WorldWideScience

Sample records for contracting rat skeletal

  1. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase...... in the extracellular adenosine concentration (421 +/- 91 and 235 +/- 30 nmol (g protein)-1, respectively; P muscle cells (161 +/- 20 nmol (g protein)-1). The ATP concentration was lower (18%; P muscle cells....... 3. Addition of microvascular endothelial cells to the cultured skeletal muscle cells enhanced the contraction-induced accumulation of extracellular adenosine (P cells in culture alone did not cause extracellular accumulation of adenosine. 4. Skeletal muscle cells were...

  2. Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions

    DEFF Research Database (Denmark)

    Silveira, Leonardo R.; Pereira-Da-Silva, Lucia; Juel, Carsten

    2003-01-01

    We examined intra- and extracellular H(2)O(2) and NO formation during contractions in primary rat skeletal muscle cell culture. The fluorescent probes DCFH-DA/DCFH (2,7-dichlorofluorescein-diacetate/2,7-dichlorofluorescein) and DAF-2-DA/DAF-2 (4,5-diaminofluorescein-diacetate/4,5-diaminofluoresce...

  3. Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Hansen, B F; Ursø, Birgitte

    1996-01-01

    stimulation but was unaffected by contractions. In addition, the insulin-stimulated PI 3-kinase activity and muscle glucose uptake and transport in individual muscles were dose-dependently inhibited by wortmannin with one-half maximal inhibition values of approximately 10 nM and total inhibition at 1 micro......The role of phosphatidylinositol (PI) 3-kinase for insulin- and contraction-stimulated muscle glucose transport was investigated in rat skeletal muscle perfused with a cell-free perfusate. The insulin receptor substrate-1-associated PI 3-kinase activity was increased sixfold upon insulin......-stimulated glucose uptake but also decreased the contractility. In conclusion, inhibition of PI 3-kinase with wortmannin in skeletal muscle coincides with inhibition of insulin-stimulated glucose uptake and transport. Furthermore, in contrast to recent findings in incubated muscle, wortmannin also inhibited...

  4. Multiple causes of fatigue during shortening contractions in rat slow twitch skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Kristin Halvorsen Hortemo

    Full Text Available Fatigue in muscles that shorten might have other causes than fatigue during isometric contractions, since both cross-bridge cycling and energy demand are different in the two exercise modes. While isometric contractions are extensively studied, the causes of fatigue in shortening contractions are poorly mapped. Here, we investigate fatigue mechanisms during shortening contractions in slow twitch skeletal muscle in near physiological conditions. Fatigue was induced in rat soleus muscles with maintained blood supply by in situ shortening contractions at 37°C. Muscles were stimulated repeatedly (1 s on/off at 30 Hz for 15 min against a constant load, allowing the muscle to shorten and perform work. Fatigue and subsequent recovery was examined at 20 s, 100 s and 15 min exercise. The effects of prior exercise were investigated in a second exercise bout. Fatigue developed in three distinct phases. During the first 20 s the regulatory protein Myosin Light Chain-2 (slow isoform, MLC-2s was rapidly dephosphorylated in parallel with reduced rate of force development and reduced shortening. In the second phase there was degradation of high-energy phosphates and accumulation of lactate, and these changes were related to slowing of muscle relengthening and relaxation, culminating at 100 s exercise. Slowing of relaxation was also associated with increased leak of calcium from the SR. During the third phase of exercise there was restoration of high-energy phosphates and elimination of lactate, and the slowing of relaxation disappeared, whereas dephosphorylation of MLC-2s and reduced shortening prevailed. Prior exercise improved relaxation parameters in a subsequent exercise bout, and we propose that this effect is a result of less accumulation of lactate due to more rapid onset of oxidative metabolism. The correlation between dephosphorylation of MLC-2s and reduced shortening was confirmed in various experimental settings, and we suggest MLC-2s as an

  5. Fiber type effects on contraction-stimulated glucose uptake and GLUT4 abundance in single fibers from rat skeletal muscle.

    Science.gov (United States)

    Castorena, Carlos M; Arias, Edward B; Sharma, Naveen; Bogan, Jonathan S; Cartee, Gregory D

    2015-02-01

    To fully understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers. Accordingly, the major goals of this study were to determine if there are fiber type-related differences in single fibers from rat skeletal muscle for: 1) contraction-stimulated glucose uptake and/or 2) the abundance of GLUT4 and other metabolically relevant proteins. Paired epitrochlearis muscles isolated from Wistar rats were either electrically stimulated to contract (E-Stim) or remained resting (No E-Stim). Single fibers isolated from muscles incubated with 2-deoxy-d-[(3)H]glucose (2-DG) were used to determine fiber type [myosin heavy chain (MHC) isoform protein expression], 2-DG uptake, and abundance of metabolically relevant proteins, including the GLUT4 glucose transporter. E-Stim, relative to No E-Stim, fibers had greater (P glucose uptake. Copyright © 2015 the American Physiological Society.

  6. Imaging mass spectrometry reveals fiber-specific distribution of acetylcarnitine and contraction-induced carnitine dynamics in rat skeletal muscles.

    Science.gov (United States)

    Furuichi, Yasuro; Goto-Inoue, Naoko; Manabe, Yasuko; Setou, Mitsutoshi; Masuda, Kazumi; Fujii, Nobuharu L

    2014-10-01

    Carnitine is well recognized as a key regulator of long-chain fatty acyl group translocation into the mitochondria. In addition, carnitine, as acetylcarnitine, acts as an acceptor of excess acetyl-CoA, a potent inhibitor of pyruvate dehydrogenase. Here, we provide a new methodology for accurate quantification of acetylcarnitine content and determination of its localization in skeletal muscles. We used matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) to visualize acetylcarnitine distribution in rat skeletal muscles. MALDI-IMS and immunohistochemistry of serial cross-sections showed that acetylcarnitine was enriched in the slow-type muscle fibers. The concentration of ATP was lower in muscle regions with abundant acetylcarnitine, suggesting a relationship between acetylcarnitine and metabolic activity. Using our novel method, we detected an increase in acetylcarnitine content after muscle contraction. Importantly, this increase was not detected using traditional biochemical assays of homogenized muscles. We also demonstrated that acetylation of carnitine during muscle contraction was concomitant with glycogen depletion. Our methodology would be useful for the quantification of acetylcarnitine and its contraction-induced kinetics in skeletal muscles. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Fructose 2,6-bisphosphate in rat skeletal muscle during contraction.

    OpenAIRE

    Minatogawa, Y; Hue, Louis

    1984-01-01

    Fructose 2,6-bisphosphate and several glycolytic intermediates were measured in two rat muscles, extensor digitorum longus and gastrocnemius, which were electrically stimulated in situ. Both the duration and the frequency of stimulation were varied to obtain different rates of glycolysis. There was no relationship between fructose 2,6-bisphosphate content and the increase in tissue lactate in contracting muscle. However, in gastrocnemius stimulated at low frequencies (less than or equal to 5 ...

  8. Changes in glucose 1,6-bisphosphate content in rat skeletal muscle during contraction.

    OpenAIRE

    Bassols, A M; Carreras, J; Cussó, R

    1986-01-01

    Glucose 1,6-bisphosphate, fructose 2,6-bisphosphate, glycogen, lactate and other glycolytic metabolites were measured in rat gastrocnemius muscle, which was electrically stimulated in situ via the sciatic nerve. Both the frequency and the duration of stimulation were varied to obtain different rates of glycolysis. There was no apparent relationship between fructose 2,6-bisphosphate content and lactate accumulation in contracting muscle. In contrast, glucose 1,6-bisphosphate content increased ...

  9. Rat whisker movement after facial nerve lesion: evidence for autonomic contraction of skeletal muscle.

    Science.gov (United States)

    Heaton, James T; Sheu, Shu Hsien; Hohman, Marc H; Knox, Christopher J; Weinberg, Julie S; Kleiss, Ingrid J; Hadlock, Tessa A

    2014-04-18

    Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic denervation was from autonomic, cholinergic axons traveling within the infraorbital branch of the trigeminal nerve (ION). Rats underwent unilateral facial nerve transection with repair (N=7) or resection without repair (N=11). Post-operative whisking amplitude was measured weekly across 10weeks, and during intraoperative stimulation of the ION and facial nerves at ⩾18weeks. Whisking was also measured after subsequent ION transection (N=6) or pharmacologic blocking of the autonomic ganglia using hexamethonium (N=3), and after snout cooling intended to elicit a vasodilation reflex (N=3). Whisking recovered more quickly and with greater amplitude in rats that underwent facial nerve repair compared to resection (Pnerve-mediated whisking was elicited by electrical stimulation of the ION, temporarily diminished following hexamethonium injection, abolished by transection of the ION, and rapidly and significantly (Precovery period (indicative of reinnervation), but re-appeared in the resected rats after undergoing ION transection (indicative of motor denervation). Cholinergic, parasympathetic axons traveling within the ION innervate whisker pad vasculature, and immunohistochemistry for vasoactive intestinal peptide revealed these axons branching extensively over whisker pad muscles and contacting neuromuscular junctions after facial nerve resection. This study provides the first behavioral and anatomical evidence of spontaneous autonomic innervation of skeletal muscle after motor nerve lesion, which not only has implications for interpreting facial nerve reinnervation results, but also calls into question whether autonomic-mediated innervation of striated muscle occurs naturally in

  10. The cellular stress response of rat skeletal muscle following lengthening contractions.

    Science.gov (United States)

    Pollock-Tahiri, Evan; Locke, Marius

    2017-07-01

    The cellular stress response of the rat tibialis anterior (TA) muscle was investigated following 20, 40, or 60 lengthening contractions (LCs) using an in vivo model of electrical stimulation. Muscles were removed at 0, 1, 3, or 24 h after LCs and assessed for heat shock transcription factor (HSF) activation, heat shock protein (HSP) content, and/or morphological evidence of muscle fibre damage. When compared with the first muscle contraction, peak muscle torque was reduced by 26% (p < 0.05) after 20 LCs and further reduced to 56% and 60% (p < 0.001) after 40 and 60 LCs, respectively. Following 60 LCs, HSF activation was detected at 0, 1, and 3 h but was undetectable at 24 h. Hsp72 content was elevated at 24 h after 20 LCs (2.34 ± 0.37 fold, p < 0.05), 40 LCs (3.02 ± 0.31 fold, p < 0.01), and 60 LCs (3.37 ± 0.21 fold, p < 0.001). Hsp25 content increased after 40 (2.36 ± 0.24 fold, p < 0.01) and 60 LCs (2.80 ± 0.37 fold, p < 0.01). Morphological assessment of TA morphology revealed that very few fibres were damaged following 20 LCs while multiple sets of LCs (40 and 60) caused greater amounts of fibre damage. Electron microscopy showed disrupted Z-lines and sarcomeres were detectable in some muscles fibres following 20 LCs but were more prevalent and severe in muscles subjected to 40 or 60 LCs. These results suggest LCs elevate HSP content by an HSF-mediated mechanism (60 LC) and a single set of 20 LCs is capable of increasing muscle HSP content without causing significant muscle fibre damage.

  11. Effects of contraction on localization of GLUT4 and v-SNARE isoforms in rat skeletal muscle

    DEFF Research Database (Denmark)

    Rose, Adam John; Jeppesen, Jacob; Kiens, Bente

    2009-01-01

    In skeletal muscle, contractions increase glucose uptake due to a translocation of GLUT4 glucose transporters from intracellular storage sites to the surface membrane. Vesicle associated membrane proteins (VAMPs) are believed to play an important role in docking and fusion of the GLUT4 transporters...... at the surface membrane. However, knowledge about which VAMP isoforms in fact co-localize with GLUT4 vesicles in mature skeletal muscle and whether they translocate during muscle contractions is incomplete. The aim of the present study was to further identify VAMP isoforms which are associated with GLUT4...... vesicles and examine which VAMP isoforms translocate to surface membranes in skeletal muscles undergoing contractions. VAMP2, VAMP3, VAMP5 and VAMP7 were enriched in immuno-precipitated GLUT4 vesicles. In response to 20 min of in situ contractions, there was a redistribution of GLUT4 (+64 +/- 13...

  12. Rat Whisker Movement after Facial Nerve Lesion: Evidence for Autonomic Contraction of Skeletal Muscle

    OpenAIRE

    Heaton, James T.; Sheu, Shu-Hsien; Hohman, Marc H.; Knox, Christopher J.; Weinberg, Julie S.; Kleiss, Ingrid J.; Hadlock, Tessa A.

    2014-01-01

    Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic denervation was from autonomic, cholinergic axons traveling within the infraorbital branch of the trigeminal nerve (ION). Rats underwent unilateral facial nerve transection with repair (N=7) or resection wi...

  13. Noninvasive Cu-64-ATSM and PET/CT Assessment of Hypoxia in Rat Skeletal Muscles and Tendons During Muscle Contractions

    DEFF Research Database (Denmark)

    Skovgaard, D.; Kjaer, M.; Madsen, J.

    2009-01-01

    expression of 2 hypoxia-related genes, hypoxia-inducible factor 1 alpha (HIF1 alpha) and carbonic anhydrase III (CAIII). Methods: Two groups of Wistar rats performed 1-leg contractions of the calf muscle by electrostimulation of the sciatic nerve. After 10 min of muscle contractions, Cu-64-ATSM was injected...

  14. Rat whisker movement after facial nerve lesion: Evidence for autonomic contraction of skeletal muscle.

    NARCIS (Netherlands)

    Heaton, J.T.; Sheu, S.H.; Hohman, M.H.; Knox, C.J.; Weinberg, J.S.; Kleiss, I.J.; Hadlock, T.A.

    2014-01-01

    Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic

  15. Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Macdonald, Will A; Sahlin, Kent

    2009-01-01

    The control of glycolysis in contracting muscle is not fully understood. The aim of the present study was to examine whether activation of glycolysis is mediated by factors related to the energy state or by a direct effect of Ca2+ on the regulating enzymes. Extensor digitorum longus muscles from...... and 58% of those in Con respectively. Glycolytic rate in BTS was only 51% of that in Con but the relative contribution of ATP derived from PCr (phosphocreatine) and glycolysis and the relation between muscle contents of PCr and Lac (lactate) were not different. Prolonged cyanide incubation of quiescent...... contribution of energy delivered from PCr and glycolysis during both conditions suggests that the glycolytic rate is controlled by factors related to energy state....

  16. Disruption of microtubules in rat skeletal muscle does not inhibit insulin- or contraction-stimulated glucose transport

    DEFF Research Database (Denmark)

    Ai, Hua; Ralston, Evelyn; Lauritzen, Hans P M M

    2003-01-01

    found in all muscle fibers. Here, we test whether microtubules are required mediators of the effect of insulin and contractions. In three different incubated rat muscles with distinct fiber type composition, depolymerization of microtubules with colchicine for ...- or contraction-stimulated 2-deoxyglucose transport or force production. On the contrary, colchicine at least partially prevented the approximately 30% decrease in insulin-stimulated transport that specifically developed during 8 h of incubation in soleus muscle but not in flexor digitorum brevis...... or epitrochlearis muscles. In contrast, nocodazole, another microtubule-disrupting drug, rapidly and dose dependently blocked insulin- and contraction-stimulated glucose transport. A similar discrepancy between colchicine and nocodazole was also found in their ability to block glucose transport in muscle giant...

  17. High-intensity stretch-shortening contraction training modifies responsivity of skeletal muscle in old male rats.

    Science.gov (United States)

    Rader, Erik P; Naimo, Marshall A; Ensey, James; Baker, Brent A

    2018-02-10

    Utilization of high-intensity resistance training to counter age-related sarcopenia is currently debated because of the potential for maladaptation when training design is inappropriate. Training design is problematic because the influence of various loading variables (e.g. contraction mode, repetition number, and training frequency) is still not well characterized at old age. To address this in a precisely controlled manner, we developed a rodent model of high-intensity training consisting of maximally-activated stretch-shortening contractions (SSCs), contractions typical during resistance training. With this model, we determined that at old age, high-repetition SSC training (80 SSCs: 8 sets of 10 repetitions) performed frequently (i.e. 3 days per week) for 4.5 weeks induced strength deficits with no muscle mass gain while decreasing frequency to 2 days per week promoted increases in muscle mass and muscle quality (i.e. performance normalized to muscle mass). This finding confirmed the popular notion that decreasing training frequency has a robust effect with age. Meanwhile, the influence of other loading variables remains contentious. The aim of the present study was to assess muscle adaptation following modulation of contraction mode and repetition number during high-intensity SSC training. Muscles of young (3 month old) and old (30 month old) male rats were exposed to 4.5 weeks of low-repetition static training of 4 (i.e. 4 sets of one repetition) isometric (ISO) contractions 3 days per week or a more moderate-repetition dynamic training of 40 SSCs (i.e. 4 sets of 10 repetitions) 3 days per week. For young rats, performance and muscle mass increased regardless of training protocol. For old rats, no muscle mass adaptation was observed for 4 ISO training while 40 SSC training induced muscle mass gain without improvement in muscle quality, an outcome distinct from modulating training frequency. Muscle mass gain for old rats was accompanied by

  18. Vasodilatory mechanisms in contracting skeletal muscle

    DEFF Research Database (Denmark)

    Clifford, Philip S.; Hellsten, Ylva

    2004-01-01

    Skeletal muscle blood flow is closely coupled to metabolic demand, and its regulation is believed to be mainly the result of the interplay of neural vasoconstrictor activity and locally derived vasoactive substances. Muscle blood flow is increased within the first second after a single contraction...... and stabilizes within 30 s during dynamic exercise under normal conditions. Vasodilator substances may be released from contracting skeletal muscle, vascular endothelium, or red blood cells. The importance of specific vasodilators is likely to vary over the time course of flow, from the initial rapid rise...

  19. Diaphragmatic lymphatic vessel behavior during local skeletal muscle contraction.

    Science.gov (United States)

    Moriondo, Andrea; Solari, Eleonora; Marcozzi, Cristiana; Negrini, Daniela

    2015-02-01

    The mechanism through which the stresses developed in the diaphragmatic tissue during skeletal muscle contraction sustain local lymphatic function was studied in 10 deeply anesthetized, tracheotomized adult Wistar rats whose diaphragm was exposed after thoracotomy. To evaluate the direct effect of skeletal muscle contraction on the hydraulic intraluminal lymphatic pressures (Plymph) and lymphatic vessel geometry, the maximal contraction of diaphragmatic fibers adjacent to a lymphatic vessel was elicited by injection of 9.2 nl of 1 M KCl solution among diaphragmatic fibers while Plymph was recorded through micropuncture and vessel geometry via stereomicroscopy video recording. In lymphatics oriented perpendicularly to the longitudinal axis of muscle fibers and located at 900 μm from the vessel, Dmc enlarged to 131.1 ± 2.3% of Drest. In vessels parallel to muscle fibers, Dmc increased to 122.8 ± 2.9% of Drest. During contraction, Plymph decreased as much as 22.5 ± 2.6 cmH2O in all submesothelial superficial vessels, whereas it increased by 10.7 ± 5.1 cmH2O in deeper vessels running perpendicular to contracting muscle fibers. Hence, the three-dimensional arrangement of the diaphragmatic lymphatic network seems to be finalized to efficiently exploit the stresses exerted by muscle fibers during the contracting inspiratory phase to promote lymph formation in superficial submesothelial lymphatics and its further propulsion in deeper intramuscular vessels. Copyright © 2015 the American Physiological Society.

  20. Na+-K+ pump location and translocation during muscle contraction  in rat skeletal muscle

    DEFF Research Database (Denmark)

    Kristensen, Michael; Rasmussen, Martin Krøyer; Juel, Carsten

    2008-01-01

    the translocation. Electrical stimulation and biotin labeling of rat muscle revealed a 40% and 18% increase in the amounts of the Na+-K+ pump a2 subunit and caveolin-3 (Cav-3), respectively, in the sarcolemma. Exercise induced a 36% and 19% increase in the relative amounts of the a2 subunit and Cav-3, respectively...

  1. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations

    DEFF Research Database (Denmark)

    Hespel, P; Richter, Erik

    1990-01-01

    1. Glucose uptake and transport, muscle glycogen, free glucose and glucose-6-phosphate concentrations were studied in perfused resting and contracting rat skeletal muscle with different pre-contraction glycogen concentrations. Rats were pre-conditioned by a combination of swimming exercise and diet......, resulting in either low (glycogen-depleted rats), normal (control rats) or high (supercompensated rats) muscle glycogen concentrations at the time their hindlimbs were perfused. 2. Compared with control rats, pre-contraction muscle glycogen concentration was approximately 40% lower in glycogen-depleted rats......, whereas it was 40% higher in supercompensated rats. Muscle glycogen break-down correlated positively (r = 0.76; P less than 0.001) with pre-contraction muscle glycogen concentration. 3. Glucose uptake during contractions was approximately 50% higher in glycogen-depleted hindquarters than in control...

  2. A differential pattern of gene expression in skeletal muscle of tumor-bearing rats reveals dysregulation of excitation–contraction coupling together with additional muscle alterations.

    Science.gov (United States)

    Fontes-Oliveira, Cibely Cristine; Busquets, Sílvia; Fuster, Gemma; Ametller, Elisabet; Figueras, Maite; Olivan, Mireia; Toledo, Míriam; López-Soriano, Francisco J; Qu, Xiaoyan; Demuth, Jeffrey; Stevens, Paula; Varbanov, Alex; Wang, Feng; Isfort, Robert J; Argilés, Josep M

    2014-02-01

    Cachexia is a wasting condition that manifests in several types of cancer. The main characteristic of this condition is a profound loss of muscle mass. By using a microarray system, expression of several hundred genes was screened in skeletal muscle of rats bearing a cachexia-inducing tumor, the AH-130 Yoshida ascites hepatoma. This model induced a strong decrease in muscle mass in the tumor-bearing animals, as compared with their healthy counterparts. The results show important differences in gene expression in EDL skeletal muscle between tumor-bearing animals with cachexia and control animals. The differences observed pertain to genes related to intracellular calcium homeostasis and genes involved in the control of mitochondrial oxidative phosphorylation and protein turnover, both at the level of protein synthesis and proteolysis. Assessment of these differences may be a useful tool for the design of novel therapeutic strategies to fight this devastating syndrome.

  3. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations

    DEFF Research Database (Denmark)

    Hespel, P; Richter, Erik

    1990-01-01

    1. Glucose uptake and transport, muscle glycogen, free glucose and glucose-6-phosphate concentrations were studied in perfused resting and contracting rat skeletal muscle with different pre-contraction glycogen concentrations. Rats were pre-conditioned by a combination of swimming exercise and diet...... on the preceding day. 4. Muscle membrane glucose transport, as measured by the rate of accumulation of 14C-3-O-methylglucose in the contracting muscles, was 25% lower in supercompensated than in glycogen-depleted muscles at the onset as well as at the end of the 15 min contraction period. 5. Intracellular...... as with glucose-6-phosphate (r = -0.49; P less than 0.01) concentrations. 6. It is concluded that: (a) The rate of glucose uptake in contracting skeletal muscle is dependent on the pre-contraction muscle glycogen concentration. Regulating mechanisms include limitations of membrane glucose transport as well...

  4. Contractions but not AICAR increase FABPpm content in rat muscle sarcolemma

    DEFF Research Database (Denmark)

    Jeppesen, Jacob; Albers, Peter; Luiken, Joost J.

    2009-01-01

    In the present study, it was investigated whether acute muscle contractions in rat skeletal muscle increased the protein content of FABPpm in the plasma membrane. Furthermore, the effect of AICAR stimulation on FAT/CD36 and FABPpm protein content in sarcolemma of rat skeletal muscle was evaluated...

  5. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    DEFF Research Database (Denmark)

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin

    2010-01-01

    The role of adenosine and contraction for secretion of VEGF in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted into the thigh muscle of seven male subjects and dialysate was collected at rest, during infusion of adenosine...... and during knee extensor exercise. The dialysate was analyzed for content of VEGF protein and adenosine. The mechanism of VEGF secretion from muscle cells in culture was examined in resting and electro stimulated cells, and in response to the adenosine analogue NECA, and the adenosine A(2A) receptor specific...... infusion enhanced (Pmuscle cells, NECA...

  6. Imaging two-dimensional mechanical waves of skeletal muscle contraction.

    Science.gov (United States)

    Grönlund, Christer; Claesson, Kenji; Holtermann, Andreas

    2013-02-01

    Skeletal muscle contraction is related to rapid mechanical shortening and thickening. Recently, specialized ultrasound systems have been applied to demonstrate and quantify transient tissue velocities and one-dimensional (1-D) propagation of mechanical waves during muscle contraction. Such waves could potentially provide novel information on musculoskeletal characteristics, function and disorders. In this work, we demonstrate two-dimensional (2-D) mechanical wave imaging following the skeletal muscle contraction. B-mode image acquisition during multiple consecutive electrostimulations, speckle-tracking and a time-stamp sorting protocol were used to obtain 1.4 kHz frame rate 2-D tissue velocity imaging of the biceps brachii muscle contraction. The results present novel information on tissue velocity profiles and mechanical wave propagation. In particular, counter-propagating compressional and shear waves in the longitudinal direction were observed in the contracting tissue (speed 2.8-4.4 m/s) and a compressional wave in the transverse direction of the non-contracting muscle tissue (1.2-1.9 m/s). In conclusion, analysing transient 2-D tissue velocity allows simultaneous assessment of both active and passive muscle tissue properties. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  8. Noninvasive 64Cu-ATSM and PET/CT Assessment of Hypoxia in Rat Skeletal Muscles and Tendons During Muscle Contractions

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Kjaer, Michael; Madsen, Jacob

    2009-01-01

    the first PET/CT scan. Standardized uptake values (SUVs) were calculated for the Achilles tendons and triceps surae muscles and were correlated to gene expression of HIF1alpha and CAIII using real-time polymerase chain reaction. RESULTS: Immediately after the contractions, uptake of (64)Cu...

  9. Reduced blood flow to contracting skeletal muscle in ageing humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Hellsten, Ylva

    2016-01-01

    consequences of ageing and physical inactivity can be challenging; yet, observations from cross-sectional and longitudinal studies on the effects of physical activity have provided some insight. Physical activity has the potential to offset the age-related decline in blood flow to contracting skeletal muscle...... the O2 demand of the active skeletal muscle of aged individuals during conditions where systemic blood flow is not limited by cardiac output seems to a large extent to be related to the level of physical activity. This article is protected by copyright. All rights reserved.......The ability to sustain a given absolute submaximal workload declines with advancing age likely due to a lower level of blood flow and O2 delivery to the exercising muscles. Given that physical inactivity mimics many of the physiological changes associated with ageing, separating the physiological...

  10. Nanosecond electric pulses modulate skeletal muscle calcium dynamics and contraction

    Science.gov (United States)

    Valdez, Chris; Jirjis, Michael B.; Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.

    2017-02-01

    Irreversible electroporation therapy is utilized to remove cancerous tissues thru the delivery of rapid (250Hz) and high voltage (V) (1,500V/cm) electric pulses across microsecond durations. Clinical research demonstrated that bipolar (BP) high voltage microsecond pulses opposed to monophasic waveforms relieve muscle contraction during electroporation treatment. Our group along with others discovered that nanosecond electric pulses (nsEP) can activate second messenger cascades, induce cytoskeletal rearrangement, and depending on the nsEP duration and frequency, initiate apoptotic pathways. Of high interest across in vivo and in vitro applications, is how nsEP affects muscle physiology, and if nuances exist in comparison to longer duration electroporation applications. To this end, we exposed mature skeletal muscle cells to monopolar (MP) and BP nsEP stimulation across a wide range of electric field amplitudes (1-20 kV/cm). From live confocal microscopy, we simultaneously monitored intracellular calcium dynamics along with nsEP-induced muscle movement on a single cell level. In addition, we also evaluated membrane permeability with Yo-PRO-1 and Propidium Iodide (PI) across various nsEP parameters. The results from our findings suggest that skeletal muscle calcium dynamics, and nsEP-induced contraction exhibit exclusive responses to both MP and BP nsEP exposure. Overall the results suggest in vivo nsEP application may elicit unique physiology and field applications compared to longer pulse duration electroporation.

  11. The interrelation between aPKC and glucose uptake in the skeletal muscle during contraction and insulin stimulation.

    Science.gov (United States)

    Santos, J M; Benite-Ribeiro, S A; Queiroz, G; Duarte, J A

    2014-12-01

    Contraction and insulin increase glucose uptake in skeletal muscle. While the insulin pathway, better characterized, requires activation of phosphoinositide 3-kinase (PI3K) and atypical protein kinase (aPKC), muscle contraction seems to share insulin-activated components to increase glucose uptake. This study aimed to investigate the interrelation between the pathway involved in glucose uptake evoked by insulin and muscle contraction. Isolated muscle of rats was treated with solvent (control), insulin, wortmannin (PI3K inhibitor) and the combination of insulin plus wortmannin. After treatment, muscles were electrically stimulated (contracted) or remained at rest. Glucose transporter 4 (GLUT4) localization, glucose uptake and phospho-aPKC (aPKC activated form) were assessed. Muscle contraction and insulin increased glucose uptake in all conditions when compared with controls not stimulating an effect that was accompanied by an increase in GLUT4 and of phospho-aPKC at the muscle membrane. Contracted muscles treated with insulin did not show additive effects on glucose uptake or aPKC activity compared with the response when these stimuli were applied alone. Inhibition of PI3K blocked insulin effect on glucose uptake and aPKC but not in the contractile response. Thus, muscle contraction seems to stimulate aPKC and glucose uptake independently of PI3K. Therefore, aPKC may be a convergence point and a rate limit step in the pathway by which, insulin and contraction, increase glucose uptake in skeletal muscle. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Membrane charge moved at contraction thresholds in skeletal muscle fibres.

    Science.gov (United States)

    Horowicz, P; Schneider, M F

    1981-05-01

    1. The current I(Q) due to membrane charge movement and the threshold pulse duration t(th) required to produce microscopically just-detectable contraction were determined for pulses to a variety of membrane potentials in tendon-terminated short segments of cut frog skeletal muscle fibres voltage-clamped using a single gap technique.2. The time course Q(t) of membrane charge movement was calculated as the running integral of I(Q). The threshold charge Q(th) moved by pulses which produced just-detectable contraction was estimated as Q(t(th)).3. Q(th) was constant for pulses to potentials ranging from about -45 mV, the rheobase potential for contraction, to about -15 mV, where t(th) was about 9 msec. The mean Q(th) from fourteen fibres was 11.5 nC/muF, when the holding potential was about -100 mV.4. Prepulses of 50 msec which were themselves sub-rheobase for producing contraction decreased the t(th) for an immediately following test pulse. The total threshold charge moved during the prepulse and during t(th) of the test pulse was equal to Q(th) for the test pulse without prepulse.5. Items 3 and 4 above indicate that t(th) is determined by the time required to move a set amount of intramembrane charge, independent of the kinetics of the charge movement.6. Steady partial fibre depolarization to between -70 and -55 mV increased t(th) at all membrane potentials and elevated the rheobase potential for contraction. Slight further steady depolarization totally eliminated contraction.7. Steady partial depolarization decreased the total ON charge movement Q(ON) by about the same factor for pulses to all potentials tested.8. Q(th) for partially depolarized but still-contracting fibres remained approximately independent of membrane potential from rheobase to about 0 mV but was slightly less than Q(th) for the same fibres when fully polarized.9. Steady partial depolarizations which reduced the mean (+/-s.d.) ON charge movement Q(ON) to 60 +/- 8% of its value under full

  13. Charge movement and depolarization-contraction coupling in arthropod vs. vertebrate skeletal muscle.

    OpenAIRE

    Scheuer, T; Gilly, W F

    1986-01-01

    Voltage-dependent charge movement has been characterized in arthropod skeletal muscle. Charge movement in scorpion (Centuroides sculpturatus) muscle is distinguishable from that in vertebrate skeletal muscle by criteria of kinetics, voltage dependence, and pharmacology. The function of scorpion charge movement is gating of calcium channels in the sarcolemma, and depolarization-contraction coupling relies on calcium influx through these channels.

  14. Charge movement and depolarization-contraction coupling in arthropod vs. vertebrate skeletal muscle.

    Science.gov (United States)

    Scheuer, T; Gilly, W F

    1986-11-01

    Voltage-dependent charge movement has been characterized in arthropod skeletal muscle. Charge movement in scorpion (Centuroides sculpturatus) muscle is distinguishable from that in vertebrate skeletal muscle by criteria of kinetics, voltage dependence, and pharmacology. The function of scorpion charge movement is gating of calcium channels in the sarcolemma, and depolarization-contraction coupling relies on calcium influx through these channels.

  15. Slow contractions characterize failing rat hearts.

    Science.gov (United States)

    Bøkenes, Janny; Aronsen, Jan Magnus; Birkeland, Jon Arne; Henriksen, Unni Lie; Louch, William E; Sjaastad, Ivar; Sejersted, Ole M

    2008-07-01

    The reduced power of the failing heart can be ascribed to a combination of reduced force and slower contraction. We hypothesized that these two properties are due to different cellular mechanisms. We measured contraction parameters both in vivo and in isolated left ventricular (LV) cardiomyocytes from a rat model of post infarction congestive heart failure (CHF). ECG was measured simultaneously with echocardiography and LV pressure, respectively. Shortening and shortening velocity (SV) in isolated cardiomyocytes were measured during different stimulation protocols. LV end diastolic pressure (LVEDP) was 24.6 +/- 0.7 mmHg in CHF. LV systolic pressure was decreased by 20%, maximum rate of pressure development in the LV (+dP/dtmax) by 36% and time in systole increased by 20% in CHF compared to sham. Electrical remodelling occurred in CHF cells, which were depolarized and had prolonged action potentials (AP) compared to sham cells. Fractional shortening (FS) was increased in CHF compared to sham independent of stimulation protocol. Larger FS was accompanied by increased sarcoplasmic reticulum (SR) Ca2+ load and depended on the electrical remodelling. Time to peak contraction (TTP) was increased in CHF compared to sham cells, but in contrast to FS, TTP was only slightly affected when the cells were stimulated with sham APs and sham diastolic membrane potential (DMP). Contraction duration (corresponding to systolic duration) was 25% longer in CHF than in sham independent on stimulation protocol. We conclude that electrical remodelling affecting DMP and AP duration (APD) significantly affects the size of contraction, whereas the mechanism for slowing of contraction in CHF is different.

  16. Image Based Calculation of Perfusion and Oxyhemoglobin Saturation in Skeletal Muscle during Submaximal Isometric Contractions

    OpenAIRE

    Elder, Christopher P.; Cook, Ryan N.; Chance, Marti A.; Copenhaver, Elizabeth A.; Damon, Bruce M.

    2010-01-01

    The relative oxygen saturation of hemoglobin (%HbO2) and the rate of perfusion (θ̇) are important physiological quantities, particularly in organs such as skeletal muscle in which oxygen delivery and use are tightly coupled. The purpose of this study was to demonstrate the image-based calculation of %HbO2 and quantification of perfusion in skeletal muscle during isometric contractions. This was accomplished by establishing an empirical relationship between the rate of RF-reversible dephasing ...

  17. Rac1- a novel regulator of contraction-stimulated glucose uptake in skeletal muscle

    DEFF Research Database (Denmark)

    Sylow, Lykke; Møller, Lisbeth L V; Kleinert, Maximilian

    2014-01-01

    Muscle contraction stimulates muscle glucose uptake by facilitating translocation of the glucose transporter 4 from intracellular locations to the cell surface, which allows for diffusion of glucose into the myofibers. However, the intracellular mechanisms regulating this process are not well...... understood. The GTPase, Rac1 has, until recently, only been investigated with regards to its involvement in insulin-stimulated glucose uptake. However, we recently found that Rac1 is activated during muscle contraction and exercise in mice and humans. Remarkably, Rac1 seems to be necessary for exercise....../contraction-stimulated glucose uptake in skeletal muscle, since muscle-specific Rac1 knockout mice display reduced ex vivo contraction- and in vivo exercise-stimulated glucose uptake in skeletal muscle. The molecular mechanisms by which Rac1 regulate glucose uptake is presently unknown. However, recent studies link Rac1...

  18. Image Based Calculation of Perfusion and Oxyhemoglobin Saturation in Skeletal Muscle during Submaximal Isometric Contractions

    Science.gov (United States)

    Elder, Christopher P.; Cook, Ryan N.; Chance, Marti A.; Copenhaver, Elizabeth A.; Damon, Bruce M.

    2015-01-01

    The relative oxygen saturation of hemoglobin (%HbO2) and the rate of perfusion (θ̇) are important physiological quantities, particularly in organs such as skeletal muscle in which oxygen delivery and use are tightly coupled. The purpose of this study was to demonstrate the image-based calculation of %HbO2 and quantification of perfusion in skeletal muscle during isometric contractions. This was accomplished by establishing an empirical relationship between the rate of RF-reversible dephasing (R2′) and near infrared spectroscopy (NIRS)-observed oxyhemoglobin saturation (%HbO2) under conditions of arterial occlusion and constant blood volume. A calibration curve was generated and used to calculate %HbO2 from R2′ changes measured during contraction. Twelve young healthy subjects underwent 300 seconds of arterial occlusion and performed isometric contractions of the dorsiflexors at 30% of maximal contraction for 120s. Muscle perfusion was quantified during contraction by arterial spin labeling and measures of muscle T1. Comparisons between the %HbO2 values predicted from R2′ and that measured by NIRS revealed no differences between methods (p = 0.760). Muscle perfusion reached a value of 34.7 mL 100g−1 min−1 during contraction. These measurements hold future promise in measuring muscle oxygen consumption in healthy and diseased skeletal muscle. PMID:20806379

  19. Image-based calculation of perfusion and oxyhemoglobin saturation in skeletal muscle during submaximal isometric contractions.

    Science.gov (United States)

    Elder, Christopher P; Cook, Ryan N; Chance, Marti A; Copenhaver, Elizabeth A; Damon, Bruce M

    2010-09-01

    The relative oxygen saturation of hemoglobin and the rate of perfusion are important physiological quantities, particularly in organs such as skeletal muscle, in which oxygen delivery and use are tightly coupled. The purpose of this study was to demonstrate the image-based calculation of the relative oxygen saturation of hemoglobin and quantification of perfusion in skeletal muscle during isometric contractions. This was accomplished by establishing an empirical relationship between the rate of radiofrequency-reversible dephasing and near-infrared spectroscopy-observed oxyhemoglobin saturation (relative oxygen saturation of hemoglobin) under conditions of arterial occlusion and constant blood volume. A calibration curve was generated and used to calculate the relative oxygen saturation of hemoglobin from radiofrequency-reversible dephasing changes measured during contraction. Twelve young healthy subjects underwent 300 s of arterial occlusion and performed isometric contractions of the dorsiflexors at 30% of maximal contraction for 120 s. Muscle perfusion was quantified during contraction by arterial spin labeling and measures of muscle T(1). Comparisons between the relative oxygen saturation of hemoglobin values predicted from radiofrequency-reversible dephasing and that measured by near-infrared spectroscopy revealed no differences between methods (P = 0.760). Muscle perfusion reached a value of 34.7 mL 100 g(-1) min(-1) during contraction. These measurements hold future promise in measuring muscle oxygen consumption in healthy and diseased skeletal muscle. 2010 Wiley-Liss, Inc.

  20. Carboxylic ester hydrolases in mitochondria from rat skeletal muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Zelander, T

    1990-01-01

    A mitochondrial pellet, prepared from rat skeletal muscle, contained a number of carboxylic ester hydrolase isoenzymes. The esterases which split alpha-naphthyl acetate were organophosphate sensitive, whereas two out of three indoxyl acetate hydrolysing enzymes were resistant to both organophosph...

  1. Contraction and AICAR Stimulate IL-6 Vesicle Depletion From Skeletal Muscle Fibers In Vivo

    DEFF Research Database (Denmark)

    Lauritzen, Hans P M M; Brandauer, Josef; Schjerling, Peter

    2013-01-01

    Recent studies suggest that interleukin 6 (IL-6) is released from contracting skeletal muscles; however, the cellular origin, secretion kinetics, and signaling mechanisms regulating IL-6 secretion are unknown. To address these questions, we developed imaging methodology to study IL-6 in fixed mouse...

  2. Interleukin-6 receptor expression in contracting human skeletal muscle: regulating role of IL-6

    DEFF Research Database (Denmark)

    Keller, Pernille; Penkowa, Milena; Keller, Charlotte

    2005-01-01

    Contracting muscle fibers produce and release IL-6, and plasma levels of this cytokine are markedly elevated in response to physical exercise. We recently showed autocrine regulation of IL-6 in human skeletal muscle in vivo and hypothesized that this may involve up-regulation of the IL-6 receptor...

  3. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Ploug, T.; Stallknecht, B.M.; Pedersen, O.; Kahn, B.B.; Ohkuwa, T.; Vinten, J.; Galbo, H. (Panum Institute, Copenhagen (Denmark))

    1990-12-01

    The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters.

  4. Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle

    DEFF Research Database (Denmark)

    Sylow, Lykke; Jensen, Thomas Elbenhardt; Kleinert, Maximilian

    2013-01-01

    In skeletal muscle, the actin cytoskeleton-regulating GTPase, Rac1, is necessary for insulin-dependent GLUT4 translocation. Muscle contraction increases glucose transport and represents an alternative signaling pathway to insulin. Whether Rac1 is activated by muscle contraction and regulates...... contraction-induced glucose uptake is unknown. Therefore, we studied the effects of in vivo exercise and ex vivo muscle contractions on Rac1 signaling and its regulatory role in glucose uptake in mice and humans. Muscle Rac1-GTP binding was increased after exercise in mice (~60-100%) and humans (~40......%), and this activation was AMP-activated protein kinase independent. Rac1 inhibition reduced contraction-stimulated glucose uptake in mouse muscle by 55% in soleus and by 20-58% in extensor digitorum longus (EDL; P glucose uptake was decreased by 27% (P = 0...

  5. High glycogen levels enhance glycogen breakdown in isolated contracting skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Galbo, H

    1986-01-01

    and after 15 min of intermittent electrical muscle stimulation. Before stimulation, glycogen was higher in rats that swam on the preceding day (supercompensated rats) compared with controls. During muscle contractions, glycogen breakdown in fast-twitch red and white fibers was larger in supercompensated...

  6. Kinetics of contraction-induced GLUT4 translocation in skeletal muscle fibers from living mice

    DEFF Research Database (Denmark)

    Lauritzen, Hans Peter M. Mortensen; Galbo, Henrik; Toyoda, Taro

    2010-01-01

    Exercise is an important strategy for the treatment of type 2 diabetes. This is due in part to an increase in glucose transport that occurs in the working skeletal muscles. Glucose transport is regulated by GLUT4 translocation in muscle, but the molecular machinery mediating this process is poorly...... understood. The purpose of this study was to 1) use a novel imaging system to elucidate the kinetics of contraction-induced GLUT4 translocation in skeletal muscle and 2) determine the function of AMP-activated protein kinase alpha2 (AMPKalpha2) in this process....

  7. A DIC Based Technique to Measure the Contraction of a Skeletal Muscle Engineered Tissue

    Directory of Open Access Journals (Sweden)

    Emanuele Rizzuto

    2016-01-01

    Full Text Available Tissue engineering is a multidisciplinary science based on the application of engineering approaches to biologic tissue formation. Engineered tissue internal organization represents a key aspect to increase biofunctionality before transplant and, as regarding skeletal muscles, the potential of generating contractile forces is dependent on the internal fiber organization and is reflected by some macroscopic parameters, such as the spontaneous contraction. Here we propose the application of digital image correlation (DIC as an independent tool for an accurate and noninvasive measurement of engineered muscle tissue spontaneous contraction. To validate the proposed technique we referred to the X-MET, a promising 3-dimensional model of skeletal muscle. The images acquired through a high speed camera were correlated with a custom-made algorithm and the longitudinal strain predictions were employed for measuring the spontaneous contraction. The spontaneous contraction reference values were obtained by studying the force response. The relative error between the spontaneous contraction frequencies computed in both ways was always lower than 0.15%. In conclusion, the use of a DIC based system allows for an accurate and noninvasive measurement of biological tissues’ spontaneous contraction, in addition to the measurement of tissue strain field on any desired region of interest during electrical stimulation.

  8. Distinct effects of subcellular glycogen localization on tetanic relaxation time and endurance in mechanically skinned rat skeletal muscle fibres

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Schrøder, H D; Rix, C G

    2009-01-01

    In vitro experiments indicate a non-metabolic role of muscle glycogen in contracting skeletal muscles. Since the sequence of events in excitation\\#8211;contraction (E\\#8211;C) coupling is known to be located close to glycogen granules, at specific sites on the fibre, we hypothesized...... that the distinct compartments of glycogen have specific effects on muscle fibre contractility and fatigability. Single skeletal muscle fibres (n = 19) from fed and fasted rats were mechanically skinned and divided into two segments. In one segment glycogen localization and volume fraction were estimated......, range 22-252 contractions). Initially the total myofibrillar glycogen volume percentage was 0.46 +/- 0.07%, with 72 +/- 3% in the intermyofibrillar space and 28 +/- 3% in the intramyofibrillar space. The intramyofibrillar glycogen content was positively correlated with the fatigue resistance capacity (r...

  9. Intramuscular fatty acid metabolism in contracting and non-contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Sacchetti, M; Saltin, B; Osada, T

    2002-01-01

    The present study was undertaken to investigate the fate of blood-borne non-esterified fatty acids (NEFA) entering contracting and non-contracting knee extensor muscles of healthy young individuals. [U-(13)C]-palmitate was infused into a forearm vein during 5 h of one-legged knee extensor exercis...... and degraded and that the metabolic fate of plasma NEFA entering the muscle is influenced by muscle contraction, so that a higher proportion is directed towards oxidation at the expense of storage in mTAG....

  10. Pennation angle dependency in skeletal muscle tissue doppler strain in dynamic contractions.

    Science.gov (United States)

    Lindberg, Frida; Öhberg, Fredrik; Granåsen, Gabriel; Brodin, Lars-Åke; Grönlund, Christer

    2011-07-01

    Tissue velocity imaging (TVI) is a Doppler based ultrasound technique that can be used to study regional deformation in skeletal muscle tissue. The aim of this study was to develop a biomechanical model to describe the TVI strain's dependency on the pennation angle. We demonstrate its impact as the subsequent strain measurement error using dynamic elbow contractions from the medial and the lateral part of biceps brachii at two different loadings; 5% and 25% of maximum voluntary contraction (MVC). The estimated pennation angles were on average about 4° in extended position and increased to a maximal of 13° in flexed elbow position. The corresponding relative angular error spread from around 7% up to around 40%. To accurately apply TVI on skeletal muscles, the error due to angle changes should be compensated for. As a suggestion, this could be done according to the presented model. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Membrane Cholesterol in Skeletal Muscle: A Novel Player in Excitation-Contraction Coupling and Insulin Resistance.

    Science.gov (United States)

    Barrientos, G; Sánchez-Aguilera, P; Jaimovich, E; Hidalgo, C; Llanos, P

    2017-01-01

    Membrane cholesterol is critical for signaling processes in a variety of tissues. We will address here current evidence supporting an emerging role of cholesterol on excitation-contraction coupling and glucose transport in skeletal muscle. We have centered our review on the transverse tubule system, a complex network of narrow plasma membrane invaginations that propagate membrane depolarization into the fiber interior and allow nutrient delivery into the fibers. We will discuss current evidence showing that transverse tubule membranes have remarkably high cholesterol levels and we will address how modifications of cholesterol content influence excitation-contraction coupling. In addition, we will discuss how membrane cholesterol levels affect glucose transport by modulating the insertion into the membrane of the main insulin-sensitive glucose transporter GLUT4. Finally, we will address how the increased membrane cholesterol levels displayed by obese animals, which also present insulin resistance, affect these two particular skeletal muscle functions.

  12. Effects of adenosine triphosphate concentration on motor force regulation during skeletal muscle contraction

    Science.gov (United States)

    Wei, J.; Dong, C.; Chen, B.

    2017-04-01

    We employ a mechanical model of sarcomere to quantitatively investigate how adenosine triphosphate (ATP) concentration affects motor force regulation during skeletal muscle contraction. Our simulation indicates that there can be negative cross-bridges resisting contraction within the sarcomere and higher ATP concentration would decrease the resistance force from negative cross-bridges by promoting their timely detachment. It is revealed that the motor force is well regulated only when ATP concentration is above a certain level. These predictions may provide insights into the role of ATP in regulating coordination among multiple motors.

  13. A novel three-filament model of force generation in eccentric contraction of skeletal muscles.

    Directory of Open Access Journals (Sweden)

    Gudrun Schappacher-Tilp

    Full Text Available We propose and examine a three filament model of skeletal muscle force generation, thereby extending classical cross-bridge models by involving titin-actin interaction upon active force production. In regions with optimal actin-myosin overlap, the model does not alter energy and force predictions of cross-bridge models for isometric contractions. However, in contrast to cross-bridge models, the three filament model accurately predicts history-dependent force generation in half sarcomeres for eccentric and concentric contractions, and predicts the activation-dependent forces for stretches beyond actin-myosin filament overlap.

  14. Effect of sodium deprivation on contraction and charge movement in frog skeletal muscle fibres.

    Science.gov (United States)

    Garcia, M C; Diaz, A F; Godinez, R; Sanchez, J A

    1992-06-01

    Measurements of isometric tension were performed in single twitch skeletal muscle fibres and the effect of extracellular Na+ removal on contraction was investigated. Na+ withdrawal brought about an increase in the amplitude of K+ contractures and their time course became faster. The potentiation of K+ contractures depended strongly on extracellular Ca2+ and developed slowly following an exponential time course with a time constant of approximately 8 min. Removal of extracellular Na+ greatly increased the amplitude of caffeine contractures and lowered its threshold: caffeine (0.5 mM) had no effect on resting tension in Ringer's but produced contractures in Na(+)-free solutions. Intramembrane charge movement (charge 1) was monitored in contracting voltage-clamped segments of frog skeletal muscle fibres using the triple-Vaseline-gap technique. Movement of charge 1 did not depend on the presence of extracellular Na+. However, the mechanical threshold decreased by approximately 10 mV at several pulse durations and the charge which produced just detectable contractions decreased by approximately 5 nC microF-1 in the absence of extracellular Na+. Intracellular heparin (40 mg ml-1) increased the mechanical threshold by approximately 20 mV without affecting the movement of charge 1. The effect of Na(+)-free solutions on the mechanical threshold was additive to that of heparin. It is concluded that the effects of Na(+)-withdrawal on contraction take place at a location beyond the voltage sensor of excitation-contraction coupling.

  15. Tetanic contraction induces enhancement of fatigability and sarcomeric damage in atrophic skeletal muscle and its underlying molecular mechanisms.

    Science.gov (United States)

    Yu, Zhi-Bin

    2013-11-01

    Muscle unloading due to long-term exposure of weightlessness or simulated weightlessness causes atrophy, loss of functional capacity, impaired locomotor coordination, and decreased resistance to fatigue in the antigravity muscles of the lower limbs. Besides reducing astronauts' mobility in space and on returning to a gravity environment, the molecular mechanisms for the adaptation of skeletal muscle to unloading also play an important medical role in conditions such as disuse and paralysis. The tail-suspended rat model was used to simulate the effects of weightlessness on skeletal muscles and to induce muscle unloading in the rat hindlimb. Our series studies have shown that the maximum of twitch tension and the twitch duration decreased significantly in the atrophic soleus muscles, the maximal tension of high-frequency tetanic contraction was significantly reduced in 2-week unloaded soleus muscles, however, the fatigability of high-frequency tetanic contraction increased after one week of unloading. The maximal isometric tension of intermittent tetanic contraction at optimal stimulating frequency did not alter in 1- and 2-week unloaded soleus, but significantly decreased in 4-week unloaded soleus. The 1-week unloaded soleus, but not extensor digitorum longus (EDL), was more susceptible to fatigue during intermittent tetanic contraction than the synchronous controls. The changes in K+ channel characteristics may increase the fatigability during high-frequency tetanic contraction in atrophic soleus muscles. High fatigability of intermittent tetanic contraction may be involved in enhanced activity of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) and switching from slow to fast isoform of myosin heavy chain, tropomyosin, troponin I and T subunit in atrophic soleus muscles. Unloaded soleus muscle also showed a decreased protein level of neuronal nitric oxide synthase (nNOS), and the reduction in nNOS-derived NO increased frequency of calcium sparks and elevated

  16. Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats

    Science.gov (United States)

    Ramaswamy, Krishnan S; Palmer, Mark L; van der Meulen, Jack H; Renoux, Abigail; Kostrominova, Tatiana Y; Michele, Daniel E; Faulkner, John A

    2011-01-01

    The dystrophin–glycoprotein complex (DGC) provides an essential link from the muscle fibre cytoskeleton to the extracellular matrix. In dystrophic humans and mdx mice, mutations in the dystrophin gene disrupt the structure of the DGC causing severe damage to muscle fibres. In frog muscles, transmission of force laterally from an activated fibre to the muscle surface occurs without attenuation, but lateral transmission of force has not been demonstrated in mammalian muscles. A unique ‘yoke’ apparatus was developed that attached to the epimysium of muscles midway between the tendons and enabled the measurement of lateral force. We now report that in muscles of young wild-type (WT) mice and rats, compared over a wide range of longitudinal forces, forces transmitted laterally showed little or no decrement. In contrast, for muscles of mdx mice and very old rats, forces transmitted laterally were impaired severely. Muscles of both mdx mice and very old rats showed major reductions in the expression of dystrophin. We conclude that during contractions, forces developed by skeletal muscles of young WT mice and rats are transmitted laterally from fibre to fibre through the DGC without decrement. In contrast, in muscles of dystrophic or very old animals, disruptions in DGC structure and function impair lateral transmission of force causing instability and increased susceptibility of fibres to contraction-induced injury. PMID:21224224

  17. Attenuated fatigue in slow twitch skeletal muscle during isotonic exercise in rats with chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Morten Munkvik

    Full Text Available During isometric contractions, slow twitch soleus muscles (SOL from rats with chronic heart failure (chf are more fatigable than those of sham animals. However, a muscle normally shortens during activity and fatigue development is highly task dependent. Therefore, we examined the development of skeletal muscle fatigue during shortening (isotonic contractions in chf and sham-operated rats. Six weeks following coronary artery ligation, infarcted animals were classified as failing (chf if left ventricle end diastolic pressure was >15 mmHg. During isoflurane anaesthesia, SOL with intact blood supply was stimulated (1s on 1s off at 30 Hz for 15 min and allowed to shorten isotonically against a constant afterload. Muscle temperature was maintained at 37°C. In resting muscle, maximum isometric force (F(max and the concentrations of ATP and CrP were not different in the two groups. During stimulation, F(max and the concentrations declined in parallel sham and chf. Fatigue, which was evident as reduced shortening during stimulation, was also not different in the two groups. The isometric force decline was fitted to a bi-exponential decay equation. Both time constants increased transiently and returned to initial values after approximately 200 s of the fatigue protocol. This resulted in a transient rise in baseline tension between stimulations, although this effect which was less prominent in chf than sham. Myosin light chain 2s phosphorylation declined in both groups after 100 s of isotonic contractions, and remained at this level throughout 15 min of stimulation. In spite of higher energy demand during isotonic than isometric contractions, both shortening capacity and rate of isometric force decline were as well or better preserved in fatigued SOL from chf rats than in sham. This observation is in striking contrast to previous reports which have employed isometric contractions to induce fatigue.

  18. Skeletal muscle contraction in protecting joints and bones by absorbing mechanical impacts

    Science.gov (United States)

    Rudenko, O. V.; Tsyuryupa, S.; Sarvazyan, A.

    2016-09-01

    We have previously hypothesized that the dissipation of mechanical energy of external impact is a fundamental function of skeletal muscle in addition to its primary function to convert chemical energy into mechanical energy. In this paper, a mathematical justification of this hypothesis is presented. First, a simple mechanical model, in which the muscle is considered as a simple Hookean spring, is considered. This analysis serves as an introduction to the consideration of a biomechanical model taking into account the molecular mechanism of muscle contraction, kinetics of myosin bridges, sarcomere dynamics, and tension of muscle fibers. It is shown that a muscle behaves like a nonlinear and adaptive spring tempering the force of impact and increasing the duration of the collision. The temporal profiles of muscle reaction to the impact as functions of the levels of muscle contraction, durations of the impact front, and the time constants of myosin bridges closing, are obtained. The absorption of mechanical shock energy is achieved due to the increased viscoelasticity of the contracting skeletal muscle. Controlling the contraction level allows for the optimization of the stiffness and viscosity of the muscle necessary for the protection of the joints and bones.

  19. The effect of temperature on eccentric contraction-induced isometric force loss in isolated perfused rat medial gastrocnemius muscle

    Directory of Open Access Journals (Sweden)

    Vasaghi Gharamaleki B

    2008-09-01

    Full Text Available "nBackground: The typical features of eccentric exercise-induced muscle damage are delayed-onset muscle soreness (DOMS and prolonged loss of muscle strength. It has been shown that passive warmth is effective in reducing muscle injury. Due to the interaction of different systems in vivo, we used isolated perfused medial gastrocnemius skeletal muscle to study the direct effect of temperature on the eccentric contraction-induced force loss. "nMethods: After femoral artery cannulation of a rat, the left medial gastrocnemius muscle was separated and then the entire lower limb was transferred into a prewarmed (35oC chamber. With the chamber temperature at 31, 35 and 39oC before and during eccentric contraction. Isometric force loss was measured after 15 eccentric contractions (N=7-9. "nResults: Maximum contraction force reduction has been used as an index for eccentric contraction-induced force loss. In this study eccentric contraction caused a significant reduction in maximum isometric tension (p<0.01, but no significant difference was seen in isometric force loss at 31oC and 39oC compared with that at 35oC. "nConclusions: Our results suggest that temperature changes before or during eccentric contractions have no effect on eccentric contraction-induced force loss. "nKeywords: Isolated perfused muscle, skeletal muscle, eccentric contractions, isometric force, gastrocnemius muscle, temperature.

  20. Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury

    DEFF Research Database (Denmark)

    Mackey, Abigail Louise; Kjaer, Michael

    2017-01-01

    Human skeletal muscle has the potential to regenerate completely after injury induced under controlled experimental conditions. The events inside the myofibres as they undergo necrosis, followed closely by satellite cell mediated myogenesis, have been mapped in detail. Much less is known about...... against this however is the association between muscle matrix protein remodelling and protection against re-injury, which suggests that a (so far undefined) period of vulnerability to re-injury may exist during the remodelling phases. The role of individual muscle matrix components and their spatial...... interaction during adaptation to eccentric contractions is an unexplored field in human skeletal muscle and may provide insight into the optimal timing of rest vs. return to activity after muscle injury....

  1. Regenerated rat skeletal muscle after periodic contusions

    Directory of Open Access Journals (Sweden)

    V.B. Minamoto

    2001-11-01

    Full Text Available In the present study we evaluated the morphological aspect and changes in the area and incidence of muscle fiber types of long-term regenerated rat tibialis anterior (TA muscle previously submitted to periodic contusions. Animals received eight consecutive traumas: one trauma per week, for eight weeks, and were evaluated one (N = 8 and four (N = 9 months after the last contusion. Serial cross-sections were evaluated by toluidine blue staining, acid phosphatase and myosin ATPase reactions. The weight of injured muscles was decreased compared to the contralateral intact one (one month: 0.77 ± 0.15 vs 0.91 ± 0.09 g, P = 0.03; four months: 0.79 ± 0.14 vs 1.02 ± 0.07 g, P = 0.0007, respectively and showed abundant presence of split fibers and fibers with centralized nuclei, mainly in the deep portion. Damaged muscles presented a higher incidence of undifferentiated fibers when compared to the intact one (one month: 3.4 ± 2.1 vs 0.5 ± 0.3%, P = 0.006; four months: 2.3 ± 1.6 vs 0.3 ± 0.3%, P = 0.007, respectively. Injured TA evaluated one month later showed a decreased area of muscle fibers when compared to the intact one (P = 0.003. Thus, we conclude that: a muscle fibers were damaged mainly in the deep portion, probably because they were compressed against the tibia; b periodic contusions in the TA muscle did not change the percentage of type I and II muscle fibers; c periodically injured TA muscles took four months to reach a muscle fiber area similar to that of the intact muscle.

  2. Modulation effects of cordycepin on the skeletal muscle contraction of toad gastrocnemius muscle.

    Science.gov (United States)

    Yao, Li-Hua; Meng, Wei; Song, Rong-Feng; Xiong, Qiu-Ping; Sun, Wei; Luo, Zhi-Qiang; Yan, Wen-Wen; Li, Yu-Ping; Li, Xin-Ping; Li, Hai-Hang; Xiao, Peng

    2014-03-05

    Isolated toad gastrocnemius muscle is a typical skeletal muscle tissue that is frequently used to study the motor system because it is an important component of the motor system. This study investigates the effects of cordycepin on the skeletal muscle contractile function of isolated toad gastrocnemius muscles by electrical field stimulation. Results showed that cordycepin (20 mg/l to 100 mg/l) significantly decreased the contractile responses in a concentration-dependent manner. Cordycepin (50 mg/l) also produced a rightward shift of the contractile amplitude-stimulation intensity relationship, as indicated by the increases in the threshold stimulation intensity and the saturation stimulation intensity. However, the most notable result was that the maximum amplitude of the muscle contractile force was significantly increased under cordycepin application (122±3.4% of control). This result suggests that the skeletal muscle contractile function and muscle physical fitness to the external stimulation were improved by the decreased response sensitivity in the presence of cordycepin. Moreover, cordycepin also prevented the repetitive stimulation-induced decrease in muscle contractile force and increased the recovery amplitude and recovery ratio of muscle contraction. However, these anti-fatigue effects of cordycepin on muscle contraction during long-lasting muscle activity were absent in Ca2+-free medium or in the presence of all Ca2+ channels blocker (0.4 mM CdCl2). These results suggest that cordycepin can positively affect muscle performance and provide ergogenic and prophylactic benefits in decreasing skeletal muscle fatigue. The mechanisms involving excitation-coupled Ca2+ influxes are strongly recommended.

  3. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase

    DEFF Research Database (Denmark)

    Matthews, V B; Åström, Maj-Brit; Chan, M H S

    2009-01-01

    C12 skeletal muscle cells were electrically stimulated to mimic contraction. L6 myotubes and isolated rat extensor digitorum longus muscles were treated with BDNF and phosphorylation of the proteins AMP-activated protein kinase (AMPK) (Thr(172)) and acetyl coenzyme A carboxylase beta (ACCbeta) (Ser...... into the circulation. Bdnf mRNA and protein expression was increased in muscle cells that were electrically stimulated. BDNF increased phosphorylation of AMPK and ACCbeta and enhanced FAO both in vitro and ex vivo. The effect of BDNF on FAO was AMPK-dependent, since the increase in FAO was abrogated in cells infected......AIMS/HYPOTHESIS: Brain-derived neurotrophic factor (BDNF) is produced in skeletal muscle, but its functional significance is unknown. We aimed to determine the signalling processes and metabolic actions of BDNF. METHODS: We first examined whether exercise induced BDNF expression in humans. Next, C2...

  4. Endurance training increases the efficiency of rat skeletal muscle mitochondria.

    Science.gov (United States)

    Zoladz, Jerzy A; Koziel, Agnieszka; Woyda-Ploszczyca, Andrzej; Celichowski, Jan; Jarmuszkiewicz, Wieslawa

    2016-10-01

    Endurance training enhances mitochondrial oxidative capacity, but its effect on mitochondria functioning is poorly understood. In the present study, the influence of an 8-week endurance training on the bioenergetic functioning of rat skeletal muscle mitochondria under different assay temperatures (25, 35, and 42 °C) was investigated. The study was performed on 24 adult 4-month-old male Wistar rats, which were randomly assigned to either a treadmill training group (n = 12) or a sedentary control group (n = 12). In skeletal muscles, endurance training stimulated mitochondrial biogenesis and oxidative capacity. In isolated mitochondria, endurance training increased the phosphorylation rate and elevated levels of coenzyme Q. Moreover, a decrease in mitochondrial uncoupling, including uncoupling protein-mediated proton leak, was observed after training, which could explain the increased reactive oxygen species production (in nonphosphorylating mitochondria) and enhanced oxidative phosphorylation efficiency. At all studied temperatures, endurance training significantly augmented H2O2 production (and coenzyme Q reduction level) in nonphosphorylating mitochondria and decreased H2O2 production (and coenzyme Q reduction level) in phosphorylating mitochondria. Endurance training magnified the hyperthermia-induced increase in oxidative capacity and attenuated the hyperthermia-induced decline in oxidative phosphorylation efficiency and reactive oxygen species formation of nonphosphorylating mitochondria via proton leak enhancement. Thus, endurance training induces both quantitative and qualitative changes in muscle mitochondria that are important for cell signaling as well as for maintaining muscle energy homeostasis, especially at high temperatures.

  5. Modeling force-velocity relation in skeletal muscle isotonic contraction using an artificial neural network.

    Science.gov (United States)

    Dariani, Sharareh; Keshavarz, Mansoor; Parviz, Mohsen; Raoufy, Mohammad Reza; Gharibzadeh, Shahriar

    2007-01-01

    The aim of this study is to design an artificial neural network (ANN) to model force-velocity relation in skeletal muscle isotonic contraction. We obtained the data set, including physiological and morphometric parameters, by myography and morphometric measurements on frog gastrocnemius muscle. Then, we designed a multilayer perceptron ANN, the inputs of which are muscle volume, muscle optimum length, tendon length, preload, and afterload. The output of the ANN is contraction velocity. The experimental data were divided randomly into two parts. The first part was used to train the ANN. In order to validate the model, the second part of experimental data, which was not used in training, was employed to the ANN and then, its output was compared with Hill model and the experimental data. The behavior of ANN in high forces was more similar to experimental data, but in low forces the Hill model had better results. Furthermore, extrapolation of ANN performance showed that our model is more or less able to simulate eccentric contraction. Our results indicate that ANNs represent a powerful tool to capture some essential features of muscle isotonic contraction.

  6. Cholesterol Removal from Adult Skeletal Muscle impairs Excitation-Contraction Coupling and Aging reduces Caveolin-3 and alters the Expression of other Triadic Proteins

    Directory of Open Access Journals (Sweden)

    Genaro eBarrientos

    2015-04-01

    Full Text Available Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation-contraction coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not sarcoplasmic reticulum membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX activity and protein content of NOX2 subunits (p47phox and gp91phox, implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs excitation-contraction coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged

  7. Energy conservation attenuates the loss of skeletal muscle excitability during intense contractions

    DEFF Research Database (Denmark)

    Macdonald, W A; Ørtenblad, N; Nielsen, Ole Bækgaard

    2007-01-01

    changes in muscle metabolites. However, the role of metabolites in the loss of muscle excitability is not clear. The metabolic state of isolated rat extensor digitorum longus muscles at 30 degrees C was manipulated by decreasing energy expenditure and thereby allowed investigation of the effects of energy...... conservation on skeletal muscle excitability. Muscle ATP utilization was reduced using a combination of the cross-bridge cycling blocker N-benzyl-p-toluene sulfonamide (BTS) and the SR Ca2+ release channel blocker Na-dantrolene, which reduce activity of the myosin ATPase and SR Ca2+-ATPase. Compared...

  8. Non–Ca2+-conducting Ca2+ channels in fish skeletal muscle excitation-contraction coupling

    Science.gov (United States)

    Schredelseker, Johann; Shrivastav, Manisha; Dayal, Anamika; Grabner, Manfred

    2010-01-01

    During skeletal muscle excitation-contraction (EC) coupling, membrane depolarizations activate the sarcolemmal voltage-gated L-type Ca2+ channel (CaV1.1). CaV1.1 in turn triggers opening of the sarcoplasmic Ca2+ release channel (RyR1) via interchannel protein–protein interaction to release Ca2+ for myofibril contraction. Simultaneously to this EC coupling process, a small and slowly activating Ca2+ inward current through CaV1.1 is found in mammalian skeletal myotubes. The role of this Ca2+ influx, which is not immediately required for EC coupling, is still enigmatic. Interestingly, whole-cell patch clamp experiments on freshly dissociated skeletal muscle myotubes from zebrafish larvae revealed the lack of such Ca2+ currents. We identified two distinct isoforms of the pore-forming CaV1.1α1S subunit in zebrafish that are differentially expressed in superficial slow and deep fast musculature. Both do not conduct Ca2+ but merely act as voltage sensors to trigger opening of two likewise tissue-specific isoforms of RyR1. We further show that non-Ca2+ conductivity of both CaV1.1α1S isoforms is a common trait of all higher teleosts. This non-Ca2+ conductivity of CaV1.1 positions teleosts at the most-derived position of an evolutionary trajectory. Though EC coupling in early chordate muscles is activated by the influx of extracellular Ca2+, it evolved toward CaV1.1-RyR1 protein–protein interaction with a relatively small and slow influx of external Ca2+ in tetrapods. Finally, the CaV1.1 Ca2+ influx was completely eliminated in higher teleost fishes. PMID:20212109

  9. Skeletal muscle excitation-contraction coupling: who are the dancing partners?

    Science.gov (United States)

    Rebbeck, Robyn T; Karunasekara, Yamuna; Board, Philip G; Beard, Nicole A; Casarotto, Marco G; Dulhunty, Angela F

    2014-03-01

    There is an overwhelming body of work supporting the idea that excitation-contraction coupling in skeletal muscle depends on a physical interaction between the skeletal muscle isoform of the dihydropyridine receptor L-type Ca(2+) channel and the skeletal isoform of the ryanodine receptor Ca(2+) release channel. A general assumption is that this physical interaction is between "critical" residues that have been identified in the II-III loop of the dihydropyridine receptor alpha subunit and the ryanodine receptor. However, despite extensive searches, the complementary "critical" residues in the ryanodine receptor have not been identified. This raises the possibility that the coupling proceeds either through other subunits of the dihydropyridine receptor and/or other co-proteins within the large RyR1 protein complex. There have been some remarkable advances in recent years in identifying proteins in the RyR complex that impact on the coupling process, and these are considered in this review. A major candidate for a role in the coupling mechanism is the beta subunit of the dihydropyridine receptor, because specific residues in both the beta subunit and ryanodine receptor have been identified that facilitate an interaction between the two proteins and these also impact on excitation-contraction coupling. This role of beta subunit remains to be fully investigated as well as the degree to which it may complement any other direct or indirect voltage-dependent coupling interactions between the DHPR alpha II-III loop and the ryanodine receptor. Copyright © 2014. Published by Elsevier Ltd.

  10. L-carnitine pretreatment protects slow-twitch skeletal muscles in a rat model of ischemia-reperfusion injury.

    Science.gov (United States)

    Demirel, Mert; Kaya, Burak; Cerkez, Cem; Ertunc, Mert; Sara, Yildirim

    2013-10-01

    Ischemia-reperfusion (I/R) injury negatively affects the outcome of surgical interventions for amputated or severely traumatized extremities. This study aimed to evaluate the protective role of l-carnitine on the contractile properties of fast-twitch (extensor digitorum longus [EDL]) and slow-twitch (soleus [SOL]) skeletal muscles following I/R-induced injury in a rat model. Rats were divided into 4 groups (1) saline pretreatment, (2) l-carnitine pretreatment, (3) saline pretreatment and I/R, and (4) l-carnitine pretreatment and I/R. Twitch and tetanic contractions in the EDL and SOL muscles in each group were recorded. Additionally, a fatigue protocol was performed in these muscles. Twitch and tetanic contraction amplitudes were lower in the EDL and SOL muscles in which I/R was induced (P muscles following I/R (P muscles. l-Carnitine pretreatment did not alter the fatigue response in any of the muscles.

  11. NO-sGC Pathway Modulates Ca2+ Release and Muscle Contraction in Zebrafish Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Zhou Xiyuan

    2017-08-01

    Full Text Available Vertebrate skeletal muscle contraction and relaxation is a complex process that depends on Ca2+ ions to promote the interaction of actin and myosin. This process can be modulated by nitric oxide (NO, a gas molecule synthesized endogenously by (nitric oxide synthase NOS isoforms. At nanomolar concentrations NO activates soluble guanylate cyclase (sGC, which in turn activates protein kinase G via conversion of GTP into cyclic GMP. Alternatively, NO post-translationally modifies proteins via S-nitrosylation of the thiol group of cysteine. However, the mechanisms of action of NO on Ca2+ homeostasis during muscle contraction are not fully understood and we hypothesize that NO exerts its effects on Ca2+ homeostasis in skeletal muscles mainly through negative modulation of Ca2+ release and Ca2+ uptake via the NO-sGC-PKG pathway. To address this, we used 5–7 days-post fecundation-larvae of zebrafish, a well-established animal model for physiological and pathophysiological muscle activity. We evaluated the response of muscle contraction and Ca2+ transients in presence of SNAP, a NO-donor, or L-NAME, an unspecific NOS blocker in combination with specific blockers of key proteins of Ca2+ homeostasis. We also evaluate the expression of NOS in combination with dihydropteridine receptor, ryanodine receptor and sarco/endoplasmic reticulum Ca2+ ATPase. We concluded that endogenous NO reduced force production through negative modulation of Ca2+ transients via the NO-sGC pathway. This effect could be reversed using an unspecific NOS blocker or sGC blocker.

  12. Capsiate supplementation reduces oxidative cost of contraction in exercising mouse skeletal muscle in vivo.

    Directory of Open Access Journals (Sweden)

    Kazuya Yashiro

    Full Text Available Chronic administration of capsiate is known to accelerate whole-body basal energy metabolism, but the consequences in exercising skeletal muscle remain very poorly documented. In order to clarify this issue, the effect of 2-week daily administration of either vehicle (control or purified capsiate (at 10- or 100-mg/kg body weight on skeletal muscle function and energetics were investigated throughout a multidisciplinary approach combining in vivo and in vitro measurements in mice. Mechanical performance and energy metabolism were assessed strictly non-invasively in contracting gastrocnemius muscle using magnetic resonance (MR imaging and 31-phosphorus MR spectroscopy (31P-MRS. Regardless of the dose, capsiate treatments markedly disturbed basal bioenergetics in vivo including intracellular pH alkalosis and decreased phosphocreatine content. Besides, capsiate administration did affect neither mitochondrial uncoupling protein-3 gene expression nor both basal and maximal oxygen consumption in isolated saponin-permeabilized fibers, but decreased by about twofold the Km of mitochondrial respiration for ADP. During a standardized in vivo fatiguing protocol (6-min of repeated maximal isometric contractions electrically induced at a frequency of 1.7 Hz, both capsiate treatments reduced oxidative cost of contraction by 30-40%, whereas force-generating capacity and fatigability were not changed. Moreover, the rate of phosphocreatine resynthesis during the post-electrostimulation recovery period remained unaffected by capsiate. Both capsiate treatments further promoted muscle mass gain, and the higher dose also reduced body weight gain and abdominal fat content. These findings demonstrate that, in addition to its anti-obesity effect, capsiate supplementation improves oxidative metabolism in exercising muscle, which strengthen this compound as a natural compound for improving health.

  13. Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport in rat muscle

    DEFF Research Database (Denmark)

    Ai, Hua; Ihlemann, Jacob; Hellsten, Ylva

    2002-01-01

    AMP-activated protein kinase (AMPK) may mediate the stimulatory effect of contraction and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) on glucose transport in skeletal muscle. In muscles with different fiber type composition from fasted rats, AICAR increased 2-deoxyglucose transport......)- and alpha(2)-isoforms of AMPK. Expression of both isoforms varied with fiber types, and alpha(2) was highly expressed in nuclei. In conclusion, AICAR-stimulated glucose transport varies with muscle fiber type and nutritional state. AMPK is unlikely to be the sole mediator of contraction-stimulated glucose...... and total AMPK activity approximately twofold in epitrochlearis (EPI), less in flexor digitorum brevis, and not at all in soleus muscles. Contraction increased both transport and AMPK activity more than AICAR did. In EPI muscles, the effects of AICAR and contractions on glucose transport were partially...

  14. Classical and adaptive control of ex vivo skeletal muscle contractions using Functional Electrical Stimulation (FES.

    Directory of Open Access Journals (Sweden)

    Paola Jaramillo Cienfuegos

    Full Text Available Functional Electrical Stimulation is a promising approach to treat patients by stimulating the peripheral nerves and their corresponding motor neurons using electrical current. This technique helps maintain muscle mass and promote blood flow in the absence of a functioning nervous system. The goal of this work is to control muscle contractions from FES via three different algorithms and assess the most appropriate controller providing effective stimulation of the muscle. An open-loop system and a closed-loop system with three types of model-free feedback controllers were assessed for tracking control of skeletal muscle contractions: a Proportional-Integral (PI controller, a Model Reference Adaptive Control algorithm, and an Adaptive Augmented PI system. Furthermore, a mathematical model of a muscle-mass-spring system was implemented in simulation to test the open-loop case and closed-loop controllers. These simulations were carried out and then validated through experiments ex vivo. The experiments included muscle contractions following four distinct trajectories: a step, sine, ramp, and square wave. Overall, the closed-loop controllers followed the stimulation trajectories set for all the simulated and tested muscles. When comparing the experimental outcomes of each controller, we concluded that the Adaptive Augmented PI algorithm provided the best closed-loop performance for speed of convergence and disturbance rejection.

