WorldWideScience

Sample records for continuum source graphite

  1. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Determination of cobalt in biological samples by line-source and high-resolution continuum source graphite furnace atomic absorption spectrometry using solid sampling or alkaline treatment

    International Nuclear Information System (INIS)

    Ribeiro, Anderson Schwingel; Vieira, Mariana Antunes; Furtado da Silva, Alessandra; Borges, Daniel L. Gallindo; Welz, Bernhard; Heitmann, Uwe; Curtius, Adilson Jose

    2005-01-01

    Two procedures for the determination of Co in biological samples by graphite furnace atomic absorption spectrometry (GF AAS) were compared: solid sampling (SS) and alkaline treatment with tetramethylammonium hydroxide (TMAH) using two different instruments for the investigation: a conventional line-source (LS) atomic absorption spectrometer and a prototype high-resolution continuum source atomic absorption spectrometer. For the direct introduction of the solid samples, certified reference materials (CRM) were ground to a particle size ≤50 μm. Alkaline treatment was carried out by placing about 250 mg of the sample in polypropylene flasks, adding 2 mL of 25% m/v tetramethylammonium hydroxide and de-ionized water. Due to its unique capacity of providing a 3-D spectral plot, a high-resolution continuum source (HR-CS) graphite furnace atomic absorption spectrometry was used as a tool to evaluate potential spectral interferences, including background absorption for both sample introduction procedures, revealing that a continuous background preceded the atomic signal for pyrolysis temperatures lower than 700 deg. C. Molecular absorption bands with pronounced rotational fine structure appeared for atomization temperatures >1800 deg. C probably as a consequence of the formation of PO. After optimization had been carried out using high resolution continuum source atomic absorption spectrometry, the optimized conditions were adopted also for line-source atomic absorption spectrometry. Six biological certified reference materials were analyzed, with calibration against aqueous standards, resulting in agreement with the certified values (according to the t-test for a 95% confidence level) and in detection limits as low as 5 ng g -1

  3. Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers

    Science.gov (United States)

    Abad, Carlos; Florek, Stefan; Becker-Ross, Helmut; Huang, Mao-Dong; Heinrich, Hans-Joachim; Recknagel, Sebastian; Vogl, Jochen; Jakubowski, Norbert; Panne, Ulrich

    2017-10-01

    Boron isotope amount ratios n(10B)/n(11B) have been determined by monitoring the absorption spectrum of boron monohydride (BH) in a graphite furnace using high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Bands (0 → 0) and (1 → 1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Clean and free of memory effect molecular spectra of BH were recorded. In order to eliminate the memory effect of boron, a combination of 2% (v/v) hydrogen gas in argon and 1% trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers was used. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, for the evaluated region of 437 nm, an accuracy of 0.15‰ is obtained as the average deviation from the isotope reference materials. Expanded uncertainties with a coverage factor of k = 2 range between 0.15 and 0.44‰. This accuracy and precision are compatible with those obtained by mass spectrometry for boron isotope ratio measurements.

  4. Determination of trace concentrations of chlorine in aqueous solutions by high-resolution continuum source graphite furnace molecular absorption spectrometry

    Science.gov (United States)

    Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest

    2016-11-01

    Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.

  5. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Filatova, Daria G.; Eskina, Vasilina V.; Baranovskaya, Vasilisa B.; Vladimirova, Svetlana A.; Gaskov, Alexander M.; Rumyantseva, Marina N.; Karpov, Yuri A.

    2018-02-01

    A novel approach is developed for the determination of Co and Au dopants in advanced materials based on tin oxide using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with direct slurry sampling. Sodium carboxylmethylcellulose (Na-CMC) is an effective stabilizer for diluted suspensions. Use Na-CMC allows to transfer the analytes into graphite furnace completely and reproducibly. The relative standard deviation obtained by HR CS GFAAS was not higher than 4%. Accuracy was proven by means inductively coupled plasma mass spectrometry (ICP-MS) in solutions after decomposition as a comparative technique. To determine Au and Co in the volume of SnO2, the acid decomposition conditions (HCl, HF) of the samples were suggested by means of an autoclave in a microwave oven.

  6. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).

  7. Investigation of chemical modifiers for phosphorus in a graphite furnace using high-resolution continuum source atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lepri, Fabio G.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Borges, Daniel L.G.; Welz, Bernhard; Heitmann, Uwe

    2006-01-01

    Phosphorus is not one of the elements that are typically determined by atomic absorption spectrometry, but this technique nevertheless offers several advantages that make it attractive, such as the relatively great freedom from interferences. As the main resonance lines for phosphorus are in the vacuum-ultraviolet, inaccessible by conventional atomic absorption spectrometry equipment, L'vov and Khartsyzov proposed to use the non-resonance doublet at 213.5 / 213.6 nm. Later it turned out that with conventional equipment it is necessary to use a chemical modifier in order to get reasonable sensitivity, and lanthanum was the first one suggested for that purpose. In the following years more than 30 modifiers have been proposed for the determination of this element, and there is no consensus about the best one. In this work high-resolution continuum source atomic absorption spectrometry has been used to investigate the determination of phosphorus without a modifier and with the addition of selected modifiers of very different nature, including the originally recommended lanthanum modifier, several palladium-based modifiers and sodium fluoride. As high-resolution continuum source atomic absorption spectrometry is revealing the spectral environment of the analytical line at high resolution, it became obvious that without the addition of a modifier essentially no atomic phosphorus is formed, even at 2700 deg. C . The absorption measured with line source atomic absorption spectrometry in this case is due to the PO molecule, the spectrum of which is overlapping with the atomic line. Palladium, with or without the addition of calcium or ascorbic acid, was found to be the only modifier to produce almost exclusively atomic phosphorus. Lanthanum and particularly sodium fluoride produced a mixture of P and PO, depending on the atomization temperature. This fact can explain at least some of the discrepancies found in the literature and some of the phenomena observed in the

  8. Determination of bromide in aqueous solutions via the TlBr molecule using high-resolution continuum source graphite furnace molecular absorption spectrometry

    Science.gov (United States)

    Cacho, Frantisek; Machynak, Lubomir; Nemecek, Martin; Beinrohr, Ernest

    2018-06-01

    The paper describes the determination of bromide by evaluating the molecular absorption of thallium mono-bromide (TlBr) at the rotational line at 342.9815 nm by making use a high-resolution continuum source graphite furnace atomic absorption spectrometer. The effects of variables such as the wavelength, graphite furnace program, amount of Tl and the use of a modifier were investigated and optimized. Various chemical modifiers have been studied, such as Pd, Mg, Ag and a mixture of Pd/Mg. It was found that best results were obtained by using Ag which prevents losses of bromide during pyrolysis step through precipitation of bromide as AgBr. In this way, a maximum pyrolysis temperature of 400 °C could be used. The optimum molecule forming temperature was found to be 900 °C. Bromide concentrations in various water samples (CRM, bottled drinking water and tap water) were determined. The quantification was made by both linear calibration and standard addition techniques. The results were matched well those of the reference method. The calibration curve was linear in the range between 1 and 1000 ng Br with a correlation coefficient R = 0.999. The limit of detection and characteristic mass of the method were 0.3 ng and 4.4 ng of Br.

  9. Determination of sulfur in human hair using high resolution continuum source graphite furnace molecular absorption spectrometry and its correlation with total protein and albumin

    Science.gov (United States)

    Ozbek, Nil; Baysal, Asli

    2017-04-01

    Human hair is a valuable contributor for biological monitoring. It is an information storage point to assess the effects of environmental, nutritional or occupational sources on the body. Human proteins, amino acids or other compounds are among the key components to find the sources of different effects or disorders in the human body. Sulfur is a significant one of these compounds, and it has great affinity to some metals and compounds. This property of the sulfur affects the human health positively or negatively. In this manuscript, sulfur was determined in hair samples of autistic and age-match control group children via molecular absorption of CS using a high-resolution continuum source graphite furnace atomic absorption spectrometer. For this purpose, hair samples were appropriately washed and dried at 75 °C. Then samples were dissolved in microwave digestion using HNO3 for sulfur determination. Extraction was performed with HCl hydrolysation by incubation for 24 h at 110 °C for total protein and albumin determination. The validity of the method for the sulfur determination was tested using hair standard reference materials. The results were in the uncertainty limits of the certified values at 95% confidence level. Finally correlation of sulfur levels of autistic children's hair with their total protein and albumin levels were done.

