix operations in parallel mode. It is shown that the proposed way of matrix storage reduces the number of interprocessor exchanges. A series of numerical experiments illustrates the effect of the multigrid SLAE solver tuning on the general efficiency of the algorithm; the tuning involves the types of the cycles used (V, W, and F), the number of iterations of a smoothing operator, and the number of cells for coarsening. Two ways (direct and indirect) of efficiency evaluation for parallelization of the numerical algorithm are demonstrated. The paper presents the results of solving some internal and external flow problems with the evaluation of parallelization efficiency by two algorithms. It is shown that the proposed parallel implementation enables efficient computations for the problems on a thousand processors. Based on the results obtained, some general recommendations are made for the optimal tuning of the multigrid solver, as well as for selecting the optimal number of cells per processor.
Control and monitoring of On-line Trigger Algorithms using gaucho
Van Herwijnen, Eric
2005-01-01
In the LHCb experiment, the trigger decisions are computed by Gaudi (the LHCb software framework) algorithms running on an event filter farm of around 2000 PCs. The control and monitoring of these algorithms has to be integrated in the overall experiment control system (ECS). To enable and facilitate this integration Gaucho, the GAUdi Component Helping Online, was developed. Gaucho consists of three parts: a C++ package integrated with Gaudi, the communications package DIM, and a set of PVSS panels and libraries. PVSS is a commercial SCADA system chosen as toolkit and framework for the LHCb controls system. The C++ package implements monitor service interface (IMonitorSvc) following the Gaudi specifications, with methods to declare variables and histograms for monitoring. Algorithms writers use them to indicate which quantities should be monitored. Since the interface resides in the GaudiKernel the code does not need changing if the monitoring services are not present. The Gaudi main job implements a state ma...
Researching on YH100 Numerical Control Servo Press Hydraulic Control System and Control Algorithm
Directory of Open Access Journals (Sweden)
Kai LI
2014-09-01
Full Text Available In order to study the numerical control (NC servo press hydraulic control system and its control algorithm. The numerical control servo press performance and control principle of hydraulic control system are analyzed. According to the flow equation of the hydraulic control valve, hydraulic cylinder flow continuity equation and the force balance equation of the hydraulic cylinder with load press, the mathematical model of hydraulic control system is established. And the servo press hydraulic system transfer function is deduced. Introducing the suitable immune particle swarm control algorithm for servo press hydraulic system, and the control system block diagram is established. Immune algorithm is used to optimize new control parameters of the system and adopt the new optimization results to optimize the system simulation. The simulation result shows that the hydraulic system’s transition time controlled by the immune particle swarm algorithm is shorter than traditional ones, and the control performance is obviously improved. Finally it can be concluded that immune particle swarm PID control have these characteristics such as quickness, stability and accuracy. Applying this principle into application, the obtained YH100 numerical control servo press hydraulic control system meets the requirement.
Basic Research on Adaptive Model Algorithmic Control
1985-12-01
Control Conference. Richalet, J., A. Rault, J.L. Testud and J. Papon (1978). Model predictive heuristic control: applications to industrial...pp.977-982. Richalet, J., A. Rault, J. L. Testud and J. Papon (1978). Model predictive heuristic control: applications to industrial processes
Robust reactor power control system design by genetic algorithm
Energy Technology Data Exchange (ETDEWEB)
Lee, Yoon Joon; Cho, Kyung Ho; Kim, Sin [Cheju National University, Cheju (Korea, Republic of)
1997-12-31
The H{sub {infinity}} robust controller for the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of nonconvex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. 4 refs., 6 figs. (Author)
Robust reactor power control system design by genetic algorithm
Energy Technology Data Exchange (ETDEWEB)
Lee, Yoon Joon; Cho, Kyung Ho; Kim, Sin [Cheju National University, Cheju (Korea, Republic of)
1998-12-31
The H{sub {infinity}} robust controller for the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of nonconvex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. 4 refs., 6 figs. (Author)
Randomized algorithms in automatic control and data mining
Granichin, Oleg; Toledano-Kitai, Dvora
2015-01-01
In the fields of data mining and control, the huge amount of unstructured data and the presence of uncertainty in system descriptions have always been critical issues. The book Randomized Algorithms in Automatic Control and Data Mining introduces the readers to the fundamentals of randomized algorithm applications in data mining (especially clustering) and in automatic control synthesis. The methods proposed in this book guarantee that the computational complexity of classical algorithms and the conservativeness of standard robust control techniques will be reduced. It is shown that when a problem requires "brute force" in selecting among options, algorithms based on random selection of alternatives offer good results with certain probability for a restricted time and significantly reduce the volume of operations.
Integrated Design and Implementation of Embedded Control Systems with Scilab.
Ma, Longhua; Xia, Feng; Peng, Zhe
2008-09-05
Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly timeconsuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.
Integrated Design and Implementation of Embedded Control Systems with Scilab
Directory of Open Access Journals (Sweden)
Zhe Peng
2008-09-01
Full Text Available Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly timeconsuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.
Infinitely oscillating wavelets and a efficient implementation algorithm based the FFT
Directory of Open Access Journals (Sweden)
Marcela Fabio
2015-01-01
Full Text Available In this work we present the design of an orthogonal wavelet, infinitely oscillating, located in time with decay 1/|t|n and limited-band. Its appli- cation leads to the signal decomposition in waves of instantaneous, well defined frequency. We also present the implementation algorithm for the analysis and synthesis based on the Fast Fourier Transform (FFT with the same complexity as Mallat’s algorithm.
DEFF Research Database (Denmark)
Endelt, Benny Ørtoft; Volk, Wolfram
2013-01-01
, there is a number of obstacles which need to be addressed before an industrial implementation is possible, e.g. the proposed control algorithms are often limited by the ability to sample process data with both sufficient accuracy and robustness - this lack of robust sampling technologies is one of the main barriers...
Design and simulation of airport congestion control algorithms
Simaiakis, Ioannis; Balakrishnan, Hamsa
2014-01-01
This paper proposes a stochastic model of runway departures and a dynamic programming algorithm for their control at congested airports. Using a multi-variable state description that includes the capacity forecast, the runway system is modeled as a semi-Markov process. The paper then introduces a queuing system for modeling the controlled departure process that enables the efficient calculation of optimal pushback policies using decomposition techniques. The developed algorithm is simulated a...
Quantum computation with classical light: Implementation of the Deutsch–Jozsa algorithm
Energy Technology Data Exchange (ETDEWEB)
Perez-Garcia, Benjamin [Photonics and Mathematical Optics Group, Tecnológico de Monterrey, Monterrey 64849 (Mexico); University of the Witwatersrand, Private Bag 3, Johannesburg 2050 (South Africa); School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); McLaren, Melanie [University of the Witwatersrand, Private Bag 3, Johannesburg 2050 (South Africa); Goyal, Sandeep K. [School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); Institute of Quantum Science and Technology, University of Calgary, Alberta T2N 1N4 (Canada); Hernandez-Aranda, Raul I. [Photonics and Mathematical Optics Group, Tecnológico de Monterrey, Monterrey 64849 (Mexico); Forbes, Andrew [University of the Witwatersrand, Private Bag 3, Johannesburg 2050 (South Africa); Konrad, Thomas, E-mail: konradt@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); National Institute of Theoretical Physics, Durban Node, Private Bag X54001, Durban 4000 (South Africa)
2016-05-20
Highlights: • An implementation of the Deutsch–Jozsa algorithm using classical optics is proposed. • Constant and certain balanced functions can be encoded and distinguished efficiently. • The encoding and the detection process does not require to access single path qubits. • While the scheme might be scalable in principle, it might not be in practice. • We suggest a generalisation of the Deutsch–Jozsa algorithm and its implementation. - Abstract: We propose an optical implementation of the Deutsch–Jozsa Algorithm using classical light in a binary decision-tree scheme. Our approach uses a ring cavity and linear optical devices in order to efficiently query the oracle functional values. In addition, we take advantage of the intrinsic Fourier transforming properties of a lens to read out whether the function given by the oracle is balanced or constant.
Real time implementation of a linear predictive coding algorithm on digital signal processor DSP32C
International Nuclear Information System (INIS)
Sheikh, N.M.; Usman, S.R.; Fatima, S.
2002-01-01
Pulse Code Modulation (PCM) has been widely used in speech coding. However, due to its high bit rate. PCM has severe limitations in application where high spectral efficiency is desired, for example, in mobile communication, CD quality broadcasting system etc. These limitation have motivated research in bit rate reduction techniques. Linear predictive coding (LPC) is one of the most powerful complex techniques for bit rate reduction. With the introduction of powerful digital signal processors (DSP) it is possible to implement the complex LPC algorithm in real time. In this paper we present a real time implementation of the LPC algorithm on AT and T's DSP32C at a sampling frequency of 8192 HZ. Application of the LPC algorithm on two speech signals is discussed. Using this implementation , a bit rate reduction of 1:3 is achieved for better than tool quality speech, while a reduction of 1.16 is possible for speech quality required in military applications. (author)
Quantum computation with classical light: Implementation of the Deutsch–Jozsa algorithm
International Nuclear Information System (INIS)
Perez-Garcia, Benjamin; McLaren, Melanie; Goyal, Sandeep K.; Hernandez-Aranda, Raul I.; Forbes, Andrew; Konrad, Thomas
2016-01-01
Highlights: • An implementation of the Deutsch–Jozsa algorithm using classical optics is proposed. • Constant and certain balanced functions can be encoded and distinguished efficiently. • The encoding and the detection process does not require to access single path qubits. • While the scheme might be scalable in principle, it might not be in practice. • We suggest a generalisation of the Deutsch–Jozsa algorithm and its implementation. - Abstract: We propose an optical implementation of the Deutsch–Jozsa Algorithm using classical light in a binary decision-tree scheme. Our approach uses a ring cavity and linear optical devices in order to efficiently query the oracle functional values. In addition, we take advantage of the intrinsic Fourier transforming properties of a lens to read out whether the function given by the oracle is balanced or constant.
Improved implementation algorithms of the two-dimensional nonseparable linear canonical transform.
Ding, Jian-Jiun; Pei, Soo-Chang; Liu, Chun-Lin
2012-08-01
The two-dimensional nonseparable linear canonical transform (2D NSLCT), which is a generalization of the fractional Fourier transform and the linear canonical transform, is useful for analyzing optical systems. However, since the 2D NSLCT has 16 parameters and is very complicated, it is a great challenge to implement it in an efficient way. In this paper, we improved the previous work and propose an efficient way to implement the 2D NSLCT. The proposed algorithm can minimize the numerical error arising from interpolation operations and requires fewer chirp multiplications. The simulation results show that, compared with the existing algorithm, the proposed algorithms can implement the 2D NSLCT more accurately and the required computation time is also less.
General purpose graphic processing unit implementation of adaptive pulse compression algorithms
Cai, Jingxiao; Zhang, Yan
2017-07-01
This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.
Chang, Chein-I
2017-01-01
This book explores recursive architectures in designing progressive hyperspectral imaging algorithms. In particular, it makes progressive imaging algorithms recursive by introducing the concept of Kalman filtering in algorithm design so that hyperspectral imagery can be processed not only progressively sample by sample or band by band but also recursively via recursive equations. This book can be considered a companion book of author’s books, Real-Time Progressive Hyperspectral Image Processing, published by Springer in 2016. Explores recursive structures in algorithm architecture Implements algorithmic recursive architecture in conjunction with progressive sample and band processing Derives Recursive Hyperspectral Sample Processing (RHSP) techniques according to Band-Interleaved Sample/Pixel (BIS/BIP) acquisition format Develops Recursive Hyperspectral Band Processing (RHBP) techniques according to Band SeQuential (BSQ) acquisition format for hyperspectral data.
A homotopy algorithm for digital optimal projection control GASD-HADOC
Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.
1993-01-01
The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.
AlgoRun: a Docker-based packaging system for platform-agnostic implemented algorithms.
Hosny, Abdelrahman; Vera-Licona, Paola; Laubenbacher, Reinhard; Favre, Thibauld
2016-08-01
There is a growing need in bioinformatics for easy-to-use software implementations of algorithms that are usable across platforms. At the same time, reproducibility of computational results is critical and often a challenge due to source code changes over time and dependencies. The approach introduced in this paper addresses both of these needs with AlgoRun, a dedicated packaging system for implemented algorithms, using Docker technology. Implemented algorithms, packaged with AlgoRun, can be executed through a user-friendly interface directly from a web browser or via a standardized RESTful web API to allow easy integration into more complex workflows. The packaged algorithm includes the entire software execution environment, thereby eliminating the common problem of software dependencies and the irreproducibility of computations over time. AlgoRun-packaged algorithms can be published on http://algorun.org, a centralized searchable directory to find existing AlgoRun-packaged algorithms. AlgoRun is available at http://algorun.org and the source code under GPL license is available at https://github.com/algorun laubenbacher@uchc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Implementations of PI-line based FBP and BPF algorithms on GPGPU
Energy Technology Data Exchange (ETDEWEB)
Shen, Le [Tsinghua Univ., Beijing (China). Dept. of Engineering Physics; Xing, Yuxiang [Tsinghua Univ., Beijing (China). Dept. of Engineering Physics; Ministry of Education, Beijing (China). Key Lab. of Particle and Radiation Imaging
2011-07-01
Exact reconstruction is under the spotlight in cone beam CT. Katsevich put forward the first exact inversion formula for helical cone beam CT, which belongs to FBP type. Also, Pan Xiaochuan's group proposed another PI-line based exact reconstruction algorithm of BPF type. These two exact reconstruction algorithms and their derivative forms have been widely studied. In this paper, we present a different way of selecting PI-line segments appropriate for both Katsevich's FBP and Pan Xiaochuan's BPF algorithms. As 3D reconstruction contributes to massive computations and takes long time, people have made efforts to speed up the algorithms with the help of multi-core CPUs and GPGPU (General Purpose Graphics Processing Unit). In this paper, we also presents implementations for these two algorithms on GPGPU using an innovative way of selecting PI-line segments. Acceleration techniques and implementations are addressed in detail. The methods are tested on the Shepp-Logan phantom. Compared with our CPU's implementations, the accelerated algorithms on GPGPU are tens to hundreds times faster. (orig.)
Implementation of the DIAC control system
Energy Technology Data Exchange (ETDEWEB)
Chang, Dae-Sik; Jang, Doh-Yun; Jin, Jeong-Tae; Oh, Byung-Hoon [KAERI, Daejeon (Korea, Republic of)
2015-05-15
DIAC (Daejeon Ion Accelerator Complex) system was developed, and operated at JAEA of Japan by KEK team with a name of TRIAC (Tokai Radioactive Ion Accelerator Complex) during 2004 to 2010. The TRIAC control system was based on LabView and had two independent control units for ion source and accelerator. To be an efficient system, it is necessary to have an integrated control capability. And the control software, which had implemented by using LabView at TRIAC, will be changed with EPICS in order to give an effective beam service to the users. In this presentation, the old TRIAC control system is described, and a new control system for DIAC is discussed. The control system of DIAC is based on TRIAC. But it is gradually improved performance using EPICS toolkits and changing some digital interface hardware of it. Details of the control system will be demonstrated during the conference.
An Implementable First-Order Primal-Dual Algorithm for Structured Convex Optimization
Directory of Open Access Journals (Sweden)
Feng Ma
2014-01-01
Full Text Available Many application problems of practical interest can be posed as structured convex optimization models. In this paper, we study a new first-order primaldual algorithm. The method can be easily implementable, provided that the resolvent operators of the component objective functions are simple to evaluate. We show that the proposed method can be interpreted as a proximal point algorithm with a customized metric proximal parameter. Convergence property is established under the analytic contraction framework. Finally, we verify the efficiency of the algorithm by solving the stable principal component pursuit problem.
IMPLEMENTATION OF IMAGE PROCESSING ALGORITHMS AND GLVQ TO TRACK AN OBJECT USING AR.DRONE CAMERA
Directory of Open Access Journals (Sweden)
Muhammad Nanda Kurniawan
2014-08-01
Full Text Available Abstract In this research, Parrot AR.Drone as an Unmanned Aerial Vehicle (UAV was used to track an object from above. Development of this system utilized some functions from OpenCV library and Robot Operating System (ROS. Techniques that were implemented in the system are image processing al-gorithm (Centroid-Contour Distance (CCD, feature extraction algorithm (Principal Component Analysis (PCA and an artificial neural network algorithm (Generalized Learning Vector Quantization (GLVQ. The final result of this research is a program for AR.Drone to track a moving object on the floor in fast response time that is under 1 second.
International Nuclear Information System (INIS)
Lu Dawei; Peng Xinhua; Du Jiangfeng; Zhu Jing; Zou Ping; Yu Yihua; Zhang Shanmin; Chen Qun
2010-01-01
An important quantum search algorithm based on the quantum random walk performs an oracle search on a database of N items with O(√(phN)) calls, yielding a speedup similar to the Grover quantum search algorithm. The algorithm was implemented on a quantum information processor of three-qubit liquid-crystal nuclear magnetic resonance (NMR) in the case of finding 1 out of 4, and the diagonal elements' tomography of all the final density matrices was completed with comprehensible one-dimensional NMR spectra. The experimental results agree well with the theoretical predictions.
A New Method of Histogram Computation for Efficient Implementation of the HOG Algorithm
Directory of Open Access Journals (Sweden)
Mariana-Eugenia Ilas
2018-03-01
Full Text Available In this paper we introduce a new histogram computation method to be used within the histogram of oriented gradients (HOG algorithm. The new method replaces the arctangent with the slope computation and the classical magnitude allocation based on interpolation with a simpler algorithm. The new method allows a more efficient implementation of HOG in general, and particularly in field-programmable gate arrays (FPGAs, by considerably reducing the area (thus increasing the level of parallelism, while maintaining very close classification accuracy compared to the original algorithm. Thus, the new method is attractive for many applications, including car detection and classification.
Directory of Open Access Journals (Sweden)
O. Ahmed
2011-01-01
Full Text Available Packet classification plays a crucial role for a number of network services such as policy-based routing, firewalls, and traffic billing, to name a few. However, classification can be a bottleneck in the above-mentioned applications if not implemented properly and efficiently. In this paper, we propose PCIU, a novel classification algorithm, which improves upon previously published work. PCIU provides lower preprocessing time, lower memory consumption, ease of incremental rule update, and reasonable classification time compared to state-of-the-art algorithms. The proposed algorithm was evaluated and compared to RFC and HiCut using several benchmarks. Results obtained indicate that PCIU outperforms these algorithms in terms of speed, memory usage, incremental update capability, and preprocessing time. The algorithm, furthermore, was improved and made more accessible for a variety of applications through implementation in hardware. Two such implementations are detailed and discussed in this paper. The results indicate that a hardware/software codesign approach results in a slower, but easier to optimize and improve within time constraints, PCIU solution. A hardware accelerator based on an ESL approach using Handel-C, on the other hand, resulted in a 31x speed-up over a pure software implementation running on a state of the art Xeon processor.
Optimization of type-2 fuzzy controllers using the bee colony algorithm
Amador, Leticia
2017-01-01
This book focuses on the fields of fuzzy logic, bio-inspired algorithm; especially bee colony optimization algorithm and also considering the fuzzy control area. The main idea is that this areas together can to solve various control problems and to find better results. In this book we test the proposed method using two benchmark problems; the problem for filling a water tank and the problem for controlling the trajectory in an autonomous mobile robot. When Interval Type-2 Fuzzy Logic System is implemented to model the behavior of systems, the results show a better stabilization, because the analysis of uncertainty is better. For this reason we consider in this book the proposed method using fuzzy systems, fuzzy controllers, and bee colony optimization algorithm improve the behavior of the complex control problems.
Caliko: An Inverse Kinematics Software Library Implementation of the FABRIK Algorithm
Directory of Open Access Journals (Sweden)
Alastair Lansley
2016-09-01
Full Text Available The Caliko library is an implementation of the FABRIK (Forward And Backward Reaching Inverse Kinematics algorithm written in Java. The inverse kinematics (IK algorithm is implemented in both 2D and 3D, and incorporates a variety of joint constraints as well as the ability to connect multiple IK chains together in a hierarchy. The library allows for the simple creation and solving of multiple IK chains as well as visualisation of these solutions. It is licensed under the MIT software license and the source code is freely available for use and modification at: https://github.com/feduni/caliko
FPGA implementation of ICA algorithm for blind signal separation and adaptive noise canceling.
Kim, Chang-Min; Park, Hyung-Min; Kim, Taesu; Choi, Yoon-Kyung; Lee, Soo-Young
2003-01-01
An field programmable gate array (FPGA) implementation of independent component analysis (ICA) algorithm is reported for blind signal separation (BSS) and adaptive noise canceling (ANC) in real time. In order to provide enormous computing power for ICA-based algorithms with multipath reverberation, a special digital processor is designed and implemented in FPGA. The chip design fully utilizes modular concept and several chips may be put together for complex applications with a large number of noise sources. Experimental results with a fabricated test board are reported for ANC only, BSS only, and simultaneous ANC/BSS, which demonstrates successful speech enhancement in real environments in real time.
Implementing Deutsch-Jozsa algorithm using light shifts and atomic ensembles
International Nuclear Information System (INIS)
Dasgupta, Shubhrangshu; Biswas, Asoka; Agarwal, G.S.
2005-01-01
We present an optical scheme to implement the Deutsch-Jozsa algorithm using ac Stark shifts. The scheme uses an atomic ensemble consisting of four-level atoms interacting dispersively with a field. This leads to a Hamiltonian in the atom-field basis which is quite suitable for quantum computation. We show how one can implement the algorithm by performing proper one- and two-qubit operations. We emphasize that in our model the decoherence is expected to be minimal due to our usage of atomic ground states and freely propagating photon
B ampersand W PWR advanced control system algorithm development
International Nuclear Information System (INIS)
Winks, R.W.; Wilson, T.L.; Amick, M.
1992-01-01
This paper discusses algorithm development of an Advanced Control System for the B ampersand W Pressurized Water Reactor (PWR) nuclear power plant. The paper summarizes the history of the project, describes the operation of the algorithm, and presents transient results from a simulation of the plant and control system. The history discusses the steps in the development process and the roles played by the utility owners, B ampersand W Nuclear Service Company (BWNS), Oak Ridge National Laboratory (ORNL), and the Foxboro Company. The algorithm description is a brief overview of the features of the control system. The transient results show that operation of the algorithm in a normal power maneuvering mode and in a moderately large upset following a feedwater pump trip
Visual Perception Based Rate Control Algorithm for HEVC
Feng, Zeqi; Liu, PengYu; Jia, Kebin
2018-01-01
For HEVC, rate control is an indispensably important video coding technology to alleviate the contradiction between video quality and the limited encoding resources during video communication. However, the rate control benchmark algorithm of HEVC ignores subjective visual perception. For key focus regions, bit allocation of LCU is not ideal and subjective quality is unsatisfied. In this paper, a visual perception based rate control algorithm for HEVC is proposed. First bit allocation weight of LCU level is optimized based on the visual perception of luminance and motion to ameliorate video subjective quality. Then λ and QP are adjusted in combination with the bit allocation weight to improve rate distortion performance. Experimental results show that the proposed algorithm reduces average 0.5% BD-BR and maximum 1.09% BD-BR at no cost in bitrate accuracy compared with HEVC (HM15.0). The proposed algorithm devotes to improving video subjective quality under various video applications.
Acikmese, Behcet A.; Carson, John M., III
2005-01-01
A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees the resolvability of the associated finite-horizon optimal control problem in a receding-horizon implementation. The control consists of two components; (i) feedforward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives, and derivatives in polytopes. An illustrative numerical example is also provided.
Reactor controller design using genetic algorithms with simulated annealing
International Nuclear Information System (INIS)
Erkan, K.; Buetuen, E.
2000-01-01
This chapter presents a digital control system for ITU TRIGA Mark-II reactor using genetic algorithms with simulated annealing. The basic principles of genetic algorithms for problem solving are inspired by the mechanism of natural selection. Natural selection is a biological process in which stronger individuals are likely to be winners in a competing environment. Genetic algorithms use a direct analogy of natural evolution. Genetic algorithms are global search techniques for optimisation but they are poor at hill-climbing. Simulated annealing has the ability of probabilistic hill-climbing. Thus, the two techniques are combined here to get a fine-tuned algorithm that yields a faster convergence and a more accurate search by introducing a new mutation operator like simulated annealing or an adaptive cooling schedule. In control system design, there are currently no systematic approaches to choose the controller parameters to obtain the desired performance. The controller parameters are usually determined by test and error with simulation and experimental analysis. Genetic algorithm is used automatically and efficiently searching for a set of controller parameters for better performance. (orig.)
Impulse position control algorithms for nonlinear systems
Energy Technology Data Exchange (ETDEWEB)
Sesekin, A. N., E-mail: sesekin@list.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002 (Russian Federation); Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation); Nepp, A. N., E-mail: anepp@urfu.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002 (Russian Federation)
2015-11-30
The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.
Impulse position control algorithms for nonlinear systems
Sesekin, A. N.; Nepp, A. N.
2015-11-01
The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.
A fast implementation of the incremental backprojection algorithms for parallel beam geometries
International Nuclear Information System (INIS)
Chen, C.M.; Wang, C.Y.; Cho, Z.H.
1996-01-01
Filtered-backprojection algorithms are the most widely used approaches for reconstruction of computed tomographic (CT) images, such as X-ray CT and positron emission tomographic (PET) images. The Incremental backprojection algorithm is a fast backprojection approach based on restructuring the Shepp and Logan algorithm. By exploiting interdependency (position and values) of adjacent pixels, the Incremental algorithm requires only O(N) and O(N 2 ) multiplications in contrast to O(N 2 ) and O(N 3 ) multiplications for the Shepp and Logan algorithm in two-dimensional (2-D) and three-dimensional (3-D) backprojections, respectively, for each view, where N is the size of the image in each dimension. In addition, it may reduce the number of additions for each pixel computation. The improvement achieved by the Incremental algorithm in practice was not, however, as significant as expected. One of the main reasons is due to inevitably visiting pixels outside the beam in the searching flow scheme originally developed for the Incremental algorithm. To optimize implementation of the Incremental algorithm, an efficient scheme, namely, coded searching flow scheme, is proposed in this paper to minimize the overhead caused by searching for all pixels in a beam. The key idea of this scheme is to encode the searching flow for all pixels inside each beam. While backprojecting, all pixels may be visited without any overhead due to using the coded searching flow as the a priori information. The proposed coded searching flow scheme has been implemented on a Sun Sparc 10 and a Sun Sparc 20 workstations. The implementation results show that the proposed scheme is 1.45--2.0 times faster than the original searching flow scheme for most cases tested
Czech Academy of Sciences Publication Activity Database
Šůcha, P.; Hanzálek, Z.; Heřmánek, Antonín; Schier, Jan
2007-01-01
Roč. 46, č. 1 (2007), s. 35-53 ISSN 0922-5773 R&D Projects: GA AV ČR(CZ) 1ET300750402; GA MŠk(CZ) 1M0567; GA MPO(CZ) FD-K3/082 Institutional research plan: CEZ:AV0Z10750506 Keywords : high-level synthesis * cyclic scheduling * iterative algorithms * imperfectly nested loops * integer linear programming * FPGA * VLSI design * blind equalization * implementation Subject RIV: BA - General Mathematics Impact factor: 0.449, year: 2007 http://www.springerlink.com/content/t217kg0822538014/fulltext.pdf
Linear array implementation of the EM algorithm for PET image reconstruction
International Nuclear Information System (INIS)
Rajan, K.; Patnaik, L.M.; Ramakrishna, J.
1995-01-01
The PET image reconstruction based on the EM algorithm has several attractive advantages over the conventional convolution back projection algorithms. However, the PET image reconstruction based on the EM algorithm is computationally burdensome for today's single processor systems. In addition, a large memory is required for the storage of the image, projection data, and the probability matrix. Since the computations are easily divided into tasks executable in parallel, multiprocessor configurations are the ideal choice for fast execution of the EM algorithms. In tis study, the authors attempt to overcome these two problems by parallelizing the EM algorithm on a multiprocessor systems. The parallel EM algorithm on a linear array topology using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PE's) has been implemented. The performance of the EM algorithm on a 386/387 machine, IBM 6000 RISC workstation, and on the linear array system is discussed and compared. The results show that the computational speed performance of a linear array using 8 DSP chips as PE's executing the EM image reconstruction algorithm is about 15.5 times better than that of the IBM 6000 RISC workstation. The novelty of the scheme is its simplicity. The linear array topology is expandable with a larger number of PE's. The architecture is not dependant on the DSP chip chosen, and the substitution of the latest DSP chip is straightforward and could yield better speed performance
Implementation Aspects of a Flexible Frequency Spectrum Usage Algorithm for Cognitive OFDM Systems
DEFF Research Database (Denmark)
Sacchi, Claudio; Tonelli, Oscar; Cattoni, Andrea Fabio
2011-01-01
time on a shared spectrum chunk, emphasizes the role of resource allocation as a critical system design issue. This work is aimed at analyzing the practical issues related to the Software Defined Radio (SDR)-based implementation of a dynamic spectrum allocation algorithm, designed for OFDM...... on a Xilinx ML506 development board is performed. The main novelty proposed in this paper consists in the SDR-based implementation of a computationally-sustainable resource allocation algorithm for FSU on low-cost commercial FPGA platforms. The proposed implementation is competitive with respect to other ones...... on a Virtex 5 FPGA. Experimental results will illustrate that the selected core functionalities are effectively implementable with around 3% or less of the total FPGA computing resources....
Liu, Wei; Chen, Shu-Ming; Zhang, Jian; Wu, Chun-Wang; Wu, Wei; Chen, Ping-Xing
2015-03-01
It is widely believed that Shor’s factoring algorithm provides a driving force to boost the quantum computing research. However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor’s algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory (OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor’s algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919. Project supported by the National Natural Science Foundation of China (Grant No. 61205108) and the High Performance Computing (HPC) Foundation of National University of Defense Technology, China.