  15. A 3D skeletal muscle model coupled with active contraction of muscle fibres and hyperelastic behaviour.

    Science.gov (United States)

    Tang, C Y; Zhang, G; Tsui, C P

    2009-05-11

    This paper presents a three-dimensional finite element model of skeletal muscle which was developed to simulate active and passive non-linear mechanical behaviours of the muscle during lengthening or shortening under either quasi-static or dynamic condition. Constitutive relation of the muscle was determined by using a strain energy approach, while active contraction behaviour of the muscle fibre was simulated by establishing a numerical algorithm based on the concept of the Hill's three-element muscle model. The proposed numerical algorithm could be used to predict concentric, eccentric, isometric and isotonic contraction behaviours of the muscle. The proposed numerical algorithm and constitutive model for the muscle were derived and implemented into a non-linear large deformation finite element programme ABAQUS by using user-defined material subroutines. A number of scenarios have been used to demonstrate capability of the model for simulating both quasi-static and dynamic response of the muscle. Validation of the proposed model has been performed by comparing the simulated results with the experimental ones of frog gastrocenemius muscle deformation. The effects of the fusiform muscle geometry and fibre orientation on the stress and fibre stretch distributions of frog muscle during isotonic contraction have also been investigated by using the proposed model. The predictability of the present model for dynamic response of the muscle has been demonstrated by simulating the extension of a squid tentacle during a strike to catch prey.

  16. Effect of PDE5 inhibition on the modulation of sympathetic α-adrenergic vasoconstriction in contracting skeletal muscle of young and older recreationally active humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Piil, Peter Bergmann; Egelund, Jon

    2015-01-01

    Aging is associated with an altered regulation of blood flow to contracting skeletal muscle; however, the precise mechanisms remain unclear. We recently demonstrated that inhibition of cGMP-binding phosphodiesterase 5 (PDE5) increased blood flow to contracting skeletal muscle of older but not you...

  17. Detection of CAIII mRNA in rat skeletal muscle and liver by in situ hybridization

    NARCIS (Netherlands)

    Kelly, C. D.; Carter, N. D.; de Boer, P.; Jeffery, S.; Moorman, A. F.; Smith, A.

    1991-01-01

    We carried out a variety of in situ methods of hybridization on rat liver and rat skeletal muscle using 35S-labeled or biotin-labeled rat carbonic anhydrase III (CAIII) cDNA clone. The methods were compared and evaluated. Use of the biotin system produced defined but nonspecific results which were

  18. Inefficient functional sympatholysis is an overlooked cause of malperfusion in contracting skeletal muscle

    DEFF Research Database (Denmark)

    Saltin, Bengt; Mortensen, Stefan P

    2012-01-01

    sympatholysis and muscle blood flow are impaired compared to young men, but regular physical activity can prevent these age related impairments. In young subjects, two weeks of leg immobilization causes a reduced ability for functional sympatholysis, whereas the trained leg maintained this function. Patients......Contracting skeletal muscle can overcome sympathetic vasoconstrictor activity (functional sympatholysis), which allows for a blood supply that matches the metabolic demand. This ability is thought to be mediated by locally released substances that modulate the effect of noradrenaline (NA) on the α......-receptor. Tyramine induces local NA release and can be used in humans to investigate the underlying mechanisms and physiological importance of functional sympatholysis in the muscles of healthy and diseased individuals as well as the impact of the active muscles' training status. In sedentary elderly men, functional...

  19. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis

    Directory of Open Access Journals (Sweden)

    Fry Christopher S

    2011-03-01

    Full Text Available Abstract Background Sarcopenia, the loss of skeletal muscle mass during aging, increases the risk for falls and dependency. Resistance exercise (RE training is an effective treatment to improve muscle mass and strength in older adults, but aging is associated with a smaller amount of training-induced hypertrophy. This may be due in part to an inability to stimulate muscle-protein synthesis (MPS after an acute bout of RE. We hypothesized that older adults would have impaired mammalian target of rapamycin complex (mTORC1 signaling and MPS response compared with young adults after acute RE. Methods We measured intracellular signaling and MPS in 16 older (mean 70 ± 2 years and 16 younger (27 ± 2 years subjects. Muscle biopsies were sampled at baseline and at 3, 6 and 24 hr after exercise. Phosphorylation of regulatory signaling proteins and MPS were determined on successive muscle biopsies by immunoblotting and stable isotopic tracer techniques, respectively. Results Increased phosphorylation was seen only in the younger group (PP >0.05. After exercise, MPS increased from baseline only in the younger group (PP 0.05. Conclusions We conclude that aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. These age-related differences may contribute to the blunted hypertrophic response seen after resistance-exercise training in older adults, and highlight the mTORC1 pathway as a key therapeutic target to prevent sarcopenia.

  20. Excitation-contraction coupling and mechano-sensitivity in denervated skeletal muscles

    Directory of Open Access Journals (Sweden)

    Fabio Francini

    2010-09-01

    Full Text Available Skeletal muscle atrophy can be defined as a wasting or decrease in muscle mass and muscle force generation owing lack of use, ageing, injury or disease. Thus, the etiology of atrophy can be different. Atrophy in denervated muscle is a consequence of two factors: 1 the complete lack of motoneuron activity inducing the deficiency of neurotransmitter release and 2 the muscles disuse. The balance of the muscular functions depends on extra- and intra-muscular signals. In the balance are involved the excitation-contraction coupling (ECC, local growth factors, Ca2+-dependent and independent intracellular signals, mechano-sensitivity and mechano-transduction that activate Ca2+-dependent signaling proteins and cytoskeleton- nucleus pathways to the nucleus, that regulate the gene expression. Moreover, retrograde signal from intracellular compartments and cytoskeleton to the sarcolemma are additional factors that regulate the muscle function. Proteolytic systems that operate in atrophic muscles progressively reduce the muscle protein content and so the sarcolemma, ECC and the force generation. In this review we will focus on the more relevant changes of the sarcolemma, excitation-contraction coupling, ECC and mechano-transduction evaluated by electrophysiological methods and observed from early- to long-term denervated skeletal muscles. This review put in particular evidence that long-term denervated muscle maintain a sub-population of fibers with ECC and contractile machinery able to be activated, albeit in lesser amounts, by electrical and mechanical stimulation. Accordingly, this provides a potential molecular explanation of the muscle recovery that occurs in response to rehabilitation strategy as transcutaneous electrical stimulation and passive stretching of denervated muscles, which wre developed as a result of empirical clinical observations.

  1. Knockout of the predominant conventional PKC isoform, PKCalpha, in mouse skeletal muscle does not affect contraction-stimulated glucose uptake

    DEFF Research Database (Denmark)

    Jensen, Thomas E; Maarbjerg, Stine J; Rose, Adam J

    2009-01-01

    -induced glucose uptake were similar in muscles lacking PKCalpha and in the wild type. It can be concluded that PKCalpha, representing approximately 97% of cPKC in skeletal muscle, is not required for contraction-stimulated glucose uptake. Thus the effect of the PKC blockers on glucose uptake is either nonspecific...

  2. Effect of atrophy and contractions on myogenin mRNA concentration in chick and rat myoblast omega muscle cells

    Science.gov (United States)

    Krebs, J. M.; Denney, R. M.

    1997-01-01

    The skeletal rat myoblast omega (RMo) cell line forms myotubes that exhibit spontaneous contractions under appropriate conditions in culture. We examined if the RMo cells would provide a model for studying atrophy and muscle contraction. To better understand how to obtain contractile cultures, we examined levels of contraction under different growing conditions. The proliferation medium and density of plating affected the subsequent proportion of spontaneously contracting myotubes. Using a ribonuclease protection assay, we found that exponentially growing RMo myoblasts contained no detectable myogenin or herculin mRNA, while differentiating myoblasts contained high levels of myogenin mRNA but no herculin mRNA. There was no increase in myogenin mRNA concentration in either primary chick or RMo myotubes whose contractions were inhibited by depolarizing concentrations of potassium (K+). Thus, altered myogenin mRNA concentrations are not involved in atrophy of chick myotubes. Depolarizing concentrations of potassium inhibited spontaneous contractions in both RMo cultures and primary chick myotube cultures. However, we found that the myosin concentration of 6-d-old contracting RMo cells fed medium plus AraC was 11 +/- 3 micrograms myosin/microgram DNA, not significantly different from 12 +/- 4 micrograms myosin/microgram DNA (n = 3), the myosin concentration of noncontracting RMo cells (treated with 12 mM K+ for 6 d). Resolving how RMo cells maintained their myosin content when contraction is inhibited may be important for understanding atrophy.

  3. Effects of cyclosporin-a on rat skeletal biomechanical properties

    Directory of Open Access Journals (Sweden)

    Wang Junfei

    2011-10-01

    Full Text Available Abstract Background Cyclosprin A (CsA has been widely used clinically to treat the patients who have undergone organ transplantation or acquired autoimmune disease. The purpose of this study is to determine the effects of three different doses of CsA (1.5, 7.5, 15 mg/kg body weight on the skeletal biomechanical proprieties at different anatomic sites in rats. Methods Fifty-six male 3-month-old Wistar rats were divided into five groups. Eight rats were randomly chosen as the basal group, while the others were randomly distributed into four groups of 12 animals each. One group was used as controls and received daily subcutaneous injection of 1 ml of saline solution; another three experimental groups were injected subcutaneously with CsA in a daily dose of 1.5, 7.5, and 15 mg/kg body weight respectively for 60 days. The bone biomechanical proprieties, the bone mineral density, as well as the trabecular bone architecture were measured at different anatomic sites, i.e. the lumbar vertebra, the middle femur shaft, and the proximal femur. Results CsA therapy at 7.5 and 1.5 mg/kg can significantly reduce the ultimate force, the ultimate stress and the energy absorption per unit of bone volume of the lumbar vertebra, with no effect on the middle femur. CsA therapy at 7.5 mg/kg can significantly reduce the ultimate force, the ultimate stress and the Young's modulus of the femoral neck, but not CsA at 1.5 mg/kg. Furthermore, CsA therapy at 7.5 and 1.5 mg/kg can significantly reduce the bone mineral density of the lumber vertebra and the proximal femur, but have no effect on the middle femur. CsA therapy at 7.5 and 1.5 mg/kg can also significantly reduce the bone volume fraction of the proximal tibia and the lumber vertebra, but has no effect on the cortical thickness of the middle femoral shaft. In the 15 mg/kg CsA group only one rat survived, and the kidney and liver histology of the survived rat showed extensive tissue necrosis. Conclusion Long-term use

  4. Cultured myotubes from skeletal muscle of adult rats. Characterization and action of Anemonia sulcata toxin II.

    Science.gov (United States)

    Tesseraux, I; Gülden, M; Wassermann, O

    1987-08-01

    Mononucleated myogenic cells (satellite cells) were isolated from skeletal muscle of adult rats and grown in culture. These cells replicated and, beginning with the 6th day in culture, they fused and differentiated into multinucleated myotubes, which accumulated creatine kinase and developed cross striation and spontaneous contractions. The differentiation of the excitable membrane and the action of sea anemone toxin ATX II were investigated with microelectrode techniques. Mature myotubes reached a stable membrane potential of -47.3 mV (+/- 6.5 mV) with the 11th day in culture. Action potentials could be generated in all myotubes. During maturation they became faster (increasing rate of rise) and shorter in duration. In spontaneously contracting myotubes spontaneous action potentials were recorded, which were often associated with subthreshold oscillations of membrane potential. ATX II reduced the membrane potential and prolonged the action potential duration with the lowest effective concentrations being 1 nmol/l and 0.5 nmol/l, respectively. Furthermore, ATX II induced electrical activity in quiescent myotubes. After fusion the development of the membrane electrical properties of satellite cell derived muscle cells followed essentially the same pattern as in primary cultures of embryonic myotubes. Electrophysiologically and with respect to their sensitivity to ATX II the mature myotubes resemble denervated muscle fibres.

  5. 18F-fluorodeoxyglucose and PET/CT for noninvasive study of exercise-induced glucose uptake in rat skeletal muscle and tendon

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Kjaer, Michael; El-Ali, Henrik

    2009-01-01

    PURPOSE: To investigate exercise-related glucose uptake in rat muscle and tendon using PET/CT and to study possible explanatory changes in gene expression for the glucose transporters (GLUT1 and GLUT4). METHODS: The sciatic nerve in eight Wistar rats was subjected to electrostimulation to cause...... rats were cut out and scanned separately (distance>or=1 cm). RESULTS: Muscle contractions increased glucose uptake approximately sevenfold in muscles (pglucose uptake in intact animals. GLUT1 and GLUT4 were expressed...... in both skeletal muscle and tendon, but no changes in mRNA levels could be detected. CONCLUSION: PET/CT can be used for studying glucose uptake in rat muscle and tendon in relation to muscle contractions; however, the increased uptake of glucose was not explained by changes in gene expression of GLUT1...

  6. Clonal derivation of a rat muscle cell strain that forms contraction-competent myotubes.

    Science.gov (United States)

    Merrill, G F

    1989-05-01

    A muscle cell strain capable of forming contracting myotubes was isolated from an established rat embryo cell line. The myogenic cells, termed rat myoblast omega or RMo cells, have a diploid complement of chromosomes (n = 42). In the presence of mitogen-containing growth medium, RMo cells proliferated with a cell generation time of about 12 hours. In mitogen-depleted medium, RMo cells withdrew from the cell cycle and formed myotubes that spontaneously contracted. Differentiated RMo cells produced creatine kinase isozymes in a ratio characteristic of skeletal muscle cells. RMo cells were easy to cultivate. Cells proliferated and differentiated equally well on gelatin-coated or noncoated culture dishes, at clonal or mass culture densities, and in all basal media tested. In most experiments, growth medium consisted of horse serum-containing medium supplemented with either chicken embryo extract or FGF activity; cells proliferated equally well in medium containing unsupplemented calf serum. RMo cells differentiated if growth medium was not replenished regularly. Alternatively, differentiation was induceable by incubation in mitogen-depleted medium consisting of basal medium supplemented either with 10(-6) M insulin, 0.5% serum, or 50% conditioned growth medium. RMo cells were competently transformed with cloned exogenous genes. Because it forms functional myofibrils, the RMo cell line constitutes a useful model system for studying the cell biology and biochemistry of proteins involved in contractile apparatus assembly and muscle disease.

  7. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding

    Directory of Open Access Journals (Sweden)

    Paula Bresciani M. De Andrade

    2015-09-01

    Full Text Available Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i higher expression of muscle deiodinase type 3 (DIO3 which inactivates tri-iodothyronine (T3, and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2, (ii slower net formation of T3 from its T4 precursor in muscles, and (iii accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development.We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. Energy-sparing effects persist during weight recovery and likely contribute to catch-up fat.

  8. Inhibition of AMPK expression in skeletal muscle by systemic inflammation in COPD rats.

    Science.gov (United States)

    Qi, Yong; Shang, Jun-yi; Ma, Li-jun; Sun, Bei-bei; Hu, Xin-gang; Liu, Bao; Zhang, Guo-jun

    2014-12-07

    Chronic obstructive pulmonary disease (COPD) is a disease characterized by airflow limitation and inflammation. Meanwhile, COPD also is associated with metabolic disorders, such as skeletal muscle weakness. Strikingly, activation of AMP-activated protein kinase (AMPK) exerts critical roles in energy metabolism. However, it remains unclear whether and how the expression levels of AMPK are affected in the COPD model rats which may lead to the dysfunction of the skeletal muscle in these rats. Here we developed a rat model of COPD, and we investigated the morphological changes of peripheral skeletal muscle and measured the levels of tumor necrosis factor -α (TNF-α) and AMPK in skeletal muscle by using approaches that include immunohistochemistry and polymerase chain reaction (PCR). We found that the expression levels of both AMPK mRNA and protein in skeletal muscles were significantly reduced in the COPD model rats, in comparison to those from the control rats, the COPD model rats that received treatments with AICAR and resveratrol, whereas the expression levels of TNF-α were elevated in COPD rats. Such findings indicate that AMPK may serve as a target for therapeutic intervention in the treatment of muscle weakness in COPD patients.

  9. Skeletal muscle contractions induce acute changes in cytosolic superoxide, but slower responses in mitochondrial superoxide and cellular hydrogen peroxide.

    Directory of Open Access Journals (Sweden)

    Timothy Pearson

    Full Text Available Skeletal muscle generation of reactive oxygen species (ROS is increased following contractile activity and these species interact with multiple signaling pathways to mediate adaptations to contractions. The sources and time course of the increase in ROS during contractions remain undefined. Confocal microscopy with specific fluorescent probes was used to compare the activities of superoxide in mitochondria and cytosol and the hydrogen peroxide content of the cytosol in isolated single mature skeletal muscle (flexor digitorum brevis fibers prior to, during, and after electrically stimulated contractions. Superoxide in mitochondria and cytoplasm were assessed using MitoSox red and dihydroethidium (DHE respectively. The product of superoxide with DHE, 2-hydroxyethidium (2-HE was acutely increased in the fiber cytosol by contractions, whereas hydroxy-MitoSox showed a slow cumulative increase. Inhibition of nitric oxide synthases increased the contraction-induced formation of hydroxy-MitoSox only with no effect on 2-HE formation. These data indicate that the acute increases in cytosolic superoxide induced by contractions are not derived from mitochondria. Data also indicate that, in muscle mitochondria, nitric oxide (NO reduces the availability of superoxide, but no effect of NO on cytosolic superoxide availability was detected. To determine the relationship of changes in superoxide to hydrogen peroxide, an alternative specific approach was used where fibers were transduced using an adeno-associated viral vector to express the hydrogen peroxide probe, HyPer within the cytoplasmic compartment. HyPer fluorescence was significantly increased in fibers following contractions, but surprisingly followed a relatively slow time course that did not appear directly related to cytosolic superoxide. These data demonstrate for the first time temporal and site specific differences in specific ROS that occur in skeletal muscle fibers during and after contractile

  10. Involvement of sarcoplasmic reticulum 'Ca2+ release channels' in excitation-contraction coupling in vertebrate skeletal muscle.

    Science.gov (United States)

    Brunder, D G; Györke, S; Dettbarn, C; Palade, P

    1992-01-01

    1. Pharmacological blockers of calcium-induced calcium release from isolated skeletal sarcoplasmic reticulum (SR) vesicles have been introduced into frog skeletal muscle fibres to determine their effects on excitation-contraction coupling. 2. Among the blockers tested, Ruthenium Red, neomycin, gentamicin and 9-aminoacridine inhibited the SR Ca2+ release associated with excitation-contraction (E-C) coupling as much as they inhibited caffeine potentiation of that release. Protamine, certain of its derivatives, and spermine were ineffective in both in situ tests. 3. Alternative sites of polyamine action on the contractile proteins, SR Ca2+ uptake or charge movements were ruled out. 4. All polyamines tested required considerably higher concentrations to inhibit excitation-contraction coupling than to block Ca2+ release from isolated SR vesicles. 5. The quantitative pharmacological difference in sensitivity between isolated and intact systems serves as a reminder that results on isolated systems cannot generally be used to predict results of the same substances on more physiological systems. 6. Since caffeine is known to open the SR 'Ca2+ release channels' (the ryanodine receptors that mediate Ca(2+)-induced Ca2+ release), the equal effectiveness of these blockers at inhibiting excitation-contraction (E-C) coupling and its potentiation by caffeine suggests that the SR 'Ca2+ release channels' are indeed involved in excitation-concentration coupling in skeletal muscle, although the results do not indicate how the channel is gated open during E-C coupling. PMID:1380087

  11. Leucine supplementation improves skeletal muscle regeneration after cryolesion in rats.

    Directory of Open Access Journals (Sweden)

    Marcelo G Pereira

    Full Text Available This study was undertaken in order to provide further insight into the role of leucine supplementation in the skeletal muscle regeneration process, focusing on myofiber size and strength recovery. Young (2-month-old rats were subjected or not to leucine supplementation (1.35 g/kg per day started 3 days prior to cryolesion. Then, soleus muscles were cryolesioned and continued receiving leucine supplementation until 1, 3 and 10 days later. Soleus muscles from leucine-supplemented animals displayed an increase in myofiber size and a reduction in collagen type III expression on post-cryolesion day 10. Leucine was also effective in reducing FOXO3a activation and ubiquitinated protein accumulation in muscles at post-cryolesion days 3 and 10. In addition, leucine supplementation minimized the cryolesion-induced decrease in tetanic strength and increase in fatigue in regenerating muscles at post-cryolesion day 10. These beneficial effects of leucine were not accompanied by activation of any elements of the phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin signalling pathway in the regenerating muscles. Our results show that leucine improves myofiber size gain and strength recovery in regenerating soleus muscles through attenuation of protein ubiquitination. In addition, leucine might have therapeutic effects for muscle recovery following injury and in some muscle diseases.

  12. Leucine Supplementation Improves Skeletal Muscle Regeneration after Cryolesion in Rats

    Science.gov (United States)

    Pereira, Marcelo G.; Baptista, Igor L.; Carlassara, Eduardo O. C.; Moriscot, Anselmo S.; Aoki, Marcelo S.; Miyabara, Elen H.

    2014-01-01

    This study was undertaken in order to provide further insight into the role of leucine supplementation in the skeletal muscle regeneration process, focusing on myofiber size and strength recovery. Young (2-month-old) rats were subjected or not to leucine supplementation (1.35 g/kg per day) started 3 days prior to cryolesion. Then, soleus muscles were cryolesioned and continued receiving leucine supplementation until 1, 3 and 10 days later. Soleus muscles from leucine-supplemented animals displayed an increase in myofiber size and a reduction in collagen type III expression on post-cryolesion day 10. Leucine was also effective in reducing FOXO3a activation and ubiquitinated protein accumulation in muscles at post-cryolesion days 3 and 10. In addition, leucine supplementation minimized the cryolesion-induced decrease in tetanic strength and increase in fatigue in regenerating muscles at post-cryolesion day 10. These beneficial effects of leucine were not accompanied by activation of any elements of the phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin signalling pathway in the regenerating muscles. Our results show that leucine improves myofiber size gain and strength recovery in regenerating soleus muscles through attenuation of protein ubiquitination. In addition, leucine might have therapeutic effects for muscle recovery following injury and in some muscle diseases. PMID:24416379

  13. Upregulation of heart PFK-2/FBPase-2 isozyme in skeletal muscle after persistent contraction.

    Science.gov (United States)

    Rovira, Jordi; Irimia, Jose Maria; Guerrero, Mario; Cadefau, Joan Aureli; Cussó, Roser

    2012-04-01

    Fructose-2,6-bisphosphate (Fru-2,6-P(2)) is the most potent allosteric activator of liver 6-phosphofructo-1-kinase enzyme, which is crucial for glycolysis. It is present in skeletal muscle but its importance is controversial as a regulator of muscle glycolysis. This study aims to determine the role of Fru-2,6-P(2) in the control of muscle glycolysis during contraction. Muscle contraction was produced by chronic low-frequency stimulation of rabbit tibialis anterior for 24 h, followed by a rest period of 48 h. To determine muscle glycolysis adaptation, we applied a short functional electrostimulation test using the same system of low-frequency stimulation for 1, 3, and 10 s. The variation in concentration of lactate and pyruvate was used to calculate the flux along the glycolysis pathway and the Fru-1,6-P(2)/Fru-6-P ratio permitted to analyze the 6-phosphofructo-1-kinase activation. Fru-2,6-P(2) levels increased over the 24 h of stimulation and remained elevated after the rest period, this being the only metabolite that kept the changes produced by chronic low-frequency stimulation during the rest. During the short functional electrostimulation test, the glycolytic pathway in stimulated and rested muscle was more active than in control muscle, which coincided with higher kinase activity of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) enzyme. Furthermore, we found a decrease in muscle, liver, and ubiquitous PFK-2/FBPase-2 isoform expression and an increase in heart isoform expression. For the first time, we demonstrate that a persistent increase in Fru-2,6-P(2) produced by a change in PFK-2/FBPase-2 isoform expression may play an important role in the regulation of muscle glycolysis during the first moments of exercise.

  14. Glucose metabolism in rats submitted to skeletal muscle denervation

    Directory of Open Access Journals (Sweden)

    Wilton Marlindo Santana Nunes

    2005-07-01

    Full Text Available This study analyzed the local and systemic effects of immobilization by denervation of the skeletal muscle on glucose metabolism. The rats were submitted to section of the right paw sciatic nerve. A reduction was observed in glucose uptake by the isolated soleus muscle of the denervated paw after 3 and 7 days, but not after 28 days in relation to the control animals. There was no difference after 3 and 7 days in glucose uptake by the soleus muscle of the opposite intact paw in relation to the control. There was increased glucose uptake in the same paw 28 days after denervation. The rate of glucose removal in response to exogenous insulin after 28 days of denervation was significantly higher than in control animals and those observed after 3 and 7 days of denervation. These results suggest that immobilization by denervation interfered not only in glucose metabolism in the skeletal muscle involved but also in other tissues.O estudo analisou os efeitos locais e sistêmicos da imobilização por desnervação do músculo esquelético sobre o metabolismo glicidico. Ratos foram submetidos à secção do nervo ciático da pata direita. Observou-se redução da captação de glicose pelo músculo sóleo isolado da pata desnervada após 3 e 7 mas não após 28 dias em relação a animais controle. Não houve diferença após 3 e 7 dias na captação de glicose pelo músculo sóleo da pata contralateral intacta em relação ao controle. Houve aumento da captação de glicose nesta mesma pata 28 dias após a desnervação. A taxa de remoção da glicose em resposta à insulina exógena após 28 dias de desnervação foi significantemente superior à do controle e àquelas observadas após 3 e 7 dias da desnervação. Esses resultados sugerem que a imobilização por desnervação interfere não só no metabolismo da glicose no músculo esquelético envolvido como também em outros tecidos.

  15. Human Skeletal Muscle Stem Cells in Adaptations to Exercise; Effects of Resistance Exercise Contraction Mode and Protein Supplementation

    DEFF Research Database (Denmark)

    Farup, Jean

    2014-01-01

    SUMMARY Human skeletal muscle has a remarkable capability of adapting to a change in demands. The preservation of this adaptability relies partly on a pool of resident myogenic stem cells (satellite cells, SCs). Extrinsic factors such as mechanical load (e.g. resistance exercise) and dietary...... protein constitute key factors in regulation of human skeletal muscle mass; however, the influence of divergent resistance exercise contraction modes and protein supplementation on SC content, is not well described. The overall aim of the present thesis was to investigate whether eccentric versus...... concentric resistance training and ingestion of protein influence myocellular adaptations, with special emphasis on muscle stem cell adaptations, during both acute and prolonged resistance exercise in human skeletal muscle. Paper I. Whey protein supplementation accelerates satellite cell proliferation during...

  16. AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Wojtaszewski, Jørgen; Richter, Erik

    2009-01-01

    . These include glucose uptake, glycogen synthesis, post-exercise insulin sensitivity, fatty acid (FA) uptake, intramuscular triacylglyceride hydrolysis, FA oxidation, suppression of protein synthesis, proteolysis, autophagy and transcriptional regulation of genes relevant to promoting an oxidative phenotype.......In skeletal muscle, the contraction-activated heterotrimeric 5'-AMP-activated protein kinase (AMPK) protein is proposed to regulate the balance between anabolic and catabolic processes by increasing substrate uptake and turnover in addition to regulating the transcription of proteins involved...

  17. Rem uncouples excitation–contraction coupling in adult skeletal muscle fibers

    Science.gov (United States)

    Beqollari, Donald; Romberg, Christin F.; Filipova, Dilyana; Meza, Ulises; Papadopoulos, Symeon

    2015-01-01

    In skeletal muscle, excitation–contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca2+ channel (CaV1.1) to be communicated to the type 1 ryanodine-sensitive Ca2+ release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein–protein interactions. Although the molecular mechanism that underlies conformational coupling between CaV1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α1S subunit of CaV1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β1a subunit of CaV1.1 is a conduit for this intermolecular communication. However, a direct role for β1a has been difficult to test because β1a serves two other functions that are prerequisite for conformational coupling between CaV1.1 and RYR1. Specifically, β1a promotes efficient membrane expression of CaV1.1 and facilitates the tetradic ultrastructural arrangement of CaV1.1 channels within plasma membrane–SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit–interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca2+ transients without greatly affecting CaV1.1 targeting, intramembrane gating charge movement, or releasable SR Ca2+ store content. In contrast, a β1a-binding–deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca2+ release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of CaV1.1 from RYR1-mediated SR Ca2+ release via its ability to interact with β1a. Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β1a subunit in skeletal-type EC coupling. PMID:26078055

  18. Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers.

    Science.gov (United States)

    Beqollari, Donald; Romberg, Christin F; Filipova, Dilyana; Meza, Ulises; Papadopoulos, Symeon; Bannister, Roger A

    2015-07-01

    In skeletal muscle, excitation-contraction (EC) coupling requires depolarization-induced conformational rearrangements in L-type Ca(2+) channel (Ca(V)1.1) to be communicated to the type 1 ryanodine-sensitive Ca(2+) release channel (RYR1) of the sarcoplasmic reticulum (SR) via transient protein-protein interactions. Although the molecular mechanism that underlies conformational coupling between Ca(V)1.1 and RYR1 has been investigated intensely for more than 25 years, the question of whether such signaling occurs via a direct interaction between the principal, voltage-sensing α(1S) subunit of Ca(V)1.1 and RYR1 or through an intermediary protein persists. A substantial body of evidence supports the idea that the auxiliary β(1a) subunit of Ca(V)1.1 is a conduit for this intermolecular communication. However, a direct role for β(1a) has been difficult to test because β(1a) serves two other functions that are prerequisite for conformational coupling between Ca(V)1.1 and RYR1. Specifically, β(1a) promotes efficient membrane expression of Ca(V)1.1 and facilitates the tetradic ultrastructural arrangement of Ca(V)1.1 channels within plasma membrane-SR junctions. In this paper, we demonstrate that overexpression of the RGK protein Rem, an established β subunit-interacting protein, in adult mouse flexor digitorum brevis fibers markedly reduces voltage-induced myoplasmic Ca(2+) transients without greatly affecting Ca(V)1.1 targeting, intramembrane gating charge movement, or releasable SR Ca(2+) store content. In contrast, a β(1a)-binding-deficient Rem triple mutant (R200A/L227A/H229A) has little effect on myoplasmic Ca(2+) release in response to membrane depolarization. Thus, Rem effectively uncouples the voltage sensors of Ca(V)1.1 from RYR1-mediated SR Ca(2+) release via its ability to interact with β(1a). Our findings reveal Rem-expressing adult muscle as an experimental system that may prove useful in the definition of the precise role of the β(1a) subunit in

  19. Gene Expression and Structural Skeletal Responses to Long-Duration Simulated Microgravity in Rats

    Science.gov (United States)

    Shirazi-Fard, Yasaman; Rael, Victoria E.; Torres, Samantha; Steczina, Sonette; Bryant, Sheenah; Tahimic, Candice; Globus, Ruth K.

    2017-01-01

    In this study, we aim to examine skeletal responses to simulated long-duration spaceflight (90 days) and weight-bearing recovery on bone loss using the ground-based hindlimb unloading (HU) model in adolescent (3-month old) male rats. We hypothesized that simulated microgravity leads to the temporal regulation of oxidative defense genes and pro-bone resorption factors, where there is a progression and eventual plateau; furthermore, early transient changes in these pathways precede skeletal adaptations.

  20. Glycaemia regulates the glucose transporter number in the plasma membrane of rat skeletal muscle.

    OpenAIRE

    Dimitrakoudis, D; Ramlal, T; Rastogi, S.; Vranic, M; Klip, A

    1992-01-01

    The number of glucose transporters was measured in isolated membranes from diabetic-rat skeletal muscle to determine the role of circulating blood glucose levels in the control of glucose uptake into skeletal muscle. Three experimental groups of animals were investigated in the post-absorptive state: normoglycaemic/normoinsulinaemic, hyperglycaemic/normoinsulinaemic and hyperglycaemic/normoinsulinaemic made normoglycaemic/normoinsulinaemic by phlorizin treatment. Hyperglycaemia caused a rever...

  1. Skeletal Muscle Sorbitol Levels in Diabetic Rats with and without Insulin Therapy and Endurance Exercise Training

    Directory of Open Access Journals (Sweden)

    O. A. Sánchez

    2009-01-01

    Full Text Available Sorbitol accumulation is postulated to play a role in skeletal muscle dysfunction associated with diabetes. The purpose of this study was to determine the effects of insulin and of endurance exercise on skeletal muscle sorbitol levels in streptozotocin-induced diabetic rats. Rats were assigned to one of five experimental groups (control sedentary, control exercise, diabetic sedentary, diabetic exercise, diabetic sedentary no-insulin. Diabetic rats received daily subcutaneous insulin. The exercise-trained rats ran on a treadmill (1 hour, 5X/wk, for 12 weeks. Skeletal muscle sorbitol levels were the highest in the diabetic sedentary no-insulin group. Diabetic sedentary rats receiving insulin had similar sorbitol levels to control sedentary rats. Endurance exercise did not significantly affect sorbitol levels. These results indicate that insulin treatment lowers sorbitol in skeletal muscle; therefore sorbitol accumulation is probably not related to muscle dysfunction in insulin-treated diabetic individuals. Endurance exercise did not influence intramuscular sorbitol values as strongly as insulin.

  2. Effects of drugs and ionic variations on contractions of rat smooth ...

    African Journals Online (AJOL)

    ... Rat Stomach Strip (RSS), and Rat Vas Deferens (RVD) using known Ca2+ channel and specific receptor blockers. Atropine and Phentolamine respectively blocked Ach and NA competitively. While effect on K+- induced contraction was unaffected. The Rat ileum and Rat Stomach Strip has more pool of intracellular Ca2+ ...

  3. Biomarker evaluation of skeletal muscle toxicity following clofibrate administration in rats.

    Science.gov (United States)

    Bodié, Karen; Buck, Wayne R; Pieh, Julia; Liguori, Michael J; Popp, Andreas

    2016-05-01

    The use of sensitive biomarkers to monitor skeletal muscle toxicity in preclinical toxicity studies is important for the risk assessment in humans during the development of a novel compound. Skeletal muscle toxicity in Sprague Dawley Rats was induced with clofibrate at different dose levels for 7 days to compare standard clinical pathology assays with novel skeletal muscle and cardiac muscle biomarkers, gene expression and histopathological changes. The standard clinical pathology assays aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatine kinase (CK) enzyme activity were compared to novel biomarkers fatty acid binding protein 3 (Fabp3), myosin light chain 3 (Myl3), muscular isoform of CK immunoreactivity (three isoforms CKBB, CKMM, CKMB), parvalbumin (Prv), skeletal troponin I (sTnI), cardiac troponin T (cTnT), cardiac troponin I (cTnI), CKMM, and myoglobin (Myo). The biomarker elevations were correlated to histopathological findings detected in several muscles and gene expression changes. Clofibrate predominantly induced skeletal muscle toxicity of type I fibers of low magnitude. Useful biomarkers for skeletal muscle toxicity were AST, Fabp3, Myl3, (CKMB) and sTnI. Measurements of CK enzyme activity by a standard clinical assay were not useful for monitoring clofibrate-induced skeletal muscle toxicity in the rat at the doses used in this study. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  4. Effect of electrical stimulation on beta-adrenergic receptor population and cyclic amp production in chicken and rat skeletal muscle cell cultures

    Science.gov (United States)

    Young, R. B.; Bridge, K. Y.; Strietzel, C. J.

    2000-01-01

    Expression of the beta-adrenergic receptor (betaAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the betaAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the betaAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the betaAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  5. Antidiabetic effect of taurine in cultured rat skeletal l6 myotubes.

    Science.gov (United States)

    Cheong, Sun Hee; Chang, Kyung Ja

    2013-01-01

    Taurine (2-aminoethanesulfonic acid), a sulfur-containing β-amino acid, is found in all animal cells at millimolar concentrations and has been reported to show various health promoting activities including antidiabetic properties. The beneficial effects of taurine in diabetes mellitus have been known. However, the exact mechanism of hypoglycemic action of taurine is not properly defined. In this study, we investigated antidiabetic effect of taurine in the cell culture system using rat skeletal muscle cells. In cultured rat skeletal L6 myotubes, we studied the effect of taurine (0-100 μM) on glucose uptake to plasma membrane from the aspects of AMP-activated protein kinase (AMPK) signaling. Taurine stimulated glucose uptake in a dose-dependent manner by activating AMPK signaling. From these results, it may suggest that taurine show antidiabetic effect by stimulating insulin-independent glucose uptake in rat skeletal muscle.

  6. Metabolic adaptations of skeletal muscle to voluntary wheel running exercise in hypertensive heart failure rats

    DEFF Research Database (Denmark)

    Schultz, R L; Kullman, E L; Waters, Ryan

    2013-01-01

    The Spontaneously Hypertensive Heart Failure (SHHF) rat mimics the human progression of hypertension from hypertrophy to heart failure. However, it is unknown whether SHHF animals can exercise at sufficient levels to observe beneficial biochemical adaptations in skeletal muscle. Thirty-seven female...... and expression, and glycogen utilization. The SHHFex rats ran a greater distance and duration as compared to the WFex rats (PSkeletal muscle citrate synthase and beta-hydroxyacyl-CoA dehydrogenase enzyme activity was not altered in the SHHFex group...... robust amounts of aerobic activity, voluntary wheel running exercise was not sufficiently intense to improve the oxidative capacity of skeletal muscle in adult SHHF animals, indicating an inability to compensate for declining heart function by improving peripheral oxidative adaptations in the skeletal...

  7. Skeletal muscle inflammation following repeated bouts of lengthening contractions in humans

    Directory of Open Access Journals (Sweden)

    Michael Roger Deyhle

    2016-01-01

    Full Text Available Skeletal muscle responds to exercise-induced damage by orchestrating an adaptive process that protects the muscle from damage by subsequent bouts of exercise, a phenomenon called the repeated bout effect (RBE. The mechanisms underlying the RBE are not understood. We hypothesized that an attenuated inflammation response following a repeated bout of lengthening contractions (LC would be coincidental with a RBE, suggesting a potential relationship. Fourteen men (n=7 and women (n=7 completed 2 bouts of lengthening contractions (LC separated by 28 days. Muscle biopsies were taken before the first bout (B1 from the non-exercised leg, and from the exercised leg 2- and 27-d post-B1 and 2-d following the second bout (B2. A 29-plex cytokine array identified alterations in inflammatory cytokines. Immunohistochemistry quantified inflammatory cell infiltration and major histocompatibility complex class 1 (MHC-1. Muscle soreness was attenuated in the days following B2 relative to B1, indicating a RBE. Intramuscular monocyte chemoattractant protein (MCP1 and interferon gamma-induced protein 10 (IP10 increased following B2 relative to the pre-exercise sample (7 pg/ml to 52 pg/ml, and 11 pg/ml to 36 pg/ml, respectively p<0.05. Interleukin 4 (IL4 decreased (26 pg/ml to 13 pg/ml, p<0.05 following B2 relative to the pre-exercise sample. Infiltration of CD68+ macrophages and CD8+ T-cells were evident following B2, but not B1. Moreover, CD8+ T-cells were observed infiltrating apparently necrotic muscle fibers. No changes in MHC-1 were found. We conclude that inflammation is not attenuated following a repeated bout of LC and that CD8+ T-cells may play a role in muscle adaptation following LC. Moreover, it appears that the muscle or the immune system becomes sensitized to an initial bout of damaging exercise such that inflammatory cell infiltration into the muscle is enhanced upon a repeated bout of damaging exercise.

  8. Age-related functional changes and susceptibility to eccentric contraction-induced damage in skeletal muscle cell

    Directory of Open Access Journals (Sweden)

    Seung-Jun Choi

    2016-09-01

    Full Text Available Depending upon external loading conditions, skeletal muscles can either shorten, lengthen, or remain at a fixed length as they produce force. Fixed-end or isometric contractions stabilize joints and allow muscles to act as active struts during locomotion. Active muscles dissipate energy when they are lengthened by an external force that exceeds their current force producing capacity. These unaccustomed eccentric activities often lead to muscle weakness, soreness, and inflammation. During aging, the ability to produce force under these conditions is reduced and appears to be due to not only reductions in muscle mass but also to alterations in the basic mechanisms of contraction. These alterations include impairments in the excitation–contraction process, and the action of the cross-bridges. Also, it is well known that age-related skeletal muscle atrophy is characterized by a preferential atrophy of fast fibers, and increased susceptibility to fast muscle fiber when aged muscles are exposed to eccentric contraction followed by the impaired recovery process has been reported. Taken together, the selective loss of fast muscle fiber in aged muscle could be affected by eccentric-induced muscle damage, which has significant implication to identify the etiology of the age-related functional changes. Therefore, in this review the alteration of age-related muscle function and its impact to/of eccentric induced muscle damage and recovery will be addressed in detail.

  9. Identification of genes influencing skeletal phenotypes in congenic P/NP rats.

    Science.gov (United States)

    Alam, Imranul; Carr, Lucinda G; Liang, Tiebing; Liu, Yunlong; Edenberg, Howard J; Econs, Michael J; Turner, Charles H

    2010-06-01

    We previously showed that alcohol-preferring (P) rats have higher bone density than alcohol-nonpreferring (NP) rats. Genetic mapping in P and NP rats identified a major quantitative trait locus (QTL) between 4q22 and 4q34 for alcohol preference. At the same location, several QTLs linked to bone density and structure were detected in Fischer 344 (F344) and Lewis (LEW) rats, suggesting that bone mass and strength genes might cosegregate with genes that regulate alcohol preference. The aim of this study was to identify the genes segregating for skeletal phenotypes in congenic P and NP rats. Transfer of the NP chromosome 4 QTL into the P background (P.NP) significantly decreased areal bone mineral density (aBMD) and volumetric bone mineral density (vBMD) at several skeletal sites, whereas transfer of the P chromosome 4 QTL into the NP background (NP.P) significantly increased bone mineral content (BMC) and aBMD in the same skeletal sites. Microarray analysis from the femurs using Affymetrix Rat Genome arrays revealed 53 genes that were differentially expressed among the rat strains with a false discovery rate (FDR) of less than 10%. Nine candidate genes were found to be strongly correlated (r(2) > 0.50) with bone mass at multiple skeletal sites. The top three candidate genes, neuropeptide Y (Npy), alpha synuclein (Snca), and sepiapterin reductase (Spr), were confirmed using real-time quantitative PCR (qPCR). Ingenuity pathway analysis revealed relationships among the candidate genes related to bone metabolism involving beta-estradiol, interferon-gamma, and a voltage-gated calcium channel. We identified several candidate genes, including some novel genes on chromosome 4 segregating for skeletal phenotypes in reciprocal congenic P and NP rats. (c) 2010 American Society for Bone and Mineral Research.

  10. Concentration-dependent effects of tetracaine on excitation-contraction coupling in frog skeletal muscle fibres.

    Science.gov (United States)

    Sárközi, S; Szentesi, P; Cseri, J; Kovács, L; Csernoch, L

    1996-12-01

    The effects of low (10-100 microM) concentrations of tetracaine on intermembrane charge movement and on the rate of calcium release (Rrel) from the sarcoplasmic reticulum (SR) were studied in cut skeletal muscle fibres of the frog using the voltage clamp technique. The fibres were mounted in a single or double vaseline gap chamber to study the events near the contraction threshold or in a wide membrane potential range. Although the 'hump' component of charge movement (Q gamma) was suppressed to some extent, the voltage dependence and the parameters of the Boltzmann distribution were not modified significantly at tetracaine concentrations below 50 microM. At 50 and 100 microM of tetracaine the midpoint voltage of the Boltzmann distribution was shifted to higher membrane potentials and the steepness was decreased. The total available charge remained the same at all concentrations tested. Using fura-2 to measure calcium transients at 100 microM tetracaine the threshold for calcium release was found to be significantly shifted to more positive membrane potentials. Tetracaine reversibly suppressed both the early inactivating peak and the steady-level of Rrel but the concentration dependence of the effects was markedly different. The inactivation component of calcium release was decreased with a Hill coefficient of approximately 1 and half effective concentration of 11.8 microM while the steady-level was decreased with a Hill coefficient of greater than 2 and a half effective concentration of 47.0 microM. These results favour two sites of action where tetracaine would suppress the calcium release from the SR.

  11. Involvement of Rac1 and the actin cytoskeleton in insulin- and contraction-stimulated intracellular signaling and glucose uptake in mature skeletal muscle

    DEFF Research Database (Denmark)

    Sylow, Lykke

    to hyperinsulinemia and hyperglycemia. Blood glucose is taken up into skeletal muscle when glucose transporters move to the muscle cell surface. In muscle cells this process depends on the protein Rac1. Glucose uptake into skeletal muscle can also occur via insulin-independent mechanisms, such as during muscle...... contractions. Contraction-stimulated glucose uptake is not affected by insulin resistance, likely because the intracellular events that regulate GLUT4 translocation by insulin and muscle contraction are distinct. In addition, muscle contraction has insulin sensitizing effects. Activation of glucose uptake...... understood. The aim of the current PhD was therefore to investigate the involvement of Rac1 and the actin cytoskeleton in the regulation of insulin- and contraction-stimulated glucose uptake in mature skeletal muscle. The central findings of this PhD thesis was that Rac1 was activated by both insulin...

  12. Procedures for rat in situ skeletal muscle contractile properties.

    Science.gov (United States)

    MacIntosh, Brian R; Esau, Shane P; Holash, R John; Fletcher, Jared R

    2011-10-15

    There are many circumstances where it is desirable to obtain the contractile response of skeletal muscle under physiological circumstances: normal circulation, intact whole muscle, at body temperature. This includes the study of contractile responses like posttetanic potentiation, staircase and fatigue. Furthermore, the consequences of disease, disuse, injury, training and drug treatment can be of interest. This video demonstrates appropriate procedures to set up and use this valuable muscle preparation. To set up this preparation, the animal must be anesthetized, and the medial gastrocnemius muscle is surgically isolated, with the origin intact. Care must be taken to maintain the blood and nerve supplies. A long section of the sciatic nerve is cleared of connective tissue, and severed proximally. All branches of the distal stump that do not innervate the medial gastrocnemius muscle are severed. The distal nerve stump is inserted into a cuff lined with stainless steel stimulating wires. The calcaneus is severed, leaving a small piece of bone still attached to the Achilles tendon. Sonometric crystals and/or electrodes for electromyography can be inserted. Immobilization by metal probes in the femur and tibia prevents movement of the muscle origin. The Achilles tendon is attached to the force transducer and the loosened skin is pulled up at the sides to form a container that is filled with warmed paraffin oil. The oil distributes heat evenly and minimizes evaporative heat loss. A heat lamp is directed on the muscle, and the muscle and rat are allowed to warm up to 37°C. While it is warming, maximal voltage and optimal length can be determined. These are important initial conditions for any experiment on intact whole muscle. The experiment may include determination of standard contractile properties, like the force-frequency relationship, force-length relationship, and force-velocity relationship. With care in surgical isolation, immobilization of the origin of the

  13. Branched-chain amino acid-rich diet improves skeletal muscle wasting caused by cigarette smoke in rats.

    Science.gov (United States)

    Tomoda, Koichi; Kubo, Kaoru; Hino, Kazuo; Kondoh, Yasunori; Nishii, Yasue; Koyama, Noriko; Yamamoto, Yoshifumi; Yoshikawa, Masanori; Kimura, Hiroshi

    2014-04-01

    Cigarette smoke induces skeletal muscle wasting by a mechanism not yet fully elucidated. Branched-chain amino acids (BCAA) in the skeletal muscles are useful energy sources during exercise or systemic stresses. We investigated the relationship between skeletal muscle wasting caused by cigarette smoke and changes in BCAA levels in the plasma and skeletal muscles of rats. Furthermore, the effects of BCAA-rich diet on muscle wasting caused by cigarette smoke were also investigated. Wistar Kyoto (WKY) rats that were fed with a control or a BCAA-rich diet were exposed to cigarette smoke for four weeks. After the exposure, the skeletal muscle weight and BCAA levels in plasma and the skeletal muscles were measured. Cigarette smoke significantly decreased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles, while a BCAA-rich diet increased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles that had decreased by cigarette smoke exposure. In conclusion, skeletal muscle wasting caused by cigarette smoke was related to the decrease of BCAA levels in the skeletal muscles, while a BCAA-rich diet may improve cases of cigarette smoke-induced skeletal muscle wasting.

  14. Contractions

    Science.gov (United States)

    ... body for labor and delivery. Labor contractions signal the beginning of childbirth. What causes contractions? Braxton-Hicks (false ... of your last menstrual period.) Labor contractions signal the beginning of childbirth. These contractions come at regular intervals, ...

  15. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6

    DEFF Research Database (Denmark)

    Steensberg, A; Van Hall, Gerrit; Osada, T

    2000-01-01

    1. Plasma interleukin (IL)-6 concentration is increased with exercise and it has been demonstrated that contracting muscles can produce IL-The question addressed in the present study was whether the IL-6 production by contracting skeletal muscle is of such a magnitude that it can account for the ...

  16. THE EFFECTS OF AEROBIC EXERCISE ON SKELETAL MUSCLE METABOLISM, MORPHOLOGY AND IN SITU ENDURANCE IN DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    Nilay Ergen

    2005-12-01

    Full Text Available The effects of aerobic exercise training on skeletal muscle endurance capacity were examined in diabetic rats in situ. Moderate diabetes was induced by iv injection of streptozotocin and an exercise training program on a treadmill was carried out for 8 weeks. The animals randomly assigned to one of the four experimental groups: control-sedentary (CS, control-exercise (CE, diabetic-sedentary (DS or diabetic-exercise (DE. The changes in the muscle endurance capacity were evaluated through the square wave impulses (supramaximal of 0.2-ms duration at 1 Hz in the in situ gastrocnemius-soleus muscle complex. Muscle was stimulated continuously until tension development reduced to the half of this maximal value. Time interval between the beginning and the end of stimulation period is defined as contraction duration. Following the training period, blood glucose level reduced significantly in the DE group compared to DS group (p < 0.05. The soles muscle citrate synthase activity was increased significantly in both of the trained groups compared to sedentary animals (p < 0.05. Fatigued muscle lactate values were not significantly different from each other. Ultrastractural abnormality of the skeletal muscle in DS group disappeared with training. Presence of increased lipid droplets, mitochondria clusters and glycogen accumulation was observed in the skeletal muscle of DE group. The contraction duration was longer in the DE group than others (p < 0.001. Fatigue resistance of exercised diabetic animals may be explained by increased intramyocellular lipid droplets, high blood glucose level and muscle citrate synthase activity

  17. Optimizing hyaluronidase dose and plasmid DNA delivery greatly improves gene electrotransfer efficiency in rat skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Vedel, Kenneth; Needham Andersen, Josefine

    2015-01-01

    Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection...... efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56. U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA...... delivery across the muscle by increasing the number of plasmid DNA injections further enhanced transfection efficiency whereas increasing plasmid dose from 0.2 to 1.6. μg/g b.w. or vehicle volume had no effect. The optimized protocol resulted in ~80% (CI95%: 79-84%) transfected muscle fibers...

  18. Exercise training improves blood flow to contracting skeletal muscle of older men via enhanced cGMP signaling

    DEFF Research Database (Denmark)

    Piil, Peter Bergmann; Smith Jørgensen, Tue; Egelund, Jon

    2018-01-01

    -induced adaptations in the regulation of skeletal muscle blood flow and oxidative metabolism during exercise in aging humans. We measured leg hemodynamics and oxidative metabolism during exercise engaging the knee-extensor muscles in young (n=15, 25 ± 1 years) and older (n=15, 72 ± 1 years) subjects before and after...... a period of aerobic high-intensity exercise training. To determine the role of cGMP signaling, pharmacological inhibition of phosphodiesterase 5 (PDE5) was performed. Before training, inhibition of PDE5 increased (Polder...... group; however, these effects of PDE5 inhibition were not detected after training. These findings suggest a role for enhanced cGMP signaling in the training-induced improvement of regulation of blood flow in contracting skeletal muscle of older men....

  19. Ablating the protein TBC1D1 impairs contraction-induced sarcolemmal glucose transporter 4 redistribution but not insulin-mediated responses in rats.

    Science.gov (United States)

    Whitfield, Jamie; Paglialunga, Sabina; Smith, Brennan K; Miotto, Paula M; Simnett, Genevieve; Robson, Holly L; Jain, Swati S; Herbst, Eric A F; Desjardins, Eric M; Dyck, David J; Spriet, Lawrence L; Steinberg, Gregory R; Holloway, Graham P

    2017-10-06

    TBC1 domain family member 1 (TBC1D1), a Rab GTPase-activating protein and paralogue of Akt substrate of 160 kDa (AS160), has been implicated in both insulin- and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase-mediated glucose transporter type 4 (GLUT4) translocation. However, the role of TBC1D1 in contracting muscle remains ambiguous. We therefore explored the metabolic consequence of ablating TBC1D1 in both resting and contracting skeletal muscles, utilizing a rat TBC1D1 KO model. Although insulin administration rapidly increased (p muscles, the TBC1D1 ablation did not alter this response nor did it affect whole-body insulin tolerance, suggesting that TBC1D1 is not required for insulin-induced GLUT4 trafficking events. Consistent with findings in other models of altered TBC1D1 protein levels, whole-animal and ex vivo skeletal muscle fat oxidation was increased in the TBC1D1 KO rats. Although there was no change in mitochondrial content in the KO rats, maximal ADP-stimulated respiration was higher in permeabilized muscle fibers, which may contribute to the increased reliance on fatty acids in resting KO animals. Despite this increase in mitochondrial oxidative capacity, run time to exhaustion at various intensities was impaired in the KO rats. Moreover, contraction-induced increases in sarcolemmal GLUT4 content and glucose uptake were lower in the white gastrocnemius of the KO animals. Altogether, our results highlight a critical role for TBC1D1 in exercise tolerance and contraction-mediated translocation of GLUT4 to the plasma membrane in skeletal muscle. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Evaluation of skeletal muscle relaxant activity of aqueous extract of Nerium oleander flowers in Albino rats

    OpenAIRE

    Jayasree Tirumalasetti; Maulik Patel; Ubedulla Shaikh; Harini, K.; Shankar, J

    2015-01-01

    Objectives: Nerium oleander is traditionally used in various diseases because of its medicinal properties. One of its uses is in musculoskeletal disorder. The aim of the study was to evaluate the skeletal muscle relaxant activity of the aqueous extract of Nerium oleander flowers (AENOF) in albino rats in comparison with diazepam. Materials and Methods: A total of 20 Swiss albino rats aged 6-7 weeks, of either sex, weighing about 100-150 g, were taken, and after acute toxicity studies two ...

  1. Two inhibitors of store operated Ca2+ entry suppress excitation contraction coupling in frog skeletal muscle.

    Science.gov (United States)

    Olivera, J Fernando; Fernando Olivera, J; Pizarro, Gonzalo

    2010-08-01

    Two drugs, 2-APB and SKF-96365, commonly used to block Store Operated Ca(2+) Entry (SOCE) were found to have inhibitory effects at different levels of the Excitation Contraction Coupling (ECC) process in frog skeletal muscle fibers. Treatment with either drug suppressed Ca(2+) release from the Sarcoplasmic Reticulum, but this effect was not due to inhibition of SOCE as it occurred in Ca(2+)-free conditions. 2-APB applied extracellularly at 100 microM, the usual concentration to suppress SOCE, reversibly reduced the charge movement elicited by pulses in the range between -45 and -35 mV from 7.99 +/- 0.73 nC/microF (N = 17) before drug application to 6.27 +/- 0.68 nC/microF in the presence of 2-APB. This effect was mostly on the delayed Q(gamma) component. In fibers treated with the SERCA ATPase inhibitor CPA the Q(gamma) component disappeared, under this condition the application of 2-APB did not suppress the remaining charge movement. Thus the effect of 2-APB on charge movement currents seemed to be secondary to the suppression of Ca(2+) release, likely occurring directly on the release channels. No significant suppression of ECC was observed for concentration below 20 muM. 2-APB also inhibited the L-type Ca(2+) current (20 +/- 4%, N = 8). On the other hand SKF-96365 had a direct effect on the voltage sensor promoting its voltage dependent inactivation. Applied at 20 muM, a typical concentration used for inhibiting SOCE, to fibers held at -80 mV inhibited the charge moved in response to pulses ranging -45 to -30 mV from 7.95 +/- 2.59 nC/microF to 3.48 +/- 0.9 nC/microF (N = 12). A parallel reduction of Ca(2+) release was observed. Wash out was drastically increased by hyperpolarization of the holding potential to -100 mV. SKF-96365 also inhibited the L-type Ca(2+) current (41 +/- 8%, N = 4) and increased its rate of inactivation.

  2. Effects of intracellular ruthenium red on excitation-contraction coupling in intact frog skeletal muscle fibres.

    Science.gov (United States)

    Baylor, S M; Hollingworth, S; Marshall, M W

    1989-01-01

    1. Ruthenium Red (RR) blocks sarcoplasmic reticulum (SR) Ca2+ release in disrupted muscle preparations and this block has been used as a marker for the physiological Ca2+ release pathway. To investigate whether RR can also affect SR Ca2+ release in living muscle, optical signals reflecting Ca2+ release have been measured in intact single frog twitch fibres microinjected with RR. 2. The total myoplasmic concentration of RR, [RRT], was obtained from measurements of RR-related absorbance and apparent diffusion constant, Dapp, of RR in myoplasm was estimated. The value of Dapp was about 1/30 of that expected and can be explained if the majority of RR (approximately 97%) was bound in myoplasm and free [RR] was only 1/30 of [RRT]. 3. Sarcoplasmic reticulum Ca2+ release following action potential stimulation was assessed from a Ca2+-related change in intrinsic birefringence. The birefringence signal was blocked in the presence of RR and the degree of block was clearly dependent upon [RRT]. At 16 degrees C the estimated [RRT] for half-block of the birefringence signal was 23 +/- 4 microM (+/- S.E. of mean; n = 3), and for half-block of the Ca2+ release process itself was 72 +/- 14 microM. The estimated free [RR] for half-block is then 0.8 +/- 0.1 and 2.4 +/- 0.5 microM, respectively. In the cold (6-8 degrees C), the half-blocking concentration of RR, referred to [RRT], appeared to be about 3-fold smaller than that observed at 16 degrees C. 4. The values estimated for the free [RR] which caused half-block of Ca2+ release in intact muscle fibres are in the range reported for RR's action in disrupted preparations, thus supporting the conclusion that the RR-blockable channel observed in disrupted muscle is the physiologically important Ca2+ release channel. 5. Intramembrane charge movements in skeletal muscle are thought to underlie the dependence of SR Ca2+ release on transverse tubular membrane potential. Charge movements were measured in RR-injected fibres at 4-6 degrees C

  3. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.

    Directory of Open Access Journals (Sweden)

    Michael A Petrie

    Full Text Available Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat and mechanical stress (vibration on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction.The purpose of this study is to examine whether active mechanical stress (muscle contraction, passive mechanical stress (vibration, or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair.Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus to analyze mRNA gene expression.We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold, PGC-1α (5.46 fold, and ABRA (5.98 fold; and repressed MSTN (0.56 fold. Heat stress repressed PGC-1α (0.74 fold change; p < 0.05; while vibration induced FOXK2 (2.36 fold change; p < 0.05. Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05, but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05 while heat stress repressed PGC-1α (0.74 fold and ANKRD1 genes (0.51 fold; p < 0.05.These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell

  4. Contraction type influences the human ability to use the available torque capacity of skeletal muscle during explosive efforts.

    Science.gov (United States)

    Tillin, Neale A; Pain, Matthew T G; Folland, Jonathan P

    2012-06-07

    The influence of contraction type on the human ability to use the torque capacity of skeletal muscle during explosive efforts has not been documented. Fourteen male participants completed explosive voluntary contractions of the knee extensors in four separate conditions: concentric (CON) and eccentric (ECC); and isometric at two knee angles (101°, ISO101 and 155°, ISO155). In each condition, torque was measured at 25 ms intervals up to 150 ms from torque onset, and then normalized to the maximum voluntary torque (MVT) specific to that joint angle and angular velocity. Explosive voluntary torque after 50 ms in each condition was also expressed as a percentage of torque generated after 50 ms during a supramaximal 300 Hz electrically evoked octet in the same condition. Explosive voluntary torque normalized to MVT was more than 60 per cent larger in CON than any other condition after the initial 25 ms. The percentage of evoked torque expressed after 50 ms of the explosive voluntary contractions was also greatest in CON (ANOVA; p muscle's torque capacity explosively is influenced by contraction type, with concentric contractions being more conducive to explosive performance due to a more effective neural strategy.

  5. Skeletal muscle and hormonal adaptation to physical training in the rat

    DEFF Research Database (Denmark)

    Henriksson, J; Svedenhag, J; Richter, Erik

    1985-01-01

    The main purpose of the present study was to test the hypothesis that adrenergic stimulation of muscle fibres during exercise is a major stimulus for the training-induced enhancement of skeletal muscle respiratory capacity. Therefore, Sprague-Dawley rats either underwent bilateral surgical ablation...

  6. Altered expression of genes regulating skeletal muscle mass in the portacaval anastomosis rat.

    Science.gov (United States)

    Dasarathy, Srinivasan; Muc, Sean; Hisamuddin, Kola; Edmison, John M; Dodig, Milan; McCullough, Arthur J; Kalhan, Satish C

    2007-04-01

    We examined the temporal relationship between portacaval anastomosis (PCA), weight gain, changes in skeletal muscle mass and molecular markers of protein synthesis, protein breakdown, and satellite cell proliferation and differentiation. Male Sprague-Dawley rats with end to side PCA (n=24) were compared with sham-operated pair-fed rats (n=24). Whole body weight, lean body mass, and forelimb grip strength were determined at weekly intervals. The skeletal muscle expression of the ubiquitin proteasome system, myostatin, its receptor (the activin 2B receptor) and its signal, cyclin-dependent kinase inhibitor (CDKI) p21, insulin-like growth factor (IGF)-I and its receptor (IGF-I receptor-alpha), and markers of satellite cell proliferation and differentiation were quantified. PCA rats did not gain body weight and had lower lean body mass, forelimb grip strength, and gastrocnemius muscle weight. The skeletal muscle expression of the mRNA of ubiquitin proteasome components was higher in PCA rats in the first 2 wk followed by a lower expression in the subsequent 2 wk (Pmuscle protein synthesis, impaired satellite cell function, and lower skeletal muscle mass.

  7. Skeletal Muscle Satellite Cell Activation Following Cutaneous Burn in Rats

    Science.gov (United States)

    2013-12-01

    cultures of SJL/J and BALB/C skeletal muscle. Exp Cell Res 1994;211(1):99–107. [37] Yablonka-Reuveni Z, Rivera AJ. Temporal expression of regulatory...precursor cells. Am J Physiol Cell Physiol 2004;287(6):C1753–62. [41] Yasuhara S, Perez ME, Kanakubo E, Yasuhara Y, Shin YS, Kaneki M, Fujita T, Martyn JA...Yasuhara S, Kanakubo E, Perez ME, Kaneki M, Fujita T, Okamoto T, Martyn JA. The 1999 Moyer award, Burn injury induces skeletal muscle apoptosis and

  8. Supplementation with vitamins C and E inhibits the release of interleukin-6 from contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Fischer, Christian P; Hiscock, Natalie J; Penkowa, Milena

    2004-01-01

    (6 h). Leg blood flow was measured using Doppler ultrasonography. Plasma IL-6 concentration was measured in blood sampled from the femoral artery and vein. The net release of IL-6 was calculated using Fick's principle. Plasma vitamin C and E concentrations were elevated in Treatment compared...... in Control, but not in Treatment. In conclusion, our results show that supplementation with vitamins C and E attenuated the systemic IL-6 response to exercise primarily via inhibition of the IL-6 protein release from the contracting skeletal muscle per se....

  9. Dependence of normal development of skeletal muscle in neonatal rats on load bearing

    Science.gov (United States)

    Ohira, Y.; Tanaka, T.; Yoshinaga, T.; Kawano, F.; Nomura, T.; Nonaka, I.; Allen, D. L.; Roy, R. R.; Edgerton, V. R.

    2000-01-01

    Antigravity function plays an important role in determining the morphological and physiological properties of the neuromuscular system. Inhibition of the normal development of the neuromuscular system is induced by hindlimb unloading during the neonatal period in rats. However, the role of gravitational loading on the development of skeletal muscle in rats is not well understood. It could be hypothesized that during the early postnatal period, i.e. when minimal weight-supporting activity occurs, the activity imposed by gravity would be of little consequence in directing the normal development of the skeletal musculature. We have addressed this issue by limiting the amount of postnatal weight-support activity of the hindlimbs of rats during the lactation period. We have focused on the development of three characteristics of the muscle fibers, i.e. size, myonuclear number and myosin heavy chain expression.

  10. Inhibition of caspase mediated apoptosis restores muscle function after crush injury in rat skeletal muscle.

    Science.gov (United States)

    Stratos, Ioannis; Li, Zhengdong; Rotter, Robert; Herlyn, Philipp; Mittlmeier, Thomas; Vollmar, Brigitte

    2012-03-01

    Although muscle regeneration after injury is accompanied by apoptotic cell death, prolonged apoptosis inhibits muscle restoration. The goal of our study was to provide evidence that inhibition of apoptosis improves muscle function following blunt skeletal muscle injury. Therefore, 24 rats were used for induction of injury to the left soleus muscle using an instrumented clamp. All animals received either 3.3 mg/kg i.p. of the pan-caspase inhibitor Z-valinyl-alanyl-DL: -aspartyl-fluoromethylketone (z-VAD.fmk) (n = 12 animals) or equivalent volumes of the vehicle solution DMSO (n = 12 animals) at 0 and 48 h after trauma. After assessment of the fast twitch and tetanic contraction capacity of the muscle at days 4 and 14 post injury, sampling of muscle tissue served for analysis of cell apoptosis (cleaved caspase 3 immunohistochemistry), cell proliferation (BrdU immunohistochemistry) as well as of muscle tissue area and myofiber diameter (HE planimetric analysis). Muscle strength analysis after 14 days in the z-VAD.fmk treated group revealed a significant increase in relative muscle strength when compared to the DMSO treated group. In contrast to the DMSO treated injured muscle, showing a transient switch towards a fast-twitching muscle phenotype (significant increase of the twitch-to-tetanic force ratio), z-VAD.fmk treated animals showed an enhanced healing process with a faster restoration of the twitch-to-tetanic force ratio towards the physiological slow-twitching muscle phenotype. This enhancement of muscle function was accompanied by a significant decrease of cell apoptosis and cell proliferation at day 4 as well as by a significant increase of muscle tissue area at day 4. At day 14 after injury z-VAD.fmk treated animals presented with a significant increase of myofiber diameter compared to the DMSO treated animals. Thus, z-VAD.fmk could provide a promising option in the anti-apoptotic therapy of muscle injury.

  11. Characterizing the Effects of Chronic 2G Centrifugation on the Rat Skeletal System

    Science.gov (United States)

    Johnson, Aimee; Scott, Ryan; Ronca, April E.; Hoban-Higgins, Tana M.; Fuller, Charles A.; Alwood, Joshua S.

    2017-01-01

    During weightlessness, the skeletal system of astronauts is negatively affected by decreased calcium absorption and bone mass loss. Therefore, it is necessary to counteract these changes for long-term skeletal health during space flights. Our long-term plan is to assess artificial gravity (AG) as a possible solution to mitigate these changes. In this study, we aim to determine the skeletal acclimation to chronic centrifugation. We hypothesize that a 2G hypergravity environment causes an anabolic response in growing male rats. Specifically, we predict chronic 2G to increase tissue mineral density, bone volume fraction of the cancellous tissue and to increase overall bone strength. Systemically, we predict that bone formation markers (i.e., osteocalcin) are elevated and resorption markers (i.e., tartrate resistant acid phosphatase) are decreased or unchanged from controls. The experiment has three groups, each with an n8: chronic 2g, cage control (housed on the centrifuge, but not spun), and a vivarium control (normal rat caging). Pre-pubescent, male Long-Evans rats were used to assess our hypothesis. This group was subject to 90 days of 2G via centrifugation performed at the Chronic Acceleration Research Unit (CARU) at University of California Davis. After 90 days, animals were euthanized and tissues collected. Blood was drawn via cardiac puncture and the right leg collected for structural (via microcomputed tomography) and strength quantification. Understanding how counteract these skeletal changes will have major impacts for both the space-faring astronauts and the people living on Earth.

  12. {sup 18}F-fluorodeoxyglucose and PET/CT for noninvasive study of exercise-induced glucose uptake in rat skeletal muscle and tendon

    Energy Technology Data Exchange (ETDEWEB)

    Skovgaard, Dorthe [University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark); Bispebjerg Hospital, Institute of Sports Medicine, Copenhagen, NV (Denmark); Kjaer, Michael [Bispebjerg Hospital, Institute of Sports Medicine, Copenhagen, NV (Denmark); El-Ali, Henrik [University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark); Kjaer, Andreas [University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark); Rigshospitalet, Department Clinical Physiology, Nuclear Medicine and PET, Center of Diagnostic Investigations, Copenhagen (Denmark)

    2009-05-15

    To investigate exercise-related glucose uptake in rat muscle and tendon using PET/CT and to study possible explanatory changes in gene expression for the glucose transporters (GLUT1 and GLUT4). The sciatic nerve in eight Wistar rats was subjected to electrostimulation to cause unilateral isometric contractions of the calf muscle. {sup 18}F-Fluorodeoxyglucose was administered and a PET/CT scan of the hindlimbs was performed. SUVs were calculated in both Achilles tendons and the triceps surae muscles. To exclude a spill-over effect the tendons and muscles from an ex vivo group of eight rats were cut out and scanned separately (distance{>=}1 cm). Muscle contractions increased glucose uptake approximately sevenfold in muscles (p<0.001) and 36% in tendons (p<0.01). The ex vivo group confirmed the increase in glucose uptake in intact animals. GLUT1 and GLUT4 were expressed in both skeletal muscle and tendon, but no changes in mRNA levels could be detected. PET/CT can be used for studying glucose uptake in rat muscle and tendon in relation to muscle contractions; however, the increased uptake of glucose was not explained by changes in gene expression of GLUT1 and GLUT4. (orig.)

  13. Evidence of skeletal muscle damage following electrically stimulated isometric muscle contractions in humans

    DEFF Research Database (Denmark)

    Mackey, Abigail; Bojsen-Moller, Jens; Qvortrup, Klaus

    2008-01-01

    It is unknown whether muscle damage at the level of the sarcomere can be induced without lengthening contractions. To investigate this, we designed a study where seven young, healthy men underwent 30 min of repeated electrical stimulated contraction of m. gastrocnemius medialis, with the ankle an...

  14. Vascular Function and Regulation of Blood Flow in Resting and Contracting Skeletal Muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin

    The precise matching of blood flow, oxygen delivery and metabolism is essential as it ensures that any increase in muscle work is precisely matched by increases in oxygen delivery. Therefore, understanding the control mechanisms of skeletal muscle blood flow regulation is of great biological impo...

  15. In utero glucocorticoid exposure reduces fetal skeletal muscle mass in rats independent of effects on maternal nutrition

    National Research Council Canada - National Science Library

    Ganga Gokulakrishnan; Irma J. Estrada; Horacio A. Sosa; Marta L. Fiorotto

    2012-01-01

    ...) levels during this vulnerable period. To determine the consequences of GLC exposure on fetal skeletal muscle independently of maternal food intake, groups of timed-pregnant Sprague-Dawley rats (n = 7/group) were studied...

  16. Titin Isoform Size is Not Correlated with Thin Filament Length in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Marion Lewis Greaser

    2014-02-01

    Full Text Available The mechanisms controlling thin filament length in muscle remain controversial. It was recently reported that thin filament length was related to titin size, and that the latter might be involved in thin filament length determination. Titin plays several crucial roles in the sarcomere, but its function as it pertains to the thin filament has not been explored. We tested this relationship using several muscles from wild type rats and from a mutant rat model which results in increased titin size. Myofibrils were isolated from skeletal muscles (extensor digitorum longus, external oblique, gastrocnemius, longissimus dorsi, psoas major, and tibialis anterior using both adult wild type (WT and homozygous mutant (HM rats. Phalloidin and antibodies against tropomodulin-4 and nebulin’s N-terminus were used to determine thin filament length. The WT rats studied express skeletal muscle titin sizes ranging from 3.2 to 3.7 MDa, while the HM rats express a giant titin isoform sized at 3.7 MDa. No differences in phalloidin-based thin filament length, nebulin N terminus distances from the Z line, or tropomodulin distances from the Z line were observed across genotypes. The data indicates that, although titin performs many sarcomeric functions, its correlation with thin filament length and structure could not be demonstrated in the rat. Current models of thin filament assembly are inadequate to explain the phalloidin, nebulin N terminus, and tropomodulin staining patterns in the myofibril.

  17. [Relationship between Electrical Conductivity and Decomposition Rate of Rat Postmortem Skeletal Muscle].

    Science.gov (United States)

    Xia, Z Y; Zhai, X D; Liu, B B; Zheng, Z; Zhao, L L; Mo, Y N

    2017-02-01

    To analyze the relationship among electrical conductivity (EC), total volatile basic nitrogen (TVB-N), which is an index of decomposition rate for meat production, and postmortem interval (PMI). To explore the feasibility of EC as an index of cadaveric skeletal muscle decomposition rate and lay the foundation for PMI estimation. Healthy Sprague-Dawley rats were sacrificed by cervical vertebrae dislocation and kept at 28 ℃. Muscle of rear limbs was removed at different PMI, homogenized in deionized water and then skeletal extraction liquid of mass concentration 0.1 g/mL was prepared. EC and TVB-N of extraction liquid were separately determined. The correlation between EC (x₁) and TVB-N (x₂) was analyzed, and their regression function was established. The relationship between PMI (y) and these two parameters were studied, and their regression functions were separately established. The change trends of EC and TVB-N of skeletal extraction liquid at different PMI were almost the same, and there was a linear positive correlation between them. The regression equation was x₂=0.14x₁-164.91(R²=0.982). EC and TVB-N of skeletal muscle changed significantly with PMI, and the regression functions were y=19.38x₁³-370.68x₁²+2 526.03 x₁-717.06(R²=0.994), and y=2.56x₂³-48.39x₂²+330.60x₂-255.04(R²=0.997), respectively. EC and TVB-N of rat postmortem skeletal muscle show similar change trends, which can be used as an index for decomposition rate of cadaveric skeletal muscle and provide a method for further study of late PMI estimation.

  18. Receptor Expression in Rat Skeletal Muscle Cell Cultures

    Science.gov (United States)

    Young, Ronald B.

    1996-01-01

    One on the most persistent problems with long-term space flight is atrophy of skeletal muscles. Skeletal muscle is unique as a tissue in the body in that its ability to undergo atrophy or hypertrophy is controlled exclusively by cues from the extracellular environment. The mechanism of communication between muscle cells and their environment is through a group of membrane-bound and soluble receptors, each of which carries out unique, but often interrelated, functions. The primary receptors include acetyl choline receptors, beta-adrenergic receptors, glucocorticoid receptors, insulin receptors, growth hormone (i.e., somatotropin) receptors, insulin-like growth factor receptors, and steroid receptors. This project has been initiated to develop an integrated approach toward muscle atrophy and hypertrophy that takes into account information on the populations of the entire group of receptors (and their respective hormone concentrations), and it is hypothesized that this information can form the basis for a predictive computer model for muscle atrophy and hypertrophy. The conceptual basis for this project is illustrated in the figure below. The individual receptors are shown as membrane-bound, with the exception of the glucocorticoid receptor which is a soluble intracellular receptor. Each of these receptors has an extracellular signalling component (e.g., innervation, glucocorticoids, epinephrine, etc.), and following the interaction of the extracellular component with the receptor itself, an intracellular signal is generated. Each of these intracellular signals is unique in its own way; however, they are often interrelated.