  10. Determination of phospholipids in soybean lecithin samples via the phosphorus monoxide molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    Science.gov (United States)

    Pires, Laís N; Brandão, Geovani C; Teixeira, Leonardo S G

    2017-06-15

    This paper presents a method for determining phospholipids in soybean lecithin samples by phosphorus determination using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) via molecular absorption of phosphorus monoxide. Samples were diluted in methyl isobutyl ketone. The best conditions were found to be 213.561nm with a pyrolysis temperature of 1300°C, a volatilization temperature of 2300°C and Mg as a chemical modifier. To increase the analytical sensitivity, measurement of the absorbance signal was obtained by summing molecular transition lines for PO surrounding 213nm: 213.561, 213.526, 213.617 and 213.637nm. The limit of detection was 2.35mgg -1 and the precision, evaluated as relative standard deviation (RSD), was 2.47% (n=10) for a sample containing 2.2% (w/v) phosphorus. The developed method was applied for the analysis of commercial samples of soybean lecithin. The determined concentrations of phospholipids in the samples varied between 38.1 and 45% (w/v). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Charles S. [Instituto Federal Sul-rio-grandense, Câmpus Pelotas, Pelotas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Universidade Federal de Santa Catarina, Departamento de Química, Florianópolis, SC (Brazil); Andrade, Jailson B. [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2015-06-01

    High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg{sup −1} and 4.7 mg kg{sup −1}, respectively. - Highlights: • Ir, Ru and Zr were investigated as permanent modifiers. • Ca, Mg, Pd and Pd/Mg were investigated as modifiers in solution. • Indirect determination of sulfur monitoring the molecular absorbance of the CS • Direct analysis of diesel samples using a dilution in propan-1-ol.

  12. CaI and SrI molecules for iodine determination by high-resolution continuum source graphite furnace molecular absorption spectrometry: Greener molecules for practical application.

    Science.gov (United States)

    Zanatta, Melina Borges Teixeira; Nakadi, Flávio Venâncio; da Veiga, Márcia Andreia Mesquita Silva

    2018-03-01

    A new method to determine iodine in drug samples by high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) has been developed. The method measures the molecular absorption of a diatomic molecule, CaI or SrI (less toxic molecule-forming reagents), at 638.904 or 677.692nm, respectively, and uses a mixture containing 5μg of Pd and 0.5μg of Mg as chemical modifier. The method employs pyrolysis temperatures of 1000 and 800°C and vaporization temperatures of 2300 and 2400°C for CaI and SrI, respectively. The optimized amounts of Ca and Sr as molecule-forming reagents are 100 and 150µg, respectively. On the basis of interference studies, even small chlorine concentrations reduce CaI and SrI absorbance significantly. The developed method was used to analyze different commercial drug samples, namely thyroid hormone pills with three different iodine amounts (15.88, 31.77, and 47.66µg) and one liquid drug with 1% m v -1 active iodine in their compositions. The results agreed with the values informed by the manufacturers (95% confidence level) regardless of whether CaI or SrI was determined. Therefore, the developed method is useful for iodine determination on the basis of CaI or SrI molecular absorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    International Nuclear Information System (INIS)

    Virgilio, Alex; Nóbrega, Joaquim A.; Rêgo, Jardes F.; Neto, José A. Gomes

    2012-01-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 °C and 2400 °C, respectively. Slopes of calibration curves (50–750 pg Cr, R 2 > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3–17.7 μg g −1 Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 ± 2.1 μg g −1 Cr. The limit of detection was 3.3 ng g −1 Cr. - Highlights: ► Direct solid sampling is first time employed for Cr in plant materials. ► Calibration curves with liquids and solids are coincident. ► Microanalysis of plants for Cr is validated by reference materials. ► The proposed HR-CS GF AAS method is environmental friendly.

  14. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Virgilio, Alex; Nobrega, Joaquim A. [Department of Chemistry, Federal University of Sao Carlos, Post Office Box 676, 13560-970, Sao Carlos-SP (Brazil); Rego, Jardes F. [Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University-UNESP, Post Office Box 355, 14801-970, Araraquara-SP (Brazil); Neto, Jose A. Gomes, E-mail: anchieta@iq.unesp.br [Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University-UNESP, Post Office Box 355, 14801-970, Araraquara-SP (Brazil)

    2012-12-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 Degree-Sign C and 2400 Degree-Sign C, respectively. Slopes of calibration curves (50-750 pg Cr, R{sup 2} > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3-17.7 {mu}g g{sup -1} Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 {+-} 2.1 {mu}g g{sup -1} Cr. The limit of detection was 3.3 ng g{sup -1} Cr. - Highlights: Black-Right-Pointing-Pointer Direct solid sampling is first time employed for Cr in plant materials. Black-Right-Pointing-Pointer Calibration curves with liquids and solids are coincident. Black-Right-Pointing-Pointer Microanalysis of plants for Cr is validated by reference materials. Black-Right-Pointing-Pointer The proposed HR-CS GF AAS method is environmental friendly.

  15. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Micro-sampling method based on high-resolution continuum source graphite furnace atomic absorption spectrometry for calcium determination in blood and mitochondrial suspensions.

    Science.gov (United States)

    Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Satrústegui, Jorgina; Procopio, Jesús R

    2017-08-01

    A micro-sampling and straightforward method based on high resolution continuum source atomic absorption spectrometry (HR-CS AAS) was developed to determine extracellular and intracellular Ca in samples of interest in clinical and biomedical analysis. Solid sampling platforms were used to introduce the micro-samples into the graphite furnace atomizer. The secondary absorption line for Ca, located at 239.856nm, was selected to carry out the measurements. Experimental parameters such as pyrolysis and atomization temperatures and the amount of sample introduced for the measurements were optimized. Calibration was performed using aqueous standards and the approach to measure at the wings of the absorption lines was employed for the expansion of the linear response range. The limit of detection was of 0.02mgL -1 Ca (0.39ng Ca) and the upper limit of linear range was increased up to 8.0mgL -1 Ca (160ng Ca). The proposed method was used to determine Ca in mitochondrial suspensions and whole blood samples with successful results. Adequate recoveries (within 91-107%) were obtained in the tests performed for validation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Investigation of spectral interferences in the determination of lead in fertilizers and limestone samples using high-resolution continuum source graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Aline R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Becker, Emilene M.; François, Luciane L.; Jesus, Alexandre de [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2014-11-01

    In the present work, spectral interferences on the determination of lead in fertilizer and limestone samples were investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry at the main analytical lines: 217.001 and 283.306 nm. For these investigations, samples were introduced into the furnace as slurry together with a mixture of Pd and Mg as chemical modifier. Spectral interferences were observed for some samples at both analytical lines. In order to verify whether a wet digestion procedure would avoid these interferences, a reference method for wet digestion of fertilizers was employed as an alternative sample preparation procedure. However, the same interferences were also observed in the digested samples. In order to identify and eliminate the fine-structured background using a least-squares background correction, reference spectra were generated using the combination of different species. The use of the latter technique allowed the elimination of spectral interferences for most of the investigated samples, making possible the determination of lead in fertilizer and limestone samples free of interferences. The best results were found using a reference spectrum of NH{sub 4}H{sub 2}PO{sub 4} at 217.001 nm, and a mixture of H{sub 2}SO{sub 4} + Ca and HNO{sub 3} + Ca at the 283.306 nm line. The accuracy of the method was evaluated using a certified reference material “Trace Elements in Multi-Nutrient Fertilizer”. Similar results were obtained using line source graphite furnace atomic absorption spectrometry with Zeeman-effect background correction, indicating that the latter technique was also capable to correct the spectral interferences, at least in part. - Highlights: • Spectral interferences on the determination of lead in fertilizers and limestone. • The analytical lines at 217.001 nm and 283.306 nm using HR-CS GF AAS. • Various combinations of compounds were used to create reference spectra. • LSBC

  18. Spectrometer system using a modular echelle spectrograph and a laser-driven continuum source for simultaneous multi-element determination by graphite furnace absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Sebastian; Okruss, Michael; Becker-Ross, Helmut; Huang, Mao Dong, E-mail: huang@isas.de; Esser, Norbert; Florek, Stefan

    2015-05-01

    A multi-element absorption spectrometer system has been developed based on a laser-driven xenon continuum source and a modular simultaneous echelle spectrograph (MOSES), which is characterized by a minimized number of optical components resulting in high optical throughput, high transmittance and high image quality. The main feature of the new optical design is the multifunction usage of a Littrow prism, which is attached on a rotation stage. It operates as an order-sorter for the echelle grating in a double-pass mode, as a fine positioning device moving the echelle spectrum on the detector, and as a forwarder to address different optical components, e.g., echelle gratings, in the setup. Using different prisms, which are mounted back to back on the rotation stage, a multitude of different spectroscopic modes like broad-range panorama observations, specific UV–VIS and NIR studies or high resolution zoom investigations of variable spectral channels can be realized. In the UV panorama mode applied in this work, MOSES has simultaneously detectable wavelength coverage from 193 nm to 390 nm with a spectral resolution λ/Δλ of 55,000 (3-pixel criterion). In the zoom mode the latter can be further increased by a factor of about two for a selectable section of the full wavelength range. The applicability and the analytical performance of the system were tested by simultaneous element determination in a graphite furnace, using eight different elements. Compared to an instrument operating in the optimized single line mode, the achieved analytical sensitivity using the panorama mode was typically a factor of two lower. Using the zoom mode for selected elements, comparable sensitivities were obtained. The results confirm the influence of the different spectral resolutions. - Highlights: • Echelle spectrometer with a full frame CCD array detector • High and variable spectral resolution from λ/Δλ of 55,000 to 95,000 • Laser-driven continuum light source

  19. On the possibilities of high-resolution continuum source graphite furnace atomic absorption spectrometry for the simultaneous or sequential monitoring of multiple atomic lines

    International Nuclear Information System (INIS)

    Resano, M.; Rello, L.; Florez, M.; Belarra, M.A.