Immune algorithm based active PID control for structure systems
International Nuclear Information System (INIS)
Lee, Young Jin; Cho, Hyun Cheol; Lee, Kwon Soon
2006-01-01
An immune algorithm is a kind of evolutional computation strategies, which is developed in the basis of a real immune mechanism in the human body. Recently, scientific or engineering applications using this scheme are remarkably increased due to its significant ability in terms of adaptation and robustness for external disturbances. Particularly, this algorithm is efficient to search optimal parameters against complicated dynamic systems with uncertainty and perturbation. In this paper, we investigate an immune algorithm embedded Proportional Integral Derivate (called I P ID) control, in which an optimal parameter vector of the controller is determined offline by using a cell-mediated immune response of the immunized mechanism. For evaluation, we apply the proposed control to mitigation of vibrations for nonlinear structural systems, cased by external environment load such as winds and earthquakes. Comparing to traditional controls under same simulation scenarios, we demonstrate the innovation control is superior especially in robustness aspect
HETDEX tracker control system design and implementation
Beno, Joseph H.; Hayes, Richard; Leck, Ron; Penney, Charles; Soukup, Ian
2012-09-01
To enable the Hobby-Eberly Telescope Dark Energy Experiment, The University of Texas at Austin Center for Electromechanics and McDonald Observatory developed a precision tracker and control system - an 18,000 kg robot to position a 3,100 kg payload within 10 microns of a desired dynamic track. Performance requirements to meet science needs and safety requirements that emerged from detailed Failure Modes and Effects Analysis resulted in a system of 13 precision controlled actuators and 100 additional analog and digital devices (primarily sensors and safety limit switches). Due to this complexity, demanding accuracy requirements, and stringent safety requirements, two independent control systems were developed. First, a versatile and easily configurable centralized control system that links with modeling and simulation tools during the hardware and software design process was deemed essential for normal operation including motion control. A second, parallel, control system, the Hardware Fault Controller (HFC) provides independent monitoring and fault control through a dedicated microcontroller to force a safe, controlled shutdown of the entire system in the event a fault is detected. Motion controls were developed in a Matlab-Simulink simulation environment, and coupled with dSPACE controller hardware. The dSPACE real-time operating system collects sensor information; motor commands are transmitted over a PROFIBUS network to servo amplifiers and drive motor status is received over the same network. To interface the dSPACE controller directly to absolute Heidenhain sensors with EnDat 2.2 protocol, a custom communication board was developed. This paper covers details of operational control software, the HFC, algorithms, tuning, debugging, testing, and lessons learned.
An Implementation and Detailed Analysis of the K-SVD Image Denoising Algorithm
Directory of Open Access Journals (Sweden)
Marc Lebrun
2012-05-01
Full Text Available K-SVD is a signal representation method which, from a set of signals, can derive a dictionary able to approximate each signal with a sparse combination of the atoms. This paper focuses on the K-SVD-based image denoising algorithm. The implementation is described in detail and its parameters are analyzed and varied to come up with a reliable implementation.
Searching for the majority: algorithms of voluntary control.
Directory of Open Access Journals (Sweden)
Jin Fan
Full Text Available Voluntary control of information processing is crucial to allocate resources and prioritize the processes that are most important under a given situation; the algorithms underlying such control, however, are often not clear. We investigated possible algorithms of control for the performance of the majority function, in which participants searched for and identified one of two alternative categories (left or right pointing arrows as composing the majority in each stimulus set. We manipulated the amount (set size of 1, 3, and 5 and content (ratio of left and right pointing arrows within a set of the inputs to test competing hypotheses regarding mental operations for information processing. Using a novel measure based on computational load, we found that reaction time was best predicted by a grouping search algorithm as compared to alternative algorithms (i.e., exhaustive or self-terminating search. The grouping search algorithm involves sampling and resampling of the inputs before a decision is reached. These findings highlight the importance of investigating the implications of voluntary control via algorithms of mental operations.
Efficient evolutionary algorithms for optimal control
López Cruz, I.L.
2002-01-01
If optimal control problems are solved by means of gradient based local search methods, convergence to local solutions is likely. Recently, there has been an increasing interest in the use
Energy Technology Data Exchange (ETDEWEB)
Deptuch, G. W. [AGH-UST, Cracow; Fahim, F. [Fermilab; Grybos, P. [AGH-UST, Cracow; Hoff, J. [Fermilab; Maj, P. [AGH-UST, Cracow; Siddons, D. P. [Brookhaven; Kmon, P. [AGH-UST, Cracow; Trimpl, M. [Fermilab; Zimmerman, T. [Fermilab
2017-05-06
An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels to one virtual pixel that recovers composite signals and event driven strobes to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32×32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3 μm X-ray beam. The results of these tests are given in the paper assessing physical implementation of the algorithm.
Chaotic queue-based genetic algorithm for design of a self-tuning fuzzy logic controller
Saini, Sanju; Saini, J. S.
2012-11-01
This paper employs a chaotic queue-based method using logistic equation in a non-canonical genetic algorithm for optimizing the performance of a self-tuning Fuzzy Logic Controller, used for controlling a nonlinear double-coupled system. A comparison has been made with a standard canonical genetic algorithm implemented on the same plant. It has been shown that chaotic queue-method brings an improvement in the performance of the FLC for wide range of set point changes by a more profound initial population spread in the search space.
Modified SURF Algorithm Implementation on FPGA For Real-Time Object Tracking
Directory of Open Access Journals (Sweden)
Tomyslav Sledevič
2013-05-01
Full Text Available The paper describes the FPGA-based implementation of the modified speeded-up robust features (SURF algorithm. FPGA was selected for parallel process implementation using VHDL to ensure features extraction in real-time. A sliding 84×84 size window was used to store integral pixels and accelerate Hessian determinant calculation, orientation assignment and descriptor estimation. The local extreme searching was used to find point of interest in 8 scales. The simplified descriptor and orientation vector were calculated in parallel in 6 scales. The algorithm was investigated by tracking marker and drawing a plane or cube. All parts of algorithm worked on 25 MHz clock. The video stream was generated using 60 fps and 640×480 pixel camera.Article in Lithuanian
Development of CAD implementing the algorithm of boundary elements’ numerical analytical method
Directory of Open Access Journals (Sweden)
Yulia V. Korniyenko
2015-03-01
Full Text Available Up to recent days the algorithms for numerical-analytical boundary elements method had been implemented with programs written in MATLAB environment language. Each program had a local character, i.e. used to solve a particular problem: calculation of beam, frame, arch, etc. Constructing matrices in these programs was carried out “manually” therefore being time-consuming. The research was purposed onto a reasoned choice of programming language for new CAD development, allows to implement algorithm of numerical analytical boundary elements method and to create visualization tools for initial objects and calculation results. Research conducted shows that among wide variety of programming languages the most efficient one for CAD development, employing the numerical analytical boundary elements method algorithm, is the Java language. This language provides tools not only for development of calculating CAD part, but also to build the graphic interface for geometrical models construction and calculated results interpretation.
Design and Implementation of Numerical Linear Algebra Algorithms on Fixed Point DSPs
Directory of Open Access Journals (Sweden)
Gene Frantz
2007-01-01
Full Text Available Numerical linear algebra algorithms use the inherent elegance of matrix formulations and are usually implemented using C/C++ floating point representation. The system implementation is faced with practical constraints because these algorithms usually need to run in real time on fixed point digital signal processors (DSPs to reduce total hardware costs. Converting the simulation model to fixed point arithmetic and then porting it to a target DSP device is a difficult and time-consuming process. In this paper, we analyze the conversion process. We transformed selected linear algebra algorithms from floating point to fixed point arithmetic, and compared real-time requirements and performance between the fixed point DSP and floating point DSP algorithm implementations. We also introduce an advanced code optimization and an implementation by DSP-specific, fixed point C code generation. By using the techniques described in the paper, speed can be increased by a factor of up to 10 compared to floating point emulation on fixed point hardware.
Implementation of the CA-CFAR algorithm for pulsed-doppler radar on a GPU architecture
CSIR Research Space (South Africa)
Venter, CJ
2011-12-01
Full Text Available /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Implementation of the CA-CFAR Algorithm for Pulsed...
FPGA Based Low Power DES Algorithm Design And Implementation using HTML Technology
DEFF Research Database (Denmark)
Thind, Vandana; Pandey, Bishwajeet; Kalia, Kartik
2016-01-01
In this particular work, we have done power analysis of DES algorithm implemented on 28nm FPGA using HTML (H-HSUL, T-TTL, M-MOBILE_DDR, L-LVCMOS) technology. In this research, we have used high performance software Xilinx ISE where we have selected four different IO Standards i.e. MOBILE_DDR, HSUL...
VHDL Implementation of Feature-Extraction Algorithm for the PANDA Electromagnetic Calorimeter
Kavatsyuk, M.; Guliyev, E.; Lemmens, P. J. J.; Löhner, H.; Tambave, G.
2010-01-01
The feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA detector at the future FAIR facility, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The use of modified firmware with the running on-line
VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter
Guliyev, E.; Kavatsyuk, M.; Lemmens, P. J. J.; Tambave, G.; Löhner, H.
2012-01-01
A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an
An implementation of a data-transmission pipelining algorithm on Imote2 platforms
Li, Xu; Dorvash, Siavash; Cheng, Liang; Pakzad, Shamim
2011-04-01
Over the past several years, wireless network systems and sensing technologies have been developed significantly. This has resulted in the broad application of wireless sensor networks (WSNs) in many engineering fields and in particular structural health monitoring (SHM). The movement of traditional SHM toward the new generation of SHM, which utilizes WSNs, relies on the advantages of this new approach such as relatively low costs, ease of implementation and the capability of onboard data processing and management. In the particular case of long span bridge monitoring, a WSN should be capable of transmitting commands and measurement data over long network geometry in a reliable manner. While using single-hop data transmission in such geometry requires a long radio range and consequently a high level of power supply, multi-hop communication may offer an effective and reliable way for data transmissions across the network. Using a multi-hop communication protocol, the network relays data from a remote node to the base station via intermediary nodes. We have proposed a data-transmission pipelining algorithm to enable an effective use of the available bandwidth and minimize the energy consumption and the delay performance by the multi-hop communication protocol. This paper focuses on the implementation aspect of the pipelining algorithm on Imote2 platforms for SHM applications, describes its interaction with underlying routing protocols, and presents the solutions to various implementation issues of the proposed pipelining algorithm. Finally, the performance of the algorithm is evaluated based on the results of an experimental implementation.
Auberry, Kathy; Cullen, Deborah
2016-01-01
Based on the results of the Surrogate Decision-Making Self Efficacy Scale (Lopez, 2009a), this study sought to determine whether nurses working in the field of intellectual disability (ID) experience increased confidence when they implemented the American Association of Neuroscience Nurses (AANN) Seizure Algorithm during telephone triage. The…
DEFF Research Database (Denmark)
Riaz, M. Tahir; Gutierrez Lopez, Jose Manuel; Pedersen, Jens Myrup
2011-01-01
The paper presents a hybrid Genetic and Simulated Annealing algorithm for implementing Chordal Ring structure in optical backbone network. In recent years, topologies based on regular graph structures gained a lot of interest due to their good communication properties for physical topology of the...
International Nuclear Information System (INIS)
Taraglio, S.; Massaioli, F.
1995-08-01
A parallel implementation of a library to build and train Multi Layer Perceptrons via the Back Propagation algorithm is presented. The target machine is the SIMD massively parallel supercomputer Quadrics. Performance measures are provided on three different machines with different number of processors, for two network examples. A sample source code is given
Tuning of active vibration controllers for ACTEX by genetic algorithm
Kwak, Moon K.; Denoyer, Keith K.
1999-06-01
This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.
Towards Automatic Controller Design using Multi-Objective Evolutionary Algorithms
DEFF Research Database (Denmark)
Pedersen, Gerulf
of evolutionary computation, a choice was made to use multi-objective algorithms for the purpose of aiding in automatic controller design. More specifically, the choice was made to use the Non-dominated Sorting Genetic Algorithm II (NSGAII), which is one of the most potent algorithms currently in use...... for automatic controller design. However, because the field of evolutionary computation is relatively unknown in the field of control engineering, this thesis also includes a comprehensive introduction to the basic field of evolutionary computation as well as a description of how the field has previously been......In order to design the controllers of tomorrow, a need has risen for tools that can aid in the design of these. A desire to use evolutionary computation as a tool to achieve that goal is what gave inspiration for the work contained in this thesis. After having studied the foundations...
Implementation of the Iterative Proportion Fitting Algorithm for Geostatistical Facies Modeling
International Nuclear Information System (INIS)
Li Yupeng; Deutsch, Clayton V.
2012-01-01
In geostatistics, most stochastic algorithm for simulation of categorical variables such as facies or rock types require a conditional probability distribution. The multivariate probability distribution of all the grouped locations including the unsampled location permits calculation of the conditional probability directly based on its definition. In this article, the iterative proportion fitting (IPF) algorithm is implemented to infer this multivariate probability. Using the IPF algorithm, the multivariate probability is obtained by iterative modification to an initial estimated multivariate probability using lower order bivariate probabilities as constraints. The imposed bivariate marginal probabilities are inferred from profiles along drill holes or wells. In the IPF process, a sparse matrix is used to calculate the marginal probabilities from the multivariate probability, which makes the iterative fitting more tractable and practical. This algorithm can be extended to higher order marginal probability constraints as used in multiple point statistics. The theoretical framework is developed and illustrated with estimation and simulation example.
Implementation of a parallel algorithm for spherical SN calculations on the IBM 3090
International Nuclear Information System (INIS)
Haghighat, A.; Lawrence, R.D.
1989-01-01
Parallel S N algorithms based on domain decomposition in angle are straightforward to develop in Cartesian geometry because the computation of the angular fluxes for a specific discrete ordinate can be performed independently of all other angles. This is not the case for curvilinear geometries, where the angular redistribution component of the discretized streaming operator results in coupling between angular fluxes along adjacent discrete ordinates. Previously, the authors developed a parallel algorithm for S N calculations in spherical geometry and examined its iterative convergence for criticality and detector problems with differing scattering/absorption ratios. In this paper, the authors describe the implementation of the algorithm on an IBM 3090 Model 400 (four processors) and present computational results illustrating the efficiency of the algorithm relative to serial execution
An Improved Fuzzy C-Means Algorithm for the Implementation of Demand Side Management Measures
Directory of Open Access Journals (Sweden)
Ioannis Panapakidis
2017-09-01
Full Text Available Load profiling refers to a procedure that leads to the formulation of daily load curves and consumer classes regarding the similarity of the curve shapes. This procedure incorporates a set of unsupervised machine learning algorithms. While many crisp clustering algorithms have been proposed for grouping load curves into clusters, only one soft clustering algorithm is utilized for the aforementioned purpose, namely the Fuzzy C-Means (FCM algorithm. Since the benefits of soft clustering are demonstrated in a variety of applications, the potential of introducing a novel modification of the FCM in the electricity consumer clustering process is examined. Additionally, this paper proposes a novel Demand Side Management (DSM strategy for load management of consumers that are eligible for the implementation of Real-Time Pricing (RTP schemes. The DSM strategy is formulated as a constrained optimization problem that can be easily solved and therefore, making it a useful tool for retailers’ decision-making framework in competitive electricity markets.
Implementation of Maximum Power Point Tracking (MPPT) Solar Charge Controller using Arduino
Abdelilah, B.; Mouna, A.; KouiderM’Sirdi, N.; El Hossain, A.
2018-05-01
the platform Arduino with a number of sensors standard can be used as components of an electronic system for acquiring measures and controls. This paper presents the design of a low-cost and effective solar charge controller. This system includes several elements such as the solar panel converter DC/DC, battery, circuit MPPT using Microcontroller, sensors, and the MPPT algorithm. The MPPT (Maximum Power Point Tracker) algorithm has been implemented using an Arduino Nano with the preferred program. The voltage and current of the Panel are taken where the program implemented will work and using this algorithm that MPP will be reached. This paper provides details on the solar charge control device at the maximum power point. The results include the change of the duty cycle with the change in load and thus mean the variation of the buck converter output voltage and current controlled by the MPPT algorithm.
International Nuclear Information System (INIS)
Roche-Lima, Abiel; Thulasiram, Ruppa K
2012-01-01
Finite automata, in which each transition is augmented with an output label in addition to the familiar input label, are considered finite-state transducers. Transducers have been used to analyze some fundamental issues in bioinformatics. Weighted finite-state transducers have been proposed to pairwise alignments of DNA and protein sequences; as well as to develop kernels for computational biology. Machine learning algorithms for conditional transducers have been implemented and used for DNA sequence analysis. Transducer learning algorithms are based on conditional probability computation. It is calculated by using techniques, such as pair-database creation, normalization (with Maximum-Likelihood normalization) and parameters optimization (with Expectation-Maximization - EM). These techniques are intrinsically costly for computation, even worse when are applied to bioinformatics, because the databases sizes are large. In this work, we describe a parallel implementation of an algorithm to learn conditional transducers using these techniques. The algorithm is oriented to bioinformatics applications, such as alignments, phylogenetic trees, and other genome evolution studies. Indeed, several experiences were developed using the parallel and sequential algorithm on Westgrid (specifically, on the Breeze cluster). As results, we obtain that our parallel algorithm is scalable, because execution times are reduced considerably when the data size parameter is increased. Another experience is developed by changing precision parameter. In this case, we obtain smaller execution times using the parallel algorithm. Finally, number of threads used to execute the parallel algorithm on the Breezy cluster is changed. In this last experience, we obtain as result that speedup is considerably increased when more threads are used; however there is a convergence for number of threads equal to or greater than 16.
Scemama, Anthony; Renon, Nicolas; Rapacioli, Mathias
2014-06-10
We present an algorithm and its parallel implementation for solving a self-consistent problem as encountered in Hartree-Fock or density functional theory. The algorithm takes advantage of the sparsity of matrices through the use of local molecular orbitals. The implementation allows one to exploit efficiently modern symmetric multiprocessing (SMP) computer architectures. As a first application, the algorithm is used within the density-functional-based tight binding method, for which most of the computational time is spent in the linear algebra routines (diagonalization of the Fock/Kohn-Sham matrix). We show that with this algorithm (i) single point calculations on very large systems (millions of atoms) can be performed on large SMP machines, (ii) calculations involving intermediate size systems (1000-100 000 atoms) are also strongly accelerated and can run efficiently on standard servers, and (iii) the error on the total energy due to the use of a cutoff in the molecular orbital coefficients can be controlled such that it remains smaller than the SCF convergence criterion.
Output Feedback Control of Electro-Hydraulic Cylinder Drives using the Twisting Algorithm
DEFF Research Database (Denmark)
Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.
2014-01-01
contributions in literature. This paper considers the twisting algorithm when applied directly for output feedback control, and with the design based on a reduced order model representation of an arbitrary valve driven hydraulic cylinder drive. The consequence of implementing such a controller with the well......This paper discusses the utilization of the so-called twisting algorithm when applied in output feedback position control schemes for electro-hydraulic cylinder drives. The twisting controller was the first second order sliding controller ever introduced, and can structure-wise be considered...... feedback controller may be successfully applied to hydraulic valve driven cylinder drives, with performance being on the level with a conventional surface based first order sliding mode controller....
Implementation considerations for digital control systems in power plants: Final report
International Nuclear Information System (INIS)
Shah, S.C.; Lehman, L.L.; Sarchet, M.M.
1988-09-01
Conversion of nuclear power plants fron analog to digital control systems will require careful design, testing, and integration of the control algorithms, the software which implements the algorithms, the digital instrumentation, the digital communications network, and analog/digital device interfaces. Digital control systems are more flexible than their analog counterparts, and therefore greater attention must be paid by the customer to all stages of the control system design process. This flexibility also provides the framework for development of significant safety and reliability are inherant aspects of the chosen design processes. Digital control algorithms are capable of improving their performance by on-line self-tuning of the control parameters. It is therefore incumbant on system designers to choose self-tuning algorithms for power plant control. Implementation of these algorithms in software required a careful software design and development process to minimize errors in interpretation of the engineering design and prevent the inclusion of programming errors during software production. Digital control system and communications software must exhibit sufficient ''fault tolerance'' to maintain some level of safe plant operation or execute a safe plant shutdown in the event of both hard equipment failures and the appearance of software design faults. A number of standardized digital communications protocols are available to designers of digital control systems. These standardized digital communications protocols provide reliable fault tolerant communication between all digital elements of the plant control system and can be implemented redundantly to further enhance power plant operational safety. 5 refs., 11 figs., 1 tab
A semi-active suspension control algorithm for vehicle comprehensive vertical dynamics performance
Nie, Shida; Zhuang, Ye; Liu, Weiping; Chen, Fan
2017-08-01
Comprehensive performance of the vehicle, including ride qualities and road-holding, is essentially of great value in practice. Many up-to-date semi-active control algorithms improve vehicle dynamics performance effectively. However, it is hard to improve comprehensive performance for the conflict between ride qualities and road-holding around the second-order resonance. Hence, a new control algorithm is proposed to achieve a good trade-off between ride qualities and road-holding. In this paper, the properties of the invariant points are analysed, which gives an insight into the performance conflicting around the second-order resonance. Based on it, a new control algorithm is proposed. The algorithm employs a novel frequency selector to balance suspension ride and handling performance by adopting a medium damping around the second-order resonance. The results of this study show that the proposed control algorithm could improve the performance of ride qualities and suspension working space up to 18.3% and 8.2%, respectively, with little loss of road-holding compared to the passive suspension. Consequently, the comprehensive performance can be improved by 6.6%. Hence, the proposed algorithm is of great potential to be implemented in practice.
IAEA safeguards instrumentation: Development, implementation and control
International Nuclear Information System (INIS)
Rundquist, D.E.
1983-01-01
Extensive development efforts over the last 5 years have produced a number of new instruments to help the IAEA meet its safeguards obligations. Implementation of these new instruments is proceeding at a necessarily slower pace. To optimize the performance and reliability of the instrumentation systems when used in safeguards applications, increasing attention is needed to be spent on performance monitoring and control of the instruments. (author)
Integrated circuit implementation of fuzzy controllers
Huertas Díaz, José Luis; Sánchez Solano, Santiago; Baturone Castillo, María Iluminada; Barriga Barros, Ángel
1996-01-01
This paper presents mixed-signal current-mode CMOS circuits to implement programmable fuzzy controllers that perform the singleton or zero-order Sugeno’s method. Design equations to characterize these circuits are provided to explain the precision and speed that they offer. This analysis is illustrated with the experimental results of prototypes integrated in standard CMOS technologies. These tests show that an equivalent precision of 6 bits is achieved. The connection of these...
Indian Academy of Sciences (India)
polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.
A multithreaded parallel implementation of a dynamic programming algorithm for sequence comparison.
Martins, W S; Del Cuvillo, J B; Useche, F J; Theobald, K B; Gao, G R
2001-01-01
This paper discusses the issues involved in implementing a dynamic programming algorithm for biological sequence comparison on a general-purpose parallel computing platform based on a fine-grain event-driven multithreaded program execution model. Fine-grain multithreading permits efficient parallelism exploitation in this application both by taking advantage of asynchronous point-to-point synchronizations and communication with low overheads and by effectively tolerating latency through the overlapping of computation and communication. We have implemented our scheme on EARTH, a fine-grain event-driven multithreaded execution and architecture model which has been ported to a number of parallel machines with off-the-shelf processors. Our experimental results show that the dynamic programming algorithm can be efficiently implemented on EARTH systems with high performance (e.g., speedup of 90 on 120 nodes), good programmability and reasonable cost.
Further optimization of SeDDaRA blind image deconvolution algorithm and its DSP implementation
Wen, Bo; Zhang, Qiheng; Zhang, Jianlin
2011-11-01
Efficient algorithm for blind image deconvolution and its high-speed implementation is of great value in practice. Further optimization of SeDDaRA is developed, from algorithm structure to numerical calculation methods. The main optimization covers that, the structure's modularization for good implementation feasibility, reducing the data computation and dependency of 2D-FFT/IFFT, and acceleration of power operation by segmented look-up table. Then the Fast SeDDaRA is proposed and specialized for low complexity. As the final implementation, a hardware system of image restoration is conducted by using the multi-DSP parallel processing. Experimental results show that, the processing time and memory demand of Fast SeDDaRA decreases 50% at least; the data throughput of image restoration system is over 7.8Msps. The optimization is proved efficient and feasible, and the Fast SeDDaRA is able to support the real-time application.
Energy Technology Data Exchange (ETDEWEB)
Aziz, H. M. Abdul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhu, Feng [Purdue University, West Lafayette, IN (United States). Lyles School of Civil Engineering; Ukkusuri, Satish V. [Purdue University, West Lafayette, IN (United States). Lyles School of Civil Engineering
2017-10-04
Here, this research applies R-Markov Average Reward Technique based reinforcement learning (RL) algorithm, namely RMART, for vehicular signal control problem leveraging information sharing among signal controllers in connected vehicle environment. We implemented the algorithm in a network of 18 signalized intersections and compare the performance of RMART with fixed, adaptive, and variants of the RL schemes. Results show significant improvement in system performance for RMART algorithm with information sharing over both traditional fixed signal timing plans and real time adaptive control schemes. Additionally, the comparison with reinforcement learning algorithms including Q learning and SARSA indicate that RMART performs better at higher congestion levels. Further, a multi-reward structure is proposed that dynamically adjusts the reward function with varying congestion states at the intersection. Finally, the results from test networks show significant reduction in emissions (CO, CO_{2}, NO_{x}, VOC, PM_{10}) when RL algorithms are implemented compared to fixed signal timings and adaptive schemes.
Directory of Open Access Journals (Sweden)
Luis Pérez Pozo
2015-11-01
Full Text Available This work presents the operational optimization of a welding operation involving using genetic algorithms. The welding curves correspond to the profile of a blade-shaped Pelton turbine. The procedure involved the development of a series of tests and observation of the parameters that will be controlled during the welding process. After the tests were performed, the samples were prepared for chemical attack, which allowed observation of the penetration, weld area, and dilution. After that, mathematical models were developed that correlate the controllable welding parameters with the aforementioned bead parameters. In those mathematical models, the optimization of the process parameters was performed using genetic algorithms. Specially programmed functions for mutation, reproduction, and initialization processes were written and used in the implemented model. After the optimization process was completed, the results were evaluated through new tests to verify whether the obtained objective functions properly describe the characteristics of the weld. The comparisons showed errors of less than 6%.
A complete implementation of the conjugate gradient algorithm on a reconfigurable supercomputer
International Nuclear Information System (INIS)
Dubois, David H.; Dubois, Andrew J.; Connor, Carolyn M.; Boorman, Thomas M.; Poole, Stephen W.
2008-01-01
The conjugate gradient is a prominent iterative method for solving systems of sparse linear equations. Large-scale scientific applications often utilize a conjugate gradient solver at their computational core. In this paper we present a field programmable gate array (FPGA) based implementation of a double precision, non-preconditioned, conjugate gradient solver for fmite-element or finite-difference methods. OUf work utilizes the SRC Computers, Inc. MAPStation hardware platform along with the 'Carte' software programming environment to ease the programming workload when working with the hybrid (CPUIFPGA) environment. The implementation is designed to handle large sparse matrices of up to order N x N where N <= 116,394, with up to 7 non-zero, 64-bit elements per sparse row. This implementation utilizes an optimized sparse matrix-vector multiply operation which is critical for obtaining high performance. Direct parallel implementations of loop unrolling and loop fusion are utilized to extract performance from the various vector/matrix operations. Rather than utilize the FPGA devices as function off-load accelerators, our implementation uses the FPGAs to implement the core conjugate gradient algorithm. Measured run-time performance data is presented comparing the FPGA implementation to a software-only version showing that the FPGA can outperform processors running up to 30x the clock rate. In conclusion we take a look at the new SRC-7 system and estimate the performance of this algorithm on that architecture.
Algorithms and procedures in the model based control of accelerators
International Nuclear Information System (INIS)
Bozoki, E.
1987-10-01
The overall design of a Model Based Control system was presented. The system consists of PLUG-IN MODULES, governed by a SUPERVISORY PROGRAM and communicating via SHARED DATA FILES. Models can be ladded or replaced without affecting the oveall system. There can be more then one module (algorithm) to perform the same task. The user can choose the most appropriate algorithm or can compare the results using different algorithms. Calculations, algorithms, file read and write, etc. which are used in more than one module, will be in a subroutine library. This feature will simplify the maintenance of the system. A partial list of modules is presented, specifying the task they perform. 19 refs., 1 fig
Efficient parallel implementation of active appearance model fitting algorithm on GPU.
Wang, Jinwei; Ma, Xirong; Zhu, Yuanping; Sun, Jizhou
2014-01-01
The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia's GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures.
Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU
Directory of Open Access Journals (Sweden)
Jinwei Wang
2014-01-01
Full Text Available The active appearance model (AAM is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA on the Nvidia’s GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures.
Implementation and analysis of a Navier-Stokes algorithm on parallel computers
Fatoohi, Raad A.; Grosch, Chester E.
1988-01-01
The results of the implementation of a Navier-Stokes algorithm on three parallel/vector computers are presented. The object of this research is to determine how well, or poorly, a single numerical algorithm would map onto three different architectures. The algorithm is a compact difference scheme for the solution of the incompressible, two-dimensional, time-dependent Navier-Stokes equations. The computers were chosen so as to encompass a variety of architectures. They are the following: the MPP, an SIMD machine with 16K bit serial processors; Flex/32, an MIMD machine with 20 processors; and Cray/2. The implementation of the algorithm is discussed in relation to these architectures and measures of the performance on each machine are given. The basic comparison is among SIMD instruction parallelism on the MPP, MIMD process parallelism on the Flex/32, and vectorization of a serial code on the Cray/2. Simple performance models are used to describe the performance. These models highlight the bottlenecks and limiting factors for this algorithm on these architectures. Finally, conclusions are presented.