  19. Skeletal effects of withdrawal of estrogen and diphosphonate treatment in ovariectomized rats.

    Science.gov (United States)

    Wronski, T J; Dann, L M; Qi, H; Yen, C F

    1993-09-01

    The study was designed to determine the skeletal effects of withdrawal of estrogen and diphosphonate treatment in the estrogen-deplete state. Groups of ovariectomized (OVX) rats were treated with vehicle alone, estrogen, or the diphosphonates etidronate or risedronate for a 180-day period. A group of sham-operated control rats was treated for 180 days with vehicle alone. All treatments were then terminated, followed by sequential sacrifice of rats at 0, 35, 90, 180, and 360 days after withdrawal of treatment. The proximal tibia from each animal was processed undecalcified for quantitative bone histomorphometry. At the end of the treatment period, vehicle-treated OVX rats were characterized by cancellous osteopenia and increased bone turnover relative to vehicle-treated control rats. Treatment of OVX rats with estrogen or diphosphonates depressed bone turnover and protected against cancellous osteopenia. During the withdrawal period, OVX rats previously treated with estrogen exhibited rapid bone loss associated with increased bone turnover. The bone protective effect of the hormone in OVX rats was nearly completely lost by 90 days of withdrawal. In contrast, OVX rats maintained low levels of bone turnover and normal cancellous bone mass at 180 days of withdrawal from diphosphonate treatment. The results suggest that estrogen-deplete women who are withdrawn from estrogen replacement are at high risk for subsequent bone loss. They further suggest that widely spaced periods of intermittent diphosphonate treatment may be sufficient to prevent the development of osteopenia in postmenopausal and oophorectomized women.

  20. Gestational Undernourishment Modifies the Composition of Skeletal Muscle Transverse Tubule Membranes and the Mechanical Properties of Muscles in Newborn Rats

    Directory of Open Access Journals (Sweden)

    Ricardo Tonathiu Ramírez-Oseguera

    2013-10-01

    Full Text Available Backgroud/Aims: Skeletal muscle (SM constitutes more than 40% of the body weight in adulthood. Transports dietary glucose mainly through the insulin-dependent glucose transporter (Glut-4 located in the Transverse tubule membrane system (TT. The TT development ends shortly after birth. The TT membrane hosts the proteins involved in excitation-contraction coupling and glucose uptake. Glycaemic regulation through movement is a key function of fully developed skeletal muscle. In this study, we aimed to characterize the effect of gestational undernourishment (GUN in rats GLUT-4 expression and on the protein/lipid content of the TT membranes. We also examined the effect of GUN on the mechanical properties of muscles as an indication of the metabolic condition of the SM at birth. Methods: Isolated TT membrane from SM of GUN rats were used to study lipid/protein content and protein stability by differential scanning calorimetry. The effect of GUN on the SM mechanical properties was determined in isolated Extensor Digitorum Longus (EDL muscle. Results: We demonstrate that compared to control, GUN in the new-born produces; i decreases body weight; ii diminution in SM mass; iii decreases the formation of TT membranes; iv expresses TT membrane proteins with higher thermal stability. The TT membrane expression of GLUT-4 in GUN offspring was twice that of controls. The isolated EDL of GUN offspring was 20% stronger as measured by contractile force and more resistant to fatigue relative to controls. Conclusion; These results provide the first evidence of adaptive changes of the SM in new-borns exposed to severe gestational food restriction. The effects of GUN on muscle at birth are the first step toward detrimental SM metabolic function, contributing to the physiopathology of metabolic diseases in adulthood.

  1. Effect of calmodulin antagonists on contraction and45Ca movements in rat aorta

    NARCIS (Netherlands)

    Wermelskirchen, D.; Koch, P.; Wilhelm, D.; Nebel, U.; Leidig, A.; Wilffert, B.; Peters, Thies

    1989-01-01

    To study the selectivity of calmodulin antagonists it was assumed that they should inhibit noradrenaline (NA)- and K+-induced contractions similarly without an accompanying inhibition of45Ca uptake. Therefore, in isolated rat aorta the effects of W-7, calmidazolium and trifluoperazine on contraction

  2. An allosteric model of the molecular interactions of excitation- contraction coupling in skeletal muscle

    OpenAIRE

    1993-01-01

    A contact interaction is proposed to exist between the voltage sensor of the transverse tubular membrane of skeletal muscle and the calcium release channel of the sarcoplasmic reticulum. This interaction is given a quantitative formulation inspired in the Monod, Wyman, and Changeux model of allosteric transitions in hemoglobin (Monod, J., J. Wyman, and J.-P. Changeux. 1965. Journal of Molecular Biology. 12:88- 118), and analogous to one proposed by Marks and Jones for voltage- dependent Ca ch...

  3. Sarcoplasmic-reticulum biogenesis in contraction-inhibited skeletal-muscle cultures.

    OpenAIRE

    Charuk, J H; Guerin, C.; Holland, P.C.

    1992-01-01

    We have previously shown that inhibition of the spontaneous contractile activity of cultured embryonic-chick skeletal-muscle fibres with tetrodotoxin (TTX) leads to decreased sarcoplasmic-reticulum Ca(2+)-transport rates and steady-state concentrations of the high-energy Ca(2+)-ATPase phosphoenzyme intermediate [Charuk & Holland (1983) Exp. Cell Res. 144, 143-157]. In the present study we used a monoclonal antibody to the Ca(2+)-ATPase to show that there is a decreased amount of enzyme accumu...

  4. Chronic skeletal unloading of the rat femur: mechanisms and functional consequences of vascular remodeling.

    Science.gov (United States)

    Stabley, John N; Prisby, Rhonda D; Behnke, Bradley J; Delp, Michael D

    2013-12-01

    Chronic skeletal unloading diminishes hindlimb bone blood flow. The purpose of the present investigation was to determine 1) whether 7 and 14days of skeletal unloading alter femoral bone and marrow blood flow and vascular resistance during reloading, and 2) whether putative changes in bone perfusion are associated with a gross structural remodeling of the principal nutrient artery (PNA) of the femur. Six-month old male Sprague-Dawley rats were assigned to 7-d or 14-d hindlimb unloading (HU) or weight-bearing control groups. Bone perfusion was measured following 10min of standing (reloading) following the unloading treatment. Histomorphometry was used to determine PNA media wall thickness and maximal diameter. Bone blood flow, arterial pressure and PNA structural characteristics were used to calculate arterial shear stress and circumferential wall stress. During reloading, femoral perfusion was lower in the distal metaphyseal region of 7-d HU rats, and in the proximal and distal metaphyses, diaphysis and diaphyseal marrow of 14-d HU animals relative to that in control rats. Vascular resistance was also higher in all regions of the femur in 14-d HU rats during reloading relative to control animals. Intraluminal diameter of PNAs from 14-d HU rats (138±5μm) was smaller than that of control PNAs (162±6μm), and medial wall thickness was thinner in PNAs from 14-d HU (14.3±0.6μm) versus that of control (18.0±0.8μm) rats. Decreases in both shear stress and circumferential stress occurred in the PNA with HU that later returned to control levels with the reductions in PNA maximal diameter and wall thickness, respectively. The results demonstrate that chronic skeletal unloading attenuates the ability to increase blood flow and nutrient delivery to bone and marrow with immediate acute reloading due, in part, to a remodeling of the bone resistance vasculature. © 2013.

  5. Increased cellular proliferation in rat skeletal muscle and tendon in response to exercise

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Bayer, Monika L; Mackey, Abigail

    2010-01-01

    PURPOSE: The purpose of this study is to investigate exercise-induced cellular proliferation in rat skeletal muscle/tendon with the use of 3'-[F-18]fluoro-3'deoxythymidine (FLT) and to quantitatively study concomitant changes in the proliferation-associated factor, Ki67. PROCEDURES: Wistar rats (......-derived results were supported by a correlation in calf muscle to Ki67 (protein and mRNA level), while this coherence was not found in tendon. CONCLUSION: FLT-PET seems to be a promising tool for imaging of exercise-induced cellular proliferation in musculo-tendinous tissue....

  6. Impairment of Electron Transfer Chain Induced by Acute Carnosine Administration in Skeletal Muscle of Young Rats

    Directory of Open Access Journals (Sweden)

    José Roberto Macarini

    2014-01-01

    Full Text Available Serum carnosinase deficiency is an inherited disorder that leads to an accumulation of carnosine in the brain tissue, cerebrospinal fluid, skeletal muscle, and other tissues of affected patients. Considering that high levels of carnosine are associated with neurological dysfunction and that the pathophysiological mechanisms involved in serum carnosinase deficiency remain poorly understood, we investigated the in vivo effects of carnosine on bioenergetics parameters, namely, respiratory chain complexes (I–III, II, and II-III, malate dehydrogenase, succinate dehydrogenase, and creatine kinase activities and the expression of mitochondrial-specific transcription factors (NRF-1, PGC-1α, and TFAM in skeletal muscle of young Wistar rats. We observed a significant decrease of complexes I–III and II activities in animals receiving carnosine acutely, as compared to control group. However, no significant alterations in respiratory chain complexes, citric acid cycle enzymes, and creatine kinase activities were found between rats receiving carnosine chronically and control group animals. As compared to control group, mRNA levels of NRF-1, PGC-1α, and TFAM were unchanged. The present findings indicate that electron transfer through the respiratory chain is impaired in skeletal muscle of rats receiving carnosine acutely. In case these findings are confirmed by further studies and ATP depletion is also observed, impairment of bioenergetics could be considered a putative mechanism responsible for the muscle damage observed in serum carnosinase-deficient patients.

  7. Linkage study of embryopathy-polygenic inheritance of diabetes-induced skeletal malformations in the rat.

    Science.gov (United States)

    Nordquist, Niklas; Luthman, Holger; Pettersson, Ulf; Eriksson, Ulf J

    2012-06-01

    We developed an inbred rat model of diabetic embryopathy, in which the offspring displays skeletal malformations (agnathia or micrognathia) when the mother is diabetic, and no malformations when she is not diabetic. Our aim was to find genes controlling the embryonic maldevelopment in a diabetic environment. We contrasted the fetal outcome in inbred Sprague-Dawley L rats (20% skeletal malformations in diabetic pregnancy) with that of inbred Wistar Furth rats (denotedW, no skeletal malformations in diabetic pregnancy). We used offspring from the backcross F(1)×L to probe for the genetic basis for malformation of the mandible in diabetic pregnancy. A set of 186 fetuses (93 affected, 93 unaffected) was subjected to a whole genome scan with 160 micro satellites. Analysis of genotype distribution indicated 7 loci on chromosome 4, 10 (3 loci), 14, 18, and 19 in the teratogenic process (and 14 other loci on 12 chromosomes with less strong association to the malformations), several of which contained genes implicated in other experimental studies of diabetic embryopathy. These candidate genes will be scrutinized in further experimentation. We conclude that the genetic involvement in rodent diabetic embryopathy is polygenic and predisposing for congenital malformations. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Secophalloidin and phalloidin-(S)-sulfoxide as contraction modifiers for comparative study of skeletal and cardiac muscles.

    Science.gov (United States)

    Bukatina, A E; Kirkpatrick, R D; Campbell, K B

    2000-01-01

    Phalloidin, a toxic product of the mushroom Amanita phalloides, binds specifically to F-actin resulting in strong stabilization of F-actin structure (for review, see; Wieland, 1986). Binding to a specific site on the muscle thin filament F-actin, phalloidin modifies contraction in a tissue specific manner. Phalloidin induced changes depend on functionally important parameters (thin filament activation, cross-bridge kinetics), indicating changes in essential steps of the contractile mechanism. Moreover, there is a different action with different phalloidin derivatives. Such properties make phallotoxins (phalloidin and its derivatives) powerful modifiers for muscle research (for review, see: Bukatina, 1996). Phalloidin-induced changes vary qualitatively with muscle types. In all types of skinned skeletal muscle preparations that have been studied (fast and slow muscles from evolutionarily distant animals), the most general effect of phalloidin is to cause a decrease in tension (Bukatina, Morozov, 1979; Alievskaya et al., 1987; Bukatina et al., 1993). In mammalian skeletal muscles, this decrease in tension may be followed by a slowly developing increase in tension. The resulting tension may considerably exceed the tension before phalloidin administration. In contrast, skinned cardiac muscle responds to phalloidin only by increasing isometric tension from the onset of the response. Moreover, the phalloidin response is completed in approximately one-tenth the time in cardiac muscle that it takes in skeletal muscle. These phalloidin effects in cardiac muscle result in an enhanced Ca2+ responsiveness (Boels, Pfitzer, 1992) with an increase in both the force at maximum Ca2+ activation and the Ca2+ sensitivity (Bukatina et al., 1995).

  9. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions.

    Directory of Open Access Journals (Sweden)

    Joachim Nielsen

    Full Text Available Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthesis, as described by the product of glycogen particle size and number, is dependent on the time course of recovery after exercise and carbohydrate availability. In the present study, we investigated the subcellular distribution of glycogen in fibers with high (type I and low (type II mitochondrial content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies for analysis included time points 3, 24 and 48 h post exercise from the exercising leg, whereas biopsies corresponding to prior to and at 48 h after the exercise bout were collected from the non-exercising, control leg. Quantitative imaging by transmission electron microscopy revealed an early (post 3 and 24 h enhanced storage of intramyofibrillar glycogen (defined as glycogen particles located within the myofibrils of type I fibers, which was associated with an increase in the number of particles. In contrast, late in recovery (post 48 h, intermyofibrillar, intramyofibrillar and subsarcolemmal glycogen in both type I and II fibers were lower in the exercise leg compared with the control leg, and this was associated with a smaller size of the glycogen particles. We conclude that in the carbohydrate-supplemented state, the effect of eccentric contractions on glycogen metabolism depends on the subcellular localization, muscle fiber's oxidative capacity, and the time course of recovery. The early enhanced storage of intramyofibrillar glycogen after the eccentric

  10. External Ca2+-dependent excitation–contraction coupling in a population of ageing mouse skeletal muscle fibres

    Science.gov (United States)

    Payne, Anthony Michael; Zheng, Zhenlin; González, Estela; Wang, Zhong-Min; Messi, María Laura; Delbono, Osvaldo

    2004-01-01

    In the present work, we investigate whether changes in excitation–contraction (EC) coupling mode occur in skeletal muscles from ageing mammals by examining the dependence of EC coupling on extracellular Ca2+. Single intact muscle fibres from flexor digitorum brevis muscles from young (2–6 months) and old (23–30 months) mice were subjected to tetanic contractile protocols in the presence and absence of external Ca2+. Contractile experiments in the absence of external Ca2+ show that about half of muscle fibres from old mice are dependent upon external Ca2+ for maintaining maximal tetanic force output, while young fibres are not. Decreased force in the absence of external Ca2+ was not due to changes in charge movement as revealed by whole-cell patch-clamp experiments. Ca2+ transients, measured by fluo-4 fluorescence, declined in voltage-clamped fibres from old mice in the absence of external Ca2+. Similarly, Ca2+ transients declined in parallel with tetanic contractile force in single intact fibres. Examination of inward Ca2+ current and of mRNA and protein assays suggest that these changes in EC coupling mode are not due to shifts in dihydropyridine receptor (DHPR) and/or ryanodine receptor (RyR) isoforms. These results indicate that a change in EC coupling mode occurs in a population of fibres in ageing skeletal muscle, and is responsible for the age-related dependence on extracellular Ca2+. PMID:15297570

  11. External Ca(2+)-dependent excitation--contraction coupling in a population of ageing mouse skeletal muscle fibres.

    Science.gov (United States)

    Payne, Anthony Michael; Zheng, Zhenlin; González, Estela; Wang, Zhong-Min; Messi, María Laura; Delbono, Osvaldo

    2004-10-01

    In the present work, we investigate whether changes in excitation-contraction (EC) coupling mode occur in skeletal muscles from ageing mammals by examining the dependence of EC coupling on extracellular Ca(2+). Single intact muscle fibres from flexor digitorum brevis muscles from young (2-6 months) and old (23-30 months) mice were subjected to tetanic contractile protocols in the presence and absence of external Ca(2+). Contractile experiments in the absence of external Ca(2+) show that about half of muscle fibres from old mice are dependent upon external Ca(2+) for maintaining maximal tetanic force output, while young fibres are not. Decreased force in the absence of external Ca(2+) was not due to changes in charge movement as revealed by whole-cell patch-clamp experiments. Ca(2+) transients, measured by fluo-4 fluorescence, declined in voltage-clamped fibres from old mice in the absence of external Ca(2+). Similarly, Ca(2+) transients declined in parallel with tetanic contractile force in single intact fibres. Examination of inward Ca(2+) current and of mRNA and protein assays suggest that these changes in EC coupling mode are not due to shifts in dihydropyridine receptor (DHPR) and/or ryanodine receptor (RyR) isoforms. These results indicate that a change in EC coupling mode occurs in a population of fibres in ageing skeletal muscle, and is responsible for the age-related dependence on extracellular Ca(2+).

  12. Effects of hypertonic dextrose on injured rat skeletal muscles.

    Science.gov (United States)

    Kunduracioglu, Burak; Ulkar, Bulent; Sabuncuoglu, Bizden T; Can, Belgin; Bayrakci, Kenan

    2006-04-01

    Histological examination of proliferative therapy effects on the healing process of muscular injury. We performed this study between March and August 2002 at Ankara University, School of Medicine, Laboratory of Animal Experiments, Ankara, Turkey. We used an experimental animal model by conducting a standardized cut injury of the gastrocnemius muscle in 30 adult male albino rats, which we divided into 2 groups; proliferative therapy group and control group. We evaluated the injured rat muscles by light microscopy on the fifth, eight, and twelfth day of injury. The muscular regeneration process began at day 5 in both the control and proliferative therapy groups. The proliferative therapy group revealed a prominent inflammatory reaction, fibroblast migration, and necrosis with accompanying regeneration and excessive connective tissue formation. We cannot consider proliferative therapy an appropriate treatment modality for muscular injuries, unless there is evidence of normal muscle physiology and biomechanics post traumatically.

  13. Ectopic development of skeletal muscle induced by subcutaneous transplant of rat satellite cells

    Directory of Open Access Journals (Sweden)

    M.G. Fukushima

    2005-03-01

    Full Text Available The present study analyzes the ectopic development of the rat skeletal muscle originated from transplanted satellite cells. Satellite cells (10(6 cells obtained from hindlimb muscles of newborn female 2BAW Wistar rats were injected subcutaneously into the dorsal area of adult male rats. After 3, 7, and 14 days, the transplanted tissues (N = 4-5 were processed for histochemical analysis of peripheral nerves, inactive X-chromosome and acetylcholinesterase. Nicotinic acetylcholine receptors (nAChRs were also labeled with tetramethylrhodamine-labeled alpha-bungarotoxin. The development of ectopic muscles was successful in 86% of the implantation sites. By day 3, the transplanted cells were organized as multinucleated fibers containing multiple clusters of nAChRs (N = 2-4, resembling those from non-innervated cultured skeletal muscle fibers. After 7 days, the transplanted cells appeared as a highly vascularized tissue formed by bundles of fibers containing peripheral nuclei. The presence of X chromatin body indicated that subcutaneously developed fibers originated from female donor satellite cells. Differently from the extensor digitorum longus muscle of adult male rat (87.9 ± 1.0 µm; N = 213, the diameter of ectopic fibers (59.1 µm; N = 213 did not obey a Gaussian distribution and had a higher coefficient of variation. After 7 and 14 days, the organization of the nAChR clusters was similar to that of clusters from adult innervated extensor digitorum longus muscle. These findings indicate the histocompatibility of rats from 2BAW colony and that satellite cells transplanted into the subcutaneous space of adult animals are able to develop and fuse to form differentiated skeletal muscle fibers.

  14. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao [Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Boston, MA 02114 (United States); Martyn, J.A. Jeevendra, E-mail: jmartyn@partners.org [Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical School, Boston, MA 02114 (United States)

    2013-02-01

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anesthetics have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.

  15. Leucine Protects Against Skeletal Muscle Atrophy in Lipopolysaccharide-Challenged Rats.

    Science.gov (United States)

    Wan, Jin; Chen, Daiwen; Yu, Bing; Luo, Yuheng; Mao, Xiangbing; Zheng, Ping; Yu, Jie; Luo, Junqiu; He, Jun

    2017-01-01

    Skeletal muscle atrophy is a decrease in muscle mass that occurs when protein degradation exceeds protein synthesis. Leucine (Leu), an essential branched-chain amino acid in animal nutrition, regulates skeletal muscle protein metabolism. Two experiments were conducted to evaluate whether Leu could alleviate lipopolysaccharide (LPS)-induced skeletal muscle wasting by modulating skeletal muscle protein synthesis and degradation. A total of 24 rats were randomly allocated into three groups (n = 8): (1) non-challenged control; (2) LPS-challenged control; and (3) LPS +3.0% Leu. Rats were fed with control or Leu-supplemented (part of the casein was replaced with 3.0% Leu) diets throughout the trial and were injected intraperitoneally with sterile saline or LPS at days 6, 11, 16, and 21. On the morning of day 22, serum samples were collected and rats were then sacrificed for liver and muscle analysis. In vitro protein degradation, nuclear factor-κB (NF-κB) activity, and proteolytic enzyme activities of the muscles from immune-challenged rats were also measured. Our results showed that the LPS challenge resulted in not only enhanced serum interleukin-1 and liver C-reactive protein (CRP) concentrations but also decreased the average daily body weight gain and muscle fiber diameter. However, dietary Leu inclusion attenuated the increase in CRP level and the decrease in muscle fiber diameter. Importantly, the LPS challenge caused a significant elevation in the muscle proteolysis rate, but dietary Leu supplementation significantly blocked the muscle proteolysis. The mRNA expression of NF-κB, muscle atrophy F-box (MAFbx), and muscle ring finger 1 (MuRF1) was upregulated by the LPS challenge in gastrocnemius muscles, but was downregulated by Leu supplementation. Interestingly, when muscles from the LPS-challenged rats were incubated with Leu in vitro, proteasome-, calpain-, and cathepsin-L-dependent muscle proteolysis and NF-κB activity were decreased. Collectively, the

  16. Effects of Hyperbaric Oxygen on Metabolic Capacity of the Skeletal Muscle in Type 2 Diabetic Rats with Obesity

    Directory of Open Access Journals (Sweden)

    Naoto Fujita

    2012-01-01

    Full Text Available We investigated whether hyperbaric oxygen enhances the oxidative metabolic capacity of the skeletal muscle and attenuates adipocyte hypertrophy in type 2 diabetic rats with obesity. Five-week-old male Otsuka Long-Evans Tokushima fatty (OLETF and Long-Evans Tokushima Otsuka (LETO rats were used as diabetic animals and nondiabetic controls, respectively, and assigned to control and hyperbaric oxygen groups. Animals in the hyperbaric oxygen group were exposed to an atmospheric pressure of 1.25 with an oxygen concentration of 36% for 3 h daily. The glucose level at 27 weeks of age was significantly higher in OLETF rats than in LETO rats, but the elevation was inhibited in OLETF rats exposed to hyperbaric oxygen. The slow-to-fast fiber transition in the skeletal muscle was observed in OLETF rats, but the shift was inhibited in OLETF rats exposed to hyperbaric oxygen. Additionally, the oxidative enzyme activity of muscle fibers was increased by hyperbaric oxygen. The adipocyte size was larger in OLETF rats than in LETO rats, but hypertrophied adipocytes were not observed in OLETF rats exposed to hyperbaric oxygen. Hyperbaric oxygen enhances glucose and lipid metabolism in the skeletal muscle, indicating that hyperbaric oxygen can prevent elevation of glucose and adipocyte hypertrophy in diabetic rats with obesity.

  17. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    Science.gov (United States)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  18. Influence of creatine supplementation on indicators of glucose metabolism in skeletal muscle of exercised rats

    Directory of Open Access Journals (Sweden)

    Michel Barbosa de Araújo

    2013-12-01

    Full Text Available The purpose of this study was to evaluate the effect of creatine supplementation in the diet on indicators of glucose metabolism in skeletal muscle of exercised rats. Forty Wistar adult rats were distributed into four groups for eight weeks: 1 Control: sedentary rats that received balanced diet; 2 Creatine control: sedentary rats that received supplementation of 2% creatine in the balanced diet; 3 Trained: rats that ran on a treadmill at the Maximal Lactate Steady State and received balanced diet; and 4 Supplemented-trained: rats that ran on a treadmill at the Maximal Lactate Steady State and received creatine supplementation (2% in the balanced diet. The hydric intake increased and the body weight gain decreased in the supplemented-trained group. In the soleus muscle, the glucose oxidation increased in both supplemented groups. The production of lactate and glycemia during glucose tolerance test decreased in the supplemented-trained group. Creatine supplementation in conjunction with exercise training improved muscular glycidic metabolism of rats.

  19. Charge Movement in a Fast Twitch Skeletal Muscle from Rat

    OpenAIRE

    Simon, B. J.; Beam, K. G.

    1983-01-01

    Voltage-dependent charge movement in the rat omohyoid muscle was investigated using the three microelectrode voltage clamp technique. The charge that moved during a depolarization from the holding potential (-90 mV) to the test potential, V, increased with increasing V, saturating around 0 mV. The charge vs. voltage relationship was well fitted by Q = Qmax/{1 + exp[-(V - V)/k]}, with Qmax = 28.5 nC/μF, V = -34.2 mV, and k = 8.7 mV. Repolarization of the fiber from the test potential back to t...

  20. Repeated static contractions increase mitochondrial vulnerability toward oxidative stress in human skeletal muscle

    DEFF Research Database (Denmark)

    Sahlin, Kent; Nielsen, Jens Steen; Mogensen, Martin

    2006-01-01

    +) kinetics in human muscle. Ten male subjects performed five bouts of static knee extension with 10-min rest in between. Each bout of RSC (target torque 66% of maximal voluntary contraction torque) was maintained to fatigue. Muscle biopsies were taken preexercise and 0.3 and 24 h postexercise from vastus......Repeated static contractions (RSC) induce large fluctuations in tissue oxygen tension and increase the generation of reactive oxygen species (ROS). This study investigated the effect of RSC on muscle contractility, mitochondrial respiratory function, and in vitro sarcoplasmic reticulum (SR) Ca(2......, decreased mitochondrial efficiency (phosphorylated ADP-to-oxygen consumed ratio), and increased noncoupled respiration (HPX/Con post- vs. preexercise). SR Ca(2+) uptake rate was lower 0.3 vs. 24 h postexercise, whereas SR Ca(2+) release rate was unchanged. RSC resulted in long-lasting changes in muscle...

  1. Significance of insulin for glucose metabolism in skeletal muscle during contractions

    DEFF Research Database (Denmark)

    Hespel, P; Vergauwen, Lieven; Vandenberghe, K

    1996-01-01

    is effected primarily via mechanisms exerted within the muscle cell related to the contractile activity per se. Yet contractions become a more potent stimulus of muscle glucose uptake as the plasma insulin level is increased. In addition, enhanced glucose delivery to muscle, which during exercise...... is essentially effected via increased blood flow, significantly contributes to stimulate glucose uptake. Again, however, increased glucose delivery appears to be a more potent stimulus of muscle glucose uptake as the circulating insulin level is increased. Furthermore, contractions and elevated flow prove...... to be additive stimuli of muscle glucose uptake at any plasma insulin level. In conclusion, the extent to which muscle glucose uptake is stimulated during exercise depends on various factors, including 1) the intensity of the contractile activity, 2) the magnitude of the exercise-associated increase in muscle...

  2. Charge movement in a fast twitch skeletal muscle from rat.

    Science.gov (United States)

    Simon, B J; Beam, K G

    1983-02-01

    Voltage-dependent charge movement in the rat omohyoid muscle was investigated using the three microelectrode voltage clamp technique. The charge that moved during a depolarization from the holding potential (-90 mV) to the test potential, V, increased with increasing V, saturating around 0 mV. The charge vs. voltage relationship was well fitted by Q = Q(max)/{1 + exp[-(V - V)/k]}, with Q(max) = 28.5 nC/muF, V = -34.2 mV, and k = 8.7 mV. Repolarization of the fiber from the test potential back to the holding potential caused an equal but opposite amount of charge to move. The kinetics of ON charge movement could be well described by a model developed for frog muscle by Horowicz and Schneider (1981b), which suggests that rat and frog charge movements are similar. This model failed to describe the kinetics of OFF charge movement for steps in potential from 0 mV to test potentials of -10 to -90 mV. OFF-charge movement rose to a peak more slowly and decayed more slowly than predicted by the theory.

  3. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Wataru Mizunoya

    Full Text Available Dietary fat plays a major role in obesity, lipid metabolism, and cardiovascular diseases. To determine whether the intake of different types of dietary fats affect the muscle fiber types that govern the metabolic and contractile properties of the skeletal muscle, we fed male Wistar rats with a 15% fat diet derived from different fat sources. Diets composed of soybean oil (n-6 polyunsaturated fatty acids (PUFA-rich, fish oil (n-3 PUFA-rich, or lard (low in PUFAs were administered to the rats for 4 weeks. Myosin heavy chain (MyHC isoforms were used as biomarkers to delineate the skeletal muscle fiber types. Compared with soybean oil intake, fish oil intake showed significantly lower levels of the fast-type MyHC2B and higher levels of the intermediate-type MyHC2X composition in the extensor digitorum longus (EDL muscle, which is a fast-type dominant muscle. Concomitantly, MyHC2X mRNA levels in fish oil-fed rats were significantly higher than those observed in the soybean oil-fed rats. The MyHC isoform composition in the lard-fed rats was an intermediate between that of the fish oil and soybean oil-fed rats. Mitochondrial uncoupling protein 3, pyruvate dehydrogenase kinase 4, and porin mRNA showed significantly upregulated levels in the EDL of fish oil-fed rats compared to those observed in soybean oil-fed and lard-fed rats, implying an activation of oxidative metabolism. In contrast, no changes in the composition of MyHC isoforms was observed in the soleus muscle, which is a slow-type dominant muscle. Fatty acid composition in the serum and the muscle was significantly influenced by the type of dietary fat consumed. In conclusion, dietary fat affects the expression of genes related to the contractile and metabolic properties in the fast-type dominant skeletal muscle, where the activation of oxidative metabolism is more pronounced after fish oil intake than that after soybean oil intake.

  4. Carnosine content in skeletal muscle is dependent on vitamin B6 status in rats

    Directory of Open Access Journals (Sweden)

    Sofya eSuidasari

    2016-01-01

    Full Text Available Carnosine, a histidine-containing dipeptide, is well known to be associated with skeletal muscle performance. However, there is limited information on the effect of dietary micronutrients on muscle carnosine level. Pyridoxal 5′-phosphate (PLP, the active form of vitamin B6, is involved in amino acid metabolisms in the body as a co-factor. We hypothesized that enzymes involved in β-alanine biosynthesis, the rate-limiting precursor of carnosine, may also be PLP-dependent. Thus, we examined the effects of dietary vitamin B6 on the muscle carnosine content of rats. Male and female rats were fed a diet containing 1, 7, or 35 mg pyridoxine HCl/kg for 6 weeks. Carnosine in skeletal muscles was quantified by ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS. In the gastrocnemius muscle of male rats, carnosine concentration was significantly higher in the 7 and 35 mg groups (+70% and +61%, respectively than in the 1 mg pyridoxine HCl/kg group, whereas that in the soleus muscle of male rats was significantly higher only in the 7 mg group (+43% than in the 1 mg pyridoxine HCl/kg group (P<0.05. In both muscles of female rats, carnosine concentration was significantly higher in the 7 and 35 mg groups (+32% ~ +226% than in the 1 mg pyridoxine HCl/kg group (P<0.05. We also found that compared to the 1 mg group, β-alanine concentrations in the 7 and 35 mg groups were markedly elevated in gastrocnemius muscles of male (+153% and +148%, respectively, P<0.05 and female (+381% and +437%, respectively, P<0.05 rats. Noteworthy, the concentrations of ornithine in the 7 and 35 mg groups were decreased in gastrocnemius muscles of male rats (−46% and −54%, respectively, P<0.05, which strongly inversely correlated with β-alanine concentration (r=−0.84, P<0.01. In humans, 19% lower muscle carnosine content was found in soleus muscle of women of the lower plasma PLP tertile, but this was not observed in gastrocnemius muscle

  5. Glucose-dependent insulinotropic polypeptide directly induces glucose transport in rat skeletal muscle.

    Science.gov (United States)

    Snook, Laelie A; Nelson, Emery M; Dyck, David J; Wright, David C; Holloway, Graham P

    2015-08-01

    Several gastrointestinal proteins have been identified to have insulinotropic effects, including glucose-dependent insulinotropic polypeptide (GIP); however, the direct effects of incretins on skeletal muscle glucose transport remain largely unknown. Therefore, the purpose of the current study was to examine the role of GIP on skeletal muscle glucose transport and insulin signaling in rats. Relative to a glucose challenge, a mixed glucose+lipid oral challenge increased circulating GIP concentrations, skeletal muscle Akt phosphorylation, and improved glucose clearance by ∼35% (P muscle preparation, GIP directly stimulated glucose transport and increased GLUT4 accumulation on the plasma membrane in the absence of insulin. Moreover, the ability of GIP to stimulate glucose transport was mitigated by the addition of the PI 3-kinase (PI3K) inhibitor wortmannin, suggesting that signaling through PI3K is required for these responses. We also provide evidence that the combined stimulatory effects of GIP and insulin on soleus muscle glucose transport are additive. However, the specific GIP receptor antagonist (Pro(3))GIP did not attenuate GIP-stimulated glucose transport, suggesting that GIP is not signaling through its classical receptor. Together, the current data provide evidence that GIP regulates skeletal muscle glucose transport; however, the exact signaling mechanism(s) remain unknown. Copyright © 2015 the American Physiological Society.

  6. Evaluation of skeletal muscle relaxant activity of aqueous extract of Nerium oleander flowers in Albino rats.

    Science.gov (United States)

    Tirumalasetti, Jayasree; Patel, Maulik; Shaikh, Ubedulla; Harini, K; Shankar, J

    2015-01-01

    Nerium oleander is traditionally used in various diseases because of its medicinal properties. One of its uses is in musculoskeletal disorder. The aim of the study was to evaluate the skeletal muscle relaxant activity of the aqueous extract of Nerium oleander flowers (AENOF) in albino rats in comparison with diazepam. A total of 20 Swiss albino rats aged 6-7 weeks, of either sex, weighing about 100-150 g, were taken, and after acute toxicity studies two different doses were selected. The animals were divided into four different groups. The first group was kept as the control (normal saline), second as the standard (diazepam) and the remaining two groups as Test I and Test II, and given different doses of the AENOF. Skeletal muscle relaxant activity (motor coordination) on Rotarod and locomotor activity on photoactometer was performed. Statistical analysis was carried out by using analysis of variance, followed by Dunnett's multiple comparison tests. The result from the Actophotometer test and Rotarod test showed that the extract of AENOF significantly reduced (P < 0.05) the motor coordination of the tested animals. Our data indicates that AENOF possesses skeletal muscle relaxant activities.

  7. Nitric oxide agents impair insulin-mediated signal transduction in rat skeletal muscle

    Directory of Open Access Journals (Sweden)

    Ragoobirsingh Dalip

    2006-05-01

    Full Text Available Abstract Background Evidence demonstrates that exogenously administered nitric oxide (NO can induce insulin resistance in skeletal muscle. We have investigated the modulatory effects of two NO donors, S-nitroso-N-acetyl-D, L-penicillamine (SNAP and S-nitrosoglutathione (GSNO on the early events in insulin signaling in rat skeletal myocytes. Results Skeletal muscle cells from 6–8 week old Sprague-Dawley rats were treated with SNAP or GSNO (25 ng/ml in the presence or absence of glucose (25 mM and insulin (100 nM. Cellular insulin receptor-β levels and tyrosine phosphorylation in IRS-1 were significantly reduced, while serine phosphorylation in IRS-1 was significantly increased in these cells, when compared to the insulin-stimulated control. Reversal to near normal levels was achieved using the NO scavenger, 2-(4-carboxyphenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO. Conclusion These data suggest that NO is a potent modulator of insulin-mediated signal transduction and may play a significant role in the pathogenesis of type 2 diabetes mellitus.

  8. Raloxifene prevents skeletal fragility in adult female Zucker Diabetic Sprague-Dawley rats.

    Science.gov (United States)

    Hill Gallant, Kathleen M; Gallant, Maxime A; Brown, Drew M; Sato, Amy Y; Williams, Justin N; Burr, David B

    2014-01-01

    Fracture risk in type 2 diabetes is increased despite normal or high bone mineral density, implicating poor bone quality as a risk factor. Raloxifene improves bone material and mechanical properties independent of bone mineral density. This study aimed to determine if raloxifene prevents the negative effects of diabetes on skeletal fragility in diabetes-prone rats. Adult Zucker Diabetic Sprague-Dawley (ZDSD) female rats (20-week-old, n = 24) were fed a diabetogenic high-fat diet and were randomized to receive daily subcutaneous injections of raloxifene or vehicle for 12 weeks. Blood glucose was measured weekly and glycated hemoglobin was measured at baseline and 12 weeks. At sacrifice, femora and lumbar vertebrae were harvested for imaging and mechanical testing. Raloxifene-treated rats had a lower incidence of type 2 diabetes compared with vehicle-treated rats. In addition, raloxifene-treated rats had blood glucose levels significantly lower than both diabetic vehicle-treated rats as well as vehicle-treated rats that did not become diabetic. Femoral toughness was greater in raloxifene-treated rats compared with both diabetic and non-diabetic vehicle-treated ZDSD rats, due to greater energy absorption in the post-yield region of the stress-strain curve. Similar differences between groups were observed for the structural (extrinsic) mechanical properties of energy-to-failure, post-yield energy-to-failure, and post-yield displacement. These results show that raloxifene is beneficial in preventing the onset of diabetes and improving bone material properties in the diabetes-prone ZDSD rat. This presents unique therapeutic potential for raloxifene in preserving bone quality in diabetes as well as in diabetes prevention, if these results can be supported by future experimental and clinical studies.

  9. SPRINT-INTERVAL TRAINING INDUCES HEAT SHOCK PROTEIN 72 IN RAT SKELETAL MUSCLES

    Directory of Open Access Journals (Sweden)

    Yuji Ogura

    2006-06-01

    Full Text Available Previous studies have demonstrated that endurance exercise training increases the level of heat shock proteins (HSPs in skeletal muscles. However, little attention has been drawn to the effects of high intensity-short duration exercise, or sprint- interval training (SIT on HSP72 level in rat skeletal muscles. This study performed to test the hypothesis that the SIT would induce the HSP72 in fast and slow skeletal muscles of rats. Young male Wistar rats (8 weeks old were randomly assigned to a control (CON or a SIT group (n = 8/group. Animals in the SIT group were trained (1 min/sprint, 6~10 sets/day and 5~6 days/week on a treadmill for 9 weeks. After the training period, HSP72 levels in the plantaris (fast and soleus (slow muscles were analyzed by Western blotting method. Enzyme activities (hexokinase, phosphofructokinase and citrate synthase and histochemical properties (muscle fiber type compositions and cross sectional area in both muscles were also determined. The SIT resulted in significantly (p < 0.05 higher levels of HSP72 in both the plantaris and soleus muscles compared to the CON group, with the plantaris producing a greater HSP72 increase than the soleus (plantaris; 550 ± 116%, soleus; 26 ± 8%, p < 0.05. Further, there were bioenergetic improvements, fast-to-slow shift of muscle fiber composition and hypertrophy in the type IIA fiber only in the plantaris muscle. These findings indicate that the SIT program increases HSP72 level of the rat hindlimb muscles, and the SIT-induced accumulation of HSP72 differs between fast and slow muscles

  10. Effects of anabolic/androgenic steroids on regenerating skeletal muscles in the rat.

    Science.gov (United States)

    Ferry, A; Noirez, P; Page, C L; Salah, I B; Daegelen, D; Rieu, M

    1999-06-01

    We have examined the effect of male sexual hormones on the regeneration of skeletal muscles. Degeneration/regeneration of the left soleus and extensor digitorum longus muscles (EDL) of Wistar male rats was induced by an injection of snake venom (2 microg, Notechis scutatus scutatus). During the muscle regeneration (25 days), rats were treated with either oil (CON), nandrolone (NAN), NAN combined with exercise (NAN + EXE) or were castrated (CAS). Muscle growth and myosin heavy chain (MyHC) isoform content of regenerating muscles were studied. Castration altered the concentrations of MyHC in venom-treated EDL (P 0.05). In conclusion, it is possible that male sexual hormones play a role in the growth (synthesis of contractile proteins) of regenerating muscles in rat. In addition, contrary to NAN + EXE, NAN could be beneficial to soleus regeneration.

  11. Motor Unit Changes Seen With Skeletal Muscle Sarcopenia in Oldest Old Rats

    Science.gov (United States)

    Kung, Theodore A.; van der Meulen, Jack H.; Urbanchek, Melanie G.; Kuzon, William M.; Faulkner, John A.

    2014-01-01

    Sarcopenia leads to many changes in skeletal muscle that contribute to atrophy, force deficits, and subsequent frailty. The purpose of this study was to characterize motor unit remodeling related to sarcopenia seen in extreme old age. Whole extensor digitorum longus muscle and motor unit contractile properties were measured in 19 adult (11–13 months) and 12 oldest old (36–37 months) Brown-Norway rats. Compared with adults, oldest old rats had significantly fewer motor units per muscle, smaller muscle cross-sectional area, and lower muscle specific force. However, mean motor unit force generation was similar between the two groups due to an increase in innervation ratio by the oldest old rats. These findings suggest that even in extreme old age both fast- and slow-twitch motor units maintain the ability to undergo motor unit remodeling that offsets some effects of sarcopenia. PMID:24077596

  12. The effect of high-fat--high-fructose diet on skeletal muscle mitochondrial energetics in adult rats.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Coppola, Paola; Mazzoli, Arianna; Cigliano, Luisa; Liverini, Giovanna; Iossa, Susanna

    2015-03-01

    To study the effect of isoenergetic administration to adult rats of high-fat or high-fat--high-fructose diet for 2 weeks on skeletal muscle mitochondrial energetic. Body and skeletal muscle composition, energy balance, plasma lipid profile and glucose tolerance were measured, together with mitochondrial functionality, oxidative stress and antioxidant defense. Rats fed high-fat--high-fructose diet exhibited significantly higher plasma triglycerides and non-esterified fatty acids, together with significantly higher plasma glucose and insulin response to glucose load. Skeletal muscle triglycerides and ceramide were significantly higher in rats fed high-fat--high-fructose diet. Skeletal muscle mitochondrial energetic efficiency and uncoupling protein 3 content were significantly higher, while adenine nucleotide translocase content was significantly lower, in rats fed high-fat or high-fat--high-fructose diet. The results suggest that a high-fat--high-fructose diet even without hyperphagia is able to increase lipid flow to skeletal muscle and mitochondrial energetic efficiency, with two detrimental effects: (a) energy sparing that contributes to the early onset of obesity and (b) reduced oxidation of fatty acids and lipid accumulation in skeletal muscle, which could generate insulin resistance.

  13. Impaired exercise performance and skeletal muscle mitochondrial function in rats with secondary carnitine deficiency

    Directory of Open Access Journals (Sweden)

    Jamal BOUITBIR

    2016-08-01

    Full Text Available Purpose: The effects of carnitine depletion upon exercise performance and skeletal muscle mitochondrial function remain largely unexplored. We therefore investigated the effect of N-trimethyl-hydrazine-3-propionate (THP, a carnitine analogue inhibiting carnitine biosynthesis and renal carnitine reabsorption, on physical performance and skeletal muscle mitochondrial function in rats.Methods: Male Sprague Dawley rats were treated daily with water (control rats; n=12 or with 20 mg/100 g body weight THP (n=12 via oral gavage for 3 weeks. Following treatment, half of the animals of each group performed an exercise test until exhaustion.Results: Distance covered and exercise performance were lower in THP-treated compared to control rats. In the oxidative soleus muscle, carnitine depletion caused atrophy (-24% and impaired function of complex II and IV of the mitochondrial electron transport chain. The free radical leak (ROS production relative to oxygen consumption was increased and the cellular glutathione pool decreased. Moreover, mRNA expression of markers of mitochondrial biogenesis and mitochondrial DNA were decreased in THP-treated compared to control rats. In comparison, in the glycolytic gastrocnemius muscle, carnitine depletion was associated with impaired function of complex IV and increased free radical leak, whilst muscle weight and cellular glutathione pool were maintained. Markers of mitochondrial proliferation and mitochondrial DNA were unaffected.Conclusions: Carnitine deficiency is associated with impaired exercise capacity in rats treated with THP. THP-induced carnitine deficiency is associated with impaired function of the electron transport chain in oxidative and glycolytic muscle as well as with atrophy and decreased mitochondrial DNA in oxidative muscle.

  14. Statin or fibrate chronic treatment modifies the proteomic profile of rat skeletal muscle.

    Science.gov (United States)

    Camerino, Giulia Maria; Pellegrino, Maria Antonietta; Brocca, Lorenza; Digennaro, Claudio; Camerino, Diana Conte; Pierno, Sabata; Bottinelli, Roberto

    2011-04-15

    Statins and fibrates can cause myopathy. To further understand the causes of the damage we performed a proteome analysis in fast-twitch skeletal muscle of rats chronically treated with different hypolipidemic drugs. The proteomic maps were obtained from extensor digitorum longus (EDL) muscles of rats treated for 2-months with 10mg/kg atorvastatin, 20 mg/kg fluvastatin, 60 mg/kg fenofibrate and control rats. The proteins differentially expressed were identified by mass spectrometry and further analyzed by immunoblot analysis. We found a significant modification in 40 out of 417 total spots analyzed in atorvastatin treated rats, 15 out of 436 total spots in fluvastatin treated rats and 21 out of 439 total spots in fenofibrate treated rats in comparison to controls. All treatments induced a general tendency to a down-regulation of protein expression; in particular, atorvastatin affected the protein pattern more extensively with respect to the other treatments. Energy production systems, both oxidative and glycolytic enzymes and creatine kinase, were down-regulated following atorvastatin administration, whereas fenofibrate determined mostly alterations in glycolytic enzymes and creatine kinase, oxidative enzymes being relatively spared. Additionally, all treatments resulted in some modifications of proteins involved in cellular defenses against oxidative stress, such as heat shock proteins, and of myofibrillar proteins. These results were confirmed by immunoblot analysis. In conclusions, the proteomic analysis showed that either statin or fibrate administration can modify the expression of proteins essential for skeletal muscle function suggesting potential mechanisms for statin myopathy. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Exercise-induced attenuation of obesity, hyperinsulinemia, and skeletal muscle lipid peroxidation in the OLETF rat.

    Science.gov (United States)

    Morris, R Tyler; Laye, Matthew J; Lees, Simon J; Rector, R Scott; Thyfault, John P; Booth, Frank W

    2008-03-01

    The Otsuka Long-Evans Tokushima fatty (OLETF) rat is a model of hyperphagic obesity in which the animals retain the desire to run voluntarily. Running wheels were provided for 4-wk-old OLETF rats for 16 wk before they were killed 5 h (WL5), 53 h (WL53), or 173 h (WL173) after the wheels were locked. Sedentary (SED) OLETF rats that were not given access to running wheels served as age-matched cohorts. Epididymal fat pad mass, adipocyte volume, and adipocyte number were 58%, 39%, and 47% less, respectively, in WL5 than SED rats. Contrary to cessation of daily running in Fischer 344 x Brown Norway rats, epididymal fat did not increase during the first 173 h of running cessation in the OLETF runners. Serum insulin and glucose levels were 77% and 29% less, respectively, in WL5 than SED rats. Oil red O staining for intramyocellular lipid accumulation was not statistically different among groups. However, lipid peroxidation levels, as determined by total trans-4-hydroxy-2-nonenal (4-HNE) and 4-HNE normalized to oil red O, was higher in epitrochlearis muscles of SED than WL5, WL53, and WL173 rats. mRNA levels of glutathione S-transferase-alpha type 4, an enzyme involved in cellular defense against electrophilic compounds such as 4-HNE, were higher in epitrochlearis muscle of WL53 than WL173 and SED rats. In contrast, 4-HNE levels in omental fat were unaltered. Epitrochlearis muscle palmitate oxidation and relative transcript levels for peroxisome proliferator-activated receptor-delta and peroxisome proliferator-activated receptor-gamma coactivator type 1 were surprisingly not different between runners and SED rats. In summary, voluntary running was associated with lower levels of lipid peroxidation in skeletal muscle without significant changes in intramyocellular lipids or mitochondrial markers in OLETF rats at 20 wk of age. Therefore, even in a genetic animal model of extreme overeating, daily physical activity promotes improved health of skeletal muscle.

  16. Nitric oxide and Na,K-ATPase activity in rat skeletal muscle

    DEFF Research Database (Denmark)

    Juel, Carsten

    2016-01-01

    activity was depressed by oxidized glutathione. Conclusion: NO and cGMP stimulate the Na,K-ATPase in glycolytic skeletal muscle. Direct S-nitrosylation and interference with S-glutathionylation seem to be excluded. In addition, phosphorylation of phospholemman at serine 68 is not involved. Most likely......Aim: It has been suggested that nitric oxide (NO) stimulates the Na,K-ATPase in cardiac myocytes. Therefore, the aims of this study were to investigate whether NO increases Na,K-ATPase activity in skeletal muscle and, if that is the case, to identify the underlying mechanism. Method: The study used...... isolated rat muscle, muscle homogenates and purified membranes as model systems. Na,K-ATPase activity was quantified from phosphate release due to ATP hydrolysis. Results: Exposure to the NO donor spermine NONOate (10 μm) increased the maximal Na,K-ATPase activity by 27% in isolated glycolytic muscles...

  17. Gestational Protein Restriction in Wistar Rats; Effect of Taurine Supplementation on Properties of Newborn Skeletal Muscle

    DEFF Research Database (Denmark)

    Larsen, Lea Hüche; Sandø-Pedersen, Sofie; Ørstrup, Laura Kofoed Hvidsten

    2017-01-01

    by taurine supplementation (LP-Tau). LP-Tau offspring had significantly lower birth weight compared to controls. Gene expression profiling revealed 895 significantly changed genes, mainly an LP-induced down-regulation of genes involved in protein translation. Taurine fully or partially rescued 32......Taurine ameliorates changes occurring in newborn skeletal muscle as a result of gestational protein restriction in C57BL/6 mice, but taurine supplementation effects may be exaggerated in C57BL/6 mice due to their inherent excessive taurinuria.We examined if maternal taurine supplementation could...... ameliorate changes in gene expression levels, properties of mitochondria, myogenesis, and nutrient transport and sensing, in male newborn skeletal muscle caused by a maternal low protein (LP) diet in Wistar rats.LP diet resulted in an 11% non-significant decrease in birth weight, which was not rescued...

  18. Sildenafil citrate protects skeletal muscle of ischemia-reperfusion injury: immunohistochemical study in rat model

    Directory of Open Access Journals (Sweden)

    Dinani Matoso Fialho de Oliveira Armstrong

    2013-04-01

    Full Text Available PURPOSE: To investigate the effect of sildenafil citrate (SC on skeletal muscle ischemia-reperfusion (IR injury in rats. METHODS: Adult male Wistar rats were randomized into three groups: vehicle-treated control (CTG, sildenafil citrate-treated (SCG, and sham group (SG. CTG and SCG had femoral artery occluded for 6 hours. Saline or 1 mg/kg of SC was given 5.5 hours after occlusion. SG had a similar procedure without artery occlusion. Soleus muscle samples were acquired 4 or 24h after the reperfusion. Immunohistochemistry caspase-3 analysis was used to estimate apoptosis using the apoptotic ratio (computed as positive/negative cells. Wilcoxon rank-sum or Kruskal-Wallis tests were used to assess differences among groups. RESULTS: Eighteen animals were included in the 4h reperfusion groups and 21 animals in the 24h reperfusion groups. The mean apoptotic ratio was 0.18±0.1 for the total cohort; 0.14±0.06 for the 4h reperfusion groups and 0.19±0.08 for the 24h groups (p<0.05. The SCG had lower caspase-3 ratio compared to the control groups at the 24h reperfusion time point (p<0.05. CONCLUSION: Sildenafil citrate administration after the onset of the ischemic injury reduces IR-induced cellular damage in skeletal muscle in this rat hindlimb ischemia model.

  19. Colchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation

    Directory of Open Access Journals (Sweden)

    Liangrong Wang

    2016-06-01

    Full Text Available Objective(s: Neutrophils play an important role in ischemia/reperfusion (IR induced skeletal muscle injury. Microtubules are required for neutrophil activation in response to various stimuli. This study aimed to investigate the effects of colchicine, a microtubule-disrupting agent, on skeletal muscle IR injury in a rat hindlimb ischemia model. Materials and Methods: Twenty-one Sprague-Dawley rats were randomly allocated into three groups: IR group, colchicine treated-IR (CO group and sham operation (SM group. Rats of both the IR and CO groups were subjected to 3 hr of ischemia by clamping the right femoral artery followed by 2 hr of reperfusion. Colchicine (1 mg/kg was administrated intraperitoneally prior to hindlimb ischemia in the CO group. After 2 hr of reperfusion, we measured superoxide dismutase (SOD and myeloperoxidase (MPO activities, and malondialdehyde (MDA, tumor necrosis factor (TNF-α and interleukin (IL-1β levels in the muscle samples. Plasma creatinine kinase (CK and lactate dehydrogenase (LDH levels were measured. We also evaluated the histological damage score and wet/dry weight (W/D ratio. Results: The histological damage score, W/D ratio, MPO activity, MDA, TNF-α and IL-1β levels in muscle tissues were significantly increased, SOD activity was decreased, and plasma CK and LDH levels were remarkably elevated in both the IR and CO groups compared to the SM group (P

  20. Maternal bisphenol A exposure alters rat offspring hepatic and skeletal muscle insulin signaling protein abundance.

    Science.gov (United States)

    Galyon, Kristina D; Farshidi, Farnoosh; Han, Guang; Ross, Michael G; Desai, Mina; Jellyman, Juanita K

    2017-03-01

    The obesogenic and diabetogenic effects of the environmental toxin bisphenol A during critical windows of development are well recognized. Liver and skeletal muscle play a central role in the control of glucose production, utilization, and storage. We hypothesized that maternal bisphenol A exposure disrupts insulin signaling in rat offspring liver and skeletal muscle. We determined the protein expression of hepatic and skeletal muscle insulin signaling molecules including insulin receptor beta, its downstream target insulin receptor substrate 1 and glucose transporters (glucose transporter 2, glucose transporter 4), and hepatic glucose-regulating enzymes phosphoenolpyruvate carboxykinase and glucokinase. Rat dams had ad libitum access to filtered drinking water (control) or drinking water with bisphenol A from 2 weeks prior to mating and through pregnancy and lactation. Offspring litters were standardized to 4 males and 4 females and nursed by the same dam. At weaning, bisphenol A exposure was removed from all offspring. Glucose tolerance was tested at 6 weeks and 6 months. Liver and skeletal muscle was collected from 3 week old and 10 month old offspring for protein expression (Western blot) of insulin receptor beta, insulin receptor substrate 1, glucose transporter 2, glucose transporter 4, phosphoenolpyruvate carboxykinase, and glucokinase. Male, but not female, bisphenol A offspring had impaired glucose tolerance at 6 weeks and 6 months. Both male and female adult offspring had higher glucose-stimulated insulin secretion as well as the ratio of stimulated insulin to glucose. Male bisphenol A offspring had higher liver protein abundance of the 200 kDa insulin receptor beta precursor (2-fold), and insulin receptor substrate 1 (1.5-fold), whereas glucose transporter 2 was 0.5-fold of the control at 3 weeks of age. In adult male bisphenol A offspring, the abundance of insulin receptor beta was higher (2-fold) and glucose transporter 4 was 0.8-fold of the control in

  1. Indomethacin induces rat uterine contractions in vitro and alters reactivity to calcium and acetylcholine

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, J.L.; Nesbitt, D.; Gaspar, M.J.; Ellis, L.C.

    1976-01-01

    The initial contractions of uteri in vitro from castrated, estrogen-treated rats were markedly diminished following replacement with fresh bathing medium. Indomethacin and aspirin (10/sup -5/ to 10/sup -4/M) strongly stimulated such quiescent preparations and reduced their subsequent responsiveness to Ca/sup + +/. Reintroducing the initial bathing medium (which contained prostaglandin-like material), or adding prostaglandin F/sub 2//sub alpha/ to the fresh medium, initiated uterine contractions and restored responsiveness to calcium ion. Injections of indomethacin into castrated, estrogen-treated rats reduced initial in vitro uterine motility, abolished production of prostaglandin-like compounds, and prevented either indomethacin, aspirin, or Ca/sup + +/ from stimulating uterine contractions. Uterine responsiveness to acetylcholine in vitro was significantly reduced in rats pretreated with indomethacin.

  2. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ploug, T; Stallknecht, B M; Pedersen, O

    1990-01-01

    exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training...... session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold...... number of glucose transporters....

  3. A Ca2+-calmodulin-eEF2K-eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions

    DEFF Research Database (Denmark)

    Rose, Adam John; Alsted, Thomas Junker; Jensen, Thomas Elbenhardt

    2009-01-01

    Skeletal muscle protein synthesis rate decreases during contractions but the underlying regulatory mechanisms are poorly understood. It was hypothesised that there would be a coordinated regulation of eukaryotic elongation factor 2 (eEF2) and eukaryotic initiation factor 4E-binding protein 1 (4EBP1......-turnover related mechanisms. Furthermore, eEF2 kinase inhibition completely blunted increases in eEF2 phosphorylation and partially blunted (i.e. 30-40%) the suppression of protein synthesis during contractions. The 3-5 fold increase in skeletal muscle eEF2 phosphorylation during contractions in situ was rapid......) phosphorylation by signalling cascades downstream of rises in intracellular [Ca(2+)] and decreased energy charge via AMP activated protein kinase (AMPK) in contracting skeletal muscle. When fast-twitch skeletal muscles were contracted ex vivo using different protocols, the suppression of protein synthesis...

  4. Pterostilbene improves glycaemic control in rats fed an obesogenic diet: involvement of skeletal muscle and liver.

    Science.gov (United States)

    Gómez-Zorita, S; Fernández-Quintela, A; Aguirre, L; Macarulla, M T; Rimando, A M; Portillo, M P

    2015-06-01

    This study aims to determine whether pterostilbene improves glycaemic control in rats showing insulin resistance induced by an obesogenic diet. Rats were divided into 3 groups: the control group and two groups treated with either 15 mg kg(-1) d(-1) (PT15) or 30 mg kg(-1) d(-1) of pterostilbene (PT30). HOMA-IR was decreased in both pterostilbene-treated groups, but this reduction was greater in the PT15 group (-45% and -22% respectively vs. the control group). The improvement of glycaemic control was not due to a delipidating effect of pterostilbene on skeletal muscle. In contrast, GLUT4 protein expression was increased (+58% and +52% vs. the control group), suggesting an improved glucose uptake. The phosphorylated-Akt/total Akt ratio was significantly enhanced in the PT30 group (+25%), and therefore a more efficient translocation of GLUT4 is likely. Additionally, in this group the amount of cardiotrophin-1 was significantly increased (+65%). These data suggest that the effect of pterostilbene on Akt is mediated by this cytokine. In the liver, glucokinase activity was significantly increased only in the PT15 group (+34%), and no changes were observed in glucose-6-phosphatase activity. The beneficial effect of pterostilbene on glycaemic control was more evident with the lower dose, probably because in the PT15 group both the muscle and the liver were contributing to this effect, but in the PT30 group only the skeletal muscle was responsible. In conclusion, pterostilbene improves glycaemic control in rats showing insulin resistance induced by an obesogenic diet. An increase in hepatic glucokinase activity, as well as in skeletal muscle glucose uptake, seems to be involved in the anti-diabetic effect of this phenolic compound.

  5. Chronic alcohol ingestion exacerbates skeletal muscle myopathy in HIV-1 transgenic rats

    Directory of Open Access Journals (Sweden)

    Bratina Margaux A

    2011-08-01

    Full Text Available Abstract Background Separately, chronic alcohol ingestion and HIV-1 infection are associated with severe skeletal muscle derangements, including atrophy and wasting, weakness, and fatigue. One prospective cohort study reported that 41% of HIV-infected patients met the criteria for alcoholism, however; few reports exist on the co-morbid effects of these two disease processes on skeletal muscle homeostasis. Thus, we analyzed the atrophic effects of chronic alcohol ingestion in HIV-1 transgenic rats and identified alterations to several catabolic and anabolic factors. Findings Relative plantaris mass, total protein content, and fiber cross-sectional area were reduced in each experimental group compared to healthy, control-fed rats. Alcohol abuse further reduced plantaris fiber area in HIV-1 transgenic rats. Consistent with previous reports, gene levels of myostatin and its receptor activin IIB were not increased in HIV-1 transgenic rat muscle. However, myostatin and activin IIB were induced in healthy and HIV-1 transgenic rats fed alcohol for 12 weeks. Catabolic signaling factors such as TGFβ1, TNFα, and phospho-p38/total-p38 were increased in all groups compared to controls. There was no effect on IL-6, leukemia inhibitory factor (LIF, cardiotrophin-1 (CT-1, or ciliary neurotrophic factor (CNTF in control-fed, transgenic rats. However, the co-morbidity of chronic alcohol abuse and HIV-1-related protein expression decreased expression of the two anabolic factors, CT-1 and CNTF. Conclusions Consistent with previous reports, alcohol abuse accentuated skeletal muscle atrophy in an animal model of HIV/AIDS. While some catabolic pathways known to drive alcoholic or HIV-1-associated myopathies were also elevated in this co-morbid model (e.g., TGFβ1, consistent expression patterns were not apparent. Thus, specific alterations to signaling mechanisms such as the induction of the myostatin/activin IIB system or reductions in growth factor signaling via

  6. Skeletal muscle collagen content in humans after high-force eccentric contractions

    DEFF Research Database (Denmark)

    Mackey, Abigail; Donnelly, Alan E; Turpeenniemi-Hujanen, Taina

    2004-01-01

    4) yr] each performed a bout of 100 maximum voluntary eccentric contractions of the knee extensors. Muscle biopsies were taken before exercise and on days 4 and 22 afterward. Image analysis of stained tissue sections was used to quantify endomysial collagen staining intensity. Maximum voluntary...... contractile isometric force was recorded preexercise and on days 1, 2, 3, 4, 8, 11, and 14 postexercise. Venipuncture blood samples were also drawn on these days for measurement of serum creatine kinase activity and concentrations of MMP-9, TIMP-1, TIMP-2, and the MMP-2/TIMP-2 complex. Maximum voluntary...... contractile force declined by 39 +/- 23% (mean +/- SD) on day 2 postexercise and recovered thereafter. Serum creatine kinase activity peaked on day 4 postexercise (P day 22 postexercise to 126 +/- 29% (mean +/- SD) of preexercise values...

  7. Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle

    DEFF Research Database (Denmark)

    Holm, Lars; van Hall, Gerrit; Rose, Adam

    2010-01-01

    with the fasting condition. The Rp-s6k-4E-binding protein-1 (BP1) and the mitogen-activated protein kinase (MAPk) pathways were activated by the HL intensity and were suggested to be responsible for regulating myofibrillar FSR in response to adequate contractile activity. Feeding predominantly affected Rp-s6k...... to contractile activity, whereas elongation mainly was found to respond to feeding. Furthermore, although functionally linked, the contractile and the supportive matrix structures upregulate their protein synthesis rate quite differently in response to feeding and contractile activity and intensity.......Exercise stimulates muscle protein fractional synthesis rate (FSR), but the importance of contractile intensity and whether it interplays with feeding is not understood. This was investigated following two distinct resistance exercise (RE) contraction intensities using an intrasubject design...

  8. Soy β-conglycinin improves glucose uptake in skeletal muscle and ameliorates hepatic insulin resistance in Goto-Kakizaki rats.

    Science.gov (United States)

    Tachibana, Nobuhiko; Yamashita, Yoko; Nagata, Mayuko; Wanezaki, Satoshi; Ashida, Hitoshi; Horio, Fumihiko; Kohno, Mitsutaka

    2014-02-01

    Although the underlying mechanism is unclear, β-conglycinin (βCG), the major component of soy proteins, regulates blood glucose levels. Here, we hypothesized that consumption of βCG would normalize blood glucose levels by ameliorating insulin resistance and stimulating glucose uptake in skeletal muscles. To test our hypothesis, we investigated the antidiabetic action of βCG in spontaneously diabetic Goto-Kakizaki (GK) rats. Our results revealed that plasma adiponectin levels and adiponectin receptor 1 messenger RNA expression in skeletal muscle were higher in βCG-fed rats than in casein-fed rats. Phosphorylation of adenosine monophosphate-activated protein kinase (AMP kinase) but not phosphatidylinositol-3 kinase was activated in βCG-fed GK rats. Subsequently, βCG increased translocation of glucose transporter 4 to the plasma membrane. Unlike the results in skeletal muscle, the increase in adiponectin receptor 1 did not lead to AMP kinase activation in the liver of βCG-fed rats. The down-regulation of sterol regulatory element-binding factor 1, which is induced by low insulin levels, promoted the increase in hepatic insulin receptor substrate 2 expression. Based on these findings, we concluded that consumption of soy βCG improves glucose uptake in skeletal muscle via AMP kinase activation and ameliorates hepatic insulin resistance and that these actions may help normalize blood glucose levels in GK rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Effect of HIV-1-related protein expression on cardiac and skeletal muscles from transgenic rats

    Directory of Open Access Journals (Sweden)

    Guidot David M

    2008-04-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 infection and the consequent acquired immunodeficiency syndrome (AIDS has protean manifestations, including muscle wasting and cardiomyopathy, which contribute to its high morbidity. The pathogenesis of these myopathies remains partially understood, and may include nutritional deficiencies, biochemical abnormalities, inflammation, and other mechanisms due to viral infection and replication. Growing evidence has suggested that HIV-1-related proteins expressed by the host in response to viral infection, including Tat and gp120, may also be involved in the pathophysiology of AIDS, particularly in cells or tissues that are not directly infected with HIV-1. To explore the potentially independent effects of HIV-1-related proteins on heart and skeletal muscles, we used a transgenic rat model that expresses several HIV-1-related proteins (e.g., Tat, gp120, and Nef. Outcome measures included basic heart and skeletal muscle morphology, glutathione metabolism and oxidative stress, and gene expressions of atrogin-1, muscle ring finger protein-1 (MuRF-1 and Transforming Growth Factor-β1 (TGFβ1, three factors associated with muscle catabolism. Results Consistent with HIV-1 associated myopathies in humans, HIV-1 transgenic rats had increased relative heart masses, decreased relative masses of soleus, plantaris and gastrocnemius muscles, and decreased total and myosin heavy chain type-specific plantaris muscle fiber areas. In both tissues, the levels of cystine (Cyss, the oxidized form of the anti-oxidant cysteine (Cys, and Cyss:Cys ratios were significantly elevated, and cardiac tissue from HIV-1 transgenic rats had altered glutathione metabolism, all reflective of significant oxidative stress. In HIV-1 transgenic rat hearts, MuRF-1 gene expression was increased. Further, HIV-1-related protein expression also increased atrogin-1 (~14- and ~3-fold and TGFβ1 (~5-fold and ~3-fold in heart and

  10. Niacin in pharmacological doses alters microRNA expression in skeletal muscle of obese Zucker rats.

    Directory of Open Access Journals (Sweden)

    Aline Couturier

    Full Text Available Administration of pharmacological niacin doses was recently reported to have pronounced effects on skeletal muscle gene expression and phenotype in obese Zucker rats, with the molecular mechanisms underlying the alteration of gene expression being completely unknown. Since miRNAs have been shown to play a critical role for gene expression through inducing miRNA-mRNA interactions which results in the degradation of specific mRNAs or the repression of protein translation, we herein aimed to investigate the influence of niacin at pharmacological doses on the miRNA expression profile in skeletal muscle of obese Zucker rats fed either a control diet with 30 mg supplemented niacin/kg diet or a high-niacin diet with 780 mg supplemented niacin/kg diet for 4 wk. miRNA microarray analysis revealed that 42 out of a total of 259 miRNAs were differentially expressed (adjusted P-value <0.05, 20 being down-regulated and 22 being up-regulated, between the niacin group and the control group. Using a biostatistics approach, we could demonstrate that the most strongly up-regulated (log2 ratio ≥0.5 and down-regulated (log2 ratio ≤-0.5 miRNAs target approximately 1,800 mRNAs. Gene-term enrichment analysis showed that many of the predicted target mRNAs from the most strongly regulated miRNAs were involved in molecular processes dealing with gene transcription such as DNA binding, transcription regulator activity, transcription factor binding and in important regulatory pathways such as Wnt signaling and MAPK signaling. In conclusion, the present study shows for the first time that pharmacological niacin doses alter the expression of miRNAs in skeletal muscle of obese Zucker rats and that the niacin-regulated miRNAs target a large set of genes and pathways which are involved in gene regulatory activity indicating that at least some of the recently reported effects of niacin on skeletal muscle gene expression and phenotype in obese Zucker rats are mediated through

  11. Niacin in pharmacological doses alters microRNA expression in skeletal muscle of obese Zucker rats.

    Science.gov (United States)

    Couturier, Aline; Keller, Janine; Most, Erika; Ringseis, Robert; Eder, Klaus

    2014-01-01

    Administration of pharmacological niacin doses was recently reported to have pronounced effects on skeletal muscle gene expression and phenotype in obese Zucker rats, with the molecular mechanisms underlying the alteration of gene expression being completely unknown. Since miRNAs have been shown to play a critical role for gene expression through inducing miRNA-mRNA interactions which results in the degradation of specific mRNAs or the repression of protein translation, we herein aimed to investigate the influence of niacin at pharmacological doses on the miRNA expression profile in skeletal muscle of obese Zucker rats fed either a control diet with 30 mg supplemented niacin/kg diet or a high-niacin diet with 780 mg supplemented niacin/kg diet for 4 wk. miRNA microarray analysis revealed that 42 out of a total of 259 miRNAs were differentially expressed (adjusted P-value niacin group and the control group. Using a biostatistics approach, we could demonstrate that the most strongly up-regulated (log2 ratio ≥0.5) and down-regulated (log2 ratio ≤-0.5) miRNAs target approximately 1,800 mRNAs. Gene-term enrichment analysis showed that many of the predicted target mRNAs from the most strongly regulated miRNAs were involved in molecular processes dealing with gene transcription such as DNA binding, transcription regulator activity, transcription factor binding and in important regulatory pathways such as Wnt signaling and MAPK signaling. In conclusion, the present study shows for the first time that pharmacological niacin doses alter the expression of miRNAs in skeletal muscle of obese Zucker rats and that the niacin-regulated miRNAs target a large set of genes and pathways which are involved in gene regulatory activity indicating that at least some of the recently reported effects of niacin on skeletal muscle gene expression and phenotype in obese Zucker rats are mediated through miRNA-mRNA interactions.

  12. High-phosphorus diet maximizes and low-dose calcitriol attenuates skeletal muscle changes in long-term uremic rats.

    Science.gov (United States)

    Acevedo, Luz M; López, Ignacio; Peralta-Ramírez, Alan; Pineda, Carmen; Chamizo, Verónica E; Rodríguez, Mariano; Aguilera-Tejero, Escolástico; Rivero, José-Luis L

    2016-05-01

    Although disorders of mineral metabolism and skeletal muscle are common in chronic kidney disease (CKD), their potential relationship remains unexplored. Elevations in plasma phosphate, parathyroid hormone, and fibroblastic growth factor 23 together with decreased calcitriol levels are common features of CKD. High-phosphate intake is a major contributor to progression of CKD. This study was primarily aimed to determine the influence of high-phosphate intake on muscle and to investigate whether calcitriol supplementation counteracts negative skeletal muscle changes associated with long-term uremia. Proportions and metabolic and morphological features of myosin-based muscle fiber types were assessed in the slow-twitch soleus and the fast-twitch tibialis cranialis muscles of uremic rats (5/6 nephrectomy, Nx) and compared with sham-operated (So) controls. Three groups of Nx rats received either a standard diet (0.6% phosphorus, Nx-Sd), or a high-phosphorus diet (0.9% phosphorus, Nx-Pho), or a high-phosphorus diet plus calcitriol (10 ng/kg 3 day/wk ip, Nx-Pho + Cal) for 12 wk. Two groups of So rats received either a standard diet or a high-phosphorus diet (So-Pho) over the same period. A multivariate analysis encompassing all fiber-type characteristics indicated that Nx-Pho + Cal rats displayed skeletal muscle phenotypes intermediate between Nx-Pho and So-Pho rats and that uremia-induced skeletal muscle changes were of greater magnitude in Nx-Pho than in Nx-Sd rats. In uremic rats, treatment with calcitriol preserved fiber-type composition, cross-sectional size, myonuclear domain size, oxidative capacity, and capillarity of muscle fibers. These data demonstrate that a high-phosphorus diet potentiates and low-dose calcitriol attenuates adverse skeletal muscle changes in long-term uremic rats. Copyright © 2016 the American Physiological Society.

  13. Caffeine at a Moderate Dose Did Not Affect the Skeletal System of Rats with Streptozotocin-Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Joanna Folwarczna

    2017-10-01

    Full Text Available Diabetes may lead to the development of osteoporosis. Coffee drinking, apart from its health benefits, is taken into consideration as an osteoporosis risk factor. Data from human and animal studies on coffee and caffeine bone effects are inconsistent. The aim of the study was to investigate effects of caffeine at a moderate dose on the skeletal system of rats in two models of experimental diabetes induced by streptozotocin. Effects of caffeine administered orally (20 mg/kg aily for four weeks were investigated in three-month-old female Wistar rats, which, two weeks before the start of caffeine administration, received streptozotocin (60 mg/kg, intraperitoneally alone or streptozotocin after nicotinamide (230 mg/kg, intraperitoneally. Bone turnover markers, mass, mineral density, histomorphometric parameters, and mechanical properties were examined. Streptozotocin induced diabetes, with profound changes in the skeletal system due to increased bone resorption and decreased bone formation. Although streptozotocin administered after nicotinamide induced slight increases in glucose levels at the beginning of the experiment only, slight, but significant unfavorable changes in the skeletal system were demonstrated. Administration of caffeine did not affect the investigated skeletal parameters of rats with streptozotocin-induced disorders. In conclusion, caffeine at a moderate dose did not exert a damaging effect on the skeletal system of diabetic rats.

  14. Caffeine at a Moderate Dose Did Not Affect the Skeletal System of Rats with Streptozotocin-Induced Diabetes.

    Science.gov (United States)

    Folwarczna, Joanna; Janas, Aleksandra; Cegieła, Urszula; Pytlik, Maria; Śliwiński, Leszek; Matejczyk, Magdalena; Nowacka, Anna; Rudy, Karolina; Krivošíková, Zora; Štefíková, Kornélia; Gajdoš, Martin

    2017-10-30

    Diabetes may lead to the development of osteoporosis. Coffee drinking, apart from its health benefits, is taken into consideration as an osteoporosis risk factor. Data from human and animal studies on coffee and caffeine bone effects are inconsistent. The aim of the study was to investigate effects of caffeine at a moderate dose on the skeletal system of rats in two models of experimental diabetes induced by streptozotocin. Effects of caffeine administered orally (20 mg/kg aily for four weeks) were investigated in three-month-old female Wistar rats, which, two weeks before the start of caffeine administration, received streptozotocin (60 mg/kg, intraperitoneally) alone or streptozotocin after nicotinamide (230 mg/kg, intraperitoneally). Bone turnover markers, mass, mineral density, histomorphometric parameters, and mechanical properties were examined. Streptozotocin induced diabetes, with profound changes in the skeletal system due to increased bone resorption and decreased bone formation. Although streptozotocin administered after nicotinamide induced slight increases in glucose levels at the beginning of the experiment only, slight, but significant unfavorable changes in the skeletal system were demonstrated. Administration of caffeine did not affect the investigated skeletal parameters of rats with streptozotocin-induced disorders. In conclusion, caffeine at a moderate dose did not exert a damaging effect on the skeletal system of diabetic rats.