    2011-01-01

    This paper explores the potential of commercially available high-resolution continuum source graphite furnace atomic absorption spectrometry instrumentation for the simultaneous or sequential monitoring of various atomic lines, in an attempt to highlight the analytical advantages that can be derived from this strategy. In particular, it is demonstrated how i) the monitoring of multiplets may allow for the simple expansion of the linear range, as shown for the measurement of Ni using the triplet located in the vicinity of 234.6 nm; ii) the use of a suitable internal standard may permit improving the precision and help in correcting for matrix-effects, as proved for the monitoring of Ni in different biological samples; iii) direct and multi-element analysis of solid samples may be feasible on some occasions, either by monitoring various atomic lines that are sufficiently close (truly simultaneous monitoring, as demonstrated in the determination of Co, Fe and Ni in NIST 1566a Oyster tissue) or, alternatively, by opting for a selective and sequential atomization of the elements of interest during every single replicate. Determination of Cd and Ni in BCR 679 White cabbage is attempted using both approaches, which permits confirming that both methods can offer very similar and satisfactory results. However, it is important to stress that the second approach provides more flexibility, since analysis is no longer limited to those elements that show very close atomic lines (closer than 0.3 nm in the ultraviolet region) with a sensitivity ratio similar to the concentration ratio of the analytes in the samples investigated.

  20. Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira

    2015-12-01

    The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.

  1. Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rennan G.O., E-mail: rgoa01@terra.com.br [Laboratorio de Quimica Analitica Ambiental, Departamento de Quimica, Universidade Federal de Sergipe, Campus Sao Cristovao, 49.100-000, Sao Cristovao, SE (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Vignola, Fabiola; Castilho, Ivan N.B. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borges, Daniel L.G.; Welz, Bernhard [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Vale, Maria Goreti R. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Smichowski, Patricia [Comision Nacional de Energia Atomica (CNEA) and Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Ferreira, Sergio L.C. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal da Bahia, 40170-290, Salvador, BA (Brazil); Becker-Ross, Helmut [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V., Department Berlin, 12489 Berlin (Germany)

    2011-05-15

    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3{sigma}), based on ten atomizations of an unexposed filter, was 40 ng g{sup -1}, corresponding to 0.12 ng m{sup -3} in the air for a typical air volume of 1440 m{sup 3} collected within 24 h. The limit of quantification was 150 ng g{sup -1}, equivalent to 0.41 ng m{sup -3} in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g{sup -1} and 381 {+-} 24 ng g{sup -1}. These values correspond to a mercury concentration in the air between < 0.12 ng m{sup -3} and 1.47 {+-} 0.09 ng m{sup -3}. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.

  2. Determination of Pb (Lead, Cd (Cadmium, Cr (Chromium, Cu (Copper, and Ni (Nickel in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Wen-Si Zhong

    2016-01-01

    Full Text Available The contents of lead, cadmium, chromium, copper, and nickel were determined in 25 tea samples from China, including green, yellow, white, oolong, black, Pu'er, and jasmine tea products, using high-resolution continuum source graphite furnace atomic absorption spectrometry. The methods used for sample preparation, digestion, and quantificational analysis were established, generating satisfactory analytical precisions (represented by relative standard deviations ranging from 0.6% to 2.5% and recoveries (98.91–101.32%. The lead contents in tea leaves were 0.48–10.57 mg/kg, and 80% of these values were below the maximum values stated by the guidelines in China. The contents of cadmium and chromium ranged from 0.01 mg/kg to 0.39 mg/kg and from 0.27 mg/kg to 2.45 mg/kg, respectively, remaining in compliance with the limits stipulated by China's Ministry of Agriculture. The copper contents were 7.73–63.71 mg/kg; only 64% of these values complied with the standards stipulated by the Ministry of Agriculture. The nickel contents ranged from 2.70 mg/kg to 13.41 mg/kg. Consequently, more attention must be paid to the risks of heavy metal contamination in tea. The quantitative method established in this work lays a foundation for preventing heavy metal toxicity in human from drinking tea and will help establish regulations to control the contents of heavy metals in tea.

  3. Simultaneous determination of cadmium, iron and tin in canned foods using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Leao, Danilo J; Junior, Mario M S; Brandao, Geovani C; Ferreira, Sergio L C

    2016-06-01

    A method was established to simultaneously determine cadmium, iron and tin in canned-food samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). The quantification step has been performed using the primary line (228.802nm) for cadmium and the adjacent secondary lines (228.725nm and 228.668nm) for iron and tin, respectively. The selected chemical modifier was an acid solution that contained a mixture of 0.1% (w/v) Pd and 0.05% (w/v) Mg. The absorbance signals were measured based on the peak area using 3 pixels for cadmium and 5 pixels for iron and tin. Under these conditions, cadmium, iron and tin have been determined in canned-food samples using the external calibration technique based on aqueous standards, where the limits of quantification were 2.10ngg(-1) for cadmium, 1.95mgkg(-1) for iron and 3.00mgkg(-1) for tin, and the characteristic masses were 1.0pg for cadmium, 0.9ng for iron and 1.1ng for tin. The precision was evaluated using two solutions of each metal ion, and the results, which were expressed as the relative standard deviation (RSD%), were 3.4-6.8%. The method accuracy for cadmium and iron was confirmed by analyzing a certified reference material of apple leaves (NIST 1515), which was supplied by NIST. However, for tin, the accuracy was confirmed by comparing the results of the proposed method and another analytical technique (inductively coupled plasma optical emission spectrometry). The proposed procedure was applied to determine cadmium, iron and tin in canned samples of peeled tomato and sardine. Eleven samples were analyzed, and the analyte concentrations were 3.57-62.9ngg(-1), 2.68-31.48mgkg(-1) and 4.06-122.0mgkg(-1) for cadmium, iron and tin, respectively. In all analyzed samples, the cadmium and tin contents were lower than the permissible maximum levels for these metals in canned foods in the Brazilian legislation. Copyright © 2016. Published by Elsevier B.V.

  4. Determination of chlorine in food samples via the AlCl molecule using high-resolution continuum source molecular absorption spectrometry in a graphite furnace

    Energy Technology Data Exchange (ETDEWEB)

    Fechetia, Miriam; Tognon, Andre Luiz; Veiga, Marcia A.M.S. da, E-mail: mamsveiga@ffclrp.usp.br

    2012-05-15

    Determination of chlorine using the molecular absorption of aluminum mono-chloride (AlCl) at the 261.418 nm wavelength was accomplished by high-resolution continuum source molecular absorption spectrometry using a transversely heated graphite tube furnace with an integrated platform. For the analysis, 10 {mu}L of the sample followed by 10 {mu}L of a solution containing Al-Ag-Sr modifier, (1 g L{sup -1} each), were directly injected onto the platform. A spectral interference due to the use of Al-Ag-Sr as mixed modifier was easily corrected by the least-squares algorithm present in the spectrometer software. The pyrolysis and vaporization temperatures were 500 Degree-Sign C and 2200 Degree-Sign C, respectively. To evaluate the feasibility of a simple procedure for the determination of chlorine in food samples present in our daily lives, two different digestion methods were applied, namely (A) an acid digestion method using HNO{sub 3} only at room temperature, and (B) a digestion method with Ag, HNO{sub 3} and H{sub 2}O{sub 2}, where chlorine is precipitated as a low-solubility salt (AgCl), which is then dissolved with ammonia solution. The experimental results obtained with method B were in good agreement with the certified values and demonstrated that the proposed method is more accurate than method A. This is because the formation of silver chloride prevented analyte losses by volatilization. The limit of detection (LOD, 3{sigma}/s) for Cl in methods A and B was 18 {mu}g g{sup -1} and 9 {mu}g g{sup -1}, respectively, 1.7 and 3.3 times lower compared to published work using inductively coupled plasma optical emission spectrometry, and absolute LODs were 2.4 and 1.2 ng, respectively. - Highlights: Black-Right-Pointing-Pointer HR-CS MAS as technique for Cl determination via AlCl molecule Black-Right-Pointing-Pointer Spectral interference was corrected by the least-squares algorithm. Black-Right-Pointing-Pointer Chorine precipitation as AgCl prevents Cl losses during

  5. Simultaneous determination of Cd and Fe in beans and soil of different regions of Brazil using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling.