Implementation of an evolutionary algorithm in planning investment in a power distribution system
Directory of Open Access Journals (Sweden)
Carlos Andrés García Montoya
2011-06-01
Full Text Available The definition of an investment plan to implement in a distribution power system, is a task that constantly faced by utilities. This work presents a methodology for determining the investment plan for a distribution power system under a shortterm, using as a criterion for evaluating investment projects, associated costs and customers benefit from its implementation. Given the number of projects carried out annually on the system, the definition of an investment plan requires the use of computational tools to evaluate, a set of possibilities, the one that best suits the needs of the present system and better results. That is why in the job, implementing a multi objective evolutionary algorithm SPEA (Strength Pareto Evolutionary Algorithm, which, based on the principles of Pareto optimality, it deliver to the planning expert, the best solutions found in the optimization process. The performance of the algorithm is tested using a set of projects to determine the best among the possible plans. We analyze also the effect of operators on the performance of evolutionary algorithm and results.
ROBUST CONTROL ALGORITHM FOR MULTIVARIABLE PLANTS WITH QUANTIZED OUTPUT
Directory of Open Access Journals (Sweden)
A. A. Margun
2017-01-01
Full Text Available The paper deals with robust output control algorithm for multivariable plants under disturbances. A plant is described by the system of linear differential equations with known relative degrees. Plant parameters are unknown but belong to the known closed bounded set. Plant state vector is unmeasured. Plant output is measured only via static quantizer. Control system algorithm is based on the high gain feedback method. Developed controller provides exponential convergence of tracking error to the bounded area. The area bounds depend on quantizer parameters and the value of external disturbances. Experimental approbation of the proposed control algorithm is performed with the use of Twin Rotor MIMO System laboratory bench. This bench is a helicopter like model with two degrees of freedom (pitch and yaw. DC motors are used as actuators. The output signals are measured via optical encoders. Mathematical model of laboratory bench is obtained. Proposed algorithm was compared with proportional - integral – differential controller in conditions of output quantization. Obtained results have confirmed the efficiency of proposed controller.
Chen, Fangyue; Chen, Guanrong Ron; He, Guolong; Xu, Xiubin; He, Qinbin
2009-10-01
Universal perceptron (UP), a generalization of Rosenblatt's perceptron, is considered in this paper, which is capable of implementing all Boolean functions (BFs). In the classification of BFs, there are: 1) linearly separable Boolean function (LSBF) class, 2) parity Boolean function (PBF) class, and 3) non-LSBF and non-PBF class. To implement these functions, UP takes different kinds of simple topological structures in which each contains at most one hidden layer along with the smallest possible number of hidden neurons. Inspired by the concept of DNA sequences in biological systems, a novel learning algorithm named DNA-like learning is developed, which is able to quickly train a network with any prescribed BF. The focus is on performing LSBF and PBF by a single-layer perceptron (SLP) with the new algorithm. Two criteria for LSBF and PBF are proposed, respectively, and a new measure for a BF, named nonlinearly separable degree (NLSD), is introduced. In the sense of this measure, the PBF is the most complex one. The new algorithm has many advantages including, in particular, fast running speed, good robustness, and no need of considering the convergence property. For example, the number of iterations and computations in implementing the basic 2-bit logic operations such as AND, OR, and XOR by using the new algorithm is far smaller than the ones needed by using other existing algorithms such as error-correction (EC) and backpropagation (BP) algorithms. Moreover, the synaptic weights and threshold values derived from UP can be directly used in designing of the template of cellular neural networks (CNNs), which has been considered as a new spatial-temporal sensory computing paradigm.
On flexible CAD of adaptive control and identification algorithms
DEFF Research Database (Denmark)
Christensen, Anders; Ravn, Ole
1988-01-01
a total redesign of the system within each sample. The necessary design parameters are evaluated and a decision vector is defined, from which the identification algorithm can be generated by the program. Using the decision vector, a decision-node tree structure is built up, where the nodes define......SLLAB is a MATLAB-family software package for solving control and identification problems. This paper concerns the planning of a general-purpose subroutine structure for solving identification and adaptive control problems. A general-purpose identification algorithm is suggested, which allows...
Position Control of Switched Reluctance Motor Using Super Twisting Algorithm
Directory of Open Access Journals (Sweden)
Muhammad Rafiq Mufti
2016-01-01
Full Text Available The inherent problem of chattering in traditional sliding mode control is harmful for practical application of control system. This paper pays a considerable attention to a chattering-free control method, that is, higher-order sliding mode (super twisting algorithm. The design of a position controller for switched reluctance motor is presented and its stability is assured using Lyapunov stability theorem. In order to highlight the advantages of higher-order sliding mode controller (HOSMC, a classical first-order sliding mode controller (FOSMC is also applied to the same system and compared. The simulation results reflect the effectiveness of the proposed technique.
Maximum entropy algorithm and its implementation for the neutral beam profile measurement
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Wook; Cho, Gyu Seong [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Cho, Yong Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
A tomography algorithm to maximize the entropy of image using Lagrangian multiplier technique and conjugate gradient method has been designed for the measurement of 2D spatial distribution of intense neutral beams of KSTAR NBI (Korea Superconducting Tokamak Advanced Research Neutral Beam Injector), which is now being designed. A possible detection system was assumed and a numerical simulation has been implemented to test the reconstruction quality of given beam profiles. This algorithm has the good applicability for sparse projection data and thus, can be used for the neutral beam tomography. 8 refs., 3 figs. (Author)
On Implementing a Homogeneous Interior-Point Algorithm for Nonsymmetric Conic Optimization
DEFF Research Database (Denmark)
Skajaa, Anders; Jørgensen, John Bagterp; Hansen, Per Christian
Based on earlier work by Nesterov, an implementation of a homogeneous infeasible-start interior-point algorithm for solving nonsymmetric conic optimization problems is presented. Starting each iteration from (the vicinity of) the central path, the method computes (nearly) primal-dual symmetric...... approximate tangent directions followed by a purely primal centering procedure to locate the next central primal-dual point. Features of the algorithm include that it makes use only of the primal barrier function, that it is able to detect infeasibilities in the problem and that no phase-I method is needed...
Maximum entropy algorithm and its implementation for the neutral beam profile measurement
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Wook; Cho, Gyu Seong [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Cho, Yong Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
A tomography algorithm to maximize the entropy of image using Lagrangian multiplier technique and conjugate gradient method has been designed for the measurement of 2D spatial distribution of intense neutral beams of KSTAR NBI (Korea Superconducting Tokamak Advanced Research Neutral Beam Injector), which is now being designed. A possible detection system was assumed and a numerical simulation has been implemented to test the reconstruction quality of given beam profiles. This algorithm has the good applicability for sparse projection data and thus, can be used for the neutral beam tomography. 8 refs., 3 figs. (Author)
Review of control algorithms for offshore wind turbines
Energy Technology Data Exchange (ETDEWEB)
Spruce, C.J.; Markou, H.; Leithead, W.E.; Dominguez Ruiz, S.
2005-07-01
Innovative turbine control strategies could allow the improvements to cost and performance considered essential to reduce the cost of energy from offshore wind farms around the UK. This project reviewed and investigated the possibility for further development of a power control algorithm originally developed by NEG Micon Rotors Ltd for use with offshore wind turbines in the hope that more advanced algorithms would reduce the loads on, and hence the costs of, components such as the foundation/support structure, tower, blades and bedplate. Three models (simulation model, linearisation of the simulation model and control model) were produced in order to conduct the review. Application of these models produced the conclusion that the size of the latest generation of offshore wind turbines has now reached a level where performance is starting to be constrained by fundamental factors in the dynamics caused by the machine's physical size. It was also concluded that an ideal control strategy could achieve potential cost savings for the tower and support structure of 5-10% of the total cost of the turbine plus support structure. Further work to develop controllers to reduce loads in the tower and support structure is urged. The report considers non-linear simulation, the linear model, the control model, general operation of the controller, the drive train damping filter, torque control, pitch control and advanced algorithms, and makes detailed recommendations for future work.
Review of control algorithms for offshore wind turbines
Energy Technology Data Exchange (ETDEWEB)
Spruce, C J; Markou, H; Leithead, W E; Dominguez Ruiz, S
2005-07-01
Innovative turbine control strategies could allow the improvements to cost and performance considered essential to reduce the cost of energy from offshore wind farms around the UK. This project reviewed and investigated the possibility for further development of a power control algorithm originally developed by NEG Micon Rotors Ltd for use with offshore wind turbines in the hope that more advanced algorithms would reduce the loads on, and hence the costs of, components such as the foundation/support structure, tower, blades and bedplate. Three models (simulation model, linearisation of the simulation model and control model) were produced in order to conduct the review. Application of these models produced the conclusion that the size of the latest generation of offshore wind turbines has now reached a level where performance is starting to be constrained by fundamental factors in the dynamics caused by the machine's physical size. It was also concluded that an ideal control strategy could achieve potential cost savings for the tower and support structure of 5-10% of the total cost of the turbine plus support structure. Further work to develop controllers to reduce loads in the tower and support structure is urged. The report considers non-linear simulation, the linear model, the control model, general operation of the controller, the drive train damping filter, torque control, pitch control and advanced algorithms, and makes detailed recommendations for future work.
Rizvi, Syed S.; Shah, Dipali; Riasat, Aasia
The Time Wrap algorithm [3] offers a run time recovery mechanism that deals with the causality errors. These run time recovery mechanisms consists of rollback, anti-message, and Global Virtual Time (GVT) techniques. For rollback, there is a need to compute GVT which is used in discrete-event simulation to reclaim the memory, commit the output, detect the termination, and handle the errors. However, the computation of GVT requires dealing with transient message problem and the simultaneous reporting problem. These problems can be dealt in an efficient manner by the Samadi's algorithm [8] which works fine in the presence of causality errors. However, the performance of both Time Wrap and Samadi's algorithms depends on the latency involve in GVT computation. Both algorithms give poor latency for large simulation systems especially in the presence of causality errors. To improve the latency and reduce the processor ideal time, we implement tree and butterflies barriers with the optimistic algorithm. Our analysis shows that the use of synchronous barriers such as tree and butterfly with the optimistic algorithm not only minimizes the GVT latency but also minimizes the processor idle time.
An Implementation Of Elias Delta Code And ElGamal Algorithm In Image Compression And Security
Rachmawati, Dian; Andri Budiman, Mohammad; Saffiera, Cut Amalia
2018-01-01
In data transmission such as transferring an image, confidentiality, integrity, and efficiency of data storage aspects are highly needed. To maintain the confidentiality and integrity of data, one of the techniques used is ElGamal. The strength of this algorithm is found on the difficulty of calculating discrete logs in a large prime modulus. ElGamal belongs to the class of Asymmetric Key Algorithm and resulted in enlargement of the file size, therefore data compression is required. Elias Delta Code is one of the compression algorithms that use delta code table. The image was first compressed using Elias Delta Code Algorithm, then the result of the compression was encrypted by using ElGamal algorithm. Prime test was implemented using Agrawal Biswas Algorithm. The result showed that ElGamal method could maintain the confidentiality and integrity of data with MSE and PSNR values 0 and infinity. The Elias Delta Code method generated compression ratio and space-saving each with average values of 62.49%, and 37.51%.
Derivation and implementation of a cone-beam reconstruction algorithm for nonplanar orbits
International Nuclear Information System (INIS)
Kudo, Hiroyuki; Saito, Tsuneo
1994-01-01
Smith and Grangeat derived a cone-beam inversion formula that can be applied when a nonplanar orbit satisfying the completeness condition is used. Although Grangeat's inversion formula is mathematically different from Smith's, they have similar overall structures to each other. The contribution of this paper is two-fold. First, based on the derivation of Smith, the authors point out that Grangeat's inversion formula and Smith's can be conveniently described using a single formula (the Smith-Grangeat inversion formula) that is in the form of space-variant filtering followed by cone-beam backprojection. Furthermore, the resulting formula is reformulated for data acquisition systems with a planar detector to obtain a new reconstruction algorithm. Second, the authors make two significant modifications to the new algorithm to reduce artifacts and numerical errors encountered in direct implementation of the new algorithm. As for exactness of the new algorithm, the following fact can be stated. The algorithm based on Grangeat's intermediate function is exact for any complete orbit, whereas that based on Smith's intermediate function should be considered as an approximate inverse excepting the special case where almost every plane in 3-D space meets the orbit. The validity of the new algorithm is demonstrated by simulation studies
Implementation of domain decomposition and data decomposition algorithms in RMC code
International Nuclear Information System (INIS)
Liang, J.G.; Cai, Y.; Wang, K.; She, D.
2013-01-01
The applications of Monte Carlo method in reactor physics analysis is somewhat restricted due to the excessive memory demand in solving large-scale problems. Memory demand in MC simulation is analyzed firstly, it concerns geometry data, data of nuclear cross-sections, data of particles, and data of tallies. It appears that tally data is dominant in memory cost and should be focused on in solving the memory problem. Domain decomposition and tally data decomposition algorithms are separately designed and implemented in the reactor Monte Carlo code RMC. Basically, the domain decomposition algorithm is a strategy of 'divide and rule', which means problems are divided into different sub-domains to be dealt with separately and some rules are established to make sure the whole results are correct. Tally data decomposition consists in 2 parts: data partition and data communication. Two algorithms with differential communication synchronization mechanisms are proposed. Numerical tests have been executed to evaluate performance of the new algorithms. Domain decomposition algorithm shows potentials to speed up MC simulation as a space parallel method. As for tally data decomposition algorithms, memory size is greatly reduced
Directory of Open Access Journals (Sweden)
Ju-Chi Liu
2016-01-01
Full Text Available A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI. The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN, and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM and accuracy-recognition mode (AM, were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR. When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints.
Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng; Kuo, Chung-Hsien
2016-01-01
A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints.
Implementation of Robert's Coping with Labor Algorithm© in a large tertiary care facility.
Fairchild, Esther; Roberts, Leissa; Zelman, Karen; Michelli, Shelley; Hastings-Tolsma, Marie
2017-07-01
to implement use of Roberts' Coping with Labor Algorithm © (CWLA) with laboring women in a large tertiary care facility. this was a quality improvement project to implement an alternate approach to pain assessment during labor. It included system assessment for change readiness, implementation of the algorithm across a 6-week period, evaluation of usefulness by nursing staff, and determination of sustained change at one month. Stakeholder Theory (Friedman and Miles, 2002) and Deming's (1982) Plan-Do-Check-Act Cycle, as adapted by Roberts et al (2010), provided the framework for project implementation. the project was undertaken on a labor and delivery (L&D) unit of a large tertiary care facility in a southwestern state in the USA. The unit had 19 suites with close to 6000 laboring patients each year. full, part-time, and per diem Registered Nurse (RN) staff (N=80), including a subset (n=18) who served as the pilot group and champions for implementing the change. a majority of RNs held a positive attitude toward use of the CWLA to assess laboring women's coping with the pain of labor as compared to a Numeric Rating Scale (NRS). RNs reported usefulness in using the CWLA with patients from a wide variety of ethnicities. A pre-existing well-developed team which advocated for evidence-based practice on the unit proved to be a significant strength which promoted rapid change in practice. this work provides important knowledge supporting use of the CWLA in a large tertiary care facility and an approach for effectively implementing that change. Strengths identified in this project contributed to rapid implementation and could be emulated in other facilities. Participant reports support usefulness of the CWLA with patients of varied ethnicity. Assessment of change sustainability at 1 and 6 months demonstrated widespread use of the algorithm though long-term determination is yet needed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Application of genetic algorithms to tuning fuzzy control systems
Espy, Todd; Vombrack, Endre; Aldridge, Jack
1993-01-01
Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.
Implantation of algorithms of diffuse control in DSPS
International Nuclear Information System (INIS)
Perez C, B.
2003-01-01
In this thesis work there are presented: a) The characteristics and main components used in an electronic system based on a Dsp guided to control applications of processes, b) The description of an algorithm of diffuse control whose objective is the regulation of neutron power in a model of the punctual kinetics of a nuclear research reactor type TRIGA, and c) The installation in language assembler and execution in real time of the control algorithm in the system based on a Dsp. With regard to the installation and execution of the algorithm, the reaches of the project have been delimited to the following: a) Readiness of the entrance values to the controller in specific registrations of the system Dsp, b) Conversion of the entrances to the numerical formats with those that one obtains the best acting in the control algorithm, c) Execution of the algorithm until the obtaining of the value of the controller's exit, and d) Placement of the result in specific registrations of the Dsp for their later reading for an external parallel interface. It is necessary to mention that the simulation of the punctual kinetics of a reactor type TRIGA in the Pc and its integration with the control system based on the one Dsp is had contemplated as continuation of this work and that one of those will constitute main activities in my project of master thesis. A brief description of the topics presented in this thesis is given next. In the chapter one it is presented a general description of the diffuse logic and some of their applications in the industry. The main characteristics of a Dsp are also presented that they make it different from a micro controller or a microprocessor of general purpose. In the chapter 2 details of the internal architecture of the Dsp TMS320CS0 of Texas Instruments that are not explained with detail in the manual of user of the same one. This chapter has as objective to understand the internal hardware of the Dsp that is used for to carry out the program in
Software and hardware platform for testing of Automatic Generation Control algorithms
Directory of Open Access Journals (Sweden)
Vasiliev Alexey
2017-01-01
Full Text Available Development and implementation of new Automatic Generation Control (AGC algorithms requires testing them on a model that adequately simulates primary energetic, information and control processes. In this article an implementation of a test platform based on HRTSim (Hybrid Real Time Simulator and SCADA CK-2007 (which is widely used by the System Operator of Russia is proposed. Testing of AGC algorithms on the test platform based on the same SCADA system that is used in operation allows to exclude errors associated with the transfer of AGC algorithms and settings from the test platform to a real power system. A power system including relay protection, automatic control systems and emergency control automatics can be accurately simulated on HRTSim. Besides the information commonly used by conventional AGC systems HRTSim is able to provide a resemblance of Phasor Measurement Unit (PMU measurements (information about rotor angles, magnitudes and phase angles of currents and voltages etc.. The additional information significantly expands the number of possible AGC algorithms so the test platform is useful in modern AGC system developing. The obtained test results confirm that the proposed system is applicable for the tasks mentioned above.
control of a dc motor using fuzzy logic control algorithm
African Journals Online (AJOL)
user
controller in the control performance of an industrial type DC motor using MATLAB. The fuzzy logic .... controlled separately excited permanent magnet DC motor (PMDC). ... When the field current is constant, the flux induced by the field ...
Implementation of an algorithm for cylindrical object identification using range data
Bozeman, Sylvia T.; Martin, Benjamin J.
1989-01-01
One of the problems in 3-D object identification and localization is addressed. In robotic and navigation applications the vision system must be able to distinguish cylindrical or spherical objects as well as those of other geometric shapes. An algorithm was developed to identify cylindrical objects in an image when range data is used. The algorithm incorporates the Hough transform for line detection using edge points which emerge from a Sobel mask. Slices of the data are examined to locate arcs of circles using the normal equations of an over-determined linear system. Current efforts are devoted to testing the computer implementation of the algorithm. Refinements are expected to continue in order to accommodate cylinders in various positions. A technique is sought which is robust in the presence of noise and partial occlusions.
Yu, Chaoyin; Yuan, Zhengwu; Wu, Yuanfeng
2017-10-01
Hyperspectral image unmixing is an important part of hyperspectral data analysis. The mixed pixel decomposition consists of two steps, endmember (the unique signatures of pure ground components) extraction and abundance (the proportion of each endmember in each pixel) estimation. Recently, a Discrete Particle Swarm Optimization algorithm (DPSO) was proposed for accurately extract endmembers with high optimal performance. However, the DPSO algorithm shows very high computational complexity, which makes the endmember extraction procedure very time consuming for hyperspectral image unmixing. Thus, in this paper, the DPSO endmember extraction algorithm was parallelized, implemented on the CUDA (GPU K20) platform, and evaluated by real hyperspectral remote sensing data. The experimental results show that with increasing the number of particles the parallelized version obtained much higher computing efficiency while maintain the same endmember exaction accuracy.
A novel orthoimage mosaic method using a weighted A∗ algorithm - Implementation and evaluation
Zheng, Maoteng; Xiong, Xiaodong; Zhu, Junfeng
2018-04-01
The implementation and evaluation of a weighted A∗ algorithm for orthoimage mosaic with UAV (Unmanned Aircraft Vehicle) imagery is proposed. The initial seam-line network is firstly generated by standard Voronoi Diagram algorithm; an edge diagram is generated based on DSM (Digital Surface Model) data; the vertices (conjunction nodes of seam-lines) of the initial network are relocated if they are on high objects (buildings, trees and other artificial structures); and the initial seam-lines are refined using the weighted A∗ algorithm based on the edge diagram and the relocated vertices. Our method was tested with three real UAV datasets. Two quantitative terms are introduced to evaluate the results of the proposed method. Preliminary results show that the method is suitable for regular and irregular aligned UAV images for most terrain types (flat or mountainous areas), and is better than the state-of-the-art method in both quality and efficiency based on the test datasets.
International Nuclear Information System (INIS)
Dong Yun Kim; Poong Hyun Seong; .
1997-01-01
In this research, we propose a fuzzy gain scheduler (FGS) with an intelligent learning algorithm for a reactor control. In the proposed algorithm, the gradient descent method is used in order to generate the rule bases of a fuzzy algorithm by learning. These rule bases are obtained by minimizing an objective function, which is called a performance cost function. The objective of the FGS with an intelligent learning algorithm is to generate gains, which minimize the error of system. The proposed algorithm can reduce the time and effort required for obtaining the fuzzy rules through the intelligent learning function. It is applied to reactor control of nuclear power plant (NPP), and the results are compared with those of a conventional PI controller with fixed gains. As a result, it is shown that the proposed algorithm is superior to the conventional PI controller. (author)
System control fuzzy neural sewage pumping stations using genetic algorithms
Directory of Open Access Journals (Sweden)
Владлен Николаевич Кузнецов
2015-06-01
Full Text Available It is considered the system of management of sewage pumping station with regulators based on a neuron network with fuzzy logic. Linguistic rules for the controller based on fuzzy logic, maintaining the level of effluent in the receiving tank within the prescribed limits are developed. The use of genetic algorithms for neuron network training is shown.
Feed forward control: An implementation at CIRFEL
International Nuclear Information System (INIS)
Krishnaswamy, J.; Lehrman, I.S.; Hartley, R.
1995-01-01
An integral part of the Compact InfraRed Free Electron LASER (CIRFEL) is control of the phase and amplitude stability in the RF power system. We have implemented such a Feed Forward system using the LabView software package, by National Instruments. We will discuss implementation and performance data of the Feed Forward control of the RF power system at CIRFEL. We will also briefly discuss some conditions under which the problem is ill-conditioned, and what idealizations can be made to remedy these ill-conditioned systems. Using an arbitrary function generator, we generate a driving signal for a voltage-controlled attenuator at the input side of the RF system, and we monitor the RF voltage in cell I of the photocathode gun using a digital storage oscilliscope in averaging mode. The system is stable enough to use data from one shot to modify the inputs for future shots. After downloading the averaged data to a personal computer via a GPIB (IEEE 488) bus, we use a simple linear transformation on the difference waveform between the current shot and the target to produce a correction signal. This signal is added to the driving signal in the arbitrary function generator, and the process is repeated until we get the flatness we need in the output signals from cell 1. The system for phase control is similar, with a voltage-controlled phase shifter replacing the attenuator, and monitoring of the RF phase in cell I replacing the monitoring of RF voltage. By repeatedly alternating between correcting the RF voltage (equivalent to correcting the RF power) and RF phase in cell 1, we are able to achieve simultaneous phase variations of <±1 degrees and amplitude variations of <±0.1% over a 3μsec pulse
Sundareshan, Malur K; Bhattacharjee, Supratik; Inampudi, Radhika; Pang, Ho-Yuen
2002-12-10
Computational complexity is a major impediment to the real-time implementation of image restoration and superresolution algorithms in many applications. Although powerful restoration algorithms have been developed within the past few years utilizing sophisticated mathematical machinery (based on statistical optimization and convex set theory), these algorithms are typically iterative in nature and require a sufficient number of iterations to be executed to achieve the desired resolution improvement that may be needed to meaningfully perform postprocessing image exploitation tasks in practice. Additionally, recent technological breakthroughs have facilitated novel sensor designs (focal plane arrays, for instance) that make it possible to capture megapixel imagery data at video frame rates. A major challenge in the processing of these large-format images is to complete the execution of the image processing steps within the frame capture times and to keep up with the output rate of the sensor so that all data captured by the sensor can be efficiently utilized. Consequently, development of novel methods that facilitate real-time implementation of image restoration and superresolution algorithms is of significant practical interest and is the primary focus of this study. The key to designing computationally efficient processing schemes lies in strategically introducing appropriate preprocessing steps together with the superresolution iterations to tailor optimized overall processing sequences for imagery data of specific formats. For substantiating this assertion, three distinct methods for tailoring a preprocessing filter and integrating it with the superresolution processing steps are outlined. These methods consist of a region-of-interest extraction scheme, a background-detail separation procedure, and a scene-derived information extraction step for implementing a set-theoretic restoration of the image that is less demanding in computation compared with the
Controller tuning based on optimization algorithms of a novel spherical rolling robot
Energy Technology Data Exchange (ETDEWEB)
Sadegjian, Rasou [Dept. of Electrical, Biomedical, and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, QazvinI (Iran, Islamic Republic of); Masouleh, Mehdi Tale [Human and Robot Interaction Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran (Iran, Islamic Republic of)
2016-11-15
This study presents the construction process of a novel spherical rolling robot and control strategies that are used to improve robot locomotion. The proposed robot drive mechanism is constructed based on a combination of the pendulum and wheel drive mechanisms. The control model of the proposed robot is developed, and the state space model is calculated based on the obtained control model. Two control strategies are defined to improve the synchronization performance of the proposed robot motors. The proportional-derivative and proportional-integral-derivative controllers are designed based on the pole placement method. The proportional-integral-derivative controller leads to a better step response than the proportional-derivative controller. The controller parameters are tuned with genetic and differential evaluation algorithms. The proportional-integral-derivative controller which is tuned based on the differential evaluation algorithm leads to a better step response than the proportional-integral-derivative controller that is tuned based on genetic algorithm. Fuzzy logics are used to reduce the robot drive mechanism motors synchronizing process time to the end of achieving a high-performance controller. The experimental implementation results of fuzzy-proportional-integral-derivative on the proposed spherical rolling robot resulted in a desirable synchronizing performance in a short time.
Controller tuning based on optimization algorithms of a novel spherical rolling robot
International Nuclear Information System (INIS)
Sadegjian, Rasou; Masouleh, Mehdi Tale
2016-01-01
This study presents the construction process of a novel spherical rolling robot and control strategies that are used to improve robot locomotion. The proposed robot drive mechanism is constructed based on a combination of the pendulum and wheel drive mechanisms. The control model of the proposed robot is developed, and the state space model is calculated based on the obtained control model. Two control strategies are defined to improve the synchronization performance of the proposed robot motors. The proportional-derivative and proportional-integral-derivative controllers are designed based on the pole placement method. The proportional-integral-derivative controller leads to a better step response than the proportional-derivative controller. The controller parameters are tuned with genetic and differential evaluation algorithms. The proportional-integral-derivative controller which is tuned based on the differential evaluation algorithm leads to a better step response than the proportional-integral-derivative controller that is tuned based on genetic algorithm. Fuzzy logics are used to reduce the robot drive mechanism motors synchronizing process time to the end of achieving a high-performance controller. The experimental implementation results of fuzzy-proportional-integral-derivative on the proposed spherical rolling robot resulted in a desirable synchronizing performance in a short time
Design of PID Controller Simulator based on Genetic Algorithm
Directory of Open Access Journals (Sweden)
Fahri VATANSEVER
2013-08-01
Full Text Available PID (Proportional Integral and Derivative controllers take an important place in the field of system controlling. Various methods such as Ziegler-Nichols, Cohen-Coon, Chien Hrones Reswick (CHR and Wang-Juang-Chan are available for the design of such controllers benefiting from the system time and frequency domain data. These controllers are in compliance with system properties under certain criteria suitable to the system. Genetic algorithms have become widely used in control system applications in parallel to the advances in the field of computer and artificial intelligence. In this study, PID controller designs have been carried out by means of classical methods and genetic algorithms and comparative results have been analyzed. For this purpose, a graphical user interface program which can be used for educational purpose has been developed. For the definite (entered transfer functions, the suitable P, PI and PID controller coefficients have calculated by both classical methods and genetic algorithms and many parameters and responses of the systems have been compared and presented numerically and graphically
Audi, Ahmad; Pierrot-Deseilligny, Marc; Meynard, Christophe; Thom, Christian
2017-07-18
Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles) exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l'information géographique) camera, which has an IMU (Inertial Measurement Unit) sensor and an SoC (System on Chip)/FPGA (Field-Programmable Gate Array). To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N -th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test) detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work.
Directory of Open Access Journals (Sweden)
Ahmad Audi
2017-07-01
Full Text Available Images acquired with a long exposure time using a camera embedded on UAVs (Unmanned Aerial Vehicles exhibit motion blur due to the erratic movements of the UAV. The aim of the present work is to be able to acquire several images with a short exposure time and use an image processing algorithm to produce a stacked image with an equivalent long exposure time. Our method is based on the feature point image registration technique. The algorithm is implemented on the light-weight IGN (Institut national de l’information géographique camera, which has an IMU (Inertial Measurement Unit sensor and an SoC (System on Chip/FPGA (Field-Programmable Gate Array. To obtain the correct parameters for the resampling of the images, the proposed method accurately estimates the geometrical transformation between the first and the N-th images. Feature points are detected in the first image using the FAST (Features from Accelerated Segment Test detector, then homologous points on other images are obtained by template matching using an initial position benefiting greatly from the presence of the IMU sensor. The SoC/FPGA in the camera is used to speed up some parts of the algorithm in order to achieve real-time performance as our ultimate objective is to exclusively write the resulting image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images and block diagrams of the described architecture. The resulting stacked image obtained for real surveys does not seem visually impaired. An interesting by-product of this algorithm is the 3D rotation estimated by a photogrammetric method between poses, which can be used to recalibrate in real time the gyrometers of the IMU. Timing results demonstrate that the image resampling part of this algorithm is the most demanding processing task and should also be accelerated in the FPGA in future work.