  15. An allosteric model of the molecular interactions of excitation-contraction coupling in skeletal muscle.

    Science.gov (United States)

    Ríos, E; Karhanek, M; Ma, J; González, A

    1993-09-01

    A contact interaction is proposed to exist between the voltage sensor of the transverse tubular membrane of skeletal muscle and the calcium release channel of the sarcoplasmic reticulum. This interaction is given a quantitative formulation inspired in the Monod, Wyman, and Changeux model of allosteric transitions in hemoglobin (Monod, J., J. Wyman, and J.-P. Changeux. 1965. Journal of Molecular Biology. 12:88-118), and analogous to one proposed by Marks and Jones for voltage-dependent Ca channels (Marks, T. N., and S. W. Jones. 1992. Journal of General Physiology. 99:367-390). The allosteric protein is the calcium release channel, a homotetramer, with two accessible states, closed and open. The kinetics and equilibrium of this transition are modulated by voltage sensors (dihydropyridine receptors) pictured as four units per release channel, each undergoing independent voltage-driven transitions between two states (resting and activating). For each voltage sensor that moves to the activating state, the tendency of the channel to open increases by an equal (large) factor. The equilibrium and kinetic equations of the model are solved and shown to reproduce well a number of experimentally measured relationships including: charge movement (Q) vs. voltage, open probability of the release channel (Po) vs. voltage, the transfer function relationship Po vs. Q, and the kinetics of charge movement, release activation, and deactivation. The main consequence of the assumption of allosteric coupling is that primary effects on the release channel are transmitted backward to the voltage sensor and give secondary effects. Thus, the model reproduces well the effects of perchlorate, described in the two previous articles, under the assumption that the primary effect is to increase the intrinsic tendency of the release channel to open, with no direct effects on the voltage sensor. This modification of the open-closed equilibrium of the release channel causes a shift in the equilibrium

  16. Intermedin inhibits norepinephrine-induced contraction of rat seminal vesicle

    Directory of Open Access Journals (Sweden)

    P.F. Wong

    2014-09-01

    Conclusion: The results demonstrated that the inhibitory action of IMD on NE-induced seminal vesicle contraction was mediated via the ADM receptor(s and the nitric oxide production pathway, partially by the IMD receptor, but not by the CGRP receptor and the cAMP-PKA pathway.

  17. Histopathological nerve and skeletal muscle changes in rats subjected to persistent insulin-induced hypoglycemia

    DEFF Research Database (Denmark)

    Jensen, Vivi Flou Hjorth; Mølck, Anne-Marie; Heydenreich, Annette

    2016-01-01

    New insulin analogues with a longer duration of action and a flatter pharmacodynamic profile are developed to improve convenience and safety for diabetic patients. During the nonclinical development of such analogues, safety studies must be conducted in nondiabetic rats, which consequently...... are rendered chronically hypoglycemic. A rat comparator model using human insulin would be valuable, as it would enable differentiation between effects related to either persistent insulin-induced hypoglycemia (IIH) or a new analogue per se. Such a model could alleviate the need for an in...... nerve and skeletal myofiber degeneration within the same animals. This suggests that the model can serve as a nonclinical comparator model during development of long-acting insulin analogues....

  18. Effect of in vivo injection of cholera and pertussis toxin on glucose transport in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Han, X; Petersen, L N

    1997-01-01

    Cholera toxin (CTX) and pertussis toxin (PTX) were examined for their ability to inhibit glucose transport in perfused skeletal muscle. Twenty-five hours after an intravenous injection of CTX, basal transport was decreased approximately 30%, and insulin- and contraction-stimulated transport...

  19. Rats bred for low aerobic capacity become promptly fatigued and have slow metabolic recovery after stimulated, maximal muscle contractions.

    Directory of Open Access Journals (Sweden)

    Sira Torvinen

    Full Text Available Muscular fatigue is a complex phenomenon affected by muscle fiber type and several metabolic and ionic changes within myocytes. Mitochondria are the main determinants of muscle oxidative capacity which is also one determinant of muscle fatigability. By measuring the concentrations of intracellular stores of high-energy phosphates it is possible to estimate the energy production efficiency and metabolic recovery of the muscle. Low intrinsic aerobic capacity is known to be associated with reduced mitochondrial function. Whether low intrinsic aerobic capacity also results in slower metabolic recovery of skeletal muscle is not known. Here we studied the influence of intrinsic aerobic capacity on in vivo muscle metabolism during maximal, fatiguing electrical stimulation.Animal subjects were genetically heterogeneous rats selectively bred to differ for non-trained treadmill running endurance, low capacity runners (LCRs and high capacity runners (HCRs (n = 15-19. We measured the concentrations of major phosphorus compounds and force parameters in a contracting triceps surae muscle complex using (31P-Magnetic resonance spectroscopy ((31P-MRS combined with muscle force measurement from repeated isometric twitches.Our results demonstrated that phosphocreatine re-synthesis after maximal muscle stimulation was significantly slower in LCRs (p<0.05. LCR rats also became promptly fatigued and maintained the intramuscular pH poorly compared to HCRs. Half relaxation time (HRT of the triceps surae was significantly longer in LCRs throughout the stimulation protocol (p≤0.05 and maximal rate of torque development (MRTD was significantly lower in LCRs compared to HCRs from 2 min 30 s onwards (p≤0.05.We observed that LCRs are more sensitive to fatigue and have slower metabolic recovery compared to HCRs after maximal muscle contractions. These new findings are associated with reduced running capacity and with previously found lower mitochondrial content, increased

  20. Sustained inhibition of rat myometrial gap junctions and contractions by lindane

    Directory of Open Access Journals (Sweden)

    Grindatti Carmen M

    2003-10-01

    Full Text Available Abstract Background Gap junctions increase in size and abundance coincident with parturition, forming an intercellular communication network that permits the uterus to develop the forceful, coordinated contractions necessary for delivery of the fetus. Lindane, a pesticide used in the human and veterinary treatment of scabies and lice as well as in agricultural applications, inhibits uterine contractions in vitro, inhibits myometrial gap junctions, and has been associated with prolonged gestation length in rats. The aim of the present study was to investigate whether brief exposures to lindane would elicit sustained inhibition of rat uterine contractile activity and myometrial gap junction intercellular communication. Methods To examine effects on uterine contraction, longitudinal uterine strips isolated from late gestation (day 20 rats were exposed to lindane in muscle baths and monitored for changes in spontaneous phasic contractions during and after exposure to lindane. Lucifer yellow dye transfer between myometrial cells in culture was used to monitor gap junction intercellular communication. Results During a 1-h exposure, 10 micro M and 100 micro M lindane decreased peak force and frequency of uterine contraction but 1 micro M lindane did not. After removal of the exposure buffer, contraction force remained significantly depressed in uterine strips exposed to 100 micro M lindane, returning to less than 50% basal levels 5 h after cessation of lindane exposure. In cultured myometrial myocytes, significant sustained inhibition of Lucifer yellow dye transfer was observed 24 h after lindane exposures as brief as 10 min and as low as 0.1 micro M lindane. Conclusion Brief in vitro exposures to lindane have long-term effects on myometrial functions that are necessary for parturition, inhibiting spontaneous phasic contractions in late gestation rat uterus and gap junction intercellular communication in myometrial cell cultures.

  1. Preconditioning with ethyl 3,4-dihydroxy benzoate augments aerobic respiration in rat skeletal muscle

    Directory of Open Access Journals (Sweden)

    Nimker C

    2016-05-01

    Full Text Available Charu Nimker, Deependra Pratap Singh, Deepika Saraswat, Anju Bansal Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Defense Research and Development Organisation, Timarpur, Delhi, India Abstract: Muscle respiratory capacity decides the amount of exertion one's skeletal muscle can undergo, and endurance exercise is believed to increase it. There are also certain preconditioning methods by which muscle respiratory and exercise performance can be enhanced. In this study, preconditioning with ethyl 3,4-dihydroxybenzoate (EDHB, a prolyl hydroxylase domain enzyme inhibitor, has been investigated to determine its effect on aerobic metabolism and bioenergetics in skeletal muscle, thus facilitating boost in physical performance in a rat model. We observed that EDHB supplementation increases aerobic metabolism via upregulation of HIF-mediated GLUT1 and GLUT4, thus enhancing glucose uptake in muscles. There was also a twofold rise in the activity of enzymes of tricarboxylic acid (TCA cycle and glycolysis, ie, hexokinase and phosphofructokinase. There was an increase in citrate synthase and succinate dehydrogenase activity, resulting in the rise in the levels of ATP due to enhanced Krebs cycle activity as substantiated by enhanced acetyl-CoA levels in EDHB-treated rats as compared to control group. Increased lactate dehydrogenase activity, reduced expression of monocarboxylate transporter 1, and increase in monocarboxylate transporter 4 suggest transport of lactate from muscle to blood. There was a concomitant decrease in plasma lactate, which might be due to enhanced transport of lactate from blood to the liver. This was further supported by the rise in liver pyruvate levels and liver glycogen levels in EDHB-supplemented rats as compared to control rats. These results suggest that EDHB supplementation leads to improved physical performance due to the escalation of aerobic respiration quotient, ie, enhanced muscle

  2. Effect of short-term cold exposure on skeletal muscle protein breakdown in rats.

    Science.gov (United States)

    Manfredi, L H; Zanon, N M; Garófalo, M A; Navegantes, L C C; Kettelhut, I C

    2013-11-01

    Although it is well established that carbohydrate and lipid metabolism are profoundly altered by cold stress, the effects of short-term cold exposure on protein metabolism in skeletal muscle are still poorly understood. Because cold acclimation requires that an organism adjust its metabolic flux, and muscle amino acids may be an important energy source for heat production, we hypothesize that muscle proteolysis is increased and protein synthesis is decreased under such a stress condition. Herein, cold exposure for 24 h decreased rates of protein synthesis and increased overall proteolysis in both soleus and extensor digitorum longus (EDL) muscles, but it did not affect muscle weight. An increase in proteolysis was accompanied by hyperactivity of the ubiquitin-proteasome system (UPS) in both soleus and EDL, and Ca(2+)-dependent proteolysis in EDL. Furthermore, muscles of rats exposed to cold showed increased mRNA and protein levels of atrogin-1 and muscle RING finger enzyme-1 (MuRF1). Additionally, cold stress reduced phosphorylation of Akt and Forkhead box class O1 (FoxO1), a well-known effect that increases FoxO translocation to the nucleus and leads to activation of proteolysis. Plasma insulin levels were lower, whereas catecholamines, corticosterone, and thyroid hormones were higher in cold-exposed rats compared with control rats. The present data provide the first direct evidence that short-term cold exposure for 24 h decreases rates of protein synthesis and increases the UPS and Ca(2+)-dependent proteolytic processes, and increases expression of atrogin-1 and MuRF1 in skeletal muscles of young rats. The activation of atrophy induced by acute cold stress seems to be mediated at least in part through the inactivation of Akt/FoxO signaling and activation of AMP-activated protein kinase.

  3. Training differentially regulates elastin level and proteolysis in skeletal and heart muscles and aorta in healthy rats

    Directory of Open Access Journals (Sweden)

    Anna Gilbert

    2016-05-01

    Full Text Available Exercise induces changes in muscle fibers and the extracellular matrix that may depend on elastin content and the activity of proteolytic enzymes. We investigated the influence of endurance training on the gene expression and protein content and/or activity of elastin, elastase, cathepsin K, and plasmin in skeletal and heart muscles and in the aorta. Healthy rats were randomly divided into untrained (n=10 and trained (n=10; 6 weeks of endurance training with increasing load groups. Gene expression was evaluated via qRT-PCR. Elastin content was measured via enzyme-linked immunosorbent assay and enzyme activity was measured fluorometrically. Elastin content was significantly higher in skeletal (P=0.0014 and heart muscle (P=0.000022 from trained rats versus untrained rats, but not in the aorta. Although mRNA levels in skeletal muscle did not differ between groups, the activities of elastase (P=0.0434, cathepsin K (P=0.0343 and plasmin (P=0.000046 were higher in trained rats. The levels of cathepsin K (P=0.0288 and plasminogen (P=0.0005 mRNA were higher in heart muscle from trained rats, but enzyme activity was not. Enzyme activity in the aorta did not differ between groups. Increased elastin content in muscles may result in better adaption to exercise, as may remodeling of the extracellular matrix in skeletal muscle.

  4. Changes in skeletal muscle biochemistry and histology relative to fiber type in rats with heart failure

    Science.gov (United States)

    Delp, M. D.; Duan, C.; Mattson, J. P.; Musch, T. I.

    1997-01-01

    One of the primary consequences of left ventricular dysfunction (LVD) after myocardial infarction is a decrement in exercise capacity. Several factors have been hypothesized to account for this decrement, including alterations in skeletal muscle metabolism and aerobic capacity. The purpose of this study was to determine whether LVD-induced alterations in skeletal muscle enzyme activities, fiber composition, and fiber size are 1) generalized in muscles or specific to muscles composed primarily of a given fiber type and 2) related to the severity of the LVD. Female Wistar rats were divided into three groups: sham-operated controls (n = 13) and rats with moderate (n = 10) and severe (n = 7) LVD. LVD was surgically induced by ligating the left main coronary artery and resulted in elevations (P myocardial infarction exhibit 1) decrements in mitochondrial enzyme activities independent of muscle fiber composition, 2) a reduction in PFK activity in type IIB muscle, 3) transformation of type IID/X to type IIB fibers, and 4) atrophy of type I, IIA, and IIB fibers.

  5. The response of apoptotic and proteolytic systems to repeated heat stress in atrophied rat skeletal muscle.

    Science.gov (United States)

    Yoshihara, Toshinori; Sugiura, Takao; Yamamoto, Yuki; Shibaguchi, Tsubasa; Kakigi, Ryo; Naito, Hisashi

    2015-10-01

    We examined the effect of repeated heat stress on muscle atrophy, and apoptotic and proteolytic regulation in unloaded rat slow- and fast-type skeletal muscles. Forty male Wistar rats (11 week-old) were divided into control (CT), hindlimb unweighting (HU), intermittent weight-bearing during HU (HU + IWB), and intermittent weight-bearing with heat stress during HU (41-41.5°C for 30 min; HU + IWB + HS) groups. The HU + IWB + HS and HU + IWB groups were released from unloading for 1 h every second day, during which the HU + IWB + HS group underwent the heating. Our results revealed that repeated bouts of heat stress resulted in protection against disuse muscle atrophy in both soleus and plantaris muscles. This heat stress-induced protection against disuse-induced muscular atrophy may be partially due to reduced apoptotic activation in both muscles, and decreased ubiquitination in only the soleus muscle. We concluded that repeated heat stress attenuated skeletal muscle atrophy via suppressing apoptosis but the response to proteolytic systems depend on the muscle phenotype. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. Effects of local anesthetics on contractions of pregnant and non-pregnant rat myometrium in vitro.

    Science.gov (United States)

    Wei, Jin-Song; Jin, Zhe-Bin; Yin, Zhi-Qiang; Xie, Qiang-Min; Chen, Ji-Qiang; Li, Zi-Gang; Tang, Hui-Fang

    2014-06-01

    In order to determine whether local anesthetics directly affect the propagation and strength of myometrial contractions, we compared the effects of bupivacaine, ropivacaine, lidocaine and tetracaine on the contractions of myometrium isolated from pregnant and non-pregnant rats. Full-thickness myometrial strips were obtained from 18- to 21-day pregnant and non-pregnant Sprague-Dawley rats and incubated in an organ bath. When spontaneous contractions became regular, strips were exposed to cumulative concentrations of the four local anesthetics ranging from 0.01 to 300 μmol/L and the amplitude and frequency of contraction were recorded. All four compounds caused a concentration-dependent inhibition of the contractility of pregnant and non-pregnant uterine muscle. In pregnant myometrium, the concentration that caused 50% inhibition (IC(50)) was 100 μmol/L for bupivacaine, 157 μmol/L for ropivacaine, > 1000 μmol/L for lidocaine, and 26.3 μmol/L for tetracaine. In non-pregnant myometrium, the IC(50) was 26.9 μmol/L for bupivacaine, 40 μmol/L for ropivacaine, 384 μmol/L for lidocaine, and 7.4 μmol/L for tetracaine. These results suggested that local anesthetics do inhibit myometrial contractions in pregnant and non-pregnant rats in a concentration-dependent manner.

  7. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise.

    Directory of Open Access Journals (Sweden)

    Elliott M McMillan

    Full Text Available Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY and spontaneously hypertensive rats (SHR were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG of hypertensive rats had higher (p<0.05 caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05 ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05 Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05 Beclin-1 and ATG7 protein, as well as decreased (p<0.05 caspase-3, calpain, and cathepsin activity. Left ventricle (LV of hypertensive rats had reduced (p<0.05 AMPKα and LC3II protein, as well as elevated (p<0.05 p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05 proteasome activity but reduced (p<0.05 caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats.

  8. Dissociation between PGC-1alpha and GLUT-4 expression in skeletal muscle of rats fed a high-fat diet.

    Science.gov (United States)

    Higashida, Kazuhiko; Higuchi, Mitsuru; Terada, Shin

    2009-12-01

    It has recently been reported that a 4-wk high-fat diet gradually increases skeletal muscle peroxisome proliferator activated receptor (PPAR) gamma coactivator-1alpha (PGC-1alpha) protein content, which has been suggested to regulate GLUT-4 gene transcription. However, it has not been reported that a high-fat diet enhances GLUT-4 mRNA expression and protein content in skeletal muscle, suggesting that an increase in PGC-1alpha protein content is not sufficient to induce muscle GLUT-4 biogenesis in a high-fat fed animal. Therefore, we first evaluated the relationship between PGC-1alpha and GLUT-4 expression in skeletal muscle of rats fed a high-fat diet for 4 wk. The PGC-1alpha protein content in rat epitrochlearis muscle significantly increased by twofold after the 4-wk high-fat diet feeding. However, the high-fat diet had no effect on GLUT-4 protein content and induced a 30% decrease in GLUT-4 mRNA expression in rat skeletal muscle (pGLUT-4 mRNA expression, we next examined the effect of PPARdelta activation, which is known to occur in response to a high-fat diet, on GLUT-4 mRNA expression in L6 myotubes. Incubation with 500 nM GW501516 (PPARdelta activator) for 24 h significantly decreased GLUT-4 mRNA in L6 myotubes. Taken together, these findings suggest that a high-fat diet downregulates GLUT-4 mRNA, possibly through the activation of PPARdelta, despite an increase in PGC-1alpha protein content in rat skeletal muscle, and that a posttranscriptional regulatory mechanism maintains GLUT-4 protein content in skeletal muscle of rats fed a high-fat diet.

  9. Sub-sarcolemmal swelling of sarcoplasmic reticulum after isometric contractions in rat semimembranosus lateralis muscle

    NARCIS (Netherlands)

    Willems, M.E.T.; Huijing, P.A.J.B.M.; Friden, J.

    1999-01-01

    The decline in isometric force, swelling of sarcoplasmic reticulum and loss of desmin was measured in semimembranosus lateralis muscle of male Wistar rats immediately after a short series of brief (500 ms) maximal isometric contractions. For the active muscle, the series ended below (protocol A) and

  10. Signal transduction underlying carbachol-induced contraction of rat urinary bladder. II. Protein kinases

    NARCIS (Netherlands)

    Fleichman, Marina; Schneider, Tim; Fetscher, Charlotte; Michel, Martin C.

    2004-01-01

    We have investigated the role of several protein kinases in carbachol-stimulated, M-3 muscarinic receptor-mediated contraction of rat urinary bladder. Concentration-response curves for the muscarinic receptor agonist carbachol were generated in the presence of multiple concentrations of inhibitors

  11. Decreased insulin action on muscle glucose transport after eccentric contractions in rats

    DEFF Research Database (Denmark)

    Asp, S; Richter, Erik

    1996-01-01

    We have recently shown that eccentric contractions (Ecc) of rat calf muscles cause muscle damage and decreased glycogen and glucose transporter GLUT-4 protein content in the white (WG) and red gastrocnemius (RG) but not in the soleus (S) (S. Asp, S. Kristiansen, and E. A. Richter. J. Appl. Physio...

  12. Effects of membrane cholesterol manipulation on excitation-contraction coupling in skeletal muscle of the toad.

    Science.gov (United States)

    Launikonis, B S; Stephenson, D G

    2001-07-01

    1. Single mechanically skinned fibres and intact bundles of fibres from the twitch region of the iliofibularis muscle of cane toads were used to investigate the effects of membrane cholesterol manipulation on excitation-contraction (E-C) coupling. The cholesterol content of membranes was manipulated with methyl-beta-cyclodextrin (MbetaCD). 2. In mechanically skinned fibres, depletion of membrane cholesterol with MbetaCD caused a dose- and time-dependent decrease in transverse tubular (t)-system depolarization-induced force responses (TSDIFRs). TSDIFRs were completely abolished within 2 min in the presence of 10 mM MbetaCD but were not affected after 2 min in the presence of a 10 mM MbetaCD-1 mM cholesterol complex. There was a very steep dependence between the change in TSDIFRs and the MbetaCD : cholesterol ratio at 10 mM MbetaCD, indicating that the inhibitory effect of MbetaCD was due to membrane cholesterol depletion and not to a pharmacological effect of the agent. Tetanic responses in bundles of intact fibres were abolished after 3-4 h in the presence of 10 mM MbetaCD. 3. The duration of TSDIFRs increased markedly soon (laser scanning microscopy revealed that the integrity of the t-system was not compromised by either intra- or extracellular application of 10 mM MbetaCD and that a large [Ca(2+)] gradient was maintained across the t-system. 5. Membrane cholesterol depletion caused rapid depolarization of the polarized t-system as shown independently by spontaneous TSDIFRs induced by MbetaCD and by changes in the fluorescence intensity of an anionic potentiometric dye (DiBAC(4)(3)) in the presence of MbetaCD. This rapid depolarization of the t-system by cholesterol depletion was not prevented by blocking the Na(+) channels with TTX (10 microM) or the L-type Ca(2+) channels with Co(2+) (5 mM). 6. The results demonstrate that cholesterol is important for maintaining the functional integrity of the t-system and sarcoplasmic reticulum, probably by having specific

  13. Effect of nitroprusside on furosemide-induced skeletal teratogenicity in rat fetuses

    Directory of Open Access Journals (Sweden)

    Mahmood Khaksary Mahabady

    2016-01-01

    Full Text Available Background: Furosemide as a loop diuretic can use in treatment of hypertension, renal or heart failures and cirrhosis, when sodium retention is significant. It is known that use of furosemide can be lead congenital abnormalities in humans and animals. Nitroprusside as a NO donor can decrease blood supply complications and constriction of placenta and uterus via vasodilation and improvment blood supply. The aim of this study was preventation or decrease of teratogenicity form furosemide in rat fetuses by sodium nitroprusside. Materials and Methods: This study was performed on 28 pregnant rats that were divided into four groups, the groups consist control, furosemide, sodium nitroprusside and furosemide plus sodium nitroprusside. Drugs were administrated on 14th and 16th day of gestation. Test groups received furosemide (200mg/kg orally, and nitroprusside (0.5 mg/kg intraperitoneally. The rats were euthanized and fetuses were collected at 19th day of gestation, after weight and length determination, they stained by Alizarin red- Alician blue method. Then the skeletal system of the stained fetuses was investigated by stereomicroscope for teratogenicity effects. Results: The results showed the cleft palate, wavy ribs and decreased ossification mean incidence in forelimbs and hindlimbs were 11.11%, 68.88% and 20% in the fetuses of the rats received furosemide, where as it decreased to 7.31%, 21.95% and 12.19% in group which received furosemide plus nitroprusside, respectively. Conclusion: It is concluded that sodium nitroprusside can significantly decrease teratogenicity induced by furosemide.

  14. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight

    Science.gov (United States)

    Taylor, Wayne E.; Bhasin, Shalender; Lalani, Rukhsana; Datta, Anuj; Gonzalez-Cadavid, Nestor F.

    2002-01-01

    To clarify the mechanism of skeletal muscle wasting during spaceflights, we investigated whether intramuscular gene expression profiles are affected, by using DNA microarray methods. Male rats sent on the 17-day NASA STS-90 Neurolab spaceflight were sacrificed 24 hours after return to earth (MG group). Ground control rats were maintained for 17 days in flight-simulated cages (CS group). Spaceflight induced a 19% and 23% loss of tibialis anterior and gastrocnemius muscle mass, respectively, as compared to ground controls. Muscle RNA was analyzed by the Clontech Atlas DNA expression array in four rats, with two MG/ CS pairs for the tibialis anterior, and one pair for the gastrocnemius. Alterations in gene expression were verified for selected genes by reverse-transcription PCR. In both muscles of MG rats, mRNAs for 12 genes were up-regulated by over 2-fold, and 38 were down-regulated compared to controls. There was inhibition of genes for cell proliferation and growth factor cascades, including cell cycle genes and signal transduction proteins, such as p21 Cip1, retinoblastoma (Rb), cyclins G1/S, -E and -D3, MAP kinase 3, MAD3, and ras related protein RAB2. These data indicate that following exposure to microgravity, there is downregulation of genes involved in regulation of muscle satellite cell replication.

  15. Muscle pain induced by static contraction in rats is modulated by peripheral inflammatory mechanisms.

    Science.gov (United States)

    Santos, Diogo Francisco da Silva Dos; Melo Aquino, Bruna de; Jorge, Carolina Ocanha; Azambuja, Graciana de; Schiavuzzo, Jalile Garcia; Krimon, Suzy; Neves, Juliana Dos Santos; Parada, Carlos Amilcar; Oliveira-Fusaro, Maria Claudia Gonçalves

    2017-09-01

    Muscle pain is an important health issue and frequently related to static force exertion. The aim of this study is to evaluate whether peripheral inflammatory mechanisms are involved with static contraction-induced muscle pain in rats. To this end, we developed a model of muscle pain induced by static contraction performed by applying electrical pulses through electrodes inserted into muscle. We also evaluated the involvement of neutrophil migration, bradykinin, sympathetic amines and prostanoids. A single session of sustained static contraction of gastrocnemius muscle induced acute mechanical muscle hyperalgesia without affecting locomotor activity and with no evidence of structural damage in muscle tissue. Static contraction increased levels of creatine kinase but not lactate dehydrogenase, and induced neutrophil migration. Dexamethasone (glucocorticoid anti-inflammatory agent), DALBK (bradykinin B1 antagonist), Atenolol (β1 adrenoceptor antagonist), ICI 118,551 (β2 adrenoceptor antagonist), indomethacin (cyclooxygenase inhibitor), and fucoidan (non-specific selectin inhibitor) all reduced static contraction-induced muscle hyperalgesia; however, the bradykinin B2 antagonist, bradyzide, did not have an effect on static contraction-induced muscle hyperalgesia. Furthermore, an increased hyperalgesic response was observed when the selective bradykinin B1 agonist des-Arg9-bradykinin was injected into the previously stimulated muscle. Together, these findings demonstrate that static contraction induced mechanical muscle hyperalgesia in gastrocnemius muscle of rats is modulated through peripheral inflammatory mechanisms that are dependent on neutrophil migration, bradykinin, sympathetic amines and prostanoids. Considering the clinical relevance of muscle pain, we propose the present model of static contraction-induced mechanical muscle hyperalgesia as a useful tool for the study of mechanisms underlying static contraction-induced muscle pain. Copyright © 2017 IBRO

  16. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats.

    Science.gov (United States)

    Cunha, Telma F; Bechara, Luiz R G; Bacurau, Aline V N; Jannig, Paulo R; Voltarelli, Vanessa A; Dourado, Paulo M; Vasconcelos, Andrea R; Scavone, Cristóforo; Ferreira, Júlio C B; Brum, Patricia C

    2017-04-01

    We have recently demonstrated that NADPH oxidase hyperactivity, NF-κB activation, and increased p38 phosphorylation lead to atrophy of glycolytic muscle in heart failure (HF). Aerobic exercise training (AET) is an efficient strategy to counteract skeletal muscle atrophy in this syndrome. Therefore, we tested whether AET would regulate muscle redox balance and protein degradation by decreasing NADPH oxidase hyperactivity and reestablishing NF-κB signaling, p38 phosphorylation, and proteasome activity in plantaris muscle of myocardial infarcted-induced HF (MI) rats. Thirty-two male Wistar rats underwent MI or fictitious surgery (SHAM) and were randomly assigned into untrained (UNT) and trained (T; 8 wk of AET on treadmill) groups. AET prevented HF signals and skeletal muscle atrophy in MI-T, which showed an improved exercise tolerance, attenuated cardiac dysfunction and increased plantaris fiber cross-sectional area. To verify the role of inflammation and redox imbalance in triggering protein degradation, circulating TNF-α levels, NADPH oxidase profile, NF-κB signaling, p38 protein levels, and proteasome activity were assessed. MI-T showed a reduced TNF-α levels, NADPH oxidase activity, and Nox2 mRNA expression toward SHAM-UNT levels. The rescue of NADPH oxidase activity induced by AET in MI rats was paralleled by reducing nuclear binding activity of the NF-κB, p38 phosphorylation, atrogin-1, mRNA levels, and 26S chymotrypsin-like proteasome activity. Taken together our data provide evidence for AET improving plantaris redox homeostasis in HF associated with a decreased NADPH oxidase, redox-sensitive proteins activation, and proteasome hyperactivity further preventing atrophy. These data reinforce the role of AET as an efficient therapy for muscle wasting in HF.NEW & NOTEWORTHY This study demonstrates, for the first time, the contribution of aerobic exercise training (AET) in decreasing muscle NADPH oxidase activity associated with reduced reactive oxygen

  17. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight

    Science.gov (United States)

    Morey-Holton, E. R.; Globus, R. K.

    1998-01-01

    A model that uses hindlimb unloading of rats was developed to study the consequences of skeletal unloading and reloading as occurs during and following space flight. Studies using the model were initiated two decades ago and further developed at National Aeronautics and Space Administration (NASA)-Ames Research Center. The model mimics some aspects of exposure to microgravity by removing weightbearing loads from the hindquarters and producing a cephalic fluid shift. Unlike space flight, the forelimbs remain loaded in the model, providing a useful internal control to distinguish between the local and systemic effects of hindlimb unloading. Rats that are hindlimb unloaded by tail traction gain weight at the same rate as pairfed controls, and glucocorticoid levels are not different from controls, suggesting that systemic stress is minimal. Unloaded bones display reductions in cancellous osteoblast number, cancellous mineral apposition rate, trabecular bone volume, cortical periosteal mineralization rate, total bone mass, calcium content, and maturation of bone mineral relative to controls. Subsequent studies reveal that these changes also occur in rats exposed to space flight. In hindlimb unloaded rats, bone formation rates and masses of unloaded bones decline relative to controls, while loaded bones do not change despite a transient reduction in serum 1,25-dihydroxyvitamin D (1,25D) concentrations. Studies using the model to evaluate potential countermeasures show that 1,25D, growth hormone, dietary calcium, alendronate, and muscle stimulation modify, but do not completely correct, the suppression of bone growth caused by unloading, whereas continuous infusion of transforming growth factor-beta2 or insulin-like growth factor-1 appears to protect against some of the bone changes caused by unloading. These results emphasize the importance of local as opposed to systemic factors in the skeletal response to unloading, and reveal the pivotal role that osteoblasts play in

  18. Creatine prevents the imbalance of redox homeostasis caused by homocysteine in skeletal muscle of rats.

    Science.gov (United States)

    Kolling, Janaína; Scherer, Emilene B S; Siebert, Cassiana; Marques, Eduardo Peil; Dos Santos, Tiago Marcom; Wyse, Angela T S

    2014-07-15

    Homocystinuria is a neurometabolic disease caused by severe deficiency of cystathionine beta-synthase activity, resulting in severe hyperhomocysteinemia. Affected patients present several symptoms including a variable degree of motor dysfunction, being that the pathomechanism is not fully understood. In the present study we investigated the effect of chronic hyperhomocysteinemia on some parameters of oxidative stress, namely 2'7'dichlorofluorescein (DCFH) oxidation, levels of thiobarbituric acid-reactive substances (TBARS), antioxidant enzyme activities (SOD, CAT and GPx), reduced glutathione (GSH), total sulfhydryl and carbonyl content, as well as nitrite levels in soleus skeletal muscle of young rats subjected to model of severe hyperhomocysteinemia. We also evaluated the effect of creatine on biochemical alterations elicited by hyperhomocysteinemia. Wistar rats received daily subcutaneous injection of homocysteine (0.3-0.6 μmol/g body weight), and/or creatine (50mg/kg body weight) from their 6th to the 28th days age. Controls and treated rats were decapitated at 12h after the last injection. Chronic homocysteine administration increased 2'7'dichlorofluorescein (DCFH) oxidation, an index of production of reactive species and TBARS levels, an index of lipoperoxidation. Antioxidant enzyme activities, such as SOD and CAT were also increased, but GPx activity was not altered. The content of GSH, sulfhydril and carbonyl were decreased, as well as levels of nitrite. Creatine concurrent administration prevented some homocysteine effects probably by its antioxidant properties. Our data suggest that the oxidative insult elicited by chronic hyperhomocystenemia may provide insights into the mechanisms by which homocysteine exerts its effects on skeletal muscle function. Creatine prevents some alterations caused by homocysteine. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Increased cellular proliferation in rat skeletal muscle and tendon in response to exercise: use of FLT and PET/CT

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe Charlotte; Bayer, Monika L; Mackey, Abigail L

    2010-01-01

    The purpose of this study is to investigate exercise-induced cellular proliferation in rat skeletal muscle/tendon with the use of 3'-[F-18]fluoro-3'deoxythymidine (FLT) and to quantitatively study concomitant changes in the proliferation-associated factor, Ki67....

  20. Total-body creatine pool size and skeletal muscle mass determination by creatine-(methyl-d3) dilution in rats

    National Research Council Canada - National Science Library

    Stephen A. Stimpson; Scott M. Turner; Lisa G. Clifton; James C. Poole; Hussein A. Mohammed; Todd W. Shearer; Greg M. Waitt; Laura L. Hagerty; Katja S. Remlinger; Marc K. Hellerstein; William J. Evans

    2012-01-01

    .... We tested in rats the hypothesis that the enrichment of creatinine-(methyl-d3) (D3-creatinine) in urine after a defined oral tracer dose of D3-creatine can be used to determine creatine pool size and skeletal muscle mass...

  1. Peripheral nerve injury causes transient expression of MHC class I antigens in rat motor neurons and skeletal muscles

    DEFF Research Database (Denmark)

    Maehlen, J; Nennesmo, I; Olsson, A B

    1989-01-01

    After a peripheral nerve lesion (rat facial and sciatic) an induction of major histocompatibility complex (MHC) antigens class I was detected immunohistochemically in skeletal muscle fibers and motor neurons. This MHC expression was transient after a nerve crush, when regeneration occurred...

  2. Decreased muscle GLUT-4 and contraction-induced glucose transport after eccentric contractions

    DEFF Research Database (Denmark)

    Kristiansen, S; Asp, Svend; Richter, Erik

    1996-01-01

    Eccentric exercise causes muscle damage and decreased muscle glycogen and glucose transporter isoform (GLUT-4) protein content. We investigated whether the contraction-induced increase in skeletal muscle glucose transport and muscle performance is affected by prior eccentric contractions. The calf...... contractions. EC rats had a significantly lower total GLUT-4 protein content in the white gastrocnemius (GW) muscle (55%) and red gastrocnemius (GR) muscle (34%) compared with muscle from the CT, ST, and CC rats. In contrast, GLUT-1 protein content was approximately twofold higher in the GW muscle in EC rats...... than in CT rats. In the GW and GR muscle, prior eccentric exercise decreased contraction-induced stimulation of glucose transport compared with CT, ST, and CC rats despite no difference in tension development and oxygen uptake among the groups. There was no change in total GLUT-4 content and glucose...

  3. Ginseng administration protects skeletal muscle from oxidative stress induced by acute exercise in rats

    Directory of Open Access Journals (Sweden)

    J. Voces

    2004-12-01

    Full Text Available Enzymatic activity was analyzed in the soleus, gastrocnemius (red and white and plantaris muscles of acutely exercised rats after long-term administration of Panax ginseng extract in order to evaluate the protective role of ginseng against skeletal muscle oxidation. Ginseng extract (3, 10, 100, or 500 mg/kg was administered orally for three months to male Wistar rats weighing 200 ± 50 g before exercise and to non-exercised rats (N = 8/group. The results showed a membrane stabilizing capacity of the extract since mitochondrial function measured on the basis of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities was reduced, on average, by 20% (P < 0.05 after exercise but the activities remained unchanged in animals treated with a ginseng dose of 100 mg/kg. Glutathione status did not show significant changes after exercise or treatment. Lipid peroxidation, measured on the basis of malondialdehyde levels, was significantly higher in all muscles after exercise, and again was reduced by about 74% (P < 0.05 by the use of ginseng extract. The administration of ginseng extract was able to protect muscle from exercise-induced oxidative stress irrespective of fiber type.

  4. Differential RNA Expression Profile of Skeletal Muscle Induced by Experimental Autoimmune Myasthenia Gravis in Rats

    Directory of Open Access Journals (Sweden)

    Henry Kaminski

    2016-11-01

    Full Text Available The differential susceptibility of skeletal muscle by myasthenia gravis (MG is not well understood. We utilized RNA expression profiling of extraocular muscle (EOM, diaphragm (DIA, and extensor digitorum (EDL of rats with experimental autoimmune MG (EAMG to evaluate the hypothesis that muscles respond differentially to injury produced by EAMG. EAMG was induced in female Lewis rats by immunization with acetylcholine receptor purified from the electric organ of the Torpedo. Six weeks later after rats had developed weakness and serum antibodies directed against the AChR, animals underwent euthanasia and RNA profiling performed on DIA, EDL, and EOM. Profiling results were validated by qPCR. Across the three muscles between the experiment and control groups, three hundred and fifty-nine probes (1.16% with greater than 2 fold changes in expression in 7 of 9 series pairwise comparisons from 31,090 probes were identified with approximately two-thirds being increased. The three muscles shared 16 genes with increased expression and 6 reduced expression. Functional annotation demonstrated that these common expression changes fell predominantly into categories of metabolism, stress response, and signaling. Evaluation of specific gene function indicated that EAMG led to a change to oxidative metabolism. Genes related to muscle regeneration and suppression of immune response were activated. Evidence of a differential immune response among muscles was not evident. Each muscle had a distinct RNA profile but with commonality in gene categories expressed that are focused on muscle repair, moderation of inflammation, and oxidative metabolism.

  5. Voluntary resistance running wheel activity pattern and skeletal muscle growth in rats.

    Science.gov (United States)

    Legerlotz, Kirsten; Elliott, Bradley; Guillemin, Bernard; Smith, Heather K

    2008-06-01

    The aims of this study were to characterize the pattern of voluntary activity of young rats in response to resistance loading on running wheels and to determine the effects of the activity on the growth of six limb skeletal muscles. Male Sprague-Dawley rats (4 weeks old) were housed individually with a resistance running wheel (R-RUN, n = 7) or a conventional free-spinning running wheel (F-RUN, n = 6) or without a wheel, as non-running control animals (CON, n = 6). The torque required to move the wheel in the R-RUN group was progressively increased, and the activity (velocity, distance and duration of each bout) of the two running wheel groups was recorded continuously for 45 days. The R-RUN group performed many more, shorter and faster bouts of running than the F-RUN group, yet the mean daily distance was not different between the F-RUN (1.3 +/- 0.2 km) and R-RUN group (1.4 +/- 0.6 km). Only the R-RUN resulted in a significantly (P pattern of voluntary activity on a resistance running wheel differs from that on a free-spinning running wheel and provides a suitable model to induce physiological muscle hypertrophy in rats.

  6. The influence of electromagnetic radiation generated by a mobile phone on the skeletal system of rats.

    Science.gov (United States)

    Sieroń-Stołtny, Karolina; Teister, Łukasz; Cieślar, Grzegorz; Sieroń, Dominik; Śliwinski, Zbigniew; Kucharzewski, Marek; Sieroń, Aleksander

    2015-01-01

    The study was focused on the influence of electromagnetic field generated by mobile phone on the skeletal system of rats, assessed by measuring the macrometric parameters of bones, mechanical properties of long bones, calcium and phosphorus content in bones, and the concentration of osteogenesis (osteocalcin) and bone resorption (NTX, pyridinoline) markers in blood serum. The study was carried out on male rats divided into two groups: experimental group subjected to 28-day cycle of exposures in electromagnetic field of 900 MHz frequency generated by mobile phone and a control, sham-exposed one. The mobile phone-generated electromagnetic field did not influence the macrometric parameters of long bones and L4 vertebra, it altered mechanical properties of bones (stress and energy at maximum bending force, stress at fracture), it decreased the content of calcium in long bones and L4 vertebra, and it altered the concentration of osteogenesis and bone resorption markers in rats. On the basis of obtained results, it was concluded that electromagnetic field generated by 900 MHz mobile phone does not have a direct impact on macrometric parameters of bones; however, it alters the processes of bone mineralization and the intensity of bone turnover processes and thus influences the mechanical strength of bones.

  7. The Influence of Electromagnetic Radiation Generated by a Mobile Phone on the Skeletal System of Rats

    Directory of Open Access Journals (Sweden)

    Karolina Sieroń-Stołtny

    2015-01-01

    Full Text Available The study was focused on the influence of electromagnetic field generated by mobile phone on the skeletal system of rats, assessed by measuring the macrometric parameters of bones, mechanical properties of long bones, calcium and phosphorus content in bones, and the concentration of osteogenesis (osteocalcin and bone resorption (NTX, pyridinoline markers in blood serum. The study was carried out on male rats divided into two groups: experimental group subjected to 28-day cycle of exposures in electromagnetic field of 900 MHz frequency generated by mobile phone and a control, sham-exposed one. The mobile phone-generated electromagnetic field did not influence the macrometric parameters of long bones and L4 vertebra, it altered mechanical properties of bones (stress and energy at maximum bending force, stress at fracture, it decreased the content of calcium in long bones and L4 vertebra, and it altered the concentration of osteogenesis and bone resorption markers in rats. On the basis of obtained results, it was concluded that electromagnetic field generated by 900 MHz mobile phone does not have a direct impact on macrometric parameters of bones; however, it alters the processes of bone mineralization and the intensity of bone turnover processes and thus influences the mechanical strength of bones.

  8. Nuclear phenotype evaluation in skeletal muscle from Wistar rats exposed to low-level lasers

    Science.gov (United States)

    Almeida, L. G.; Sergio, L. P. S.; Vicentini, S. C.; Mencalha, A. L.; Paoli, F.; Fonseca, A. S.

    2017-03-01

    Low-level laser therapy includes devices emitting red and near-infrared radiation with output power below 100 mW. These devices are successfully used for the treatment of injuries and to improve exercise performance based on their biomodulatory effect. Despite the wide use of clinical protocols based on these lasers, the laser-induced effects on DNA are still disputed. Thus, the objective of this study was to investigate chromatin organization, ploidy degrees, and DNA fragmentation in skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. Wistar rats were exposed to low-level red and infrared lasers (25, 50, and 100 J cm-2, 100 mW, continuous-wave emission mode) and, after 24h, samples of this tissue were withdrawn for the analysis of chromatin organization, ploidy degrees, and DNA fragmentation by Feulgen reaction detection of micronucleus, and apoptosis by TUNEL assay. Data obtained show that low-level red and infrared lasers alter geometric and densitometric parameters as well ploidy degree in muscle nuclei from Wistar rats, but do not induce DNA fragmentation, chromatin loss, and apoptosis at fluences taken out from clinical protocols.

  9. Effect of Intermittent Training on Oxidative and Glycolytic Capacity in Rat Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    A Arabmomeni

    2014-12-01

    Full Text Available Introduction: Any type of exercise protocol has specific effects on the physiology of the body. Thus, according to the purpose of the training program and conditions of the subjects, a specific exercise protocol is needed to be considered. Therefore, the purpose of this study was to assess the effect of intermittent training on oxidative and glycolytic capacity in rat skeletal muscles. Methods: Forty male rats were divided into two old (27 mon, 389±31 g and young groups (3 ± 4 mon, 224±14 g, each of which were randomly divided into control and experimental groups (n = 10. Training group performed intermittent exercise on a treadmill 6 times /week for 8weeks. It consisted of 10 bouts of 4 min running interspersed by 2 min of active rest. All rats were anesthetized, 24 hours after the last session exercise, and Soleus (SOL and extensor digitorumlongus (EDL muscles were removed rapidly. In fact, the tissues were analyzed in regard with CS and LDH enzymes activities. In order to analyze the study data, one way-ANOVA and Tukey's post-hoc tests were applied. Results: The results demonstrated that CS enzyme activity in EDL and SOL muscles increased significantly in both, old (OT and young groups (YT (p 0.05. Conclusion: The results suggested that the training method described in the present study can be quite beneficial to the young and old, when a simultaneous increase in oxidative and glycolytic capacity is aimed.

  10. Impaired sarcoplasmic reticulum Ca(2+) release rate after fatiguing stimulation in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ørtenblad, Niels; Sjøgaard, G; Madsen, Klavs

    2000-01-01

    The purpose of the study was to characterize the sarcoplasmic reticulum (SR) function and contractile properties before and during recovery from fatigue in the rat extensor digitorum longus muscle. Fatiguing contractions (60 Hz, 150 ms/s for 4 min) induced a reduction of the SR Ca(2+) release rate...... to 66% that persisted for 1 h, followed by a gradual recovery to 87% of prefatigue release rate at 3 h recovery. Tetanic force and rate of force development (+dF/dt) and relaxation (-dF/dt) were depressed by approximately 80% after stimulation. Recovery occurred in two phases: an initial phase, in which.......05). Despite a slowing of the relaxation rate, we did not find any significant alterations in the SR Ca(2+) uptake function. These data demonstrate that the Ca(2+) release mechanism of SR is sensitive to repetitive in vitro muscle contraction. Moreover, the results indicate that +dF/dt to some extent depends...

  11. [Effects of ginsenoside Rb1 on the oxidative stress in the skeletal muscles of rats with postoperative fatigue syndrome].

    Science.gov (United States)

    Tan, Shan-Jun; Yu, Zhen; Dong, Qian-Tong

    2012-11-01

    To observe the effects of ginsenoside Rb1 (GRb1) on the oxidative stress in the skeletal muscles of rats with postoperative fatigue syndrome (POFS) and to study its anti-fatigue mechanisms. The POFS model was established using resection of 70% of mid-small intestine. Ninety-six Sprague-Dawley (SD) rats were screened using grasping test. The rats were randomly divided into the control group, the model group, and the GRb1 treated group (at 10 mg/kg) by the body weight. The maximum grip strength of rats was detected on the 1st, 3rd, 7th, and 10th day after operation, respectively. The contents of malondialdehyde (MDA), the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) were detected. Compared with the model group, the maximum grip strength was obviously enhanced on the postoperative day 7 and 10 (P 0.05). GRb1 could reduce the oxidative stress injury in the skeletal muscles, improve the activities of antioxidant enzymes, and enhance the functions of the skeletal muscles in POFS rats, which may be important reasons for fighting against POFS.

  12. Akt-dependent anabolic activity of natural and synthetic brassinosteroids in rat skeletal muscle cells.

    Science.gov (United States)

    Esposito, Debora; Rathinasabapathy, Thirumurugan; Poulev, Alexander; Komarnytsky, Slavko; Raskin, Ilya

    2011-06-23

    Brassinosteroids are plant-derived polyhydroxylated derivatives of 5α-cholestane, structurally similar to cholesterol-derived animal steroid hormones and insect ecdysteroids. In this study, we synthesized a set of brassinosteroid analogues of a natural brassinosteroid (22S,23S)-homobrassinolide (HB, 1), including (22S,23S)-homocastasterone (2), (22S,23S)-3α-fluoro-homobrasinolide (3), (22S,23S)-3α-fluoro-homocastasterone (4), (22S,23S)-7-aza-homobrassinolide (5), and (22S,23S)-6-aza-homobrassinolide (6) and studied their anabolic efficacy in the L6 rat skeletal muscle cells in comparison to other synthetic and naturally occurring brassinosteroids (22R,23R)-homobrassinolide (7), (22S,23S)-epibrassinolide (8), and (22R,23R)-epibrassinolide (9). Presence of the 6-keto group in the B ring and stereochemistry of 22α,23α-vicinal hydroxyl groups in the side chain were critical for the anabolic activity, possibly due to higher cytotoxicity of the 22β,23β-hydroxylated brassinosteroids. All anabolic brassinosteroids tested in this study selectively activated PI3K/Akt signaling pathway as evident by increased Akt phosphorylation in vitro. Plant brassinosteroids and their synthetic derivatives may offer a novel therapeutic strategy for promoting growth, repair, and maintenance of skeletal muscles.

  13. Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats

    Science.gov (United States)

    Riley, D. A.; Ilyina-Kakueva, E. I.; Ellis, S.; Bain, J. L.; Slocum, G. R.; Sedlak, F. R.

    1990-01-01

    Histochemical and ultrastructural analyses were performed postflight on hind limb skeletal muscles of rats orbited for 12.5 days aboard the unmanned Cosmos 1887 biosatellite and returned to Earth 2 days before sacrifice. The antigravity adductor longus (AL), soleus, and plantaris muscles atrophied more than the non-weight-bearing extensor digitorum longus, and slow muscle fibers were more atrophic than fast fibers. Muscle fiber segmental necrosis occurred selectively in the AL and soleus muscles; primarily, macrophages and neutrophils infiltrated and phagocytosed cellular debris. Granule-rich mast cells were diminished in flight AL muscles compared with controls, indicating the mast cell secretion contributed to interstitial tissue edema. Increased ubiquitination of disrupted myofibrils implicated ubiquitin in myofilament degradation. Mitochondrial content and succinic dehydrogenase activity were normal, except for subsarcolemmal decreases. Myofibrillar ATPase activity of flight AL muscle fibers shifted toward the fast type. Absence of capillaries and extravasation of red blood cells indicated failed microcirculation. Muscle fiber regeneration from activated satellite cells was detected. About 17% of the flight AL end plates exhibited total or partial denervation. Thus, skeletal muscle weakness associated with spaceflight can result from muscle fiber atrophy and segmental necrosis, partial motor denervation, and disruption of the microcirculation.

  14. In vivo phosphorus 31 magnetic resonance spectroscopy of rat hind limb skeletal muscle during sepsis.

    Science.gov (United States)

    Jacobs, D O; Maris, J; Fried, R; Settle, R G; Rolandelli, R R; Koruda, M J; Chance, B; Rombeau, J L

    1988-11-01

    High-energy phosphate metabolism in skeletal muscle is altered during sepsis, although the chronology of events is uncertain. Phosphorus 31 magnetic resonance spectroscopy was used to measure changes in muscle energy stores of the left hind limb musculature of adult male rats during sepsis. Following control scans, cecal ligation and puncture were performed and scanning was repeated 6, 24, and 48 hours after surgery. The ratios of phosphocreatine (PCr) to inorganic phosphate (Pi), a measure of energy stores, and adenosine triphosphate (ATP) to Pi ratio, a measure of the energy available for immediate use, were determined from peak heights. Intracellular pH was calculated using the distance between Pi and PCr peaks. In surviving animals, a 40% decrease in PCr/Pi ratio (+/- SEM) was observed by 24 hours (22.3 +/- 3.0 at time 0 vs 13.3 +/- 2.8 at 24 hours), whereas energy availability (beta-ATP/Pi) was statistically unchanged (18.2 +/- 2.2 at time 0 vs 15.2 +/- 1.2 at 48 hours). Intracellular pH did not change. Both PCr/Pi and ATP/Pi ratios were inversely correlated with time. In this model of documented peritonitis, skeletal muscle energy metabolism is rapidly altered following severe infection, and these changes can be detected using 31P magnetic resonance spectroscopy.

  15. Regulation and role of hormone-sensitive lipase in rat skeletal muscle

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2004-01-01

    Intramyocellular triacylglycerol (TG) is an important energy store, and the energy content of this depot is higher than the energy content of the muscle glycogen depot. It has recently been shown that the mobilization of fatty acids from this TG pool may be regulated by the neutral lipase hormone...... in skeletal muscle and can be activated by phosphorylation in response to both adrenaline and muscle contractions. Training increases contraction-mediated HSL activation, but decreases adrenaline-mediated HSL activation in muscle.......Intramyocellular triacylglycerol (TG) is an important energy store, and the energy content of this depot is higher than the energy content of the muscle glycogen depot. It has recently been shown that the mobilization of fatty acids from this TG pool may be regulated by the neutral lipase hormone......-sensitive lipase (HSL). This enzyme is known to be rate limiting for intracellular TG hydrolysis in adipose tissue. The presence of HSL has been demonstrated in all muscle fibre types by Western blotting of muscle fibres isolated by collagenase treatment or after freeze-drying. The content of HSL varies between...

  16. Choice of cell-delivery route for skeletal myoblast transplantation for treating post-infarction chronic heart failure in rat.

    Directory of Open Access Journals (Sweden)

    Satsuki Fukushima

    2008-08-01

    Full Text Available Intramyocardial injection of skeletal myoblasts (SMB has been shown to be a promising strategy for treating post-infarction chronic heart failure. However, insufficient therapeutic benefit and occurrence of ventricular arrhythmias are concerns. We hypothesised that the use of a retrograde intracoronary route for SMB-delivery might favourably alter the behaviour of the grafted SMB, consequently modulating the therapeutic effects and arrhythmogenicity.Three weeks after coronary artery ligation in female wild-type rats, 5x10(6 GFP-expressing SMB or PBS only (control were injected via either the intramyocardial or retrograde intracoronary routes. Injection of SMB via either route similarly improved cardiac performance and physical activity, associated with reduced cardiomyocyte-hypertrophy and fibrosis. Grafted SMB via either route were only present in low numbers in the myocardium, analysed by real-time PCR for the Y-chromosome specific gene, Sry. Cardiomyogenic differentiation of grafted SMB was extremely rare. Continuous ECG monitoring by telemetry revealed that only intramyocardial injection of SMB produced spontaneous ventricular tachycardia up to 14 days, associated with local myocardial heterogeneity generated by clusters of injected SMB and accumulated inflammatory cells. A small number of ventricular premature contractions with latent ventricular tachycardia were detected in the late-phase of SMB injection regardless of the injection-route.Retrograde intracoronary injection of SMB provided significant therapeutic benefits with attenuated early-phase arrhythmogenicity in treating ischaemic cardiomyopathy, indicating the promising utility of this route for SMB-delivery. Late-phase arrhythmogenicity remains a concern, regardless of the delivery route.

  17. Polyunsaturated Fatty Acids Attenuate Diet Induced Obesity and Insulin Resistance, Modulating Mitochondrial Respiratory Uncoupling in Rat Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Gina Cavaliere

    Full Text Available Omega (ω-3 polyunsaturated fatty acids (PUFA are dietary compounds able to attenuate insulin resistance. Anyway, the precise actions of ω-3PUFAs in skeletal muscle are overlooked. We hypothesized that PUFAs, modulating mitochondrial function and efficiency, would ameliorate pro-inflammatory and pro-oxidant signs of nutritionally induced obesity.To this aim, rats were fed a control diet (CD or isocaloric high fat diets containing either ω-3 PUFA (FD or lard (LD for 6 weeks.FD rats showed lower weight, lipid gain and energy efficiency compared to LD-fed animals, showing higher energy expenditure and O2 consumption/CO2 production. Serum lipid profile and pro-inflammatory parameters in FD-fed animals were reduced compared to LD. Accordingly, FD rats exhibited a higher glucose tolerance revealed by an improved glucose and insulin tolerance tests compared to LD, accompanied by a restoration of insulin signalling in skeletal muscle. PUFAs increased lipid oxidation and reduced energy efficiency in subsarcolemmal mitochondria, and increase AMPK activation, reducing both endoplasmic reticulum and oxidative stress. Increased mitochondrial respiration was related to an increased mitochondriogenesis in FD skeletal muscle, as shown by the increase in PGC1-α and -β.our data strengthened the association of high dietary ω3-PUFA intake with reduced mitochondrial energy efficiency in the skeletal muscle.

  18. Interval and Continuous Exercise Training Produce Similar Increases in Skeletal Muscle and Left Ventricle Microvascular Density in Rats

    Directory of Open Access Journals (Sweden)

    Flávio Pereira

    2013-01-01

    Full Text Available Interval training (IT, consisting of alternated periods of high and low intensity exercise, has been proposed as a strategy to induce more marked biological adaptations than continuous exercise training (CT. The purpose of this study was to assess the effects of IT and CT with equivalent total energy expenditure on capillary skeletal and cardiac muscles in rats. Wistar rats ran on a treadmill for 30 min per day with no slope (0%, 4 times/week for 13 weeks. CT has constant load of 70% max; IT has cycles of 90% max for 1 min followed by 1 min at 50% max. CT and IT increased endurance and muscle oxidative capacity and attenuated body weight gain to a similar extent (P>0.05. In addition, CT and IT similarly increased functional capillary density of skeletal muscle (CT: 30.6±11.7%; IT: 28.7±11.9% and the capillary-to-fiber ratio in skeletal muscle (CT: 28.7±14.4%; IT: 40.1±17.2% and in the left ventricle (CT: 57.3±53.1%; IT: 54.3±40.5%. In conclusion, at equivalent total work volumes, interval exercise training induced similar functional and structural alterations in the microcirculation of skeletal muscle and myocardium in healthy rats compared to continuous exercise training.

  19. Adaptation in properties of skeletal muscle to coronary artery occlusion/reperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Ogoh, Shigehiko [Univ. of North Texas, Fort Worth, TX (United States). Health Science Center; Hirai, Taku [Kyoto Univ. (Japan). Graduate School of Medicine; Nohara, Ryuuji [Kitano Hospital, Osaka (Japan); Taguchi, Sadayoshi [Kyoto Univ. (Japan). Graduate School of Human and Environmental Studies

    2002-10-01

    The present study was designed to determine if changes in function and metabolism of heart muscle induce alterations in characteristics of skeletal muscle. We investigated the histochemical and biochemical properties of soleus (SOL) and extensor digitorum longus (EDL) muscles in Wistar rats at the chronic phase after coronary artery occlusion/reperfusion. The size of myocardial infarct region was evaluated using a high resolution pinhole single photo emission computed tomography (SPECT) system. 4wk after left coronary artery occlusion/reperfusion, the SOL and EDL of hindlimb were dissected out and immersed in isopentane cooled with liquid nitrogen for subsequent histochemical and biochemical analysis. From SPECT imaging, the blood circulation was recovered, but the recovery of fatty acid metabolism was not observed in infarct region of heart. Citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activities in infarct region of heart were lower in the myocardial infarction (MI, n=6) group compared with that of age-matched sham-operated (Sham, n=6) group. In addition, heart muscle hypertrophy caused by the dysfunction in MI group was observed. In skeletal muscle, the atrophy and transition of fiber type distribution in MI group, reported in previous studies of heart failure, were not observed. However, the succinate dehydrogenase (SDH) activity in the slow twitch oxidative (SO) from SOL of MI group decreased by 9.8% and in the fast twitch oxidative glycolytic fibers (FOG), 8.0% as compared with sham group. Capillary density of the SO fibers from SOL of MI group also reduced by 18.5% and in the FOG fibers, 18.2% as compared with Sham group. Decreased capillary density in this study related significantly to decreased SDH activity of single muscle fibers in chronic phase of perfusion after surgical infarction. Our results make it clear that there is a difference in the reaction of skeletal muscle to coronary artery occlusion/reperfusion compared with chronic

  20. Barium-induced skeletal muscle paralysis in the rat, and its relationship to human familial periodic paralysis

    Science.gov (United States)

    Schott, G. D.; McArdle, B.

    1974-01-01

    An in vivo study of skeletal muscle paralysis induced by intravenous barium chloride has been made in curarized and non-curarized rats. The influence of potassium and calcium chlorides, propranolol, ouabain, and prior adrenalectomy on the paralysis has also been studied. Paralysis is found to be due to a direct effect on skeletal muscle, and to correlate well with the development of hypokalaemia. Possible mechanisms of action of barium are discussed, and attention is drawn to the similarity between barium poisoning and hypokalaemic familial periodic paralysis. PMID:4813426

  1. The effect of enterocystoplasty on bone strength assessed at four different skeletal sites in a rat model

    DEFF Research Database (Denmark)

    Gerharz, E.W.; Mosekilde, Li.; Thomsen, J.S.

    2003-01-01

    The objective of the study was to investigate bone strength at four different skeletal sites in a chronic animal model of urinary diversion. Young male Wistar rats (120) were allocated randomly to four groups undergoing ileocystoplasty; ileocystoplasty and resection of the ileocecal segment......; colocystoplasty; or sham operation (controls). After 8 months the lumbar vertebrae, femora, and tibiae were harvested at necropsy. Bone strength was assessed biomechanically at four different skeletal sites: vertebra L3, femoral middiaphysis, femoral neck, and distal femoral metaphysis. Bone mass and architecture...... changes in tibial histomorphometry. Isolated ileocystoplasty resulted in decreased maximum load values of L3 (-16.4%; p strength of L...

  2. Ketoconazole- and fluconazole-induced embryotoxicity and skeletal anomalies in wistar rats: a comparative study

    Directory of Open Access Journals (Sweden)

    Vanessa Cristiane de Santana Amaral

    2008-12-01

    Full Text Available Ketoconazole and fluconazole are two broad-spectrum azole antifungals used for the treatment of superficial and systemic mycoses. Embryotoxicity and teratogenicity have been reported in some studies when those drugs are administered at high doses to pregnant rats. The aim of this study was to present a comparative study of embryotoxic effects as well as the skeletal anomalies in fetuses of Wistar rats which received ketoconazole and fluconazole at teratogenic doses on gestational days (GD 6 through 15 (organogenesis period. On gestational day (GD 21, the dams were euthanized and examined for standard parameters of reproductive outcome. Fetuses were stained with alizarin red and the bones of the head, trunk, forelimb and hindlimb were examined for detection of skeletal anomalies. The frequency of skeletal anomalies in the ketoconazole-treated group was significant when compared to the fluconazole and the control group.O cetoconazol e o fluconazol são dois antifúngicos azólicos, de amplo espectro, utilizados no tratamento de micoses superficiais e sistêmicas. Alguns estudos relatam a embriotoxicidade e teratogenicidade induzidas por estes fármacos quando os mesmos são administrados em altas doses a ratas prenhes. O objetivo deste trabalho foi apresentar um estudo comparativo dos efeitos embriotóxicos e das anomalias esqueléticas em fetos de ratas Wistar que receberam cetoconazol e fluconazol em doses teratogênicas do 6º ao 15º dia gestacional (GD (período da organogênese. No 21º GD as ratas foram eutanaziadas e examinadas quanto aos parâmetros padrões de performance reprodutiva. Os fetos foram corados com vermelho de alizarina e os ossos da cabeça, do tronco e dos membros anteriores e posteriores foram examinados para a verificação de anomalias esqueléticas. A freqüência de anomalias esqueléticas no grupo tratado com cetoconazol foi significante quando comparada à dos grupos fluconazol e controle.

  3. Eccentric contractions affect muscle membrane phospholipid fatty acid composition in rats

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Therkildsen, K J; Jørgensen, T B

    2001-01-01

    This study investigated if prior eccentric contractions, and thus mechanical strain and muscle damage, exert an effect on the muscle membrane phospholipid fatty acid composition in rats, and whether a possible effect could be attenuated by dietary supplements. Twenty-three rats were randomised...... muscle, was excised from both legs. In the muscles stimulated to contract eccentrically, compared to the control muscles, the proportion of arachidonic acid, C20:4,n-6 (17.7 +/- 0.6; 16.4 +/- 0.4% of total fatty acids, respectively) and docosapentanoeic acid, C22:5,n-3 (2.9 +/- 0.1 and 2.7 +/- 0.......1% of total fatty acids, respectively) was uniformly higher across groups (P acids) compared to the control leg (38.2 +/- 0...

  4. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon

    2014-01-01

    Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type...... CSA increased exclusively with Whey-Conc (P hypertrophy correlated with whole muscle hypertrophy exclusively following Conc training (P ...-specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose...

  5. Action of perchlorate on the voltage dependent inactivation of excitation-contraction coupling in frog skeletal muscle fibres.

    Science.gov (United States)

    Píriz, Nazira; Pizarro, Gonzalo

    2007-01-01

    Perchlorate is an agonist of excitation-contraction coupling (ECC) in skeletal muscle displacing charge movement and release activation towards more negative voltages. Contradictory effects of this compound on the voltage dependent inactivation (VDI) of ECC ranging from no effect to a negative shift have been previously reported. In this study we report the effect of the extracellular application of 8 mM perchlorate to cut frog fibres on: (1) the charge movement that activates release (Q(1)), (2) the charge movement measured in fibres inactivated by depolarization (Q(2)) and (3) on the steady state VDI of Q(1) and Ca(2+) release. Our findings were: (1) The central voltage of Q(1) was negatively displaced by perchlorate from -29.0 +/- 1.6 to -38.4 +/- 1.7 mV (n = 4). The maximum Q(1) was not significantly affected while the slope of the Q(1) vs. V was increased by perchlorate. (2) The central voltage of Q(2) was shifted from -91.6 +/- 1.4 to -102.3 +/- 1.5 mV (n = 4). (3) The central voltage of the steady state inactivation curve of Q(1) went from -39.3 +/- 1.8 to -48.6 +/- 1.2 mV (mean +/- SEM, n = 6). Perchlorate had a paradoxical effect on Ca(2+) release, while potentiated the release flux in fibres held at -90 mV (peak release flux increased from 3.9 +/- 1.1 to 6.8 +/- 1.9 microM/ms, n = 5) it had an inhibitory effect when applied to fibres at a depolarized holding potential (peak release flux decreased from 3.9 +/- 0.9 to 2.0 +/- 0.5 microM/ms, n = 9). The above findings suggest that the effect on the steady state inactivation is a direct consequence of the negative shift in Q(1) activation. The negative shift in the steady state inactivation of Q(1) correlated well with the effect on Ca(2+) release.

  6. Indigo carmine enhances phenylephrine-induced contractions in an isolated rat aorta

    OpenAIRE

    Choi, Yun Suk; Ok, Seong-Ho; Lee, Seung Min; Park, Sang-Seung; Ha, Yu Mi; Chang, Ki Churl; Kim, Hye Jung; Shin, Il-Woo; Sohn, Ju-Tae

    2011-01-01

    Background The intravenous administration of indigo carmine has been reported to produce transiently increased blood pressure in patients. The goal of this in vitro study was to examine the effect of indigo carmine on phenylephrine-induced contractions in an isolated rat aorta and to determine the associated cellular mechanism with particular focus on the endothelium-derived vasodilators. Methods The concentration-response curves for phenylephrine were generated in the presence or absence of ...

  7. Development of the excitation-contraction coupling machinery and its relation to myofibrillogenesis in human iPSC-derived skeletal myocytes.

    Science.gov (United States)

    Lainé, Jeanne; Skoglund, Gunnar; Fournier, Emmanuel; Tabti, Nacira

    2018-01-05

    Human induced pluripotent stem cells-derived myogenic progenitors develop functional and ultrastructural features typical of skeletal muscle when differentiated in culture. Besides disease-modeling, such a system can be used to clarify basic aspects of human skeletal muscle development. In the present study, we focus on the development of the excitation-contraction (E-C) coupling, a process that is essential both in muscle physiology and as a tool to differentiate between the skeletal and cardiac muscle. The occurrence and maturation of E-C coupling structures (Sarcoplasmic Reticulum-Transverse Tubule (SR-TT) junctions), key molecular components, and Ca2+ signaling were examined, along with myofibrillogenesis. Pax7+-myogenic progenitors were differentiated in culture, and developmental changes were examined from a few days up to several weeks. Ion channels directly involved in the skeletal muscle E-C coupling (RyR1 and Cav1.1 voltage-gated Ca2+ channels) were labeled using indirect immunofluorescence. Ultrastructural changes of differentiating cells were visualized by transmission electron microscopy. On the functional side, depolarization-induced intracellular Ca2+ transients mediating E-C coupling were recorded using Fura-2 ratiometric Ca2+ imaging, and myocyte contraction was captured by digital photomicrography. We show that the E-C coupling machinery occurs and operates within a few days post-differentiation, as soon as the myofilaments align. However, Ca2+ transients become effective in triggering myocyte contraction after 1 week of differentiation, when nascent myofibrils show alternate A-I bands. At later stages, myofibrils become fully organized into adult-like sarcomeres but SR-TT junctions do not reach their triadic structure and typical A-I location. This is mirrored by the absence of cross-striated distribution pattern of both RyR1 and Cav1.1 channels. The E-C coupling machinery occurs and operates within the first week of muscle cells differentiation

  8. Effects of adlay hull extracts on uterine contraction and Ca2+ mobilization in the rat.

    Science.gov (United States)

    Hsia, Shih-Min; Kuo, Yueh-Hsiung; Chiang, Wenchang; Wang, Paulus S

    2008-09-01

    Dysmenorrhea is directly related to elevated PGF(2alpha) levels. It is treated with nonsteroid antiinflammatory drugs (NSAIDs) in Western medicine. Since NSAIDs produce many side effects, Chinese medicinal therapy is considered as a feasible alternative medicine. Adlay (Coix lachryma-jobi L. var. ma-yuen Stapf.) has been used as a traditional Chinese medicine for treating dysmenorrhea. However, the relationship between smooth muscle contraction and adlay extracts remains veiled. Therefore, we investigated this relationship in the rat uterus by measuring uterine contraction activity and recording the intrauterine pressure. We studied the in vivo and in vitro effects of the methanolic extracts of adlay hull (AHM) on uterine smooth muscle contraction. The extracts were fractionated using four different solvents: water, 1-butanol, ethyl acetate, and n-hexane; the four respective fractions were AHM-Wa, AHM-Bu, AHM-EA, and AHM-Hex. AHM-EA and its subfractions (175 microg/ml) inhibited uterine contractions induced by PGF(2alpha), the Ca(2+) channel activator Bay K 8644, and high K(+) in a concentration-dependent manner in vitro. AHM-EA also inhibited PGF(2alpha)-induced uterine contractions in vivo; furthermore, 375 microg/ml of AHM-EA inhibited the Ca(2+)-dependent uterine contractions. Thus 375 microg/ml of AHM-EA consistently suppressed the increases in intracellular Ca(2+) concentrations induced by PGF(2alpha) and high K(+). We also demonstrated that naringenin and quercetin are the major pure chemical components of AHM-EA that inhibit PGF(2alpha)-induced uterine contractions. Thus AHM-EA probably inhibited uterine contraction by blocking external Ca(2+) influx, leading to a decrease in intracellular Ca(2+) concentration. Thus adlay hull may be considered as a feasible alternative therapeutic agent for dysmenorrhea.

  9. Eccentric contractions affect muscle membrane phospholipid fatty acid composition in rats.

    Science.gov (United States)

    Helge, J W; Therkildsen, K J; Jørgensen, T B; Wu, B J; Storlien, L H; Asp, S

    2001-09-01

    This study investigated if prior eccentric contractions, and thus mechanical strain and muscle damage, exert an effect on the muscle membrane phospholipid fatty acid composition in rats, and whether a possible effect could be attenuated by dietary supplements. Twenty-three rats were randomised to three groups who received chow with added fish oil (n = 8), vitamin C (n = 8) or no supplement (n = 7). After 3 weeks of feeding, calf muscles on one side were stimulated electrically during anaesthesia causing eccentric contractions. Two days later the white gastrocnemius, a part of the stimulated calf muscle, was excised from both legs. In the muscles stimulated to contract eccentrically, compared to the control muscles, the proportion of arachidonic acid, C20:4,n-6 (17.7 +/- 0.6; 16.4 +/- 0.4% of total fatty acids, respectively) and docosapentanoeic acid, C22:5,n-3 (2.9 +/- 0.1 and 2.7 +/- 0.1% of total fatty acids, respectively) was uniformly higher across groups (P muscle. Thus one severe bout of eccentric contractions modulates the fatty acid composition of the muscle membrane phospholipids when compared to a control leg, and supplemental intake of fish oil or vitamin C did not attenuate this effect.

  10. The role of muscarinic receptors in contractions of adult male Rat\\'s isolated ileum

    Directory of Open Access Journals (Sweden)

    Raedeh Tavalaee

    2017-10-01

    Conclusion: This study showed that different concentrations of carbachol enhance induced contraction by potassium chloride in a concentration-dependent manner and has a synergistic effect with potassium chloride. Also, different concentrations of scopolamine decrease induced contraction by potassium chloride in a concentration-dependent manner.

  11. Activity of Ca(2+,Mg(2+-ATPase of sarcoplasmic reticulum and contraction strength of the frog skeletal muscles under the effect of organophosphorus insecticides

    Directory of Open Access Journals (Sweden)

    D. M. Nozdrenko

    2015-08-01

    Full Text Available The results of an experimental study of organo­phosphorus insecticides, including pirimiphosmethyl, diazinon and chlorpyrifos caused a decline of the contraction properties in m. tibialis anterior fiber bundles of Rana temporaria, as well as sarcoplasmic reticulum Ca2+,Mg2+-ATPase enzymatic activity reduction are outlined in this paper. Concentration-dependent strengths response diminishing in isolated skeletal muscle fiber bundles as a result of non-cholinergic influence of organophosphorus insecticides were found. A decrease of Ca2+,Mg2+-ATPase enzymatic activity in sarcoplasmic reticulum was observed after administration of each insecticide. The most significant inhibition of this enzyme was observed when using chlorpyrifos.

  12. Effect of temperature on fatty acid metabolism in skeletal muscle mitochondria of untrained and endurance-trained rats.

    Directory of Open Access Journals (Sweden)

    Jerzy A Zoladz

    Full Text Available We studied the effects of various assay temperatures, representing hypothermia (25°C, normothermia (35°C, and hyperthermia (42°C, on the oxidation of lipid-derived fuels in rat skeletal muscle mitochondria of untrained and endurance-trained rats. Adult 4-month-old male Wistar rats were assigned to a training group (rats trained on a treadmill for 8 weeks or a sedentary control group. In skeletal muscle mitochondria of both control and trained rats, an increase in the assay temperature from 25°C to 42°C was accompanied by a consistent increase in the oxidation of palmitoylcarnitine and glycerol-3-phosphate. Moreover, endurance training increased mitochondrial capacity to oxidize the lipid-derived fuels at all studied temperatures. The endurance training-induced increase in mitochondrial capacity to oxidize fatty acids was accompanied by an enhancement of mitochondrial biogenesis, as shown by the elevated expression levels of Nrf2, PGC1α, and mitochondrial marker and by the elevated expression levels of mitochondrial proteins involved in fatty acid metabolism, such as fatty acid transporter CD36, carnitine palmitoyltransferase 1A (CPT1A, and acyl-CoA dehydrogenase (ACADS. We conclude that hyperthermia enhances but hypothermia attenuates the rate of the oxidation of fatty acids and glycerol-3-phosphate in rat skeletal muscle mitochondria isolated from both untrained and trained rats. Moreover, our results indicate that endurance training up-regulates mitochondrial biogenesis markers, lipid-sustained oxidative capacity, and CD36 and CPT1A proteins involved in fatty acid transport, possibly via PGC1α and Nrf2 signaling pathways.

  13. Effects of calcium antagonists on K(+)-induced contraction in isolated aorta from diabetic and age-matched control rats

    NARCIS (Netherlands)

    Heijnis, J. B.; van Zwieten, P. A.

    1993-01-01

    The effects of nifedipine, verapamil and diltiazem on K(+)-induced contraction were investigated in isolated aortic rings from diabetic and age-matched control rats. Six weeks after streptozotocin injection there was no significant difference between the maximum isometric contraction to KCl (80

  14. Effects of fluvastatin and coenzyme Q10 on skeletal muscle in normo- and hypercholesterolaemic rats.

    Science.gov (United States)

    Vincze, J; Jenes, Á; Füzi, M; Almássy, J; Németh, R; Szigeti, G; Dienes, B; Gaál, Z; Szentesi, P; Jóna, I; Kertai, P; Paragh, G; Csernoch, L

    2015-06-01

    Myalgia and muscle weakness may appreciably contribute to the poor adherence to statin therapy. Although the pathomechanism of statin-induced myopathy is not completely understood, changes in calcium homeostasis and reduced coenzyme Q10 levels are hypothesized to play important roles. In our experiments, fluvastatin and/or coenzyme Q10 was administered chronically to normocholesterolaemic or hypercholaestherolaemic rats, and the modifications of the calcium homeostasis and the strength of their muscles were investigated. While hypercholesterolaemia did not change the frequency of sparks, fluvastatin increased it on muscles both from normocholesterolaemic and from hypercholesterolaemic rats. This effect, however, was not mediated by a chronic modification of the ryanodine receptor as shown by the unchanged ryanodine binding in the latter group. While coenzyme Q10 supplementation significantly reduced the frequency of the spontaneous calcium release events, it did not affect their amplitude and spatial spread in muscles from fluvastatin-treated rats. This indicates that coenzyme Q10 supplementation prevented the spark frequency increasing effect of fluvastatin without having a major effect on the amount of calcium released during individual sparks. In conclusion, we have found that fluvastatin, independently of the cholesterol level in the blood, consistently and specifically increased the frequency of calcium sparks in skeletal muscle cells, an effect which could be prevented by the addition of coenzyme Q10 to the diet. These results support theories favouring the role of calcium handling in the pathophysiology of statin-induced myopathy and provide a possible pathway for the protective effect of coenzyme Q10 in statin treated patients symptomatic of this condition.

  15. Endothelin induces two types of contractions of rat uterus: phasic contractions by way of voltage-dependent calcium channels and developing contractions through a second type of calcium channels

    Energy Technology Data Exchange (ETDEWEB)

    Kozuka, M.; Ito, T.; Hirose, S.; Takahashi, K.; Hagiwara, H.