    Science.gov (United States)

    dos Santos, Lisia M G; Welz, Bernhard; Araujo, Rennan G O; Jacob, Silvana do C; Vale, Maria Goreti R; Martens, Andreas; Gonzaga Martens, Irland B; Becker-Ross, Helmut

    2009-11-11

    A fast routine screening method for the simultaneous determination of cadmium and iron in bean and soil samples is proposed, using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling. The primary absorption line at 228.802 nm has been used for the determination of cadmium, and an adjacent secondary line, at 228.726 nm, for iron. Fourteen bean samples and 10 soil samples from nine states all over Brazil have been analyzed. The limits of detection (3 sigma, n = 10) were 2.0 microg kg(-1) for Cd and 4.5 mg kg(-1) for Fe. The relative standard deviation ranged from 4 to 7% for Cd and from 5 to 28% for Fe, which is usually acceptable for a screening method. The accuracy of the method has been confirmed by the analysis of two certified reference materials; the results were in agreement with the certified values at a 95% confidence interval.

  6. Investigation of the feasibility to use Zeeman-effect background correction for the graphite furnace determination of phosphorus using high-resolution continuum source atomic absorption spectrometry as a diagnostic tool

    Energy Technology Data Exchange (ETDEWEB)

    Lepri, Fabio G. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.b [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Dessuy, Morgana B.; Vale, Maria Goreti R. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre-RS (Brazil); Bohrer, Denise [Departamento de Quimica, Universidade Federal de Santa Maria, 97110-905 Santa Maria, RS (Brazil); Loos-Vollebregt, Margaretha T.C. de [Delft University of Technology, Faculty of Applied Sciences, Analytical Biotechnology, Julianalaan 137, 2628 BL Delft (Netherlands); Department of Analytical Chemistry, Ghent University, Krijgslaan 281 - S12, B-9000 Ghent (Belgium); Mao Donghuang; Becker-Ross, Helmut [ISAS, Institute for Analytical Sciences, Department of Interface Spectroscopy, Albert-Einstein Str. 9, 12489 Berlin (Germany)

    2010-01-15

    The determination of phosphorus by graphite furnace atomic absorption spectrometry at the non-resonance line at 213.6 nm, and the capability of Zeeman-effect background correction (Z-BC) to deal with the fine-structured background absorption due to the PO molecule have been investigated in the presence of selected chemical modifiers. Two line source atomic absorption spectrometers, one with a longitudinally heated and the other with a transversely heated graphite tube atomizer have been used in this study, as well as two prototype high-resolution continuum source atomic absorption spectrometers, one of which had a longitudinally arranged magnet at the furnace. It has been found that Z-BC is capable correcting very well the background caused by the PO molecule, and also that of the NO molecule, which has been encountered when the Pd + Ca mixed modifier was used. Both spectra exhibited some Zeeman splitting, which, however, did not cause any artifacts or correction errors. The practical significance of this study is to confirm that accurate results can be obtained for the determination of phosphorus using Z-BC. The best sensitivity with a characteristic mass of m{sub 0} = 11 ng P has been obtained with the pure Pd modifier, which also caused the lowest background level. The characteristic mass obtained with the mixed Pd+Ca modifier depended on the equipment used and was between m{sub 0} = 9 ng P and m{sub 0} = 15 ng P, and the background signal was higher. The major problem of Z-BC remains the relatively restricted linear working range.

  7. Graphite moderated 252Cf source

    International Nuclear Information System (INIS)

    Sajo B, L.; Barros, H.; Greaves, E. D.; Vega C, H. R.

    2014-08-01

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a 252 Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the 252 Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  8. Cobalt internal standard for Ni to assist the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis.

    Science.gov (United States)

    de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella

    2016-05-15

    A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    Science.gov (United States)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  10. Trace elements determination in high salinity petroleum produced formation water by high-resolution continuum source graphite furnace atomic absorption spectrometry after matrix separation using Chelex-100 Registered-Sign resin

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Aline Soares [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil); Departamento de Quimica Analitica, Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco A, Cidade Universitaria, Rio de Janeiro/RJ, 21941-909 (Brazil); Santelli, Ricardo Erthal, E-mail: santelli@iq.ufrj.br [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil); Departamento de Quimica Analitica, Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco A, Cidade Universitaria, Rio de Janeiro/RJ, 21941-909 (Brazil)

    2012-05-15

    This study describes a procedure used for the determination of trace metals (Co, Cu, Mn, Ni and Pb) in high salinity petroleum produced formation water (PFW) employing high-resolution continuum source graphite furnace atomic absorption spectrometry for detection and Chelex-100 Registered-Sign resin for matrix elimination and analytes preconcentration. Using 15.0 mL of PFW for the separation/preconcentration, detection limits of 0.006, 0.07, 0.03, 0.08 and 0.02 {mu}g L{sup -1} were obtained for Co, Cu, Mn, Ni and Pb, respectively. The accuracy of the proposed method was evaluated by analyzing three seawater certified reference materials and by recovery tests, and the data indicate that the methodology can be successfully applied to this kind of samples. The precision values, expressed as relative standard deviation (% RSD, n = 10) for 2.0 {mu}g L{sup -1}, were found to be 3.5, 4.0, 9.0, 5.3 and 5.9 for Co, Cu, Mn, Ni and Pb, respectively. The proposed procedure was applied for the determination of these metals in medium and high salinity PFW samples obtained from Brazilian offshore petroleum exploration platforms. - Highlights: Black-Right-Pointing-Pointer Petroleum-produced formation water were analyzed for Co, Cu, Mn, Ni and Pb determination. Black-Right-Pointing-Pointer In batch analyte preconcentration/matrix separation using Chelex-100 Registered-Sign was used. Black-Right-Pointing-Pointer Detection limits between 0.006 and 0.08 {mu}g L{sup -1} were found by using HR-CS-GFAAS. Black-Right-Pointing-Pointer Trace elements characterization is possible using the developed method. Black-Right-Pointing-Pointer Maximum trace element concentrations found could support future Brazilian directives.

  11. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Resano, Martín, E-mail: mresano@unizar.es [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Flórez, María del Rosario [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Queralt, Ignasi [Institute of Earth Sciences Jaume Almera ICTJA-CSIC, Sole Sabarís s/n, 08028 Barcelona (Spain); Marguí, Eva [Department of Chemistry, Faculty of Sciences, Universitat de Girona, Campus Montilivi s/n, 17071 Girona (Spain)

    2015-03-01

    This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH{sub 4}F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g{sup −1} (Pd), 8.3 μg g{sup −1} (Pt) and 9.3 μg g{sup −1} (Rh) for catalysts, which decreased to 0.08 μg g{sup −1} (Pd), 0.15 μg g{sup −1} (Pt) and 0.10 μg g{sup −1} (Rh) for pharmaceuticals. - Highlights: • Solid sampling HR CS GFAAS permits the fast and direct determination of Pd, Pt and Rh. • 2 determinations suffice for the 3 elements (2 of them can be measured simultaneously). • Samples as different as car catalysts and pharmaceuticals can be accurately analyzed. • Aqueous standards (pharmaceuticals) or a solid CRM (catalysts) is used for calibration.

  12. Separation and preconcentration of platinum-group metals from spent autocatalysts solutions using a hetero-polymeric S, N-containing sorbent and determination by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Eskina, Vasilina V; Dalnova, Olga A; Filatova, Daria G; Baranovskaya, Vasilisa B; Karpov, Yuri A

    2016-10-01

    This paper describes the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for determination of Pt, Pd and Rh after separation and concentration by original in-house developed heterochain polymer S, N-containing sorbent. The methods of sample preparation of spent ceramic-based autocatalysts were considered, two of which were used: autoclave decomposition in mixture of acids HCl:HNO3 (3:1) and high-temperature melting with K2S2O7. Both methods anyway limit the direct determination of analytes by HR CS GFAAS. Using the first method it is an incomplete digestion of spent autocatalysts samples, since the precipitate is Si, and the rhodium metal dissolves with difficulty and partially passes into solution. In contrast to the first method, the second method allow to completely transfer analytes into solution, however, the background signal produced by the chemical composition of the flux, overlaps the analytical zone. It was found, that Pt, Pd and Rh contained in the spent ceramic automotive catalysts could be effectively separated and concentrated by heterochain polymer S, N-containing sorbent, which has high sorption capacity, selectivity and resistant to dilute acids. The chosen HR CS GFAAS analysis conditions enable us to determine Pt, Pd and Rh with good metrological characteristics. The concentrations of Pt, Pd and Rh in two samples of automobile exhaust catalysts were found in range of 0.00015-0.00050; 0.170-0.189; 0.0180-0.0210wt%, respectively. The relative standard deviation obtained by HR CS GFAAS was not more than 5%. Limits of detection by HR CS GFAAS achieved were 6.2·10(-6)wt% for Pt, 1.8·10(-6)wt% for Pd, and 3.4·10(-6)wt% for Rh. Limits of determination achieved by HR CS GFAAS were 1.1·10(-5)wt% for Pt, 6.9·10(-5)wt% for Pd, and 8.3·10(-5)wt% for Rh. To control the accuracy of PGM in sorption concentrates by HR CS GFAAS method, it was appropriate to conduct an inter-method comparative experiment. The