International Nuclear Information System (INIS)
Shen Le; Xing Yuxiang
2010-01-01
The derivative back-projection filtered algorithm for a helical cone-beam CT is a newly developed exact reconstruction method. Due to its large computational complexity, the reconstruction is rather slow for practical use. General purpose graphic processing unit (GPGPU) is an SIMD paralleled hardware architecture with powerful float-point operation capacity. In this paper,we propose a new method for PI-line choice and sampling grid, and a paralleled PI-line reconstruction algorithm implemented on NVIDIA's Compute Unified Device Architecture (CUDA). Numerical simulation studies are carried out to validate our method. Compared with conventional CPU implementation, the CUDA accelerated method provides images of the same quality with a speedup factor of 318. Optimization strategies for the GPU acceleration are presented. Finally, influence of the parameters of the PI-line samples on the reconstruction speed and image quality is discussed. (authors)
VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter
Energy Technology Data Exchange (ETDEWEB)
Guliyev, E. [Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen (Netherlands); Kavatsyuk, M., E-mail: m.kavatsyuk@rug.nl [Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen (Netherlands); Lemmens, P.J.J.; Tambave, G.; Loehner, H. [Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen (Netherlands)
2012-02-01
A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an open-source project and is adaptable for other projects and sampling ADCs. Best performance with different types of signal sources can be achieved through flexible parameter selection. The on-line data-processing in FPGA enables to construct an almost dead-time free data acquisition system which is successfully evaluated as a first step towards building a complete trigger-less readout chain. Prototype setups are studied to determine the dead-time of the implemented algorithm, the rate of false triggering, timing performance, and event correlations.
VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter
International Nuclear Information System (INIS)
Guliyev, E.; Kavatsyuk, M.; Lemmens, P.J.J.; Tambave, G.; Löhner, H.
2012-01-01
A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an open-source project and is adaptable for other projects and sampling ADCs. Best performance with different types of signal sources can be achieved through flexible parameter selection. The on-line data-processing in FPGA enables to construct an almost dead-time free data acquisition system which is successfully evaluated as a first step towards building a complete trigger-less readout chain. Prototype setups are studied to determine the dead-time of the implemented algorithm, the rate of false triggering, timing performance, and event correlations.
Tilton, James C.; Plaza, Antonio J. (Editor); Chang, Chein-I. (Editor)
2008-01-01
The hierarchical image segmentation algorithm (referred to as HSEG) is a hybrid of hierarchical step-wise optimization (HSWO) and constrained spectral clustering that produces a hierarchical set of image segmentations. HSWO is an iterative approach to region grooving segmentation in which the optimal image segmentation is found at N(sub R) regions, given a segmentation at N(sub R+1) regions. HSEG's addition of constrained spectral clustering makes it a computationally intensive algorithm, for all but, the smallest of images. To counteract this, a computationally efficient recursive approximation of HSEG (called RHSEG) has been devised. Further improvements in processing speed are obtained through a parallel implementation of RHSEG. This chapter describes this parallel implementation and demonstrates its computational efficiency on a Landsat Thematic Mapper test scene.
Barney, D; Kokkas, P; Manthos, N; Sidiropoulos, G; Reynaud, S; Vichoudis, P
2007-01-01
The CMS Endcap Preshower (ES) sub-detector comprises 4288 silicon sensors, each containing 32 strips. The data are transferred from the detector to the counting room via 1208 optical fibres running at 800Mbps. Each fibre carries data from two, three or four sensors. For the readout of the Preshower, a VME-based system, the Endcap Preshower Data Concentrator Card (ES-DCC), is currently under development. The main objective of each readout board is to acquire on-detector data from up to 36 optical links, perform on-line data reduction via zero suppression and pass the concentrated data to the CMS event builder. This document presents the conceptual design of the Reduction Algorithms as well as their implementation in the ES-DCC FPGAs. These algorithms, as implemented in the ES-DCC, result in a data-reduction factor of 20.
Barney, David; Kokkas, Panagiotis; Manthos, Nikolaos; Reynaud, Serge; Sidiropoulos, Georgios; Vichoudis, Paschalis
2006-01-01
The CMS Endcap Preshower (ES) sub-detector comprises 4288 silicon sensors, each containing 32 strips. The data are transferred from the detector to the counting room via 1208 optical fibres running at 800Mbps. Each fibre carries data from 2, 3 or 4 sensors. For the readout of the Preshower, a VME-based system - the Endcap Preshower Data Concentrator Card (ES-DCC) is currently under development. The main objective of each readout board is to acquire on-detector data from up to 36 optical links, perform on-line data reduction (zero suppression) and pass the concentrated data to the CMS event builder. This document presents the conceptual design of the Reduction Algorithms as well as their implementation into the ES-DCC FPGAs. The algorithms implemented into the ES-DCC resulted in a reduction factor of ~20.
Implementation of the Lanczos algorithm for the Hubbard model on the Connection Machine system
International Nuclear Information System (INIS)
Leung, P.W.; Oppenheimer, P.E.
1992-01-01
An implementation of the Lanczos algorithm for the exact diagonalization of the two dimensional Hubbard model on a 4x4 square lattice on the Connection Machine CM-2 system is described. The CM-2 is a massively parallel machine with distributed memory. The program is written in C/PARIS. This implementation minimizes memory usage by generating the matrix elements as needed instead of storing them. The Lanczos vectors are stored across the local memory of the processors. Using translational symmetry only, the dimension of the Hilbert space at half filling is more than 10 million. A speed of about 2.4 min per iteration is achieved on a 64K CM-2. This implementation is scalable. Running it on a bigger machine with more processors speeds up the process. The performance analysis of this implementation is shown and discuss its advantages and disadvantages are discussed
Power Analysis of Energy Efficient DES Algorithm and Implementation on 28nm FPGA
DEFF Research Database (Denmark)
Thind, Vandana; Pandey, Bishwajeet; Hussain, Dil muhammed Akbar
2016-01-01
In this work, we have done power analysis ofData Encryption Standard (DES) algorithm using Xilinx ISE software development kit. We have analyzed the amount of power utilized by selective components on board i.e., FPGA Artix-7, where DES algorithm is implemented. The components taken into consider......In this work, we have done power analysis ofData Encryption Standard (DES) algorithm using Xilinx ISE software development kit. We have analyzed the amount of power utilized by selective components on board i.e., FPGA Artix-7, where DES algorithm is implemented. The components taken...... into consideration areclock power, logic power, signals power, IOs power, leakage powerand supply power (dynamic and quiescent). We have used four different WLAN frequencies (2.4 GHz, 3.6 GHz, 4.9GHz, and 5.9 GHz) and four different IO standards like HSTL-I, HSTL-II, HSTL-II-18, HSTL-I-18 for power analysis. We have...... achieved13-47% saving in power at different frequencies and withdifferent energy efficient HSTL IO standard. We calculated the percentage change in the IO power with respect to the mean values of IO power at four different frequencies. We notified that there is minimum of -37.5% and maximum of +35...
Decoding the Brain’s Algorithm for Categorization from its Neural Implementation
Mack, Michael L.; Preston, Alison R.; Love, Bradley C.
2013-01-01
Summary Acts of cognition can be described at different levels of analysis: what behavior should characterize the act, what algorithms and representations underlie the behavior, and how the algorithms are physically realized in neural activity [1]. Theories that bridge levels of analysis offer more complete explanations by leveraging the constraints present at each level [2–4]. Despite the great potential for theoretical advances, few studies of cognition bridge levels of analysis. For example, formal cognitive models of category decisions accurately predict human decision making [5, 6], but whether model algorithms and representations supporting category decisions are consistent with underlying neural implementation remains unknown. This uncertainty is largely due to the hurdle of forging links between theory and brain [7–9]. Here, we tackle this critical problem by using brain response to characterize the nature of mental computations that support category decisions to evaluate two dominant, and opposing, models of categorization. We found that brain states during category decisions were significantly more consistent with latent model representations from exemplar [5] rather than prototype theory [10, 11]. Representations of individual experiences, not the abstraction of experiences, are critical for category decision making. Holding models accountable for behavior and neural implementation provides a means for advancing more complete descriptions of the algorithms of cognition. PMID:24094852
Budiman, M. A.; Rachmawati, D.; Parlindungan, M. R.
2018-03-01
MDTM is a classical symmetric cryptographic algorithm. As with other classical algorithms, the MDTM Cipher algorithm is easy to implement but it is less secure compared to modern symmetric algorithms. In order to make it more secure, a stream cipher RC4A is added and thus the cryptosystem becomes super encryption. In this process, plaintexts derived from PDFs are firstly encrypted with the MDTM Cipher algorithm and are encrypted once more with the RC4A algorithm. The test results show that the value of complexity is Θ(n2) and the running time is linearly directly proportional to the length of plaintext characters and the keys entered.
Parallel implementation of DNA sequences matching algorithms using PWM on GPU architecture.
Sharma, Rahul; Gupta, Nitin; Narang, Vipin; Mittal, Ankush
2011-01-01
Positional Weight Matrices (PWMs) are widely used in representation and detection of Transcription Factor Of Binding Sites (TFBSs) on DNA. We implement online PWM search algorithm over parallel architecture. A large PWM data can be processed on Graphic Processing Unit (GPU) systems in parallel which can help in matching sequences at a faster rate. Our method employs extensive usage of highly multithreaded architecture and shared memory of multi-cored GPU. An efficient use of shared memory is required to optimise parallel reduction in CUDA. Our optimised method has a speedup of 230-280x over linear implementation on GPU named GeForce GTX 280.
PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta
Chaudhury, Sidhartha; Lyskov, Sergey; Gray, Jeffrey J.
2010-01-01
Summary: PyRosetta is a stand-alone Python-based implementation of the Rosetta molecular modeling package that allows users to write custom structure prediction and design algorithms using the major Rosetta sampling and scoring functions. PyRosetta contains Python bindings to libraries that define Rosetta functions including those for accessing and manipulating protein structure, calculating energies and running Monte Carlo-based simulations. PyRosetta can be used in two ways: (i) interactive...
Control of the lighting system using a genetic algorithm
Directory of Open Access Journals (Sweden)
Čongradac Velimir D.
2012-01-01
Full Text Available The manufacturing, distribution and use of electricity are of fundamental importance for the social life and they have the biggest influence on the environment associated with any human activity. The energy needed for building lighting makes up 20-40% of the total consumption. This paper displays the development of the mathematical model and genetic algorithm for the control of dimmable lighting on problems of regulating the level of internal lighting and increase of energetic efficiency using daylight. A series of experiments using the optimization algorithm on the realized model confirmed very high savings in electricity consumption.
Automatic brightness control algorithms and their effect on fluoroscopic imaging
International Nuclear Information System (INIS)
Quinn, P.W.; Gagne, R.M.
1989-01-01
This paper reports a computer model used to investigate the effect on dose and image quality of three automatic brightness control (ABC) algorithms used in the imaging of barium during general-purpose fluoroscopy. A model incorporating all aspects of image formation - i.e., x- ray production, phantom attenuation, and energy absorption in the CSI phosphor - was driven according to each ABC algorithm as a function of patient thickness. The energy absorbed in the phosphor was kept constant, while the changes in exposure, integral dose, organ dose, and contrast were monitored
Energy Technology Data Exchange (ETDEWEB)
Madduri, Kamesh; Ediger, David; Jiang, Karl; Bader, David A.; Chavarria-Miranda, Daniel
2009-02-15
We present a new lock-free parallel algorithm for computing betweenness centralityof massive small-world networks. With minor changes to the data structures, ouralgorithm also achieves better spatial cache locality compared to previous approaches. Betweenness centrality is a key algorithm kernel in HPCS SSCA#2, a benchmark extensively used to evaluate the performance of emerging high-performance computing architectures for graph-theoretic computations. We design optimized implementations of betweenness centrality and the SSCA#2 benchmark for two hardware multithreaded systems: a Cray XMT system with the Threadstorm processor, and a single-socket Sun multicore server with the UltraSPARC T2 processor. For a small-world network of 134 million vertices and 1.073 billion edges, the 16-processor XMT system and the 8-core Sun Fire T5120 server achieve TEPS scores (an algorithmic performance count for the SSCA#2 benchmark) of 160 million and 90 million respectively, which corresponds to more than a 2X performance improvement over the previous parallel implementations. To better characterize the performance of these multithreaded systems, we correlate the SSCA#2 performance results with data from the memory-intensive STREAM and RandomAccess benchmarks. Finally, we demonstrate the applicability of our implementation to analyze massive real-world datasets by computing approximate betweenness centrality for a large-scale IMDb movie-actor network.
Commercial FPGA based multipurpose controller: implementation perspective
International Nuclear Information System (INIS)
Arredondo, I.; Campo, M. del; Echevarria, P.; Belver, D.; Muguira, L.; Garmendia, N.; Hassanzadegan, H.; Eguiraun, M.; Jugo, J.; Etxebarria, V.
2012-01-01
This work presents a fast acquisition multipurpose controller, focussing on its EPICS integration and on its XML based configuration. This controller is based on a Lyrtech VHS-ADC board which encloses an FPGA, connected to a Host PC. This Host acts as local controller and implements an IOC integrating the device in an EPICS network. These tasks have been performed using Java as the main tool to program the PC to make the device fit the desired application. All the process includes the use of different technologies: JNA to handle C functions i.e. FPGA API, JavaIOC to integrate EPICS and XML w3c DOM classes to easily configure the particular application. In order to manage the functions, Java specific tools have been developed: Methods to manage the FPGA (read/write registers, acquire data,...), methods to create and use the EPICS server (put, get, monitor,...), mathematical methods to process the data (numeric format conversions,...) and methods to create/ initialize the application structure by means of an XML file (parse elements, build the DOM and the specific application structure). This XML file has some common nodes and tags for all the applications: FPGA registers specifications definition and EPICS variables. This means that the user only has to include a node for the specific application and use the mentioned tools. A main class is in charge of managing the FPGA and EPICS server according to this XML file. This multipurpose controller has been successfully used to implement a BPM and an LLRF application for the ESS-Bilbao (European Spallation Source) facility. (authors)
International Nuclear Information System (INIS)
Park, Gee Yong; Seong, Poong Hyun
1994-01-01
In order to reduce the load of tuning works by trial-and-error for obtaining the best control performance of conventional fuzzy control algorithm, a fuzzy control algorithm with learning function is investigated in this work. This fuzzy control algorithm can make its rule base and tune the membership functions automatically by use of learning function which needs the data from the control actions of the plant operator or other controllers. Learning process in fuzzy control algorithm is to find the optimal values of parameters, which consist of the membership functions and the rule base, by gradient descent method. Learning speed of gradient descent is significantly improved in this work with the addition of modified momentum. This control algorithm is applied to the steam generator level control by computer simulations. The simulation results confirm the good performance of this control algorithm for level control and show that the fuzzy learning algorithm has the generalization capability for the relation of inputs and outputs and it also has the excellent capability of disturbance rejection
Aryanti, Aryanti; Mekongga, Ikhthison
2018-02-01
Data security and confidentiality is one of the most important aspects of information systems at the moment. One attempt to secure data such as by using cryptography. In this study developed a data security system by implementing the cryptography algorithm Rivest, Shamir Adleman (RSA) and Vigenere Cipher. The research was done by combining Rivest, Shamir Adleman (RSA) and Vigenere Cipher cryptographic algorithms to document file either word, excel, and pdf. This application includes the process of encryption and decryption of data, which is created by using PHP software and my SQL. Data encryption is done on the transmit side through RSA cryptographic calculations using the public key, then proceed with Vigenere Cipher algorithm which also uses public key. As for the stage of the decryption side received by using the Vigenere Cipher algorithm still use public key and then the RSA cryptographic algorithm using a private key. Test results show that the system can encrypt files, decrypt files and transmit files. Tests performed on the process of encryption and decryption of files with different file sizes, file size affects the process of encryption and decryption. The larger the file size the longer the process of encryption and decryption.
Ripple FPN reduced algorithm based on temporal high-pass filter and hardware implementation
Li, Yiyang; Li, Shuo; Zhang, Zhipeng; Jin, Weiqi; Wu, Lei; Jin, Minglei
2016-11-01
Cooled infrared detector arrays always suffer from undesired Ripple Fixed-Pattern Noise (FPN) when observe the scene of sky. The Ripple Fixed-Pattern Noise seriously affect the imaging quality of thermal imager, especially for small target detection and tracking. It is hard to eliminate the FPN by the Calibration based techniques and the current scene-based nonuniformity algorithms. In this paper, we present a modified space low-pass and temporal high-pass nonuniformity correction algorithm using adaptive time domain threshold (THP&GM). The threshold is designed to significantly reduce ghosting artifacts. We test the algorithm on real infrared in comparison to several previously published methods. This algorithm not only can effectively correct common FPN such as Stripe, but also has obviously advantage compared with the current methods in terms of detail protection and convergence speed, especially for Ripple FPN correction. Furthermore, we display our architecture with a prototype built on a Xilinx Virtex-5 XC5VLX50T field-programmable gate array (FPGA). The hardware implementation of the algorithm based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay (less than 20 lines). The hardware has been successfully applied in actual system.
Directory of Open Access Journals (Sweden)
Aryanti Aryanti
2018-01-01
Full Text Available Data security and confidentiality is one of the most important aspects of information systems at the moment. One attempt to secure data such as by using cryptography. In this study developed a data security system by implementing the cryptography algorithm Rivest, Shamir Adleman (RSA and Vigenere Cipher. The research was done by combining Rivest, Shamir Adleman (RSA and Vigenere Cipher cryptographic algorithms to document file either word, excel, and pdf. This application includes the process of encryption and decryption of data, which is created by using PHP software and my SQL. Data encryption is done on the transmit side through RSA cryptographic calculations using the public key, then proceed with Vigenere Cipher algorithm which also uses public key. As for the stage of the decryption side received by using the Vigenere Cipher algorithm still use public key and then the RSA cryptographic algorithm using a private key. Test results show that the system can encrypt files, decrypt files and transmit files. Tests performed on the process of encryption and decryption of files with different file sizes, file size affects the process of encryption and decryption. The larger the file size the longer the process of encryption and decryption.
Fuzzy algorithms to generate level controllers for nuclear power plant steam generators
International Nuclear Information System (INIS)
Moon, Byung Soo; Park, Jae Chang; Kim, Dong Hwa; Kim, Byung Koo
1993-01-01
In this paper, we present two sets of fuzzy algorithms for the steam generater level control; one for the high power operations where the flow error is available and the other for the low power operations where the flow error is not available. These are converted to a PID type controller for the high power case and to a quadratic function form of a controller for the low power case. These controllers are implemented on the Compact Nuclear Simulator at Korea Atomic Energy Research Institute and tested by a set of four simulation experiments for each. For both cases, the results show that the total variation of the level error and of the flow error are about 50% of those by the PI controllers with about one half of the control action. For the high power case, this is mainly due to the fact that a combination of two PD type controllers in the velocity algorithm form rather than a combination of two PI type controllers in the position algorithm form is used. For the low power case, the controller is essentially a PID type with a very small integral component where the average values for the derivative component input and for the controller output are used. (Author)
Fuzzy Sets-based Control Rules for Terminating Algorithms
Directory of Open Access Journals (Sweden)
Jose L. VERDEGAY
2002-01-01
Full Text Available In this paper some problems arising in the interface between two different areas, Decision Support Systems and Fuzzy Sets and Systems, are considered. The Model-Base Management System of a Decision Support System which involves some fuzziness is considered, and in that context the questions on the management of the fuzziness in some optimisation models, and then of using fuzzy rules for terminating conventional algorithms are presented, discussed and analyzed. Finally, for the concrete case of the Travelling Salesman Problem, and as an illustration of determination, management and using the fuzzy rules, a new algorithm easy to implement in the Model-Base Management System of any oriented Decision Support System is shown.
Wind turbine pitch control using ICPSO-PID algorithm
DEFF Research Database (Denmark)
Xu, Chang; Tian, Qiangqiang; Shen, Wen Zhong
2013-01-01
For the traditional simplified first-order pitch-control system model, it is difficult to describe a real dynamic characteristic of a variable pitch action system, thus a complete high order mathematical model has to be developed for the pitch control of wind turbine generation (WTG). In the paper...... controller parameters quickly; and the feed-forward controller for wind speed can improve dynamics of a pitch-control system; additionally the power controller can allow a wind turbine to have a constant power output as a wind speed is over the rated one. Compared with a conventional PID, the controller...... with ICPSO-PID algorithm has a smaller overshoot, a shorter tuning time and better robustness. The design method proposed in the paper can be applied in a practical electro-hydraulic pitch control system for WTG....
Indian Academy of Sciences (India)
to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...
Dynamic Control of Airport Departures: Algorithm Development and Field Evaluation
Simaiakis, Ioannis; Balakrishnan, Hamsa
2012-01-01
Surface congestion leads to significant increases in taxi times and fuel burn at major airports. In this paper, we formulate the airport surface congestion management problem as a dynamic control problem. We address two main challenges: the random delay between actuation (at the gate) and the server being controlled (the runway), and the need to develop control strategies that can be implemented in practice by human air traffic controllers. The second requirement necessitates a strategy that ...
Directory of Open Access Journals (Sweden)
Gimazov Ruslan
2018-01-01
Full Text Available The paper considers the issue of supplying autonomous robots by solar batteries. Low efficiency of modern solar batteries is a critical issue for the whole industry of renewable energy. The urgency of solving the problem of improved energy efficiency of solar batteries for supplying the robotic system is linked with the task of maximizing autonomous operation time. Several methods to improve the energy efficiency of solar batteries exist. The use of MPPT charge controller is one these methods. MPPT technology allows increasing the power generated by the solar battery by 15 – 30%. The most common MPPT algorithm is the perturbation and observation algorithm. This algorithm has several disadvantages, such as power fluctuation and the fixed time of the maximum power point tracking. These problems can be solved by using a sufficiently accurate predictive and adaptive algorithm. In order to improve the efficiency of solar batteries, autonomous power supply system was developed, which included an intelligent MPPT charge controller with the fuzzy logic-based perturbation and observation algorithm. To study the implementation of the fuzzy logic apparatus in the MPPT algorithm, in Matlab/Simulink environment, we developed a simulation model of the system, including solar battery, MPPT controller, accumulator and load. Results of the simulation modeling established that the use of MPPT technology had increased energy production by 23%; introduction of the fuzzy logic algorithm to MPPT controller had greatly increased the speed of the maximum power point tracking and neutralized the voltage fluctuations, which in turn reduced the power underproduction by 2%.
Integrated control algorithms for plant environment in greenhouse
Zhang, Kanyu; Deng, Lujuan; Gong, Youmin; Wang, Shengxue
2003-09-01
In this paper a survey of plant environment control in artificial greenhouse was put forward for discussing the future development. Firstly, plant environment control started with the closed loop control of air temperature in greenhouse. With the emergence of higher property computer, the adaptive control algorithm and system identification were integrated into the control system. As adaptation control is more depending on observation of variables by sensors and yet many variables are unobservable or difficult to observe, especially for observation of crop growth status, so model-based control algorithm were developed. In order to evade modeling difficulty, one method is predigesting the models and the other method is utilizing fuzzy logic and neural network technology that realize the models by the black box and gray box theory. Studies on control method of plant environment in greenhouse by means of expert system (ES) and artificial intelligence (AI) have been initiated and developed. Nowadays, the research of greenhouse environment control focus on energy saving, optimal economic profit, enviornment protection and continualy develop.
International Nuclear Information System (INIS)
Ahn, Myunghoon; Kim, Woogoon; Yim, Hyeongsoon
2016-01-01
The PI (Proportional plus Integral) controller, which is the essential functional block in control systems, can automatically perform the stable control of an important plant process while reducing the steady state error and improving the transient response. However, if the received input PV (Process Variable) is not normal due to input channel trouble, it will be difficult to control the system automatically. For this reason, many control systems are implemented to change the operation mode from automatic to manual mode in the PI controller when the failed input PV is detected. If the PI controller is in automatic mode for all the time, the control signal varies as the change of the input PV is continuously reflected in the control algorithm. In the other cases, since the controller changes into the manual mode at t=0, the control signal is fixed at the last PI controller output and thus the feedback control is not performed anymore until the operator takes an action such as the operation mode change. As a result of analysis and simulations for the controller’s operation modes in all the cases of input channel trouble, we discovered that it is more appropriate to maintain the automatic mode despite the bad quality in the PV. Therefore, we improved the control system algorithm reflecting the analysis results for the operator’s convenience and the stability of a control system
Energy Technology Data Exchange (ETDEWEB)
Ahn, Myunghoon; Kim, Woogoon; Yim, Hyeongsoon [KEPCO Engineering and Construction Co., Deajeon (Korea, Republic of)
2016-10-15
The PI (Proportional plus Integral) controller, which is the essential functional block in control systems, can automatically perform the stable control of an important plant process while reducing the steady state error and improving the transient response. However, if the received input PV (Process Variable) is not normal due to input channel trouble, it will be difficult to control the system automatically. For this reason, many control systems are implemented to change the operation mode from automatic to manual mode in the PI controller when the failed input PV is detected. If the PI controller is in automatic mode for all the time, the control signal varies as the change of the input PV is continuously reflected in the control algorithm. In the other cases, since the controller changes into the manual mode at t=0, the control signal is fixed at the last PI controller output and thus the feedback control is not performed anymore until the operator takes an action such as the operation mode change. As a result of analysis and simulations for the controller’s operation modes in all the cases of input channel trouble, we discovered that it is more appropriate to maintain the automatic mode despite the bad quality in the PV. Therefore, we improved the control system algorithm reflecting the analysis results for the operator’s convenience and the stability of a control system.
Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants
International Nuclear Information System (INIS)
Husam Fayiz, Al Masri
2017-01-01
The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms. (paper)
A comparison of two adaptive algorithms for the control of active engine mounts
Hillis, A. J.; Harrison, A. J. L.; Stoten, D. P.
2005-08-01
This paper describes work conducted in order to control automotive active engine mounts, consisting of a conventional passive mount and an internal electromagnetic actuator. Active engine mounts seek to cancel the oscillatory forces generated by the rotation of out-of-balance masses within the engine. The actuator generates a force dependent on a control signal from an algorithm implemented with a real-time DSP. The filtered-x least-mean-square (FXLMS) adaptive filter is used as a benchmark for comparison with a new implementation of the error-driven minimal controller synthesis (Er-MCSI) adaptive controller. Both algorithms are applied to an active mount fitted to a saloon car equipped with a four-cylinder turbo-diesel engine, and have no a priori knowledge of the system dynamics. The steady-state and transient performance of the two algorithms are compared and the relative merits of the two approaches are discussed. The Er-MCSI strategy offers significant computational advantages as it requires no cancellation path modelling. The Er-MCSI controller is found to perform in a fashion similar to the FXLMS filter—typically reducing chassis vibration by 50-90% under normal driving conditions.
Bangbang controller design and implementation for EAST vertical instability control
Energy Technology Data Exchange (ETDEWEB)
Wang, Yuehang, E-mail: wagn8901@mail.ustc.edu.cn [University of Science and Technology of China, Hefei (China); Xiao, Bingjia, E-mail: bjxiao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Liu, Lei, E-mail: liulei@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yuan, Qiping, E-mail: qpyuan@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)
2016-11-15
Highlights: • The linearized plasma vertical response model is designed and analysed. • The Bangbang controller for EAST vertical displacement is designed. • The Bangbang controller is optimized for time delay of control system. • We investigate efficacy of Bangbang controller with simulations. • Performance of the controller is roughly given by experiments. - Abstract: In the EAST 2014 campaign, a new internal coil (IC) power supply was used in order to enhance the control over the plasma’s vertical instabilities. The IC power supply now allows for current and voltage working modes with much higher peak voltages and currents and faster response time. In comparison the previous power supply only allowed for the current mode. A Bangbang and PID composite controller has been designed for the voltage mode based on optimal control theory and the RZIP rigid plasma response model. This paper will demonstrate that faster and enhanced controllability are realized with the combination of Bangbang and PID controller. For the large z position drift, the Bangbang controller will export the maximum voltage to achieve much faster power supply response and slow the vertical displacement events (VDEs). The PID controller is used for the small z drifts which will finally stabilize the VDEs with minimum z position oscillation. Furthermore, to evaluate the time latency of this control system and power supply, the stability and performance of the closed loop were simulated and analysed. This controller was finally implementation and test on EAST using the Quasi-snowflake shape which achieved growth rates of 500 s{sup −1}. This paper shows that the new power supply using the bangbang + PID controller can significantly enhance the control over vertical instabilities.
Synthesis of Control Algorithm for a Leaderheaded UAVs Group
Directory of Open Access Journals (Sweden)
I. O. Samodov
2015-01-01
Full Text Available Currently, a defense sphere uses unmanned aerial vehicles (UAVs. UAVs have several advantages over manned aircrafts such as small size, reduced combat losses of personnel, etc. In addition, in threat environment, it is necessary to arrange both bringing together distant from each other UAVs in a group and their undetected in radar fields compact flying in terms of the joint flight security.However, the task to control a UAVs group is much more difficult than to control a single UAV, since it is necessary not only to control the aircraft, but also take into account the relative position of objects in the group.To solve this problem two ways are possible: using a network exchange between members of the group on the "everyone with everyone" principle and organizing the leader-headed flight.The aim of the article is to develop and study a possible option of the UAVs group control with arranging a leader-headed flight to provide the undetected in radar fields compact flying in terms of the joint flight security.The article develops a universal algorithm to control leader-headed group, based on a new modification of the statistical theory of optimal control. It studies effectiveness of the algorithm. While solving this task, a flight of seven UAVs was simulated in the horizontal plane in a rectangular coordinate system. Control time, linear errors of desired alignment of UAV, and control errors with respect to angular coordinates are used as measures of merit.The study results of the algorithm to control a leader-headed group of UAVs confirmed that it is possible to fulfill tasks of flying free-of-collision group of UAVs with essentially reduced computational costs.