    1989-02-28

    Effects of endothelin on nonvascular smooth muscle have been examined using rat uterine horns and two modes of endothelin action have been revealed. Endothelin (0.3 nM) caused rhythmic contractions of isolated uterus in the presence of extracellular calcium. The rhythmic contractions were completely inhibited by calcium channel antagonists. These characteristics of endothelin-induced contractions were very similar to those induced by oxytocin. Binding assays using /sup 125/I-endothelin showed that endothelin and the calcium channel blockers did not compete for the binding sites. However, endothelin was unique in that it caused, in addition to rhythmic contractions, a slowly developing monophasic contraction that was insensitive to calcium channel blockers. This developing contraction became dominant at higher concentrations of endothelin and was also calcium dependent.

  16. Bradykinin does not acutely sensitize the reflex pressor response during hindlimb skeletal muscle stretch in decerebrate rats.

    Science.gov (United States)

    Rollins, Korynne S; Smith, Joshua R; Esau, Peter J; Kempf, Evan A; Hopkins, Tyler D; Copp, Steven W

    2017-10-01

    Hindlimb skeletal muscle stretch (i.e., selective activation of the muscle mechanoreflex) in decerebrate rats evokes reflex increases in blood pressure and sympathetic nerve activity. Bradykinin has been found to sensitize mechanogated channels through a bradykinin B2 receptor-dependent mechanism. Moreover, bradykinin B2 receptor expression on sensory neurons is increased following chronic femoral artery ligation in the rat (a model of simulated peripheral artery disease). We tested the hypothesis that injection of bradykinin into the arterial supply of a hindlimb in decerebrate, unanesthetized rats would acutely augment (i.e., sensitize) the increase in blood pressure and renal sympathetic nerve activity during hindlimb muscle stretch to a greater extent in rats with a ligated femoral artery than in rats with a freely perfused femoral artery. The pressor response during static hindlimb muscle stretch was compared before and after hindlimb arterial injection of 0.5 µg of bradykinin. Injection of bradykinin increased blood pressure to a greater extent in "ligated" (n = 10) than "freely perfused" (n = 10) rats. The increase in blood pressure during hindlimb muscle stretch, however, was not different before vs. after bradykinin injection in freely perfused (14 ± 2 and 15 ± 2 mmHg for pre- and post-bradykinin, respectively, P = 0.62) or ligated (15 ± 3 and 14 ± 2 mmHg for pre- and post-bradykinin, respectively, P = 0.80) rats. Likewise, the increase in renal sympathetic nerve activity during stretch was not different before vs. after bradykinin injection in either group of rats. We conclude that bradykinin did not acutely sensitize the pressor response during hindlimb skeletal muscle stretch in freely perfused or ligated decerebrate rats. Copyright © 2017 the American Physiological Society.

  17. Clenbuterol increases muscle fiber size and GATA-2 protein in rat skeletal muscle in utero.

    Science.gov (United States)

    Downie, Diane; Delday, Margaret I; Maltin, Charlotte A; Sneddon, Alan A

    2008-05-01

    Certain beta(2)-adrenoceptor agonists, such as clenbuterol, are known to elicit a muscle-specific anabolism or hypertrophy in both normal and catabolic muscle in a wide variety of species. However, the underlying mechanism(s) of the beta(2)-agonist-induced anabolism remains unclear. This study aimed to determine the effects of clenbuterol administration in utero on skeletal muscle and to examine the underlying molecular mechanisms. Pregnant rats were fed clenbuterol (2 mg/kg diet) from Day 4 of gestation (4 dg) until weanling and fetal samples were taken from 13.5, 15.5, 17.5, and 19.5 dg and from 1d neonatal pups. Muscles were analyzed for total DNA, RNA and protein and sections examined morphologically for changes in muscle development. Western and immunohistochemical analyses were performed to identify changes in known myogenic signaling proteins. Clenbuterol increased the size of both fast and slow fibers in utero which was associated with a decreased DNA:protein ratio (28%) and an increased RNA:DNA ratio (36%). Additionally, drug treatment in utero induced a decrease in the fast:slow fiber ratio (38%). These myogenic changes were correlated with an increase in the GATA-2 hypertrophic transcription factor at both 17.5 dg (by 250%) and 19.5 dg (by 40%) in fetuses from clenbuterol treated dams. In addition, drug treatment resulted in increased membrane association of PKC-micro at 17.5 dg (325%) and increased PKC-alpha cytosolic abundance (40%) and PKC-theta membrane abundance at 19.5 dg (250%). These results are the first demonstration that beta(2)-agonists such as clenbuterol may act through upregulating the GATA-2 transcription factor and implicate certain PKC isoforms in the drug-induced regulation of skeletal muscle development. (c) 2007 Wiley-Liss, Inc.

  18. Effect of thymol on kinetic properties of Ca and K currents in rat skeletal muscle

    Science.gov (United States)

    Szentandrássy, Norbert; Szentesi, Péter; Magyar, János; Nánási, Péter P; Csernoch, László

    2003-01-01

    Background Thymol is widely used as a general antiseptic and antioxidant compound in the medical practice and industry, and also as a stabilizer to several therapeutic agents, including halothane. Thus intoxication with thymol may occur in case of ingestion or improper anesthesia. In the present study, therefore, concentration-dependent effects of thymol (30–600 micro-grams) were studied on calcium and potassium currents in enzymatically isolated rat skeletal muscle fibers using the double vaseline gap voltage clamp technique. Results Thymol suppressed both Ca and K currents in a concentration-dependent manner, the EC50 values were 193 ± 26 and 93 ± 11 μM, with Hill coefficients of 2.52 ± 0.29 and 1.51 ± 0.18, respectively. Thymol had a biphasic effect on Ca current kinetics: time to peak current and the time constant for inactivation increased at lower (100–200 μM) but decreased below their control values at higher (600 μM) concentrations. Inactivation of K current was also significantly accelerated by thymol (200–300 μM). These effects of thymol developed rapidly and were partially reversible. In spite of the marked effects on the time-dependent properties, thymol caused no change in the current-voltage relationship of Ca and K peak currents. Conclusions Present results revealed marked suppression of Ca and K currents in skeletal muscle, similar to results obtained previously in cardiac cells. Furthermore, it is possible that part of the suppressive effects of halothane on Ca and K currents, observed experimentally, may be attributed to the concomitant presence of thymol in the superfusate. PMID:12864924

  19. Docosahexaenoic acid and n-6 docosapentaenoic acid supplementation alter rat skeletal muscle fatty acid composition

    Directory of Open Access Journals (Sweden)

    Lim Sun-Young

    2007-04-01

    Full Text Available Abstract Background Docosahexaenoic acid (22:6n-3, DHA and n-6 docosapentaenoic acid (22:5n-6, DPAn-6 are highly unsaturated fatty acids (HUFA, ≥ 20 carbons, ≥ 3 double bonds that differ by a single carbon-carbon double bond at the Δ19 position. Membrane 22:6n-3 may support skeletal muscle function through optimal ion pump activity of sarcoplasmic reticulum and electron transport in the mitochondria. Typically n-3 fatty acid deficient feeding trials utilize linoleic acid (18:2n-6, LA as a comparison group, possibly introducing a lower level of HUFA in addition to n-3 fatty acid deficiency. The use of 22:5n-6 as a dietary control is ideal for determining specific requirements for 22:6n-3 in various physiological processes. The incorporation of dietary 22:5n-6 into rat skeletal muscles has not been demonstrated previously. A one generation, artificial rearing model was utilized to supply 22:6n-3 and/or 22:5n-6 to rats from d2 after birth to adulthood. An n-3 fatty acid deficient, artificial milk with 18:2n-6 was supplemented with 22:6n-3 and/or 22:5n-6 resulting in four artificially reared (AR dietary groups; AR-LA, AR-DHA, AR-DPAn-6, AR-DHA+DPAn-6. A dam reared group (DAM was included as an additional control. Animals were sacrificed at 15 wks and soleus, white gastrocnemius and red gastrocnemius muscles were collected for fatty acid analyses. Results In all muscles of the DAM group, the concentration of 22:5n-6 was significantly lower than 22:6n-3 concentrations. While 22:5n-6 was elevated in the AR-LA group and the AR-DPAn-6 group, 20:4n-6 tended to be higher in the AR-LA muscles and not in the AR-DPAn-6 muscles. The AR-DHA+DPAn-6 had a slight, but non-significant increase in 22:5n-6 content. In the red gastrocnemius of the AR-DPAn-6 group, 22:5n-6 levels (8.1 ± 2.8 wt. % did not reciprocally replace the 22:6n-3 levels observed in AR-DHA reared rats (12.2 ± 2.3 wt. % suggesting a specific preference/requirement for 22:6n-3 in red

  20. Docosahexaenoic acid and n-6 docosapentaenoic acid supplementation alter rat skeletal muscle fatty acid composition.

    Science.gov (United States)

    Stark, Ken D; Lim, Sun-Young; Salem, Norman

    2007-04-25

    Docosahexaenoic acid (22:6n-3, DHA) and n-6 docosapentaenoic acid (22:5n-6, DPAn-6) are highly unsaturated fatty acids (HUFA, > or = 20 carbons, > or = 3 double bonds) that differ by a single carbon-carbon double bond at the Delta19 position. Membrane 22:6n-3 may support skeletal muscle function through optimal ion pump activity of sarcoplasmic reticulum and electron transport in the mitochondria. Typically n-3 fatty acid deficient feeding trials utilize linoleic acid (18:2n-6, LA) as a comparison group, possibly introducing a lower level of HUFA in addition to n-3 fatty acid deficiency. The use of 22:5n-6 as a dietary control is ideal for determining specific requirements for 22:6n-3 in various physiological processes. The incorporation of dietary 22:5n-6 into rat skeletal muscles has not been demonstrated previously. A one generation, artificial rearing model was utilized to supply 22:6n-3 and/or 22:5n-6 to rats from d2 after birth to adulthood. An n-3 fatty acid deficient, artificial milk with 18:2n-6 was supplemented with 22:6n-3 and/or 22:5n-6 resulting in four artificially reared (AR) dietary groups; AR-LA, AR-DHA, AR-DPAn-6, AR-DHA+DPAn-6. A dam reared group (DAM) was included as an additional control. Animals were sacrificed at 15 wks and soleus, white gastrocnemius and red gastrocnemius muscles were collected for fatty acid analyses. In all muscles of the DAM group, the concentration of 22:5n-6 was significantly lower than 22:6n-3 concentrations. While 22:5n-6 was elevated in the AR-LA group and the AR-DPAn-6 group, 20:4n-6 tended to be higher in the AR-LA muscles and not in the AR-DPAn-6 muscles. The AR-DHA+DPAn-6 had a slight, but non-significant increase in 22:5n-6 content. In the red gastrocnemius of the AR-DPAn-6 group, 22:5n-6 levels (8.1 +/- 2.8 wt. %) did not reciprocally replace the 22:6n-3 levels observed in AR-DHA reared rats (12.2 +/- 2.3 wt. %) suggesting a specific preference/requirement for 22:6n-3 in red gastrocnemius. Dietary 22:5n-6 is

  1. The Effect of a Hypobaric, Hypoxic Environment on Acute Skeletal Muscle Edema After Ischemia-Reperfusion Injury in Rats

    Science.gov (United States)

    2010-05-15

    coagulation status [prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen levels, and thrombelastography (TEG)]. Rats were then...rationalizing that it would provide the most sensitivity for observing differences between NB and HB if HB worsened edema. Previous work with this...tural perturbation of redox sensitive enzymes in injured skeletal muscle. Free Radic Biol Med 2007;43:1584. 32. Huard J, Li Y, Fu FH. Muscle injuries

  2. Insulin stimulation of glucose transport activity in rat skeletal muscle: increase in cell surface GLUT4 as assessed by photolabelling.

    OpenAIRE

    Wilson, C. M.; Cushman, S W

    1994-01-01

    We have used a photoaffinity label to quantify cell surface GLUT4 glucose transporters in isolated rat soleus muscles. In this system, insulin stimulated an 8.6-fold increase in 3-O-methylglucose glucose transport, while photolabelled GLUT4 increased 8-fold. These results demonstrate that the insulin-stimulated increase in glucose transport activity in skeletal muscle can be accounted for by an increase in surface-accessible GLUT4 content.

  3. Contraction-by-contraction VO2 and computer-controlled pump perfusion as novel techniques to study skeletal muscle metabolism in situ.

    Science.gov (United States)

    Hernández, Andrés; Goodwin, Matthew L; Lai, Nicola; Cabrera, Marco E; McDonald, James R; Gladden, L Bruce

    2010-03-01

    The purpose of this research was to develop new techniques to 1) rapidly sample venous O(2) saturation to determine contraction-by-contraction oxygen uptake (Vo(2)), and 2) precisely control the rate and pattern of blood flow adjustment from one chosen steady state to another. An indwelling inline oximeter probe connected to an Oximetrix 3 meter was used to sample venous oxygen concentration ([O(2)]) (via fractional saturation of Hb with O(2)). Data from the Oximetrix 3 were filtered, deconvolved, and processed by a moving average second by second. Computer software and a program written in-house were used to control blood flow with a peristaltic pump. The isolated canine gastrocnemius muscle complex (GS) in situ was utilized to test these techniques. A step change in metabolic rate was elicited by stimulating GS muscles via their sciatic nerves (supramaximal voltage, 8 V; 50 Hz, 0.2-ms pulse width; train duration 200 ms) at a rate of either 1 contraction/2 s, or 2 contractions/3 s. With arterial [O(2)] maintained constant, blood flow and calculated venous [O(2)] were averaged over each contraction cycle and used in the Fick equation to calculate contraction-by-contraction Vo(2). About 5-8 times more data points were obtained with this method compared with traditional manual sampling. Software-controlled pump perfusion enabled the ability to mimic spontaneous blood flow on-kinetics (tau: 14.3 s) as well as dramatically speed (tau: 2.0 s) and slow (tau: 63.3 s) on-kinetics. These new techniques significantly improve on existing methods for mechanistically altering blood flow kinetics as well as accurately measuring muscle oxygen consumption kinetics during transitions between metabolic rates.

  4. A Novel Method to Measure Glucose Uptake and Myosin Heavy Chain Isoform Expression of Single Fibers From Rat Skeletal Muscle

    Science.gov (United States)

    MacKrell, James G.; Cartee, Gregory D.

    2012-01-01

    Skeletal muscle includes many individual fibers with diverse phenotypes. A barrier to understanding muscle glucose uptake at the cellular level has been the absence of a method to measure glucose uptake by single fibers from mammalian skeletal muscle. This study’s primary objective was to develop a procedure to measure glucose uptake by single fibers from rat skeletal muscle. Rat epitrochlearis muscles were incubated ex vivo with [3H]-2-deoxy-d-glucose, with or without insulin or AICAR, before isolation of ~10–30 single fibers from each muscle. Fiber type (myosin heavy chain [MHC] isoform) and glucose uptake were determined for each single fiber. Insulin-stimulated glucose uptake (which was cytochalasin B inhibitable) varied according to MHC isoform expression, with ~2-fold greater values for IIA versus IIB or IIX fibers and ~1.3-fold greater for hybrid (IIB/X) versus IIB fibers. In contrast, AICAR-stimulated glucose uptake was ~1.5-fold greater for IIB versus IIA fibers. A secondary objective was to assess insulin resistance of single fibers from obese versus lean Zucker rats. Genotype differences were observed for insulin-stimulated glucose uptake and inhibitor κB (IκB)-β abundance in single fibers (obese less than lean), with decrements for glucose uptake (44–58%) and IκB-β (25–32%) in each fiber type. This novel method creates a unique opportunity for future research focused on understanding muscle glucose uptake at the cellular level. PMID:22396201

  5. Proteomic and carbonylation profile analysis of rat skeletal muscles following acute swimming exercise.

    Directory of Open Access Journals (Sweden)

    Francesca Magherini

    Full Text Available Previous studies by us and other groups characterized protein expression variation following long-term moderate training, whereas the effects of single bursts of exercise are less known. Making use of a proteomic approach, we investigated the effects of acute swimming exercise (ASE on protein expression and carbonylation patterns in two hind limb muscles: the Extensor Digitorum Longus (EDL and the Soleus, mostly composed of fast-twitch and slow-twitch fibres, respectively. Carbonylation is one of the most common oxidative modifications of proteins and a marker of oxidative stress. In fact, several studies suggest that physical activity and the consequent increase in oxygen consumption can lead to increase in reactive oxygen and nitrogen species (RONS production, hence the interest in examining the impact of RONS on skeletal muscle proteins following ASE. Results indicate that protein expression is unaffected by ASE in both muscle types. Unexpectedly, the protein carbonylation level was reduced following ASE. In particular, the analysis found 31 and 5 spots, in Soleus and EDL muscles respectively, whose carbonylation is reduced after ASE. Lipid peroxidation levels in Soleus were markedly reduced as well. Most of the decarbonylated proteins are involved either in the regulation of muscle contractions or in the regulation of energy metabolism. A number of hypotheses may be advanced to account for such results, which will be addressed in future studies.

  6. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2003-01-01

    and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction...... of the inhibitors reduced adrenaline-induced HSL activation in soleus muscle. Both phorbol-12-myristate-13-acetate (PMA), which activates PKC and, in turn, ERK, and caffeine, which increases intracellular Ca2+ without eliciting contraction, increased HSL activity. Activated ERK increased HSL activity in supernatant...... from basal but not from electrically stimulated muscle. In conclusion, in muscle, PKC can stimulate HSL through ERK. Contractions and adrenaline enhance muscle HSL activity by different signalling mechanisms. The effect of contractions is mediated by PKC, at least partly via the ERK pathway....

  7. Fatty acid composition in fractions of structural and storage lipids in liver and skeletal muscle of hereditary hypertriglyceridemic rats.

    Science.gov (United States)

    Bohov, P; Seböková, E; Gasperíková, D; Langer, P; Klimes, I

    1997-09-20

    The fatty acid (FA) compositions of liver and skeletal muscle structural lipids, overall phospholipids and phosphatidylcholine, and triglycerides (TG) were determined in the hereditary hypertriglyceridemic (HTG) rat, a nonobese animal model of the insulin resistance syndrome. Four groups of HTG rats and four groups of control animals were fed equal-energy diets for two weeks: basal (B), high-sucrose (HS), or fish oil-supplemented basal (BFO) or high-sucrose (HSFO) diets. In the liver of HTG rats, a decrease of n-6 long-chain polyunsaturated FA (PUFA), especially in 20:4n-6, in comparison with controls was found. Moreover, a concomitant accumulation of 18:2n-6 in structural lipids was observed. These differences were more pronounced in liver than in skeletal muscle. HS feeding raised the proportion of 18:1n-9 and decreased 18:2n-6 in lipid fractions. In both tissues and in both strains, the amounts of long-chain n-3 PUFA, as well as the level of total C20-22 PUFA, went up after fish oil feeding. However, the effects were somewhat less pronounced in the HTG rats. The increase in n-3 PUFA occurred mainly at the expense of reduced levels of 18:2n-6 in structural lipids and of 18:1n-9 in triglycerides. These changes were associated, in companion studies reported in this volume, with improved insulin action in HTG rats. In conclusion, the FA composition in lipid subclasses of HTG rats differs significantly from the controls mainly in liver structural lipids, suggesting the impairment of PUFA desaturation. Dietary change effected a similar modulation of FA profile across both strains, with fish oil increasing the levels of long-chain PUFA toward control values in the NTG rats. The HTG rat thus provides an interesting animal model for the study of impaired fatty acid metabolism.

  8. Beta-synemin expression in cardiotoxin-injected rat skeletal muscle

    Directory of Open Access Journals (Sweden)

    Okamoto Koichi

    2007-05-01

    Full Text Available Abstract Background β-synemin was originally identified in humans as an α-dystrobrevin-binding protein through a yeast two-hybrid screen using an amino acid sequence derived from exons 1 through 16 of α-dystrobrevin, a region common to both α-dystrobrevin-1 and -2. α-Dystrobrevin-1 and -2 are both expressed in muscle and co-localization experiments have determined which isoform preferentially functions with β-synemin in vivo. The aim of our study is to show whether each α-dystrobrevin isoform has the same affinity for β-synemin or whether one of the isoforms preferentially functions with β-synemin in muscle. Methods The two α-dystrobrevin isoforms (-1 and -2 and β-synemin were localized in regenerating rat tibialis anterior muscle using immunoprecipitation, immunohistochemical and immunoblot analyses. Immunoprecipitation and co-localization studies for α-dystrobrevin and β-synemin were performed in regenerating muscle following cardiotoxin injection. Protein expression was then compared to that of developing rat muscle using immunoblot analysis. Results With an anti-α-dystrobrevin antibody, β-synemin co-immunoprecipitated with α-dystrobrevin whereas with an anti-β-synemin antibody, α-dystrobrevin-1 (rather than the -2 isoform preferentially co-immunoprecipitated with β-synemin. Immunohistochemical experiments show that β-synemin and α-dystrobrevin co-localize in rat skeletal muscle. In regenerating muscle, β-synemin is first expressed at the sarcolemma and in the cytoplasm at day 5 following cardiotoxin injection. Similarly, β-synemin and α-dystrobrevin-1 are detected by immunoblot analysis as weak bands by day 7. In contrast, immunoblot analysis shows that α-dystrobrevin-2 is expressed as early as 1 day post-injection in regenerating muscle. These results are similar to that of developing muscle. For example, in embryonic rats, immunoblot analysis shows that β-synemin and α-dystrobevin-1 are weakly expressed in

  9. Chronic skeletal muscle ischemia preserves coronary flow in the ischemic rat heart.

    Science.gov (United States)

    Varnavas, Varnavas C; Kontaras, Konstantinos; Glava, Chryssoula; Maniotis, Christos D; Koutouzis, Michael; Baltogiannis, Giannis G; Papalois, Apostolos; Kolettis, Theofilos M; Kyriakides, Zenon S

    2011-10-01

    Chronic skeletal muscle ischemia confers cytoprotection to the ventricular myocardium during infarction, but the underlying mechanisms remain unclear. Although neovascularization in the left ventricular myocardium has been proposed as a possible mechanism, the functional capacity of such vessels has not been studied. We examined the effects of chronic limb ischemia on infarct size, coronary blood flow, and left ventricular function after ischemia-reperfusion. Hindlimb ischemia was induced in 65 Wistar rats by excision of the left femoral artery, whereas 65 rats were sham operated. After 4 wk, myocardial infarction was generated by permanent coronary artery ligation. Infarct size was measured 24 h postligation. Left ventricular function was evaluated in isolated hearts after ischemia-reperfusion, 4 wk after limb ischemia. Neovascularization was assessed by immunohistochemistry, and coronary flow was measured under maximum vasodilatation at different perfusion pressures before and after coronary ligation. Infarct size was smaller after limb ischemia compared with controls (24.4 ± 8.1% vs. 46.2 ± 9.5% of the ventricle and 47.6 ± 8.7% vs. 80.1 ± 9.3% of the ischemic area, respectively). Indexes of left ventricular function at the end of reperfusion (divided by baseline values) were improved after limb ischemia (developed pressure: 0.68 ± 0.06 vs. 0.59 ± 0.05, P = 0.008; maximum +dP/dt: 0.70 ± 0.08 vs. 0.59 ± 0.04, P = 0.004; and maximum -dP/dt: 0.86 ± 0.14 vs. 0.72 ± 0.10, P = 0.041). Coronary vessel density was markedly higher (P = 0.00021) in limb ischemic rats. In contrast to controls (F = 5.65, P = 0.00182), where coronary flow decreased, it remained unchanged (F = 1.36, P = 0.28) after ligation in limb ischemic rats. In conclusion, chronic hindlimb ischemia decreases infarct size and attenuates left ventricular dysfunction by increasing coronary collateral vessel density and blood flow.

  10. [Effects of early insulin therapy on nuclear factor kappaB pathway in skeletal muscle of diabetes: experiment with rats].

    Science.gov (United States)

    Bi, Yan; Sun, Wei-ping; Chen, Xiang; Cai, Meng-yin; Liang, Hua; Zhu, Yan-hua; He, Xiao-ying; Yu, Qiu-qiong; Li, Ming; Weng, Jian-ping

    2008-12-16

    To investigate the effect of early insulin therapy on the nuclear factor kappaB (NF-kappaB) pathway and inflammatory cytokine responses in skeletal muscle in type 2 diabetes mellitus (DM). SD rats underwent intraperitoneal injection of streptozotocin to establish DM models and then divided into 5 groups: early un-treated group, early gliclazide treated group (receiving gliclazide since the third day after blood glucose increase for 3 weeks for 3 weeks), early insulin treated group (receiving insulin since the third day after blood glucose increase for 3 weeks for 3 weeks), late un-treated group, and late insulin treated group (receiving insulin since the fourth week after blood glucose increase for 3 weeks). By the end of treatment the rats were killed. Homogenate of skeletal muscle was made. The NF-kappaB P65 DNA binding was assayed by ELISA-based assay kit. Real time PCR was used to detect the mRNA expression levels of the gene of the cytokines: glucose transporter 4 (Glut4), inhibitor kappaB (IkappaBalpha), IL-1beta, IL-6, and tumor necrosis factor (TNF)-alpha. And Glut4 and IkappaBalpha protein expression levels were assayed by Western blotting. The Glut4 mRNA level in the skeletal muscle of the untreated DM rats decreased by 59% and the Glut4 protein level in the muscle cell membrane decreased by 69%. Insulin treatment and gliclazide treatment increased the Glut4 mRNA expression by 17% and 13% respectively, increased the Glut4 protein expression in cell membrane by 23% and 10% respectively, and decreased the Glut4 protein expression in the cytoplasm. In the DM rats the IkappaBalpha protein expression in the skeletal muscle was significantly lower (P treatment of insulin and gliclazide increased the IkappaBalpha protein expression, decreased the NF-kappaB P65 DNA binding activity and the TNF-alpha expression in the skeletal muscle. Early insulin treatment inhibits the NFkappaB activity and inflammatory cytokine responses in skeletal muscle that are involved in

  11. Neurogenic contraction induced by the antiarrhythmic compound, AVE 0118, in rat small mesenteric arteries.

    Science.gov (United States)

    Kun, Attila; Seprényi, György; Varró, András; Papp, Julius Gy; Pataricza, János

    2014-10-01

    The purpose of this study was to investigate the vasoactivity of two inhibitors of potassium ion (K(+) ) channels, a potential antiarrhythmic compound, AVE 0118, and 4-aminopyridine (4-AP). Basal and stimulated tones of rat small mesenteric arteries as well as the possible involvement of KV 1.5 ion channel in the mechanism of vascular effect induced by the compounds were analysed. The standard organ bath technique for vascular tone and immunohistochemistry for the localization of ion channels in the arterial tissue were performed. Third- or fourth-order branch of arterial segments was mounted in myographs for recording the isometric tension. AVE 0118 (10(-5) M) and 4-AP (10(-5) M) modulated neither the basal tone nor the contraction induced by noradrenaline but increased the contraction evoked by electrical field stimulation, sensitive to the block of alpha-1 adrenergic receptors. KV 1.5 ion channel-specific immunostaining demonstrated the presence of immunoreactive nerves, and Schwann-cell-specific (S100) immunostaining confirmed the presence of myelin sheath in rat small mesenteric arteries. The study supports an indirect, sympathetic effect of AVE 0118 similar to that of 4-AP, which is mediated, at least in part, by blocking neuronal KV 1.5 type potassium ion channels in the medio-adventitial layer of rat small mesenteric artery. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  12. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Farup, Jean; Rahbek, Stine Klejs

    2015-01-01

    content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies...

  13. Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Koh, Ho-Jin; Toyoda, Taro; Fujii, Nobuharu

    2010-01-01

    -related protein kinases, significantly inhibited contraction-stimulated glucose transport. This finding, in conjunction with previous studies of ablated AMPKalpha2 activity showing no effect on contraction-stimulated glucose transport, suggests that one or more AMPK-related protein kinases are important...

  14. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content

    DEFF Research Database (Denmark)

    Steensberg, A; Febbraio, M A; Osada, T

    2001-01-01

    1. Prolonged exercise results in a progressive decline in glycogen content and a concomitant increase in the release of the cytokine interleukin-6 (IL-6) from contracting muscle. This study tests the hypothesis that the exercise-induced IL-6 release from contracting muscle is linked...

  15. Increased Muscular 5α-Dihydrotestosterone in Response to Resistance Training Relates to Skeletal Muscle Mass and Glucose Metabolism in Type 2 Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Naoki Horii

    Full Text Available Regular resistance exercise induces skeletal muscle hypertrophy and improvement of glycemic control in type 2 diabetes patients. Administration of dehydroepiandrosterone (DHEA, a sex steroid hormone precursor, increases 5α-dihydrotestosterone (DHT synthesis and is associated with improvements in fasting blood glucose level and skeletal muscle hypertrophy. Therefore, the aim of this study was to investigate whether increase in muscle DHT levels, induced by chronic resistance exercise, can contribute to skeletal muscle hypertrophy and concomitant improvement of muscular glucose metabolism in type 2 diabetic rats. Male 20-week-old type 2 diabetic rats (OLETF were randomly divided into 3 groups: sedentary control, resistance training (3 times a week on alternate days for 8 weeks, or resistance training with continuous infusion of a 5α-reductase inhibitor (n = 8 each group. Age-matched, healthy nondiabetic Long-Evans Tokushima Otsuka (LETO rats (n = 8 were used as controls. The results indicated that OLETF rats showed significant decrease in muscular DHEA, free testosterone, DHT levels, and protein expression of steroidogenic enzymes, with loss of skeletal muscle mass and hyperglycemia, compared to that of LETO rats. However, 8-week resistance training in OLETF rats significantly increased the levels of muscle sex steroid hormones and protein expression of steroidogenic enzymes with a concomitant increase in skeletal muscle mass, improved fasting glucose level, and insulin sensitivity index. Moreover, resistance training accelerated glucose transporter-4 (GLUT-4 translocation and protein kinase B and C-ζ/λ phosphorylation. Administering the 5α-reductase inhibitor in resistance-trained OLETF rats resulted in suppression of the exercise-induced effects on skeletal muscle mass, fasting glucose level, insulin sensitivity index, and GLUT-4 signaling, with a decline in muscular DHT levels. These findings suggest that resistance training

  16. Effects of chloride channel blockers on hypotonicity-induced contractions of the rat trachea

    Science.gov (United States)

    Coelho, Roberta R; Souza, Emmanuel P; Soares, Pedro M G; Meireles, Ana Vaneska P; Santos, Geam C M; Scarparo, Henrique C; Assreuy, Ana Maria S; Criddle, David N

    2003-01-01

    We have investigated the inhibitory effects of blockers of volume-activated (Clvol) and calcium-activated (ClCa) chloride channels on hypotonic solution (HS)-induced contractions of rat trachea, comparing their effects with those of the voltage-dependent calcium channel (VDCC) blocker nifedpine. HS elicited large, stable contractions that were partially dependent on the cellular chloride gradient; a reduction to 41.45±7.71% of the control response was obtained when extracellular chloride was removed. In addition, HS-induced responses were reduced to 26.8±5.6% of the control by 1 μM nifedipine, and abolished under calcium-free conditions, indicating a substantial requirement for extracellular calcium entry, principally via VDCCs. The established Clvol blockers tamoxifen (⩽10 μM) and 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (1–100 μM), at concentrations previously reported to inhibit Clvol in smooth muscle, did not significantly inhibit HS-induced contractions. In contrast, the recognized ClCa blocker niflumic acid (NFA; 1–100 μM) produced a reversible, concentration-dependent inhibition of HS responses, with a reduction to 36.6±6.4% of control contractions at the highest concentration. The mixed Clvol and ClCa blocker, 5-nitro 2-(3-phenylpropylamine) benzoic acid (NPPB; 10–100 μM) also elicited concentration-related inhibition of HS-induced contractions, producing a decrease to 35.9±11.3% of the control at 100 μM. Our results show that HS induces reversible, chloride-dependent contractions of rat isolated trachea that were inhibited by NFA and NPPB, while exhibiting little sensitivity to recognized blockers of Clvol. The data support the possibility that opening of calcium-activated chloride channels under hypotonic conditions in respiratory smooth muscle may ultimately lead to VDCC-mediated calcium entry and contraction. PMID:14691057

  17. EFFECTS OF THE FRUCTOOLIGOSACCHARIDES (FOS AND INULIN ON BONE METABOLISM OF THE SKELETALLY MATURE FEMALE RATS

    Directory of Open Access Journals (Sweden)

    Claudia Cardoso NETTO

    2012-12-01

    Full Text Available The aim of this study was establish if the fructooligosaccharides (FOS and inulin alone or together attenuate age related bone loss in skeletally mature female rats. Forty 10-month old female rats were randomly assigned to four diet groups for 2 months: control, FOS, inulin and FOS + inulin. Bone mineral density (BMD using dualenergy X-ray absorptiometry (DXA, femur quality using morphometry and biomechanic properties, biochemical assays by the determination of serum parathyroid hormone (PTH, alkaline phosphatase activity (ALP, degradation products of C-terminal peptides of type I collagen (CTX-I, osteocalcin (OC, osteoprotegerin (OPG and nuclear factor κappa B ligand (RANk-L. The FOS increased hip axis BMD (0.255 ± 0.005 g/cm2 and femur neck width (2.19 ± 0.01 mm and reduced PTH (4.0 x 10-3 ± 0.0006 µg/L, FOS + inulin increased the femur proportional limit (87.2 ± 1.0 N and reduced PTH (2.5 x 10-3 ± 0.0006 µg/L and ALP (23.2 ± 5.1 U/L, all the prebiotics reduced OPG (FOS = 1.1 ± 0.3, inulin = 1.1 ± 0.3, FOS + inulin = 1.4 ± 0.4 µg/L and RANk-L (FOS = 1.65 x 10-2 ± 0.003, inulin = 1.78 x 10-2 ± 0.003, FOS + inulin = 2.83 x 10-2 ± 0.006 µg/L , no prebiotics changed OC and CTX-I. The results suggested that the consumption of FOS or FOS + inulin may reduce the bone turnover, however, further studies about prebiotics and their synergistic effect on age related bone loss are required.

  18. Calcium homeostasis is altered in skeletal muscle of spontaneously hypertensive rats: cytofluorimetric and gene expression analysis.

    Science.gov (United States)

    Liantonio, Antonella; Camerino, Giulia M; Scaramuzzi, Antonia; Cannone, Maria; Pierno, Sabata; De Bellis, Michela; Conte, Elena; Fraysse, Bodvael; Tricarico, Domenico; Conte Camerino, Diana

    2014-10-01

    Hypertension is often associated with skeletal muscle pathological conditions related to function and metabolism. The mechanisms underlying the development of these pathological conditions remain undefined. Because calcium homeostasis is a biomarker of muscle function, we assessed whether it is altered in hypertensive muscles. We measured resting intracellular calcium and store-operated calcium entry (SOCE) in fast- and slow-twitch muscle fibers from normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) by cytofluorimetric technique and determined the expression of SOCE gene machinery by real-time PCR. Hypertension caused a phenotype-dependent dysregulation of calcium homeostasis; the resting intracellular calcium of extensor digitorum longus and soleus muscles of SHRs were differently altered with respect to the related muscle of normotensive animals. In addition, soleus muscles of SHR showed reduced activity of the sarcoplasmic reticulum and decreased sarcolemmal calcium permeability at rest and after SOCE activation. Accordingly, we found an alteration of the expression levels of some SOCE components, such as stromal interaction molecule 1, calcium release-activated calcium modulator 1, and transient receptor potential canonical 1. The hypertension-induced alterations of calcium homeostasis in the soleus muscle of SHRs occurred with changes of some functional outcomes as excitability and resting chloride conductance. We provide suitable targets for therapeutic interventions aimed at counterbalancing muscle performance decline in hypertension, and propose the reported calcium-dependent parameters as indexes to predict how the antihypertensive drugs could influence muscle function. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis.

    Directory of Open Access Journals (Sweden)

    Darin Bloemberg

    Full Text Available Skeletal muscle is a heterogeneous tissue comprised of fibers with different morphological, functional, and metabolic properties. Different muscles contain varying proportions of fiber types; therefore, accurate identification is important. A number of histochemical methods are used to determine muscle fiber type; however, these techniques have several disadvantages. Immunofluorescence analysis is a sensitive method that allows for simultaneous evaluation of multiple MHC isoforms on a large number of fibers on a single cross-section, and offers a more precise means of identifying fiber types. In this investigation we characterized pure and hybrid fiber type distribution in 10 rat and 10 mouse skeletal muscles, as well as human vastus lateralis (VL using multicolor immunofluorescence analysis. In addition, we determined fiber type-specific cross-sectional area (CSA, succinate dehydrogenase (SDH activity, and α-glycerophosphate dehydrogenase (GPD activity. Using this procedure we were able to easily identify pure and hybrid fiber populations in rat, mouse, and human muscle. Hybrid fibers were identified in all species and made up a significant portion of the total population in some rat and mouse muscles. For example, rat mixed gastrocnemius (MG contained 12.2% hybrid fibers whereas mouse white tibialis anterior (WTA contained 12.1% hybrid fibers. Collectively, we outline a simple and time-efficient method for determining MHC expression in skeletal muscle of multiple species. In addition, we provide a useful resource of the pure and hybrid fiber type distribution, fiber CSA, and relative fiber type-specific SDH and GPD activity in a number of rat and mouse muscles.

  20. Shikonin increases glucose uptake in skeletal muscle cells and improves plasma glucose levels in diabetic Goto-Kakizaki rats.

    Directory of Open Access Journals (Sweden)

    Anette I Öberg

    Full Text Available BACKGROUND: There is considerable interest in identifying compounds that can improve glucose homeostasis. Skeletal muscle, due to its large mass, is the principal organ for glucose disposal in the body and we have investigated here if shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increases glucose uptake in skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: Shikonin increases glucose uptake in L6 skeletal muscle myotubes, but does not phosphorylate Akt, indicating that in skeletal muscle cells its effect is medaited via a pathway distinct from that used for insulin-stimulated uptake. Furthermore we find no evidence for the involvement of AMP-activated protein kinase in shikonin induced glucose uptake. Shikonin increases the intracellular levels of calcium in these cells and this increase is necessary for shikonin-mediated glucose uptake. Furthermore, we found that shikonin stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myoblasts. The beneficial effect of shikonin on glucose uptake was investigated in vivo by measuring plasma glucose levels and insulin sensitivity in spontaneously diabetic Goto-Kakizaki rats. Treatment with shikonin (10 mg/kg intraperitoneally once daily for 4 days significantly decreased plasma glucose levels. In an insulin sensitivity test (s.c. injection of 0.5 U/kg insulin, plasma glucose levels were significantly lower in the shikonin-treated rats. In conclusion, shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. CONCLUSIONS/SIGNIFICANCE: Shikonin increases glucose uptake in skeletal muscle cells via an insulin-independent pathway dependent on calcium. The beneficial effects of shikonin on glucose metabolism, both in vitro and in vivo, show that the compound possesses properties that make it of considerable interest for developing novel treatment of type 2 diabetes.

  1. [The initial study on mechanism in postpone skeletal muscle aging process of D-galactose rats by movement training and soy polypeptide supplement].

    Science.gov (United States)

    Liu, Feng-Bin; Shen, Mei

    2014-03-01

    To observe the effect of the postpone in skeletal muscle aging process of D-galactose rats by weight training and soy polypeptide supplement in 6 weeks, and discuss the initial mechanism. Sixty male SD rats (three month old)were randomly assigned: 6 week control (C6,) and 6 week model (M6) 6 for each group, 12 week model (M12), big load (B12), small load (S12), peptide (P12), peptide + big load (PB12) and peptide + small load group (PS12) 8 for each group, eight fourteen month rats were taken in the natural aging group. The rats were killed by the end of 6th week and 12th week, tested the indicators. Compare with group C6, the indicators in group M6 showed aging in different levels; Compare with group M12, weight training or soy polypeptide supplement in all intervention groups could increase the content of skeletal muscle superoxide dismutase (SOD), SOD/MDA, the serum growth hormone(GH), insulin-like growth factor-1 (IGF-I)and skeletal muscle IGF-I mRNA, decreased the malondialdehyde (MDA) content of skeletal muscle, and they had notable interaction. Rat skeletal muscle aging model can be copied successfully by D-galactose hypodermic, and go on with 6-week weight training or soy polypeptide supplement, they can postpone the skeletal muscle aging process of D-galactose rats, and the two interference way united can have more obvious effect. Its preliminary mechanism may be related to the reduction of skeletal muscle oxidative stress and lipid peroxidation, the correction of hormones and related factors metabolic disorders, the elevation of skeletal muscle IGF-I mRNA expression and so on.

  2. Ascorbate prevents microvascular dysfunction in the skeletal muscle of the septic rat.

    Science.gov (United States)

    Armour, J; Tyml, K; Lidington, D; Wilson, J X

    2001-03-01

    Septic patients have low plasma ascorbate concentrations and compromised microvascular perfusion. The purpose of the present experiments was to determine whether ascorbate improves capillary function in volume-resuscitated sepsis. Cecal ligation and perforation (CLP) was performed on male Sprague-Dawley rats. The concentration of ascorbate in plasma and urine, mean arterial blood pressure, and density of continuously perfused capillaries in the extensor digitorum longus muscle were measured 24 h after surgery. CLP caused a 50% decrease (from 56 +/- 4 to 29 +/- 2 microM) in plasma ascorbate concentration, 1,000% increase (from 46 +/- 13 to 450 +/- 93 microM) in urine ascorbate concentration, 20% decrease (from 115 +/- 2 to 91 +/- 2 mmHg) in mean arterial pressure, and 30% decrease (from 24 +/- 1 to 17 +/- 1 capillaries/mm) in the density of perfused capillaries, compared with time-matched controls. A bolus of intravenous ascorbate (7.6 mg/100 g body wt) administered immediately after the CLP procedure increased plasma ascorbate concentration and restored both blood pressure and density of perfused capillaries to control levels. In vitro experiments showed that ascorbate (100 microM) inhibited replication of bacteria and prevented hydrogen peroxide injury to cultured microvascular endothelial cells. These results indicate that ascorbate is lost in the urine during sepsis and that a bolus of ascorbate can prevent microvascular dysfunction in the skeletal muscle of septic animals. Our study supports the view that ascorbate may be beneficial for patients with septic syndrome.

  3. Effects of chronic intermittent asphyxia on haematocrit, pulmonary arterial pressure and skeletal muscle structure in rats.

    Science.gov (United States)

    Bradford, Aidan

    2004-01-01

    Sleep-disordered breathing in humans is a common condition associated with serious cardiovascular and other abnormalities. The prevalence and pathogenesis of increased haematocrit and pulmonary hypertension is controversial and it has been suggested that these changes only occur in patients who also have daytime continuous hypoxaemia. The hypothesis tested here is that the chronic intermittent hypoxia and asphyxia associated with sleep-disordered breathing causes erythropoiesis and pulmonary hypertension and that this occurs in the absence of periods of continuous hypoxia. In humans and animals with obstructive sleep apnoea, there are abnormalities of upper airway muscle structure that have been ascribed to increased load placed on these muscles. An alternative hypothesis is that chronic intermittent hypoxia and asphyxia cause changes in upper airway muscle structure and function. To test these hypotheses, rats were exposed to intermittent hypoxia and asphyxia for 8 h per day for 5 weeks. This caused an increase in haematocrit, right ventricular weight and pulmonary arterial pressure. There were only slight changes in diaphragm, upper airway and limb muscle structure and force production but in general, muscle fatigability was increased. In conclusion chronic intermittent hypoxia and asphyxia cause an increase in haematocrit and pulmonary arterial pressure in the absence of periods of continuous hypoxia. Chronic intermittent hypoxia and asphyxia have little effect on skeletal muscle structure and force production but increase muscle fatigue. Increased upper airway muscle fatigue could lead to a vicious cycle of further compromise in upper airway patency and further hypoxia and asphyxia.

  4. Effect of Salvia leriifolia Benth. root extracts on ischemia-reperfusion in rat skeletal muscle

    Science.gov (United States)

    Hosseinzadeh, Hossein; Hosseini, Azar; Nassiri-Asl, Marjan; Sadeghnia, Hamid-Reza

    2007-01-01

    Background Salvia leriifolia have been shown to decrease ischemia-reperfusion (I/R) injury in brain tissues. In this study, the effects of S. leriifolia aqueous and ethanolic extracts were evaluated on an animal model of I/R injury in the rat hind limb. Methods Ischemia was induced using free-flap surgery in skeletal muscle. The aqueous and ethanolic extracts of S. leriifolia (100, 200 and 400 mg/kg) root and normal saline (10 ml/kg) were administered intraperitoneally 1 h prior reperfusion. During preischemia, ischemia and reperfusion conditions the electromyographic (EMG) potentials in the muscles were recorded. The markers of oxidative stress including thiobarbituric acid reactive substances (TBARS), total sulfhydryl (SH) groups and antioxidant capacity of muscle (using FRAP assay) were measured. Results In peripheral ischemia, the average peak-to-peak amplitude during ischemic-reperfusion was found to be significantly larger in extracts groups in comparison with control group. Following extracts administration, the total SH contents and antioxidant capacity were elevated in muscle flap. The MDA level was also declined significantly in test groups. Conclusion It is concluded that S. leriifolia root extracts have some protective effects on different markers of oxidative damage in muscle tissue injury caused by lower limb ischemia-reperfusion. PMID:17617916

  5. Exercise training, glucose transporters, and glucose transport in rat skeletal muscles

    Science.gov (United States)

    Rodnick, K. J.; Henriksen, E. J.; James, D. E.; Holloszy, J. O.

    1992-01-01

    It was previously found that voluntary wheel running induces an increase in the insulin-sensitive glucose transporter, i.e., the GLUT4 isoform, in rat plantaris muscle (K. J. Rodnick, J. O. Holloszy, C. E. Mondon, and D. E. James. Diabetes 39: 1425-1429, 1990). The present study was undertaken to determine whether 1) the increase in muscle GLUT4 protein is associated with an increase in maximally stimulated glucose transport activity, 2) a conversion of type IIb to type IIa or type I muscle fibers plays a role in the increase in GLUT4 protein, and 3) an increase in the GLUT1 isoform is a component of the adaptation of muscle to endurance exercise. Five weeks of voluntary wheel running that resulted in a 33% increase in citrate synthase activity induced a 50% increase in GLUT4 protein in epitrochlearis muscles of female Sprague-Dawley rats. The rate of 2-deoxy-glucose transport maximally stimulated with insulin or insulin plus contractions was increased approximately 40% (P less than 0.05). There was no change in muscle fiber type composition, evaluated by myosin ATPase staining, in the epitrochlearis. There was also no change in GLUT1 protein concentration. We conclude that an increase in GLUT4, but not of GLUT1 protein, is a component of the adaptive response of muscle to endurance exercise and that the increase in GLUT4 protein is associated with an increased capacity for glucose transport.

  6. Oral Rg1 supplementation strengthens antioxidant defense system against exercise-induced oxidative stress in rat skeletal muscles

    Directory of Open Access Journals (Sweden)

    Yu Szu-Hsien

    2012-05-01

    Full Text Available Abstract Background Previous studies reported divergent results on nutraceutical actions and free radical scavenging capability of ginseng extracts. Variations in ginsenoside profile of ginseng due to different soil and cultivating season may contribute to the inconsistency. To circumvent this drawback, we assessed the effect of major ginsenoside-Rg1 (Rg1 on skeletal muscle antioxidant defense system against exhaustive exercise-induced oxidative stress. Methods Forty weight-matched rats were evenly divided into control (N = 20 and Rg1 (N = 20 groups. Rg1 was orally administered at the dose of 0.1 mg/kg bodyweight per day for 10-week. After this long-term Rg1 administration, ten rats from each group performed an exhaustive swimming, and remaining rats considered as non-exercise control. Tibialis anterior (TA muscles were surgically collected immediately after exercise along with non-exercise rats. Results Exhaustive exercise significantly (p Conclusions This study provide compelling evidences that Rg1 supplementation can strengthen antioxidant defense system in skeletal muscle and completely attenuate the membrane lipid peroxidation induced by exhaustive exercise. Our findings suggest that Rg1 can use as a nutraceutical supplement to buffer the exhaustive exercise-induced oxidative stress.

  7. Alpha adrenergic receptor blockade increases capillarisation and fractional O2 extraction and lowers blood flow in contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Mortensen, Stefan Peter; Egginton, Stuart; Madsen, Mads

    2017-01-01

    AIM: To investigate the effect of elevated basal shear stress on angiogenesis in humans, and the role of enhanced skeletal muscle capillarisation on blood flow and O2 extraction. METHODS: Limb haemodynamics and O2 extraction was measured at rest and during one-leg knee-extensor exercise (12 and 24W....... CONCLUSIONS: These results demonstrate that daily treatment with an α-adrenergic receptor blocker induces capillary growth in human skeletal muscle, likely due to increased shear stress. The increase in capillarisation resulted in an increased fractional O2 extraction, a lower blood flow and venous lactate...... basal capillary-to-fibre ratio was 1.69±0.08 and increased to 1.90±0.08 after treatment (Plower (6-7%; P

  8. Myogenic, matrix and growth factor mRNA expression in human skeletal muscle: effect of contraction intensity and feeding

    DEFF Research Database (Denmark)

    Agergaard, Jakob; Reitelseder, Søren; Pedersen, T.G.

    2013-01-01

    exercise. No major differences were seen in atrophy-related genes between HL and LL resistance exercise. No changes were seen over 12-week training for any of the targets. CONCLUSIONS: Resistance exercise at LL and HL elevated the expression of genes involved in skeletal muscle hypertrophy, although......INTRODUCTION: We examined short-term (3-hour) and long-term (12-week) training effects after heavy load [HL; 70% 1RM] and light load (LL; 16% 1RM) exercise. METHODS: mRNA expression of genes involved in skeletal muscle remodeling were analyzed and muscle activity (EMG measurements) was measured....... RESULTS: Relative muscle activity differed between HL and LL resistance exercise, whereas median power frequency was even, suggesting an equal muscle-fiber-type recruitment distribution. mRNA expression of Myf6, myogenin, and p21 was mostly increased, and myostatin was mostly depressed by HL resistance...

  9. Keratin Hydrogel Enhances In Vivo Skeletal Muscle Function in a Rat Model of Volumetric Muscle Loss.

    Science.gov (United States)

    Passipieri, J A; Baker, H B; Siriwardane, Mevan; Ellenburg, Mary D; Vadhavkar, Manasi; Saul, Justin M; Tomblyn, Seth; Burnett, Luke; Christ, George J

    2017-06-01

    Volumetric muscle loss (VML) injuries exceed the considerable intrinsic regenerative capacity of skeletal muscle, resulting in permanent functional and cosmetic deficits. VML and VML-like injuries occur in military and civilian populations, due to trauma and surgery as well as due to a host of congenital and acquired diseases/syndromes. Current therapeutic options are limited, and new approaches are needed for a more complete functional regeneration of muscle. A potential solution is human hair-derived keratin (KN) biomaterials that may have significant potential for regenerative therapy. The goal of these studies was to evaluate the utility of keratin hydrogel formulations as a cell and/or growth factor delivery vehicle for functional muscle regeneration in a surgically created VML injury in the rat tibialis anterior (TA) muscle. VML injuries were treated with KN hydrogels in the absence and presence of skeletal muscle progenitor cells (MPCs), and/or insulin-like growth factor 1 (IGF-1), and/or basic fibroblast growth factor (bFGF). Controls included VML injuries with no repair (NR), and implantation of bladder acellular matrix (BAM, without cells). Initial studies conducted 8 weeks post-VML injury indicated that application of keratin hydrogels with growth factors (KN, KN+IGF-1, KN+bFGF, and KN+IGF-1+bFGF, n = 8 each) enabled a significantly greater functional recovery than NR (n = 7), BAM (n = 8), or the addition of MPCs to the keratin hydrogel (KN+MPC, KN+MPC+IGF-1, KN+MPC+bFGF, and KN+MPC+IGF-1+bFGF, n = 8 each) (p functional recovery for as many as 12 weeks post-VML injury after application of keratin hydrogels in the absence of cells. A significant time-dependent increase in functional recovery of the KN, KN+bFGF, and KN+IGF+bFGF groups was observed, relative to NR and BAM implantation, achieving as much as 90% of the maximum possible functional recovery. Histological findings from harvested tissue at 12 weeks post-VML injury documented

  10. Prehabilitation and rehabilitation for attenuating hindlimb unweighting effects on skeletal muscle and gait in adult and old rats.

    Science.gov (United States)

    Brown, Marybeth; Taylor, Jennifer

    2005-12-01

    To compare the effectiveness of no exercise with prehabilitation (exercise before hindlimb unweighting [HLU]) versus rehabilitation (exercise given after HLU) on gait function and skeletal muscle mass and force. Randomized controlled trial. Animal laboratory. Male-specific, pathogen-free Fisher344/Brown Norway rats (N=149). Groups consisted of adult and old controls, HLU, prehabilitation, rehabilitation, natural cage recovery (reloading), and exercise without HLU. Ten days of general conditioning exercise were given to 6-month-old adult and 30-month-old old rats before or after a week of HLU. Gait stride length and width; soleus, plantaris, extensor digitorum longus, and peroneus longus mass and peak contractile force; whole gastrocnemius mass; and total protein concentration for the soleus and gastrocnemius. Muscle mass (approximately 30%) and force (24%-36%) declined with age in all muscles studied. In adult rats declines in muscle mass occurred with HLU in the soleus, plantaris, and gastrocnemius. Prehabilitation did not prevent the loss of muscle mass in adult rats. Rehabilitation and natural recovery effectively restored soleus and gastrocnemius muscle mass in adult rats but not soleus peak force. Old rats had a significant 23% HLU effect only on gastrocnemius mass (control, 1670+/-129 mg; HLU, 1274+/-184 mg). Prehabilitation did not prevent the decline in gastrocnemius mass. Rehabilitation in old rats restored gastrocnemius mass to within 13% of control levels. Prehabilitation was effective for preventing and rehabilitation was effective for restoring soleus contractile force in old rats (control, 114+/-9 mg; HLU, 67+/-22 mg; prehabilitation, 106+/-31 mg; rehabilitation, 120+/-26 mg) compared with recovery without exercise (86+/-29 g). A significant reduction in stride length was observed with aging (136+/-18 mm vs 98+/-10 mm), which decreased further with HLU (78+/-14 mm). Prehabilitation attenuated HLU-related reductions in stride length, and rehabilitation

  11. Effect of resistance exercise training on expression of Hsp70 and inflammatory cytokines in skeletal muscle and adipose tissue of STZ-induced diabetic rats.

    Science.gov (United States)

    Molanouri Shamsi, M; Mahdavi, M; Quinn, L S; Gharakhanlou, R; Isanegad, A

    2016-09-01

    Impairment of adipose tissue and skeletal muscles accrued following type 1 diabetes is associated with protein misfolding and loss of adipose mass and skeletal muscle atrophy. Resistance training can maintain muscle mass by changing both inflammatory cytokines and stress factors in adipose tissue and skeletal muscle. The purpose of this study was to determine the effects of a 5-week ladder climbing resistance training program on the expression of Hsp70 and inflammatory cytokines in adipose tissue and fast-twitch flexor hallucis longus (FHL) and slow-twitch soleus muscles in healthy and streptozotocin-induced diabetic rats. Induction of diabetes reduced body mass, while resistance training preserved FHL muscle weight in diabetic rats without any changes in body mass. Diabetes increased Hsp70 protein content in skeletal muscles, adipose tissue, and serum. Hsp70 protein levels were decreased in normal and diabetic rats by resistance training in the FHL, but not soleus muscle. Furthermore, resistance training decreased inflammatory cytokines in FHL skeletal muscle. On the other hand, Hsp70 and inflammatory cytokine protein levels were increased by training in adipose tissue. Also, significant positive correlations between inflammatory cytokines in adipose tissue and skeletal muscles with Hsp70 protein levels were observed. In conclusion, we found that in diabetic rats, resistance training decreased inflammatory cytokines and Hsp70 protein levels in fast skeletal muscle, increased adipose tissue inflammatory cytokines and Hsp70, and preserved FHL muscle mass. These results suggest that resistance training can maintain skeletal muscle mass in diabetes by changing inflammatory cytokines and stress factors such as Hsp70 in skeletal muscle and adipose tissue.

  12. Involvement of a Heptad Repeat in the Carboxyl Terminus of the Dihydropyridine Receptor β1a Subunit in the Mechanism of Excitation-Contraction Coupling in Skeletal Muscle

    Science.gov (United States)

    Sheridan, David C.; Cheng, Weijun; Carbonneau, Leah; Ahern, Chris A.; Coronado, Roberto

    2004-01-01

    Chimeras consisting of the homologous skeletal dihydropyridine receptor (DHPR) β1a subunit and the heterologous cardiac/brain β2a subunit were used to determine which regions of β1a were responsible for the skeletal-type excitation-contraction (EC) coupling phenotype. Chimeras were transiently transfected in β1 knockout myotubes and then voltage-clamped with simultaneous measurement of confocal fluo-4 fluorescence. All chimeras expressed a similar density of DHPR charge movements, indicating that the membrane density of DHPR voltage sensors was not a confounding factor in these studies. The data indicates that a β1a-specific domain present in the carboxyl terminus, namely the D5 region comprising the last 47 residues (β1a 478–524), is essential for expression of skeletal-type EC coupling. Furthermore, the location of β1aD5 immediately downstream from conserved domain D4 is also critical. In contrast, chimeras in which β1aD5 was swapped by the D5 region of β2a expressed Ca2+ transients triggered by the Ca2+ current, or none at all. A hydrophobic heptad repeat is present in domain D5 of β1a (L478, V485, V492). To determine the role of this motif, residues in the heptad repeat were mutated to alanines. The triple mutant β1a(L478A/V485A/V492A) recovered weak skeletal-type EC coupling (ΔF/Fmax = 0.4 ± 0.1 vs. 2.7 ± 0.5 for wild-type β1a). However, a triple mutant with alanine substitutions at positions out of phase with the heptad repeat, β1a(S481A/L488A/S495A), was normal (ΔF/Fmax = 2.1 ± 0.4). In summary, the presence of the β1a-specific D5 domain, in its correct position after conserved domain D4, is essential for skeletal-type EC coupling. Furthermore, a heptad repeat in β1aD5 controls the EC coupling activity. The carboxyl terminal heptad repeat of β1a might be involved in protein-protein interactions with ryanodine receptor type 1 required for DHPR to ryanodine receptor type 1 signal transmission. PMID:15298900

  13. Lactate/H+ transport kinetics in rat skeletal muscle related to fibre type and changes in transport capacity

    DEFF Research Database (Denmark)

    Juel; Pilegaard

    1998-01-01

    muscles, muscles of old rats and rats that had been subjected to high-intensity training, endurance training, repeated exposure to hypoxia, and hypothyroid or hyperthyroid treatments. The lactate/H+ transport capacity of red muscles was greater than that of white muscles, and this difference......Lactate/H+ transport kinetics were determined by means of the pH-sensitive probe BCECF in sarcolemmal giant vesicles, obtained from rat skeletal muscle, and related to variations in lactate/H+ transport capacity. Vesicle preparations were made from red and white muscles, mixed muscles, denervated...... and hypothyroidism was due to a decrease in Vmax. The denervation-induced decline in lactate/H+ transport capacity resulted from both an increased Km and a reduced Vmax. The present data show that muscle type differences and most changes in the lactate/H+ transport capacity are mediated by modifications in Vmax...

  14. Isolation and characterization of a novel gene sfig in rat skeletal muscle up-regulated by spaceflight (STS-90)

    Science.gov (United States)

    Kano, Mihoko; Kitano, Takako; Ikemoto, Madoka; Hirasaka, Katsuya; Asanoma, Yuki; Ogawa, Takayuki; Takeda, Shinichi; Nonaka, Ikuya; Adams, Gregory R.; Baldwin, Kenneth M.; hide

    2003-01-01

    We obtained the skeletal muscle of rats exposed to weightless conditions during a 16-day-spaceflight (STS-90). By using a differential display technique, we identified 6 up-regulated and 3 down-regulated genes in the gastrocnemius muscle of the spaceflight rats, as compared to the ground control. The up-regulated genes included those coding Casitas B-lineage lymphoma-b, insulin growth factor binding protein-1, titin and mitochondrial gene 16 S rRNA and two novel genes (function unknown). The down-regulated genes included those encoding RNA polymerase II elongation factor-like protein, NADH dehydrogenase and one novel gene (function unknown). In the present study, we isolated and characterized one of two novel muscle genes that were remarkably up-regulated by spaceflight. The deduced amino acid sequence of the spaceflight-induced gene (sfig) comprises 86 amino acid residues and is well conserved from Drosophila to Homo sapiens. A putative leucine-zipper structure located at the N-terminal region of sfig suggests that this gene may encode a transcription factor. The up-regulated expression of this gene, confirmed by Northern blot analysis, was observed not only in the muscles of spaceflight rats but also in the muscles of tail-suspended rats, especially in the early stage of tail-suspension when gastrocnemius muscle atrophy initiated. The gene was predominantly expressed in the kidney, liver, small intestine and heart. When rat myoblastic L6 cells were grown to 100% confluence in the cell culture system, the expression of sfig was detected regardless of the cell differentiation state. These results suggest that spaceflight has many genetic effects on rat skeletal muscle.

  15. Sources of calcium in agonist-induced contraction of rat distal colon smooth muscle in vitro.

    Science.gov (United States)

    Zhou, Hua; Kong, De-Hu; Pan, Qun-Wan; Wang, Hai-Hua

    2008-02-21

    To study the origin of calcium necessary for agonist-induced contraction of the distal colon in rats. The change in intracellular calcium concentration ([Ca2+]i) evoked by elevating external Ca2+ was detected by fura 2/AM fluorescence. Contractile activity was measured with a force displacement transducer. Tension was continuously monitored and recorded using a Powerlab 4/25T data acquisition system with an ML110 bridge bioelectric physiographic amplifier. Store depletion induced Ca2+ influx had an effect on [Ca2+]i. In nominally Ca2+-free medium, the sarco-endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin (1 mumol/L) increased [Ca2+]i from 68 to 241 nmol/L, and to 458 (P source of activator Ca2+ for the contractile response to agonist is extracellular Ca2+, and intracellular Ca2+ has little role to play in mediating excitation-contraction coupling by agonists in rat distal colon smooth muscle in vitro. The influx of extracellular Ca2+ is mainly mediated through voltage-, receptor- and store-operated Ca2+ channels, which can be used as an alternative to develop new drugs targeted on the dysfunction of digestive tract motility.

  16. Role of load bearing in acetylcholinesterase regulation in rat skeletal muscles.

    Science.gov (United States)

    Pregelj, Peter; Sketelj, Janez

    2002-01-01

    Slow antigravity muscles differ from fast muscles with regard to load bearing performed during contraction. We examined the importance of load bearing in regulation of acetylcholinesterase (AChE) expression in slow and fast rat muscles. The levels of AChE mRNA in the slow soleus muscles are about 30% of those in the fast extensor digitorum longus (EDL) muscles. In the soleus muscles unloaded for 8 days by hindlimb suspension, AChE mRNA levels were not significantly different from those in the control soleus muscles. In the suspended animals, AChE transcripts in the EDL muscles decreased to about 80% of control levels. Reduction of the resting muscle tension by joint fixation did not significantly affect the levels of AChE mRNA in the unloaded soleus muscles. Phasic high-frequency electrical stimulation of the unloaded soleus muscles via the sciatic nerve increased their AChE mRNA levels to about 50% of those in the EDL muscles. The levels observed after phasic stimulation were significantly higher than those after low-frequency tonic stimulation, indicating the importance of muscle activation pattern for AChE regulation also in the absence of load bearing. The AChE mRNA levels in the soleus muscles overloaded for 8 days by synergist muscle ablation increased significantly to about 50% of those in the EDL muscle. The load bearing during muscle contraction seems to be a relatively unimportant extrinsic factor in the regulation of the AChE mRNA levels in muscle fibers, except when an increased load induces muscle hypertrophy accompanied by the fusion of satellite cells with the muscle fibers. Copyright 2002 Wiley-Liss, Inc.

  17. Indigo carmine enhances phenylephrine-induced contractions in an isolated rat aorta.

    Science.gov (United States)

    Choi, Yun Suk; Ok, Seong-Ho; Lee, Seung Min; Park, Sang-Seung; Ha, Yu Mi; Chang, Ki Churl; Kim, Hye Jung; Shin, Il-Woo; Sohn, Ju-Tae

    2011-07-01

    The intravenous administration of indigo carmine has been reported to produce transiently increased blood pressure in patients. The goal of this in vitro study was to examine the effect of indigo carmine on phenylephrine-induced contractions in an isolated rat aorta and to determine the associated cellular mechanism with particular focus on the endothelium-derived vasodilators. The concentration-response curves for phenylephrine were generated in the presence or absence of indigo carmine. Phenylephrine concentration-response curves were generated for the endothelium-intact rings pretreated independently with a nitric oxide synthase inhibitor, N(ω)-nitro-L-arginine methyl ester (L-NAME), a cyclooxygenase inhibitor, indomethacin, and a low-molecular-weight superoxide anion scavenger, tiron, in the presence or absence of indigo carmine. The fluorescence of oxidized dichlorofluorescein was measured in rat aortic vascular smooth muscle cells cultured in the control, indigo carmine alone and tiron plus indigo carmine. Indigo carmine (10(-5) M) increased the phenylephrine-induced maximum contraction in the endothelium-intact rings with or without indomethacin, whereas indigo carmine produced a slight leftward shift in the phenylephrine concentration-response curves in the endothelium-denuded rings and L-NAME-pretreated endothelium-intact rings. In the endothelium-intact rings pretreated with tiron (10(-2) M), indigo carmine did not alter phenylephrine concentration-response curves significantly. Indigo carmine (10(-5) M) increased the fluorescence of oxidized dichlorofluorescein in the vascular smooth muscle cells, whereas tiron abolished the indigo carmine-induced increase in oxidized dichlorofluorescein fluorescence. Indigo carmine increases the phenylephrine-induced contraction mainly through an endothelium-dependent mechanism involving the inactivation of nitric oxide caused by the increased production of reactive oxygen species.

  18. Role of insulin on exercise-induced GLUT-4 protein expression and glycogen supercompensation in rat skeletal muscle.

    Science.gov (United States)

    Kuo, Chia-Hua; Hwang, Hyonson; Lee, Man-Cheong; Castle, Arthur L; Ivy, John L

    2004-02-01

    The purpose of this study was to investigate the role of insulin on skeletal muscle GLUT-4 protein expression and glycogen storage after postexercise carbohydrate supplementation. Male Sprague-Dawley rats were randomly assigned to one of six treatment groups: sedentary control (Con), Con with streptozocin (Stz/C), immediately postexercise (Ex0), Ex0 with Stz (Stz/Ex0), 5-h postexercise (Ex5), and Ex5 with Stz (Stz/Ex5). Rats were exercised by swimming (2 bouts of 3 h) and carbohydrate supplemented immediately after each exercise session by glucose intubation (1 ml of a 50% wt/vol). Stz was administered 72-h before exercise, which resulted in hyperglycemia and elimination of the insulin response to the carbohydrate supplement. GLUT-4 protein of Ex0 rats was 30% above Con in fast-twitch (FT) red and 21% above Con in FT white muscle. In Ex5, GLUT-4 protein was 52% above Con in FT red and 47% above Con in FT white muscle. Muscle glycogen in FT red and white muscle was also increased above Con in Ex5 rats. Neither GLUT-4 protein nor muscle glycogen was increased above Con in Stz/Ex0 or Stz/Ex5 rats. GLUT-4 mRNA in FT red muscle of Ex0 rats was 61% above Con but only 33% above Con in Ex5 rats. GLUT-4 mRNA in FT red muscle of Stz/C and Stz/Ex0 rats was similar but significantly elevated in Ex5/Stz rats. These results suggest that insulin is essential for the increase in GLUT-4 protein expression following postexercise carbohydrate supplementation.

  19. L-Carnitine Protect against Cyclophosphamide Induced Skeletal and Neural Tube Malformations in Rat Fetuses.

    Science.gov (United States)

    Khaksary Mahabady, Mahmood; Najafzadeh Varzi, Hossein; Zareyan Jahromi, Saeedeh

    2015-11-01

    Cyclophosphamide (CP) is a mustard alkylating agent used in the treatment of a number of neoplastic diseases and as an immunosuppressant for the prevention of xenograft rejection. There are many reports that the teratogenic effects of cyclophosphamide can be prevented by application of antioxidant drugs and stimulation of the maternal immune system. Also, there is some evidence that L-carnitine is antioxidant. Therefore, in this study, the prophylactic effect of L-carnitine on teratogenic effects of CP was evaluated. This study was performed on 31 pregnant rats divided into 5 groups. Control group received normal saline and test groups received L-carnitine (500 mg/kg), CP (15 mg/kg), CP (15 mg/kg) plus L-carnitine (250 mg/kg) and CP (15 mg/kg) plus L-carnitine (500 mg/kg) intraperitoneally at 9th day of gestation. Fetuses were collected at 20th day of gestation and after determination of weight and length; they were stained by Alizarin red-Alcian blue method. Cleft palate, spina bifida, and exencephaly incidence were 55.55%, 33.34% and 27.77% in fetuses of mice that received only CP. Cleft palate, spina bifida, exencephaly incidence were 21.42%, 4.76% and 9.52% in the group which received CP plus L-carnitine (250 mg/kg), respectively. However, cleft palate, spina bifida, and exencephaly incidence were 8%, 0% and 8% range in the group received CP plus L-carnitine (500 mg/kg), respectively. In addition, skeletal anomalies incidence including limbs, vertebrae, and sternum defects were decreased by L-carnitine. The mean of weight and length of animals' fetuses received L-carnitine were significantly greater than those received only CP. In conclusion, L-carnitine significantly decreased teratogenicity induced by CP; but this subject needs more detailed evaluation.

  20. Impact of electromagnetic radiation exposure during pregnancy on embryonic skeletal development in rats

    Directory of Open Access Journals (Sweden)

    Ali SAEED H Alchalabi

    2017-03-01

    Full Text Available Objective: To evaluate the teratogenic effect of mobile phone radiation exposure during pregnancy on embryonic skeletal development at the common used mobile phone frequency in our environment. Methods: Sixty female Sprague-Dawley rats were distributed into three experiment groups; control and two exposed groups (1 h/day, 2 h/day exposure groups (n=20/ each group and exposed to whole body radiation during gestation period from day 1- day 20. Electromagnetic radiofrequency signal generator was used to generate 1 800 MHz GSM-like signals at specific absorption rate value 0.974 W/kg. Animals were exposed during experiment in an especial designed Plexiglas box (60 cm × 40 cm × 30 cm. At the end of exposure duration at day 20 of pregnancy animals were sacrificed and foetuses were removed, washed with normal saline and processed to Alizarin red and Alcian blue stain. Skeleton specimens were examined under a stereo microscope and skeleton's snaps were being carefully captured by built in camera fixed on the stereo microscope. Results: Intrauterine exposure to electromagnetic radiation lead to variation in degree of ossification, mineralization, formation of certain parts of the skeleton majorly in head and lesser in other parts. Deformity and absence of formation of certain bones in the head, ribs, and coccygeal vertebrae were recorded in skeleton of foetuses from exposed dams compare to control group. Conclusions: The electromagnetic radiation exposure during pregnancy alter the processes of bone mineralization and the intensity of bone turnover processes, and thus impact embryonic skeleton formation and development directly.

  1. Estrogen Maintains Skeletal Muscle in Septic Rats Associated with Altering Hypothalamic Inflammation and Neuropeptides.

    Science.gov (United States)

    Zhao, Chenyan; Li, Jun; Cheng, Minhua; Shi, Jialing; Shen, Juanhong; Gao, Tao; Xi, Fengchan; Yu, Wenkui

    2017-03-01

    Muscle wasting is one of the main contributors to the worse outcomes in sepsis. Whether estrogen could alleviate muscle wasting induced by sepsis remains unclear. This study was designed to test the effect of estrogen on muscle wasting and its relationship with central alteration in sepsis. Thirty Sprague-Dawley rats were divided into 3 groups: control group, sepsis group, and estrogen treated sepsis group. Animals were intraperitoneally injected with lipopolysaccharide (10 mg/kg) or saline, followed by subcutaneous injection of 17β-estradiol (1 mg/kg) or saline. Twenty-four hours later, all animals were killed and their hypothalamus and skeletal muscles were harvested for analysis. Muscle wasting markers, hypothalamic neuropeptides, and hypothalamic inflammatory markers were measured. As a result, lipopolysaccharide administration caused a significant increase in muscle wasting, hypothalamic inflammation, and anorexigenic neuropeptides (POMC and CART) gene expression, and a significant decrease in orexigenic neuropeptides (AgRP and NPY) gene expression. Administration of estrogen signifcantl attenuated lipopolysaccharide-induced muscle wasting (body weight and extensor digitorum longus loss [52 and 62 %], tyrosine and 3-methylhistidine release [17 and 22 %], muscle ring fnger 1 [MuRF-1; 65 %], and muscle atrophy F-box [MAFbx] gene expression), hypothalamic inflammation (Tumor necrosis factor-α and interlukin-1β [69 and 70%]) as well as alteration of POMC, CART and AgRP (61, 37, and 1008 %) expression.In conclusion, estrogen could alleviate sepsis-induced muscle wasting and it was associated with reducing hypothalamic inflammation and alteration of hypothalamic neuropeptides. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Carbonic anhydrase inhibitors are specific openers of skeletal muscle BK channel of K+-deficient rats.

    Science.gov (United States)

    Tricarico, Domenico; Barbieri, Mariagrazia; Mele, Antonietta; Carbonara, Giuseppe; Camerino, Diana Conte

    2004-04-01

    Carbonic-anhydrase (CA) inhibitors are used in the treatment of hypokalaemic periodic paralysis (hypoPP) and related channelopathies but their mechanism of action is unknown. Patch-clamp experiments and molecular modeling investigations were performed to evaluate the mechanism of actions of CA inhibitors on skeletal muscle Ca2+-activated-K+ (BK) channel of K+-deficient rats used as animal model of hypoPP. CA inhibitors showing different degree of CA inhibition such as acetazolamide (ACTZ), dichlorphenamide (DCP), hydrochlorthiazide (HCT), etoxzolamide (ETX), methazolamide (MTZ), and bendroflumethiazide (BFT), which lacks inhibitory effects on CA enzymes, were tested in vitro on BK channels. The application of ACTZ, BFT, ETX, and DCP to excised patches activated the BK channel with potency: ACTZ(DE50=7.3x10(-6)M)>BFT(DE50=5.93x10(-5)M)>ETX(DE50=1.17x10(-4)M)>DCP. In contrast, MTZ and HCT failed to activate the BK channel. Molecular modeling studies showed that the capability of CA inhibitors to open the BK channel was related to the presence in their structures of an intra-molecular hydrogen bond with calculated inter-atomic distances ranging between 1.82 A degrees and 3.01 A degrees and of an aromatic ring poor of electrons. ACTZ, BFT, ETX, and DCP showed these pharmacofores, while MTZ and HCT did not. Our data indicate that the activation of BK channel is a property of CA inhibitors that interact with the channel subunit/s and that this effect is not related to their capability to inhibit the CA enzymes.

  3. Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria.

    Science.gov (United States)

    Hey-Mogensen, Martin; Goncalves, Renata L S; Orr, Adam L; Brand, Martin D

    2014-07-01

    Dehydrogenases that use ubiquinone as an electron acceptor, including complex I of the respiratory chain, complex II, and glycerol-3-phosphate dehydrogenase, are known to be direct generators of superoxide and/or H2O2. Dihydroorotate dehydrogenase oxidizes dihydroorotate to orotate and reduces ubiquinone to ubiquinol during pyrimidine metabolism, but it is unclear whether it produces superoxide and/or H2O2 directly or does so only indirectly from other sites in the electron transport chain. Using mitochondria isolated from rat skeletal muscle we establish that dihydroorotate oxidation leads to superoxide/H2O2 production at a fairly high rate of about 300pmol H2O2·min(-1)·mg protein(-1) when oxidation of ubiquinol is prevented and complex II is uninhibited. This H2O2 production is abolished by brequinar or leflunomide, known inhibitors of dihydroorotate dehydrogenase. Eighty percent of this rate is indirect, originating from site IIF of complex II, because it can be prevented by malonate or atpenin A5, inhibitors of complex II. In the presence of inhibitors of all known sites of superoxide/H2O2 production (rotenone to inhibit sites in complex I (site IQ and, indirectly, site IF), myxothiazol to inhibit site IIIQo in complex III, and malonate plus atpenin A5 to inhibit site IIF in complex II), dihydroorotate dehydrogenase generates superoxide/H2O2, at a small but significant rate (23pmol H2O2·min(-1)·mg protein(-1)), from the ubiquinone-binding site. We conclude that dihydroorotate dehydrogenase can generate superoxide and/or H2O2 directly at low rates and is also capable of indirect production at higher rates from other sites through its ability to reduce the ubiquinone pool. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Calcium currents in a fast-twitch skeletal muscle of the rat.