  13. Graphite

    Science.gov (United States)

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and

  14. Graphite moderated {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Sajo B, L.; Barros, H.; Greaves, E. D. [Universidad Simon Bolivar, Nuclear Physics Laboratory, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of); Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a {sup 252}Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the {sup 252}Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  15. Investigation of phosphorus atomization using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Welz, Bernhard; Heitmann, Uwe

    2007-01-01

    The atomization of phosphorus in electrothermal atomic absorption spectrometry has been investigated using a high-resolution continuum source atomic absorption spectrometer and atomization from a graphite platform as well as from a tantalum boat inserted in a graphite tube. A two-step atomization mechanism is proposed for phosphorus, where the first step is a thermal dissociation, resulting in a fast atomization signal early in the atomization stage, and the second step is a slow release of phosphorus atoms from the graphite tube surface following the adsorption of molecular phosphorus at active sites of the graphite surface. Depending on experimental conditions only one of the mechanisms or both might be active. In the absence of a modifier and with atomization from a graphite or tantalum platform the second mechanism appears to be dominant, whereas in the presence of sodium fluoride as a modifier both mechanisms are observed. Intercalation of phosphorus into the graphite platform in the condensed phase has also been observed; this phosphorus, however, appears to be permanently trapped in the structure of the graphite and does not contribute to the absorption signal

  16. ALMA BAND 8 CONTINUUM EMISSION FROM ORION SOURCE I

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Tomoya; Matsumoto, Naoko [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka-shi, Tokyo 181-8588 (Japan); Machida, Masahiro N.; Matsushita, Yuko [Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395 (Japan); Motogi, Kazuhito; Honma, Mareki [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Hoshigaoka2-12, Mizusawa-ku, Oshu-shi, Iwate 023-0861 (Japan); Kim, Mi Kyoung [Korea Astronomy and Space Science Institute, Hwaam-dong 61-1, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Burns, Ross A., E-mail: tomoya.hirota@nao.ac.jp [Joint Institute for VLBI in Europe, Postbus 2, 7990 AA, Dwingeloo (Netherlands)

    2016-12-20

    We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest–southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperature is evaluated to be 700–800 K. It is much lower than that in the case of proton–electron or H{sup −} free–free radiations. Our data are consistent with the latest ALMA results by Plambeck and Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.

  17. Haro 11: Where is the Lyman Continuum Source?

    Energy Technology Data Exchange (ETDEWEB)

    Keenan, Ryan P.; Oey, M. S. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Jaskot, Anne E. [Department of Astronomy, Smith College, Northampton, MA 01063 (United States); James, Bethan L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2017-10-10

    Identifying the mechanism by which high-energy Lyman continuum (LyC) photons escaped from early galaxies is one of the most pressing questions in cosmic evolution. Haro 11 is the best known local LyC-leaking galaxy, providing an important opportunity to test our understanding of LyC escape. The observed LyC emission in this galaxy presumably originates from one of the three bright, photoionizing knots known as A, B, and C. It is known that Knot C has strong Ly α emission, and Knot B hosts an unusually bright ultraluminous X-ray source, which may be a low-luminosity active galactic nucleus. To clarify the LyC source, we carry out ionization-parameter mapping (IPM) by obtaining narrow-band imaging from the Hubble Space Telescope WFC3 and ACS cameras to construct spatially resolved ratio maps of [O iii]/[O ii] emission from the galaxy. IPM traces the ionization structure of the interstellar medium and allows us to identify optically thin regions. To optimize the continuum subtraction, we introduce a new method for determining the best continuum scale factor derived from the mode of the continuum-subtracted, image flux distribution. We find no conclusive evidence of LyC escape from Knots B or C, but instead we identify a high-ionization region extending over at least 1 kpc from Knot A. This knot shows evidence of an extremely young age (≲1 Myr), perhaps containing very massive stars (>100 M {sub ⊙}). It is weak in Ly α , so if it is confirmed as the LyC source, our results imply that LyC emission may be independent of Ly α emission.

  18. Reverberation Mapping of the Continuum Source in Active Galactic Nuclei

    Science.gov (United States)

    Fausnaugh, Michael Martin

    I present results from a monitoring campaign of 11 active galactic nuclei (AGN) conducted in Spring of 2014. I use the reverberation mapping method to probe the interior structures of the AGN, specifically the broad line regions (BLRs) and accretion disks. One of these AGN, NGC 5548, was also subject to multi-wavelength (X-ray, UV, optical, and near-IR) monitoring using 25 ground-based telescopes and four space-based facilities. For NGC 5548, I detect lags between the continuum emission at different wavelengths that follow a trend consistent with the prediction for continuum reprocessing by an accretion disk with temperature profile T ∝ R -3/4. However, the lags imply a disk radius that is 3 times larger than the prediction from standard thin-disk models. The lags at wavelengths longer than the Vband are also equal to or greater than the lags of high-ionization-state emission lines (such as HeII lambda1640 and lambda4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region. Using optical spectra from the Large Binocular Telescope, I estimate the bias of the interband continuum lags due to BLR emission observed in the filters, and I find that the bias for filters with high levels of BLR contamination (˜20%) can be important for the shortest continuum lags. This likely has a significant impact on the u and U bands owing to Balmer continuum emission. I then develop a new procedure for the internal (night-to-night) calibration of time series spectra that can reach precisions of ˜1 millimagnitude and improves traditional techniques by up to a factor of 5. At this level, other systematic issues (e.g., the nightly sensitivity functions and Fe II contamination) limit the final precision of the observed light curves. Using the new calibration method, I next present the data and first results from the optical spectroscopic monitoring component of the reverberation mapping campaign. Five AGN were sufficiently

  19. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za

    2015-03-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D{sub 2} and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground

  20. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    International Nuclear Information System (INIS)

    Katskov, Dmitri

    2015-01-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D 2 and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground water

  1. RESOLUTION OF THE COMPACT RADIO CONTINUUM SOURCES IN Arp220

    International Nuclear Information System (INIS)

    Batejat, Fabien; Conway, John E.; Hurley, Rossa; Parra, Rodrigo; Diamond, Philip J.; Lonsdale, Colin J.; Lonsdale, Carol J.

    2011-01-01

    We present 2 cm and 3.6 cm wavelength very long baseline interferometry images of the compact radio continuum sources in the nearby ultra-luminous infrared galaxy Arp220. Based on their radio spectra and variability properties, we confirm these sources to be a mixture of supernovae (SNe) and supernova remnants (SNRs). Of the 17 detected sources we resolve 7 at both wavelengths. The SNe generally only have upper size limits. In contrast all the SNRs are resolved with diameters ≥0.27 pc. This size limit is consistent with them having just entered their Sedov phase while embedded in an interstellar medium (ISM) of density 10 4 cm -3 . These objects lie on the diameter-luminosity correlation for SNRs (and so also on the diameter-surface brightness relation) and extend these correlations to very small sources. The data are consistent with the relation L∝D -9/4 . Revised equipartition arguments adjusted to a magnetic field to a relativistic particle energy density ratio of 1% combined with a reasonable synchrotron-emitting volume filling factor of 10% give estimated magnetic field strengths in the SNR shells of ∼15-50 mG. The SNR shell magnetic fields are unlikely to come from compression of ambient ISM fields and must instead be internally generated. We set an upper limit of 7 mG for the ISM magnetic field. The estimated energy in relativistic particles, 2%-20% of the explosion kinetic energy, is consistent with estimates from models that fit the IR-radio correlation in compact starburst galaxies.

  2. Internal Grains Within KFC Graphites: Implications for Their Stellar Source

    Science.gov (United States)

    Croat, T. K.; Stadermann, F. J.; Bernatowicz, T. J.

    2005-03-01

    TEM and NanoSIMS investigations find high s-process element enrichments in internal carbides, suggesting an AGB origin for most Murchison KFC presolar graphites. Other rare phases (iron phases and metallic osmium) are consistent with a SN origin.

  3. STATCONT: A statistical continuum level determination method for line-rich sources

    Science.gov (United States)

    Sánchez-Monge, Á.; Schilke, P.; Ginsburg, A.; Cesaroni, R.; Schmiedeke, A.

    2018-01-01

    STATCONT is a python-based tool designed to determine the continuum emission level in spectral data, in particular for sources with a line-rich spectrum. The tool inspects the intensity distribution of a given spectrum and automatically determines the continuum level by using different statistical approaches. The different methods included in STATCONT are tested against synthetic data. We conclude that the sigma-clipping algorithm provides the most accurate continuum level determination, together with information on the uncertainty in its determination. This uncertainty can be used to correct the final continuum emission level, resulting in the here called `corrected sigma-clipping method' or c-SCM. The c-SCM has been tested against more than 750 different synthetic spectra reproducing typical conditions found towards astronomical sources. The continuum level is determined with a discrepancy of less than 1% in 50% of the cases, and less than 5% in 90% of the cases, provided at least 10% of the channels are line free. The main products of STATCONT are the continuum emission level, together with a conservative value of its uncertainty, and datacubes containing only spectral line emission, i.e., continuum-subtracted datacubes. STATCONT also includes the option to estimate the spectral index, when different files covering different frequency ranges are provided.