Directory of Open Access Journals (Sweden)
Peter Irgens
2017-04-01
Full Text Available We present an field programmable gate arrays (FPGA based implementation of the popular Viola-Jones face detection algorithm, which is an essential building block in many applications such as video surveillance and tracking. Our implementation is a complete system level hardware design described in a hardware description language and validated on the affordable DE2-115 evaluation board. Our primary objective is to study the achievable performance with a low-end FPGA chip based implementation. In addition, we release to the public domain the entire project. We hope that this will enable other researchers to easily replicate and compare their results to ours and that it will encourage and facilitate further research and educational ideas in the areas of image processing, computer vision, and advanced digital design and FPGA prototyping.
The algorithms for control of heating massive material
Directory of Open Access Journals (Sweden)
Karol Kostúr
2008-03-01
Full Text Available In numerous technological processes a change on the output follows change on the input pending specific time. This time is called dead time and if this time is too large, it causes problems in the control. This contribution is aimed at analyzing the algorithms of discreet regulation of the systems with dead time. Verified were classical PID regulator and a regulator using Dead Beat method. The control was also tried with Dead interval method. The regulators were tested by simulation and in the electrical laboratory furnace. The task was to control the temperature inside the material heated by furnace power.
Genetic Algorithm Optimizes Q-LAW Control Parameters
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
An implementation of differential evolution algorithm for inversion of geoelectrical data
Balkaya, Çağlayan
2013-11-01
Differential evolution (DE), a population-based evolutionary algorithm (EA) has been implemented to invert self-potential (SP) and vertical electrical sounding (VES) data sets. The algorithm uses three operators including mutation, crossover and selection similar to genetic algorithm (GA). Mutation is the most important operator for the success of DE. Three commonly used mutation strategies including DE/best/1 (strategy 1), DE/rand/1 (strategy 2) and DE/rand-to-best/1 (strategy 3) were applied together with a binomial type crossover. Evolution cycle of DE was realized without boundary constraints. For the test studies performed with SP data, in addition to both noise-free and noisy synthetic data sets two field data sets observed over the sulfide ore body in the Malachite mine (Colorado) and over the ore bodies in the Neem-Ka Thana cooper belt (India) were considered. VES test studies were carried out using synthetically produced resistivity data representing a three-layered earth model and a field data set example from Gökçeada (Turkey), which displays a seawater infiltration problem. Mutation strategies mentioned above were also extensively tested on both synthetic and field data sets in consideration. Of these, strategy 1 was found to be the most effective strategy for the parameter estimation by providing less computational cost together with a good accuracy. The solutions obtained by DE for the synthetic cases of SP were quite consistent with particle swarm optimization (PSO) which is a more widely used population-based optimization algorithm than DE in geophysics. Estimated parameters of SP and VES data were also compared with those obtained from Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing (SA) without cooling to clarify uncertainties in the solutions. Comparison to the M-H algorithm shows that DE performs a fast approximate posterior sampling for the case of low-dimensional inverse geophysical problems.
Developed adaptive neuro-fuzzy algorithm to control air conditioning ...
African Journals Online (AJOL)
The paper developed artificial intelligence technique adaptive neuro-fuzzy controller for air conditioning systems at different pressures. The first order Sugeno fuzzy inference system was implemented and utilized for modeling and controller design. In addition, the estimation of the heat transfer rate and water mass flow rate ...
Implementation of Ramp Control in RHIC
International Nuclear Information System (INIS)
Kewisch, J.
1999-01-01
After the injection of beam into RHIC the beam energy is ramped from 10.8 GeV/u to 108 GeV/u and the beta function of the interaction points is reduced from 10 meters to 1 meter. The set points for magnet power supplies and RF cavities is changed during such ramps in concert. A system of Wave Form Generators (WFGs), interconnected by a Real Time Data Link (RTDL) and Event Link is used to control these devices. RHIC ramps use a two level system of WFGs: one transmits the beam energy and a ''pseudo time'' variable as functions of time via RTDL; the other calculates the device set points as functions of these RTDL variables. Energy scaling, saturation correction and the wiring of interaction region quadruples is performed on the second level. This report describes the configuration and implementation of the software, firmware and hardware of the RHIC ramp system
PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta.
Chaudhury, Sidhartha; Lyskov, Sergey; Gray, Jeffrey J
2010-03-01
PyRosetta is a stand-alone Python-based implementation of the Rosetta molecular modeling package that allows users to write custom structure prediction and design algorithms using the major Rosetta sampling and scoring functions. PyRosetta contains Python bindings to libraries that define Rosetta functions including those for accessing and manipulating protein structure, calculating energies and running Monte Carlo-based simulations. PyRosetta can be used in two ways: (i) interactively, using iPython and (ii) script-based, using Python scripting. Interactive mode contains a number of help features and is ideal for beginners while script-mode is best suited for algorithm development. PyRosetta has similar computational performance to Rosetta, can be easily scaled up for cluster applications and has been implemented for algorithms demonstrating protein docking, protein folding, loop modeling and design. PyRosetta is a stand-alone package available at http://www.pyrosetta.org under the Rosetta license which is free for academic and non-profit users. A tutorial, user's manual and sample scripts demonstrating usage are also available on the web site.
A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations
International Nuclear Information System (INIS)
Yepes, Pablo P; Mirkovic, Dragan; Taddei, Phillip J
2010-01-01
An essential component in proton radiotherapy is the algorithm to calculate the radiation dose to be delivered to the patient. The most common dose algorithms are fast but they are approximate analytical approaches. However their level of accuracy is not always satisfactory, especially for heterogeneous anatomical areas, like the thorax. Monte Carlo techniques provide superior accuracy; however, they often require large computation resources, which render them impractical for routine clinical use. Track-repeating algorithms, for example the fast dose calculator, have shown promise for achieving the accuracy of Monte Carlo simulations for proton radiotherapy dose calculations in a fraction of the computation time. We report on the implementation of the fast dose calculator for proton radiotherapy on a card equipped with graphics processor units (GPUs) rather than on a central processing unit architecture. This implementation reproduces the full Monte Carlo and CPU-based track-repeating dose calculations within 2%, while achieving a statistical uncertainty of 2% in less than 1 min utilizing one single GPU card, which should allow real-time accurate dose calculations.
Multi–GPU Implementation of Machine Learning Algorithm using CUDA and OpenCL
Directory of Open Access Journals (Sweden)
Jan Masek
2016-06-01
Full Text Available Using modern Graphic Processing Units (GPUs becomes very useful for computing complex and time consuming processes. GPUs provide high–performance computation capabilities with a good price. This paper deals with a multi–GPU OpenCL and CUDA implementations of k–Nearest Neighbor (k–NN algorithm. This work compares performances of OpenCLand CUDA implementations where each of them is suitable for different number of used attributes. The proposed CUDA algorithm achieves acceleration up to 880x in comparison witha single thread CPU version. The common k-NN was modified to be faster when the lower number of k neighbors is set. The performance of algorithm was verified with two GPUs dual-core NVIDIA GeForce GTX 690 and CPU Intel Core i7 3770 with 4.1 GHz frequency. The results of speed up were measured for one GPU, two GPUs, three and four GPUs. We performed several tests with data sets containing up to 4 million elements with various number of attributes.
Low-Cost Super-Resolution Algorithms Implementation Over a HW/SW Video Compression Platform
Directory of Open Access Journals (Sweden)
Llopis Rafael Peset
2006-01-01
Full Text Available Two approaches are presented in this paper to improve the quality of digital images over the sensor resolution using super-resolution techniques: iterative super-resolution (ISR and noniterative super-resolution (NISR algorithms. The results show important improvements in the image quality, assuming that sufficient sample data and a reasonable amount of aliasing are available at the input images. These super-resolution algorithms have been implemented over a codesign video compression platform developed by Philips Research, performing minimal changes on the overall hardware architecture. In this way, a novel and feasible low-cost implementation has been obtained by using the resources encountered in a generic hybrid video encoder. Although a specific video codec platform has been used, the methodology presented in this paper is easily extendable to any other video encoder architectures. Finally a comparison in terms of memory, computational load, and image quality for both algorithms, as well as some general statements about the final impact of the sampling process on the quality of the super-resolved (SR image, are also presented.
Zhang, Yuli; Han, Jun; Weng, Xinqian; He, Zhongzhu; Zeng, Xiaoyang
This paper presents an Application Specific Instruction-set Processor (ASIP) for the SHA-3 BLAKE algorithm family by instruction set extensions (ISE) from an RISC (reduced instruction set computer) processor. With a design space exploration for this ASIP to increase the performance and reduce the area cost, we accomplish an efficient hardware and software implementation of BLAKE algorithm. The special instructions and their well-matched hardware function unit improve the calculation of the key section of the algorithm, namely G-functions. Also, relaxing the time constraint of the special function unit can decrease its hardware cost, while keeping the high data throughput of the processor. Evaluation results reveal the ASIP achieves 335Mbps and 176Mbps for BLAKE-256 and BLAKE-512. The extra area cost is only 8.06k equivalent gates. The proposed ASIP outperforms several software approaches on various platforms in cycle per byte. In fact, both high throughput and low hardware cost achieved by this programmable processor are comparable to that of ASIC implementations.
PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta
Chaudhury, Sidhartha; Lyskov, Sergey; Gray, Jeffrey J.
2010-01-01
Summary: PyRosetta is a stand-alone Python-based implementation of the Rosetta molecular modeling package that allows users to write custom structure prediction and design algorithms using the major Rosetta sampling and scoring functions. PyRosetta contains Python bindings to libraries that define Rosetta functions including those for accessing and manipulating protein structure, calculating energies and running Monte Carlo-based simulations. PyRosetta can be used in two ways: (i) interactively, using iPython and (ii) script-based, using Python scripting. Interactive mode contains a number of help features and is ideal for beginners while script-mode is best suited for algorithm development. PyRosetta has similar computational performance to Rosetta, can be easily scaled up for cluster applications and has been implemented for algorithms demonstrating protein docking, protein folding, loop modeling and design. Availability: PyRosetta is a stand-alone package available at http://www.pyrosetta.org under the Rosetta license which is free for academic and non-profit users. A tutorial, user's manual and sample scripts demonstrating usage are also available on the web site. Contact: pyrosetta@graylab.jhu.edu PMID:20061306
A Design of a Hybrid Non-Linear Control Algorithm
Directory of Open Access Journals (Sweden)
Farinaz Behrooz
2017-11-01
Full Text Available One of the high energy consuming devices in the buildings is the air-conditioning system. Designing a proper controller to consider the thermal comfort and simultaneously control the energy usage of the device will impact on the system energy efficiency and its performance. The aim of this study was to design a Multiple-Input and Multiple-Output (MIMO, non-linear, and intelligent controller on direct expansion air-conditioning system The control algorithm uses the Fuzzy Cognitive Map method as a main controller and the Generalized Predictive Control method is used for assigning the initial weights of the main controller. The results of the proposed controller shows that the controller was successfully designed and works in set point tracking and under disturbance rejection tests. The obtained results of the Generalized Predictive Control-Fuzzy Cognitive Map controller are compared with the previous MIMO Linear Quadratic Gaussian control design on the same direct expansion air-conditioning system under the same conditions. The comparative results indicate energy savings would be achieved with the proposed controller with long-term usage. Energy efficiency and thermal comfort conditions are achieved by the proposed controller.
Directory of Open Access Journals (Sweden)
Georgios E. Stavroulakis
2013-10-01
Full Text Available This paper presents a numerical study on optimal voltages and optimal placement of piezoelectric actuators for shape control of beam structures. A finite element model, based on Timoshenko beam theory, is developed to characterize the behavior of the structure and the actuators. This model accounted for the electromechanical coupling in the entire beam structure, due to the fact that the piezoelectric layers are treated as constituent parts of the entire structural system. A hybrid scheme is presented based on great deluge and genetic algorithm. The hybrid algorithm is implemented to calculate the optimal locations and optimal values of voltages, applied to the piezoelectric actuators glued in the structure, which minimize the error between the achieved and the desired shape. Results from numerical simulations demonstrate the capabilities and efficiency of the developed optimization algorithm in both clamped−free and clamped−clamped beam problems are presented.
Energy management algorithm for an optimum control of a photovoltaic water pumping system
International Nuclear Information System (INIS)
Sallem, Souhir; Chaabene, Maher; Kamoun, M.B.A.
2009-01-01
The effectiveness of photovoltaic water pumping systems depends on the adequacy between the generated energy and the volume of pumped water. This paper presents an intelligent algorithm which makes decision on the interconnection modes and instants of photovoltaic installation components: battery, water pump and photovoltaic panel. The decision is made by fuzzy rules on the basis of the Photovoltaic Panel Generation (PVPG) forecast during a considered day, on the load required power, and by considering the battery safety. The algorithm aims to extend operation time of the water pump by controlling a switching unit which links the system components with respect to multi objective management criteria. The algorithm implementation demonstrates that the approach extends the pumping period for more than 5 h a day which gives a mean daily improvement of 97% of the water pumped volume.
Optimum Actuator Selection with a Genetic Algorithm for Aircraft Control
Rogers, James L.
2004-01-01
The placement of actuators on a wing determines the control effectiveness of the airplane. One approach to placement maximizes the moments about the pitch, roll, and yaw axes, while minimizing the coupling. For example, the desired actuators produce a pure roll moment without at the same time causing much pitch or yaw. For a typical wing, there is a large set of candidate locations for placing actuators, resulting in a substantially larger number of combinations to examine in order to find an optimum placement satisfying the mission requirements and mission constraints. A genetic algorithm has been developed for finding the best placement for four actuators to produce an uncoupled pitch moment. The genetic algorithm has been extended to find the minimum number of actuators required to provide uncoupled pitch, roll, and yaw control. A simplified, untapered, unswept wing is the model for each application.
The Research and Implementation of MUSER CLEAN Algorithm Based on OpenCL
Feng, Y.; Chen, K.; Deng, H.; Wang, F.; Mei, Y.; Wei, S. L.; Dai, W.; Yang, Q. P.; Liu, Y. B.; Wu, J. P.
2017-03-01
It's urgent to carry out high-performance data processing with a single machine in the development of astronomical software. However, due to the different configuration of the machine, traditional programming techniques such as multi-threading, and CUDA (Compute Unified Device Architecture)+GPU (Graphic Processing Unit) have obvious limitations in portability and seamlessness between different operation systems. The OpenCL (Open Computing Language) used in the development of MUSER (MingantU SpEctral Radioheliograph) data processing system is introduced. And the Högbom CLEAN algorithm is re-implemented into parallel CLEAN algorithm by the Python language and PyOpenCL extended package. The experimental results show that the CLEAN algorithm based on OpenCL has approximately equally operating efficiency compared with the former CLEAN algorithm based on CUDA. More important, the data processing in merely CPU (Central Processing Unit) environment of this system can also achieve high performance, which has solved the problem of environmental dependence of CUDA+GPU. Overall, the research improves the adaptability of the system with emphasis on performance of MUSER image clean computing. In the meanwhile, the realization of OpenCL in MUSER proves its availability in scientific data processing. In view of the high-performance computing features of OpenCL in heterogeneous environment, it will probably become the preferred technology in the future high-performance astronomical software development.
International Nuclear Information System (INIS)
Koo, Bonseung; Hwang, Daehyun; Kim, Keungkoo
2014-01-01
A multi-purpose best-estimate simulator for SMART is being established, which is intended to be used as a tool to evaluate the impacts of design changes on the safety performance, and to improve and/or optimize the operating procedure of SMART. In keeping with these intentions, a real-time model of the digital core protection and monitoring systems was developed and the real-time performance of the models was verified for various simulation scenarios. In this paper, a performance test of the core protection and monitoring algorithm with a DLL file for the SMART simulator implementation was performed. A DLL file of the simulator application code was made and several real-time evaluation tests were conducted for the steady-state and transient conditions with simulated system variables. A performance test of the core protection and monitoring algorithms for the SMART simulator was performed. A DLL file of the simulator version code was made and several real-time evaluation tests were conducted for various scenarios with a DLL file and simulated system variables. The results of all test cases showed good agreement with the reference results and some features caused by algorithm change were properly reflected to the DLL results. Therefore, it was concluded that the SCOPS S SIM and SCOMS S SIM algorithms and calculational capabilities are appropriate for the core protection and monitoring program in the SMART simulator
Next Generation Aura-OMI SO2 Retrieval Algorithm: Introduction and Implementation Status
Li, Can; Joiner, Joanna; Krotkov, Nickolay A.; Bhartia, Pawan K.
2014-01-01
We introduce our next generation algorithm to retrieve SO2 using radiance measurements from the Aura Ozone Monitoring Instrument (OMI). We employ a principal component analysis technique to analyze OMI radiance spectral in 310.5-340 nm acquired over regions with no significant SO2. The resulting principal components (PCs) capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering, and ozone absorption) and measurement artifacts, enabling us to account for these various interferences in SO2 retrievals. By fitting these PCs along with SO2 Jacobians calculated with a radiative transfer model to OMI-measured radiance spectra, we directly estimate SO2 vertical column density in one step. As compared with the previous generation operational OMSO2 PBL (Planetary Boundary Layer) SO2 product, our new algorithm greatly reduces unphysical biases and decreases the noise by a factor of two, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing long-term, consistent SO2 records for air quality and climate research. We have operationally implemented this new algorithm on OMI SIPS for producing the new generation standard OMI SO2 products.
Kawakami, Tomoya; Fujita, Naotaka; Yoshihisa, Tomoki; Tsukamoto, Masahiko
2014-01-01
In recent years, sensors become popular and Home Energy Management System (HEMS) takes an important role in saving energy without decrease in QoL (Quality of Life). Currently, many rule-based HEMSs have been proposed and almost all of them assume "IF-THEN" rules. The Rete algorithm is a typical pattern matching algorithm for IF-THEN rules. Currently, we have proposed a rule-based Home Energy Management System (HEMS) using the Rete algorithm. In the proposed system, rules for managing energy are processed by smart taps in network, and the loads for processing rules and collecting data are distributed to smart taps. In addition, the number of processes and collecting data are reduced by processing rules based on the Rete algorithm. In this paper, we evaluated the proposed system by simulation. In the simulation environment, rules are processed by a smart tap that relates to the action part of each rule. In addition, we implemented the proposed system as HEMS using smart taps.
An improved non-uniformity correction algorithm and its GPU parallel implementation
Cheng, Kuanhong; Zhou, Huixin; Qin, Hanlin; Zhao, Dong; Qian, Kun; Rong, Shenghui
2018-05-01
The performance of SLP-THP based non-uniformity correction algorithm is seriously affected by the result of SLP filter, which always leads to image blurring and ghosting artifacts. To address this problem, an improved SLP-THP based non-uniformity correction method with curvature constraint was proposed. Here we put forward a new way to estimate spatial low frequency component. First, the details and contours of input image were obtained respectively by minimizing local Gaussian curvature and mean curvature of image surface. Then, the guided filter was utilized to combine these two parts together to get the estimate of spatial low frequency component. Finally, we brought this SLP component into SLP-THP method to achieve non-uniformity correction. The performance of proposed algorithm was verified by several real and simulated infrared image sequences. The experimental results indicated that the proposed algorithm can reduce the non-uniformity without detail losing. After that, a GPU based parallel implementation that runs 150 times faster than CPU was presented, which showed the proposed algorithm has great potential for real time application.
SU-E-T-67: Clinical Implementation and Evaluation of the Acuros Dose Calculation Algorithm
International Nuclear Information System (INIS)
Yan, C; Combine, T; Dickens, K; Wynn, R; Pavord, D; Huq, M
2014-01-01
Purpose: The main aim of the current study is to present a detailed description of the implementation of the Acuros XB Dose Calculation Algorithm, and subsequently evaluate its clinical impacts by comparing it with AAA algorithm. Methods: The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were evaluated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6cm × 6cm to 40cm × 40cm. Central axis and off-axis points with different depths were chosen for the comparison. Similarly, wedge fields with wedge angles from 15 to 60 degree were used. In addition, variable field sizes for a heterogeneous phantom were used to evaluate the Acuros algorithm. Finally, both Acuros and AAA were tested on VMAT patient plans for various sites. Does distributions and calculation time were compared. Results: On average, computation time is reduced by at least 50% by Acuros XB compared with AAA on single fields and VMAT plans. When used for open 6MV photon beams on homogeneous water phantom, both Acuros XB and AAA calculated doses were within 1% of measurement. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. When heterogeneous phantom was used, Acuros XB also improved on accuracy. Conclusion: Compared with AAA, Acuros XB can improve accuracy while significantly reduce computation time for VMAT plans
The mGA1.0: A common LISP implementation of a messy genetic algorithm
Goldberg, David E.; Kerzic, Travis
1990-01-01
Genetic algorithms (GAs) are finding increased application in difficult search, optimization, and machine learning problems in science and engineering. Increasing demands are being placed on algorithm performance, and the remaining challenges of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the most difficult of these challenges is the so-called linkage problem. Messy GAs were created to overcome the linkage problem of simple genetic algorithms by combining variable-length strings, gene expression, messy operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of difficult deceptive test functions are encouraging with the mGA always finding global optima in a polynomial number of function evaluations. Theoretical and empirical studies are continuing, and a first version of a messy GA is ready for testing by others. A Common LISP implementation called mGA1.0 is documented and related to the basic principles and operators developed by Goldberg et. al. (1989, 1990). Although the code was prepared with care, it is not a general-purpose code, only a research version. Important data structures and global variations are described. Thereafter brief function descriptions are given, and sample input data are presented together with sample program output. A source listing with comments is also included.
Active control of flexible structures using a fuzzy logic algorithm
Cohen, Kelly; Weller, Tanchum; Ben-Asher, Joseph Z.
2002-08-01
This study deals with the development and application of an active control law for the vibration suppression of beam-like flexible structures experiencing transient disturbances. Collocated pairs of sensors/actuators provide active control of the structure. A design methodology for the closed-loop control algorithm based on fuzzy logic is proposed. First, the behavior of the open-loop system is observed. Then, the number and locations of collocated actuator/sensor pairs are selected. The proposed control law, which is based on the principles of passivity, commands the actuator to emulate the behavior of a dynamic vibration absorber. The absorber is tuned to a targeted frequency, whereas the damping coefficient of the dashpot is varied in a closed loop using a fuzzy logic based algorithm. This approach not only ensures inherent stability associated with passive absorbers, but also circumvents the phenomenon of modal spillover. The developed controller is applied to the AFWAL/FIB 10 bar truss. Simulated results using MATLAB© show that the closed-loop system exhibits fairly quick settling times and desirable performance, as well as robustness characteristics. To demonstrate the robustness of the control system to changes in the temporal dynamics of the flexible structure, the transient response to a considerably perturbed plant is simulated. The modal frequencies of the 10 bar truss were raised as well as lowered substantially, thereby significantly perturbing the natural frequencies of vibration. For these cases, too, the developed control law provides adequate settling times and rates of vibrational energy dissipation.
A neuro-fuzzy controlling algorithm for wind turbine
Energy Technology Data Exchange (ETDEWEB)
Lin, Li [Tampere Univ. of Technology (Finland); Eriksson, J T [Tampere Univ. of Technology (Finland)
1996-12-31
The wind turbine control system is stochastic and nonlinear, offering a demanding field for different control methods. An improved and efficient controller will have great impact on the cost-effectiveness of the technology. In this article, a design method for a self-organizing fuzzy controller is discussed, which combines two popular computational intelligence techniques, neural networks and fuzzy logic. Based on acquisited dynamic parameters of the wind, it can effectively predict wind changes in speed and direction. Maximum power can always be extracted from the kinetic energy of the wind. Based on the stimulating experiments applying nonlinear dynamics to a `Variable Speed Fixed Angle` wind turbine, it is demonstrated that the proposed control model 3rd learning algorithm provide a predictable, stable and accurate performance. The robustness of the controller to system parameter variations and measurement disturbances is also discussed. (author)
A neuro-fuzzy controlling algorithm for wind turbine
Energy Technology Data Exchange (ETDEWEB)
Li Lin [Tampere Univ. of Technology (Finland); Eriksson, J.T. [Tampere Univ. of Technology (Finland)
1995-12-31
The wind turbine control system is stochastic and nonlinear, offering a demanding field for different control methods. An improved and efficient controller will have great impact on the cost-effectiveness of the technology. In this article, a design method for a self-organizing fuzzy controller is discussed, which combines two popular computational intelligence techniques, neural networks and fuzzy logic. Based on acquisited dynamic parameters of the wind, it can effectively predict wind changes in speed and direction. Maximum power can always be extracted from the kinetic energy of the wind. Based on the stimulating experiments applying nonlinear dynamics to a `Variable Speed Fixed Angle` wind turbine, it is demonstrated that the proposed control model 3rd learning algorithm provide a predictable, stable and accurate performance. The robustness of the controller to system parameter variations and measurement disturbances is also discussed. (author)
DEFF Research Database (Denmark)
Hansen, Rico Hjerm; Andersen, Torben Ole; Pedersen, Henrik C.
2010-01-01
The relevance of electronic control of mobile hydraulic systems is increasing as hydraulic components are implemented with more electrical sensors and actuators. This paper presents how the traditional Hydro-mechanical Load Sensing (HLS) control of a specific mobile hydraulic application......, a telehandler, can be replaced with electronic control, i.e. Electronic Load Sensing (ELS). The motivation is the potential of improved dynamic performance and power utilization, along with reducing the mechanical complexity by moving traditional hydro-mechanical implemented features such as pressure control...
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Standardi, Laura; Edlund, Kristian
2014-01-01
This paper presents a warm-started Dantzig–Wolfe decomposition algorithm tailored to economic model predictive control of dynamically decoupled subsystems. We formulate the constrained optimal control problem solved at each sampling instant as a linear program with state space constraints, input...... limits, input rate limits, and soft output limits. The objective function of the linear program is related directly to the cost of operating the subsystems, and the cost of violating the soft output constraints. Simulations for large-scale economic power dispatch problems show that the proposed algorithm...... is significantly faster than both state-of-the-art linear programming solvers, and a structure exploiting implementation of the alternating direction method of multipliers. It is also demonstrated that the control strategy presented in this paper can be tuned using a weighted ℓ1-regularization term...
Enhancement of tracking performance in electro-optical system based on servo control algorithm
Choi, WooJin; Kim, SungSu; Jung, DaeYoon; Seo, HyoungKyu
2017-10-01
Modern electro-optical surveillance and reconnaissance systems require tracking capability to get exact images of target or to accurately direct the line of sight to target which is moving or still. This leads to the tracking system composed of image based tracking algorithm and servo control algorithm. In this study, we focus on the servo control function to minimize the overshoot in the tracking motion and do not miss the target. The scheme is to limit acceleration and velocity parameters in the tracking controller, depending on the target state information in the image. We implement the proposed techniques by creating a system model of DIRCM and simulate the same environment, validate the performance on the actual equipment.
A study and implementation of algorithm for automatic ECT result comparison
International Nuclear Information System (INIS)
Jang, You Hyun; Nam, Min Woo; Kim, In Chul; Joo, Kyung Mun; Kim, Jong Seog
2012-01-01
Automatic ECT Result Comparison Algorithm was developed and implemented with computer language to remove the human error in manual comparison with many data. The structures of two ECT Program (Eddy net and ECT IDS) that have unique file structure were analyzed to open file and upload data in PC memory. Comparison algorithm was defined graphically for easy PC programming language conversion. Automatic Result Program was programmed with C language that is suitable for future code management and has object oriented programming structure and fast development potential. Automatic Result Program has MS Excel file exporting function that is useful to use external S/W for additional analysis and intuitive result visualization function with color mapping in user friendly fashion that helps analyze efficiently
International Nuclear Information System (INIS)
Pucello, N.; D'Agostino, G.; Pisacane, F.
1997-01-01
A genetic algorithm for the optimization of the ground-state structure of a metallic cluster has been developed and ported on a SIMD-MIMD parallel platform. The SIMD part of the parallel platform is represented by a Quadrics/APE100 consisting of 512 floating point units, while the MIMD part is formed by a cluster of workstations. The proposed algorithm is composed by a part where the genetic operators are applied to the elements of the population and a part which performs a further local relaxation and the fitness calculation via Molecular Dynamics. These parts have been implemented on the MIMD and on the SIMD part, respectively. Results have been compared to those generated by using Simulated Annealing
Dynamic game balancing implementation using adaptive algorithm in mobile-based Safari Indonesia game
Yuniarti, Anny; Nata Wardanie, Novita; Kuswardayan, Imam
2018-03-01
In developing a game there is one method that should be applied to maintain the interest of players, namely dynamic game balancing. Dynamic game balancing is a process to match a player’s playing style with the behaviour, attributes, and game environment. This study applies dynamic game balancing using adaptive algorithm in scrolling shooter game type called Safari Indonesia which developed using Unity. The game of this type is portrayed by a fighter aircraft character trying to defend itself from insistent enemy attacks. This classic game is chosen to implement adaptive algorithms because it has quite complex attributes to be developed using dynamic game balancing. Tests conducted by distributing questionnaires to a number of players indicate that this method managed to reduce frustration and increase the pleasure factor in playing.
Bouganssa, Issam; Sbihi, Mohamed; Zaim, Mounia
2017-07-01
The 2D Discrete Wavelet Transform (DWT) is a computationally intensive task that is usually implemented on specific architectures in many imaging systems in real time. In this paper, a high throughput edge or contour detection algorithm is proposed based on the discrete wavelet transform. A technique for applying the filters on the three directions (Horizontal, Vertical and Diagonal) of the image is used to present the maximum of the existing contours. The proposed architectures were designed in VHDL and mapped to a Xilinx Sparten6 FPGA. The results of the synthesis show that the proposed architecture has a low area cost and can operate up to 100 MHz, which can perform 2D wavelet analysis for a sequence of images while maintaining the flexibility of the system to support an adaptive algorithm.