    Science.gov (United States)

    Donaldson, P L; Beam, K G

    1983-10-01

    obscured by nonlinear charge movement. Nonetheless, at physiological temperatures, the rate of calcium channel activation in rat skeletal muscle is about five times faster than activation of calcium channels in frog muscle. This pathway may be an important source of calcium entry in mammalian muscle.

  5. Characteristics of myogenic response and ankle torque recovery after lengthening contraction-induced rat gastrocnemius injury

    Directory of Open Access Journals (Sweden)

    Song Hongsun

    2012-10-01

    Full Text Available Abstract Background Although muscle dysfunction caused by unfamiliar lengthening contraction is one of most important issues in sports medicine, there is little known about the molecular events on regeneration process. The purpose of this study was to investigate the temporal and spatial expression patterns of myogenin, myoD, pax7, and myostatin after acute lengthening contraction (LC-induced injury in the rat hindlimb. Methods We employed our originally developed device with LC in rat gastrocnemius muscle (n = 24. Male Wistar rats were anesthetized with isoflurane (aspiration rate, 450 ml/min, concentration, 2.0%. The triceps surae muscle of the right hindlimb was then electrically stimulated with forced isokinetic dorsi-flexion (180°/sec and from 0 to 45°. Tissue contents of myoD, myogenin, pax7, myostatin were measured by western blotting and localizations of myoD and pax7 was measured by immunohistochemistry. After measuring isometric tetanic torque, a single bout of LC was performed in vivo. Results The torque was significantly decreased on days 2 and 5 as compared to the pre-treatment value, and recovered by day 7. The content of myoD and pax7 showed significant increases on day 2. Myogenin showed an increase from day 2 to 5. Myostatin on days 5 and 7 were significantly increased. Immunohistochemical analysis showed that myoD-positive/pax7-positive cells increased on day 2, suggesting that activated satellite cells play a role in the destruction and the early recovery phases. Conclusion We, thus, conclude that myogenic events associate with torque recovery after LC-induced injury.

  6. Inhibitory effect of Rosa damascena Mill flower essential oil, geraniol and citronellol on rat ileum contraction.

    Science.gov (United States)

    Sadraei, H; Asghari, G; Emami, S

    2013-01-01

    Flower of Rosa damascena Mill is widely used in Iran for gastrointestinal (GI) disorders. However, its pharmacological action on ileum contraction has not been studied. In this research we have investigated ileum motility effect of essential oil of flower petals of R. damascena growing in Kashan, Iran, and two of its constituents. The essential oils obtained by hydrodistillation were investigated by a combination of GC and GC/MS. More than 34 compounds have been identified. The main constituents of the essential oil were β-citronellol (23%), nonadecane (16%), geraniol (16%) and heneicosane (5%). A portion of rat isolated ileum was suspended under 1g tension in Tyrode's solution at 37°C and gassed with O2. Effect of the R. damascena essential oil (2.5-160 μg/ml), geraniol (0.2-3.2 μg/ml) and citronellol (0.8-6.4 μg/ml) were studied on ileum contractions induced by KCl, acetylcholine (ACh) and electrical field stimulation (EFS) and compared with standard drugs atropine and loperamide. The contractile response of EFS was mediated mainly through the intramural nerve plexuses, because its response was inhibited by loperamide and partially reduced by atropine. The essential oil concentration dependently inhibited the response to KCl (IC50=67 ± 8.4μg/ml) and EFS (IC50=47 ± 10.6 μg/ml). Geraniol (IC50=1.7 ± 0.15 μg/ml for KCl) and citronellol (IC50=2.9 ± 0.3 μg/ml for KCl) also had inhibitory effect of ileum contraction and both were more potent than the essential oil. It was concluded that R. damascena essential oil mainly had an inhibitory effect on ileum contractions and geraniol and citronellol had a major role in inhibitory effect of the essential.

  7. Impaired contraction and decreased detrusor innervation in a female rat model of pelvic neuropraxia.

    Science.gov (United States)

    Hannan, Johanna L; Powers, Shelby A; Wang, Vinson M; Castiglione, Fabio; Hedlund, Petter; Bivalacqua, Trinity J

    2017-07-01

    Bilateral pelvic nerve injury (BPNI) is a model of post-radical hysterectomy neuropraxia, a common sequela. This study assessed the time course of changes to detrusor autonomic innervation, smooth muscle (SM) content and cholinergic-mediated contraction post-BPNI. Female Sprague-Dawley rats underwent BPNI or sham surgery and were evaluated 3, 7, 14, and 30 days post-BPNI (n = 8/group). Electrical field-stimulated (EFS) and carbachol-induced contractions were measured. Gene expression was assessed by qPCR for muscarinic receptor types 2 (M2) and 3 (M3), collagen type 1α1 and 3α1, and SM actin. Western blots measured M2 and M3 protein expression. Bladder sections were stained with Masson's trichrome for SM content and immunofluorescence staining for nerve terminals expressing vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), and neuronal nitric oxide synthase (nNOS). Bilateral pelvic nerve injury caused larger bladders with less SM content and increased collagen type 1α1 and 3α1 gene expression. At early time points, cholinergic-mediated contraction increased, whereas EFS-mediated contraction decreased and returned to baseline by 30 days. Protein and gene expression of M3 was decreased 3 and 7 days post-BPNI, whereas M2 was unchanged. TH nerve terminals surrounding the detrusor decreased in all BPNI groups, whereas VAChT and nNOS terminals decreased 14 and 30 days post-BPNI. Bilateral pelvic nerve injury increased bladder size, impaired contractility, and decreased SM and autonomic innervation. Therapeutic strategies preventing nerve injury-mediated decline in neuronal input and SM content may prevent the development of a neurogenic bladder and improve quality of life after invasive pelvic surgery.

  8. Skeletal site-specific response to ovariectomy in a rat model: change in bone density and microarchitecture.

    Science.gov (United States)

    Liu, Xi Ling; Li, Chun Lei; Lu, Weijia William; Cai, Wei Xin; Zheng, Li Wu

    2015-04-01

    Ovariectomized (OVX) rat model has been widely used in osteoporosis-related studies. However, the discrepancies in age and skeletal sites being investigated make it difficult to compare the results from different studies. The purpose of this study was to provide information of systemic skeletal site-specific changes in a stable OVX rat model. Thirty-three 6-month Spraque-Dawley female rats were used. Fifteen rats underwent ovariectomy, and fifteen received sham surgery. Three animals without any surgery were sacrificed at week 0 to serve as baseline. Three animals in the OVX and sham group, respectively, were euthanized at week 2, 4, 12, 24 and 36 post-surgery. Ten bone sites, including parietal bone, interparietal bone, maxilla, mandible, humerus, ulna, femur, tibia, lumber vertebra, and ilium, were subjected to micro-CT. Overall, long bones, lumber vertebra, and ilium showed similar trend of bone loss post-OVX, with tibia and femur suffered the most bone loss and spine the least (decreased by 75.0%, 70.4% and 36.6% in bone mineral density BMD at week 36 from base line, respectively). Upon OVX, jaw bones and cranial bones only showed a minor reduction in BMD (decreased by 1~3% from baseline) at week 36. Significant deterioration of trabecular structure was detected in long bones, lumber vertebra, and ilium post-OVX, while jaw bones remained relatively stable. This study for the first time assessed the systemic site-specific bone loss and microarchitecture changes in OVX rat model. It provided valuable information for selecting bone site and observation time in osteoporosis-related study. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Fluvastatin and atorvastatin affect calcium homeostasis of rat skeletal muscle fibers in vivo and in vitro by impairing the sarcoplasmic reticulum/mitochondria Ca2+-release system.

    Science.gov (United States)

    Liantonio, Antonella; Giannuzzi, Viviana; Cippone, Valentina; Camerino, Giulia Maria; Pierno, Sabata; Camerino, Diana Conte

    2007-05-01

    The mechanism by which the 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statins) induce skeletal muscle injury is still under debate. By using fura-2 cytofluorimetry on intact extensor digitorum longus muscle fibers, here we provided the first evidence that 2 months in vivo chronic treatment of rats with fluvastatin (5 and 20 mg kg-1) and atorvastatin (5 and 10 mg kg-1) caused an alteration of calcium homeostasis. All treated animals showed a significant increase of resting cytosolic calcium [Ca2+]i, up to 60% with the higher fluvastatin dose and up to 20% with the other treatments. The [Ca2+]i rise induced by statin administration was not due to an increase of sarcolemmal permeability to calcium. Furthermore, the treatments reduced caffeine responsiveness. In vitro application of fluvastatin caused changes of [Ca2+]i, resembling the effect obtained after the in vivo administration. Indeed, fluvastatin produced a shift of mechanical threshold for contraction toward negative potentials and an increase of resting [Ca2+]i. By using ruthenium red and cyclosporine A, we determined the sequence of the statin-induced Ca2+ release mechanism. Mitochondria appeared as the cellular structure responsible for the earlier event leading to a subsequent large sarcoplasmic reticulum Ca2+ release. In conclusion, we suggest that calcium homeostasis alteration may be a crucial event for myotoxicity induced by this widely used class of hypolipidemic drugs.

  10. Endurance training induces fiber type-specific revascularization in hindlimb skeletal muscles of rats with chronic heart failure.

    Science.gov (United States)

    Ranjbar, Kamal; Ardakanizade, Malihe; Nazem, Farzad

    2017-01-01

    Previous studies showed that skeletal muscle microcirculation was reduced in chronic heart failure. The aim of this study was to investigate the effects of endurance training on capillary and arteriolar density of fast and slow twitch muscles in rats with chronic heart failure. Four weeks after surgeries (left anterior descending (LAD) artery occlusion), chronic heart failure rats were divided into 3 groups: Sham (Sham, n=10); Sedentary (Sed, n=10); Exercise training (Ex, n=10). Ex group rats were subjected to endurance training in the form of treadmill running with moderate intensity for 10 weeks. Exercise training significantly increased capillary density and capillary to fiber ratio (Ptraining, but slow twitch muscle arteriolar density did not change in response to exercise in chronic heart failure rats. HIF-1 increased (Ptraining. In fast twitch muscle, HIF-1 mRNA increased (Ptraining. Endurance training ameliorates fast and slow twitch muscle revascularization non-uniformly in chronic heart failure rats by increasing capillary density in slow twitch muscle and arteriolar density in fast twitch muscle. The difference in revascularization at slow and fast twitch muscles may be induced by the difference in angiogenic and angiostatic gene expression response to endurance training.

  11. Ca2+-Dependent Excitation-Contraction Coupling Triggered by the Heterologous Cardiac/Brain DHPR β2a-Subunit in Skeletal Myotubes

    Science.gov (United States)

    Sheridan, David C.; Carbonneau, Leah; Ahern, Chris A.; Nataraj, Priya; Coronado, Roberto

    2003-01-01

    Molecular determinants essential for skeletal-type excitation-contraction (EC) coupling have been described in the cytosolic loops of the dihydropyridine receptor (DHPR) α1S pore subunit and in the carboxyl terminus of the skeletal-specific DHPR β1a-subunit. It is unknown whether EC coupling domains present in the β-subunit influence those present in the pore subunit or if they act independent of each other. To address this question, we investigated the EC coupling signal that is generated when the endogenous DHPR pore subunit α1S is paired with the heterologous heart/brain DHPR β2a-subunit. Studies were conducted in primary cultured myotubes from β1 knockout (KO), ryanodine receptor type 1 (RyR1) KO, ryanodine receptor type 3 (RyR3) KO, and double RyR1/RyR3 KO mice under voltage clamp with simultaneous monitoring of confocal fluo-4 fluorescence. The β2a-mediated Ca2+ current recovered in β1 KO myotubes lacking the endogenous DHPR β1a-subunit verified formation of the α1S/β1a pair. In myotube genotypes which express no or low-density L-type Ca2+ currents, namely β1 KO and RyR1 KO, β2a overexpression recovered a wild-type density of nifedipine-sensitive Ca2+ currents with a slow activation kinetics typical of skeletal myotubes. Concurrent with Ca2+ current recovery, there was a drastic reduction of voltage–dependent, skeletal-type EC coupling and emergence of Ca2+ transients triggered by the Ca2+ current. A comparison of β2a overexpression in RyR3 KO, RyR1 KO, and double RyR1/RyR3 KO myotubes concluded that both RyR1 and RyR3 isoforms participated in Ca2+-dependent Ca2+ release triggered by the β2a-subunit. In β1 KO and RyR1 KO myotubes, the Ca2+-dependent EC coupling promoted by β2a overexpression had the following characteristics: 1), L-type Ca2+ currents had a wild-type density; 2), Ca2+ transients activated much slower than controls overexpressing β1a, and the rate of fluorescence increase was consistent with the activation kinetics of the Ca

  12. Wine polyphenol resveratrol inhibits contractions of isolated rat uterus by activation of smooth muscle inwardly rectifying potassium channels

    Directory of Open Access Journals (Sweden)

    Novaković Radmila

    2016-01-01

    Full Text Available Resveratrol is a phytoalexin produced in a number of plant species including grapes. The benefit of resveratrol to health is widely reported. Resveratrol has been found to promote relaxation of non-pregnant and pregnant uterus, but its mechanism of action is unclear. The aims of our study were to investigate the involvement of inwardly rectifying potassium channels (Kir in inhibitory effects of resveratrol on three models of contractions of non-pregnant rat uterus: the spontaneous rhythmic contractions (SRC, oxytocin-elicited phasic contractions and tonic oxytocin-elicited contractions.Uterine strips were obtained from virgin female Wistar rats in oestrus. Strips were mounted into organ bath for recording isometric tension in Krebs-Ringer solution. Experiments followed a multiple curve design. In order to test the involvement of Kirchannels in a mechanism of action of resveratrol(1-100 μM,BaCl2 (1 mM,a antagonist of inwardly rectifying pota­ssium channels was used. Resveratrol induced a concentration-dependent relaxation of all models of contractions. BaCl2 antagonized the response to resveratrolon SRC and oxytocin-elicited phasic contractions. Relaxation achieved by resveratrolon tonic oxytocin-elicited concentrations was insensitive to BaCl2.The antagonism of resveratrol effects by inwardly rectifying potassium channels antagonist suggests that Kir channels are involved in resveratrol action on phasic contractions of rat uterus. Inhibitory effect of resveratrol on tonic contractions did not include Kir channels. [Projekat Ministartsva nauke Republike Srbije, br. TR31020

  13. Selective and potent inhibitory effect of docosahexaenoic acid (DHA) on U46619-induced contraction in rat aorta

    Science.gov (United States)

    Sato, Kyosuke; Chino, Daisuke; Kobayashi, Tomoya; Obara, Keisuke; Miyauchi, Seiji; Tanaka, Yoshio

    2013-01-01

    Inhibitory effects of docosahexaenoic acid (DHA) on blood vessel contractions induced by various constrictor stimulants were investigated in the rat thoracic aorta. The inhibitory effects of DHA were also compared with those of eicosapentaenoic acid (EPA) and linoleic acid (LA). DHA exhibited a strong inhibitory effect on the sustained contractions induced by U46619, a TXA2 mimetic. This inhibitory effect of DHA was not affected by removal of the endothelium or by treatment with either indomethacin or Nω-nitro-l-arginine. DHA also significantly diminished PGF2α-induced contraction but did not show any appreciable inhibitory effects on the contractions to both phenylephrine (PE) and high-KCl. Similarly, EPA exhibited significant inhibitory effects against the contractions induced by both U46619 and PGF2α without substantially affecting either PE- or high-KCl-induced contractions. However, both DHA and EPA generated more potent inhibitions against contractions induced by U46619 than those by PGF2α. In contrast, LA did not show significant inhibitory effects against any contractions, including those induced by U46619. The present findings suggest that DHA and EPA elicit more selective inhibition against blood vessel contractions that are mediated through stimulation of prostanoid receptors than those through α-adrenoceptor stimulation or membrane depolarization. Although DHA and EPA have similar inhibitory potencies against prostanoid receptor-mediated contractions, they had a more potent inhibition against TXA2 receptor (TP receptor)-mediated contractions than against PGF2α receptor (FP receptor)-mediated responses. Selective inhibition by either DHA or EPA of prostanoid receptor-mediated blood vessel contractions may partly underlie the mechanisms by which these ω-3 polyunsaturated fatty acids exert their circulatory-protective effects. PMID:24304639

  14. Exhaustive Training Increases Uncoupling Protein 2 Expression and Decreases Bcl-2/Bax Ratio in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    W. Y. Liu

    2013-01-01

    Full Text Available This work investigates the effects of oxidative stress due to exhaustive training on uncoupling protein 2 (UCP2 and Bcl-2/Bax in rat skeletal muscles. A total of 18 Sprague-Dawley female rats were randomly divided into three groups: the control group (CON, the trained control group (TC, and the exhaustive trained group (ET. Malondialdehyde (MDA, superoxide dismutase (SOD, xanthine oxidase (XOD, ATPase, UCP2, and Bcl-2/Bax ratio in red gastrocnemius muscles were measured. Exhaustive training induced ROS increase in red gastrocnemius muscles, which led to a decrease in the cell antiapoptotic ability (Bcl-2/Bax ratio. An increase in UCP2 expression can reduce ROS production and affect mitochondrial energy production. Thus, oxidative stress plays a significant role in overtraining.

  15. Improving the preservation of isolated rat skeletal muscles stored for 16 hours at 4 degrees C

    NARCIS (Netherlands)

    van der Heijden, E P; Kroese, A B; Werker, P M; de With, M C; de Smet, M; Kon, M; Bär, D P

    2000-01-01

    BACKGROUND: Limiting factors for long-term cold preservation of isolated skeletal muscles are increased intracellular calcium levels, the occurrence of hypercontraction, and the overproduction of oxygen free radicals. In the present study, we investigated whether muscle preservation during cold

  16. Skeletal muscle reflex-mediated changes in sympathetic nerve activity are abnormal in spontaneously hypertensive rats

    National Research Council Canada - National Science Library

    Mizuno, Masaki; Murphy, Megan N; Mitchell, Jere H; Smith, Scott A

    2011-01-01

    In hypertension, the blood pressure response to exercise is exaggerated. We demonstrated previously that this heightened pressor response to physical activity is mediated by an overactive skeletal muscle exercise pressor reflex (EPR...

  17. Effects of exercise training on brain-derived neurotrophic factor in skeletal muscle and heart of rats post myocardial infarction.

    Science.gov (United States)

    Lee, Heow Won; Ahmad, Monir; Wang, Hong-Wei; Leenen, Frans H H

    2017-03-01

    What is the central question of this study? Exercise training increases brain-derived neurotrophic factor (BDNF) in the hippocampus, which depends on a myokine, fibronectin type III domain-containing protein 5 (FNDC5). Whether exercise training after myocardial infarction induces parallel increases in FNDC5 and BDNF expression in skeletal muscle and the heart has not yet been studied. What is the main finding and its importance? Exercise training after myocardial infarction increases BDNF protein in skeletal muscle and the non-infarct area of the LV without changes in FNDC5 protein, suggesting that BDNF is not regulated by FNDC5 in skeletal muscle and heart. An increase in cardiac BDNF may contribute to the improvement of cardiac function by exercise training. Exercise training after myocardial infarction (MI) attenuates progressive left ventricular (LV) remodelling and dysfunction, but the peripheral stimuli induced by exercise that trigger these beneficial effects are still unclear. We investigated as possible mediators fibronectin type III domain-containing protein 5 (FNDC5) and brain-derived neurotrophic factor (BDNF) in the skeletal muscle and heart. Male Wistar rats underwent either sham surgery or ligation of the left descending coronary artery, and surviving MI rats were allocated to either a sedentary (Sed-MI) or an exercise group (ExT-MI). Exercise training was done for 4 weeks on a motor-driven treadmill. At the end, LV function was evaluated, and FNDC5 and BDNF mRNA and protein were assessed in soleus muscle, quadriceps and non-, peri- and infarct areas of the LV. At 5 weeks post MI, FNDC5 mRNA was decreased in soleus muscle and all areas of the LV, but FNDC5 protein was increased in the soleus muscle and the infarct area. Mature BDNF (mBDNF) protein was decreased in the infarct area without a change in mRNA. Exercise training attenuated the decrease in ejection fraction and the increase in LV end-diastolic pressure post MI. Exercise training had no

  18. Contributions of ADP and ATP to the increase in skeletal muscle blood flow after manual acupuncture stimulation in rats.

    Science.gov (United States)

    Nagaoka, S; Shinbara, H; Okubo, M; Kawakita, T; Hino, K; Sumiya, E

    2016-06-01

    To investigate the contributions of adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to the increase in skeletal muscle blood flow (MBF) observed following manual acupuncture (MA) stimulation in rats. Male Sprague-Dawley rats were used as experimental animals (300-370 g, n=40). MA was applied to the right tibialis anterior muscle (TA) for 1 min using a stainless steel acupuncture needle. In eight rats, high-performance liquid chromatography with the microdialysis technique was used to measure local extracellular concentrations of ATP, ADP, adenosine monophosphate (AMP), and adenosine in the TA. In the remaining 32 rats, fluorescent microspheres (15 µm in diameter) were used to measure MBF in the TA following pre-treatment with either the P2 receptor antagonist suramin (100 mg/kg intra-arterially) or saline (control) (n=16 each). Rats receiving MA (Suramin+MA and Saline+MA groups, n=8 each) were compared with untreated rats (Suramin and Saline groups, n=8). MA significantly increased the local extracellular concentration of ATP, ADP, and adenosine (pvs 30 min after MA). In addition, MA significantly increased MBF in rats pre-treated with saline or suramin (pvs Saline+MA; pvs Suramin+MA, respectively). However, suramin significantly suppressed this MA-induced increase in MBF (pvs Suramin+MA). These results suggest that both ATP and ADP partially contribute to the MA-induced increase in MBF via P2 receptors. However, further studies are needed to clarify the contributions of other vasodilators. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Cholera toxin but not pertussis toxin inhibits angiotensin II-enhanced contractions in the rat portal vein

    NARCIS (Netherlands)

    Zhang, J.; van Meel, J. C.; Pfaffendorf, M.; van Zwieten, P. A.

    1993-01-01

    Angiotensin II (Ang II)-enhanced phasic contractions in the rat portal vein were concentration dependently inhibited by cholera toxin (0.1-10 micrograms/ml) and dibutyryl cyclic AMP (0.1-1 mM), but not by pertussis toxin (1 micrograms/ml), which suggests that Gi is not involved in the Ang II signal

  20. Chronic caffeine intake reverses age-induced insulin resistance in the rat: effect on skeletal muscle Glut4 transporters and AMPK activity.

    Science.gov (United States)

    Guarino, Maria P; Ribeiro, Maria J; Sacramento, Joana F; Conde, Sílvia V

    2013-10-01

    The role of caffeine consumption on insulin action is still under debate. The hypothesis that chronic caffeine intake reverses aging-induced insulin resistance in the rat was tested in this work. The mechanism by which caffeine restores insulin sensitivity was also investigated. Six groups of rats were used: 3 months old (3 M), 3 months old caffeine-treated (3MCaf), 12 months old (12 M), 12 months old caffeine-treated (12MCaf), 24 months old (24 M), and 24 months old caffeine-treated (24MCaf). Caffeine was administered in drinking water (1 g/l) during 15 days. Insulin sensitivity was assessed by means of the insulin tolerance test. Blood pressure, body weight, visceral and total fat, fasting glycemia and insulinemia, plasma nonesterified fatty acids (NEFA), total antioxidant capacity (TAC), cortisol, nitric oxide, and catecholamines were monitored. Skeletal muscle Glut4 and 5'-AMP activated protein kinase (AMPK) protein expression and activity were also assessed. Aged rats exhibited diminished insulin sensitivity accompanied by hyperinsulinemia and normoglycemia, increased visceral and total fat, decreased TAC and plasma catecholamines, and also decreased skeletal muscle Glut4 and AMPK protein expression. Chronic caffeine intake restored insulin sensitivity and regularized circulating insulin and NEFA in both aging models. Caffeine neither modified skeletal muscle AMPK expression nor activity in aged rats; however, it decreased visceral and total fat in 12 M rats and it restored skeletal muscle Glut4 expression to control values in 24 M rats. We concluded that chronic caffeine intake reverses aging-induced insulin resistance in rats by decreasing NEFA production and also by increasing Glut4 expression in skeletal muscle.

  1. Effect of low-level laser therapy (808 nm) in skeletal muscle after resistance exercise training in rats.

    Science.gov (United States)

    Patrocinio, Tatiane; Sardim, Andre Cabral; Assis, Livia; Fernandes, Kelly Rossetti; Rodrigues, Natalia; Renno, Ana Claudia Muniz

    2013-10-01

    The aim of this study was to evaluate the effects of 808 nm laser applied after a resistance training protocol, on biochemical markers and the morphology of skeletal muscle in rats. Strenuous physical activity results in fatigue and decreased muscle strength, impaired motor control, and muscle pain. Many biochemical and biophysical interventions have been studied in an attempt to accelerate the recovery process of muscle fatigue. Among these, low-level laser therapy (LLLT) has been demonstrated to be effective in increasing skeletal muscle performance in in vivo studies and in clinical trials. However, little is known about the effects of LLLT on muscle performance after resistance training. Thirty Wistar rats were randomly divided into three groups: control group (CG), trained group (TG), and trained and laser-irradiated group (TGL). The resistance training program was performed three times per week for 5 weeks, and consisted of a climbing exercise, with weights attached to the tail of the animal. Furthermore, laser irradiation was performed in the middle region of tibialis anterior (TA) muscle of both legs, after the exercise protocol. Analysis demonstrated that TGL demonstrated significantly reduced resting lactate level and decreased muscle glycogen depletion than the animals that were exercised only, and significantly increased the cross-section area of TA muscle fibers compared with thoseo in the other groups. These results suggest that LLLT could be an effective therapeutic approach in increasing muscle performance during a resistance exercise protocol.

  2. Hyperbaric oxygen in skeletal muscle of rats submitted to total acute left hindlimb ischemia: A research report.

    Science.gov (United States)

    da Silva, Luis Gustavo Campos; Dalio, Marcelo Bellini; Joviliano, Edwaldo Edner; Feres, Omar; Piccinato, Carlos Eli

    2015-01-01

    Determine the effect of hyperbaric oxygen treatment in skeletal muscle of rats submitted to total acute left hindlimb ischemia. An experimental study was designed using 48 Wistar rats divided into four groups (n = 12): Control; Ischemia (I)--total hindlimb ischemia for 270 minutes; Hyperbaric oxygen treatment during ischemia (HBO2)--total hindlimb ischemia for 270 minutes and hyperbaric oxygen during the first 90 minutes; Pre-treatment with hyperbaric oxygen (PHBO2)--90 minutes of hyperbaric oxygen treatment before total hindlimb ischemia for 270 minutes. Skeletal muscle injury was evaluated by measuring levels of aspartate aminotransferase (AST), lactate dehydrogenase (LDH), total creatine phosphokinase (CPK); muscular malondialdehyde (MDA), muscular glycogen, and serum ischemia-modified albumin (IMA). AST was significantly higher in I, HBO2 and PHBO2 compared with control (P = .001). There was no difference in LDH. CPK was significantly higher in I, HBO2 and PHBO2, compared with control (p = .014). MDA was significantly higher in PHBO2, compared with other groups (p = .042). Glycogen was significantly decreased in I, HBO2 and PHBO2, compared with control (p < .001). Hyperbaric oxygen treatment in acute total hindlimb ischemia exerted no protective effect on muscle injury, regardless of time of application. When applied prior to installation of total ischemia, hyperbaric oxygen treatment aggravated muscle injury.

  3. Modulation of skeletal muscle performance and SERCA by exercise and adiponectin gene therapy in insulin-resistant rat.

    Science.gov (United States)

    Safwat, Yasmeen; Yassin, Nadia; Gamal El Din, Maha; Kassem, Lobna

    2013-07-01

    This study addresses the potential application of adiponectin gene therapy and exercise in protection against skeletal muscle dysfunction in type 2 diabetes mellitus (T2DM) while focusing on the role of sarco and endoplasmic reticulum Ca(+2) ATPase (SERCA) and Glut4. 50 rats were divided into five groups: control, T2DM, T2DM treated with either adiponectin gene or exercise or a combination of both. Serum glucose, insulin, HOMA index, triglycerides, and cholesterol were measured. Weight gain%, muscle contractile parameters {(peak twitch tension (Pt), peak tetanic tension (PTT), half relaxation time (HRT)}, and gene expression of SERCA, Glut4, and adiponectin were assessed in gastrocnemius muscle. Diabetic rats treated with either adiponectin gene or exercise showed significant reduction in all serum parameters and wt gain%. There was significant elevation in Pt and PTT with shortening in HRT. Furthermore, a significant increase in SERCA, Glut4, and adiponectin gene expression was noticed in both groups. Combination therapy caused marked gene expression of SERCA, GLUT4, and greater improvement in muscle contractility than either of the monotherapies. Skeletal muscle dysfunction in T2DM is mediated via impaired SERCA and Glut 4. Combination therapy offered best protection against muscle dysfunction and provides a novel promising strategy for a complete cure of muscle dysfunction in T2DM.

  4. Leucine-Enriched Essential Amino Acids Augment Muscle Glycogen Content in Rats Seven Days after Eccentric Contraction

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kato

    2017-10-01

    Full Text Available Eccentric contractions induce muscle damage, which impairs recovery of glycogen and adenosine tri-phosphate (ATP content over several days. Leucine-enriched essential amino acids (LEAAs enhance the recovery in muscles that are damaged after eccentric contractions. However, the role of LEAAs in this process remains unclear. We evaluated the content in glycogen and high energy phosphates molecules (phosphocreatine (PCr, adenosine di-phosphate (ADP and ATP in rats that were following electrically stimulated eccentric contractions. Muscle glycogen content decreased immediately after the contraction and remained low for the first three days after the stimulation, but increased seven days after the eccentric contraction. LEAAs administration did not change muscle glycogen content during the first three days after the contraction. Interestingly, however, it induced a further increase in muscle glycogen seven days after the stimulation. Contrarily, ATP content decreased immediately after the eccentric contraction, and remained lower for up to seven days after. Additionally, LEAAs administration did not affect the ATP content over the experimental period. Finally, ADP and PCr levels did not significantly change after the contractions or LEAA administration. LEAAs modulate the recovery of glycogen content in muscle after damage-inducing exercise.

  5. Effects of isoprenaline on contractions of directly stimulated fast and slow skeletal muscles of the guinea-pig.

    Science.gov (United States)

    Tashiro, N

    1973-05-01

    1. The actions of isoprenaline on the contraction and the resting potential of the isolated extensor digitorum longus (EDL), a fast contracting muscle, and the soleus, a slow contracting muscle, of the guinea-pig were investigated. Twitch tension was elicited by direct supramaximal stimulation and recorded isometrically.2. The twitch tension of EDL elicited by pulses of 0.5-10 ms duration was increased in the presence of isoprenaline (1 mug/ml). Isoprenaline increased the twitch tension of the soleus elicited by a pulse of more than 5 ms duration, but decreased it when elicited by a pulse of less than 1 millisecond. These effects were blocked by propranolol (1-3 mug/ml) but not by phentolamine (1-5 mug/ml).3. In EDL, isoprenaline prolonged the time to peak tension and the half-relaxation time. The twitch of the soleus was shortened by isoprenaline due to an acceleration of relaxation. These findings were independent of stimulus duration.4. The potentiating effects of isoprenaline on the twitch tension of EDL and the soleus were not observed in K(+)-free Krebs solution and were abolished by ouabain (1 mug/ml) and by reduction of the temperature from 33 degrees to 18 degrees C. The effects of isoprenaline on the relaxation proces were not affected by these treatments.5. In EDL, the resting potential increased from 77.3 mV to 78.5 mV after isoprenaline, whereas in the soleus it increased from 69.1 to 74.7 mV. These effects were blocked by propranolol, K(+)-deficiency, ouabain, and cooling to 18 degrees C. Hyperpolarization by isoprenaline was increased by substitution of isethionate for the external chloride.6. There was a good correlation between the potentiation of the mechanical response and the hyperpolarization of the membrane by isoprenaline. The hyperpolarization seems to be due to activation of the Na(+)-K(+) pump.

  6. Patterns of global gene expression in rat skeletal muscle during unloading and low-intensity ambulatory activity

    Science.gov (United States)

    Bey, Lionel; Akunuri, Nagabhavani; Zhao, Po; Hoffman, Eric P.; Hamilton, Deborah G.; Hamilton, Marc T.

    2003-01-01

    Physical inactivity and unloading lead to diverse skeletal muscle alterations. Our goal was to identify the genes in skeletal muscle whose expression is most sensitive to periods of unloading/reduced physical activity and that may be involved in triggering initial responses before phenotypic changes are evident. The ability of short periods of physical activity/loading as an effective countermeasure against changes in gene expression mediated by inactivity was also tested. Affymetrix microarrays were used to compare mRNA levels in the soleus muscle under three experimental treatments (n = 20-29 rats each): 12-h hindlimb unloading (HU), 12-h HU followed by 4 h of intermittent low-intensity ambulatory and postural activity (4-h reloading), and control (with ambulatory and postural activity). Using a combination of criteria, we identified a small set of genes (approximately 1% of 8,738 genes on the array or 4% of significant expressed genes) with the most reproducible and largest responses to altered activity. Analysis revealed a coordinated regulation of transcription for a large number of key signaling proteins and transcription factors involved in protein synthesis/degradation and energy metabolism. Most (21 of 25) of the gene expression changes that were downregulated during HU returned at least to control levels during the reloading. In surprising contrast, 27 of 38 of the genes upregulated during HU remained significantly above control, but most showed trends toward reversal. This introduces a new concept that, in general, genes that are upregulated during unloading/inactivity will be more resistant to periodic reloading than those genes that are downregulated. This study reveals genes that are the most sensitive to loading/activity in rat skeletal muscle and indicates new targets that may initiate muscle alterations during inactivity.

  7. The effects of tetracaine on charge movement in fast twitch rat skeletal muscle fibres.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W; Robson, E

    1990-02-01

    1. The effects of tetracaine, a local anaesthetic that inhibits muscle contraction, on membrane potential and intramembrane charge movements were investigated in fast twitch rat muscle fibres (extensor digitorum longus). 2. The resting membrane potentials of surface fibres from muscles bathed in isotonic Ringer solution containing 2 mM-tetracaine were well maintained, but higher concentrations of tetracaine caused a time-dependent fall of potential. Muscle fibres bathed in hypertonic solutions containing 2 mM-tetracaine were rapidly depolarized. In both isotonic and hypertonic solutions, the depolarizing effect of tetracaine could not be reversed. 3. Charge movement measurements were made using the middle-of-the-fibre voltage clamp technique. The voltage dependence of charge movements measured in cold isotonic solutions was well fitted by a Boltzmann distribution (Q(V) = Qmax/(1 + exp(-(V-V)/k] where Qmax = 37.3 +/- 2.8 nC muF-1, V = -17.9 +/- 1.2 mV and k = 12.6 +/- 0.8 mV (n = 6, 2 degrees C; means +/- S.E. of means). Similar values were obtained when 2 mM-tetracaine was added to the isotonic bathing fluid (Qmax = 40.6 +/- 2.3 nC microF-1, V = -14.1 +/- 1.3 mV, k = 15.3 +/- 0.8 mV; n = 8, 2 degrees C). 4. Charge movements measured around mechanical threshold in muscle fibres bathed in hypertonic solutions were reduced when 2 mM-tetracaine was added to the bathing fluid. The tetracaine-sensitive component of charge was well fitted with an unconstrained Boltzmann distribution which gave: Qmax = 7.5 nC microF-1, V = -46.5 mV, k = 5.5 mV. The e-fold rise of the foot of the curve was 9.3 mV.

  8. Single molecular image of cytosolic free Ca2+ of skeletal muscle cells in rats pre- and post-exercise-induced fatigue

    Science.gov (United States)

    Liu, Yi; Zhang, Heming; Zhao, Yanping; Liu, Zhiming

    2009-08-01

    A growing body of literature indicated the cytosolic free Ca2+ concentration of skeletal muscle cells changes significantly during exercise-induced fatigue. But it is confusing whether cytosolic free Ca2+ concentration increase or decrease. Furthermore, current researches mainly adopt muscle tissue homogenate as experiment material, but the studies based on cellular and subcellular level is seldom. This study is aimed to establish rat skeletal muscle cell model of exercise-induced fatigue, and confirm the change of cytosolic free Ca2+ concentration of skeletal muscle cells in rats preand post- exercise-induced fatigue. In this research, six male Wistar rats were randomly divided into two groups: control group (n=3) and exercise-induced fatigue group (n=3). The former group were allowed to freely move and the latter were forced to loaded swimming to exhaustive. Three days later, all the rats were sacrificed, the muscle tissue from the same site of skeletal muscle were taken out and digested to cells. After primary culture of the two kinds of skeletal muscle cells from tissue, a fluorescent dye-Fluo-3 AM was used to label the cytosolic free Ca2+. The fluorescent of Ca2+ was recorded by confocal laser scanning microscopy. The results indicated that, the Ca2+ fluorescence intensity of cells from the rat of exercise-induced fatigue group was significantly higher than those in control group. In conclusion, cytosolic free Ca2+ concentration of skeletal muscle cells has a close relation with exercise-induced fatigue, and the increase of cytosolic free Ca2+ concentration may be one of the important factors of exercise-induced fatigue.

  9. The Role of Lumbar Sympathetic Nerves in Regulation of Blood Flow to Skeletal Muscle during Anaphylactic Hypotension in Anesthetized Rats.

    Directory of Open Access Journals (Sweden)

    Jie Song

    Full Text Available During hypovolemic shock, skeletal muscle blood flow could be redistributed to vital organs via vasoconstriction in part evoked by activation of the innervating sympathetic nerve activity. However, it is not well known whether this mechanism operates during anaphylactic shock. We determined the femoral artery blood flow (FBF and lumbar sympathetic nerve activity (LSNA mainly regulating the hindquater muscle blood flow during anaphylactic hypotension in anesthetized rats. Anesthetized Sprague-Dawley rats were randomly allocated to the following groups (n = 7/group: (1 non-sensitized, (2 anaphylaxis, (3 anaphylaxis-lumbar sympathectomy (LS and (4 anaphylaxis-sinoaortic denervation (SAD groups. Anaphylaxis was induced by an intravenous injection of the ovalbumin antigen to the sensitized rats. The systemic arterial pressure (SAP, heart rate (HR, central venous pressure (CVP, FBF and LSNA were continuously measured. In the anaphylaxis group, LSNA and HR increased, while SAP and FBF decreased after antigen injection. In the anaphylaxis-SAD group, LSNA did not significantly change during the early phase, but the responses of SAP and FBF were similar to those in the anaphylaxis group. In the anaphylaxis-LS group, both FBF and SAP decreased similarly to the anaphylaxis group during anaphylactic hypotension. These results indicated that LSNA increased via baroreceptor reflex, but this sympathoexcitation or LS did not affect antigen-induced decreases in FBF or SAP. Lumbar sympathetic nerves are not involved in regulation of the blood flow to the hindlimb or systemic blood pressure during anaphylactic hypotension in anesthetized rats.

  10. Gender-dependent differences of mitochondrial function and oxidative stress in rat skeletal muscle at rest and after exercise training.

    Science.gov (United States)

    Farhat, Firas; Amérand, Aline; Simon, Bernard; Guegueniat, Nathalie; Moisan, Christine

    2017-11-01

    This study investigated gender-dependent differences of mitochondrial function and sensitivity to in vitro ROS exposure in rat skeletal muscle at rest and after exercise training. Wistar rats underwent running training for 6 weeks. In vitro measurements of hydroxyl radical production, oxygen consumption (under basal and maximal respiration conditions) and ATP production were made on permeabilized fibers. Mitochondrial function was examined after exposure and non-exposure to an in vitro generator system of reactive oxygen species (ROS). Antioxidant enzyme activities and malondialdehyde (MDA) content were also determined. Compared with sedentary males, females showed a greater resistance of mitochondrial function (oxygen consumption and ATP production) to ROS exposure, and lower MDA content and antioxidant enzyme activities. The training protocol had more beneficial effects in males than females with regard to ROS production and oxidative stress. In contrast to male rats, the susceptibility of mitochondrial function to ROS exposure in trained females was unchanged. Exercise training improves mitochondrial function oxidative capacities in both male and female rats, but is more pronounced in males as a result of different mechanisms. The resistance of mitochondrial function to in vitro oxidative stress exposure and the antioxidant responses are gender- and training-dependent, and may be related to the protective effects of estrogen.

  11. Mechanical Characterization and Shape Optimization of Fascicle-Like 3D Skeletal Muscle Tissues Contracted with Electrical and Optical Stimuli.

    Science.gov (United States)

    Neal, Devin; Sakar, Mahmut Selman; Bashir, Rashid; Chan, Vincent; Asada, Haruhiko Harry

    2015-06-01

    In this study, we present a quantitative approach to construct effective 3D muscle tissues through shape optimization and load impedance matching with electrical and optical stimulation. We have constructed long, thin, fascicle-like skeletal muscle tissue and optimized its form factor through mechanical characterization. A new apparatus was designed and built, which allowed us to measure force-displacement characteristics with diverse load stiffnesses. We have found that (1) there is an optimal form factor that maximizes the muscle stress, (2) the energy transmitted to the load can be maximized with matched load stiffness, and (3) optical stimulation using channelrhodopsin2 in the muscle tissue can generate a twitch force as large as its electrical counterpart for well-developed muscle tissue. Using our tissue construct method, we found that an optimal initial diameter of 500 μm outperformed tissues using 250 μm by more than 60% and tissues using 760 μm by 105%. Using optimal load stiffness, our tissues have generated 12 pJ of energy per twitch at a peak generated stress of 1.28 kPa. Additionally, the difference in optically stimulated twitch performance versus electrically stimulated is a function of how well the overall tissue performs, with average or better performing strips having less than 10% difference. The unique mechanical characterization method used is generalizable to diverse load conditions and will be used to match load impedance to muscle tissue impedance for a wide variety of applications.

  12. Modulation of nerve-evoked contractions by β3-adrenoceptor agonism in human and rat isolated urinary bladder.

    Science.gov (United States)

    Rouget, Céline; Rekik, Moèz; Camparo, Philippe; Botto, Henry; Rischmann, Pascal; Lluel, Philippe; Palea, Stefano; Westfall, Timothy D

    2014-02-01

    Activation of β3-adrenoceptors has been shown to have a direct relaxant effect on urinary bladder smooth muscle from both rats and humans, however there are very few studies investigating the effects of β3-adrenoceptor agonists on nerve-evoked bladder contractions. Therefore in the current study, the role of β3-adrenoceptors in modulating efferent neurotransmission was evaluated. The effects of β3-adrenoceptor agonism on neurogenic contractions induced by electrical field stimulation (EFS) were compared with effects on contractions induced by exogenous acetylcholine (Ach) and αβ-methylene adenosine triphosphate (αβ-meATP) in order to determine the site of action. Isoproterenol inhibited EFS-induced neurogenic contractions of human bladder (pD2=6.79; Emax=65%). The effect of isoproterenol was selectively inhibited by the β3-adrenoceptor antagonist L-748,337 (pKB=7.34). Contractions induced by exogenous Ach (0.5-1μM) were inhibited 25% by isoproterenol (3μM) while contractions to 10Hz in the same strip were inhibited 67%. The selective β3-adrenoceptor agonist CL-316,243 inhibited EFS-induced neurogenic contractions of rat bladder (pD2=7.83; Emax=65%). The effects of CL-316,243 were inhibited in a concentration dependent manner by L-748,337 (pA2=6.42). Contractions induced by exogenous Ach and αβ-meATP were significantly inhibited by CL-316,243, 29% and 40%, respectively. These results demonstrate that the activation of β3-adrenoceptors inhibits neurogenic contractions of both rat and human urinary bladder. Contractions induced by exogenously applied parasympathetic neurotransmitters are also inhibited by β3-agonism however the effect is clearly less than on neurogenic contractions (particularly in human), suggesting that in addition to a direct effect on smooth muscle, activation of prejunctional β3-adrenoceptors may inhibit neurotransmitter release. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. CREATINE SUPPLEMENTATION INDUCES ALTERATION IN CROSS-SECTIONAL AREA IN SKELETAL MUSCLE FIBERS OF WISTAR RATS UNDER SWIMMING TRAINING

    Directory of Open Access Journals (Sweden)

    Luiz C. Fernandes

    2002-09-01

    Full Text Available Creatine has been shown to increase the total muscle mass. In this study, we investigated the effect of oral creatine monohydrate supplementation on cross-sectional area of type I, IIA and IIB fibers of gastrocnemius, extensor digitorum longus - EDL and soleus muscles from male Wistar rats subjected to swimming training for 33 days. Four groups were set up: sedentary with no supplementation (CON, sedentary with creatine supplementation (3.3 mg creatine per g chow (CR, exercised with no supplementation (EX and exercised with supplementation (CREX. The rats performed in a special swimming pool and swam five times a week for 1 hour each day, with a extra lead weight corresponding to 15% of their body weight. At the end of 33 days, skeletal muscles of the animals were dissected and the samples got immediately frozen using liquid nitrogen. Muscle samples were allocated to slices of 10 µm by a cryostat at -20ºC, which was followed by histochemical analysis in order to identify fiber types of the muscles, and morphometrical analysis to calculate the muscle fiber areas. All groups gained body weight at the end of 33 days but there was no statistical difference among them. The EX and CREX rats had a larger food intake than the sedentary groups (CON and CR, and the CREX group had a larger food intake than CR rats. The cross-sectional area of type I and IIA fibers of the soleus muscle, type IIA and IIB fibers of EDL muscle and type IIA and IIB fibers of the white portion of gastrocnemius muscle were greater in the EX and CREX groups in comparison to sedentary rats. In addition, these fibers were greater in the CREX rats than in the EX group. There was no change in the cross sectional area of type I fibers in EDL muscle among all groups studied. Our results suggest that creatine supplementation enhances the exercise related muscle fiber hypertrophy in rodents

  14. ESTRADIOL IN FEMALES MAY NEGATE SKELETAL MUSCLE MYOSTATIN MRNA EXPRESSION AND SERUM MYOSTATIN PROPEPTIDE LEVELS AFTER ECCENTRIC MUSCLE CONTRACTIONS

    Directory of Open Access Journals (Sweden)

    Darryn S. Willoughby

    2006-12-01

    Full Text Available Eccentric contractions produce a significant degree of inflammation and muscle injury that may increase the expression of myostatin. Due to its anti- oxidant and anti-flammatory effects, circulating 17-β estradiol (E2 may attenuate myostatin expression. Eight males and eight females performed 7 sets of 10 reps of eccentric contractions of the knee extensors at 150% 1-RM. Each female performed the eccentric exercise bout on a day that fell within her mid-luteal phase (d 21-23 of her 28-d cycle. Blood and muscle samples were obtained before and 6 and 24 h after exercise, while additional blood samples were obtained at 48 and 72 h after exercise. Serum E2 and myostatin LAP/propeptide (LAP/pro levels were determined with ELISA, and myostatin mRNA expression determined using RT-PCR. Data were analyzed with two-way ANOVA and bivariate correlations (p 0.05. Compared to pre-exercise, males had significant increases (p < 0.05 in LAP/propetide and mRNA of 78% and 28%, respectively, at 24 h post-exercise, whereas females underwent respective decreases of 10% and 21%. E2 and LAP/propeptide were correlated at 6 h (r = -0.804, p = 0.016 and 24 h post- exercise (r = -0.841, p = 0.009 in males, whereas in females E2 levels were correlated to myostatin mRNA at 6 h (r =0.739, p = 0.036 and 24 h (r = 0.813, p = 0.014 post-exercise and LAP/propeptide at 6 h (r = 0.713, p = 0.047 and 24 h (r = 0.735, p = 0.038. In females, myostatin mRNA expression and serum LAP/propeptide levels do not appear to be significantly up-regulated following eccentric exercise, and may be due to higher levels of circulating E2

  15. Age-related changes in expression of the neural cell adhesion molecule in skeletal muscle: a comparative study of newborn, adult and aged rats

    DEFF Research Database (Denmark)

    Andersson, A M; Olsen, M; Zhernosekov, D

    1993-01-01

    concentration in aged muscle was sixfold higher than in young adult muscle. In contrast with previous reports, NCAM polypeptides of 200, 145, 125 and 120 kDa were observed by immunoblotting throughout postnatal development and aging, the relative proportions of the individual NCAM polypeptides remaining...... report quantitative and qualitative changes in NCAM protein and mRNA forms during aging in normal rat skeletal muscle. Determination of the amount of NCAM by e.l.i.s.a. showed that the level decreased from perinatal to adult age, followed by a considerable increase in 24-month-old rat muscle. Thus NCAM.......9 kb were present in perinatal and young adult skeletal muscle, whereas only the 5.2 and 2.9 kb mRNA classes could be demonstrated in aged muscle. This indicates that metabolism of the various NCAM polypeptides is individually regulated during aging. Alternative splicing of NCAM mRNA in skeletal muscle...

  16. In Vitro Impact of Hydro-alcoholic Extract of Rosa damascena Mill. on Rat Ileum Contractions and the Mechanisms Involved.

    Science.gov (United States)

    Sedighi, Mehrnoosh; Rafieian-Kopaei, Mahmoud; Noori-Ahmadabadi, Mosayeb; Godarzi, Iraj; Baradaran, Azar

    2014-06-01

    The petal's hydro-alcoholic extract of Rosa damascena Mill. on ileum contractions of Wistar rats and its possible mechanism were investigated. Forty-eight male Wistar rats were divided into six groups. Ileum was placed adjacent to propranolol (1 μM), naloxone (1 μM) and L-NAME (100 μM) and also under the influence of different doses (2-8 mM) of calcium chloride. Cumulative extract of R. damascena Mill. (100, 500, and 1000 mg/L) decreased ileum contractions induced by KCl (60 mM) in a dose-dependent manner (P < 0.0001). Propranolol and naloxone significantly decreased the inhibitory effect of the extract on contractions induced by KCl (P < 0.001), but L-NAME was ineffective. Furthermore, calcium led to the contraction of depolarized tissue through KCI and this contractile effect decreased significantly induced by the cumulative concentrations of the extract (P < 0.001). The results indicate that R. damascena Mill. dose-dependently (100, 500, and 1000 mg/L) decreases ileum movements of the rat probably through stimulating the β-adrenergic and opioid receptors and voltage-dependent calcium channels, and it may be used to treat digestive disorders.

  17. A Skin Fixation Method for Decreasing the Influence of Wound Contraction on Wound Healing in a Rat Model

    Directory of Open Access Journals (Sweden)

    Seong Hwan Bae

    2012-09-01

    Full Text Available BackgroundThe elasticity of the back skin of the rat reduced the tension around wounds during the wound healing process in that region, and thus activates wound contraction. The authors proposed two skin fixation methods using readily available materials to decrease the influence of wound contraction on wound healing and designed an experiment to determine their effects.MethodsThe authors made 36 skin wounds on the backs of 18 rats, and they divided them into three groups. Each group was treated with three different kinds of dressing materials, each with different skin fixing characteristics. Group A was a control group. Group B and group C were dressed by the first and the second skin fixation method. We measured the areas of the wounds post-surgically and calculated the wound area reduction rates.ResultsThe two skin fixation methods both reduced the effect of wound contraction compared to the control group. Each of the two methods had different outcomes in reducing wound contraction.ConclusionsThe experiment demonstrated significant differences among the wound areas and the wound area reduction rates of the three groups as a result of differences in the degree of wound contraction. To obtain accurate results from wound healing experiments, appropriate skin fixation methods must be adopted.

  18. Evaluation and comparison of the effect of hypothermia and ozone on ischemia-reperfusion injury of skeletal muscle in rats.

    Science.gov (United States)

    Ozkan, Huseyin; Ekinci, Safak; Uysal, Bulent; Akyildiz, Faruk; Turkkan, Selim; Ersen, Omer; Koca, Kenan; Seven, Mehmet Murat

    2015-06-15

    Tourniquet-induced ischemia-reperfusion, which affects local and distant organs, is very common in orthopedic surgery. Hypothermia is used in traumatic tissue during ischemic period commonly. Ozone (O3) has been recommended as a novel therapeutic agent in various medical conditions. The objective of the study was to evaluate and compare the effect of hypothermia (H) and O3 on ischemia-reperfusion injury of skeletal muscle in rats by measuring oxidative parameters and inducible nitric oxide synthase (iNOS) levels. Eighteen rats (Wistar albino) were separated into five groups randomly (sham, IR, IR + H, IR + O3, IR + H + O3; n = 6). The lower right extremity of all rats was subjected to 2 h of ischemia and 22 h of reperfusion clamping the common iliac artery and using the rubber-band technique at the level of the lesser trochanter under general anesthesia. Two hours of hypothermia were applied during the first 2 h of reperfusion in two groups. O3 was applied in two groups. All rats were sacrificed after the IR period with high dose of anesthesia. The tibialis anterior muscle and blood were saved. Levels of superoxide dismutase, glutathione peroxidase, MDA, NOx, and interleukin-1β were measured in the muscle. Creatinine kinase, lactate dehydrogenase, aspartate aminotransferase, urea, creatinine, and electrolytes were measured in serum. Immunohistochemical iNOS staining was performed on muscle samples. The levels of MDA, NOx, and interleukin-1β in muscle were raised in the IR group compared with those in the sham group. The same parameters were lower in the groups of IR + H, IR + O3, and IR + H + O3 compared with those in the IR group. Superoxide dismutase and glutathione peroxidase activities in muscle were lower in the IR group compared with those in the sham group; however, same parameters were higher in the groups of IR + H, IR + O3, and IR + H + O3 compared with those in the IR group. Score and intensity of iNOS staining in skeletal muscle in the IR group was

  19. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin‐induced cachexia

    Science.gov (United States)

    Conte, Elena; Camerino, Giulia Maria; Mele, Antonietta; De Bellis, Michela; Pierno, Sabata; Rana, Francesco; Fonzino, Adriano; Caloiero, Roberta; Rizzi, Laura; Bresciani, Elena; Ben Haj Salah, Khoubaib; Fehrentz, Jean‐Alain; Martinez, Jean; Giustino, Arcangela; Mariggiò, Maria Addolorata; Coluccia, Mauro; Tricarico, Domenico; Lograno, Marcello Diego; De Luca, Annamaria; Torsello, Antonio; Conte, Diana

    2017-01-01

    Abstract Background Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose‐limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium‐dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS‐R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. Methods By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast‐twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin‐induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. Results Cisplatin‐treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up‐regulation of atrogin1/Murf‐1 genes and a down‐regulation of Pgc1‐a gene, all indexes of muscle atrophy, and by a two‐fold increase in resting intracellular calcium, [Ca2+]i, compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store‐operated calcium entry were ~50% significantly reduced in cisplatin‐treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo

  20. Vagally mediated effects of brain stem dopamine on gastric tone and phasic contractions of the rat.

    Science.gov (United States)

    Anselmi, L; Toti, L; Bove, C; Travagli, R A

    2017-11-01

    Dopamine (DA)-containing fibers and neurons are embedded within the brain stem dorsal vagal complex (DVC); we have shown previously that DA modulates the membrane properties of neurons of the dorsal motor nucleus of the vagus (DMV) via DA1 and DA2 receptors. The vagally dependent modulation of gastric tone and phasic contractions, i.e., motility, by DA, however, has not been characterized. With the use of microinjections of DA in the DVC while recording gastric tone and motility, the aims of the present study were 1) assess the gastric effects of brain stem DA application, 2) identify the DA receptor subtype, and, 3) identify the postganglionic pathway(s) activated. Dopamine microinjection in the DVC decreased gastric tone and motility in both corpus and antrum in 29 of 34 rats, and the effects were abolished by ipsilateral vagotomy and fourth ventricular treatment with the selective DA2 receptor antagonist L741,626 but not by application of the selective DA1 receptor antagonist SCH 23390. Systemic administration of the cholinergic antagonist atropine attenuated the inhibition of corpus and antrum tone in response to DA microinjection in the DVC. Conversely, systemic administration of the nitric oxide synthase inhibitor nitro-l-arginine methyl ester did not alter the DA-induced decrease in gastric tone and motility. Our data provide evidence of a dopaminergic modulation of a brain stem vagal neurocircuit that controls gastric tone and motility.NEW & NOTEWORTHY Dopamine administration in the brain stem decreases gastric tone and phasic contractions. The gastric effects of dopamine are mediated via dopamine 2 receptors on neurons of the dorsal motor nucleus of the vagus. The inhibitory effects of dopamine are mediated via inhibition of the postganglionic cholinergic pathway. Copyright © 2017 the American Physiological Society.

  1. Nociceptin inhibits uterine contractions in term-pregnant rats by signaling through multiple pathways.

    Science.gov (United States)

    Klukovits, A; Tekes, K; Gündüz Cinar, O; Benyhe, S; Borsodi, A; Deák, B H; Hajagos-Tóth, J; Verli, J; Falkay, G; Gáspár, R

    2010-07-01

    The actions of the endogenous peptide nociceptin (PNOC; previously abbreviated as N/OFQ) on the myometrium have not been investigated previously. Our aim was to study the presence and functional role of PNOC in the modulation of uterine contractility in pregnant rats at term. The presence of PNOC and its receptors (OPRL1; previously called NOP) in the uterus were detected by radioimmunoassay and radioligand-binding experiments. The PNOC-stimulated G protein activation was assessed by a [(35)S]GTPgammaS-binding technique. The effects of PNOC in uterine rings precontracted with KCl or oxytocin were also tested in vitro. Uterine levels of cAMP were measured by enzyme immunoassay. The K(+) channel blockers tetraethylammonium and paxilline were used to study the role of K(+) channels in mediating the uterine effects of PNOC. Both PNOC and OPRL1 were present in the uterus. PNOC revealed a maximum contraction inhibition of approximately 30%, which was increased to 40% by naloxone. Naloxone and pertussis toxin significantly attenuated the G protein-stimulating effect of PNOC. The uterine cAMP levels were elevated by PNOC and naloxone and after preincubation with pertussis toxin. Tetraethylammonium and paxilline reduced the contraction-inhibiting effect of PNOC and naloxone to approximately 10% and 15%, respectively. We presume that PNOC plays a role in regulating uterine contractility at term. Its effect is mediated partly by stimulatory heterotrimeric G (G(s)) proteins coupled to OPRL1 receptors and elevated cAMP levels, and also by Ca(2+)-dependent K(+) channels. Our results demonstrate a novel action and signaling pathway for PNOC that might be a potential drug target.

  2. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle

    DEFF Research Database (Denmark)

    Bak, Steffen; León, Ileana R; Jensen, Ole Nørregaard

    2013-01-01

    -specific phosphorylation sites were identified in tissue-specific enzymes such as those encoded by HMGCS2, BDH1, PCK2, CPS1, and OTC in liver mitochondria, and CKMT2 and CPT1B in heart and skeletal muscle. Kinase prediction showed an important role for PKA and PKC in all tissues but also for proline-directed kinases...

  3. In utero glucocorticoid (GLC) exposure reduces fetal skeletal muscle growth in rats

    Science.gov (United States)

    Maternal undernutrition and stress expose the fetus to above normal levels of GLC and predispose to intrauterine growth restriction. The aim of this study was to determine if fetal GLC exposure impairs skeletal muscle growth independently of maternal undernutrition. Three groups (n=7/group) of timed...

  4. Precocious glucocorticoid exposure reduces skeletal muscle satellite cells in the fetal rat

    Science.gov (United States)

    Perinatal skeletal muscle growth rates are a function of protein and myonuclear accretion. Precocious exposure of the fetus to glucocorticoids (GLC) in utero impairs muscle growth. Reduced muscle protein synthesis rates contribute to this response, but the consequences for myonuclear hyperplasia are...

  5. Methanol fractionations of Catha edulis Frosk (Celastraceae) contracted Lewis rat aorta in vitro: a comparison between crimson and green leaves.

    Science.gov (United States)

    Mahmood, Samira Abdulla; Pavlovic, Dragan; Hoffmann, Ulrich

    2009-05-07

    The study investigated the effect of methanol extract and its fractionations obtained from Yemeni khat on the smooth muscle isometric tension in Lewis rat aortal ring preparations and compared the effects of the crimson and green leaves. Khat leaves were sorted into green (khat Light; KL) and crimson (khat Dark; KD) leaves, extracted with methanol, followed with solvent-solvent extraction (benzene, chloroform and ethylacetate). The contractile activity of the fractions was tested using aortal ring preparations. The control (phenylepherine contraction) methanol extracts contracted aortas at concentrations 250, 125 and 67.5 microg/ml buffer by 80.2%, 57.3%, 26.4% and 81.5%, 65.6%, 24.6% for KL and KD, respectively. Fractions of benzene (BF) and ethylacetate (EaF) contracted the aorta with 2 microgm, whereas, chloroform (ChF) with 1 microgm/1 ml buffer was less potent. The shape of contraction curve produced by EaF differed from that of ChF and BF of both (KL and KD). The EaF induced-contraction peaked after 3.3 +/- 0.94 mins, whereas those of BF and CHF peaked after 18.0 +/- 2.2, 19.7 +/- 0.94 mins, respectively. Pre-incubation with nifedipine (10(-6) M) insignificantly reduced the contraction induced by all fractionations, but prazosin (10(-6) M) reduced the contraction by 81.9%, 63.1%, 71.8% with p = 0.23, 0.09, 0.15 for BF, ChF and EaF of KL, respectively. It significantly reduced contraction of ChF, 64.1%; p = 0.02, and of EaF, 73.5%; p = 0.04 of KD, while the reduction in contraction of BF was 63.1%; p = 0.06. In conclusion, fractions of green and crimson Yemeni khat leaves contracted aortas of Lewis rats. Both leaves behave almost similarly. Contraction induced by chloroform fraction produced alpha-sympathetic activity.

  6. The Effect of Exercise on the Skeletal Muscle Phospholipidome of Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Jong Sam Lee

    2010-10-01

    Full Text Available The aim of this study was to examine the effect of endurance training on skeletal muscle phospholipid molecular species from high-fat fed rats. Twelve female Sprague-Dawley rats were fed a high-fat diet (78.1% energy. The rats were randomly divided into two groups, a sedentary control group and a trained group (125 min of treadmill running at 8 m/min, 4 days/wk for 4 weeks. Forty-eight hours after their last training bout phospholipids were extracted from the red and white vastus lateralis and analyzed by electrospray-ionization mass spectrometry. Exercise training was associated with significant alterations in the relative abundance of a number of phospholipid molecular species. These changes were more prominent in red vastus lateralis than white vastus lateralis. The largest observed change was an increase of ~30% in the abundance of 1-palmitoyl-2-linoleoyl phosphatidylcholine ions in oxidative fibers. Reductions in the relative abundance of a number of phospholipids containing long-chain n-3 polyunsaturated fatty acids were also observed. These data suggest a possible reduction in phospholipid remodeling in the trained animals. This results in a decrease in the phospholipid n-3 to n-6 ratio that may in turn influence endurance capacity.

  7. The Effect of Exercise on the Skeletal Muscle Phospholipidome of Rats Fed a High-Fat Diet

    Science.gov (United States)

    Mitchell, Todd W.; Turner, Nigel; Else, Paul L.; Hulbert, Anthony J.; Hawley, John A.; Lee, Jong Sam; Bruce, Clinton R.; Blanksby, Stephen J.

    2010-01-01

    The aim of this study was to examine the effect of endurance training on skeletal muscle phospholipid molecular species from high-fat fed rats. Twelve female Sprague-Dawley rats were fed a high-fat diet (78.1% energy). The rats were randomly divided into two groups, a sedentary control group and a trained group (125 min of treadmill running at 8 m/min, 4 days/wk for 4 weeks). Forty-eight hours after their last training bout phospholipids were extracted from the red and white vastus lateralis and analyzed by electrospray-ionization mass spectrometry. Exercise training was associated with significant alterations in the relative abundance of a number of phospholipid molecular species. These changes were more prominent in red vastus lateralis than white vastus lateralis. The largest observed change was an increase of ~30% in the abundance of 1-palmitoyl-2-linoleoyl phosphatidylcholine ions in oxidative fibers. Reductions in the relative abundance of a number of phospholipids containing long-chain n-3 polyunsaturated fatty acids were also observed. These data suggest a possible reduction in phospholipid remodeling in the trained animals. This results in a decrease in the phospholipid n-3 to n-6 ratio that may in turn influence endurance capacity. PMID:21152312

  8. L-arginine and Arginase Products Potentiate Dexmedetomidine-induced Contractions in the Rat Aorta.

    Science.gov (United States)

    Wong, Emily S W; Man, Ricky Y K; Ng, Kwok F J; Leung, Susan W S; Vanhoutte, Paul M

    2018-03-01

    The α2-adrenergic sedative/anesthetic agent dexmedetomidine exerts biphasic effects on isolated arteries, causing endothelium-dependent relaxations at concentrations at or below 30 nM, followed by contractions at higher concentrations. L-arginine is a common substrate of endothelial nitric oxide synthase and arginases. This study was designed to investigate the role of L-arginine in modulating the overall vascular response to dexmedetomidine. Isometric tension was measured in isolated aortic rings of Sprague Dawley rats. Cumulative concentrations of dexmedetomidine (10 nM to 10 μM) were added to quiescent rings (with and without endothelium) after previous incubation with vehicle, N-nitro-L-arginine methyl ester hydrochloride (L-NAME; nitric oxide synthase inhibitor), prazosin (α1-adrenergic antagonist), rauwolscine (α2-adrenergic antagonist), L-arginine, (S)-(2-boronethyl)-L-cysteine hydrochloride (arginase inhibitor), N-hydroxy-L-arginine (arginase inhibitor), urea and/or ornithine. In some preparations, immunofluorescent staining, immunoblotting, or measurement of urea content were performed. Dexmedetomidine did not contract control rings with endothelium but evoked concentration-dependent increases in tension in such rings treated with L-NAME (Emax 50 ± 4%) or after endothelium-removal (Emax 74 ± 5%; N = 7 to 12). Exogenous L-arginine augmented the dexmedetomidine-induced contractions in the presence of L-NAME (Emax 75 ± 3%). This potentiation was abolished by (S)-(2-boronethyl)-L-cysteine hydrochloride (Emax 16 ± 4%) and N-hydroxy-L-arginine (Emax 18 ± 4%). Either urea or ornithine, the downstream arginase products, had a similar potentiating effect as L-arginine. Immunoassay measurements demonstrated an upregulation of arginase I by L-arginine treatment in the presence of L-NAME (N = 4). These results suggest that when vascular nitric oxide homeostasis is impaired, the potentiation of the vasoconstrictor effect of

  9. Disclosing caffeine action on insulin sensitivity: effects on rat skeletal muscle.

    Science.gov (United States)

    Sacramento, Joana F; Ribeiro, Maria J; Yubero, Sara; Melo, Bernardete F; Obeso, Ana; Guarino, Maria P; Gonzalez, Constancio; Conde, Silvia V

    2015-04-05

    Caffeine, a non-selective adenosine antagonist, has distinct effects on insulin sensitivity when applied acutely or chronically. Herein, we investigated the involvement of adenosine receptors on insulin resistance induced by single-dose caffeine administration. Additionally, the mechanism behind adenosine receptor-mediated caffeine effects in skeletal muscle was assessed. The effect of the administration of caffeine, 8-cycle-1,3-dipropylxanthine (DPCPX, A1 antagonist), 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH58261, A2A antagonist) and 8-(4-{[(4-cyanophenyl)carbamoylmethyl]-oxy}phenyl)-1,3-di(n-propyl)xanthine (MRS1754, A2B antagonist) on whole-body insulin sensitivity was tested. Skeletal muscle Glut4,5'-AMP activated protein kinase (AMPK) and adenosine receptor protein expression were also assessed. The effect of A1 and A2B adenosine agonists on skeletal muscle glucose uptake was evaluated in vitro. Sodium nitroprussiate (SNP, 10nM), a nitric oxide (NO) donor, was used to evaluate the effect of NO on insulin resistance induced by adenosine antagonists. Acute caffeine decreased insulin sensitivity in a concentration dependent manner (Emax=55.54±5.37%, IC50=11.61nM), an effect that was mediated by A1 and A2B adenosine receptors. Additionally, acute caffeine administration significantly decreased Glut4, but not AMPK expression, in skeletal muscle. We found that A1, but not A2B agonists increased glucose uptake in skeletal muscle. SNP partially reversed DPCPX and MRS1754 induced-insulin resistance. Our results suggest that insulin resistance induced by acute caffeine administration is mediated by A1 and A2B adenosine receptors. Both Glut4 and NO seem to be downstream effectors involved in insulin resistance induced by acute caffeine. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Vitamin A Oral Supplementation Induces Oxidative Stress and Suppresses IL-10 and HSP70 in Skeletal Muscle of Trained Rats

    Directory of Open Access Journals (Sweden)

    Lyvia Lintzmaier Petiz

    2017-04-01

    Full Text Available Exercise training intensity is the major variant that influences the relationship between exercise, redox balance, and immune response. Supplement intake is a common practice for oxidative stress prevention; the effects of vitamin A (VA on exercise training are not yet described, even though this molecule exhibits antioxidant properties. We investigated the role of VA supplementation on redox and immune responses of adult Wistar rats subjected to swimming training. Animals were divided into four groups: sedentary, sedentary + VA, exercise training, and exercise training + VA. Over eight weeks, animals were submitted to intense swimming 5 times/week and a VA daily intake of 450 retinol equivalents/day. VA impaired the total serum antioxidant capacity acquired by exercise, with no change in interleukin-1β and tumor necrosis factor-α levels. In skeletal muscle, VA caused lipid peroxidation and protein damage without differences in antioxidant enzyme activities; however, Western blot analysis showed that expression of superoxide dismutase-1 was downregulated, and upregulation of superoxide dismutase-2 induced by exercise was blunted by VA. Furthermore, VA supplementation decreased anti-inflammatory interleukin-10 and heat shock protein 70 expression, important factors for positive exercise adaptations and tissue damage prevention. Our data showed that VA supplementation did not confer any antioxidative and/or protective effects, attenuating exercise-acquired benefits in the skeletal muscle.

  11. Effects of eccentric exercise on branched-chain amino acid profiles in rat serum and skeletal muscle.

    Science.gov (United States)

    Qun, Z; Xinkai, Y; Jing, W

    2014-04-01

    Supplementation of branched-chain amino acid (BCAA) is often used to attenuate exercise-induced skeletal muscle damage and promote adaptation, but no definitive conclusion on the benefits of BCAA on muscle recovery after injurious exercise can be drawn. Exploration of the systematic BCAA alteration in muscular injury-repair stage per se without any BCAA supplement should provide some useful information in favour of BCAA application in muscle regeneration after injury. One bout of 90-min downhill-running exercise was performed to cause rat skeletal muscle injury. After exercise, myofibrillar BCAA concentrations showed minor changes compared with exercise before, while serum concentrations of BCAA were lower after exercise. Especially, serum leucine, isoleucine and total BCAA concentrations 2 weeks post-run were significantly lower than normal values of exercise before (p = 0.008, p = 0.041, p = 0.015). The data demonstrate that a single eccentric exercise can significantly decrease the serum BCAA concentrations, which mean high utilization of BCAA for myogenesis after injurious exercise. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  12. β-Hydroxy-β-methylbutyrate (HMβ supplementation stimulates skeletal muscle hypertrophy in rats via the mTOR pathway

    Directory of Open Access Journals (Sweden)

    Pimentel Gustavo D

    2011-02-01

    Full Text Available Abstract β-Hydroxy-β-methylbutyrate (HMβ supplementation is used to treat cancer, sepsis and exercise-induced muscle damage. However, its effects on animal and human health and the consequences of this treatment in other tissues (e.g., fat and liver have not been examined. The purpose of this study was to evaluate the effects of HMβ supplementation on skeletal muscle hypertrophy and the expression of proteins involved in insulin signalling. Rats were treated with HMβ (320 mg/kg body weight or saline for one month. The skeletal muscle hypertrophy and insulin signalling were evaluated by western blotting, and hormonal concentrations were evaluated using ELISAs. HMβ supplementation induced muscle hypertrophy in the extensor digitorum longus (EDL and soleus muscles and increased serum insulin levels, the expression of the mammalian target of rapamycin (mTOR and phosphorylation of p70S6K in the EDL muscle. Expression of the insulin receptor was increased only in liver. Thus, our results suggest that HMβ supplementation can be used to increase muscle mass without adverse health effects.

  13. Corticosteroids and redox potential modulate spontaneous contractions in isolated rat ventricular cardiomyocytes.

    Science.gov (United States)

    Rossier, Michel F; Lenglet, Sébastien; Vetterli, Laurène; Python, Magaly; Maturana, Andrés

    2008-10-01

    The mineralocorticoid receptor has been implicated in the development of several cardiac pathologies and could participate in the high incidence of lethal ventricular arrhythmias associated with hyperaldosteronism. We have observed previously that aldosterone markedly increases in vitro the rate of spontaneous contractions of isolated neonate rat ventricular myocytes, a putative proarrhythmogenic condition if occurring in vivo. In the present study, we investigated the effect of glucocorticoids, the involvement of the glucocorticoid receptor, and the modulation of their action by redox agents. Aldosterone and glucocorticoids exerted in vitro a similar, concentration-dependent chronotropic action on cardiomyocytes, which was mediated by both the mineralocorticoid and glucocorticoid receptors. However, the relative contribution of each receptor was different for each agonist, at each concentration. Angiotensin II induced a similar response that was entirely dependent on the activity of the glucocorticoid receptor. Corticosteroid action was modulated by the redox state of the cells, with oxidation increasing the response while reducing conditions partially preventing it. When only the mineralocorticoid receptor was functionally present in the cells, oxidation was necessary to reveal glucocorticoid action, but no obvious competition with mineralocorticoids was observed when both agonists where simultaneously present. In conclusion, corticosteroids exert a strong chronotropic action in ventricular cardiomyocytes, mediated by both the mineralocorticoid and glucocorticoid receptors and modulated by the redox state of the cell. This phenomenon is believed to be because of cell electric remodeling and could contribute in vivo to the deleterious consequence of inappropriate receptor activation, leading to increased susceptibility of patients to arrhythmias.

  14. Effect of nickel on uterine contraction and ultrastructure in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Rubanyi, G.; Balogh, I.

    1982-04-15

    The in vitro effects of nickel chloride (NiCl/sub 2/) on uterine contractile activity and ultrastructure were studied in uterine strips isolated from 20-day-pregnant Wistar rats. Ni/sup 2 +/ had a dual action on uterine spontaneous contractions. In low concentrations (10/sup -7/M to 10/sup -5/M), NiCl/sub 2/ increased basal tone significantly but had no effect on the amplitude or frequency of development of isometric force. High concentrations of NiCl/sub 2/ (10/sup -4/M to 10/sup -3/M) inhibited spontaneous contractile activity and decreased basal tone, which was antagonized by elevation of the extracellular concentration of Ca/sup 2 +/. Electron microscopic localization of Ni by the dimethyl glyoxime cytochemical technique showed that, after incubation of uterine strips in a physiologic medium that contained 10/sup -6/M NiCl/sub 2/, electron-dense Ni-dimethyl glyoxime particles could be observed in the cytoplasm and in the mitochondria of uterine smooth muscle cells. Exposition of Ni caused mitochondrial structural damage and accumulation of glycogen. The experimental results indicate that, because of its oxytocic action, the increase in the serum level of Ni in the advanced stage of human labor (Rubanyi and associates, 1982) may support separation of the placenta and/or may contribute to the prevention of atonic bleeding in the postpartum period.