  4. Compact continuum radio sources in the Orion Nebula

    International Nuclear Information System (INIS)

    Garay, G.; Moran, J.M.; Reid, M.J.; European Southern Observatory, Garching, West Germany)

    1987-01-01

    The Orion Nebula was observed with the VLA in order to search for radio emission from compact H II regions indicative of embedded OB stars or from winds associated with pre-main sequence, low-mass stars. Fourteen of the 21 detected radio sources are within 30 arcsec of Omega 1 Orionis C; 13 of these objects are probably neutral condensations surrounded by ionized envelopes that are excited by the star. If the temperature of the ionized envelopes is 10,000 K and their electron densities decrease as the square of the distance from the core center, then a typical neutral condensation has a radius of 10 to the 15th cm and a peak electron density of 400,000/cu cm. Seven sources are in or near the Orion molecular cloud. Four of the sources have optical counterparts. Two are highly variable radio sources associated with X-ray sources, and two have radio spectra indicative of thermal emission. Two of the three optically invisible sources have radio emission likely to arise in a dense ionized envelope surrounding and excited by an early B-type star. 46 references

  5. Source Term Analysis of the Irradiated Graphite in the Core of HTR-10

    Directory of Open Access Journals (Sweden)

    Xuegang Liu

    2017-01-01

    Full Text Available The high temperature gas-cooled reactor (HTGR has potential utilization due to its featured characteristics such as inherent safety and wide diversity of utilization. One distinct difference between HTGR and traditional pressurized water reactor (PWR is the large inventory of graphite in the core acting as reflector, moderator, or structure materials. Some radionuclides will be generated in graphite during the period of irradiation, which play significant roles in reactor safety, environmental release, waste disposal, and so forth. Based on the actual operation of the 10 MW pebble bed high temperature gas-cooled reactor (HTR-10 in Tsinghua University, China, an experimental study on source term analysis of the irradiated graphite has been done. An irradiated graphite sphere was randomly collected from the core of HTR-10 as sample in this study. This paper focuses on the analytical procedure and the establishment of the analytical methodology, including the sample collection, graphite sample preparation, and analytical parameters. The results reveal that the Co-60, Cs-137, Eu-152, and Eu-154 are the major γ contributors, while H-3 and C-14 are the dominating β emitting nuclides in postirradiation graphite material of HTR-10. The distribution profiles of the above four nuclides are also presented.

  6. A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source

    Directory of Open Access Journals (Sweden)

    Alexander N. Obraztsov

    2013-08-01

    Full Text Available The development of new types of light sources is necessary in order to meet the growing demands of consumers and to ensure an efficient use of energy. The cathodoluminescence process is still under-exploited for light generation because of the lack of cathodes suitable for the energy-efficient production of electron beams and appropriate phosphor materials. In this paper we propose a nano-graphite film material as a highly efficient cold cathode, which is able to produce high intensity electron beams without energy consumption. The nano-graphite film material was produced by using chemical vapor deposition techniques. Prototypes of cathodoluminescent lamp devices with a construction optimized for the usage of nano-graphite cold cathodes were developed, manufactured and tested. The results indicate prospective advantages of this type of lamp and the possibility to provide advanced power efficiency as well as enhanced spectral and other characteristics.

  7. Uncovering the Protostars in Serpens South with ALMA: Continuum Sources and Their Outflow Activity

    Science.gov (United States)

    Plunkett, Adele; Arce, H.; Corder, S.; Dunham, M.

    2017-06-01

    Serpens South is an appealing protostellar cluster to study due the combination of several factors: (1) a high protostar fraction that shows evidence for very recent and ongoing star formation; (2) iconic clustered star formation along a filamentary structure; (3) its relative proximity within a few hundred parsecs. An effective study requires the sensitivity, angular and spectral resolution, and mapping capabilities recently provided with ALMA. Here we present a multi-faceted data set acquired from Cycles 1 through 3 with ALMA, including maps of continuum sources and molecular outflows throughout the region, as well as a more focused kinematical study of the protostar that is the strongest continuum source at the cluster center. Together these data span spatial scales over several orders of magnitude, allowing us to investigate the outflow-driving sources and the impact of the outflows on the cluster environment. Currently, we focus on the census of protostars in the cluster center, numbering about 20, including low-flux, low-mass sources never before detected in mm-wavelengths and evidence for multiplicity that was previously unresolved.

  8. Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources

    DEFF Research Database (Denmark)

    Aatrokoski, J.; Lähteenmäki, A.; Lavonen, N.

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857 GHz......, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase...... of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data...

  9. Plasma instability control toward high fluence, high energy x-ray continuum source

    Science.gov (United States)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  10. Determination of silicon in biomass and products of pyrolysis process via high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Nakadi, Flávio V; Prodanov, Caroline; Boschetti, Wiliam; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B

    2018-03-01

    Thermochemical processes can convert the biomass into fuels, such as bio-oil. The biomass submitted to pyrolysis process, such as fibers, are generally rich in silicon, an element that can lead to damages in an engine when there is high concentration in a fuel. High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) is an interesting alternative for Si determination in the products and byproducts of the pyrolysis process because, besides the flame (F) and graphite furnace (GF) atomizers, it has enhanced the application of direct analysis of solid samples (SS) within GF. This study aimed the development of methods to determine Si in biomass samples, their products and byproducts using HR-CS AAS. A high-resolution continuum source atomic absorption spectrometer contrAA 700 equipped with F and GF atomizers was used throughout the study. HR-CS F AAS (λ = 251.611nm, 1 detection pixel, N 2 O/C 2 H 2 flame) was used to evaluate Si content in biomass and ash, after a microwave-assisted acid digestion with HNO 3 and HF. HR-CS GF AAS (T pyr = 1400°C, T atom = 2650°C) has evaluated Si in pyrolysis water and bio-oil at 251.611nm, and in peach pit biomass and ash at 221.174nm using SS, both wavelengths with 1 detection pixel. Rhodium (300μg) was applied as permanent modifier and 10μgPd + 6μg Mg were pipetted onto the standards/samples at each analysis. Three different biomass samples were studied: palm tree fiber, coconut fiber and peach pit, and three certified reference materials (CRM) were used to verify the accuracy of the methods. The figures of merit were LOD 0.09-20mgkg -1 , and LOQ 0.3-20mgkg -1 , considering all the methods. There were no significant differences between the CRM certified values and the determined ones, using a Student t-test with a confidence interval of 95% (n = 5). Si concentration ranged from 0.11-0.92% mm -1 , 1.1-1.7mgkg -1 , 3.3-13mgkg -1 , and 0.41-1.4%mm -1 , in biomass, bio-oil, pyrolysis water and ash, respectively

  11. High-resolution continuum-source atomic absorption spectrometry: what can we expect?

    Directory of Open Access Journals (Sweden)

    Welz Bernhard

    2003-01-01

    Full Text Available A new instrumental concept has been developed for atomic absorption spectrometry (AAS, using a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator and a CCD array detector, providing a resolution of ~2 pm per pixel. Among the major advantages of the system are: i an improved signal-to-noise ratio because of the high intensity of the radiation source, resulting in improved photometric precision and detection limits; ii for the same reason, there are no more 'weak' lines, i.e. secondary lines can be used without compromises; iii new elements might be determined, for which no radiation source has been available; iv the entire spectral environment around the analytical line becomes 'visible', giving a lot more information than current AAS instruments; v the CCD array detector allows a truly simultaneous background correction close to the analytical line; vi the software is capable of storing reference spectra, e.g. of a molecular absorption with rotational fine structure, and of subtracting such spectra from the spectra recorded for a sample, using a least squares algorithm; vii although not yet realized, the system makes possible a truly simultaneous multi-element AAS measurement when an appropriate two-dimensional detector is used, as is already common practice in optical emission spectrometry; vii preliminary experiments have indicated that the instrumental concept could result in a more rugged analytical performance in the determination of trace elements in complex matrices.