High-frequency asymptotics of the local vertex function. Algorithmic implementations
Energy Technology Data Exchange (ETDEWEB)
Tagliavini, Agnese; Wentzell, Nils [Institut fuer Theoretische Physik, Eberhard Karls Universitaet, 72076 Tuebingen (Germany); Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Li, Gang; Rohringer, Georg; Held, Karsten; Toschi, Alessandro [Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Taranto, Ciro [Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna (Austria); Max Planck Institute for Solid State Research, D-70569 Stuttgart (Germany); Andergassen, Sabine [Institut fuer Theoretische Physik, Eberhard Karls Universitaet, 72076 Tuebingen (Germany)
2016-07-01
Local vertex functions are a crucial ingredient of several forefront many-body algorithms in condensed matter physics. However, the full treatment of their frequency dependence poses a huge limitation to the numerical performance. A significant advancement requires an efficient treatment of the high-frequency asymptotic behavior of the vertex functions. We here provide a detailed diagrammatic analysis of the high-frequency asymptotic structures and their physical interpretation. Based on these insights, we propose a frequency parametrization, which captures the whole high-frequency asymptotics for arbitrary values of the local Coulomb interaction and electronic density. We present its algorithmic implementation in many-body solvers based on parquet-equations as well as functional renormalization group schemes and assess its validity by comparing our results for the single impurity Anderson model with exact diagonalization calculations.
A study and implementation of algorithm for automatic ECT result comparison
Energy Technology Data Exchange (ETDEWEB)
Jang, You Hyun; Nam, Min Woo; Kim, In Chul; Joo, Kyung Mun; Kim, Jong Seog [Central Research Institute, Daejeon (Korea, Republic of)
2012-10-15
Automatic ECT Result Comparison Algorithm was developed and implemented with computer language to remove the human error in manual comparison with many data. The structures of two ECT Program (Eddy net and ECT IDS) that have unique file structure were analyzed to open file and upload data in PC memory. Comparison algorithm was defined graphically for easy PC programming language conversion. Automatic Result Program was programmed with C language that is suitable for future code management and has object oriented programming structure and fast development potential. Automatic Result Program has MS Excel file exporting function that is useful to use external S/W for additional analysis and intuitive result visualization function with color mapping in user friendly fashion that helps analyze efficiently.
Implementation of sepsis algorithm by nurses in the intensive care unit
Directory of Open Access Journals (Sweden)
Paula Pedroso Peninck
2012-04-01
Full Text Available Sepsis is defined as a clinical syndrome consisting of a systemic inflammatory response associated to an infection, which may determine malfunction or failure of multiple organs. This research aims to verify the application of implementation of sepsis algorithm by nurses in the Intensive Care Unit and create an operational nursing assistance guide. This is an exploratory, descriptive study with quantitative approach. A data collection instrument based on relevant literature was elaborated, assessed, corrected and validated. The sample consisted of 20 intensive care unit nurses. We obtained satisfactory evaluations on nurses’ performance, but some issues did not reach 50% accuracy. We emphasize the importance of greater numbers of nurses getting acquainted and correctly applying the sepsis algorithm. Based on the above, an operational septic patient nursing assistance guide was created, based on the difficulties that arose vis-à-vis the variables applied in research and relevant literature.
Directory of Open Access Journals (Sweden)
E.A. Ramadan
2014-09-01
Full Text Available This paper presents an improved adaptive fuzzy logic speed controller for a DC motor, based on field programmable gate array (FPGA hardware implementation. The developed controller includes an adaptive fuzzy logic control (AFLC algorithm, which is designed and verified with a nonlinear model of DC motor. Then, it has been synthesised, functionally verified and implemented using Xilinx Integrated Software Environment (ISE and Spartan-3E FPGA. The performance of this controller has been successfully validated with good tracking results under different operating conditions.
A Feedback Optimal Control Algorithm with Optimal Measurement Time Points
Directory of Open Access Journals (Sweden)
Felix Jost
2017-02-01
Full Text Available Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning as well as minimizing a given objective (performing. We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.
Implementation of Human Trafficking Education and Treatment Algorithm in the Emergency Department.
Egyud, Amber; Stephens, Kimberly; Swanson-Bierman, Brenda; DiCuccio, Marge; Whiteman, Kimberly
2017-11-01
Health care professionals have not been successful in recognizing or rescuing victims of human trafficking. The purpose of this project was to implement a screening system and treatment algorithm in the emergency department to improve the identification and rescue of victims of human trafficking. The lack of recognition by health care professionals is related to inadequate education and training tools and confusion with other forms of violence such as trauma and sexual assault. A multidisciplinary team was formed to assess the evidence related to human trafficking and make recommendations for practice. After receiving education, staff completed a survey about knowledge gained from the training. An algorithm for identification and treatment of sex trafficking victims was implemented and included a 2-pronged identification approach: (1) medical red flags created by a risk-assessment tool embedded in the electronic health record and (2) a silent notification process. Outcome measures were the number of victims who were identified either by the medical red flags or by silent notification and were offered and accepted intervention. Survey results indicated that 75% of participants reported that the education improved their competence level. The results demonstrated that an education and treatment algorithm may be an effective strategy to improve recognition. One patient was identified as an actual victim of human trafficking; the remaining patients reported other forms of abuse. Education and a treatment algorithm were effective strategies to improve recognition and rescue of human trafficking victims and increase identification of other forms of abuse. Copyright © 2017 Emergency Nurses Association. Published by Elsevier Inc. All rights reserved.
PID-Controller Tuning Optimization with Genetic Algorithms in Servo Systems
Directory of Open Access Journals (Sweden)
Arturo Y. Jaen-Cuellar
2013-09-01
Full Text Available Performance improvement is the main goal of the study of PID control and much research has been conducted for this purpose. The PID filter is implemented in almost all industrial processes because of its well-known beneficial features. In general, the whole system's performance strongly depends on the controller's efficiency and hence the tuning process plays a key role in the system's behaviour. In this work, the servo systems will be analysed, specifically the positioning control systems. Among the existent tuning methods, the Gain-Phase Margin method based on Frequency Response analysis is the most adequate for controller tuning in positioning control systems. Nevertheless, this method can be improved by integrating an optimization technique. The novelty of this work is the development of a new methodology for PID control tuning by coupling the Gain-Phase Margin method with the Genetic Algorithms in which the micro-population concept and adaptive mutation probability are applied. Simulations using a positioning system model in MATLAB and experimental tests in two CNC machines and an industrial robot are carried out in order to show the effectiveness of the proposal. The obtained results are compared with both the classical Gain-Phase Margin tuning and with a recent PID controller optimization using Genetic Algorithms based on real codification. The three methodologies are implemented using software.
IMPLEMENTATION OF A REAL-TIME STACKING ALGORITHM IN A PHOTOGRAMMETRIC DIGITAL CAMERA FOR UAVS
Directory of Open Access Journals (Sweden)
A. Audi
2017-08-01
Full Text Available In the recent years, unmanned aerial vehicles (UAVs have become an interesting tool in aerial photography and photogrammetry activities. In this context, some applications (like cloudy sky surveys, narrow-spectral imagery and night-vision imagery need a longexposure time where one of the main problems is the motion blur caused by the erratic camera movements during image acquisition. This paper describes an automatic real-time stacking algorithm which produces a high photogrammetric quality final composite image with an equivalent long-exposure time using several images acquired with short-exposure times. Our method is inspired by feature-based image registration technique. The algorithm is implemented on the light-weight IGN camera, which has an IMU sensor and a SoC/FPGA. To obtain the correct parameters for the resampling of images, the presented method accurately estimates the geometrical relation between the first and the Nth image, taking into account the internal parameters and the distortion of the camera. Features are detected in the first image by the FAST detector, than homologous points on other images are obtained by template matching aided by the IMU sensors. The SoC/FPGA in the camera is used to speed up time-consuming parts of the algorithm such as features detection and images resampling in order to achieve a real-time performance as we want to write only the resulting final image to save bandwidth on the storage device. The paper includes a detailed description of the implemented algorithm, resource usage summary, resulting processing time, resulting images, as well as block diagrams of the described architecture. The resulting stacked image obtained on real surveys doesn’t seem visually impaired. Timing results demonstrate that our algorithm can be used in real-time since its processing time is less than the writing time of an image in the storage device. An interesting by-product of this algorithm is the 3D rotation
Hou, Yi-You
2017-09-01
This article addresses an evolutionary programming (EP) algorithm technique-based and proportional-integral-derivative (PID) control methods are established to guarantee synchronization of the master and slave Rikitake chaotic systems. For PID synchronous control, the evolutionary programming (EP) algorithm is used to find the optimal PID controller parameters k p , k i , k d by integrated absolute error (IAE) method for the convergence conditions. In order to verify the system performance, the basic electronic components containing operational amplifiers (OPAs), resistors, and capacitors are used to implement the proposed chaotic Rikitake systems. Finally, the experimental results validate the proposed Rikitake chaotic synchronization approach. Copyright © 2017. Published by Elsevier Ltd.
Morita, Kenji; Jitsev, Jenia; Morrison, Abigail
2016-09-15
Value-based action selection has been suggested to be realized in the corticostriatal local circuits through competition among neural populations. In this article, we review theoretical and experimental studies that have constructed and verified this notion, and provide new perspectives on how the local-circuit selection mechanisms implement reinforcement learning (RL) algorithms and computations beyond them. The striatal neurons are mostly inhibitory, and lateral inhibition among them has been classically proposed to realize "Winner-Take-All (WTA)" selection of the maximum-valued action (i.e., 'max' operation). Although this view has been challenged by the revealed weakness, sparseness, and asymmetry of lateral inhibition, which suggest more complex dynamics, WTA-like competition could still occur on short time scales. Unlike the striatal circuit, the cortical circuit contains recurrent excitation, which may enable retention or temporal integration of information and probabilistic "soft-max" selection. The striatal "max" circuit and the cortical "soft-max" circuit might co-implement an RL algorithm called Q-learning; the cortical circuit might also similarly serve for other algorithms such as SARSA. In these implementations, the cortical circuit presumably sustains activity representing the executed action, which negatively impacts dopamine neurons so that they can calculate reward-prediction-error. Regarding the suggested more complex dynamics of striatal, as well as cortical, circuits on long time scales, which could be viewed as a sequence of short WTA fragments, computational roles remain open: such a sequence might represent (1) sequential state-action-state transitions, constituting replay or simulation of the internal model, (2) a single state/action by the whole trajectory, or (3) probabilistic sampling of state/action. Copyright © 2016. Published by Elsevier B.V.
Research on digital PID control algorithm for HPCT
International Nuclear Information System (INIS)
Zeng Yi; Li Rui; Shen Tianjian; Ke Xinhua
2009-01-01
Digital PID applied in high-precision HPCT (High-precision current transducer) based on Digital Signal Processor (DSP) TMS320F2812 and special D/A converter was researched. By using increment style PID Control algorithm, the stability and precision of high-precision HPCT output voltage is improved. On basis of deeply analysing incremental digital PID, the scheme model of HPCT is proposed, the feasibility simulation using Matlab is given. Practical hardware circuit verified the incremental PID has closed-loop control process in tracking HPCT output voltage. (authors)
Nuclear power control system design using genetic algorithm
International Nuclear Information System (INIS)
Lee, Yoon Joon; Cho, Kyung Ho
1996-01-01
The genetic algorithm(GA) is applied to the design of the nuclear power control system. The reactor control system model is described in the LQR configuration. The LQR system order is increased to make the tracking system. The key parameters of the design are weighting matrices, and these are usually determined through numerous simulations in the conventional design. To determine the more objective and optimal weightings, the improved GA is applied. The results show that the weightings determined by the GA yield the better system responses than those obtained by the conventional design method
International Nuclear Information System (INIS)
Bankier, A.; Herold, C.J.; Fleischmann, D.; Janata-Schwatczek, K.
1998-01-01
Purpose: Debate about the potential implementation of Spiral-CT in diagnostic algorithms of pulmonary embolism are often focussed on sensitivity and specificity in the context of comparative methodologic studies. We intend to investigate whether additional factors might influence this debate. Results: The factors availability, acceptance, patient-outcome, and cost-effectiveness-studies do have substantial influence on the implementation of Spiral-CT in the diagnostic algorithms of pulmonary embolism. Incorporation of these factors into the discussion might lead to more flexible and more patient-oriented algorithms for the diagnosis of pulmonary embolism. Conclusion: Availability of equipment, acceptance among clinicians, patient-out-come, and cost-effectiveness evaluations should be implemented into the debate about potential implementation of Spiral-CT in routine diagnostic imaging algorithms of pulmonary embolism. (orig./AJ) [de
Directory of Open Access Journals (Sweden)
Ronghui Zhang
2017-05-01
Full Text Available Focusing on safety, comfort and with an overall aim of the comprehensive improvement of a vision-based intelligent vehicle, a novel Advanced Emergency Braking System (AEBS is proposed based on Nonlinear Model Predictive Algorithm. Considering the nonlinearities of vehicle dynamics, a vision-based longitudinal vehicle dynamics model is established. On account of the nonlinear coupling characteristics of the driver, surroundings, and vehicle itself, a hierarchical control structure is proposed to decouple and coordinate the system. To avoid or reduce the collision risk between the intelligent vehicle and collision objects, a coordinated cost function of tracking safety, comfort, and fuel economy is formulated. Based on the terminal constraints of stable tracking, a multi-objective optimization controller is proposed using the theory of non-linear model predictive control. To quickly and precisely track control target in a finite time, an electronic brake controller for AEBS is designed based on the Nonsingular Fast Terminal Sliding Mode (NFTSM control theory. To validate the performance and advantages of the proposed algorithm, simulations are implemented. According to the simulation results, the proposed algorithm has better integrated performance in reducing the collision risk and improving the driving comfort and fuel economy of the smart car compared with the existing single AEBS.
Diversity Controlling Genetic Algorithm for Order Acceptance and Scheduling Problem
Directory of Open Access Journals (Sweden)
Cheng Chen
2014-01-01
Full Text Available Selection and scheduling are an important topic in production systems. To tackle the order acceptance and scheduling problem on a single machine with release dates, tardiness penalty, and sequence-dependent setup times, in this paper a diversity controlling genetic algorithm (DCGA is proposed, in which a diversified population is maintained during the whole search process through survival selection considering both the fitness and the diversity of individuals. To measure the similarity between individuals, a modified Hamming distance without considering the unaccepted orders in the chromosome is adopted. The proposed DCGA was validated on 1500 benchmark instances with up to 100 orders. Compared with the state-of-the-art algorithms, the experimental results show that DCGA improves the solution quality obtained significantly, in terms of the deviation from upper bound.
The Sustainable Technology Division has recently completed an implementation of the U.S. EPA's Waste Reduction (WAR) Algorithm that can be directly accessed from a Cape-Open compliant process modeling environment. The WAR Algorithm add-in can be used in AmsterChem's COFE (Cape-Op...
AN ALGORITHM OF ADAPTIVE TORQUE CONTROL IN INJECTOR INTERNAL COMBUSTION ENGINE
Directory of Open Access Journals (Sweden)
D. N. Gerasimov
2015-07-01
radius of the neighborhood is far less than required level of 20 N×m that affords ground for practical implementation of the algorithm. Practical Relevance. The proposed algorithm is recommended for application in the practical problem of torque control in injector and other types of ICE.
Implementation of QR-decomposition based on CORDIC for unitary MUSIC algorithm
Lounici, Merwan; Luan, Xiaoming; Saadi, Wahab
2013-07-01
The DOA (Direction Of Arrival) estimation with subspace methods such as MUSIC (MUltiple SIgnal Classification) and ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) is based on an accurate estimation of the eigenvalues and eigenvectors of covariance matrix. QR decomposition is implemented with the Coordinate Rotation DIgital Computer (CORDIC) algorithm. QRD requires only additions and shifts [6], so it is faster and more regular than other methods. In this article the hardware architecture of an EVD (Eigen Value Decomposition) processor based on TSA (triangular systolic array) for QR decomposition is proposed. Using Xilinx System Generator (XSG), the design is implemented and the estimated logic device resource values are presented for different matrix sizes.
Progress in parallel implementation of the multilevel plane wave time domain algorithm
Liu, Yang
2013-07-01
The computational complexity and memory requirements of classical schemes for evaluating transient electromagnetic fields produced by Ns dipoles active for Nt time steps scale as O(NtN s 2) and O(Ns 2), respectively. The multilevel plane wave time domain (PWTD) algorithm [A.A. Ergin et al., Antennas and Propagation Magazine, IEEE, vol. 41, pp. 39-52, 1999], viz. the extension of the frequency domain fast multipole method (FMM) to the time domain, reduces the above costs to O(NtNslog2Ns) and O(Ns α) with α = 1.5 for surface current distributions and α = 4/3 for volumetric ones. Its favorable computational and memory costs notwithstanding, serial implementations of the PWTD scheme unfortunately remain somewhat limited in scope and ill-suited to tackle complex real-world scattering problems, and parallel implementations are called for. © 2013 IEEE.
Doxley, Charles A.
2016-01-01
In the current world of applications that use reconfigurable technology implemented on field programmable gate arrays (FPGAs), there is a need for flexible architectures that can grow as the systems evolve. A project has limited resources and a fixed set of requirements that development efforts are tasked to meet. Designers must develop robust solutions that practically meet the current customer demands and also have the ability to grow for future performance. This paper describes the development of a high speed serial data streaming algorithm that allows for transmission of multiple data channels over a single serial link. The technique has the ability to change to meet new applications developed for future design considerations. This approach uses the Xilinx Serial RapidIO LOGICORE Solution to implement a flexible infrastructure to meet the current project requirements with the ability to adapt future system designs.
Implementation of the ALICE HLT hardware cluster finder algorithm in Vivado HLS
Energy Technology Data Exchange (ETDEWEB)
Gruell, Frederik; Engel, Heiko; Kebschull, Udo [Infrastructure and Computer Systems in Data Processing, Goethe University Frankfurt (Germany); Collaboration: ALICE-Collaboration
2016-07-01
The FastClusterFinder algorithm running in the ALICE High-Level Trigger (HLT) read-out boards extracts clusters from raw data from the Time Projection Chamber (TPC) detector and forwards them to the HLT data processing framework for tracking, event reconstruction and compression. It serves as an early stage of feature extraction in the FPGA of the board. Past and current implementations are written in VHDL on reconfigurable hardware for high throughput and low latency. We examine Vivado HLS, a high-level language that promises an increased developer productivity, as an alternative. The implementation of the application is compared to descriptions in VHDL and MaxJ in terms of productivity, resource usage and maximum clock frequency.
Implementation of PID autotuning procedure in PLC controller
Directory of Open Access Journals (Sweden)
Daniun Marcin
2017-01-01
Full Text Available In this paper, we present the automatic PID tuning procedure based on the Method of Moments and AMIGO tuning rules. The advantage of the Method of Moments is that the time constant and transport delay are estimated at the areas rather than on the individual points. This results in high resistance to the measurement noises. The sensitivity to measurement noises is a serious problem in other autotuning methods. The second advantage of this method is that it approximates plant during identification process to first order model with time delay. We combined the Method of Moments with the AMIGO tuning rules and implemented this combination as a stand-alone autotuning procedure in Siemens S7-1200 PLC controller. Next, we compared this method with two built-in PID autotuning procedures which were available in Siemens S7-1200 PLC controller. The procedure was tested for three types of plant models: with lag-dominated, balanced, and delay-dominated dynamics. We simulated the plants on a PC in Matlab R2013a. The connection between the PC and PLC was maintained through a National Instruments data acquisition board, NI PCI-6229. We conducted tests for step change in the set point, trajectory tracking, and load disturbances. To assess control quality, we used IAE index. We limited our research to PI algorithm. The results prove that proposed method was better than two built-in tuning methods provided by Siemens, oscillating between a few and even a dozen percent in most cases. The proposed method is universal and can be implemented in any PLC controller.
Multi-GPU implementation of a VMAT treatment plan optimization algorithm
International Nuclear Information System (INIS)
Tian, Zhen; Folkerts, Michael; Tan, Jun; Jia, Xun; Jiang, Steve B.; Peng, Fei
2015-01-01
Purpose: Volumetric modulated arc therapy (VMAT) optimization is a computationally challenging problem due to its large data size, high degrees of freedom, and many hardware constraints. High-performance graphics processing units (GPUs) have been used to speed up the computations. However, GPU’s relatively small memory size cannot handle cases with a large dose-deposition coefficient (DDC) matrix in cases of, e.g., those with a large target size, multiple targets, multiple arcs, and/or small beamlet size. The main purpose of this paper is to report an implementation of a column-generation-based VMAT algorithm, previously developed in the authors’ group, on a multi-GPU platform to solve the memory limitation problem. While the column-generation-based VMAT algorithm has been previously developed, the GPU implementation details have not been reported. Hence, another purpose is to present detailed techniques employed for GPU implementation. The authors also would like to utilize this particular problem as an example problem to study the feasibility of using a multi-GPU platform to solve large-scale problems in medical physics. Methods: The column-generation approach generates VMAT apertures sequentially by solving a pricing problem (PP) and a master problem (MP) iteratively. In the authors’ method, the sparse DDC matrix is first stored on a CPU in coordinate list format (COO). On the GPU side, this matrix is split into four submatrices according to beam angles, which are stored on four GPUs in compressed sparse row format. Computation of beamlet price, the first step in PP, is accomplished using multi-GPUs. A fast inter-GPU data transfer scheme is accomplished using peer-to-peer access. The remaining steps of PP and MP problems are implemented on CPU or a single GPU due to their modest problem scale and computational loads. Barzilai and Borwein algorithm with a subspace step scheme is adopted here to solve the MP problem. A head and neck (H and N) cancer case is
Multi-GPU implementation of a VMAT treatment plan optimization algorithm
Energy Technology Data Exchange (ETDEWEB)
Tian, Zhen, E-mail: Zhen.Tian@UTSouthwestern.edu, E-mail: Xun.Jia@UTSouthwestern.edu, E-mail: Steve.Jiang@UTSouthwestern.edu; Folkerts, Michael; Tan, Jun; Jia, Xun, E-mail: Zhen.Tian@UTSouthwestern.edu, E-mail: Xun.Jia@UTSouthwestern.edu, E-mail: Steve.Jiang@UTSouthwestern.edu; Jiang, Steve B., E-mail: Zhen.Tian@UTSouthwestern.edu, E-mail: Xun.Jia@UTSouthwestern.edu, E-mail: Steve.Jiang@UTSouthwestern.edu [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 (United States); Peng, Fei [Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)
2015-06-15
Purpose: Volumetric modulated arc therapy (VMAT) optimization is a computationally challenging problem due to its large data size, high degrees of freedom, and many hardware constraints. High-performance graphics processing units (GPUs) have been used to speed up the computations. However, GPU’s relatively small memory size cannot handle cases with a large dose-deposition coefficient (DDC) matrix in cases of, e.g., those with a large target size, multiple targets, multiple arcs, and/or small beamlet size. The main purpose of this paper is to report an implementation of a column-generation-based VMAT algorithm, previously developed in the authors’ group, on a multi-GPU platform to solve the memory limitation problem. While the column-generation-based VMAT algorithm has been previously developed, the GPU implementation details have not been reported. Hence, another purpose is to present detailed techniques employed for GPU implementation. The authors also would like to utilize this particular problem as an example problem to study the feasibility of using a multi-GPU platform to solve large-scale problems in medical physics. Methods: The column-generation approach generates VMAT apertures sequentially by solving a pricing problem (PP) and a master problem (MP) iteratively. In the authors’ method, the sparse DDC matrix is first stored on a CPU in coordinate list format (COO). On the GPU side, this matrix is split into four submatrices according to beam angles, which are stored on four GPUs in compressed sparse row format. Computation of beamlet price, the first step in PP, is accomplished using multi-GPUs. A fast inter-GPU data transfer scheme is accomplished using peer-to-peer access. The remaining steps of PP and MP problems are implemented on CPU or a single GPU due to their modest problem scale and computational loads. Barzilai and Borwein algorithm with a subspace step scheme is adopted here to solve the MP problem. A head and neck (H and N) cancer case is
Implementation of a three-qubit refined Deutsch-Jozsa algorithm using SFG quantum logic gates
International Nuclear Information System (INIS)
Duce, A Del; Savory, S; Bayvel, P
2006-01-01
In this paper we present a quantum logic circuit which can be used for the experimental demonstration of a three-qubit solid state quantum computer based on a recent proposal of optically driven quantum logic gates. In these gates, the entanglement of randomly placed electron spin qubits is manipulated by optical excitation of control electrons. The circuit we describe solves the Deutsch problem with an improved algorithm called the refined Deutsch-Jozsa algorithm. We show that it is possible to select optical pulses that solve the Deutsch problem correctly, and do so without losing quantum information to the control electrons, even though the gate parameters vary substantially from one gate to another
Implementation of a three-qubit refined Deutsch-Jozsa algorithm using SFG quantum logic gates
Energy Technology Data Exchange (ETDEWEB)
Duce, A Del; Savory, S; Bayvel, P [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)
2006-05-31
In this paper we present a quantum logic circuit which can be used for the experimental demonstration of a three-qubit solid state quantum computer based on a recent proposal of optically driven quantum logic gates. In these gates, the entanglement of randomly placed electron spin qubits is manipulated by optical excitation of control electrons. The circuit we describe solves the Deutsch problem with an improved algorithm called the refined Deutsch-Jozsa algorithm. We show that it is possible to select optical pulses that solve the Deutsch problem correctly, and do so without losing quantum information to the control electrons, even though the gate parameters vary substantially from one gate to another.
Implementation of a three-qubit refined Deutsch Jozsa algorithm using SFG quantum logic gates
DelDuce, A.; Savory, S.; Bayvel, P.
2006-05-01
In this paper we present a quantum logic circuit which can be used for the experimental demonstration of a three-qubit solid state quantum computer based on a recent proposal of optically driven quantum logic gates. In these gates, the entanglement of randomly placed electron spin qubits is manipulated by optical excitation of control electrons. The circuit we describe solves the Deutsch problem with an improved algorithm called the refined Deutsch-Jozsa algorithm. We show that it is possible to select optical pulses that solve the Deutsch problem correctly, and do so without losing quantum information to the control electrons, even though the gate parameters vary substantially from one gate to another.
Documenting control system functionality for digital control implementations
International Nuclear Information System (INIS)
Harber, J.; Borairi, M.; Tikku, S.; Josefowicz, A.
2006-01-01
In past CANDU designs, plant control was accomplished by a combination of digital control computers, analogue controllers, and hardwired relay logic. Functionality for these various control systems, each using different hardware, was documented in varied formats such as text based program specifications, relay logic diagrams, and other various specification documents. The choice of formats was influenced by the hardware used and often required different specialized skills for different applications. The programmable electronic systems in new CANDU designs are realized in a manner consistent with latest international standards (e.g., the IEC 61513 standard). New CANDU designs make extensive use of modern digital control technology, with the benefit that functionality can be implemented on a limited number of control platforms, reducing development and maintenance cost. This approach can take advantage of tools that allow the plant control system functional and performance requirements to be documented using graphical representations. Modern graphical methods supplemented by information databases can be used to provide a clear and comprehensive set of requirements for software and system development. Overview diagrams of system functionality provide a common understanding of the system boundaries and interfaces. Important requirements are readily traced through the development process. This improved reviewability helps to ensure consistency with the safety and and production design requirements of the system. Encapsulation of commonly used functions into custom-defined function blocks, such as typical motor control centre interfaces, process interlocks, median selects etc, eases the burden on designers to understand and analyze the detailed functionality of each instance of use of this logic. A library of encapsulated functions will be established for complex functions that are reused in the control logic development. By encapsulation and standardisation of such
A cooperative control algorithm for camera based observational systems.
Energy Technology Data Exchange (ETDEWEB)
Young, Joseph G.
2012-01-01
Over the last several years, there has been considerable growth in camera based observation systems for a variety of safety, scientific, and recreational applications. In order to improve the effectiveness of these systems, we frequently desire the ability to increase the number of observed objects, but solving this problem is not as simple as adding more cameras. Quite often, there are economic or physical restrictions that prevent us from adding additional cameras to the system. As a result, we require methods that coordinate the tracking of objects between multiple cameras in an optimal way. In order to accomplish this goal, we present a new cooperative control algorithm for a camera based observational system. Specifically, we present a receding horizon control where we model the underlying optimal control problem as a mixed integer linear program. The benefit of this design is that we can coordinate the actions between each camera while simultaneously respecting its kinematics. In addition, we further improve the quality of our solution by coupling our algorithm with a Kalman filter. Through this integration, we not only add a predictive component to our control, but we use the uncertainty estimates provided by the filter to encourage the system to periodically observe any outliers in the observed area. This combined approach allows us to intelligently observe the entire region of interest in an effective and thorough manner.
Combined Intelligent Control (CIC an Intelligent Decision Making Algorithm
Directory of Open Access Journals (Sweden)
Moteaal Asadi Shirzi
2007-03-01
Full Text Available The focus of this research is to introduce the concept of combined intelligent control (CIC as an effective architecture for decision-making and control of intelligent agents and multi-robot sets. Basically, the CIC is a combination of various architectures and methods from fields such as artificial intelligence, Distributed Artificial Intelligence (DAI, control and biological computing. Although any intelligent architecture may be very effective for some specific applications, it could be less for others. Therefore, CIC combines and arranges them in a way that the strengths of any approach cover the weaknesses of others. In this paper first, we introduce some intelligent architectures from a new aspect. Afterward, we offer the CIC by combining them. CIC has been executed in a multi-agent set. In this set, robots must cooperate to perform some various tasks in a complex and nondeterministic environment with a low sensory feedback and relationship. In order to investigate, improve, and correct the combined intelligent control method, simulation software has been designed which will be presented and considered. To show the ability of the CIC algorithm as a distributed architecture, a central algorithm is designed and compared with the CIC.
International Nuclear Information System (INIS)
Schalkoff, R.J.; Shaaban, K.M.; Carver, A.E.