  15. Antispasmodic effects of Pycnocycla spinosa seed and aerial part extracts on rat ileum and uterus smooth muscle contractions

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background and the purpose of study: Hydroalcoholic extract of Pycnocycla spinosa has a relaxant effect on ileum and inhibits castor oil induced diarrhoea in mice. However, effects of P. spinosa seed extracts on ileum and uterus hasn't been investigated.  The aim of this study was to investigate effect of P. spinosa seed and extracts of the aerial part on rat ileum and uterus smooth muscle contraction. Methods: A 70% ethanol extract of seed and aerial parts of P. spinosa was prepared by a percolation method. Uterine horns or ileum were dissected from non-pregnant female Wistar rats (200-230g and cut into longitudinal strips and mounted for isotonic recording under 1g tension in Tyrode's solution. Effects of the extracts were examined on tonic contractions induced by KCl (80mM on both tissues and on phasic spasm induced by oxytocin (0.002iu/ml on the uterus. Results: The aerial part extract inhibited rat ileum contractions induced by 80mM KCl (IC50=42±3.4mg/ml in a concentration dependent manner and it also inhibited rat uterus contraction induced by 80 mM KCl. However, its inhibitory effects were observed with higher concentration of the extract (IC50=420±90mg/ml and at concentration of 1.28mg/ml of the extract in the bath the response was 19±7%.  The aerial part extract (40-640mg/ml also reduced the evoked phasic response of uterus by oxytocin (IC50=71±17.3mg/ml. The seed extract reduced the uterus response to oxytocin in a concentration-dependent manner, and inhibited tissue response completely at 160mg/ml (IC50=27±4mg/ml.  Major conclusion: From this study it was concluded that the seed extract of P. spinosa have similar inhibitory properties on rat isolated uterus and ileum contractions, while the extract of the aerial part of P. spinosa is more selective inhibitor of ileum contraction, and at higher concentrations it also inhibits uterus spasm.

  16. NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels

    Science.gov (United States)

    Parajuli, Shankar P; Hristov, Kiril L; Soder, Rupal P; Kellett, Whitney F; Petkov, Georgi V

    2013-01-01

    Background and Purpose Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca2+-activated K+ (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function. Experimental Approach We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function. Key Results We detected SK3 but not SK1, SK2 or IK channels expression at both mRNA and protein levels by RT-PCR and immunocytochemistry in DSM single cells. NS309 (10 μM) significantly increased the whole cell SK currents and hyperpolarized DSM cell resting membrane potential. The NS309 hyperpolarizing effect was blocked by apamin, a selective SK channel inhibitor. NS309 inhibited the spontaneous phasic contraction amplitude, force, frequency, duration and tone of isolated DSM strips in a concentration-dependent manner. The inhibitory effect of NS309 on spontaneous phasic contractions was blocked by apamin but not by TRAM-34, indicating no functional role of the IK channels in rat DSM. NS309 also significantly inhibited the pharmacologically and electrical field stimulation-induced DSM contractions. Conclusions and Implications Our data reveal that SK3 channel is the main SK/IK subtype in rat DSM. Pharmacological activation of SK3 channels with NS309 decreases rat DSM cell excitability and contractility, suggesting that SK3 channels might be potential therapeutic targets to control OAB associated with detrusor overactivity. PMID:23145946

  17. Pterostilbene improves glycaemic control in rats fed an obesogenic diet: Involvement of skeletal muscle and liver

    Science.gov (United States)

    This study aimed to determine whether pterostilbene improved glycaemic control in rats showing insulin resistance induced by an obesogenic diet. Rats were divided into 3 groups: control group and two groups treated with either 15 mg/kg/d (PT15) or 30 mg/kg/d of pterostilbene (PT30). HOMA-IR was decr...

  18. Basal and insulin-stimulated skeletal muscle sugar transport in endotoxic and bacteremic rats

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, M.V.; Sayeed, M.M.

    1988-04-01

    Membrane glucose transport with and without insulin was studied in soleus muscle from 5-h endotoxic rats (40 mg/kg Salmonella enteritidis lipopolysaccharide), and in soleus and epitrochlearis muscles from 12-h bacteremic (Escherichia coli, 4 X 10(10) CFU/kg) rats. Glucose transport was measured in muscles by evaluating the fractional efflux of /sup 14/C-labeled 3-O-methylglucose (/sup 14/C-3-MG) after loading muscles with /sup 14/C-3-MG. Basal 3-MG transport was elevated in soleus muscles from endotoxic as well as in soleus and epitrochlearis muscles from bacteremic rats compared with time-matched controls. Low insulin concentrations stimulated /sup 14/C-3-MG transport more in bacteremic and endotoxic rat muscles than in controls. However, sugar transport in the presence of high insulin dose was attenuated in soleus and epitrochlearis muscles from bacteremic rats and soleus muscles from endotoxic rats compared with controls. Analysis of the dose-response relationship with ALLFIT revealed that the maximal transport response to insulin was significantly decreased in both models of septic shock. Sensitivity to insulin (EC50) was increased in endotoxic rat muscles, and a somewhat similar tendency was observed in bacteremic rat soleus muscles. Neural and humoral influences and/or changes in cellular metabolic energy may contribute to the increase in basal transport. Shifts in insulin-mediated transport may be due to alterations in insulin-receptor-effector coupling and/or the number of available glucose transporters.

  19. Molecular and metabolomic effects of voluntary running wheel activity on skeletal muscle in late middle-aged rats.

    Science.gov (United States)

    Garvey, Sean M; Russ, David W; Skelding, Mary B; Dugle, Janis E; Edens, Neile K

    2015-02-01

    We examined the molecular and metabolomic effects of voluntary running wheel activity in late middle-aged male Sprague Dawley rats (16-17 months). Rats were assigned either continuous voluntary running wheel access for 8 weeks (RW+) or cage-matched without running wheel access (RW-). The 9 RW+ rats averaged 83 m/day (range: 8-163 m), yet exhibited both 84% reduced individual body weight gain (4.3 g vs. 26.3 g, P = 0.02) and 6.5% reduced individual average daily food intake (20.6 g vs. 22.0 g, P = 0.09) over the 8 weeks. Hindlimb muscles were harvested following an overnight fast. Muscle weights and myofiber cross-sectional area showed no difference between groups. Western blots of gastrocnemius muscle lysates with a panel of antibodies suggest that running wheel activity improved oxidative metabolism (53% increase in PGC1α, P = 0.03), increased autophagy (36% increase in LC3B-II/-I ratio, P = 0.03), and modulated growth signaling (26% increase in myostatin, P = 0.04). RW+ muscle also showed 43% increased glycogen phosphorylase expression (P = 0.04) and 45% increased glycogen content (P = 0.04). Metabolomic profiling of plantaris and soleus muscles indicated that even low-volume voluntary running wheel activity is associated with decreases in many long-chain fatty acids (e.g., palmitoleate, myristoleate, and eicosatrienoate) relative to RW- rats. Relative increases in acylcarnitines and acyl glycerophospholipids were also observed in RW+ plantaris. These data establish that even modest amounts of physical activity during late middle-age promote extensive metabolic remodeling of skeletal muscle. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  20. Resistance Training Alters the Proportion of Skeletal Muscle Fibers but Not Brain Neurotrophic Factors in Young Adult Rats.

    Science.gov (United States)

    Antonio-Santos, José; Ferreira, Diórginis José S; Gomes Costa, Gizelle L; Matos, Rhowena Jane B; Toscano, Ana E; Manhães-de-Castro, Raul; Leandro, Carol G

    2016-12-01

    Antonio-Santos, J, Ferreira, DJS, Gomes Costa, GL, Matos, RJB, Toscano, AE, Manhães-de-Castro, R, and Leandro, CG. Resistance training alters the proportion of skeletal muscle fibers but not brain neurotrophic factors in young adult rats. J Strength Cond Res 30(12): 3531-3538, 2016-Resistance training (RT) is related to improved muscular strength and power output. Different programs of RT for rats have been developed, but peripheral and central response has not been evaluated directly in the same animal. To test the hypothesis that RT induces central and peripheral adaptations, this study evaluated the effects of a RT on the performance of a weekly maximum overload test, fiber-type typology, and brain neurotrophic factors in young adult rats. Thirty-one male Wistar rats (65 ± 5 days) were divided in 2 groups: nontrained (NT, n = 13) and trained (T, n = 18). Trained group was submitted to a program of RT ladder climbing, gradually added mass, 5 days per week during 8 weeks at 80% of individual maximum overload. This test was weekly performed to adjust the individual load throughout the weeks for both groups. After 48 hours from the last session of exercise, soleus and extensor digital longus (EDL) muscles were removed for myofibrillar ATPase staining analysis. Spinal cord, motor cortex, and cerebellum were removed for RT-PCR analysis of BDNF and insulin-like growth factor-1 (IGF-1) gene expression. In EDL muscle, T animals showed an increase in the proportion of type IIb fibers and a reduction of type IIa fibers. Insulin-like growth factor-1 gene expression was reduced in the cerebellum of T animals (NT: 1.025 ± 0.12; T: 0.57 ± 0.11). Our data showed that 8 weeks of RT were enough to increase maximum overload capacity and the proportion of glycolytic muscle fibers, but there were no associations with the expression of growth neurotrophic factors.

  1. Effect of Exercise Training on Skeletal Muscle SIRT1 and PGC-1α Expression Levels in Rats of Different Age.

    Science.gov (United States)

    Huang, Chi-Chang; Wang, Ting; Tung, Yu-Tang; Lin, Wan-Teng

    2016-01-01

    The protein deacetylase sirtuin 1 (SIRT1) and activate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) pathway drives the muscular fiber-type switching, and can directly regulate the biophysiological functions of skeletal muscle. To investigate whether 12-week swimming exercise training modulates the SIRT1/PGC-1α pathway associated proteins expression in rats of different age. Male 3-month-old (3M), 12-month-old (12M) and 18-month-old (18M) Sprague-Dawley rats were used and assigned to sedentary control (C) or 12-week swimming exercise training (E) and divided into six groups: 3MC (n = 8), 12MC (n = 6), 18MC (n = 8), 3ME (n = 8), 12ME (n = 5) and 18ME (n = 6). Body weight, muscle weight, epididymal fat mass and muscle morphology were performed at the end of the experiment. The protein levels of SIRT1, PGC-1α, AMPK and FOXO3a in the gastrocnemius and soleus muscles were examined. The SIRT1, PGC-1α and AMPK levels in the gastrocnemius and soleus muscles were up-regulated in the three exercise training groups than three control groups. The FOXO3a level in the 12ME group significantly increased in the gastrocnemius muscles than 12MC group, but significantly decreased in the soleus muscles. In 3-, 12- and 18-month-old rats with and without exercise, there was a significant main effect of exercise on PGC-1α, AMPK and FOXO3a in the gastrocnemius muscles, and SIRT1, PGC-1α and AMPK in the soleus muscles. Our result suggests that swimming training can regulate the SIRT1/PGC-1α, AMPK and FOXO3a proteins expression of the soleus muscles in aged rats.

  2. Greater efficacy of alfacalcidol in the red than in the yellow marrow skeletal sites in adult female rats.

    Science.gov (United States)

    Tian, X Y; Liu, X Q; Chen, H Y; Setterberg, R B; Li, M; Jee, W S S

    2008-01-01

    The present study compared the bone anabolic effects of graded doses of alfacalcidol in proximal femurs (hematopoietic, red marrow skeletal site) and distal tibiae (fatty, yellow marrow skeletal site). One group of 8.5-month-old female Sprague-Dawley rats were killed at baseline and 4 groups were treated 5 days on/2 days off/week for 12 weeks with 0, 0.025, 0.05 and 0.1 microg alfacalcidol/kg by oral gavage. The proximal femur, bone site with hematopoietic marrow, as well as the distal tibia bone site with fatty marrow, were processed undecalcified for quantitative bone histomorphometry. In the red marrow site of the proximal femoral metaphysis (PFM), 0.1 microg alfacalcidol/kg induced increased cancellous bone mass, improved architecture (decreased trabecular separation, increased connectivity), and stimulated local bone formation of bone 'boutons' (localized bone formation) on trabecular surfaces. There was an imbalance in bone resorption and formation, in which the magnitude of depressed bone resorption greater than depressed bone formation resulted in a positive bone balance. In addition, bone 'bouton' formation contributed to an increase in bone mass. In contrast, the yellow marrow site of the distal tibial metaphysis (DTM), the 0.1 microg alfacalcidol/kg dose induced a non-significant increased cancellous bone mass. The treatment decreased bone resorption equal to the magnitude of decreased bone formation. No bone 'bouton' formation was observed. These findings indicate that the highest dose of 0.1 microg alfacalcidol/kg for 12 weeks increased bone mass (anabolic effect) at the skeletal site with hematopoietic marrow of the proximal femoral metaphysis, but the increased bone mass was greatly attenuated at the fatty marrow site of the distal tibial metaphysis. In addition, the magnitude of the bone gain induced by alfacalcidol treatment in red marrow cancellous bone sites of the proximal femoral metaphysis was half that of the lumbar vertebral body. The latter

  3. Preconditioning with ethyl 3,4-dihydroxybenzoate augments aerobic respiration in rat skeletal muscle

    OpenAIRE

    Nimker C; Singh DP; Saraswat D; Bansal A

    2016-01-01

    Charu Nimker, Deependra Pratap Singh, Deepika Saraswat, Anju Bansal Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Defense Research and Development Organisation, Timarpur, Delhi, India Abstract: Muscle respiratory capacity decides the amount of exertion one's skeletal muscle can undergo, and endurance exercise is believed to increase it. There are also certain preconditioning methods by which muscle respiratory and exercise performance can be enha...

  4. Spasmolytic Activity of the Ethanol Extract of Sideritis raeseri spp. raeseri Boiss. & Heldr. on the Isolated Rat Ileum Contractions

    Science.gov (United States)

    Kitic, Dusanka; Radenkovic, Mirjana; Veljkovic, Slavimir; Jankovic, Teodora; Savikin, Katarina; Zdunic, Gordana

    2011-01-01

    Abstract Sideritis raeseri spp. raeseri Boiss. & Heldr., known as “mountain tea,” has been widely used in the Mediterranean region as a spice and in folk medicine as a very popular decoction because of its anti-inflammatory, carminative, analgesic, antitussive, stomachic, and antimicrobial properties. The study was aimed to investigate the effects of an ethanol extract of S. raeseri on intestinal activity. Air-dried and powdered aerial parts were extracted with 96% ethanol. The rat ileum preparations were incubated in Tyrode's solution gassed (95% O2/5% CO2) at 37°C. The ethanol extract of S. raeseri (0.03–0.3 mg/mL) relaxed spontaneous contractions in isolated rat ileum, similar to that produced by papaverine. The plant extract in a concentration-dependent manner (0.015–0.15 mg/mL) significantly inhibited the contractile response to acetylcholine (Pbarium chloride. Plant extract (0.03–0.3 mg/mL) significantly shifted the histamine concentration–response curve to the right and down (Pbarium chloride (P<.01). The results show that the ethanol extract of S. raeseri can produce inhibition of the the spontaneous rat ileum contractions and contractions induced by different spasmogens. These data indicate that S. raeseri acts as a spasmolytic on intestinal smooth muscle, which justifies its use in gastrointestinal disorders. PMID:21480795

  5. Development of an Assay Based on the Effects of PGBx on the Isolated Perfused Rat Heart and Rat Skeletal Muscle.

    Science.gov (United States)

    1980-09-01

    phosphorylation and enhance ATP synthesis in aged and/or damaqed mitochondria is unique (Polis et al, 1973; Devlin, �), and its lack of effect on the...rat heart, (’An. Pha’mac. 9,101-112. Aronson, C. E. and Serlick, E. R., (1977a) Effects of chlorpromazine on the isola- ted perfused rat heart, ’ Apl...euthyroid and hyperthyroid rats. Eur. J. Pharmac. 19, 12-17. Aronson, C. E. and Serlick, E. R. (1977a) Effects of chlorpromazine on the isolated

  6. Salvia miltiorrhiza Induces Tonic Contraction of the Lower Esophageal Sphincter in Rats via Activation of Extracellular Ca2+ Influx

    Directory of Open Access Journals (Sweden)

    Ching-Chung Tsai

    2015-08-01

    Full Text Available Up to 40% of patients with gastroesophageal reflux disease (GERD suffer from proton pump inhibitor refractory GERD but clinically the medications to strengthen the lower esophageal sphincter (LES to avoid irritating reflux are few in number. This study aimed to examine whether Salvia miltiorrhiza (SM extracts induce tonic contraction of rat LES ex vivo and elucidate the underlying mechanisms. To investigate the mechanism underlying the SM extract-induced contractile effects, rats were pretreated with atropine (a muscarinic receptor antagonist, tetrodotoxin (a sodium channel blocker, nifedipine (a calcium channel blocker, and Ca2+-free Krebs-Henseleit solution with ethylene glycol tetraacetic acid (EGTA, followed by administration of cumulative dosages of SM extracts. SM extracts induced dose-related tonic contraction of the LES, which was unaffected by tetrodotoxin, atropine, or nifedipine. However, the SM extract-induced LES contraction was significantly inhibited by Ca2+-free Krebs-Henseleit solution with EGTA. Next, SM extracts significantly induce extracellular Ca2+ entry into primary LES cells in addition to intracellular Ca2+ release and in a dose-response manner. Confocal fluorescence microscopy showed that the SM extracts consistently induced significant extracellular Ca2+ influx into primary LES cells in a time-dependent manner. In conclusion, SM extracts could induce tonic contraction of LES mainly through the extracellular Ca2+ influx pathway.

  7. Myosin heavy chain composition of skeletal muscles in young rats growing under hypobaric hypoxia conditions.

    Science.gov (United States)

    Bigard, A X; Sanchez, H; Birot, O; Serrurier, B

    2000-02-01

    This study investigated the effects of voluntary wheel running on the myosin heavy chain (MHC) composition of the soleus (Sol) and plantaris muscles (Pla) in rats developing under hypobaric choronic hypoxia (CH) conditions during 4 wk in comparison with those of control rats maintained under local barometric pressure conditions (C) or rats pair-fed an equivalent quantity of food to that consumed by CH animals (PF). Compared with C animals, sedentary rats subjected to CH conditions showed a significant decrease in type I MHC in Sol (-12%, P difference in the MHC profile of Sol was shown between CH active and C active rats. The MHC distribution in Sol of PF rats was not significantly different from that found in C animals. CH resulted in a significant decrease in type I (P fast shift in the MHC profile was unaffected by spontaneous running activity. These results suggest that running exercise suppresses the hypoxia-induced slow-to-fast transition in the MHC expression in Sol muscles only. The hypoxia-induced decrease in food intake has no major influence on MHC expression in developing rats.

  8. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles.

    Science.gov (United States)

    Neyroud, Daria; Cheng, Arthur J; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on-1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on-3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased "voluntary activation." In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT.

  9. Whey protein hydrolysate enhances HSP90 but does not alter HSP60 and HSP25 in skeletal muscle of rats.

    Directory of Open Access Journals (Sweden)

    Carolina Soares Moura

    Full Text Available Whey protein hydrolysate (WPH intake has shown to increase HSP70 expression. The aim of the present study was to investigate whether WPH intake would also influences HSP90, HSP60 and HSP25 expression, as well as associated parameters. Forty-eight male Wistar rats were divided into sedentary (unstressed and exercised (stressed groups, and were fed with three different sources of protein: whey protein (WP, whey protein hydrolysate (WPH and casein (CAS as a control, based on the AIN93G diet for 3 weeks. WPH intake increased HSP90 expression in both sedentary and exercised animals compared to WP or CAS, however no alteration was found from exercise or diet to HSP60 or HSP25. Co-chaperone Aha1 and p-HSF1 were also increased in the exercised animals fed with WPH in comparison with WP or CAS, consistent with enhanced HSP90 expression. VEGF and p-AKT were increased in the WPH exercised group. No alteration was found in BCKDH, PI3-Kinase (p85, GFAT, OGT or PGC for diet or exercise. The antioxidant system GPx, catalase and SOD showed different responses to diet and exercise. The data indicate that WPH intake enhanced factors related to cell survival, such as HSP90 and VEGF, but does not alter HSP60 or HSP25 in rat skeletal muscle.

  10. Human adipose tissue-derived stem cells exhibit proliferation potential and spontaneous rhythmic contraction after fusion with neonatal rat cardiomyocytes

    Science.gov (United States)

    Metzele, Roxana; Alt, Christopher; Bai, Xiaowen; Yan, Yasheng; Zhang, Zhi; Pan, Zhizhong; Coleman, Michael; Vykoukal, Jody; Song, Yao-Hua; Alt, Eckhard

    2011-01-01

    Various types of stem cells have been shown to have beneficial effects on cardiac function. It is still debated whether fusion of injected stem cells with local resident cardiomyocytes is one of the mechanisms. To better understand the role of fusion in stem cell-based myocardial regeneration, the present study was designed to investigate the fate of human adipose tissue-derived stem cells (hASCs) fused with neonatal rat cardiomyocytes in vitro. hASCs labeled with the green fluorescent probe Vybrant DiO were cocultured with neonatal rat cardiomyocytes labeled with the red fluorescent probe Vybrant DiI and then treated with fusion-inducing hemagglutinating virus of Japan (HVJ). Cells that incorporated both red and green fluorescent signals were considered to be hASCs that had fused with rat cardiomyocytes. Fusion efficiency was 19.86 ± 4.84% at 5 d after treatment with HVJ. Most fused cells displayed cardiomyocyte-like morphology and exhibited spontaneous rhythmic contraction. Both immunofluorescence staining and lentiviral vector labeling showed that fused cells contained separate rat cardiomyocyte and hASC nuclei. Immunofluorescence staining assays demonstrated that human nuclei in fused cells still expressed the proliferation marker Ki67. In addition, hASCs fused with rat cardiomyocytes were positive for troponin I. Whole-cell voltage-clamp analysis demonstrated action potentials in beating fused cells. RT-PCR analysis using rat- or human-specific myosin heavy chain primers revealed that the myosin heavy-chain expression in fused cells was derived from rat cardiomyocytes. Real-time PCR identified expression of human troponin T in fused cells and the presence of rat cardiomyocytes induced a cardiomyogenic protein expression of troponin T in human ASCs. This study illustrates that hASCs exhibit both stem cell (proliferation) and cardiomyocyte properties (action potential and spontaneous rhythmic beating) after fusion with rat cardiomyocytes, supporting the theory

  11. Stretch Injuries of Skeletal Muscles: Experimental Study in Rats` Soleus Muscle

    OpenAIRE

    PACHIONI, Celia Aparecida Stellutti; Mazzer, Nilton; Barbieri, Claudio Henrique; Camargo, Marcela Regina de [UNESP; Fregonesi, Cristina Elena Prado Teles [UNESP; Carmo, Edna Maria do; NOZABIELLI, Andrea Jeanne Lourenco; Martinelli, Alessandra Rezende

    2009-01-01

    The study aimed to verify the physiological injury behavior by stretching the soleus muscle of rats, using a noninvasive experimental model. Twenty-four rats were used and divided into three groups of eight animals: control group (A), group that performed tetanus followed by electrical stimulation and a sudden dorsiflexion of the left paw performed by a device equipped with a mechanism of muscle soleus rapid stretching (B); and a group that only received the tetanus (C). Three days later, the...

  12. Effect of penetrating radiation on skeletal muscles of rats in weightlessness

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, N.V.; Portugalov, V.V.

    1976-10-01

    The isoenzyme composition of lactate dehydrogenase of soleus and plantaris muscles of rats flown for 20.5 d aboard the biosatellite Cosmos-690 and irradiated with a dose of 800 rad was investigated. The muscles exposed to weightlessness per se and weightlessness combined with radiation showed similar changes in their carbohydrate metabolism. On return to 1 G, readaptation of irradiated rats developed less rapidly than animals exposed to weightlessness alone.

  13. Insulin-like growth factor-1 enhances rat skeletal muscle charge movement and L-type Ca2+ channel gene expression

    Science.gov (United States)

    Wang, Zhong-Min; Laura Messi, María; Renganathan, Muthukrishnan; Delbono, Osvaldo

    1999-01-01

    We investigated whether insulin-like growth factor-1 (IGF-1), an endogenous potent activator of skeletal muscle proliferation and differentiation, enhances L-type Ca2+ channel gene expression resulting in increased functional voltage sensors in single skeletal muscle cells. Charge movement and inward Ca2+ current were recorded in primary cultured rat myoballs using the whole-cell configuration of the patch-clamp technique. Ca2+ current and maximum charge movement (Qmax) were potentiated in cells treated with IGF-1 without significant changes in their voltage dependence. Peak Ca2+ current in control and IGF-1-treated cells was -7·8 ± 0·44 and -10·5 ± 0·37 pA pF−1, respectively (P charge movement and the level of L-type Ca2+ channel α1-subunits through activation of gene expression in skeletal muscle cells. PMID:10087334

  14. Changes in tetrodotoxin-resistant C-fibre activity during fatiguing isometric contractions in the rat.

    Directory of Open Access Journals (Sweden)

    Ivana Kalezic

    Full Text Available It is by now well established that tetrodotoxin-resistant (TTX-R afferent fibres from muscle in the rat exhibit a multisensitive profile, including nociception. TTX-R afferent fibres play an important role in motor control, via spinal and supraspinal loops, but their activation and function during muscle exercise and fatigue are still unknown. Therefore, the specific effect of isometric fatiguing muscle contraction on the responsiveness of TTX-R C-fibres has been investigated in this study. To quantify the TTX-R afferent input we recorded the cord dorsum potential (CDP, which is the result of the electrical fields set up within the spinal cord by the depolarisation of the interneurons located in the dorsal horn, activated by an incoming volley of TTX-R muscle afferents. The changes in TTX-R CDP size before, during and after fatiguing electrical stimulation of the gastrocnemius-soleus (GS muscle have been taken as a measure of TTX-R C-unit activation. At the end of the fatiguing protocol, following an exponential drop in force, TTX-R CDP area decreased in the majority of trials (9/14 to 0.75 ± 0.03% (mean ± SEM of the pre-fatigue value. Recovery to the control size of the TTX-R CDP was incomplete after 10 min. Furthermore, fatiguing trials could sensitise a fraction of the TTX-R C-fibres responding to muscle pinch. The results suggest a long-lasting activation of the TTX-R muscle afferents after fatiguing stimulation. The role of this behaviour in chronic muscle fatigue in connection with pain development is discussed. Accumulation of metabolites released into the interstitium during fatiguing stimulation might be one of the reasons underlying the C-fibres' long-lasting activation.

  15. Training increases the concentration of [3H]ouabain-binding sites in rat skeletal muscle

    DEFF Research Database (Denmark)

    Kjeldsen, K; Richter, Erik; Galbo, H

    1986-01-01

    with physical performance. Since the clearing of K+ from the extracellular space depends on the capacity for active K+ uptake in skeletal muscle, the effects of training and inactivity on the total concentration of (Na+ + K+)-ATPase was determined. Following 6 weeks of swim training, the concentration of [3H.......02-0.001) within 1 week. In conclusion, training leads to a significant and reversible rise in the concentration of (Na+ + K+)-ATPase in muscle cells. This may be of importance for the beneficial effects on physical performance by improving the maximum capacity for K+ clearance....

  16. Histomorphometric analysis of the response of rat skeletal muscle to swimming, immobilization and rehabilitation

    Directory of Open Access Journals (Sweden)

    C.C.F. Nascimento

    2008-09-01

    Full Text Available The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 ± 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trained-immobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase. Data were analyzed statistically by the mixed effects linear model (P < 0.05. Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001. In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001. In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009. We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation.

  17. Dietary L-Lysine Suppresses Autophagic Proteolysis and Stimulates Akt/mTOR Signaling in the Skeletal Muscle of Rats Fed a Low-Protein Diet.

    Science.gov (United States)

    Sato, Tomonori; Ito, Yoshiaki; Nagasawa, Takashi

    2015-09-23

    Amino acids, especially L-leucine, regulate protein turnover in skeletal muscle and have attracted attention as a means of increasing muscle mass in people suffering from malnutrition, aging (sarcopenia), or a bedridden state. We previously showed that oral administration of L-lysine (Lys) by gavage suppressed proteolysis in skeletal muscles of fasted rats. However, the intake of Lys in the absence of other dietary components is unlikely in a non-experimental setting, and other dietary components may interfere with the suppressive effect of Lys on proteolysis. We supplemented Lys to a 10% casein diet and investigated the effect of Lys on proteolysis and autophagy, a major proteolytic system, in the skeletal muscle of rats. The rate of proteolysis was evaluated from 3-methylhisitidine (MeHis) released from isolated muscles, in plasma, and excreted in urine. Supplementing lysine with the 10% casein diet decreased the rate of proteolysis induced by intake of a low-protein diet. The upregulated autophagy activity [light chain 3 (LC3)-II/total LC3] caused by a low-protein diet was reduced, and the Akt/mTOR signaling pathway was activated by Lys. Importantly, continuous feeding of a Lys-rich 10% casein diet for 15 days increased the masses of the soleus and gastrocnemius muscles. Taken together, supplementation of Lys to a low-protein diet suppresses autophagic proteolysis through the Akt/mTOR signaling pathway, and continuous feeding of a Lys-rich diet may increase skeletal muscle mass.

  18. Skeletal muscle response to spaceflight, whole body suspension, and recovery in rats

    Science.gov (United States)

    Musacchia, X. J.; Steffen, J. M.; Fell, R. D.; Dombrowski, M. J.

    1990-01-01

    The effects of a 7-day spaceflight (SF), 7- and 14-day-long whole body suspension (WBS), and 7-day-long recovery on the muscle weight and the morphology of the soleus and the extensor digitorum longus (EDL) of rats were investigated. It was found that the effect of 7-day-long SF and WBS were highly comparable for both the soleus and the EDL, although the soleus muscle from SF rats showed greater cross-sectional area reduction than that from WBS rats. With a longer duration of WBS, there was a continued reduction in cross-sectional fast-twitch fiber area. Muscle plasticity, in terms of fiber and capillary responses, showed differences in responses of the two types of muscles, indicating that antigravity posture muscles are highly susceptible to unloading.

  19. Skeletal growth and long-term bone turnover after enterocystoplasty in a chronic rat model

    DEFF Research Database (Denmark)

    Gerharz, E.W.; Gasser, J.A.; Mosekilde, Li.

    2003-01-01

    mass ex vivo.RESULTS: Most (90%) of the rats survived the study period (8 months); six rats died from bowel obstruction at the level of the entero-anastomosis and four had to be killed because of persistent severe diarrhoea. Vital intestinal mucosa was found in all augmented bladders. There were...... no differences in bone length and volume. Loss of bone mass was almost exclusively in rats with ileocystoplasty and resection of the ileocaecal segment (-37.5%, pQCT, P ... to significant loss of bone mass when combined with resection of the ileocaecal segment. Rarefaction of the trabecular network is confined to the metabolically highly active cancellous compartment, most likely as a consequence of intestinal malabsorption....

  20. Ginsenoside Rb1 improves postoperative fatigue syndrome by reducing skeletal muscle oxidative stress through activation of the PI3K/Akt/Nrf2 pathway in aged rats.

    Science.gov (United States)

    Zhuang, Cheng-Le; Mao, Xiang-Yu; Liu, Shu; Chen, Wei-Zhe; Huang, Dong-Dong; Zhang, Chang-Jing; Chen, Bi-Cheng; Shen, Xian; Yu, Zhen

    2014-10-05

    Ginsenoside Rb1 is reported to possess anti-fatigue activity, but the mechanisms remain unknown. The aim of this study was to investigate the molecular mechanisms responsible for the anti-fatigue effect of ginsenoside Rb1 on postoperative fatigue syndrome induced by major small intestinal resection (MSIR) in aged rat. Aged rats with MSIR were administrated with ginsenoside Rb1 (15 mg/kg) once a day from 3 days before surgery to the day of sacrifice, or with saline as corresponding controls. Rats without MSIR but going through the same surgery procedure were administrated with saline as blank controls. Anti-fatigue effect was assessed by an open field test; superoxide dismutase, reactive oxygen species and malondialdehyde in skeletal muscle were determined. The mRNA levels of Akt2 and Nrf2 in skeletal muscle were measured by real-time quantitative PCR. The activation of Akt and Nrf2 was examined by western blot and immunohistofluorescence. Our results revealed that ginsenoside Rb1 significantly increased the journey and the rearing frequency, decreased the time of rest in aged rats with MSIR. In addition, ginsenoside Rb1 significantly reduced reactive oxygen species and malondialdehyde release and increased the superoxide dismutase activity of skeletal muscle in aged rats with MSIR. Ginsenoside Rb1 also increased the expression of Akt2 and Nrf2 mRNA, up-regulated Akt phosphorylation and Nrf2 nuclear translocation. These findings indicate that ginsenoside Rb1 has an anti-fatigue effect on postoperative fatigue syndrome in aged rat, and the mechanism possibly involves activation of the PI3K/Akt pathway with subsequent Nrf2 nuclear translocation and induction of antioxidant enzymes. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Overexpression of mitofusin 2 improves translocation of glucose transporter 4 in skeletal muscle of high‑fat diet‑fed rats through AMP‑activated protein kinase signaling.

    Science.gov (United States)

    Kong, Dexian; Song, Guangyao; Wang, Chao; Ma, Huijuan; Ren, Luping; Nie, Qian; Zhang, Xuemei; Gan, Kexin

    2013-07-01

    Mitofusin 2 (Mfn2) is a mitochondrial membrane protein that plays a role in mitochondrial fusion and metabolism in mammalian cells. Previous studies have reported a positive correlation between Mfn2 expression and insulin sensitivity in non‑diabetic and type 2 diabetic subjects. Thus, the aim of the present study was to investigate whether Mfn2 overexpression improves insulin sensitivity of high‑fat diet (HFD) rats and the possible underlying mechanisms. Male SD rats were randomly divided into four groups: negative control; HFD; HFD plus adenoviral vectors; and HFD plus adenoviral vectors encoding Mfn2. Following an 11‑week treatment protocol, the euglycemic‑hyperinsulinemic clamp technique was applied to evaluate insulin sensitivity in rats. The skeletal muscles from rats in each group were analyzed by real‑time PCR and western blot analysis to determine glucose transporter 4 (GLUT4) expression, translocation and relative translocation signaling. Consistent with Mfn2 repression and glucose intolerance, HFD downregulates GLUT4 expression at the mRNA and protein levels, while Mfn2 overexpression activates AMP‑activated protein kinase (AMPK), increases GLUT4 expression and translocation and improves insulin resistance in the skeletal muscles of HFD rats. Results of the present study indicate that Mfn2 overexpression improves insulin sensitivity and may regulate GLUT4 translocation in an AMPK‑dependent manner in the skeletal muscles of HFD rats. This study is likely to provide insight into the unique role of Mfn2 in promoting glucose uptake, leading to modulation of GLUT4 translocation signaling and maintenance of glucose homeostasis in vivo.

  2. Role of Non-receptor Protein Tyrosine Kinases During Phospholipase C-γ1 Related Uterine Contractions in the Rat

    Science.gov (United States)

    Phillippe, Mark; Sweet, Leigh M.; Bradley, Diana F.; Engle, Daniel

    2011-01-01

    Activated phospholipase Cγ1 (PLC-γ1), produced in response to tyrosine phosphorylation, appears to play an important role during uterine contractions. These studies sought to determine which non-receptor protein tyrosine kinases (PTKs) are involved in the tyrosine phosphorylation and activation of PLC-γ1 in uterine tissue from the rat. In vitro uterine contraction studies were performed utilizing isoform specific PTK inhibitors. Western blots were performed utilizing antibodies to phosphotyrosine-PLC-γ1, total PLC-γ1, c-Src kinase and Lck kinase. Spontaneous, stretch-stimulated, and bpV(phen) (a tyrosine phosphatase inhibitor) enhanced uterine contractions were significantly suppressed in response to Damnacanthal (a Lck kinase inhibitor) and PP1 (a c-Src kinase inhibitor); whereas, several other PTK isoform inhibitors had no significant effect. Damnacanthal and PP1 also significantly suppressed bpV(phen)-enhanced tyrosine phosphorylation of PLC-γ1 compared to other PTK isoform inhibitors. Western blots confirmed expression of the Lck and c-Src kinases in uterine tissue. In conclusion, the Lck and c-Src kinases appear to play an important role in regulating tyrosine phosphorylation of PLC-γ1 and contractile activity in the rat uterus. PMID:19208792

  3. Role of nonreceptor protein tyrosine kinases during phospholipase C-gamma 1-related uterine contractions in the rat.

    Science.gov (United States)

    Phillippe, Mark; Sweet, Leigh M; Bradley, Diana F; Engle, Daniel

    2009-03-01

    Activated phospholipase C1, produced in response to tyrosine phosphorylation, appears to play an important role during uterine contractions. These studies sought to determine which non-receptor protein tyrosine kinases are involved in the activation of phospholipase C1 in rat uterine tissue. In vitro contraction studies were performed utilizing isoform specific protein tyrosine kinase inhibitors. Western blots were performed utilizing antibodies to phosphotyrosine-phospholipase C1, total phospholipase C1, c-Src kinase and Lck kinase. Spontaneous, stretch-stimulated, and bpV(phen) (tyrosine phosphatase inhibitor) enhanced uterine contractions were significantly suppressed in response to Damnacanthal (Lck kinase inhibitor) and PP1 (c-Src kinase inhibitor). Damnacanthal and PP1 also significantly suppressed bpV(phen)-enhanced tyrosine phosphorylation of phospholipase C1. Western blots confirmed expression of Lck kinase and c-Src kinase in uterine tissue. In conclusion, the Lck and c-Src kinases appear to play an important role in regulating tyrosine phosphorylation of phospholipase C1 and contractile activity in the rat uterus.

  4. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia.

    Science.gov (United States)

    Conte, Elena; Camerino, Giulia Maria; Mele, Antonietta; De Bellis, Michela; Pierno, Sabata; Rana, Francesco; Fonzino, Adriano; Caloiero, Roberta; Rizzi, Laura; Bresciani, Elena; Ben Haj Salah, Khoubaib; Fehrentz, Jean-Alain; Martinez, Jean; Giustino, Arcangela; Mariggiò, Maria Addolorata; Coluccia, Mauro; Tricarico, Domenico; Lograno, Marcello Diego; De Luca, Annamaria; Torsello, Antonio; Conte, Diana; Liantonio, Antonella

    2017-06-01

    Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose-limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium-dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS-R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast-twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin-induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. Cisplatin-treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up-regulation of atrogin1/Murf-1 genes and a down-regulation of Pgc1-a gene, all indexes of muscle atrophy, and by a two-fold increase in resting intracellular calcium, [Ca2+ ]i , compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store-operated calcium entry were ~50% significantly reduced in cisplatin-treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo (excitability and resting macroscopic conductance) and in vivo

  5. Morphometric analysis of muscle fibre types in rat locomotor and postural skeletal muscles in different stages of chronic kidney disease.

    Science.gov (United States)

    Flisinski, M; Brymora, A; Elminowska-Wenda, G; Bogucka, J; Walasik, K; Stefanska, A; Strozecki, P; Manitius, J

    2014-08-01

    Muscle weakness and progressive loss of skeletal muscle mass are serious complications of chronic kidney disease (CKD). The pathogenesis of this condition is still poorly understood. The study investigated fibre type distribution and diameter in functionally different skeletal muscles: locomotor, gastrocnemius muscle (MG) and postural, longissimus thoracis muscle (ML) together with an evaluation of metabolic disturbances and nutritional parameters of rats with different stages of CKD. Wistar rats were randomized to a sham operation - CON, uninephrectomy - CKD1/2 or subtotal nephrectomy - CKD5/6. After 4 weeks, serum concentration haemoglobin (Hb), haptoglobin (Hp), MCP-1, advanced glycation end products (AGEs), and homocysteine (Hcy) were measured. Muscle specimens were stained for myofibrillary ATPase and NADH-diaphoreses activity according to Ziegan's method. There was a significant increase in the percentage of IID/X with a concomitant decrease of IIB fibres in ML in CKD1/2 vs. CON and CKD5/6. IIB fibre diameters in ML were smaller (53.4±7.3 vs. 58.1±8.1 and 59.8±11.2; p=0.08) for CKD5/6 vs. CKD1/2 and CON, respectively. There were significant differences for CKD5/6 and CKD1/2 vs. CON in: Hb (11.4±3.1; 13.7±0.7 and 14.1±1 g/dl), Hp (1.6±0.6; 1.6±0.6 and 0.7±0.4 mg/ml), AGEs (5.1±0.6; 4.3±1.2 and 4.6±0.9 AU), Hcy (7.2±1.2; 5.1±0.5 and 4.9±0.5 M), MCP-1 (609±255; 489±265 and 292±113 pg/ml), respectively. We concluded that early stages of CKD could induce the process of compensatory fast to slow fibre transformation, while in more advanced CKD this process may be blocked and atrophy of fast-twitch fibres may occur, predominantly in non-locomotor muscles. These disturbances can be secondary to CKD-related metabolic burden and inflammation.

  6. Transcriptional profiling of rat skeletal muscle hypertrophy under restriction of blood flow.

    Science.gov (United States)

    Xu, Shouyu; Liu, Xueyun; Chen, Zhenhuang; Li, Gaoquan; Chen, Qin; Zhou, Guoqing; Ma, Ruijie; Yao, Xinmiao; Huang, Xiao

    2016-12-15

    Blood flow restriction (BFR) under low-intensity resistance training (LIRT) can produce similar effects upon muscles to that of high-intensity resistance training (HIRT) while overcoming many of the restrictions to HIRT that occurs in a clinical setting. However, the potential molecular mechanisms of BFR induced muscle hypertrophy remain largely unknown. Here, using a BFR rat model, we aim to better elucidate the mechanisms regulating muscle hypertrophy as induced by BFR and reveal possible clinical therapeutic targets for atrophy cases. We performed genome wide screening with microarray analysis to identify unique differentially expressed genes during rat muscle hypertrophy. We then successfully separated the differentially expressed genes from BRF treated soleus samples by comparing the Affymetrix rat Genome U34 2.0 array with the control. Using qRT-PCR and immunohistochemistry (IHC) we also analyzed other related differentially expressed genes. Results suggested that muscle hypertrophy induced by BFR is essentially regulated by the rate of protein turnover. Specifically, PI3K/AKT and MAPK pathways act as positive regulators in controlling protein synthesis where ubiquitin-proteasome acts as a negative regulator. This represents the first general genome wide level investigation of the gene expression profile in the rat soleus after BFR treatment. This may aid our understanding of the molecular mechanisms regulating and controlling muscle hypertrophy and provide support to the BFR strategies aiming to prevent muscle atrophy in a clinical setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Cloning and tissue distribution of rat hear fatty acid binding protein mRNA: identical forms in heart and skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Claffey, K.P.; Herrera, V.L.; Brecher, P.; Ruiz-Opazo, N.

    1987-12-01

    A fatty acid binding protein (FABP) as been identified and characterized in rat heart, but the function and regulation of this protein are unclear. In this study the cDNA for rat heart FABP was cloned from a lambda gt11 library. Sequencing of the cDNA showed an open reading frame coding for a protein with 133 amino acids and a calculated size of 14,776 daltons. Several differences were found between the sequence determined from the cDNA and that reported previously by protein sequencing techniques. Northern blot analysis using rat heart FABP cDNA as a probe established the presence of an abundant mRNA in rat heart about 0.85 kilobases in length. This mRNA was detected, but was not abundant, in fetal heart tissue. Tissue distribution studies showed a similar mRNA species in red, but not white, skeletal muscle. In general, the mRNA tissue distribution was similar to that of the protein detected by Western immunoblot analysis, suggesting that heart FABP expression may be regulated at the transcriptional level. S1 nuclease mapping studies confirmed that the mRNA hybridized to rat heart FABP cDNA was identical in heart and red skeletal muscle throughout the entire open reading frame. The structural differences between heart FABP and other members of this multigene family may be related to the functional requirements of oxidative muscle for fatty acids as a fuel source.

  8. Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle

    DEFF Research Database (Denmark)

    Galuska, Dana; Kotova, Olga; Barres, Romain

    2009-01-01

    . Skeletal muscle insulin resistance was observed after 12 wk of HFD. Na(+)-K(+)-ATPase alpha(1)-subunit protein expression was increased 1.6-fold (P alpha(2)- and beta(1)-subunits and protein expression were decreased twofold (P ...(+)-K(+)-ATPase activity after 4 wk of HFD. Exercise training restored alpha(1)-, alpha(2)-, and beta(1)-subunit expression and Na(+)-K(+)-ATPase activity to control levels and reduced beta(2)-subunit expression 2.2-fold (P alpha(1)-subunit-regulating transcription factor ZEB (AREB6......) and alpha(1) mRNA expression were increased after HFD and restored by ET. DNA binding activity of Sp-1, a transcription factor involved in the regulation of alpha(2)- and beta(1)-subunit expression, was decreased after HFD. ET increased phosphorylation of the Na(+)-K(+)-ATPase regulatory protein...

  9. Effect of interleukin-6 (IL-6) on the vascular smooth muscle contraction in abdominal aorta of rats with streptozotocin-induced diabetes.

    Science.gov (United States)

    Tang, Wen-Bo; Zhou, Yu-Qin; Zhao, Ting; Shan, Jing-Li; Sun, Peng; Yang, Ting-Ting; Chang, Xin-Wen; Li, Sen; Wang, Paulus S; Xie, Dong-Ping

    2011-10-31

    Patients with type 1 diabetes are at a risk of hypertension. However, the mechanisms behind the findings are not completely known. The aim of the present study was to investigate involvement of interleukin-6 (IL-6) on the contraction of abdominal aorta in rats with type 1 diabetes. IL-6 levels in the plasma of rats with streptozotocin (STZ)-induced diabetes were determined by ELISA. The abdominal aorta was dissected free of fat and connective tissues and then cut into spiral rings. The endothelium-denuded strip was vertically suspended in tissue chambers containing 5 ml Krebs solution at 37 degrees C and bubbled continuously with 95% O2-5% CO2. The effects of phenylephrine (Phe) on the contractile responses of abdominal aorta were recorded. The effects of IL-6 and anti-rat IL-6 antibody on the Phe-induced response were also examined. Plasma levels of IL-6 increased time-dependently in rats with STZ-induced diabetes. Phe caused concentration-dependent contraction in aortic rings. Phe-induced contractions were higher in vascular strips of STZ-induced diabetic rats than that of control rats. Pretreatment of vascular strips with IL-6 for 1 h did not cause contraction but enhanced the contraction in response to Phe. Treatment of the vascular strips with an anti-IL-6 antibody for 1 h decreased the Phe-induced contractions. These results suggest that IL-6 causes vascular smooth muscle contraction in abdominal aorta of rats with type 1 diabetes.

  10. Protective role of acidic pH-activated chloride channel in severe acidosis-induced contraction from the aorta of spontaneously hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Zhiyong Ma

    Full Text Available Severe acidic pH-activated chloride channel (ICl,acid has been found in various mammalian cells. In the present study, we investigate whether this channel participates in reactions of the thoracic aorta to severe acidosis and whether it plays a role in hypertension. We measured isometric contraction in thoracic aorta rings from spontaneously hypertensive rats (SHRs and normotensive Wistar rats. Severe acidosis induced contractions of both endothelium-intact and -denuded thoracic aorta rings. In Wistar rats, contractions did not differ at pH 6.4, 5.4 and 4.4. However, in SHRs, contractions were higher at pH 5.4 or 4.4 than pH 6.4, with no difference between contractions at pH 5.4 and 4.4. Nifedipine, ICl,acid blockers 5-nitro-2-(3-phenylpropylamino benzoic acid (NPPB and 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS inhibited severe acidosis-induced contraction of aortas at different pH levels. When blocking ICl,acid, the remnant contraction was greater at pH 4.4 than pH 5.4 and 6.4 for both SHRs and Wistar rats. With nifedipine, the remnant contraction was greatly reduced at pH 4.4 as compared with at pH 6.4 and 5.4. With NPPB or DIDS, the ratio of remnant contractions at pH 4.4 and 5.4 (R4.4/5.4 was lower for SHRs than Wistar rats (all 1. Furthermore, patch clamp recordings of ICl,acid and intracellular Ca(2+ measurements in smooth muscle cells confirmed these findings. ICl,acid may protect arteries against excess vasoconstriction under extremely acidic extracellular conditions. This protective effect may be decreased in hypertension.

  11. The effects of wild ginger (Costus speciosus (Koen) Smith) rhizome extract and diosgenin on rat uterine contractions.

    Science.gov (United States)

    Lijuan, Wanwisa; Kupittayanant, Pakanit; Chudapongse, Nuannoi; Wray, Susan; Kupittayanant, Sajeera

    2011-06-01

    The aim of this study was to investigate the effects of wild ginger (Costus speciosus (Koen) Smith, Costaceae) rhizome extract on uterine contractility. We particularly examined the effects on spontaneous phasic contractions and the mechanisms whereby it exerts its effects. Wild ginger rhizomes were ethanolic extracted and their constituents analyzed. Isometric force was measured in strips of longitudinal myometrium and the effects of the extract studied. The extract (10 mg/100 mL) increased spontaneous contractions. The amplitude and frequency of the phasic contraction were significantly increased along with basal tension. Force produced in the presence of the extract was abolished by inhibition of l-type calcium channels or myosin light chain kinase (MLCK). The actions of the extract were not blocked by the estrogen receptor blocker, fulvestrant. Although significant amounts of diosgenin were present in the extract, we found that, depending upon its concentration, diosgenin had either no effect or was inhibitory on force. Interestingly, the extract induced significant amounts of force in the absence of extracellular calcium, which could be blocked by inhibition of the sarcoplasmic reticulum calcium-ATPase (SERCA), but not fulvestrant. We conclude that wild ginger rhizome extract stimulates phasic activity in rat uterus. Our data suggest that the uterotonic effect is due to nonestrogenic effects and not those of diosgenin. Wild ginger was able to increase contraction via calcium entry on l-type calcium channels and sarcoplasmic reticulum (SR) calcium release. We suggest that wild ginger rhizome extract may be a useful uterine stimulant.

  12. Glucose infusion causes insulin resistance in skeletal muscle of rats without changes in Akt and AS160 phosphorylation.

    Science.gov (United States)

    Hoy, Andrew J; Bruce, Clinton R; Cederberg, Anna; Turner, Nigel; James, David E; Cooney, Gregory J; Kraegen, Edward W

    2007-11-01

    Hyperglycemia is a defining feature of Type 1 and 2 diabetes. Hyperglycemia also causes insulin resistance, and our group (Kraegen EW, Saha AK, Preston E, Wilks D, Hoy AJ, Cooney GJ, Ruderman NB. Am J Physiol Endocrinol Metab Endocrinol Metab 290: E471-E479, 2006) has recently demonstrated that hyperglycemia generated by glucose infusion results in insulin resistance after 5 h but not after 3 h. The aim of this study was to investigate possible mechanism(s) by which glucose infusion causes insulin resistance in skeletal muscle and in particular to examine whether this was associated with changes in insulin signaling. Hyperglycemia (~10 mM) was produced in cannulated male Wistar rats for up to 5 h. The glucose infusion rate required to maintain this hyperglycemia progressively lessened over 5 h (by 25%, P < 0.0001 at 5 h) without any alteration in plasma insulin levels consistent with the development of insulin resistance. Muscle glucose uptake in vivo (44%; P < 0.05) and glycogen synthesis rate (52%; P < 0.001) were reduced after 5 h compared with after 3 h of infusion. Despite these changes, there was no decrease in the phosphorylation state of multiple insulin signaling intermediates [insulin receptor, Akt, AS160 (Akt substrate of 160 kDa), glycogen synthase kinase-3beta] over the same time course. In isolated soleus strips taken from control or 1- or 5-h glucose-infused animals, insulin-stimulated 2-deoxyglucose transport was similar, but glycogen synthesis was significantly reduced in the 5-h muscle sample (68% vs. 1-h sample; P < 0.001). These results suggest that the reduced muscle glucose uptake in rats after 5 h of acute hyperglycemia is due more to the metabolic effects of excess glycogen storage than to a defect in insulin signaling or glucose transport.

  13. Immediate and delayed transplantation of mesenchymal stem cells improve muscle force after skeletal muscle injury in rats.

    Science.gov (United States)

    Winkler, Tobias; von Roth, Philipp; Radojewski, Piotr; Urbanski, Alexander; Hahn, Sebastian; Preininger, Bernd; Duda, Georg N; Perka, Carsten

    2012-12-01

    Mesenchymal stem cell (MSC) therapy is a promising approach for regaining muscle function after trauma. Prior to clinical application, the ideal time of transplantation has to be determined. We investigated the effects of immediate and delayed transplantation. Sprague-Dawley rats received a crush trauma to the left soleus muscle. Treatment groups were transplanted locally with 2 × 10(6) autologous MSCs, either immediately or 7 days after trauma. Saline was used as sham therapy. Contraction force tests and histological analyses were performed 4 weeks after injury. GFP-labelled MSCs were followed after transplantation. The traumatized soleus muscles of the sham group displayed a reduction of twitch forces to 36 ± 17% and of tetanic forces to 29 ± 11% of the non-injured right control side, respectively. Delayed MSC transplantation resulted in a significant improvement of contraction maxima in both stimulation modes (twitch, p = 0.011; tetany, p = 0.014). Immediate transplantation showed a significant increase in twitch forces to 59 ± 17% (p = 0.043). There was no significant difference in contraction forces between muscles treated by immediate and delayed cell transplantation. We were able to identify MSCs in the interstitium of the injured muscles up to 4 weeks after transplantation. Despite the fundamental differences of the local environment, which MSCs encounter after transplantation, similar results could be obtained with respect to functional muscle regeneration. We believe that transplanted MSCs residing in the interstitial compartment evolve their regenerative capabilities through paracrine pathways. Our data suggest a large time window of the therapeutical measures. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Skeletal muscle mitochondrial and metabolic responses to a high-fat diet in female rats bred for high and low aerobic capacity.

    Science.gov (United States)

    Naples, Scott P; Borengasser, Sarah J; Rector, R Scott; Uptergrove, Grace M; Morris, E Matthew; Mikus, Catherine R; Koch, Lauren G; Britton, Steve L; Ibdah, Jamal A; Thyfault, John P

    2010-04-01

    Rats selected artificially to be low-capacity runners (LCR) possess a metabolic syndrome phenotype that is worsened by a high-fat diet (HFD), whereas rats selected to be high-capacity runners (HCR) are protected against HFD-induced obesity and insulin resistance. This study examined whether protection against, or susceptibility to, HFD-induced insulin resistance in the HCR-LCR strains is associated with contrasting metabolic adaptations in skeletal muscle. HCR and LCR rats (generation 20; n = 5-6; maximum running distance approximately 1800 m vs. approximately 350 m, respectively (p < 0.0001)) were divided into HFD (71.6% energy from fat) or normal chow (NC) (16.7% energy from fat) groups for 7 weeks (from 24 to 31 weeks of age). Skeletal muscle (red gastrocnemius) mitochondrial-fatty acid oxidation (FAO), mitochondrial-enzyme activity, mitochondrial-morphology, peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha), and peroxisome proliferator-activated receptor delta (PPARdelta) expression and insulin sensitivity (intraperitoneal glucose tolerance tests) were measured. The HFD caused increased adiposity and reduced insulin sensitivity only in the LCR and not the HCR strain. Isolated mitochondria from the HCR skeletal muscle displayed a 2-fold-higher rate of FAO on NC, but both groups increased FAO following HFD. PGC-1alpha mRNA expression and superoxide dismutase activity were significantly reduced with the HFD in the LCR rats, but not in the HCR rats. PPARdelta expression did not differ between strains or dietary conditions. These results do not provide a clear connection between protection of insulin sensitivity and HFD-induced adaptive changes in mitochondrial function or transcriptional responses but do not dismiss the possibility that elevated mitochondrial FAO in the HCR may play a protective role.

  15. Effects of skeletal unloading on the vasomotor properties of the rat femur principal nutrient artery.

    Science.gov (United States)

    Prisby, Rhonda D; Behnke, Bradley J; Allen, Matthew R; Delp, Michael D

    2015-04-15

    Spaceflight and prolonged bed rest induce deconditioning of the cardiovascular system and bone loss. Previous research has shown declines in femoral bone and marrow perfusion during unloading and with subsequent reloading in hindlimb-unloaded (HU) rats, an animal model of chronic disuse. We hypothesized that the attenuated bone and marrow perfusion may result from altered vasomotor properties of the bone resistance vasculature. Therefore, the purpose of this study was to determine the effects of unloading on the vasoconstrictor and vasodilator properties of the femoral principal nutrient artery (PNA), the main conduit for blood flow to the femur, in 2 wk HU and control (CON) rats. Vasoconstriction of the femoral PNA was assessed in vitro using norepinephrine, phenylephrine, clonidine, KCl, endothelin-1, arginine vasopressin, and myogenic responsiveness. Vasodilation through endothelium-dependent [acetylcholine, bradykinin, and flow-mediated dilation (FMD)] and endothelium-independent mechanisms [sodium nitroprusside (SNP) and adenosine] were also determined. Vasoconstrictor responsiveness of the PNA from HU rats was not enhanced through any of the mechanisms tested. Endothelium-dependent vasodilation to acetylcholine (CON, 86 ± 3%; HU, 48 ± 7% vasodilation) and FMD (CON, 61 ± 9%; HU, 11 ± 11% vasodilation) were attenuated in PNAs from HU rats, while responses to bradykinin were not different between groups. Endothelium-independent vasodilation to SNP and adenosine were not different between groups. These data indicate that unloading-induced decrements in bone and marrow perfusion and increases in vascular resistance are not the result of enhanced vasoconstrictor responsiveness of the bone resistance arteries but are associated with reductions in endothelium-dependent vasodilation. Copyright © 2015 the American Physiological Society.

  16. The Effects of Quercetin and Retinoic acid on Skeletal System of Rat Embryos in Prenatal Period

    OpenAIRE

    Nahid Gohari-Behbahani; Mahmood Khaksary-Mahabady; Reza Ranjbar; Hossein Najafzadeh-Varzi; Babak Mohammadian3. Department of Pathology, Faculty of Veterinary Medicine, Shahid Cha

    2014-01-01

    Background: Prenatal rat embryo exposure to retinoid induces some malformations in various organs, the most active and teratogenic metablolite is all-trans-retinoic acid (atRA). The teratogenic effects of some drugs can be prevented by the application of antioxidant drugs and stimulation of the maternal immune system. Also, quercetin, a naturally occurring flavonoid has excellent antioxidant properties. Therefore, in this study, the prophylactic effect of quercetin on teratogenic effects of a...

  17. Would Interstitial Fluid Flow be Responsible for Skeletal Maintenance in Tail-Suspended Rats?

    Science.gov (United States)

    Li, Wen-Ting; Huang, Yun-Fei; Sun, Lian-Wen; Luan, Hui-Qin; Zhu, Bao-Zhang; Fan, Yu-Bo

    2017-02-01

    Despite the fast development of manned space flight, the mechanism and countermeasures of weightlessness osteoporosis in astronauts are still within research. It is accepted that unloading has been considered as primary factor, but the precise mechanism is still unclear. Since bone's interstitial fluid flow (IFF) is believed to be significant to nutrient supply and waste metabolism of bone tissue, it may influence bone quality as well. We investigated IFF's variation in different parts of body (included parietal bone, ulna, lumbar, tibia and tailbone) of rats using a tail-suspended (TS) system. Ten female Sprague-Dawley (SD) rats were divided into two groups: control (CON) and tail-suspension (TS) group. And after 21 days' experiment, the rats were injected reactive red to observe lacuna's condition under a confocal laser scanning microscope. The variations of IFF were analyzed by the number and area of lacuna. Volumetric bone mineral density (vBMD) and microarchitecture of bones were evaluated by micro-CT. The correlation coefficients between lacuna's number/area and vBMD were also analyzed. According to our experimental results, a 21 days' tail-suspension could cause a decrease of IFF in lumbar, tibia and tailbone and an increase of IFF in ulna. But in parietal bone, it showed no significant change. The vBMD and microarchitecture parameters also decreased in lumbar and tibia and increased in ulna. But in parietal bone and tailbone, it showed no significant change. And correlation analysis showed significant correlation between vBMD and lacuna's number in lumbar, tibia and ulna. Therefore, IFF decrease may be partly contribute to bone loss in tail-suspended rats, and it should be further investigated.

  18. Altered myosin isoform expression in rat skeletal muscles induced by a changed thyroid state.

    Science.gov (United States)

    Wahrmann, J P; Fulla, Y; Rieu, M; Kahn, A; Dinh-Xuan, A T

    2002-11-01

    The aim of our study was to find out, which are the thyroid linked mechanisms responsible for the changes in myosin isoform composition which accompany endurance training (ET) in rodents. We studied the interaction between ET and altered sedentary group with no thyroid treatment or Se group. Six groups of rats were compared: (1) a trained group with no thyroid treatment or T group; (2) a thyroid state in rats; (3) a sedentary group rendered hypothyroid with 6-n-propyl thio uracil (H); (4) a sedentary group rendered hyperthyroid with T3 (150 microg kg(-1) every other day for 4 weeks) (St); (5) trained rats rendered hyperthyroid with T3 (150 microg kg(-1) every other day for 4 weeks) (Tt) and (6) a trained group kept euthyroid with T3 (150 ng kg(-1) every other day for 4 weeks) (Te). In each group myosin isoform composition was determined in five muscles, three locomotor muscles: (1) extensor digitorum longus, (2) superficial lateral gastrocnemius, (3) deep medial gastrocnemius, (4) an antigravity muscle, the soleus and (5) a rhytmic respiratory muscle, the crural diaphragm. Different muscles responded in a specific way to variations of the thyroid state and training.

  19. Gene expression profiling in skeletal muscle of Zucker diabetic fatty rats: implications for a role of stearoyl-CoA desaturase 1 in insulin resistance.

    Science.gov (United States)

    Voss, M D; Beha, A; Tennagels, N; Tschank, G; Herling, A W; Quint, M; Gerl, M; Metz-Weidmann, C; Haun, G; Korn, M

    2005-12-01

    Insulin resistance in skeletal muscle is a hallmark of type 2 diabetes. Therefore, we sought to identify and validate genes involved in the development of insulin resistance in skeletal muscle. Differentially regulated genes in skeletal muscle of male obese insulin-resistant, and lean insulin-sensitive Zucker diabetic fatty (ZDF) rats were determined using Affymetrix microarrays. Based on these data, various aspects of glucose disposal, insulin signalling and fatty acid composition were analysed in a muscle cell line overexpressing stearoyl-CoA desaturase 1 (SCD1). Gene expression profiling in insulin-resistant skeletal muscle revealed the most pronounced changes in gene expression for genes involved in lipid metabolism. Among these, Scd1 showed increased expression in insulin-resistant animals, correlating with increased amounts of palmitoleoyl-CoA. This was further investigated in a muscle cell line that overexpressed SCD1 and accumulated lipids, revealing impairments of glucose uptake and of different steps of the insulin signalling cascade. We also observed differential effects of high-glucose and fatty acid treatment on glucose uptake and long-chain fatty acyl-CoA profiles, and in particular an accumulation of palmitoleoyl-CoA in cells overexpressing SCD1. Insulin-resistant skeletal muscle of ZDF rats is characterised by a specific gene expression profile with increased levels of Scd1. An insulin-resistant phenotype similar to that obtained by treatment with palmitate and high glucose can be induced in vitro by overexpression of SCD1 in muscle cells. This supports the hypothesis that elevated SCD1 expression is a possible cause of insulin resistance and type 2 diabetes.

  20. An automated technique for double staining rat and rabbit fetal skeletal specimens to differentiate bone and cartilage.

    Science.gov (United States)

    Trueman, D; Jackson, S W; Trueman, B

    1999-03-01

    Assessment of chemicals for their potential to cause developmental toxicity must include evaluation of the development of the fetal skeleton. The method described here is an improved and fully automated double staining method using alizarin red S to stain bone and alcian blue to stain cartilage. The method was developed on the enclosed Shandon Pathcentre, and the quality of specimens reported here will be reproduced only if carried out on a similar processor under the same environmental conditions. The staining, maceration and clearing process takes approximately 6 days. The personnel time, however, is minimal since solutions are changed automatically and the fetuses are not examined or removed from the processor until the procedure is completed. Upon completion of processing, the bone and cartilage assessment of the specimens can be carried out immediately if required. Full evaluation of skeletal development in both the rat and the rabbit is necessary to meet the requirements of safety assessment studies. This method allows this to be accomplished on a large scale with consistently clear specimens and in a realistic time.

  1. Effects of hyperbaric oxygen at 1.25 atmospheres absolute with normal air on macrophage number and infiltration during rat skeletal muscle regeneration.

    Science.gov (United States)

    Fujita, Naoto; Ono, Miharu; Tomioka, Tomoka; Deie, Masataka

    2014-01-01

    Use of mild hyperbaric oxygen less than 2 atmospheres absolute (2026.54 hPa) with normal air is emerging as a common complementary treatment for severe muscle injury. Although hyperbaric oxygen at over 2 atmospheres absolute with 100% O2 promotes healing of skeletal muscle injury, it is not clear whether mild hyperbaric oxygen is equally effective. The purpose of the present study was to investigate the impact of hyperbaric oxygen at 1.25 atmospheres absolute (1266.59 hPa) with normal air on muscle regeneration. The tibialis anterior muscle of male Wistar rats was injured by injection of bupivacaine hydrochloride, and rats were randomly assigned to a hyperbaric oxygen experimental group or to a non-hyperbaric oxygen control group. Immediately after the injection, rats were exposed to hyperbaric oxygen, and the treatment was continued for 28 days. The cross-sectional area of centrally nucleated muscle fibers was significantly larger in rats exposed to hyperbaric oxygen than in controls 5 and 7 days after injury. The number of CD68- or CD68- and CD206-positive cells was significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. Additionally, tumor necrosis factor-α and interleukin-10 mRNA expression levels were significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. The number of Pax7- and MyoD- or MyoD- and myogenin-positive nuclei per mm2 and the expression levels of these proteins were significantly higher in rats exposed to hyperbaric oxygen than in controls 5 days after injury. These results suggest that mild hyperbaric oxygen promotes skeletal muscle regeneration in the early phase after injury, possibly due to reduced hypoxic conditions leading to accelerated macrophage infiltration and phenotype transition. In conclusion, mild hyperbaric oxygen less than 2 atmospheres absolute with normal air is an appropriate support therapy for severe muscle injuries.

  2. Effects of hyperbaric oxygen at 1.25 atmospheres absolute with normal air on macrophage number and infiltration during rat skeletal muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Naoto Fujita

    Full Text Available Use of mild hyperbaric oxygen less than 2 atmospheres absolute (2026.54 hPa with normal air is emerging as a common complementary treatment for severe muscle injury. Although hyperbaric oxygen at over 2 atmospheres absolute with 100% O2 promotes healing of skeletal muscle injury, it is not clear whether mild hyperbaric oxygen is equally effective. The purpose of the present study was to investigate the impact of hyperbaric oxygen at 1.25 atmospheres absolute (1266.59 hPa with normal air on muscle regeneration. The tibialis anterior muscle of male Wistar rats was injured by injection of bupivacaine hydrochloride, and rats were randomly assigned to a hyperbaric oxygen experimental group or to a non-hyperbaric oxygen control group. Immediately after the injection, rats were exposed to hyperbaric oxygen, and the treatment was continued for 28 days. The cross-sectional area of centrally nucleated muscle fibers was significantly larger in rats exposed to hyperbaric oxygen than in controls 5 and 7 days after injury. The number of CD68- or CD68- and CD206-positive cells was significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. Additionally, tumor necrosis factor-α and interleukin-10 mRNA expression levels were significantly higher in rats exposed to hyperbaric oxygen than in controls 24 h after injury. The number of Pax7- and MyoD- or MyoD- and myogenin-positive nuclei per mm2 and the expression levels of these proteins were significantly higher in rats exposed to hyperbaric oxygen than in controls 5 days after injury. These results suggest that mild hyperbaric oxygen promotes skeletal muscle regeneration in the early phase after injury, possibly due to reduced hypoxic conditions leading to accelerated macrophage infiltration and phenotype transition. In conclusion, mild hyperbaric oxygen less than 2 atmospheres absolute with normal air is an appropriate support therapy for severe muscle injuries.

  3. Mineral and Skeletal Homeostasis Influence the Manner of Bone Loss in Metabolic Osteoporosis due to Calcium-Deprived Diet in Different Sites of Rat Vertebra and Femur

    Directory of Open Access Journals (Sweden)

    Marzia Ferretti

    2015-01-01

    Full Text Available Rats fed calcium-deprived diet develop osteoporosis due to enhanced bone resorption, secondary to parathyroid overactivity resulting from nutritional hypocalcemia. Therefore, rats provide a good experimental animal model for studying bone modelling alterations during biochemical osteoporosis. Three-month-old Sprague-Dawley male rats were divided into 4 groups: (1 baseline, (2 normal diet for 4 weeks, (3 calcium-deprived diet for 4 weeks, and (4 calcium-deprived diet for 4 weeks and concomitant administration of PTH (1-34 40 µg/Kg/day. Histomorphometrical analyses were made on cortical and trabecular bone of lumbar vertebral body as well as of mid-diaphysis and distal metaphysis of femur. In all rats fed calcium-deprived diet, despite the reduction of trabecular number (due to the maintenance of mineral homeostasis, an intense activity of bone deposition occurs on the surface of the few remaining trabeculae (in answering to mechanical stresses and, consequently, to maintain the skeletal homeostasis. Different responses were detected in different sites of cortical bone, depending on their main function in answering mineral or skeletal homeostasis. This study represents the starting point for work-in-progress researches, with the aim of defining in detail timing and manners of evolution and recovery of biochemical osteoporosis.

  4. The Effects of Quercetin and Retinoic acid on Skeletal System of Rat Embryos in Prenatal Period

    Directory of Open Access Journals (Sweden)

    Nahid Gohari-Behbahani

    2014-12-01

    Full Text Available Background: Prenatal rat embryo exposure to retinoid induces some malformations in various organs, the most active and teratogenic metablolite is all-trans-retinoic acid (atRA. The teratogenic effects of some drugs can be prevented by the application of antioxidant drugs and stimulation of the maternal immune system. Also, quercetin, a naturally occurring flavonoid has excellent antioxidant properties. Therefore, in this study, the prophylactic effect of quercetin on teratogenic effects of atRA was evaluated. Materials and Methods: In this experimental study, 40 pregnant rats were divided into 7 groups. Control group received normal saline and test groups received dimethylsulfoxide (DMSO, quercetin (75 mg/kg, quercetin (200 mg/kg, atRA (25 mg/kg, atRA (25 mg/kg plus quercetin (75 mg/kg and atRA (25 mg/kg plus quercetin (200 mg/kg, intraperitoneally at 8-10th days of gestation. Fetuses were collected at 20th day of gestation and after determination of weight and length; they were stained by Alizarin red-Alcian blue method. Results: Cleft palate, exencephaly and spina bifida incidence were 30.76%, 61.53% and 30.76% range in group which received only atRA. Cleft palate, exencephaly and spina bifida incidence were 11.11%, 16.66% and 5.55% in group which received atRA plus quercetin (75 mg/kg. However, cleft palate, exencephaly and spina bifida incidence were 10.52%, 10.52% and 0% in group which received atRA plus quercetin (200 mg/kg. The means of weight and length of fetuses from rat that received atRA plus quercetin (75 mg/kg were significantly greater than those received only atRA. Conclusion: It is concluded that quercetin decreased teratogenicity induced by atRA, but this subject needs more detailed evaluation.

  5. Transcriptomic effects of metformin in skeletal muscle arteries of obese insulin-resistant rats.

    Science.gov (United States)

    Padilla, Jaume; Thorne, Pamela K; Martin, Jeffrey S; Rector, R Scott; Akter, Sadia; Davis, J Wade; Laughlin, M Harold; Jenkins, Nathan T

    2017-03-01

    We examined the effects of metformin, a commonly used antidiabetic drug, on gene expression in multiple arteries. Specifically, transcriptional profiles of feed arteries and second branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles as well as aortic endothelial scrapes were examined from obese insulin-resistant Otsuka Long-Evans Tokushima Fatty rats treated with ( n = 9) or without ( n = 10) metformin from 20 to 32 weeks of age. Metformin-treated rats exhibited a reduction in body weight, adiposity, and HbA1c ( P metformin was found in the red gastrocnemius 2a arterioles (93 genes), followed by the diaphragm 2a arterioles (62 genes), and soleus 2a arterioles (15 genes). We also found that two genes were differentially expressed in aortic endothelial cells (LETMD1 and HMGCS2, both downregulated), one gene in the gastrocnemius feed artery (BLNK, downregulated), and no genes in the soleus and diaphragm feed arteries and white gastrocnemius 2a arterioles. No single gene was altered by metformin across all vessels examined. This study provides evidence that metformin treatment produces distinct gene expression effects throughout the arterial tree in a rat model of obesity and insulin resistance. Genes whose expression was modulated with metformin do not appear to have a clear connection with its known mechanisms of action. These findings support the notion that vascular gene regulation in response to oral pharmacological therapy, such as metformin, is vessel specific. Impact statement This study provides evidence that metformin treatment produces artery-specific gene expression effects. The genes whose expression was modulated with metformin do not appear to have a clear connection with its known mechanisms of action.

  6. Partial Restoration Of Skeletal Strength In Ovariectomized Rats By Treatment With Strontium Salts

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Andersen, Pernille/Høegh; Christgau, Stephan

    AIM Ovariectomy of female rats induces significant bone-loss by depriving endogenous estrogen production. We assessed whether administration of strontium salts had a therapeutic benefit in this animal model of postmenopausal osteoporosis. INTRODUCTION In most women after menopause, the rate of bone...... loss exceeds the rate of bone formation, resulting in a net decrease in bone mass and ultimately in development of osteoporosis and elevated risk of sustaining fragility fracture. Most approved osteoporosis treatments work by decreasing the rate of bone resorption, however, these treatments also...

  7. Macrophage-mediated inflammation and glial response in the skeletal muscle of a rat model of familial amyotrophic lateral sclerosis (ALS).

    Science.gov (United States)

    Van Dyke, Jonathan M; Smit-Oistad, Ivy M; Macrander, Corey; Krakora, Dan; Meyer, Michael G; Suzuki, Masatoshi

    2016-03-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor dysfunction and loss of large motor neurons in the spinal cord and brain stem. While much research has focused on mechanisms of motor neuron cell death in the spinal cord, degenerative processes in skeletal muscle and neuromuscular junctions (NMJs) are also observed early in disease development. Although recent studies support the potential therapeutic benefits of targeting the skeletal muscle in ALS, relatively little is known about inflammation and glial responses in skeletal muscle and near NMJs, or how these responses contribute to motor neuron survival, neuromuscular innervation, or motor dysfunction in ALS. We recently showed that human mesenchymal stem cells modified to release glial cell line-derived neurotrophic factor (hMSC-GDNF) extend survival and protect NMJs and motor neurons in SOD1(G93A) rats when delivered to limb muscles. In this study, we evaluate inflammatory and glial responses near NMJs in the limb muscle collected from a rat model of familial ALS (SOD1(G93A) transgenic rats) during disease progression and following hMSC-GDNF transplantation. Muscle samples were collected from pre-symptomatic, symptomatic, and end-stage animals. A significant increase in the expression of microglial inflammatory markers (CD11b and CD68) occurred in the skeletal muscle of symptomatic and end-stage SOD1(G93A) rats. Inflammation was confirmed by ELISA for inflammatory cytokines interleukin-1 β (IL-1β) and tumor necrosis factor-α (TNF-α) in muscle homogenates of SOD1(G93A) rats. Next, we observed active glial responses in the muscle of SOD1(G93A) rats, specifically near intramuscular axons and NMJs. Interestingly, strong expression of activated glial markers, glial fibrillary acidic protein (GFAP) and nestin, was observed in the areas adjacent to NMJs. Finally, we determined whether ex vivo trophic factor delivery influences inflammation and terminal

  8. Responses of skeletal muscle hypertrophy in Wistar rats to different resistance exercise models.

    Science.gov (United States)

    Luciano, T F; Marques, S O; Pieri, B L; de Souza, D R; Araújo, L V; Nesi, R T; Scheffer, D L; Comin, V H; Pinho, R A; Muller, A P; de Souza, C T

    2017-05-04

    This study aimed to compare the effects of three different resistance exercise models on the quadriceps muscle cross-sectional area, as well as on mTOR phosphorylation and other pivotal molecules involved in the upstream regulation of mTOR. Twenty-four male Wistar rats were divided into untrained (control), endurance resistance training, strength resistance training, and hypertrophy resistance training (HRT) groups (n=6). After 12 weeks of training, the red portion of the quadriceps was removed for histological and Western blot analyses. The results showed that the quadriceps weight and cross-sectional areas in the exercised groups were higher than those of the untrained rats. However, the HRT group presented better results than the other two experimental groups. This same pattern was observed for mTOR phosphorylation and for the most pivotal molecules involved in the upstream control of mTOR (increase of PKB, 14-3-3, ERK, p38 MAPK, and 4E-BP1 phosphorylation, and reduction of tuberin, sestrin 2, REDD1, and phospho AMPK). In summary, our study showed that HRT leads to high levels of mTOR phosphorylation as well as of other proteins involved in the upstream regulation of mTOR.

  9. Effects of thyroid hormones on calcium contents and 45Ca exchange in rat skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Everts, M.E.; Clausen, T.