  12. Planck Early Results. XV. Spectral Energy Distributions and Radio Continuum Spectra of Northern Extragalactic Radio Sources

    Science.gov (United States)

    Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; hide

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

  13. An alkali ion source based on graphite intercalation compounds for ion mobility spectrometry

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Hosseini, Zahra S

    2008-01-01

    A variety of alkali cation emitters were developed as the ion source for ion mobility spectrometry. The cation emitters were constructed based on alkali ion graphite intercalation compounds (GICs). The compounds were prepared by fusing alkali salts with ground graphite. In order to produce alkali ions, the compounds were loaded on a filament and heated to red. Reactant ions of the form alk + ions were observed for the alkali salts NaCl, KCl.LiCl, CsCl and SrCl. In addition to Na + ions, K + ions were observed at the beginning of thermionic emission from Na-GIC. This is due to the low ionization potential of potassium that exists in trace amounts in sodium salts. In addition to the potassium ion, Na + was observed in the case of LiCl salt. The Na + and K + peaks originating from impurities totally disappeared after about 40 min. However, the thermionic emission of the main ion of the corresponding salt lasted for several days. No negative ions were observed upon reversing the drift field. Selected organic compounds (methyl isobutyl ketone, dimethyl sulfoxide, acetone and tetrahydrofuran) were also ionized via alkali cation attachment reaction. Distinct ion mobility patterns were observed for different substances using one type of alkali reactant ion. However, the ion mobility pattern for a given substance changed when a different alkali reactant ion was used. Ammonia and amines were not ionized when this source was used

  14. Analytical characteristics of a continuum-source tungsten coil atomic absorption spectrometer.

    Science.gov (United States)

    Rust, Jennifer A; Nóbrega, Joaquim A; Calloway, Clifton P; Jones, Bradley T

    2005-08-01

    A continuum-source tungsten coil electrothermal atomic absorption spectrometer has been assembled, evaluated, and employed in four different applications. The instrument consists of a xenon arc lamp light source, a tungsten coil atomizer, a Czerny-Turner high resolution monochromator, and a linear photodiode array detector. This instrument provides simultaneous multi-element analyses across a 4 nm spectral window with a resolution of 0.024 nm. Such a device might be useful in many different types of analyses. To demonstrate this broad appeal, four very different applications have been evaluated. First of all, the temperature of the gas phase was measured during the atomization cycle of the tungsten coil, using tin as a thermometric element. Secondly, a summation approach for two absorption lines for aluminum falling within the same spectral window (305.5-309.5 nm) was evaluated. This approach improves the sensitivity without requiring any additional preconcentration steps. The third application describes a background subtraction technique, as it is applied to the analysis of an oil emulsion sample. Finally, interference effects caused by Na on the atomization of Pb were studied. The simultaneous measurements of Pb and Na suggests that negative interference arises at least partially from competition between Pb and Na atoms for H2 in the gas phase.

  15. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    Science.gov (United States)

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.

  16. Graphite tail powder and liquid biofertilizer as trace elements source for ground nut

    Science.gov (United States)

    Hindersah, Reginawanti; Setiawati, M. Rochimi; Fitriatin, B. Natalie; Suryatama, Pujawati; Asmiran, Priyanka; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    Utilization of graphite tail waste from the mineral beneficiation processing is very important since it contain significant amount of essential minerals which are necessary for plant growth. These mineral are required in biochemical processes and mainly play an important role as cofactor in enzymatic reaction. The objective of this research is to investigate the performance of graphite tail on supporting plant growth and yield of ground nut (Arachishypogeae L.). A field experiment has been performed to test the performance of mixed graphite tail and reduced organic matter dose. The graphite tail size were reduced to various sieved size, -80 mesh, -100 mesh and -200 mesh. The experiment was setup in randomized block design with 4 treatments and 6 replications for each treatment, while the control plot is received without graphite tail. The results demonstrated that reduced organic matter along with -200 mesh tail has potentially decreased plant height at the end of vegetative growth stage, in contrast for to -80 mesh tail amendment increased individual fresh plant biomass. Statistically, there was no change of plant nodule, individual shoot fresh and dry weight, root nodule, number of pod following any mesh of graphite tail amendment. Reducing organic matter while adding graphite tail of 5% did not change bean weight in all plot. In contrast, reduced organic matter along with 80-mesh graphite tail amendment improved the nut yield per plot. This experiment suggests that graphite tail, mainly -80 mesh graphite tail can be possibly used in legume production.

  17. Development of a Continuum Damage Mechanics Material Model of a Graphite-Kevlar(Registered Trademark) Hybrid Fabric for Simulating the Impact Response of Energy Absorbing Kevlar(Registered Trademark) Hybrid Fabric for Simulating the Impact Response of Energy Absorbing

    Science.gov (United States)

    Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.

    2017-01-01

    This paper describes the development of input properties for a continuum damage mechanics based material model, Mat 58, within LS-DYNA(Registered Trademark) to simulate the response of a graphite-Kevlar(Registered Trademark) hybrid plain weave fabric. A limited set of material characterization tests were performed on the hybrid graphite-Kevlar(Registered Trademark) fabric. Simple finite element models were executed in LS-DYNA(Registered Trademark) to simulate the material characterization tests and to verify the Mat 58 material model. Once verified, the Mat 58 model was used in finite element models of two composite energy absorbers: a conical-shaped design, designated the "conusoid," fabricated of four layers of hybrid graphite-Kevlar(Registered Trademark) fabric; and, a sinusoidal-shaped foam sandwich design, designated the "sinusoid," fabricated of the same hybrid fabric face sheets with a foam core. Dynamic crush tests were performed on components of the two energy absorbers, which were designed to limit average vertical accelerations to 25- to 40-g, to minimize peak crush loads, and to generate relatively long crush stroke values under dynamic loading conditions. Finite element models of the two energy absorbers utilized the Mat 58 model that had been verified through material characterization testing. Excellent predictions of the dynamic crushing response were obtained.

  18. Brazing graphite to graphite

    International Nuclear Information System (INIS)

    Peterson, G.R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of graphite

  19. Feasibility of high-resolution continuum source molecular absorption spectrometry in flame and furnace for sulphur determination in petroleum products

    Science.gov (United States)

    Kowalewska, Zofia

    2011-07-01

    For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the ∆ν = 0 vibrational sequence within the electronic transition X 1∑ + → A 1П, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of Pd xS y molecules. At the 258.056 nm line, with the wavelength range covering central pixel ± 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg -1 in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg -1 in flame molecular absorption spectrometry. The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with sulphur content determined by X-ray fluorescence

  20. Feasibility of high-resolution continuum source molecular absorption spectrometry in flame and furnace for sulphur determination in petroleum products

    Energy Technology Data Exchange (ETDEWEB)

    Kowalewska, Zofia, E-mail: zofia.kowalewska@obr.pl

    2011-07-15

    For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the {Delta}{nu} = 0 vibrational sequence within the electronic transition X{sup 1}{Sigma}{sup +} {yields} A{sup 1}{Pi}, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of Pd{sub x}S{sub y} molecules. At the 258.056 nm line, with the wavelength range covering central pixel {+-} 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg{sup -1} in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg{sup -1} in flame molecular absorption spectrometry. The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with

  1. A new concept of efficient therapeutic drug monitoring using the high-resolution continuum source absorption spectrometry and the surface enhanced Raman spectroscopy

    Science.gov (United States)

    Xing, Yanlong; Fuss, Harald; Lademann, Jürgen; Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Patzelt, Alexa; Meinke, Martina C.; Jung, Sora; Esser, Norbert

    2018-04-01

    In this study, a new therapeutic drug monitoring approach has been tested based on the combination of CaF molecular absorption using high-resolution continuum source absorption spectrometry (HR-CSAS) and surface enhanced Raman spectroscopy (SERS). HR-CSAS with mini graphite tube was successfully tested for clinical therapeutic drug monitoring of the fluorine-containing drug capecitabine in sweat samples of cancer patients: It showed advantageous features of high selectivity (no interference from Cl), high sensitivity (characteristic mass of 0.1 ng at CaF 583.069 nm), low sample consumption (down to 30 nL) and fast measurement (no sample pretreatment and less than 1 min of responding time) in tracing the fluorine signal out of capecitabine. However, this technique has the disadvantage of the total loss of the drug's structure information after burning the sample at very high temperature. Therefore, a new concept of combining HR-CSAS with a non-destructive spectroscopic method (SERS) was proposed for the sensitive sensing and specific identification of capecitabine. We tested and succeed in obtaining the molecular characteristics of the metabolite of capecitabine (named 5-fluorouracil) by the non-destructive SERS technique. With the results shown in this work, it is demonstrated that the combined spectroscopic technique of HR-CSAS and SERS will be very useful in efficient therapeutic drug monitoring in the future.

  2. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry

    Science.gov (United States)

    Krüger, Magnus; Huang, Mao-Dong; Becker-Roß, Helmut; Florek, Stefan; Ott, Ingo; Gust, Ronald

    The development of high-resolution continuum source molecular absorption spectrometry made the quantification of fluorine feasible by measuring the molecular absorption as gallium monofluoride (GaF). Using this new technique, we developed on the example of 5-fluorouracil (5-FU) a graphite furnace method to quantify fluorine in organic molecules. The effect of 5-FU on the generation of the diatomic GaF molecule was investigated. The experimental conditions such as gallium nitrate amount, temperature program, interfering anions (represented as corresponding acids) and calibration for the determination of 5-FU in standard solution and in cellular matrix samples were investigated and optimized. The sample matrix showed no effect on the sensitivity of GaF molecular absorption. A simple calibration curve using an inorganic sodium fluoride solution can conveniently be used for the calibration. The described method is sensitive and the achievable limit of detection is 0.23 ng of 5-FU. In order to establish the concept of "fluorine as a probe in medicinal chemistry" an exemplary application was selected, in which the developed method was successfully demonstrated by performing cellular uptake studies of the 5-FU in human colon carcinoma cells.