1996-01-01
The ARIES number-sign 1 (Autonomous Robotic Inspection Experimental System) vision system is used to acquire drum surface images under controlled conditions and subsequently perform autonomous visual inspection leading to a classification as 'acceptable' or 'suspect'. Specific topics described include vision system design methodology, algorithmic structure,hardware processing structure, and image acquisition hardware. Most of these capabilities were demonstrated at the ARIES Phase II Demo held on Nov. 30, 1995. Finally, Phase III efforts are briefly addressed
International Nuclear Information System (INIS)
Giacometto, F J; Vilardy, J M; Torres, C O; Mattos, L
2011-01-01
Currently addressing problems related to security in access control, as a consequence, have been developed applications that work under unique characteristics in individuals, such as biometric features. In the world becomes important working with biometric images such as the liveliness of the iris which are for both the pattern of retinal images as your blood vessels. This paper presents an implementation of an algorithm for creating templates for biometric authentication with ocular features for FPGA, in which the object of study is that the texture pattern of iris is unique to each individual. The authentication will be based in processes such as edge extraction methods, segmentation principle of John Daugman and Libor Masek's, and standardization to obtain necessary templates for the search of matches in a database and then get the expected results of authentication.
Energy Technology Data Exchange (ETDEWEB)
Giacometto, F J; Vilardy, J M; Torres, C O; Mattos, L, E-mail: franciscogiacometto@unicesar.edu.co [Laboratorio de Optica e Informatica, Universidad Popular del Cesar, Sede balneario Hurtado, Valledupar, Cesar (Colombia)
2011-01-01
Currently addressing problems related to security in access control, as a consequence, have been developed applications that work under unique characteristics in individuals, such as biometric features. In the world becomes important working with biometric images such as the liveliness of the iris which are for both the pattern of retinal images as your blood vessels. This paper presents an implementation of an algorithm for creating templates for biometric authentication with ocular features for FPGA, in which the object of study is that the texture pattern of iris is unique to each individual. The authentication will be based in processes such as edge extraction methods, segmentation principle of John Daugman and Libor Masek's, and standardization to obtain necessary templates for the search of matches in a database and then get the expected results of authentication.
Energy Technology Data Exchange (ETDEWEB)
Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cutler, Theresa Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzl, Vladimir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Robert Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-12-01
In order to improve the accuracy and capabilities of neutron multiplicity counting, additional quantifiable information is needed in order to address the assumptions that are present in the point model. Extracting and utilizing higher order moments (Quads and Pents) from the neutron pulse train represents the most direct way of extracting additional information from the measurement data to allow for an improved determination of the physical properties of the item of interest. The extraction of higher order moments from a neutron pulse train required the development of advanced dead time correction algorithms which could correct for dead time effects in all of the measurement moments in a self-consistent manner. In addition, advanced analysis algorithms have been developed to address specific assumptions that are made within the current analysis model, namely that all neutrons are created at a single point within the item of interest, and that all neutrons that are produced within an item are created with the same energy distribution. This report will discuss the current status of implementation and initial testing of the advanced dead time correction and analysis algorithms that have been developed in an attempt to utilize higher order moments to improve the capabilities of correlated neutron measurement techniques.
Parallel Implementation and Scaling of an Adaptive Mesh Discrete Ordinates Algorithm for Transport
International Nuclear Information System (INIS)
Howell, L H
2004-01-01
Block-structured adaptive mesh refinement (AMR) uses a mesh structure built up out of locally-uniform rectangular grids. In the BoxLib parallel framework used by the Raptor code, each processor operates on one or more of these grids at each refinement level. The decomposition of the mesh into grids and the distribution of these grids among processors may change every few timesteps as a calculation proceeds. Finer grids use smaller timesteps than coarser grids, requiring additional work to keep the system synchronized and ensure conservation between different refinement levels. In a paper for NECDC 2002 I presented preliminary results on implementation of parallel transport sweeps on the AMR mesh, conjugate gradient acceleration, accuracy of the AMR solution, and scalar speedup of the AMR algorithm compared to a uniform fully-refined mesh. This paper continues with a more in-depth examination of the parallel scaling properties of the scheme, both in single-level and multi-level calculations. Both sweeping and setup costs are considered. The algorithm scales with acceptable performance to several hundred processors. Trends suggest, however, that this is the limit for efficient calculations with traditional transport sweeps, and that modifications to the sweep algorithm will be increasingly needed as job sizes in the thousands of processors become common
International Nuclear Information System (INIS)
Kim, Dong Yun
1997-02-01
In this research, we propose a fuzzy gain scheduler (FGS) with an intelligent learning algorithm for a reactor control. In the proposed algorithm, the gradient descent method is used in order to generate the rule bases of a fuzzy algorithm by learning. These rule bases are obtained by minimizing an objective function, which is called a performance cost function. The objective of the FGS with an intelligent learning algorithm is to generate adequate gains, which minimize the error of system. The proposed algorithm can reduce the time and efforts required for obtaining the fuzzy rules through the intelligent learning function. The evolutionary programming algorithm is modified and adopted as the method in order to find the optimal gains which are used as the initial gains of FGS with learning function. It is applied to reactor control of nuclear power plant (NPP), and the results are compared with those of a conventional PI controller with fixed gains. As a result, it is shown that the proposed algorithm is superior to the conventional PI controller
Design and Implementation of the Automated Rendezvous Targeting Algorithms for Orion
DSouza, Christopher; Weeks, Michael
2010-01-01
The Orion vehicle will be designed to perform several rendezvous missions: rendezvous with the ISS in Low Earth Orbit (LEO), rendezvous with the EDS/Altair in LEO, a contingency rendezvous with the ascent stage of the Altair in Low Lunar Orbit (LLO) and a contingency rendezvous in LLO with the ascent and descent stage in the case of an aborted lunar landing. Therefore, it is not difficult to realize that each of these scenarios imposes different operational, timing, and performance constraints on the GNC system. To this end, a suite of on-board guidance and targeting algorithms have been designed to meet the requirement to perform the rendezvous independent of communications with the ground. This capability is particularly relevant for the lunar missions, some of which may occur on the far side of the moon. This paper will describe these algorithms which are designed to be structured and arranged in such a way so as to be flexible and able to safely perform a wide variety of rendezvous trajectories. The goal of the algorithms is not to merely fly one specific type of canned rendezvous profile. Conversely, it was designed from the start to be general enough such that any type of trajectory profile can be flown.(i.e. a coelliptic profile, a stable orbit rendezvous profile, and a expedited LLO rendezvous profile, etc) all using the same rendezvous suite of algorithms. Each of these profiles makes use of maneuver types which have been designed with dual goals of robustness and performance. They are designed to converge quickly under dispersed conditions and they are designed to perform many of the functions performed on the ground today. The targeting algorithms consist of a phasing maneuver (NC), an altitude adjust maneuver (NH), and plane change maneuver (NPC), a coelliptic maneuver (NSR), a Lambert targeted maneuver, and several multiple-burn targeted maneuvers which combine one of more of these algorithms. The derivation and implementation of each of these
Directory of Open Access Journals (Sweden)
Tine L. Vandoorn
2015-06-01
Full Text Available The increasing share of distributed energy resources poses a challenge to the distribution network operator (DNO to maintain the current availability of the system while limiting the investment costs. Related to this, there is a clear trend in DNOs trying to better monitor their grid by installing a distribution management system (DMS. This DMS enables the DNOs to remotely switch their network or better localize and solve faults. Moreover, the DMS can be used to centrally control the grid assets. Therefore, in this paper, a control strategy is discussed that can be implemented in the DMS for solving current congestion problems posed by the increasing share of renewables in the grid. This control strategy controls wind turbines in order to avoid congestion while mitigating the required investment costs in order to achieve a global cost-efficient solution. Next to the application and objective of the control, the parameter tuning of the control algorithm is discussed.
Algorithm and Implementation of Distributed ESN Using Spark Framework and Parallel PSO
Directory of Open Access Journals (Sweden)
Kehe Wu
2017-04-01
Full Text Available The echo state network (ESN employs a huge reservoir with sparsely and randomly connected internal nodes and only trains the output weights, which avoids the suboptimal problem, exploding and vanishing gradients, high complexity and other disadvantages faced by traditional recurrent neural network (RNN training. In light of the outstanding adaption to nonlinear dynamical systems, ESN has been applied into a wide range of applications. However, in the era of Big Data, with an enormous amount of data being generated continuously every day, the data are often distributed and stored in real applications, and thus the centralized ESN training process is prone to being technologically unsuitable. In order to achieve the requirement of Big Data applications in the real world, in this study we propose an algorithm and its implementation for distributed ESN training. The mentioned algorithm is based on the parallel particle swarm optimization (P-PSO technique and the implementation uses Spark, a famous large-scale data processing framework. Four extremely large-scale datasets, including artificial benchmarks, real-world data and image data, are adopted to verify our framework on a stretchable platform. Experimental results indicate that the proposed work is accurate in the era of Big Data, regarding speed, accuracy and generalization capabilities.
International Nuclear Information System (INIS)
Adi Abimanyu; Nurhidayat; Jumari
2013-01-01
Aspects of safety and security of radioactive substances from the sender to the receiver is to be secured for not to harm humans. In general, monitoring the transport of radioactive materials is done by communication with a telephone conversation to determine the location and rate of exposure radioactive substances. From the aspect of safety, communication through telephone conversations easily interpreted by others, in addition the possibility of human-error is quite high. SMS service is known for its ease in terms of use so that SMS can be used as a substitute for communication through telephone conversations to monitor the rate of radiation exposure and the position of radioactive substances in the transport of radioactive substances. The system monitors the transport of radioactive materials developed by implement vigenere algorithms using a microcontroller for sending SMS (Short Message Service) to communicate. Tests was conducted to testing encryption and description and computation time required. From the test results obtained they have been successfully implemented vigenere algorithm to encrypt and decrypt the messages on the transport of radioactive monitoring system and the computational time required to encrypt and decrypt the data is 13.05 ms for 36 characters and 13.61 for 37 characters. So for every single character require computing time 0.56 ms. (author)
GillespieSSA: Implementing the Gillespie Stochastic Simulation Algorithm in R
Directory of Open Access Journals (Sweden)
Mario Pineda-Krch
2008-02-01
Full Text Available The deterministic dynamics of populations in continuous time are traditionally described using coupled, first-order ordinary differential equations. While this approach is accurate for large systems, it is often inadequate for small systems where key species may be present in small numbers or where key reactions occur at a low rate. The Gillespie stochastic simulation algorithm (SSA is a procedure for generating time-evolution trajectories of finite populations in continuous time and has become the standard algorithm for these types of stochastic models. This article presents a simple-to-use and flexible framework for implementing the SSA using the high-level statistical computing language R and the package GillespieSSA. Using three ecological models as examples (logistic growth, Rosenzweig-MacArthur predator-prey model, and Kermack-McKendrick SIRS metapopulation model, this paper shows how a deterministic model can be formulated as a finite-population stochastic model within the framework of SSA theory and how it can be implemented in R. Simulations of the stochastic models are performed using four different SSA Monte Carlo methods: one exact method (Gillespie's direct method; and three approximate methods (explicit, binomial, and optimized tau-leap methods. Comparison of simulation results confirms that while the time-evolution trajectories obtained from the different SSA methods are indistinguishable, the approximate methods are up to four orders of magnitude faster than the exact methods.
Rodríguez, Manuel; Magdaleno, Eduardo; Pérez, Fernando; García, Cristhian
2017-03-28
Non-equispaced Fast Fourier transform (NFFT) is a very important algorithm in several technological and scientific areas such as synthetic aperture radar, computational photography, medical imaging, telecommunications, seismic analysis and so on. However, its computation complexity is high. In this paper, we describe an efficient NFFT implementation with a hardware coprocessor using an All-Programmable System-on-Chip (APSoC). This is a hybrid device that employs an Advanced RISC Machine (ARM) as Processing System with Programmable Logic for high-performance digital signal processing through parallelism and pipeline techniques. The algorithm has been coded in C language with pragma directives to optimize the architecture of the system. We have used the very novel Software Develop System-on-Chip (SDSoC) evelopment tool that simplifies the interface and partitioning between hardware and software. This provides shorter development cycles and iterative improvements by exploring several architectures of the global system. The computational results shows that hardware acceleration significantly outperformed the software based implementation.
Energy Technology Data Exchange (ETDEWEB)
Maldaner, Stephan; Caputo, Regina; Schaefer, Ulrich; Tapprogge, Stefan [Universitaet Mainz, Staudingerweg 7, 55128 Mainz (Germany)
2013-07-01
After the upgrade of the Large Hadron Collider in 2013/2014 proton-proton collisions will be provided at a center-of-mass energy of up to 14 TeV with an instantaneous luminosity of at least 1 . 10{sup 34} cm{sup -2}s{sup -1}. During this upgrade a new FPGA based electronics system (Topological Processor) will be included in the ATLAS trigger chain to keep up with the increased rate of events. To reduce rates while maintaining high signal efficiency of the trigger the processor will make its decisions based upon topological criteria like angular cuts and mass calculations. As a hardware based trigger, it will have to fit into the tight first level trigger latency budget of 2.5 μs and thus provides the challenge of making decisions within very short time. Beside the latency, the main constraints on the algorithms are the required amount of logic resources of the FPGA which will be implemented as firmware. Therefore to be able to use as much information as possible, each module will be equipped with 2 state-of-the-art Xilinx Virtex 7 FPGAs to process the incoming data. This talk will present some of the topological algorithms and discuss properties of their implementation in firmware.
Design and Implementation of Temperature Controller for a Vacuum Distiller
Muslim, M. Aziz; N., Goegoes Dwi; F., Ahmad Salmi; R., Akhbar Prachaessardhi
2014-01-01
This paper proposed design and implementation of temperature controller for a vacuum distiller. The distiller is aimed to provide distillation process of bioethanol in nearly vacuum condition. Due to varying vacuum pressure, temperature have to be controlled by manipulating AC voltage to heating elements. Two arduino based control strategies have been implemented, PID control and Fuzzy Logic control. Control command from the controller was translated to AC drive using TRIAC based dimmer circu...
Optimization Design by Genetic Algorithm Controller for Trajectory Control of a 3-RRR Parallel Robot
Directory of Open Access Journals (Sweden)
Lianchao Sheng
2018-01-01
Full Text Available In order to improve the control precision and robustness of the existing proportion integration differentiation (PID controller of a 3-Revolute–Revolute–Revolute (3-RRR parallel robot, a variable PID parameter controller optimized by a genetic algorithm controller is proposed in this paper. Firstly, the inverse kinematics model of the 3-RRR parallel robot was established according to the vector method, and the motor conversion matrix was deduced. Then, the error square integral was chosen as the fitness function, and the genetic algorithm controller was designed. Finally, the control precision of the new controller was verified through the simulation model of the 3-RRR planar parallel robot—built in SimMechanics—and the robustness of the new controller was verified by adding interference. The results show that compared with the traditional PID controller, the new controller designed in this paper has better control precision and robustness, which provides the basis for practical application.
Practical Implementations of Advanced Process Control for Linear Systems
DEFF Research Database (Denmark)
Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp
2013-01-01
This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process and a lineari......This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process...... on pilot plant equipment on the department of Chemical Engineering DTU Lyngby....
Indian Academy of Sciences (India)
ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...
D'Angelo, Gianni; Rampone, Salvatore
2014-01-01
The huge quantity of data produced in Biomedical research needs sophisticated algorithmic methodologies for its storage, analysis, and processing. High Performance Computing (HPC) appears as a magic bullet in this challenge. However, several hard to solve parallelization and load balancing problems arise in this context. Here we discuss the HPC-oriented implementation of a general purpose learning algorithm, originally conceived for DNA analysis and recently extended to treat uncertainty on data (U-BRAIN). The U-BRAIN algorithm is a learning algorithm that finds a Boolean formula in disjunctive normal form (DNF), of approximately minimum complexity, that is consistent with a set of data (instances) which may have missing bits. The conjunctive terms of the formula are computed in an iterative way by identifying, from the given data, a family of sets of conditions that must be satisfied by all the positive instances and violated by all the negative ones; such conditions allow the computation of a set of coefficients (relevances) for each attribute (literal), that form a probability distribution, allowing the selection of the term literals. The great versatility that characterizes it, makes U-BRAIN applicable in many of the fields in which there are data to be analyzed. However the memory and the execution time required by the running are of O(n(3)) and of O(n(5)) order, respectively, and so, the algorithm is unaffordable for huge data sets. We find mathematical and programming solutions able to lead us towards the implementation of the algorithm U-BRAIN on parallel computers. First we give a Dynamic Programming model of the U-BRAIN algorithm, then we minimize the representation of the relevances. When the data are of great size we are forced to use the mass memory, and depending on where the data are actually stored, the access times can be quite different. According to the evaluation of algorithmic efficiency based on the Disk Model, in order to reduce the costs of
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Frison, Gianluca; Skajaa, Anders
2015-01-01
We develop an efficient homogeneous and self-dual interior-point method (IPM) for the linear programs arising in economic model predictive control of constrained linear systems with linear objective functions. The algorithm is based on a Riccati iteration procedure, which is adapted to the linear...... system of equations solved in homogeneous and self-dual IPMs. Fast convergence is further achieved using a warm-start strategy. We implement the algorithm in MATLAB and C. Its performance is tested using a conceptual power management case study. Closed loop simulations show that 1) the proposed algorithm...
Navigation Algorithm Using Fuzzy Control Method in Mobile Robotics
Directory of Open Access Journals (Sweden)
Cviklovič Vladimír
2016-03-01
Full Text Available The issue of navigation methods is being continuously developed globally. The aim of this article is to test the fuzzy control algorithm for track finding in mobile robotics. The concept of an autonomous mobile robot EN20 has been designed to test its behaviour. The odometry navigation method was used. The benefits of fuzzy control are in the evidence of mobile robot’s behaviour. These benefits are obtained when more physical variables on the base of more input variables are controlled at the same time. In our case, there are two input variables - heading angle and distance, and two output variables - the angular velocity of the left and right wheel. The autonomous mobile robot is moving with human logic.
Filtered-X Affine Projection Algorithms for Active Noise Control Using Volterra Filters
Directory of Open Access Journals (Sweden)
Sicuranza Giovanni L
2004-01-01
Full Text Available We consider the use of adaptive Volterra filters, implemented in the form of multichannel filter banks, as nonlinear active noise controllers. In particular, we discuss the derivation of filtered-X affine projection algorithms for homogeneous quadratic filters. According to the multichannel approach, it is then easy to pass from these algorithms to those of a generic Volterra filter. It is shown in the paper that the AP technique offers better convergence and tracking capabilities than the classical LMS and NLMS algorithms usually applied in nonlinear active noise controllers, with a limited complexity increase. This paper extends in two ways the content of a previous contribution published in Proc. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03, Grado, Italy, June 2003. First of all, a general adaptation algorithm valid for any order of affine projections is presented. Secondly, a more complete set of experiments is reported. In particular, the effects of using multichannel filter banks with a reduced number of channels are investigated and relevant results are shown.
Software-Defined Congestion Control Algorithm for IP Networks
Directory of Open Access Journals (Sweden)
Yao Hu
2017-01-01
Full Text Available The rapid evolution of computer networks, increase in the number of Internet users, and popularity of multimedia applications have exacerbated the congestion control problem. Congestion control is a key factor in ensuring network stability and robustness. When the underlying network and flow information are unknown, the transmission control protocol (TCP must increase or reduce the size of the congestion window to adjust to the changes of traffic in the Internet Protocol (IP network. However, it is possible that a software-defined approach can relieve the network congestion problem more efficiently. This approach has the characteristic of centralized control and can obtain a global topology for unified network management. In this paper, we propose a software-defined congestion control (SDCC algorithm for an IP network. We consider the difference between TCP and the user datagram protocol (UDP and propose a new method to judge node congestion. We initially apply the congestion control mechanism in the congested nodes and then optimize the link utilization to control network congestion.
Implementation of fault-tolerant quantum logic gates via optimal control
International Nuclear Information System (INIS)
Nigmatullin, R; Schirmer, S G
2009-01-01
The implementation of fault-tolerant quantum gates on encoded logic qubits is considered. It is shown that transversal implementation of logic gates based on simple geometric control ideas is problematic for realistic physical systems suffering from imperfections such as qubit inhomogeneity or uncontrollable interactions between qubits. However, this problem can be overcome by formulating the task as an optimal control problem and designing efficient algorithms to solve it. In particular, we can find solutions that implement all of the elementary logic gates in a fixed amount of time with limited control resources for the five-qubit stabilizer code. Most importantly, logic gates that are extremely difficult to implement using conventional techniques even for ideal systems, such as the T-gate for the five-qubit stabilizer code, do not appear to pose a problem for optimal control.
International Nuclear Information System (INIS)
Phu, Do Xuan; Shah, Kruti; Choi, Seung-Bok
2014-01-01
This paper presents a new adaptive fuzzy controller and its implementation for the damping force control of a magnetorheological (MR) fluid damper in order to validate the effectiveness of the control performance. An interval type 2 fuzzy model is built, and then combined with modified adaptive control to achieve the desired damping force. In the formulation of the new adaptive controller, an enhanced iterative algorithm is integrated with the fuzzy model to decrease the time of calculation (D Wu 2013 IEEE Trans. Fuzzy Syst. 21 80–99) and the control algorithm is synthesized based on the H ∞ tracking technique. In addition, for the verification of good control performance of the proposed controller, a cylindrical MR damper which can be applied to the vibration control of a washing machine is designed and manufactured. For the operating fluid, a recently developed plate-like particle-based MR fluid is used instead of a conventional MR fluid featuring spherical particles. To highlight the control performance of the proposed controller, two existing adaptive fuzzy control algorithms proposed by other researchers are adopted and altered for a comparative study. It is demonstrated from both simulation and experiment that the proposed new adaptive controller shows better performance of damping force control in terms of response time and tracking accuracy than the existing approaches. (papers)
Allen, Cheryl L.
1991-01-01
Enhanced engineering tools can be obtained through the integration of expert system methodologies and existing design software. The application of these methodologies to the spacecraft design and cost model (SDCM) software provides an improved technique for the selection of hardware for unmanned spacecraft subsystem design. The knowledge engineering system (KES) expert system development tool was used to implement a smarter equipment section algorithm than that which is currently achievable through the use of a standard data base system. The guidance, navigation, and control subsystems of the SDCM software was chosen as the initial subsystem for implementation. The portions of the SDCM code which compute the selection criteria and constraints remain intact, and the expert system equipment selection algorithm is embedded within this existing code. The architecture of this new methodology is described and its implementation is reported. The project background and a brief overview of the expert system is described, and once the details of the design are characterized, an example of its implementation is demonstrated.
Mazur, Krzysztof; Wrona, Stanislaw; Pawelczyk, Marek
2018-01-01
The paper presents the idea and discussion on implementation of multichannel global active noise control systems. As a test plant an active casing is used. It has been developed by the authors to reduce device noise directly at the source by controlling vibration of its casing. To provide global acoustic effect in the whole environment, where the device operates, it requires a number of secondary sources and sensors for each casing wall, thus making the whole active control structure complicated, i.e. with a large number of interacting channels. The paper discloses all details concerning hardware setup and efficient implementation of control algorithms for the multichannel case. A new formulation is presented to introduce the distributed version of the Switched-error Filtered-reference Least Mean Squares (FXLMS) algorithm together with adaptation rate enhancement. The convergence rate of the proposed algorithm is compared with original Multiple-error FXLMS. A number of hints followed from many years of authors' experience on microprocessor control systems design and signal processing algorithms optimization are presented. They can be used for various active control and signal processing applications, both for academic research and commercialization.
Efficient algorithms and implementations of entropy-based moment closures for rarefied gases
Energy Technology Data Exchange (ETDEWEB)
Schaerer, Roman Pascal, E-mail: schaerer@mathcces.rwth-aachen.de; Bansal, Pratyuksh; Torrilhon, Manuel
2017-07-01
We present efficient algorithms and implementations of the 35-moment system equipped with the maximum-entropy closure in the context of rarefied gases. While closures based on the principle of entropy maximization have been shown to yield very promising results for moderately rarefied gas flows, the computational cost of these closures is in general much higher than for closure theories with explicit closed-form expressions of the closing fluxes, such as Grad's classical closure. Following a similar approach as Garrett et al. (2015) , we investigate efficient implementations of the computationally expensive numerical quadrature method used for the moment evaluations of the maximum-entropy distribution by exploiting its inherent fine-grained parallelism with the parallelism offered by multi-core processors and graphics cards. We show that using a single graphics card as an accelerator allows speed-ups of two orders of magnitude when compared to a serial CPU implementation. To accelerate the time-to-solution for steady-state problems, we propose a new semi-implicit time discretization scheme. The resulting nonlinear system of equations is solved with a Newton type method in the Lagrange multipliers of the dual optimization problem in order to reduce the computational cost. Additionally, fully explicit time-stepping schemes of first and second order accuracy are presented. We investigate the accuracy and efficiency of the numerical schemes for several numerical test cases, including a steady-state shock-structure problem.
FPGA-based implementation for steganalysis: a JPEG-compatibility algorithm
Gutierrez-Fernandez, E.; Portela-García, M.; Lopez-Ongil, C.; Garcia-Valderas, M.
2013-05-01
Steganalysis is a process to detect hidden data in cover documents, like digital images, videos, audio files, etc. This is the inverse process of steganography, which is the used method to hide secret messages. The widely use of computers and network technologies make digital files very easy-to-use means for storing secret data or transmitting secret messages through the Internet. Depending on the cover medium used to embed the data, there are different steganalysis methods. In case of images, many of the steganalysis and steganographic methods are focused on JPEG image formats, since JPEG is one of the most common formats. One of the main important handicaps of steganalysis methods is the processing speed, since it is usually necessary to process huge amount of data or it can be necessary to process the on-going internet traffic in real-time. In this paper, a JPEG steganalysis system is implemented in an FPGA in order to speed-up the detection process with respect to software-based implementations and to increase the throughput. In particular, the implemented method is the JPEG-compatibility detection algorithm that is based on the fact that when a JPEG image is modified, the resulting image is incompatible with the JPEG compression process.
Efficient algorithms and implementations of entropy-based moment closures for rarefied gases
International Nuclear Information System (INIS)
Schaerer, Roman Pascal; Bansal, Pratyuksh; Torrilhon, Manuel
2017-01-01
We present efficient algorithms and implementations of the 35-moment system equipped with the maximum-entropy closure in the context of rarefied gases. While closures based on the principle of entropy maximization have been shown to yield very promising results for moderately rarefied gas flows, the computational cost of these closures is in general much higher than for closure theories with explicit closed-form expressions of the closing fluxes, such as Grad's classical closure. Following a similar approach as Garrett et al. (2015) , we investigate efficient implementations of the computationally expensive numerical quadrature method used for the moment evaluations of the maximum-entropy distribution by exploiting its inherent fine-grained parallelism with the parallelism offered by multi-core processors and graphics cards. We show that using a single graphics card as an accelerator allows speed-ups of two orders of magnitude when compared to a serial CPU implementation. To accelerate the time-to-solution for steady-state problems, we propose a new semi-implicit time discretization scheme. The resulting nonlinear system of equations is solved with a Newton type method in the Lagrange multipliers of the dual optimization problem in order to reduce the computational cost. Additionally, fully explicit time-stepping schemes of first and second order accuracy are presented. We investigate the accuracy and efficiency of the numerical schemes for several numerical test cases, including a steady-state shock-structure problem.
Efficient algorithms and implementations of entropy-based moment closures for rarefied gases
Schaerer, Roman Pascal; Bansal, Pratyuksh; Torrilhon, Manuel
2017-07-01
We present efficient algorithms and implementations of the 35-moment system equipped with the maximum-entropy closure in the context of rarefied gases. While closures based on the principle of entropy maximization have been shown to yield very promising results for moderately rarefied gas flows, the computational cost of these closures is in general much higher than for closure theories with explicit closed-form expressions of the closing fluxes, such as Grad's classical closure. Following a similar approach as Garrett et al. (2015) [13], we investigate efficient implementations of the computationally expensive numerical quadrature method used for the moment evaluations of the maximum-entropy distribution by exploiting its inherent fine-grained parallelism with the parallelism offered by multi-core processors and graphics cards. We show that using a single graphics card as an accelerator allows speed-ups of two orders of magnitude when compared to a serial CPU implementation. To accelerate the time-to-solution for steady-state problems, we propose a new semi-implicit time discretization scheme. The resulting nonlinear system of equations is solved with a Newton type method in the Lagrange multipliers of the dual optimization problem in order to reduce the computational cost. Additionally, fully explicit time-stepping schemes of first and second order accuracy are presented. We investigate the accuracy and efficiency of the numerical schemes for several numerical test cases, including a steady-state shock-structure problem.
Advanced illumination control algorithm for medical endoscopy applications
Sousa, Ricardo M.; Wäny, Martin; Santos, Pedro; Morgado-Dias, F.
2015-05-01
CMOS image sensor manufacturer, AWAIBA, is providing the world's smallest digital camera modules to the world market for minimally invasive surgery and one time use endoscopic equipment. Based on the world's smallest digital camera head and the evaluation board provided to it, the aim of this paper is to demonstrate an advanced fast response dynamic control algorithm of the illumination LED source coupled to the camera head, over the LED drivers embedded on the evaluation board. Cost efficient and small size endoscopic camera modules nowadays embed minimal size image sensors capable of not only adjusting gain and exposure time but also LED illumination with adjustable illumination power. The LED illumination power has to be dynamically adjusted while navigating the endoscope over changing illumination conditions of several orders of magnitude within fractions of the second to guarantee a smooth viewing experience. The algorithm is centered on the pixel analysis of selected ROIs enabling it to dynamically adjust the illumination intensity based on the measured pixel saturation level. The control core was developed in VHDL and tested in a laboratory environment over changing light conditions. The obtained results show that it is capable of achieving correction speeds under 1 s while maintaining a static error below 3% relative to the total number of pixels on the image. The result of this work will allow the integration of millimeter sized high brightness LED sources on minimal form factor cameras enabling its use in endoscopic surgical robotic or micro invasive surgery.
Budiman, M. A.; Amalia; Chayanie, N. I.
2018-03-01
Cryptography is the art and science of using mathematical methods to preserve message security. There are two types of cryptography, namely classical and modern cryptography. Nowadays, most people would rather use modern cryptography than classical cryptography because it is harder to break than the classical one. One of classical algorithm is the Zig-zag algorithm that uses the transposition technique: the original message is unreadable unless the person has the key to decrypt the message. To improve the security, the Zig-zag Cipher is combined with RC4+ Cipher which is one of the symmetric key algorithms in the form of stream cipher. The two algorithms are combined to make a super-encryption. By combining these two algorithms, the message will be harder to break by a cryptanalyst. The result showed that complexity of the combined algorithm is θ(n2 ), while the complexity of Zig-zag Cipher and RC4+ Cipher are θ(n2 ) and θ(n), respectively.