    1986-09-01

    In 4-wk-old rats, pretreatment with L-triiodothyronine (T3) increased calcium content by 100% and the 30-min /sup 45/Ca uptake by 64% in the soleus, whereas the extensor digitorum longus (EDL) muscle showed no significant change. The stimulation of /sup 45/Ca uptake was resistant to dantrolene and methoxyverapamil (D600) and could not be attributed to altered permeability of the plasma membrane to calcium, but appears to reflect increased net accumulation of calcium in intracellular pools. The stimulating effect of high K0 (20 mM) on /sup 45/Ca uptake was more pronounced in soleus than in EDL and could be suppressed by dantrolene and D600. The results indicate that the effects of T3 on calcium content and /sup 45/Ca exchange are primarily exerted on muscles containing a large proportion of slow-twitch, oxidative fibers. In soleus muscle from hyperthyroid rats the stimulating effects of high K0 on /sup 45/Ca uptake and lactate production were, respectively, 3.4 and 4.5 times larger than in those obtained from controls. These observations further support the earlier proposed idea (C. van Hardeveld and T. Clausen. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E421-E430, 1984) that the metabolic effects of thyroid hormone depend on the availability of cellular as well as extracellular calcium.

  10. Changes in the cholinergic system of rat sciatic nerve and skeletal muscle following suspension induced disuse

    Science.gov (United States)

    Gupta, R. C.; Misulis, K. E.; Dettbarn, W. D.

    1984-01-01

    Muscle disused induced changes in the cholinergic system of sciatic nerve, slow twitch soleus (SOL) and fast twitch extensor digitorum longus (EDL) muscle were studied in rats. Rats with hindlimbs suspended for 2 to 3 weeks showed marked elevation in the activity of choline acetyltransferase (ChAT) in sciatic nerve (38%), in SOL (108%) and in EDL (67%). Acetylcholinesterase (AChE) activity in SOL increased by 163% without changing the molecular forms pattern of 4S, 10S, 12S, and 16S. No significant changes in activity and molecular forms pattern of AChE were seen in EDL or in AChE activity of sciatic nerve. Nicotinic receptor binding of 3H-acetylcholine was increased in both muscles. When measured after 3 weeks of hindlimb suspension the normal distribution of type 1 fibers in SOL was reduced and a corresponding increase in type IIa and IIb fibers is seen. In EDL no significant change in fiber proportion is observed. Muscle activity, such as loadbearing, appears to have a greater controlling influence on the characteristics of the slow twitch SOL muscle than upon the fast twitch EDL muscle.

  11. Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria

    Science.gov (United States)

    Perevoshchikova, Irina V.; Quinlan, Casey L.; Orr, Adam L.; Gerencser, Akos A.; Brand, Martin D.

    2013-01-01

    H2O2 production by skeletal muscle mitochondria oxidizing palmitoylcarnitine was examined under two conditions: the absence of respiratory chain inhibitors and the presence of myxothiazol to inhibit complex III. Without inhibitors, respiration and H2O2 production were low unless carnitine or malate was added to limit acetyl-CoA accumulation. With palmitoylcarnitine alone, H2O2 production was dominated by complex II (44% from site IIF in the forward reaction); the remainder was mostly from complex I (34%, superoxide from site IF). With added carnitine, H2O2 production was about equally shared between complexes I, II, and III. With added malate, it was 75% from complex III (superoxide from site IIIQo) and 25% from site IF. Thus complex II (site IIF in the forward reaction) is a major source of H2O2 production during oxidation of palmitoylcarnitine ± carnitine. Under the second condition (myxothiazol present to keep ubiquinone reduced), the rates of H2O2 production were highest in the presence of palmitoylcarnitine ± carnitine and were dominated by complex II (site IIF in the reverse reaction). About half the rest was from site IF, but a significant portion, ~40 pmol H2O2 · min−1 · mg protein−1, was not from complex I, II, or III and was attributed to the proteins of β-oxidation (electron-transferring flavoprotein (ETF) and ETF-ubiquinone oxidoreductase). The maximum rate from the ETF system was ~200 pmol H2O2 · min−1 ~ mg protein−1 under conditions of compromised antioxidant defense and reduced ubiqui-none pool. Thus complex II and the ETF system both contribute to H2O2 production during fatty acid oxidation under appropriate conditions. PMID:23583329

  12. Evidence for organic cation transporter-mediated metformin transport and 5'-adenosine monophosphate-activated protein kinase activation in rat skeletal muscles.

    Science.gov (United States)

    Oshima, Rieko; Yamada, Mayumi; Kurogi, Eriko; Ogino, Yohei; Serizawa, Yasuhiro; Tsuda, Satoshi; Ma, Xiao; Egawa, Tatsuro; Hayashi, Tatsuya

    2015-02-01

    5'-Adenosine monophosphate-activated protein kinase (AMPK) is a key molecule of metabolic enhancement in skeletal muscle. We investigated whether metformin (MET) acts directly on skeletal muscle, is transported into skeletal muscle via organic cation transporters (OCTs), and activates AMPK. Isolated rat epitrochlearis and soleus muscles were incubated in vitro either in the absence or in the presence of MET. The activation status of AMPK, the intracellular energy status, and glucose and MET transport activity were then evaluated. The effect of cimetidine, which is an OCT inhibitor, on AMPK activation was also examined. MET (10 mmol/L, ≥60 min) increased the phosphorylation of Thr¹⁷² at the catalytic α subunit of AMPK in both muscles. AMPK activity assays showed that both AMPKα1 and AMPKα2 activity increased significantly. The AMPK activation was associated with energy deprivation, which was estimated from the ATP, phosphocreatine (PCr), and glycogen content, and with increased rates of 3-O-methyl-D-glucose (3MG) transport. MET did not change the basal phosphorylation status of insulin receptor signaling molecules. MET was transported into the cytoplasm in a time-dependent manner, and cimetidine suppressed MET-induced AMPK phosphorylation and 3MG transport. These results suggest that MET is acutely transported into skeletal muscle by OCTs, and stimulates AMPKα1 and α2 activity in both fast- and slow-twitch muscle types, at least in part by reducing the energy state. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Skeletal muscle and glioma oxygenation by carbogen inhalation in rats: a longitudinal study by EPR oximetry using single-probe implantable oxygen sensors.

    Science.gov (United States)

    Hou, Huagang; Khan, Nadeem; Lariviere, Jean; Hodge, Sassan; Chen, Eunice Y; Jarvis, Lesley A; Eastman, Alan; Williams, Benjamin B; Kuppusamy, Periannan; Swartz, Harold M

    2014-01-01

    The feasibility of EPR oximetry using a single-probe implantable oxygen sensor (ImOS) was tested for repeated measurement of pO₂ in skeletal muscle and ectopic 9L tumors in rats. The ImOS (50 mm length) were constructed using nickel-chromium alloy wires, with lithium phthalocyanine (LiPc, oximetry probe) crystals loaded in the sensor loop and coated with AF 2400(®) Teflon. These ImOS were implanted into the skeletal muscle in the thigh and subcutaneous 9L tumors. Dynamic changes in tissue pO₂ were assessed by EPR oximetry at baseline, during tumor growth, and repeated hyperoxygenation with carbogen breathing. The mean skeletal muscle pO₂ of normal rats was stable and significantly increased during carbogen inhalation in experiments repeated for 12 weeks. The 9L tumors were hypoxic with a tissue pO₂ of 12.8 ± 6.4 mmHg on day 1; however, the response to carbogen inhalation varied among the animals. A significant increase in the glioma pO₂ was observed during carbogen inhalation on day 9 and day 14 only. In summary, EPR oximetry with ImOS allowed direct and longitudinal oxygen measurements in deep muscle tissue and tumors. The heterogeneity of 9L tumors in response to carbogen highlights the need to repeatedly monitor pO₂ to confirm tumor oxygenation so that such changes can be taken into account in planning therapies and interpreting results.

  14. Expression profile of mitrogen-activated protein kinase (MAPK signaling genes in the skeletal muscle & liver of rat with type 2 diabetes: Role in disease pathology

    Directory of Open Access Journals (Sweden)

    Xiaoli Tang

    2014-01-01

    Full Text Available Background & objectives: Type 2 diabetes (T2D is characterized as hyperglycaemia caused by defects in insulin secretion, and it affects target tissues, such as skeletal muscle, liver and adipose tissue. Therefore, analyzing the changes of gene expression profiles in these tissues is important to elucidate the pathogenesis of T2D. We, therefore, measured the gene transcript alterations in liver and skeletal muscle of rat with induced T2D, to detect differentially expressed genes in liver and skeletal muscle and perform gene-annotation enrichment analysis. Methods: In the present study, skeletal muscle and liver tissue from 10 streptozotocin-induced diabetic rats and 10 control rats were analyzed using gene expression microarrays. KEGG pathways enriched by differentially expressed genes (DEGs were identified by WebGestalt Expander and GATHER software. DEGs were validated by the method of real-time PCR and western blot. Results: From the 9,929 expressed genes across the genome, 1,305 and 997 differentially expressed genes (DEGs, P<0.01 were identified in comparisons of skeletal muscle and liver, respectively. Large numbers of DEGs (200 were common in both comparisons, which was clearly more than the predicted number (131 genes, P<0.001. For further interpretation of the gene expression data, three over-representation analysis softwares (WebGestalt, Expander and GATHER were used. All the tools detected one KEGG pathway (MAPK signaling and two GO (gene ontology biological processes (response to stress and cell death, with enrichment of DEGs in both tissues. In addition, PPI (protein-protein interaction networks constructed using human homologues not only revealed the tendency of DEGs to form a highly connected module, but also suggested a "hub" role of p38-MAPK-related genes (such as MAPK14 in the pathogenesis of T2D. Interpretation & conclusions: Our results indicated the considerably aberrant MAPK signaling in both insulin-sensitive tissues of T2D

  15. Effect of tumour necrosis factor-alpha on total myofibrillar and sarcoplasmic protein synthesis and polysomal aggregation in rat skeletal muscles.

    Science.gov (United States)

    Cheema, I R; Hermann, C; Postell, S; Holifield, B

    1999-01-01

    The total sarcoplasmic and myofibrillar protein synthesis was reduced in incubated fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus of rat after in vivo tumour necrosis factor-alpha treatment at 50 micrograms/kg/day for 5 days. The rate of protein synthesis in the myofibrillar fraction was inhibited more severely (41% in EDL and 34% in soleus) than that in the sarcoplasmic fraction (23% in EDL and 14% in soleus). Sucrose density gradient centrifugation analysis indicated that TNF-alpha treatment impaired polysomal aggregation in rat diaphragm muscle. Compared with the control muscles, the ratio of 40S and 60S subunits to polysomes was higher in TNF-alpha treated muscles. These findings suggest a role for TNF-alpha in the translational regulation of protein synthesis in rat skeletal muscle.

  16. PTHrP is endogenous relaxant for spontaneous smooth muscle contraction in urinary bladder of female rat.

    Science.gov (United States)

    Nishikawa, Nobuyuki; Kanematsu, Akihiro; Negoro, Hiromitsu; Imamura, Masaaki; Sugino, Yoshio; Okinami, Takeshi; Yoshimura, Koji; Hashitani, Hikaru; Ogawa, Osamu

    2013-06-01

    Acute bladder distension causes various morphologic and functional changes, in part through altered gene expression. We aimed to investigate the physiologic role of PTHrP, which is up-regulated in an acute bladder distension model in female rats. In the control Empty group, bladders were kept empty for 6 hours, and in the Distension group, bladders were kept distended for 3 hours after an artificial storing-voiding cycle for 3 hours. In the Distention group bladder, up-regulation of transcripts was noted for 3 genes reported to be up-regulated by stretch in the cultured bladder smooth muscle cells in vitro. Further transcriptome analysis by microarray identified PTHrP as the 22nd highest gene up-regulated in Distension group bladder, among more than 27,000 genes. Localization of PTHrP and its functional receptor, PTH/PTHrP receptor 1 (PTH1R), were analyzed in the untreated rat bladders and cultured bladder cells using real-time RT-PCR and immunoblotting, which revealed that PTH1R and PTHrP were more predominantly expressed in smooth muscle than in urothelium. Exogenous PTHrP peptide (1-34) increased intracellular cAMP level in cultured bladder smooth muscle cells. In organ bath study using bladder strips, the PTHrP peptide caused a marked reduction in the amplitude of spontaneous contraction but caused only modest suppression for carbachol-induced contraction. In in vivo functional study by cystometrogram, the PTHrP peptide decreased voiding pressure and increased bladder compliance. Thus, PTHrP is a potent endogenous relaxant of bladder contraction, and autocrine or paracrine mechanism of the PTHrP-PTH1R axis is a physiologically relevant pathway functioning in the bladder.

  17. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types

    DEFF Research Database (Denmark)

    Heinemeier, K M; Olesen, J L; Haddad, F

    2007-01-01

    -9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-beta-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX...

  18. Both short intense and prolonged moderate in vitro stimulation reduce the mRNA expression of calcium-regulatory proteins in rat skeletal muscle

    DEFF Research Database (Denmark)

    Mänttäri, Satu; Ørtenblad, Niels; Madsen, Klavs

    2013-01-01

    RNA expression of components involved in Ca(2+) regulation in oxidative and glycolytic skeletal muscle. The mRNA level of Ca(2+)-ATPase (SERCA1, 2), calsequestrin (CASQ1, 2), ryanodine receptor (RyR1), and dihydropyridine receptor (Cacna1) was assessed in rat extensor digitorum longus (EDL) and soleus (SOL......) muscles at 4 h of recovery following in vitro stimulations (either short intensive (SHO) 60 Hz, 5 min, or prolonged moderate (PRO) 20 Hz, 40 min). Stimulation induced acute regulation of the mRNA level of Ca(2+)-regulating proteins in a manner that does not follow typical fibre-type-specific transitions......+)-regulating system in skeletal muscle. The down-regulation of both isoforms of SERCA and CASQ after a single electrical stimulation session suggests that adaptations to repeated stimulation involve further regulatory mechanisms in addition to acute mRNA responses....

  19. Dietary Fat Quantity and Type Induce Transcriptome-Wide Effects on Alternative Splicing of Pre-mRNA in Rat Skeletal Muscle.

    Science.gov (United States)

    Black, Adam J; Ravi, Suhana; Jefferson, Leonard S; Kimball, Scot R; Schilder, Rudolf J

    2017-09-01

    Background: Fat-enriched diets produce metabolic changes in skeletal muscle, which in turn can mediate changes in gene regulation.Objective: We examined the high-fat-diet-induced changes in skeletal muscle gene expression by characterizing variations in pre-mRNA alternative splicing.Methods: Affymetrix Exon Array analysis was performed on the transcriptome of the gastrocnemius/plantaris complex of male obesity-prone Sprague-Dawley rats fed a 10% or 60% fat (lard) diet for 2 or 8 wk. The validation of exon array results was focused on troponin T (Tnnt3). Tnnt3 splice form analyses were extended in studies of rats fed 10% or 30% fat diets across 1- to 8-wk treatment periods and rats fed 10% or 45% fat diets with fat sources from lard or mono- or polyunsaturated fats for 2 wk. Nuclear magnetic resonance (NMR) was used to measure body composition.Results: Consumption of a 60% fat diet for 2 or 8 wk resulted in alternative splicing of 668 and 726 pre-mRNAs, respectively, compared with rats fed a 10% fat diet. Tnnt3 transcripts were alternatively spliced in rats fed a 60% fat diet for either 2 or 8 wk. The high-fat-diet-induced changes in Tnnt3 alternative splicing were observed in rats fed a 30% fat diet across 1- to 8-wk treatment periods. Moreover, this effect depended on fat type, because Tnnt3 alternative splicing occurred in response to 45% fat diets enriched with lard but not in response to diets enriched with mono- or polyunsaturated fatty acids. Fat mass (a proxy for obesity as measured by NMR) did not differ between groups in any study.Conclusions: Rat skeletal muscle responds to overconsumption of dietary fat by modifying gene expression through pre-mRNA alternative splicing. Variations in Tnnt3 alternative splicing occur independently of obesity and are dependent on dietary fat quantity and suggest a role for saturated fatty acids in the high-fat-diet-induced modifications in Tnnt3 alternative splicing. © 2017 American Society for Nutrition.

  20. Correlation between slow-wave myoelectric signals and mechanical contractions in the gastrointestinal tract: Advanced electromyographic method in rats.

    Science.gov (United States)

    Szucs, Kalman F; Nagy, Aniko; Grosz, Gyorgy; Tiszai, Zita; Gaspar, Robert

    Gastrointestinal motility disorders are presumed to be associated with abnormalities of the generation of slow-wave electric impulses. A requirement for the development of non-invasive clinical methods for the diagnosis of motility disorders is the identification of these signals. We set out to separate and characterize the signals from the various sections of the gastrointestinal tract and to detect changes in the smooth muscle electromyography (SEMG) signals. Partially resected (stomach-small intestine, stomach-large intestine or small and large intestine) or non-resected male SPRD rats were measured under deep anaesthesia. Bipolar thread and disk electrodes and strain gauge sensors were used for SEMG and the detection of mechanical contractions, respectively. The electric activity was characterized by cycle per minute (cpm) and power spectrum density maximum (PsDmax) W by fast Fourier transformation analysis. Contractions were evaluated by area under the curve analysis. The myoelectric signals of the stomach, ileum and caecum were at 3-5, 20-25 and 1-3cpm, respectively. Neostigmine increased (40-60%), while atropine decreased (30-50%) the PsDmax values. However, the cpm values remained unchanged. Linear regression revealed a good correlation between the PsDmax values and the smooth muscle contractions. Electric signals of the same character were recorded from the organ and from the abdominal surface. The change in PsDmax perfectly reflects the change in the contractions of the smooth muscle. These results may serve as the basis for non-invasive gastrointestinal measurements in experimental animals, which can be translated into clinical practice for motility studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effects of resveratrol, a grape polyphenol, on uterine contraction and Ca²+ mobilization in rats in vivo and in vitro.

    Science.gov (United States)

    Hsia, Shih-Min; Wang, Kai-Lee; Wang, Paulus S

    2011-05-01

    Dysmenorrhea is directly related to elevate prostaglandin F (PGF)(₂α) levels. In Western medicine, this condition is treated using nonsteroidal antiinflammatory drugs. Because nonsteroidal antiinflammatory drugs produce many side effects, Chinese medicinal therapy is considered as a feasible alternative for treating dysmenorrhea. Many special physiological components used in Chinese medicine, such as resveratrol, have been isolated and identified. Resveratrol has many physiological functions, such as antioxidation and anticarcinogenic effects. However, the relationship between uterine smooth muscle contraction and resveratrol remains unknown. Here, we studied the in vitro and in vivo effects of resveratrol on uterine smooth muscle contraction. The uterus was separated from a female Sprague Dawley rat, and uterine smooth muscle contraction activity was measured and recorded. The results demonstrated that 1) resveratrol treatment inhibited PGF(₂α)-, oxytocin-, acetylcholine-, and carbachol-induced uterine contractions in rats; 2) resveratrol inhibited uterine contractions stimulated by the Ca²(+) channel activator (Bay K 8644) and depolarization in response to high K(+) (KCl); 3) resveratrol inhibited PGF(₂α)-induced increases in the [Ca²(+)]i in human uterine smooth muscle cells; 4) resveratrol could mimic Ca²(+) channel blockers to block Ca²(+) influx through voltage-operated Ca²(+) channels in the plasma membrane; and 5) resveratrol inhibited PGF(₂α)-induced uterine contractions in rats in vivo. Resveratrol inhibited uterine contractions induced by PGF(₂α) and high K(+) in a concentration-dependent manner in vitro; furthermore, it inhibited Ca²(+)-dependent uterine contractions. Thus, resveratrol consistently suppressed the increases in intracellular Ca²(+) concentrations ([Ca²(+)]i) induced by PGF(₂α) and high K(+) concentrations. It can be assumed that resveratrol probably inhibited uterine contraction by blocking external Ca

  2. Injectable Polyurethane Composite Scaffolds Delay Wound Contraction and Support Cellular Infiltration and Remodeling in Rat Excisional Wounds

    Science.gov (United States)

    Adolph, Elizabeth J.; Hafeman, Andrea E.; Davidson, Jeffrey M.; Nanney, Lillian B.; Guelcher, Scott A.

    2011-01-01

    Injectable scaffolds present compelling opportunities for wound repair and regeneration due to their ability to fill irregularly shaped defects and deliver biologics such as growth factors. In this study, we investigated the properties of injectable polyurethane biocomposite scaffolds and their application in cutaneous wound repair using a rat excisional model. The scaffolds have a minimal reaction exotherm and clinically relevant working and setting times. Moreover, the biocomposites have mechanical and thermal properties consistent with rubbery elastomers. In the rat excisional wound model, injection of settable biocomposite scaffolds stented the wounds at early time points, resulting in a regenerative rather than a scarring phenotype at later time points. Measurements of wound width and thickness revealed that the treated wounds were less contracted at day 7 compared to blank wounds. Analysis of cell proliferation and apoptosis showed that the scaffolds were biocompatible and supported tissue ingrowth. Myofibroblast formation and collagen fiber organization provided evidence that the scaffolds have a positive effect on extracellular matrix remodeling by disrupting the formation of an aligned matrix under elevated tension. In summary, we have developed an injectable biodegradable polyurethane biocomposite scaffold that enhances cutaneous wound healing in a rat model. PMID:22105887

  3. Microstructural, densitometric and metabolic variations in bones from rats with normal or altered skeletal states.

    Directory of Open Access Journals (Sweden)

    Andrew N Luu

    Full Text Available High resolution μCT, and combined μPET/CT have emerged as non-invasive techniques to enhance or even replace dual energy X-ray absorptiometry (DXA as the current preferred approach for fragility fracture risk assessment. The aim of this study was to assess the ability of µPET/CT imaging to differentiate changes in rat bone tissue density and microstructure induced by metabolic bone diseases more accurately than current available methods.Thirty three rats were divided into three groups of control, ovariectomy and vitamin-D deficiency. At the conclusion of the study, animals were subjected to glucose ((18FDG and sodium fluoride (Na(18F PET/CT scanning. Then, specimens were subjected to µCT imaging and tensile mechanical testing.Compared to control, those allocated to ovariectomy and vitamin D deficiency groups showed 4% and 22% (significant increase in (18FDG uptake values, respectively. DXA-based bone mineral density was higher in the vitamin D deficiency group when compared to the other groups (cortical bone, yet μCT-based apparent and mineral density results were not different between groups. DXA-based bone mineral density was lower in the ovariectomy group when compared to the other groups (cancellous bone; yet μCT-based mineral density results were not different between groups, and the μCT-based apparent density results were lower in the ovariectomy group compared to the other groups.PET and micro-CT provide an accurate three-dimensional measurement of the changes in bone tissue mineral density, as well as microstructure for cortical and cancellous bone and metabolic activity. As osteomalacia is characterized by impaired bone mineralization, the use of densitometric analyses may lead to misinterpretation of the condition as osteoporosis. In contrast, µCT alone and in combination with the PET component certainly provides an accurate three-dimensional measurement of the changes in both bone tissue mineral density, as well as

  4. Mechanical and electrophysiological effects of sea anemone (Anemonia sulcata) toxins on rat innervated and denervated skeletal muscle.

    Science.gov (United States)

    Alsen, C; Harris, J B; Tesseraux, I

    1981-09-01

    1 Some effects of the sea-anemone toxin ATX-II on mammalian nerve-muscle preparations have been described. 2 When ATX-II (10(-8)-10(-6) M) was applied to rat hemidiaphragm preparations, both directly and indirectly generated twitch responses were potentiated and prolonged. At the same time the resting tension of the preparations increased. 3 The increase in resting tension caused by ATX-II in innervated muscles was not prevented by curarization, but was reversed by exposure to tetrodotoxin. The increase in denervated muscles was not completely reversed by tetrodotoxin. 4 At concentrations exceeding 1 x 10(-7) M, ATX-II caused a sodium-dependent depolarization of both normal and denervated muscles. The depolarization of the denervated muscles was only partially reversed by tetrodotoxin. 5 In the presence of ATX-II repetitive endplate potentials (e.p.ps) were evoked by single shocks to the motor nerves in many fibres, and in those in which a single e.p.p. was still observed, the quantum content (m) was increased. Miniature e.p.p. frequency was not increased by ATX-II, even when muscle fibres were depolarized by 30 mV. 6 The indirectly and directly elicited action potentials of normal and denervated muscle fibres were much prolonged by ATX-II. The action potentials remained sodium-dependent. The sodium-dependent tetrodotoxin-resistant action potential of the denervated muscle fibre was also prolonged by ATX-II. 7 It is concluded that ATX-II both activates, and delays inactivation of, sodium channels in mammalian skeletal muscle fibres, probably in interacting with the channel "gate'.

  5. Selection-, age-, and exercise-dependence of skeletal muscle gene expression patterns in a rat model of metabolic fitness.

    Science.gov (United States)

    Ren, Yu-Yu; Koch, Lauren G; Britton, Steven L; Qi, Nathan R; Treutelaar, Mary K; Burant, Charles F; Li, Jun Z

    2016-11-01

    Intrinsic aerobic exercise capacity can influence many complex traits including obesity and aging. To study this connection we established two rat lines by divergent selection of untrained aerobic capacity. After 32 generations the high capacity runners (HCR) and low capacity runners (LCR) differed in endurance running distance and body fat, blood glucose, other health indicators, and natural life span. To understand the interplay among genetic differences, chronological age, and acute exercise we performed microarray-based gene expression analyses in skeletal muscle with a 2×2×2 design to simultaneously compare HCR and LCR, old and young animals, and rest and exhaustion. Transcripts for mitochondrial function are expressed higher in HCRs than LCRs at both rest and exhaustion and for both age groups. Expression of cell adhesion and extracellular matrix genes tend to decrease with age. This and other age effects are more prominent in LCRs than HCRs, suggesting that HCRs have a slower aging process and this may be partly due to their better metabolic health. Strenuous exercise mainly affects transcription regulation and cellular response. The effects of any one factor often depend on the other two. For example, there are ∼140 and ∼110 line-exercise "interacting" genes for old and young animals, respectively. Many genes highlighted in our study are consistent with prior reports, but many others are novel. The gene- and pathway-level statistics for the main effects, either overall or stratified, and for all possible interactions, represent a rich reference dataset for understanding the interdependence among lines, aging, and exercise. Copyright © 2016 the American Physiological Society.

  6. l-Carnitine supplement reduces skeletal muscle atrophy induced by prolonged hindlimb suspension in rats.

    Science.gov (United States)

    Jang, Jiwoong; Park, Jonghoon; Chang, Hyukki; Lim, Kiwon

    2016-12-01

    l-Carnitine was recently found to downregulate the ubiquitin proteasome pathway (UPP) and increase insulin-like growth factor 1 concentrations in animal models. However, the effect of l-carnitine administration on disuse muscle atrophy induced by hindlimb suspension has not yet been studied. Thus, we hypothesized that l-carnitine may have a protective effect on muscle atrophy induced by hindlimb suspension via the Akt1/mTOR and/or UPP. Male Wistar rats were assigned to 3 groups: hindlimb suspension group, hindlimb suspension with l-carnitine administration (1250 mg·kg -1 ·day -1 ) group, and pair-fed group adjusted hindlimb suspension. l-Carnitine administration for 2 weeks of hindlimb suspension alleviated the decrease in weight and fiber size in the soleus muscle. In addition, l-carnitine suppressed atrogin-1 mRNA expression, which has been reported to play a pivotal role in muscle atrophy. The present study shows that l-carnitine has a protective effect against soleus muscle atrophy caused by hindlimb suspension and decreased E3 ligase messenger RNA expression, suggesting the possibility that l-carnitine protects against muscle atrophy, at least in part, through the inhibition of the UPP. These observations suggest that l-carnitine could serve as an effective supplement in the decrease of muscle atrophy caused by weightlessness in the fields of clinical and rehabilitative research.

  7. Effect of electromyostimulation on apoptosis-related factors in denervation and reinnervation of rat skeletal muscles.

    Science.gov (United States)

    Lim, Jae-Young; Han, Tai Ryoon

    2010-09-01

    Electromyostimulation (EMS) has been utilized to reduce muscle atrophy, but its effect on denervated muscles is controversial. This study was performed to determine the effect of EMS on intramuscular changes and apoptosis during denervation and reinnervation following nerve damage. Rat sciatic nerves were denervated completely (CD) or partially (PD), and EMS was applied for 2 weeks. The same numbers of cases were followed without EMS. Nerve conduction studies, muscle weights, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay to measure apoptotic changes, and Western blot were done 4, 8, and 12 weeks after injury. TUNEL-positive nuclei of CD muscles (18.6 +/- 5.5%) were more prevalent than those of PD muscles (7.5 +/- 3.3%). The EMS group showed greater muscle weight, fewer positive nuclei (4.7 +/- 1.9%), and lower BAX and Bcl-2 expression levels compared with the non-EMS group at 4 weeks after PD but not after CD. Denervated muscle atrophy delayed by EMS may be linked with enhanced anti-apoptosis under the control of apoptosis-related factors.

  8. Effects of Caloric Restriction and Exercise Training on Skeletal Muscle Histochemistry in Aging Fischer 344 Rats

    Directory of Open Access Journals (Sweden)

    David T. Lowenthal

    2006-01-01

    Full Text Available The purpose of this study was to determine the effects of calorie restriction and exercise on hindlimb histochemistry and fiber type in Fischer 344 rats as they advanced from adulthood through senescence. At 10 months of age, animals were divided into sedentary fed ad libitum, exercise (18 m/min, 8% grade, 20 min/day, 5 days/week fed ad libitum, and calorie restricted by alternate days of feeding. Succinic dehydrogenase, myosin adenosine triphosphatase (mATPase at pH 9.4, nicotine adenonine dinucleotide reductase, and Periodic Acid Shiff histochemical stains were performed on plantaris and soleus muscles. The results indicated that aging resulted in a progressive decline in plantaris Type I muscle fiber in sedentary animals, while exercise resulted in maintenance of these fibers. The percent of plantaris Type II fibers increased between 10 and 24 months of age. Exercise also resulted in a small, but significant, increase in the percentage of plantaris Type IIa fibers at 24 months of age. The soleus fiber distribution for Type I fibers was unaffected by increasing age in all groups of animals. The implications of these results suggest the implementation of exercise as a lifestyle modification as early as possible.

  9. Influence of icing on muscle regeneration after crush injury to skeletal muscles in rats.

    Science.gov (United States)

    Takagi, Ryo; Fujita, Naoto; Arakawa, Takamitsu; Kawada, Shigeo; Ishii, Naokata; Miki, Akinori

    2011-02-01

    The influence of icing on muscle regeneration after crush injury was examined in the rat extensor digitorum longus. After the injury, animals were randomly divided into nonicing and icing groups. In the latter, ice packs were applied for 20 min. Due to the icing, degeneration of the necrotic muscle fibers and differentiation of satellite cells at early stages of regeneration were retarded by ∼1 day. In the icing group, the ratio of regenerating fibers showing central nucleus at 14 days after the injury was higher, and cross-sectional area of the muscle fibers at 28 days was evidently smaller than in the nonicing group. Besides, the ratio of collagen fibers area at 14 and 28 days after the injury in the icing group was higher than in the nonicing group. These findings suggest that icing applied soon after the injury not only considerably retarded muscle regeneration but also induced impairment of muscle regeneration along with excessive collagen deposition. Macrophages were immunohistochemically demonstrated at the injury site during degeneration and early stages of regeneration. Due to icing, chronological changes in the number of macrophages and immunohistochemical expression of transforming growth factor (TGF)-β1 and IGF-I were also retarded by 1 to 2 days. Since it has been said that macrophages play important roles not only for degeneration, but also for muscle regeneration, the influence of icing on macrophage activities might be closely related to a delay in muscle regeneration, impairment of muscle regeneration, and redundant collagen synthesis.

  10. Diffusion of water in skeletal muscle tissue is not influenced by compression in a rat model of deep tissue injury

    NARCIS (Netherlands)

    van Nierop, Bastiaan J.; Stekelenburg, Anke; Loerakker, Sandra; Oomens, Cees W.; Bader, Dan; Strijkers, Gustav J.; Nicolay, Klaas

    2010-01-01

    Sustained mechanical loading of skeletal muscle may result in the development of a severe type of pressure ulcer, referred to as deep tissue injury. Recently it was shown that the diffusion of large molecules (10-150kDa) is impaired during deformation of tissue-engineered skeletal muscle, suggesting

  11. Role of exercise-induced calmodulin protein kinase (CAMK)II activation in the regulation of omega-6 fatty acids and lipid metabolism genes in rat skeletal muscle.

    Science.gov (United States)

    Joseph, J S; Ayeleso, A O; Mukwevho, E

    2017-09-22

    Activation of calmodulin dependent protein kinase (CaMK)II by exercise is beneficial in controlling membrane lipids associated with type 2 diabetes and obesity. Regulation of lipid metabolism is crucial in the improvement of type 2 diabetes and obesity associated symptoms. The role of CaMKII in membrane associated lipid metabolism was the focus of this study. Five to six weeks old male Wistar rats were used in this study. GC×GC-TOFMS technique was used to determine the levels of polyunsaturated fatty acids (linoleic acid, arachidonic acid and 11,14-eicosadienoic acid). Carnitine palmitoyltransferase (Cpt-1) and acetyl-CoA carboxylase (Acc-1) genes expression were assessed using quantitative real time PCR (qPCR). From the results, CaMKII activation by exercise increased the levels of arachidonic acid and 11, 14-eicosadienoic acid while a decrease in the level of linolenic acid was observed in the skeletal muscle. The results indicated that exercise-induced CaMKII activation increased CPT-1 expression and decreased ACC-1 expression in rat skeletal muscle. All the observed increases with activation of CaMKII by exercise were aborted when KN93, an inhibitor of CaMKII was injected in exercising rats. This study demonstrated that CaMKII activation by exercise regulated lipid metabolism. This study suggests that CaMKII can be a vital target of therapeutic approach in the management of diseases such as type 2 diabetes and obesity that have increased to epidemic proportions recently.

  12. Potentiation of cGMP signaling increases oxygen delivery and oxidative metabolism in contracting skeletal muscle of older but not young humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Piil, Peter Bergmann; Egelund, Jon

    2015-01-01

    Aging is associated with progressive loss of cardiovascular and skeletal muscle function. The impairment in physical capacity with advancing age could be related to an insufficient peripheral O2 delivery to the exercising muscles. Furthermore, the mechanisms underlying an impaired blood flow regu...

  13. Paraplegia increases skeletal muscle autophagy.

    Science.gov (United States)

    Fry, Christopher S; Drummond, Micah J; Lujan, Heidi L; DiCarlo, Stephen E; Rasmussen, Blake B

    2012-11-01

    Paraplegia results in significant skeletal muscle atrophy through increases in skeletal muscle protein breakdown. Recent work has identified a novel SIRT1-p53 pathway that is capable of regulating autophagy and protein breakdown. Soleus muscle was collected from 6 male Sprague-Dawley rats 10 weeks after complete T4-5 spinal cord transection (paraplegia group) and 6 male sham-operated rats (control group). We utilized immunoblotting methods to measure intracellular proteins and quantitative real-time polymerase chain reaction to measure the expression of skeletal muscle microRNAs. SIRT1 protein expression was 37% lower, and p53 acetylation (LYS379) was increased in the paraplegic rats (P paraplegia group compared with controls (P paraplegia appears to increase skeletal muscle autophagy independent of SIRT1 signaling. We conclude that chronic paraplegia may cause an increase in autophagic cell death and negatively impact skeletal muscle protein balance. Copyright © 2012 Wiley Periodicals, Inc.

  14. [Effects of carnitine on respiratory chain and metabolism of oxygen radical in mitochondria of skeletal muscle after exhaustive running in training rat].

    Science.gov (United States)

    Li, Jie; Peng, Li-Na

    2013-12-25

    The aim of the present study was to investigate the effect of carnitine on function of respiratory chain and metabolism of oxygen radical in mitochondria of skeletal muscle after exhaustive running in training rats. Forty male Wistar rats were randomly divided into 4 groups (n = 10): control, carnitine, training and training + carnitine groups. The training and training + carnitine groups received 6-week treadmill training, whereas carnitine and training + carnitine groups were administered intragastrically with carnitine (300 mg/kg per day, 6 d/week) for 6 weeks. After exhaustive running, all the rats from 4 groups were sacrificed to obtain quadriceps muscles samples, and muscle mitochondria were extracted by differential centrifugation. Spectrophotometric analysis was used to evaluate activities of respiratory chain complexes (RCC) I-IV, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and the content of malondialdehyde (MDA) in the skeletal muscle mitochondria. The results showed that, compared with the control group, the carnitine group exhibited increased RCCI and RCCIII activities (P carnitine group exhibited increased RCCI, RCCIII and RCCIV activities (P carnitine group was higher than that in training group (P carnitine, training and training + carnitine groups showed increased SOD activities ( P carnitine and training + carnitine groups showed increased GSH-Px activities ( P carnitine, training and training + carnitine groups showed increased MDA contents (P carnitine group were higher than those in training group (P carnitine group was higher than that in the carnitine and training groups (P carnitine can increase function of respiratory chain, antioxidation and lipid peroxidation tolerance capacity in skeletal muscle mitochondria, and the improving effects of training and carnitine are synergistic.

  15. The action of ryanodine on rat fast and slow intact skeletal muscles.

    Science.gov (United States)

    Fryer, M W; Lamb, G D; Neering, I R

    1989-07-01

    1. The action of ryanodine on force development of bundles dissected from rat extensor digitorum longus (EDL) and soleus muscles has been examined. 2. Ryanodine (100-5000 nM) irreversibly depressed twitch and tetanic tension of both muscle types in a dose-related manner. 3. At concentrations above 250 nM, ryanodine induced a slowly developing, dose-dependent contracture which could not be blocked by 5 mM-Co2+. Increasing the stimulation rate or decreasing the oxygenation of the preparation accelerated the rate of contracture development while the total removal of extracellular Ca2+ was required to prevent it. 4. Following the relaxation of the initial contracture (IC) in Ca2+-free solution, a second type of contracture (SC) could be induced by the readdition of Ca2+. This contracture differed from IC in that it was dependent on Ca2+ in the millimolar range and was prevented by 5 mM-Co2+. Both IC and SC were relaxed by perfusion with Ca2+-free, EGTA-containing solution. 5. Subcontracture doses of ryanodine (100 nM) markedly potentiated caffeine contractures of both muscle types. 6. Asymmetric charge movement in EDL fibres was recorded with the Vaseline-gap technique. The amount of charge moved near threshold was virtually unaffected by the presence of 10 microM-ryanodine over the time examined. 7. The results are consistent with the suggestion that ryanodine locks the calcium release channels of the sarcoplasmic reticulum (SR) in an open subconductance state with reduced conductance. It appears that lowering the external calcium concentration might still inactivate the release channels after they have been blocked open by ryanodine, possibly by an effect on the T-tubular voltage sensor.

  16. Modified cytoplasmic Ca2+ sequestration contributes to spinal cord injury-induced augmentation of nerve-evoked contractions in the rat tail artery.

    Directory of Open Access Journals (Sweden)

    Hussain Al Dera

    Full Text Available In rat tail artery (RTA, spinal cord injury (SCI increases nerve-evoked contractions and the contribution of L-type Ca2+ channels to these responses. In RTAs from unoperated rats, these channels play a minor role in contractions and Bay K8644 (L-type channel agonist mimics the effects of SCI. Here we investigated the mechanisms underlying the facilitatory actions of SCI and Bay K8644 on nerve-evoked contractions of RTAs and the hypothesis that Ca2+ entering via L-type Ca2+ channels is rapidly sequestered by the sarcoplasmic reticulum (SR limiting its role in contraction. In situ electrochemical detection of noradrenaline was used to assess if Bay K8644 increased noradrenaline release. Perforated patch recordings were used to assess if SCI changed the Ca2+ current recorded in RTA myocytes. Wire myography was used to assess if SCI modified the effects of Bay K8644 and of interrupting SR Ca2+ uptake on nerve-evoked contractions. Bay K8644 did not change noradrenaline-induced oxidation currents. Neither the size nor gating of Ca2+ currents differed between myocytes from sham-operated (control and SCI rats. Bay K8644 increased nerve-evoked contractions in RTAs from both control and SCI rats, but the magnitude of this effect was reduced by SCI. By contrast, depleting SR Ca2+ stores with ryanodine or cyclopiazonic acid selectively increased nerve-evoked contractions in control RTAs. Cyclopiazonic acid also selectively increased the blockade of these responses by nifedipine (L-type channel blocker in control RTAs, whereas ryanodine increased the blockade produced by nifedipine in both groups of RTAs. These findings suggest that Ca2+ entering via L-type channels is normally rapidly sequestered limiting its access to the contractile mechanism. Furthermore, the findings suggest SCI reduces the role of this mechanism.

  17. [Intervention of Qi-activating and Spleen-strengthening Herbs on Ca2+/CaMK II Signaling Pathways Key Factors in Skeletal Muscle Tissue of Rats with Spleen-qi Deficiency].

    Science.gov (United States)

    Duan, Yong-qiang; Cheng, Ying-xia; Liang, Yu-jie; Cheng, Wei-dong; Du, Juan; Yang, Xiao-yi; Wang, Yan

    2015-03-01

    To observe changes of [Ca2+]i concentration and CaM, CaMK II and p-CaMK II of Ca2+/CaMK II signaling pathways in skeletal muscle tissue of rats with spleen-qi deficiency and intervention of Sijunzi decoction and extract of Hedysarum polybotrys. Rats were randomized into four groups: normal control group, spleen-qi deficient model group, extract from Hedysarum polybotrys group and Sijunzi decoction group, ten rats in each group. After the spleen-qi deficient models were built by comprehensive application of rhubarb, exhaustive and hungry methods, and treatment groups were treated with extract from Hedysarum polybotrys at 6 g/(kg . d) or Sijunzi decoction at 20 g/(kg . d) for 21 d. Then, general existence,gastrointestinal hormones GAS and MOT levels, and activities of Na+-K+-ATPase and Ca2+-Mg2+-ATPase of skeletal muscle were evaluated. Also, confocal laser technology was used to test cellular[Ca2+]i concentrations in skeletal muscle and Western blotting technique was used to test CaM, CaMK II and p-CaMK 11 expression in intestinal tissue of spleen-qi deficient model rats. Compared with normal group, general condition was poor, levels of GAS and MOT decreased (P CaMK II and p-CaMK II in skeletal muscle decreased significantly (P CaMK II in skeletal muscle tissue increased (P CaMK II in skeletal muscle tissue increased in the rats of Sijunzi decoction group (P < 0. 05). Sijunzi decoction and extract of Hedysarum polybotrys can be applied to treat spleen-qi deficiency syndrome through the mechanism of regulating GAS and MOT secretion and raising expression of Ca2+ /CaM signaling pathways key factors in skeletal muscle tissue. Sijunzi decoction has the better effect

  18. Pennogenin tetraglycoside induces rat myometrial contraction and MLC20 phosphorylation via PLC-IP(3 and RhoA/Rho kinase signaling pathways.

    Directory of Open Access Journals (Sweden)

    Limei Wang

    Full Text Available BACKGROUND: Total steroidal saponins extracted from the rhizome of Paris polyphylla Sm. var. yunnanensis (TSSPs have been widely used in China for the treatment of abnormal uterine bleeding. We previously studied the main active constituents of TSSPs and their structure-activity relationships with respect to rat myometrial contractions. Tg (pennogenin tetraglycoside was identified as one of the active ingredients in TSSPs able to induce rat myometrial contractions. However, the mechanisms underlying the pharmacological actions on uterine activity have not been described clearly. METHODS: Here Tg was screened for effects on contractile activity in isolated uterine strips from estrogen-primed rats and on MLC20 phosphorylation and related signaling pathways in cultured rat myometrial cells as determined by Western blot. Intracellular calcium ([Ca(2+](i was monitored under a confocal microscope using Fluo-4 AM-loaded myometrial cells. RESULTS: Tg dose-dependently stimulated rat myometrial contractions as well as MLC20 phosphorylation in vitro, which could be completely suppressed by an inhibitor of myosin light chain kinase (MLCK. Use of Ca(2+ channel blockers and kinase inhibitors demonstrated that Tg-induced myometrial contractions are mediated by activation of the phospholipase C (PLC-inositol triphosphate (IP3 signaling pathway, resulting in increased MLC20 phosphorylation. Furthermore, Y27632, a specific inhibitor of Rho kinase (ROK, notably suppressed Tg-stimulated myometrial contractions and decreased MLC20 phosphorylation. CONCLUSIONS: These data provide evidence that rat myometrial contractility induced by Tg results from enhanced MLC20 phosphorylation, while both PLC-IP3 and RhoA/ROK signaling pathways mediate the process. These mechanisms may be responsible for the therapeutic effects of TSSPs on abnormal uterine bleeding.

  19. Effects of two medicinal plants Psidium guajava L. (Myrtaceae) and Diospyros mespiliformis L. (Ebenaceae) leaf extracts on rat skeletal muscle cells in primary culture

    Science.gov (United States)

    Belemtougri, R.G.; Constantin, B.; Cognard, C.; Raymond, G.; Sawadogo, L.

    2006-01-01

    Crude decoction, aqueous and ethanolic extracts of two medicinal plants (Psidium guajava and Diospyros mespiliformis), widely used in the central plateau of Burkina Faso to treat many diseases were evaluated for their antagonistic effects on caffeine induced calcium release from sarcoplasmic reticulum of rat skeletal muscle cells. These different extracts showed a decrease of caffeine induced calcium release in a dose dependent manner. Comparison of the results showed that Psidium guajava leaf extracts are more active than extracts of Diospyros mespiliformis and that crude decoctions show better inhibitory activity. The observed results could explaine their use as antihypertensive and antidiarrhoeal agents in traditional medicine, by inhibiting intracellular calcium release. PMID:16365927

  20. Coordinate regulation of glucose transporter function, number, and gene expression by insulin and sulfonylureas in L6 rat skeletal muscle cells.

    OpenAIRE

    Wang, P H; Moller, D; Flier, J.S.; Nayak, R. C.; Smith, R. J.

    1989-01-01

    The extrapancreatic actions of sulfonylureas on the glucose transport system were studied in the L6 line of cultured rat skeletal muscle cells. Insulin (10(-7) M) increased 2-deoxyglucose uptake in differentiated L6 myotubes by 30-40% after 8 h of incubation. The sulfonylurea tolazamide (0.6 mg/ml, 22 h) had no effect on glucose uptake in the absence of insulin, but increased insulin-stimulated 2-deoxyglucose uptake twofold. The total cellular content of glucose transporters was assessed with...

  1. Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats.

    Science.gov (United States)

    Cefalu, William T; Wang, Zhong Q; Zhang, Xian H; Baldor, Linda C; Russell, James C

    2002-06-01

    Human studies suggest that chromium picolinate (CrPic) decreases insulin levels and improves glucose disposal in obese and type 2 diabetic populations. To evaluate whether CrPic may aid in treatment of the insulin resistance syndrome, we assessed its effects in JCR:LA-corpulent rats, a model of this syndrome. Male lean and obese hyperinsulinemic rats were randomly assigned to receive oral CrPic [80 microg/(kg. d); n = 5 or 6, respectively) in water or to control conditions (water, n = 5). After 3 mo, a 120-min intraperitoneal glucose tolerance test (IPGTT) and a 30-min insulin tolerance test were performed. Obese rats administered CrPic had significantly lower fasting insulin levels (1848 +/- 102 vs. 2688 +/- 234 pmol/L; P < 0.001; mean +/- SEM) and significantly improved glucose disappearance (P < 0.001) compared with obese controls. Glucose and insulin areas under the curve for IPGTT were significantly less for obese CrPic-treated rats than in obese controls (P < 0.001). Obese CrPic-treated rats had lower plasma total cholesterol (3.57 +/- 0.28 vs. 4.11 +/- 0.47 mmol/L, P < 0.05) and higher HDL cholesterol levels (1.92 +/- 0.09 vs. 1.37 +/- 0.36 mmol/L, P < 0.01) than obese controls. CrPic did not alter plasma glucose or cholesterol levels in lean rats. Total skeletal muscle glucose transporter (Glut)-4 did not differ among groups; however, CrPic significantly enhanced membrane-associated Glut-4 in obese rats after insulin stimulation. Thus, CrPic supplementation enhances insulin sensitivity and glucose disappearance, and improves lipids in male obese hyperinsulinemic JCR:LA-corpulent rats.

  2. Exercise-Induced Changes in Caveolin-1, Depletion of Mitochondrial Cholesterol, and the Inhibition of Mitochondrial Swelling in Rat Skeletal Muscle but Not in the Liver

    Directory of Open Access Journals (Sweden)

    Damian Jozef Flis

    2016-01-01

    Full Text Available The reduction in cholesterol in mitochondria, observed after exercise, is related to the inhibition of mitochondrial swelling. Caveolin-1 (Cav-1 plays an essential role in the regulation of cellular cholesterol metabolism and is required by various signalling pathways. Therefore, the aim of this study was to investigate the effect of prolonged swimming on the mitochondrial Cav-1 concentration; additionally, we identified the results of these changes as they relate to the induction of changes in the mitochondrial swelling and cholesterol in rat skeletal muscle and liver. Male Wistar rats were divided into a sedentary control group and an exercise group. The exercised rats swam for 3 hours and were burdened with an additional 3% of their body weight. After the cessation of exercise, their quadriceps femoris muscles and livers were immediately removed for experimentation. The exercise protocol caused an increase in the Cav-1 concentration in crude muscle mitochondria; this was related to a reduction in the cholesterol level and an inhibition of mitochondrial swelling. There were no changes in rat livers, with the exception of increased markers of oxidative stress in mitochondria. These data indicate the possible role of Cav-1 in the adaptive change in the rat muscle mitochondria following exercise.

  3. Controlled intermittent shortening contractions of a muscle-tendon complex: muscle fibre damage and effects on force transmission from a single head of rat EDL

    NARCIS (Netherlands)

    Maas, H.; Lehti, T.M.; Tiihonen, V.; Komulainen, J.; Huijing, P.A.J.B.M.

    2005-01-01

    This study was performed to examine effects of prolonged (3 h) intermittent shortening (amplitude 2 mm) contractions (muscles were excited maximally) of head III of rat extensor digitorum longus muscle (EDL III) on indices of muscle damage and on force transmission within the intact anterior crural

  4. Fullerenol C60(OH)24 nanoparticles decrease relaxing effects of dimethyl sulfoxide on rat uterus spontaneous contraction

    Science.gov (United States)

    Slavic, Marija; Djordjevic, Aleksandar; Radojicic, Ratko; Milovanovic, Slobodan; Orescanin-Dusic, Zorana; Rakocevic, Zlatko; Spasic, Mihajlo B.; Blagojevic, Dusko

    2013-05-01

    Dimethyl sulfoxide (DMSO) is a widely used solvent and cryoprotectant that can cause impaired blood flow, reduction in intracranial pressure, tissue edema, inflammatory reactions, inhibition of vascular smooth muscle cell migration and proliferation, processes which can lead to atherosclerosis of the coronary, peripheral and cerebral circulation. Although the adverse effects are rare when DMSO is administered in clinically established concentrations, there is no safe antagonist for an overdose. In this work, we treated isolated spontaneous and calcium-induced contractile active rat uteri (Wistar, virgo intacta), with DMSO and fullerenol C60(OH)24 nanoparticle (FNP) in DMSO. FNP is a water-soluble derivative of fullerene C60. Its size is a 1.1 nm in diameter and is a very promising candidate for a drug carrier in nanomedicine. FNP also displays free radical scavenging activity. DMSO decreased both spontaneous and calcium-induced contractions. In contrast, FNP only decreased spontaneous contraction. FNP decreased copper-zinc superoxide dismutase activity and prevented the DMSO-induced increase in glutathione reductase activity. Atomic force microscopy detected that FNP aggregated with calcium ions. Our results indicate that FNP has properties that make it a good candidate to be a modulator of DMSO activity which could minimize side effects of the latter.

  5. Bisphenol A, Dichlorodiphenyltrichloroethane (DDT) and Vinclozolin Affect ex-vivo Uterine Contraction in Rats via Uterotonin (Prostaglandin F2α, Acetylcholine and Oxytocin) Related Pathways.

    Science.gov (United States)

    Salleh, Naguib; Giribabu, Nelli; Feng, Angeline Oh Mei; Myint, Kyaimon

    2015-01-01

    Bisphenol-A (BPA), dichrolodiphenyltrichloroethane (DDT) and vinclozolin were found able to induce abnormal uterine contraction. The mechanisms involved remains unclear. We hypothesized that the effect of these compounds were mediated via the uterotonin pathways. Therefore, in this study, effects of BPA, vinclozolin and DDT-only and in combination with uterotonins (PGF-2α, acetylcholine and oxytocin) on the force and pattern of uterine contraction were observed. Uteri were harvested from intact adult female rats 24 hours after a single injection (1 mg/kg/b.w) of estrogen to synchronize their oestrous cycle. The uterine horns were subjected for ex-vivo contraction studies in an organ bath connected to Powerlab data acquisition system. Different doses of BPA, vinclozolin and DDT were added into the bathing solution and changes in the pattern and strength of uterine contraction were recorded. Further, increasing doses of uterotonins were concomitantly administered with these compounds and changes in the force and pattern of contraction were observed. In the absence of uterotonins, uterine contractile force decreased with increasing doses of BPA and DDT. However, vinclozolin induced sharp increase in the contractile forces which then gradually decrease. Administration of BPA, DDT and vinclozolin alone reduced the force of uterine contraction following stimulation of contraction by uterotonins. However, BPA, vinclozolin or DDT effects were relieved upon co-administration with uterotonins at increasing doses. The antagonizing effect of uterotonins on BPA, vinclozolin and DDT actions could explain the mechanism underlying the adverse effect of these compounds on uterine contraction.

  6. Statins and fenofibrate affect skeletal muscle chloride conductance in rats by differently impairing ClC-1 channel regulation and expression

    Science.gov (United States)

    Pierno, S; Camerino, GM; Cippone, V; Rolland, J-F; Desaphy, J-F; De Luca, A; Liantonio, A; Bianco, G; Kunic, JD; George, AL; Camerino, D Conte

    2009-01-01

    Background and purpose: Statins and fibrates can produce mild to life-threatening skeletal muscle damage. Resting chloride channel conductance (gCl), carried by the ClC-1 channel, is reduced in muscles of rats chronically treated with fluvastatin, atorvastatin or fenofibrate, along with increased resting cytosolic calcium in statin-treated rats. A high gCl, controlled by the Ca2+-dependent protein kinase C (PKC), maintains sarcolemma electrical stability and its reduction alters muscle function. Here, we investigated how statins and fenofibrate impaired gCl. Experimental approach: In rats treated with fluvastatin, atorvastatin or fenofibrate, we examined the involvement of PKC in gCl reduction by the two intracellular microelectrodes technique and ClC-1 mRNA level by quantitative real time-polymerase chain reaction. Direct drug effects were tested by patch clamp analysis on human ClC-1 channels expressed in human embryonic kidney (HEK) 293 cells. Key results: Chelerythrine, a PKC inhibitor, applied in vitro on muscle dissected from atorvastatin-treated rats fully restored gCl, suggesting the involvement of this enzyme in statin action. Chelerythrine partially restored gCl in muscles from fluvastatin-treated rats but not in those from fenofibrate-treated rats, implying additional mechanisms for gCl impairment. Accordingly, a decrease of ClC-1 channel mRNA was found in both fluvastatin-and fenofibrate-treated rat muscles. Fenofibric acid, the in vivo metabolite of fenofibrate, but not fluvastatin, rapidly reduced chloride currents in HEK 293 cells. Conclusions and implications: Our data suggest multiple mechanisms underlie the effect of statins and fenofibrate on ClC-1 channel conductance. While statins promote Ca2+-mediated PKC activation, fenofibrate directly inhibits ClC-1 channels and both fluvastatin and fenofibrate impair expression of mRNA for ClC-1. PMID:19220292

  7. Contribution of adenosine to the increase in skeletal muscle blood flow caused by manual acupuncture in rats.

    Science.gov (United States)

    Shinbara, Hisashi; Nagaoka, Satomi; Izutani, Yasuyuki; Okubo, Masamichi; Kimura, Keisaku; Mizunuma, Kunio; Sumiya, Eiji

    2017-08-01

    Adenosine is believed to play an important role in local acupuncture analgesia. The aim of this study was to investigate the contribution of adenosine to the increase in skeletal muscle blood flow (MBF) caused by manual acupuncture (MA). Thirty-two male Sprague-Dawley rats (310-360 g) were anaesthetised and divided into four equal groups (n=8 each): Saline, Saline+MA, Theophylline, and Theophylline+MA. In the two MA groups, the sparrow-pecking MA technique was applied at 30 repetitions per min for 1 min to a depth of 15-18 mm using a stainless steel acupuncture needle (0.20×40 mm). The stimulus point was located on the right tibialis anterior (TA) muscle 7-8 mm below the knee. Animals in the two theophylline groups were intra-arterially injected with 8-(p-sulphophenyl) theophylline, a non-selective adenosine receptor antagonist, at a dose of 30 mg/kg before MA. Animals in the two saline groups received control saline. Fluorescent microspheres (15 µm in diameter, yellow-green fluorescent) were used for MBF measurement in all four groups. MA of the TA muscle significantly increased MBF (Saline+MA vs Saline: p=0.001; Saline+MA vs Theophylline: p=0.008). Pre-treatment with theophylline appeared to inhibit this increase (Theophylline vs Theophylline+MA; p=1.000). MBF in the Theophylline+MA group was 43% lower than in the Saline+MA group, although this was not significantly different (p=0.104). The results suggest that adenosine leads to an increase in MBF caused by MA. Adenosine may play a role in acupuncture analgesia by washing out algesic substances. Further studies are needed in order to elucidate the precise mechanism. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. Effect of acetic acid feeding on the circadian changes in glycogen and metabolites of glucose and lipid in liver and skeletal muscle of rats.

    Science.gov (United States)

    Fushimi, Takashi; Sato, Yuzo

    2005-11-01

    The aim of the present study is to investigate the effect of acetic acid feeding on the circadian changes in glycogen concentration in liver and skeletal muscle. Rats were provided meal once daily (09.00-13.00 hours) for 10 d. On the 11th day, they were either killed immediately or given 9 g diet containing either 0 (control) or 0.7 g/kg-diet acetic acid beginning at 09.00 hours for 4 h, as in the previous regimen. Rats in the fed group were killed at 4, 8 or 24 h after the start of feeding. At 4 h after the start of feeding, the acetic acid group had significantly greater liver and gastrocnemius muscle glycogen concentrations (Pacetic acid group than in the control group (Pacetic acid group had a significantly lower serum lactate concentration and lower ratio of insulin to glucagon than the control group at the same point (Pacetic acid may enhance glycogen repletion but not induce supercompensation, a large increase in the glycogen level that is beneficial in improving performance, in liver and skeletal muscle by transitory inhibition of glycolysis. Further, we indicate the possibility of a transient enhancement of fatty acid oxidation in liver by acetic acid feeding.

  9. Fatigue and contraction of slow and fast muscles in hypokinetic/hypodynamic rats

    Science.gov (United States)

    Fell, R. D.; Gladden, L. B.; Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    The effects of hypokinesia/hypodynamia (H/H) on the fatigability and contractile properties of the rat soleus (S) and gastrocnemius (G) muscles have been investigated experimentally. Whole body suspension for one week was used to induce H/H, and fatigue was brought on by train stimulation for periods of 45 and 16 minutes. Following stimulation, rapid rates of fatigue were observed in the G-muscles of the suspended rats, while minimal fatigue was observed in the S-muscles. The twitch and tetanic contractile properties of the muscles were measured before and after train stimulation. It is found that H/H suspension increased twitch tension in the G-muscles, but did not change any contractile properties in the S-muscles. The peak twitch, train, tetanic tensions and time to peak were unchanged in the S-muscles of the suspended rats. On the basis of the experimental results, it is concluded that 1 wk of muscle atropy induced by H/H significantly increases fatigability in G-muscles, but does not affect the contractile properties of fast-twitch and slow-twitch muscles.

  10. Growth hormone secretagogues exert differential effects on skeletal muscle calcium homeostasis in male rats depending on the peptidyl/nonpeptidyl structure.

    Science.gov (United States)

    Liantonio, Antonella; Gramegna, Gianluca; Carbonara, Giuseppe; Sblendorio, Valeriana Teresa; Pierno, Sabata; Fraysse, Bodvaël; Giannuzzi, Viviana; Rizzi, Laura; Torsello, Antonio; Camerino, Diana Conte

    2013-10-01

    The orexigenic and anabolic effects induced by ghrelin and the synthetic GH secretagogues (GHSs) are thought to positively contribute to therapeutic approaches and the adjunct treatment of a number of diseases associated with muscle wasting such as cachexia and sarcopenia. However, many questions about the potential utility and safety of GHSs in both therapy and skeletal muscle function remain unanswered. By using fura-2 cytofluorimetric technique, we determined the acute effects of ghrelin, as well as of peptidyl and nonpeptidyl synthetic GHSs on calcium homeostasis, a critical biomarker of muscle function, in isolated tendon-to-tendon male rat skeletal muscle fibers. The synthetic nonpeptidyl GHSs, but not peptidyl ghrelin and hexarelin, were able to significantly increase resting cytosolic calcium [Ca²⁺]i. The nonpeptidyl GHS-induced [Ca²⁺]i increase was independent of GHS-receptor 1a but was antagonized by both thapsigargin/caffeine and cyclosporine A, indicating the involvement of the sarcoplasmic reticulum and mitochondria. Evaluation of the effects of a pseudopeptidyl GHS and a nonpeptidyl antagonist of the GHS-receptor 1a together with a drug-modeling study suggest the conclusion that the lipophilic nonpeptidyl structure of the tested compounds is the key chemical feature crucial for the GHS-induced calcium alterations in the skeletal muscle. Thus, synthetic GHSs can have different effects on skeletal muscle fibers depending on their molecular structures. The calcium homeostasis dysregulation specifically induced by the nonpeptidyl GHSs used in this study could potentially counteract the beneficial effects associated with these drugs in the treatment of muscle wasting of cachexia- or other age-related disorders.

  11. Changes in FAT/CD36, UCP2, UCP3 and GLUT4 gene expression during lipid infusion in rat skeletal and heart muscle.

    Science.gov (United States)

    Vettor, R; Fabris, R; Serra, R; Lombardi, A M; Tonello, C; Granzotto, M; Marzolo, M O; Carruba, M O; Ricquier, D; Federspil, G; Nisoli, E

    2002-06-01

    It has been reported that an increased availability of free fatty acids (NEFA) not only interferes with glucose utilization in insulin-dependent tissues, but may also result in an uncoupling effect of heart metabolism. We aimed therefore to investigate the effect of an increased availability of NEFA on gene expression of proteins involved in transmembrane fatty acid (FAT/CD36) and glucose (GLUT4) transport and of the uncoupling proteins UCP2 and 3 at the heart and skeletal muscle level. Euglycemic hyperinsulinemic clamp was performed after 24 h Intralipid(R) plus heparin or saline infusion in lean Zucker rats. Skeletal and heart muscle glucose utilization was calculated by 2-deoxy-[1-(3)H]-D-glucose technique. Quantification of FAT/CD36, GLUT4, UCP2 and UCP3 mRNAs was obtained by Northern blot analysis or RT-PCR. In Intralipid(R) plus heparin infused animals a significant decrease in insulin-mediated glucose uptake was observed both in the heart (22.62+/-2.04 vs 10.37+/-2.33 ng/mg/min; Pmuscle (13.46+/-1.53 vs 6.84+/-2.58 ng/mg/min; Pmuscle tissue (+117.4+/-16.3%, Pmuscle (291.5+/-24.7 and 146.9+/-12.7%). As a result of the increased availability of NEFA, FAT/CD36 gene expression increases in skeletal muscle, but not at the heart level. The augmented lipid fuel supply is responsible for the depression of insulin-mediated glucose transport and for the increase of UCP2 and 3 gene expression in both skeletal and heart muscle.

  12. Early energy metabolism-related molecular events in skeletal muscle of diabetic rats: The effects of l-arginine and SOD mimic.

    Science.gov (United States)

    Stancic, Ana; Filipovic, Milos; Ivanovic-Burmazovic, Ivana; Masovic, Sava; Jankovic, Aleksandra; Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Korac, Bato

    2017-06-25

    Considering the vital role of skeletal muscle in control of whole-body metabolism and the severity of long-term diabetic complications, we aimed to reveal the molecular pattern of early diabetes-related skeletal muscle phenotype in terms of energy metabolism, focusing on regulatory mechanisms, and the possibility to improve it using two redox modulators, l-arginine and superoxide dismutase (SOD) mimic. Alloxan-induced diabetic rats (120 mg/kg) were treated with l-arginine or the highly specific SOD mimic, M40403, for 7 days. As appropriate controls, non-diabetic rats received the same treatments. We found that l-arginine and M40403 restored diabetes-induced impairment of phospho-5'-AMP-activated protein kinase α (AMPKα) signaling by upregulating AMPKα protein itself and its downstream effectors, peroxisome proliferator-activated receptor-γ coactivator-1α and nuclear respiratory factor 1. Also, there was a restitution of the protein levels of oxidative phosphorylation components (complex I, complex II and complex IV) and mitofusin 2. Furthermore, l-arginine and M40403 induced translocation of glucose transporter 4 to the membrane and upregulation of protein of phosphofructokinase and acyl coenzyme A dehydrogenase, diminishing negative diabetic effects on limiting factors of glucose and lipid metabolism. Both treatments abolished diabetes-induced downregulation of sarcoplasmic reticulum calcium-ATPase proteins (SERCA 1 and 2). Similar effects of l-arginine and SOD mimic treatments suggest that disturbances in the superoxide/nitric oxide ratio may be responsible for skeletal muscle mitochondrial and metabolic impairment in early diabetes. Our results provide evidence that l-arginine and SOD mimics have potential in preventing and treating metabolic disturbances accompanying this widespread metabolic disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Maternal conjugated linoleic acid supplementation reverses high-fat diet-induced skeletal muscle atrophy and inflammation in adult male rat offspring.

    Science.gov (United States)

    Pileggi, C A; Segovia, S A; Markworth, J F; Gray, C; Zhang, X D; Milan, A M; Mitchell, C J; Barnett, M P G; Roy, N C; Vickers, M H; Reynolds, C M; Cameron-Smith, D

    2016-03-01

    A high-saturated-fat diet (HFD) during pregnancy and lactation leads to metabolic disorders in offspring concomitant with increased adiposity and a proinflammatory phenotype in later life. During the fetal period, the impact of maternal diet on skeletal muscle development is poorly described, despite this tissue exerting a major influence on life-long metabolic health. This study investigated the effect of a maternal HFD on skeletal muscle anabolic, catabolic, and inflammatory signaling in adult rat offspring. Furthermore, the actions of maternal-supplemented conjugated linoleic acid (CLA) on these measures of muscle phenotype were investigated. A purified control diet (CD; 10% kcal fat), a CD supplemented with CLA (CLA; 10% kcal fat, 1% total fat as CLA), a high-fat (HFD; 45% kcal fat from lard), or a HFD supplemented with CLA (HFCLA; 45% kcal fat from lard, 1% total fat as CLA) was fed ad libitum to female Sprague-Dawley rats for 10 days before mating and throughout gestation and lactation. Male offspring received a standard chow diet from weaning, and the gastrocnemius was collected for analysis at day 150. Offspring from HF and HFCLA mothers displayed lower muscular protein content accompanied by elevated monocyte chemotactic protein-1, IL-6, and IL-1β concentrations. Phosphorylation of NF-κBp65 (Ser(536)) and expression of the catabolic E3 ligase muscle ring finger 1 (MuRF1) were increased in HF offspring, an effect reversed by maternal CLA supplementation. The present study demonstrates the importance of early life interventions to ameliorate the negative effects of poor maternal diet on offspring skeletal muscle development. Copyright © 2016 the American Physiological Society.

  14. Effects of thyroid hormone on Na sup + -K sup + transport in resting and stimulated rat skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Everts, M.E.; Clausen, T. (Aarhus Univ. (Denmark))

    1988-11-01

    The effects of hypothyroidism and 3,5,3{prime}-triiodothyronine (T{sub 3}) treatment on passive Na{sup +}-K{sup +} fluxes and Na{sup +}-K{sup +} pump concentration were investigated in isolated rat muscle. Within 12 h after a single dose of T{sub 3} (20 {mu}g/100 g body wt), K{sup +} efflux had increased by 21% in soleus and by 20% in extensor digitorum longus muscle. In the presence of ouabain, even larger effects were observed. These changes were associated with a 12% rise in amiloride-suppressible Na{sup +} influx but no significant increase in ({sup 3}H)ouabain binding site concentration. After 3 days of T{sub 3} treatment, the stimulating effect on K{sup +} efflux and Na{sup +} influx in soleus reached a plateau {approximately}80 and 40% above control levels, respectively, whereas the maximum increase in ({sup 3}H)ouabain binding site concentration (103%) was only fully developed after 8 days. Hypothyroidism decreased {sup 86}Rb efflux by 30%. The efflux of K{sup +} and the influx of Na{sup +} per contraction (both {approximately}7 nmol/g wet wt) as well as the net loss of K{sup +} induced by electrical stimulation were unaffected by T{sub 3} treatment. The rise in resting K{sup +} efflux after 12-24 h of T{sub 3} treatment could be partly blocked by dantrolene or trifluoroperazine, indicating that an increase in the cytoplasmic Ca{sup 2+} concentration may contribute to the early rise in K{sup +} efflux. It is concluded that the early rise in the resting passive leaks of Na{sup +} and K{sup +} induced by T{sub 3} is a major driving force for Na{sup +}-K{sup +} pump synthesis.

  15. AMPK alpha1 activation is required for stimulation of glucose uptake by twitch contraction, but not by H2O2, in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Schjerling, Peter; Viollet, Benoit

    2008-01-01

    , in wildtype and alpha-AMPK transgenic mouse muscles, this study aimed to define conditions where alpha(1) AMPK is required to increase muscle glucose uptake. METHODOLOGY/PRINCIPAL FINDINGS: Following stimulation with H(2)O(2) (3 mM, 20 min) or twitch-contraction (0.1 ms pulse, 2 Hz, 2 min), signaling and 2...... uptake was not reduced in any of the AMPK transgenic mouse models compared with wild type. In contrast, twitch-contraction increased the activity of alpha(1) AMPK, but not alpha(2) AMPK activity nor Akt or AS160 phosphorylation. Glucose uptake was markedly lower in alpha(1) AMPK knockout and KD AMPK...

  16. Effect of Opuntia humifusa Supplementation and Acute Exercise on Insulin Sensitivity and Associations with PPAR-γ and PGC-1α Protein Expression in Skeletal Muscle of Rats

    Directory of Open Access Journals (Sweden)

    Youngju Song

    2013-03-01

    Full Text Available This study examined whether Opuntia humifusa (O. humifusa, which is a member of the Cactaceae family, supplementation and acute swimming exercise affect insulin sensitivity and associations with PPAR-γ and PGC-1α protein expression in rats. Thirty-two rats were randomly divided into four groups (HS: high fat diet sedentary group, n = 8; HE: high fat diet acute exercise group, n = 8; OS: 5% O. humifusa supplemented high fat diet sedentary group, n = 8; OE: 5% O. humifusa supplemented high fat diet acute exercise group, n = 8. Rats in the HE and OE swam for 120 min. before being sacrificed. Our results indicated that serum glucose level, fasting insulin level and homeostasis model assessment of insulin resistance (HOMA-IR in OS were significantly lower compared to those of the HS (p < 0.01, p < 0.05, p < 0.05. In addition, PPAR-γ protein expression in the OS and OE was significantly higher than that of the HS and HE, respectively (p < 0.05, p < 0.01. PGC-1α and GLUT-4 protein expressions in the OS were significantly higher compared to those of the HS (p < 0.05, p < 0.05. From these results, O. humifusa supplementation might play an important role for improving insulin sensitivity through elevation of PPAR-γ, PGC-1α, and GLUT-4 protein expression in rat skeletal muscle.

  17. Noradrenaline-induced increases in calcium and tension in skeletal muscle conductance and resistance arteries from rats with post-infarction heart failure

    DEFF Research Database (Denmark)

    Trautner, Simon; Amtorp, Ole; Boesgaard, Soren

    2006-01-01

    We tested the hypothesis that arterial reactivity to noradrenaline is augmented in congestive heart failure (CHF), which could contribute to the deleterious changes in peripheral vascular resistance and compliance in this condition. From male Wistar rats with post-infarction CHF and sham-operated......We tested the hypothesis that arterial reactivity to noradrenaline is augmented in congestive heart failure (CHF), which could contribute to the deleterious changes in peripheral vascular resistance and compliance in this condition. From male Wistar rats with post-infarction CHF and sham......-operated rats, skeletal muscle conductance and resistance arteries (mean lumen diameters: 514 and 186 microm) were isolated and mounted on wire myographs, and wall tension was recorded in response to cumulative application of acetylcholine and noradrenaline to the vessel segments. In a subset of experiments....... In the resistance arteries of CHF rats, the noradrenaline-induced increases in [Ca(2+)](i) were significantly enhanced (P=0.003). Despite the augmented [Ca(2+)](i) levels, the tension responses to noradrenaline were unaltered in these arteries. In the conductance arteries, there were no significant differences...

  18. The effects of chronic AC magnetic field on contraction and relaxation of isolated thoracic aorta rings of healthy and diabetic rats

    Directory of Open Access Journals (Sweden)

    Isil Öcal

    2004-09-01

    Full Text Available The aim of in this study was to determine the effect of chronic alternating current (AC magnetic field on the contraction and relaxation parameters of isolated thoracic aorta rings in healthy and diabetic rats. Sixty rats (Wistar albino spp weighing between 250-300 g were used. The rats were divided into four groups: 1-Control (C, 2- control + magnetic field (C+MA, 3- experimental diabetic (DIA, 4- experimental diabetic and magnetic field (DIA+MA. Magnetic fields of 5 mT intensity and 50 Hz frequency oriented in the north-south direction was applied to the C+MA and DIA+MA groups for 2 hours each day for one month, after which rats were killed by decapitation and the thoracic aorta dissected. This showed attenuated contraction responses to phenylephrine (PE and elevated relaxation responses to acetylcholine (ACh of the thoracic aorta rings of rats in the C+MA and DIA+MA groups compared to group C but no changes in the relaxation responses to sodium nitroprruside (SNP of thoracic aorta rings relative to group C and DIA. The weights of rats in DIA+MA or C+MA groups compared to the DIA and C groups decreased.

  19. Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Pehmøller, Christian; Treebak, Jonas Thue; Birk, Jesper Bratz

    2009-01-01

    ) phosphorylation or 14-3-3 binding to TBC1D1. However, insulin increased Thr(596) phosphorylation, and intriguingly this response was fully abolished in the AMPK KD mice. Thus, TBC1D1 is differentially regulated in response to insulin and contraction. This study provides genetic evidence to support an important...

  20. Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats.

    Science.gov (United States)

    Seymour, E Mitchell; Tanone, Ignasia I; Urcuyo-Llanes, Daniel E; Lewis, Sarah K; Kirakosyan, Ara; Kondoleon, Michael G; Kaufman, Peter B; Bolling, Steven F

    2011-12-01

    Metabolic syndrome can precede the development of type 2 diabetes and cardiovascular disease and includes phenotypes such as obesity, systemic inflammation, insulin resistance, and hyperlipidemia. A recent epidemiological study indicated that blueberry intake reduced cardiovascular mortality in humans, but the possible genetic mechanisms of this effect are unknown. Blueberries are a rich source of anthocyanins, and anthocyanins can alter the activity of peroxisome proliferator-activated receptors (PPARs), which affect energy substrate metabolism. The effect of blueberry intake was assessed in obesity-prone rats. Zucker Fatty and Zucker Lean rats were fed a higher-fat diet (45% of kcal) or a lower-fat diet (10% of kcal) containing 2% (wt/wt) freeze-dried whole highbush blueberry powder or added sugars to match macronutrient and calorie content. In Zucker Fatty rats fed a high-fat diet, the addition of blueberry reduced triglycerides, fasting insulin, homeostasis model index of insulin resistance, and glucose area under the curve. Blueberry intake also reduced abdominal fat mass, increased adipose and skeletal muscle PPAR activity, and affected PPAR transcripts involved in fat oxidation and glucose uptake/oxidation. In Zucker Fatty rats fed a low-fat diet, the addition of blueberry also significantly reduced liver weight, body weight, and total fat mass. Finally, Zucker Lean rats fed blueberry had higher body weight and reduced triglycerides, but all other measures were unaffected. In conclusion, whole blueberry intake reduced phenotypes of metabolic syndrome in obesity-prone rats and affected PPAR gene transcripts in adipose and muscle tissue involved in fat and glucose metabolism.