Combustion distribution control using the extremum seeking algorithm
Marjanovic, A.; Krstic, M.; Djurovic, Z.; Kvascev, G.; Papic, V.
2014-12-01
Quality regulation of the combustion process inside the furnace is the basis of high demands for increasing robustness, safety and efficiency of thermal power plants. The paper considers the possibility of spatial temperature distribution control inside the boiler, based on the correction of distribution of coal over the mills. Such control system ensures the maintenance of the flame focus away from the walls of the boiler, and thus preserves the equipment and reduces the possibility of ash slugging. At the same time, uniform heat dissipation over mills enhances the energy efficiency of the boiler, while reducing the pollution of the system. A constrained multivariable extremum seeking algorithm is proposed as a tool for combustion process optimization with the main objective of centralizing the flame in the furnace. Simulations are conducted on a model corresponding to the 350MW boiler of the Nikola Tesla Power Plant, in Obrenovac, Serbia.
Combustion distribution control using the extremum seeking algorithm
International Nuclear Information System (INIS)
Marjanovic, A; Djurovic, Z; Kvascev, G; Papic, V; Krstic, M
2014-01-01
Quality regulation of the combustion process inside the furnace is the basis of high demands for increasing robustness, safety and efficiency of thermal power plants. The paper considers the possibility of spatial temperature distribution control inside the boiler, based on the correction of distribution of coal over the mills. Such control system ensures the maintenance of the flame focus away from the walls of the boiler, and thus preserves the equipment and reduces the possibility of ash slugging. At the same time, uniform heat dissipation over mills enhances the energy efficiency of the boiler, while reducing the pollution of the system. A constrained multivariable extremum seeking algorithm is proposed as a tool for combustion process optimization with the main objective of centralizing the flame in the furnace. Simulations are conducted on a model corresponding to the 350MW boiler of the Nikola Tesla Power Plant, in Obrenovac, Serbia
Application of Fuzzy Algorithm in Optimizing Hierarchical Sliding Mode Control for Pendubot System
Directory of Open Access Journals (Sweden)
Xuan Dung Huynh
2017-12-01
Full Text Available Pendubot is a classical under-actuated SIMO model for control algorithm testing in laboratory of universities. In this paper, authors design a fuzzy-sliding control for this system. The controller is designed from a new idea of application of fuzzy algorithm for optioning control parameters. The response of system on TOP position under fuzzysliding control algorithm is proved to be better than under sliding controller through Matlab/Simulink simulation.
Implementing O(N N-Body Algorithms Efficiently in Data-Parallel Languages
Directory of Open Access Journals (Sweden)
Yu Hu
1996-01-01
Full Text Available The optimization techniques for hierarchical O(N N-body algorithms described here focus on managing the data distribution and the data references, both between the memories of different nodes and within the memory hierarchy of each node. We show how the techniques can be expressed in data-parallel languages, such as High Performance Fortran (HPF and Connection Machine Fortran (CMF. The effectiveness of our techniques is demonstrated on an implementation of Anderson's hierarchical O(N N-body method for the Connection Machine system CM-5/5E. Of the total execution time, communication accounts for about 10–20% of the total time, with the average efficiency for arithmetic operations being about 40% and the total efficiency (including communication being about 35%. For the CM-5E, a performance in excess of 60 Mflop/s per node (peak 160 Mflop/s per node has been measured.
Implementation of ESPRIT Algorithm on GPS TEC for Percussive Signatures of Earthquakes in Ionosphere
Kiran, Uday; Koteswara Rao, S.; Ramesh, K. S.
2017-01-01
As Global Positioning System is very effective mechanism to find out the disturbances in Ionosphere during the solar events. Spectral estimation of the ionospheric total electron content perturbations leads to better interpretation of their source mechanisms. Seismo-ionospheric perturbations of an earthquake occurred at 12th December 2013 was considered in the present work. Estimation of signal parameters via rotational in variance technique (ESPRIT) is implemented on the vertical total electron content data. It was clearly observed that during disturbance the power spectral density of the dominant frequency had reduced to -2.487 dB from 7.841 dB. The application of ESPRIT algorithm on seismic perturbations in GPS TEC has found the dominant frequency in the spectrum and new frequency present at the time of perturbations
The readout system and the trigger algorithm implementation for the UFFO Pathfinder
DEFF Research Database (Denmark)
Na, G.W.; Ahmad, S.; Barrillon, P.
2012-01-01
) Pathfinder, to take the sub-minute data for the early photons from GRB. The UFFO Pathfinder has a coded-mask X-ray camera to search the GRB location by the UBAT trigger algorithm. To determine the direction of GRB as soon as possible it requires the fast processing. We have ultimately implemented all...... have been measured within a minute after the gamma ray signal. This lack of sub-minute data limits the study for the characteristics of the UV-optical light curve of the short-hard type GRB and the fast-rising GRB. Therefore, we have developed the telescope named the Ultra-Fast Flash Observatory (UFFO...
First massively parallel algorithm to be implemented in Apollo-II code
International Nuclear Information System (INIS)
Stankovski, Z.
1994-01-01
The collision probability (CP) method in neutron transport, as applied to arbitrary 2D XY geometries, like the TDT module in APOLLO-II, is very time consuming. Consequently RZ or 3D extensions became prohibitive. Fortunately, this method is very suitable for parallelization. Massively parallel computer architectures, especially MIMD machines, bring a new breath to this method. In this paper we present a CM5 implementation of the CP method. Parallelization is applied to the energy groups, using the CMMD message passing library. In our case we use 32 processors for the standard 99-group APOLLIB-II library. The real advantage of this algorithm will appear in the calculation of the future fine multigroup library (about 8000 groups) of the SAPHYR project with a massively parallel computer (to the order of hundreds of processors). (author). 3 tabs., 4 figs., 4 refs
First massively parallel algorithm to be implemented in APOLLO-II code
International Nuclear Information System (INIS)
Stankovski, Z.
1994-01-01
The collision probability method in neutron transport, as applied to arbitrary 2-dimensional geometries, like the two dimensional transport module in APOLLO-II is very time consuming. Consequently 3-dimensional extension became prohibitive. Fortunately, this method is very suitable for parallelization. Massively parallel computer architectures, especially MIMD machines, bring a new breath to this method. In this paper we present a CM5 implementation of the collision probability method. Parallelization is applied to the energy groups, using the CMMD massage passing library. In our case we used 32 processors for the standard 99-group APOLLIB-II library. The real advantage of this algorithm will appear in the calculation of the future multigroup library (about 8000 groups) of the SAPHYR project with a massively parallel computer (to the order of hundreds of processors). (author). 4 refs., 4 figs., 3 tabs
Dragonfly: an implementation of the expand-maximize-compress algorithm for single-particle imaging.
Ayyer, Kartik; Lan, Ti-Yen; Elser, Veit; Loh, N Duane
2016-08-01
Single-particle imaging (SPI) with X-ray free-electron lasers has the potential to change fundamentally how biomacromolecules are imaged. The structure would be derived from millions of diffraction patterns, each from a different copy of the macromolecule before it is torn apart by radiation damage. The challenges posed by the resultant data stream are staggering: millions of incomplete, noisy and un-oriented patterns have to be computationally assembled into a three-dimensional intensity map and then phase reconstructed. In this paper, the Dragonfly software package is described, based on a parallel implementation of the expand-maximize-compress reconstruction algorithm that is well suited for this task. Auxiliary modules to simulate SPI data streams are also included to assess the feasibility of proposed SPI experiments at the Linac Coherent Light Source, Stanford, California, USA.
Indian Academy of Sciences (India)
algorithm design technique called 'divide-and-conquer'. One of ... Turtle graphics, September. 1996. 5. ... whole list named 'PO' is a pointer to the first element of the list; ..... Program for computing matrices X and Y and placing the result in C *).
Indian Academy of Sciences (India)
algorithm that it is implicitly understood that we know how to generate the next natural ..... Explicit comparisons are made in line (1) where maximum and minimum is ... It can be shown that the function T(n) = 3/2n -2 is the solution to the above ...
Implementation of Layered Decoding Architecture for LDPC Code using Layered Min-Sum Algorithm
Directory of Open Access Journals (Sweden)
Sandeep Kakde
2017-12-01
Full Text Available For binary field and long code lengths, Low Density Parity Check (LDPC code approaches Shannon limit performance. LDPC codes provide remarkable error correction performance and therefore enlarge the design space for communication systems.In this paper, we have compare different digital modulation techniques and found that BPSK modulation technique is better than other modulation techniques in terms of BER. It also gives error performance of LDPC decoder over AWGN channel using Min-Sum algorithm. VLSI Architecture is proposed which uses the value re-use property of min-sum algorithm and gives high throughput. The proposed work has been implemented and tested on Xilinx Virtex 5 FPGA. The MATLAB result of LDPC decoder for low bit error rate (BER gives bit error rate in the range of 10-1 to 10-3.5 at SNR=1 to 2 for 20 no of iterations. So it gives good bit error rate performance. The latency of the parallel design of LDPC decoder has also reduced. It has accomplished 141.22 MHz maximum frequency and throughput of 2.02 Gbps while consuming less area of the design.
Design and implementation of a hybrid MPI-CUDA model for the Smith-Waterman algorithm.
Khaled, Heba; Faheem, Hossam El Deen Mostafa; El Gohary, Rania
2015-01-01
This paper provides a novel hybrid model for solving the multiple pair-wise sequence alignment problem combining message passing interface and CUDA, the parallel computing platform and programming model invented by NVIDIA. The proposed model targets homogeneous cluster nodes equipped with similar Graphical Processing Unit (GPU) cards. The model consists of the Master Node Dispatcher (MND) and the Worker GPU Nodes (WGN). The MND distributes the workload among the cluster working nodes and then aggregates the results. The WGN performs the multiple pair-wise sequence alignments using the Smith-Waterman algorithm. We also propose a modified implementation to the Smith-Waterman algorithm based on computing the alignment matrices row-wise. The experimental results demonstrate a considerable reduction in the running time by increasing the number of the working GPU nodes. The proposed model achieved a performance of about 12 Giga cell updates per second when we tested against the SWISS-PROT protein knowledge base running on four nodes.
Deng, Zhiwei; Li, Xicai; Shi, Junsheng; Huang, Xiaoqiao; Li, Feiyan
2018-01-01
Depth measurement is the most basic measurement in various machine vision, such as automatic driving, unmanned aerial vehicle (UAV), robot and so on. And it has a wide range of use. With the development of image processing technology and the improvement of hardware miniaturization and processing speed, real-time depth measurement using dual cameras has become a reality. In this paper, an embedded AM5728 and the ordinary low-cost dual camera is used as the hardware platform. The related algorithms of dual camera calibration, image matching and depth calculation have been studied and implemented on the hardware platform, and hardware design and the rationality of the related algorithms of the system are tested. The experimental results show that the system can realize simultaneous acquisition of binocular images, switching of left and right video sources, display of depth image and depth range. For images with a resolution of 640 × 480, the processing speed of the system can be up to 25 fps. The experimental results show that the optimal measurement range of the system is from 0.5 to 1.5 meter, and the relative error of the distance measurement is less than 5%. Compared with the PC, ARM11 and DMCU hardware platforms, the embedded AM5728 hardware is good at meeting real-time depth measurement requirements in ensuring the image resolution.
Automatically tuned adaptive differencing algorithm for 3-D SN implemented in PENTRAN
International Nuclear Information System (INIS)
Sjoden, G.; Courau, T.; Manalo, K.; Yi, C.
2009-01-01
We present an adaptive algorithm with an automated tuning feature to augment optimum differencing scheme selection for 3-D S N computations in Cartesian geometry. This adaptive differencing scheme has been implemented in the PENTRAN parallel S N code. Individual fixed zeroth spatial transport moment based schemes, including Diamond Zero (DZ), Directional Theta Weighted (DTW), and Exponential Directional Iterative (EDI) 3-D S N methods were evaluated and compared with solutions generated using a code-tuned adaptive algorithm. Model problems considered include a fixed source slab problem (using reflected y- and z-axes) which contained mixed shielding and diffusive regions, and a 17 x 17 PWR assembly eigenvalue test problem; these problems were benchmarked against multigroup MCNP5 Monte Carlo computations. Both problems were effective in highlighting the performance of the adaptive scheme compared to single schemes, and demonstrated that the adaptive tuning handles exceptions to the standard DZ-DTW-EDI adaptive strategy. The tuning feature includes special scheme selection provisions for optically thin cells, and incorporates the ratio of the angular source density relative to the total angular collision density to best select the differencing method. Overall, the adaptive scheme demonstrated the best overall solution accuracy in the test problems. (authors)
Algorithm for Public Electric Transport Schedule Control for Intelligent Embedded Devices
Alps, Ivars; Potapov, Andrey; Gorobetz, Mikhail; Levchenkov, Anatoly
2010-01-01
In this paper authors present heuristics algorithm for precise schedule fulfilment in city traffic conditions taking in account traffic lights. The algorithm is proposed for programmable controller. PLC is proposed to be installed in electric vehicle to control its motion speed and signals of traffic lights. Algorithm is tested using real controller connected to virtual devices and real functional models of real tram devices. Results of experiments show high precision of public transport schedule fulfilment using proposed algorithm.
The product composition control system at Savannah River: Statistical process control algorithm
International Nuclear Information System (INIS)
Brown, K.G.
1994-01-01
The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will be used to immobilize the approximately 130 million liters of high-level nuclear waste currently stored at the site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive insoluble sludge and precipitate and less radioactive water soluble salts. In DWPF, precipitate (PHA) is blended with insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in an geologic repository. Described here is the Product Composition Control System (PCCS) process control algorithm. The PCCS is the amalgam of computer hardware and software intended to ensure that the melt will be processable and that the glass wasteform produced will be acceptable. Within PCCS, the Statistical Process Control (SPC) Algorithm is the means which guides control of the DWPF process. The SPC Algorithm is necessary to control the multivariate DWPF process in the face of uncertainties arising from the process, its feeds, sampling, modeling, and measurement systems. This article describes the functions performed by the SPC Algorithm, characterization of DWPF prior to making product, accounting for prediction uncertainty, accounting for measurement uncertainty, monitoring a SME batch, incorporating process information, and advantages of the algorithm. 9 refs., 6 figs
Implementation of self-organizing neural networks for visuo-motor control of an industrial robot.
Walter, J A; Schulten, K I
1993-01-01
The implementation of two neural network algorithms for visuo-motor control of an industrial robot (Puma 562) is reported. The first algorithm uses a vector quantization technique, the ;neural-gas' network, together with an error correction scheme based on a Widrow-Hoff-type learning rule. The second algorithm employs an extended self-organizing feature map algorithm. Based on visual information provided by two cameras, the robot learns to position its end effector without an external teacher. Within only 3000 training steps, the robot-camera system is capable of reducing the positioning error of the robot's end effector to approximately 0.1% of the linear dimension of the work space. By employing adaptive feedback the robot succeeds in compensating not only slow calibration drifts, but also sudden changes in its geometry. Hardware aspects of the robot-camera system are discussed.
Mezentsev, Yu A.; Baranova, N. V.
2018-05-01
A universal economical and mathematical model designed for determination of optimal strategies for managing subsystems (components of subsystems) of production and logistics of enterprises is considered. Declared universality allows taking into account on the system level both production components, including limitations on the ways of converting raw materials and components into sold goods, as well as resource and logical restrictions on input and output material flows. The presented model and generated control problems are developed within the framework of the unified approach that allows one to implement logical conditions of any complexity and to define corresponding formal optimization tasks. Conceptual meaning of used criteria and limitations are explained. The belonging of the generated tasks of the mixed programming with the class of NP is shown. An approximate polynomial algorithm for solving the posed optimization tasks for mixed programming of real dimension with high computational complexity is proposed. Results of testing the algorithm on the tasks in a wide range of dimensions are presented.
Application of Genetic Algorithm for Tuning of a PID Controller for a Real Time Industrial Process
Directory of Open Access Journals (Sweden)
S. M. Giri RAJKUMAR
2010-10-01
Full Text Available PID (Proportional Integral Derivative controller has become inevitable in the process control industries due to its simplicity and effectiveness, but the real challenge lies in tuning them to meet the expectations. Although a host of methods already exist there is still a need for an advanced system for tuning these controllers. Computational intelligence (CI has caught the eye of the researchers due to its simplicity, low computational cost and good performance, makes it a possible choice for tuning of PID controllers, to increase their performance. This paper discusses in detail about Genetic Algorithm (GA, a CI technique, and its implementation in PID tuning for a real time industrial process which is closed loop in nature. Compared to other conventional PID tuning methods, the result shows that better performance can be achieved with the proposed method.
Proportional–Integral–Derivative (PID Controller Tuning using Particle Swarm Optimization Algorithm
Directory of Open Access Journals (Sweden)
J. S. Bassi
2012-08-01
Full Text Available The proportional-integral-derivative (PID controllers are the most popular controllers used in industry because of their remarkable effectiveness, simplicity of implementation and broad applicability. However, manual tuning of these controllers is time consuming, tedious and generally lead to poor performance. This tuning which is application specific also deteriorates with time as a result of plant parameter changes. This paper presents an artificial intelligence (AI method of particle swarm optimization (PSO algorithm for tuning the optimal proportional-integral derivative (PID controller parameters for industrial processes. This approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency over the conventional methods. Ziegler- Nichols, tuning method was applied in the PID tuning and results were compared with the PSO-Based PID for optimum control. Simulation results are presented to show that the PSO-Based optimized PID controller is capable of providing an improved closed-loop performance over the Ziegler- Nichols tuned PID controller Parameters. Compared to the heuristic PID tuning method of Ziegler-Nichols, the proposed method was more efficient in improving the step response characteristics such as, reducing the steady-states error; rise time, settling time and maximum overshoot in speed control of DC motor.
Reactor controller design using genetic algorithm with simulated annealing
International Nuclear Information System (INIS)
Willjuice Iruthyarajan, M.
2012-01-01
Many reactor control design work, specifically the problem of synthesis and optimization of reactor networks involving the classical reaction schemes was studied, considering a superstructure formed by a CSTR and a PFR and their possible arrangements. A genetic algorithm was proposed, together with a systematic procedure. Two case studies were solved with the proposed systematic. Both of them present similar results than the published in the literature. The first case studied was the Trambouze reaction scheme. Although selectivity values are smaller then the values published in the referred papers, the reactors system combined volume is always minor them the other ones. The second case studied was the Van de Vusse reaction scheme. In this case, the obtained value for the total volume is always minor then the considered papers. One can conclude that when compared with the other works presented in the literature results are compatible and very interesting. The developed algorithms can be used as a good alternative for reactor networks design and optimization problem
Practical design control implementation for medical devices
Justiniano, Jose
2003-01-01
Bringing together the concepts of design control and reliability engineering, this book is a must for medical device manufacturers. It helps them meet the challenge of designing and developing products that meet or exceed customer expectations and also meet regulatory requirements. Part One covers motivation for design control and validation, design control requirements, process validation and design transfer, quality system for design control, and measuring design control program effectiveness. Part Two discusses risk analysis and FMEA, designing-in reliability, reliability and design verific
Structural Control Systems Implemented in Civil Engineering
Directory of Open Access Journals (Sweden)
Cristian Pastia
2005-01-01
Full Text Available Over the past three decades, a great interest has been generated by the use of protection systems to mitigate the effects of dynamic environmental hazards on civil engineering structures, such as earthquakes and strong wind. These control systems develop controllable forces to add or dissipate energy in a structure, or both, due to specific devices integrated with sensors, controllers and real – time process to operate. The paper includes the advantages of these technologies consisting of the following sections: 1 represents an introduction, 2 deals with passive control system, 3 regards some control techniques, 4 concerns hybrid control techniques, 5 contains semi – active control techniques, and 6 is dedicated to general conclusions.
Directory of Open Access Journals (Sweden)
Neng-Sheng Pai
2014-01-01
Full Text Available This paper applied speech recognition and RFID technologies to develop an omni-directional mobile robot into a robot with voice control and guide introduction functions. For speech recognition, the speech signals were captured by short-time processing. The speaker first recorded the isolated words for the robot to create speech database of specific speakers. After the speech pre-processing of this speech database, the feature parameters of cepstrum and delta-cepstrum were obtained using linear predictive coefficient (LPC. Then, the Hidden Markov Model (HMM was used for model training of the speech database, and the Viterbi algorithm was used to find an optimal state sequence as the reference sample for speech recognition. The trained reference model was put into the industrial computer on the robot platform, and the user entered the isolated words to be tested. After processing by the same reference model and comparing with previous reference model, the path of the maximum total probability in various models found using the Viterbi algorithm in the recognition was the recognition result. Finally, the speech recognition and RFID systems were achieved in an actual environment to prove its feasibility and stability, and implemented into the omni-directional mobile robot.
International Nuclear Information System (INIS)
Kim, Dong Yun; Seong, Poong Hyun
1996-01-01
In this study, we proposed a fuzzy gain scheduler with intelligent learning algorithm for a reactor control. In the proposed algorithm, we used the gradient descent method to learn the rule bases of a fuzzy algorithm. These rule bases are learned toward minimizing an objective function, which is called a performance cost function. The objective of fuzzy gain scheduler with intelligent learning algorithm is the generation of adequate gains, which minimize the error of system. The condition of every plant is generally changed as time gose. That is, the initial gains obtained through the analysis of system are no longer suitable for the changed plant. And we need to set new gains, which minimize the error stemmed from changing the condition of a plant. In this paper, we applied this strategy for reactor control of nuclear power plant (NPP), and the results were compared with those of a simple PI controller, which has fixed gains. As a result, it was shown that the proposed algorithm was superior to the simple PI controller
DEFF Research Database (Denmark)
Farhang, Peyman; Drimus, Alin; Mátéfi-Tempfli, Stefan
2015-01-01
In this paper, a new technique is proposed to design a Modified PID (MPID) controller for a Boost converter. An interface between LTspice and MATLAB is carried out to implement the Particle Swarm Optimization (PSO) algorithm. The PSO algorithm which has the appropriate capability to find out...... the optimal solutions is run in MATLAB while it is interfaced with LTspice for simulation of the circuit using actual component models obtained from manufacturers. The PSO is utilized to solve the optimization problem in order to find the optimal parameters of MPID and PID controllers. The performances...
Indian Academy of Sciences (India)
will become clear in the next article when we discuss a simple logo like programming language. ... Rod B may be used as an auxiliary store. The problem is to find an algorithm which performs this task. ... No disks are moved from A to Busing C as auxiliary rod. • move _disk (A, C);. (No + l)th disk is moved from A to C directly ...
Directory of Open Access Journals (Sweden)
R. Dimas Adityo
2017-10-01
Full Text Available The current implementation of tax reporting regional Pasuruan hotels have used online (Web-based, with the aim of reporting systems can run effectively and efficiently in receiving the financial statements especially from taxpayer property. Pasuruan as one small town quite rapidly in East Java, have implemented role models online tax filing system starting in 2015, with the amount of 6 hotels, there are several classes of hotels ranging from the budget class up to class three stars. After the application of the system running for 18 months (2015-2016, from existing data, conducted research on the analysis of the level of compliance of taxpayers reporting incomes in a hotel. On the research was designed and built a system to evaluate the level of compliance with the performance from the taxpayer (WP in the 2nd year (2016 and are classified in categories (1 the taxpayer (WP very obedient (ST, (2 the taxpayer (WP is quite obedient (CT, (3 Taxpayers (WP less obedient (KT. Input data will be processed using the technique of data mining algorithms Naive Bayes Classifier (NBC to form the table of probability as a basis for the process of classification levels of taxpayer compliance. Based on the results of the measurement, the test results show with an accuracy of 50% i.e. 3 taxpayers is the very obedient (ST to pay taxes. Then from the classification, the study could be made of recommendation solutions to guide the taxpayer in reporting revenues well and true.
Rahman, Nurul Hidayah Ab; Abdullah, Nurul Azma; Hamid, Isredza Rahmi A.; Wen, Chuah Chai; Jelani, Mohamad Shafiqur Rahman Mohd
2017-10-01
Closed-Circuit TV (CCTV) system is one of the technologies in surveillance field to solve the problem of detection and monitoring by providing extra features such as email alert or motion detection. However, detecting and alerting the admin on CCTV system may complicate due to the complexity to integrate the main program with an external Application Programming Interface (API). In this study, pixel processing algorithm is applied due to its efficiency and SMS alert is added as an alternative solution for users who opted out email alert system or have no Internet connection. A CCTV system with SMS alert (CMDSA) was developed using evolutionary prototyping methodology. The system interface was implemented using Microsoft Visual Studio while the backend components, which are database and coding, were implemented on SQLite database and C# programming language, respectively. The main modules of CMDSA are motion detection, capturing and saving video, image processing and Short Message Service (SMS) alert functions. Subsequently, the system is able to reduce the processing time making the detection process become faster, reduce the space and memory used to run the program and alerting the system admin instantly.
A Weighted Spatial-Spectral Kernel RX Algorithm and Efficient Implementation on GPUs
Directory of Open Access Journals (Sweden)
Chunhui Zhao
2017-02-01
Full Text Available The kernel RX (KRX detector proposed by Kwon and Nasrabadi exploits a kernel function to obtain a better detection performance. However, it still has two limits that can be improved. On the one hand, reasonable integration of spatial-spectral information can be used to further improve its detection accuracy. On the other hand, parallel computing can be used to reduce the processing time in available KRX detectors. Accordingly, this paper presents a novel weighted spatial-spectral kernel RX (WSSKRX detector and its parallel implementation on graphics processing units (GPUs. The WSSKRX utilizes the spatial neighborhood resources to reconstruct the testing pixels by introducing a spectral factor and a spatial window, thereby effectively reducing the interference of background noise. Then, the kernel function is redesigned as a mapping trick in a KRX detector to implement the anomaly detection. In addition, a powerful architecture based on the GPU technique is designed to accelerate WSSKRX. To substantiate the performance of the proposed algorithm, both synthetic and real data are conducted for experiments.
Design requirements for SRB production control system. Volume 4: Implementation
1981-01-01
The implementation plan which is presented was developed to provide the means for the successful implementation of the automated production control system. There are three factors which the implementation plan encompasses: detailed planning; phased implementation; and user involvement. The plan is detailed to the task level in terms of necessary activities as the system is developed, refined, installed, and tested. These tasks are scheduled, on a preliminary basis, over a two-and-one-half-year time frame.
Implementation of robust adaptive control for robotic manipulator using TMS320C30
International Nuclear Information System (INIS)
Han, S. H.
1996-01-01
A new adaptive digital control scheme for the robotic manipulator is proposed in this paper. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion for robotic manipulators. In the proposed scheme, adaptation laws are derived from the improved Lyapunov second stability analysis based on the adaptive feedforward and feedback controller and PI type time-varying control elements. The control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot. (author)
Huang, Fang; Liu, Dingsheng; Tan, Xicheng; Wang, Jian; Chen, Yunping; He, Binbin
2011-04-01
To design and implement an open-source parallel GIS (OP-GIS) based on a Linux cluster, the parallel inverse distance weighting (IDW) interpolation algorithm has been chosen as an example to explore the working model and the principle of algorithm parallel pattern (APP), one of the parallelization patterns for OP-GIS. Based on an analysis of the serial IDW interpolation algorithm of GRASS GIS, this paper has proposed and designed a specific parallel IDW interpolation algorithm, incorporating both single process, multiple data (SPMD) and master/slave (M/S) programming modes. The main steps of the parallel IDW interpolation algorithm are: (1) the master node packages the related information, and then broadcasts it to the slave nodes; (2) each node calculates its assigned data extent along one row using the serial algorithm; (3) the master node gathers the data from all nodes; and (4) iterations continue until all rows have been processed, after which the results are outputted. According to the experiments performed in the course of this work, the parallel IDW interpolation algorithm can attain an efficiency greater than 0.93 compared with similar algorithms, which indicates that the parallel algorithm can greatly reduce processing time and maximize speed and performance.
Wavelet Adaptive Algorithm and Its Application to MRE Noise Control System
Directory of Open Access Journals (Sweden)
Zhang Yulin
2015-01-01
Full Text Available To address the limitation of conventional adaptive algorithm used for active noise control (ANC system, this paper proposed and studied two adaptive algorithms based on Wavelet. The twos are applied to a noise control system including magnetorheological elastomers (MRE, which is a smart viscoelastic material characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Simulation results reveal that the Decomposition LMS algorithm (D-LMS and Decomposition and Reconstruction LMS algorithm (DR-LMS based on Wavelet can significantly improve the noise reduction performance of MRE control system compared with traditional LMS algorithm.
Directory of Open Access Journals (Sweden)
Faryal Shamsi
2017-12-01
Full Text Available This Analysis and Design of Algorithm is considered as a compulsory course in the field of Computer Science. It increases the logical and problem solving skills of the students and make their solutions efficient in terms of time and space. These objectives can only be achieved if a student practically implements what he or she has studied throughout the course. But if the contents of this course are merely studied and rarely practiced then the actual goals of the course is not fulfilled. This article will explore the extent of practical implementation of the course of analysis and design of algorithm. Problems faced by the computer science community and major barriers in the field are also enumerated. Finally, some recommendations are made to overcome the obstacles in the practical implementation of analysis and design of algorithms.
The implementation of intelligent home controller
Li, Biqing; Li, Zhao
2018-04-01
This paper mainly talks about the working way of smart home terminal controller and the design of hardware and software. Controlling the lights and by simulating the lamp and the test of the curtain, destroy the light of lamp ON-OFF and the curtain's UP-DOWN by simulating the lamp and the test of the cuetain. Through the sensor collects the ambient information and sends to the network, such as light, temperature and humidity. Besides, it can realise the control of intelligent home control by PCS. Terminal controller of intelligent home which is based on ZiBee technology has into the intelligent home system, it provides people with convenient, safe and intelligent household experience.