  3. On the Nature of Off-limb Flare Continuum Sources Detected by SDO /HMI

    Energy Technology Data Exchange (ETDEWEB)

    Heinzel, P.; Kašparová, J. [Astronomical Institute, Czech Academy of Sciences, 25165 Ondřejov (Czech Republic); Kleint, L.; Krucker, S., E-mail: pheinzel@asu.cas.cz [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland)

    2017-09-20

    The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory has provided unique observations of off-limb flare emission. White-light continuum enhancements were detected in the “continuum” channel of the Fe 6173 Å line during the impulsive phase of the observed flares. In this paper we aim to determine which radiation mechanism is responsible for such enhancement being seen above the limb, at chromospheric heights around or below 1000 km. Using a simple analytical approach, we compare two candidate mechanisms, the hydrogen recombination continuum (Paschen) and the Thomson continuum due to scattering of disk radiation on flare electrons. Both mechanisms depend on the electron density, which is typically enhanced during the impulsive phase of a flare as the result of collisional ionization (both thermal and also non-thermal due to electron beams). We conclude that for electron densities higher than 10{sup 12} cm{sup −3}, the Paschen recombination continuum significantly dominates the Thomson scattering continuum and there is some contribution from the hydrogen free–free emission. This is further supported by detailed radiation-hydrodynamical (RHD) simulations of the flare chromosphere heated by the electron beams. We use the RHD code FLARIX to compute the temporal evolution of the flare-heating in a semi-circular loop. The synthesized continuum structure above the limb resembles the off-limb flare structures detected by HMI, namely their height above the limb, as well as the radiation intensity. These results are consistent with recent findings related to hydrogen Balmer continuum enhancements, which were clearly detected in disk flares by the IRIS near-ultraviolet spectrometer.

  4. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    Science.gov (United States)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L- 1 HNO3 solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L- 1 and 36.4 mg L- 1, respectively. The repeatability of the results expressed as relative standard deviation was typically beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93-105% with the repeatability in the range of 4.1-5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg- 1), egg white (2188 ± 29 mg kg- 1), mineral water (31.0 ± 0.9 mg L- 1), white wine (260 ± 4 mg L- 1) and red wine (82 ± 2 mg L- 1), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L- 1).

  5. Special graphites; Graphites speciaux

    Energy Technology Data Exchange (ETDEWEB)

    Leveque, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [French] Ameliorer les proprietes du graphite nucleaire pour empilements et ouvrir de nouveaux domaines d'application au graphite constituent une part importante de l'effort entrepris en commun par le Commissariat a l'Energie Atomique (CEA) et la compagnie PECHINEY. Des procedes nouveaux de fabrication de carbones et graphites speciaux ont ete mis au point: graphite forge, pyrocarbone, graphite de haute densite, agglomeration de poudres de graphite par craquage de gaz naturel, graphites impermeables. Les proprietes physiques de ces produits ainsi que leur reaction avec differents gaz oxydants sont decrites. Les premiers resultats d'irradiation sont aussi donnes. (auteurs)

  6. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata, E-mail: bgodlew@uwb.edu.pl

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L{sup −1} HNO{sub 3} solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L{sup −1} and 36.4 mg L{sup −1}, respectively. The repeatability of the results expressed as relative standard deviation was typically < 5%. The accuracy of the method was tested by analysis of digested biological certified reference materials (soya bean flour, corn flour and herbs) and recovery experiment for beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93–105% with the repeatability in the range of 4.1–5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg{sup −1}), egg white (2188 ± 29 mg kg{sup −1}), mineral water (31.0 ± 0.9 mg L{sup −1}), white wine (260 ± 4 mg L{sup −1}) and red wine (82 ± 2 mg L{sup −1}), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L{sup −1}). - Highlights: • HR-CS FMAS technique was used for sulfur measurement via molecular absorption of carbon monosulfide, CS. • Organic DL

  7. Possible wave modes of wideband nonthermal continuum radiation in its source region

    Czech Academy of Sciences Publication Activity Database

    Grimald, S.; Santolík, Ondřej

    2010-01-01

    Roč. 115, - (2010), A06209/1-A06209/8 ISSN 0148-0227 R&D Projects: GA ČR GA205/09/1253; GA MŠk ME09107 Grant - others:ESA(XE) PECS98025 Institutional research plan: CEZ:AV0Z30420517 Keywords : nonthermal continuum * NTC * wave modes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.303, year: 2010

  8. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  9. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry

    International Nuclear Information System (INIS)

    Krüger, Magnus; Huang, Mao-Dong; Becker-Roß, Helmut; Florek, Stefan; Ott, Ingo; Gust, Ronald

    2012-01-01

    The development of high-resolution continuum source molecular absorption spectrometry made the quantification of fluorine feasible by measuring the molecular absorption as gallium monofluoride (GaF). Using this new technique, we developed on the example of 5-fluorouracil (5-FU) a graphite furnace method to quantify fluorine in organic molecules. The effect of 5-FU on the generation of the diatomic GaF molecule was investigated. The experimental conditions such as gallium nitrate amount, temperature program, interfering anions (represented as corresponding acids) and calibration for the determination of 5-FU in standard solution and in cellular matrix samples were investigated and optimized. The sample matrix showed no effect on the sensitivity of GaF molecular absorption. A simple calibration curve using an inorganic sodium fluoride solution can conveniently be used for the calibration. The described method is sensitive and the achievable limit of detection is 0.23 ng of 5-FU. In order to establish the concept of “fluorine as a probe in medicinal chemistry” an exemplary application was selected, in which the developed method was successfully demonstrated by performing cellular uptake studies of the 5-FU in human colon carcinoma cells. - Highlights: ► Development of HR-CS MAS for quantification of fluorine bound to organic molecules ► Measuring as molecular absorption of gallium monofluoride ► Quantification of organic-bound fluorine in biological material ► The concept of “fluorine as a probe in medicinal chemistry” could be established

  10. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Magnus [Freie Universitaet Berlin, Institut fuer Pharmazie, Pharmazeutische Chemie, Koenigin-Luise-Str. 2-4, 14195 Berlin (Germany); Huang, Mao-Dong; Becker-Ross, Helmut; Florek, Stefan [Leibniz Institut fuer Analytische Wissenschaften, ISAS-e.V., Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Ott, Ingo [Technische Universitaet Carolo Wilhelmina zu Braunschweig, Institut fuer Medizinische und Pharmazeutische Chemie, Beethovenstr. 55, 38106 Braunschweig (Germany); Gust, Ronald, E-mail: ronald.gust@uibk.ac.at [Universitaet Innsbruck, Institut fuer Pharmazie, Pharmazeutische Chemie, Innrain 80/82, 6020 Innsbruck (Austria)

    2012-03-15

    The development of high-resolution continuum source molecular absorption spectrometry made the quantification of fluorine feasible by measuring the molecular absorption as gallium monofluoride (GaF). Using this new technique, we developed on the example of 5-fluorouracil (5-FU) a graphite furnace method to quantify fluorine in organic molecules. The effect of 5-FU on the generation of the diatomic GaF molecule was investigated. The experimental conditions such as gallium nitrate amount, temperature program, interfering anions (represented as corresponding acids) and calibration for the determination of 5-FU in standard solution and in cellular matrix samples were investigated and optimized. The sample matrix showed no effect on the sensitivity of GaF molecular absorption. A simple calibration curve using an inorganic sodium fluoride solution can conveniently be used for the calibration. The described method is sensitive and the achievable limit of detection is 0.23 ng of 5-FU. In order to establish the concept of 'fluorine as a probe in medicinal chemistry' an exemplary application was selected, in which the developed method was successfully demonstrated by performing cellular uptake studies of the 5-FU in human colon carcinoma cells. - Highlights: Black-Right-Pointing-Pointer Development of HR-CS MAS for quantification of fluorine bound to organic molecules Black-Right-Pointing-Pointer Measuring as molecular absorption of gallium monofluoride Black-Right-Pointing-Pointer Quantification of organic-bound fluorine in biological material Black-Right-Pointing-Pointer The concept of 'fluorine as a probe in medicinal chemistry' could be established.

  11. Monitoring and Method development of Hg in Istanbul Airborne Particulates by Solid Sampling Continuum Source-High Resolution Electrothermal Atomic Absorption Spectromerty

    Directory of Open Access Journals (Sweden)

    Soydemir E.

    2014-07-01

    Full Text Available In this work, a method has been developed and monitoring for the determination of mercury in PM2.5 airborne particulates by solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry. The PM2.5 airborne particulates were collected on quartz filters using high volume samplers (500 L/min in Istanbul (Turkey for 96 hours every month in one year. At first, experimental conditions as well as the validation tests were optimized using collected filter. For this purpose, the effects of atomization temperature, amount of sample intoduced in to the furnace, addition of acids and/or KMnO4 on the sample, covering of graphite tube and platform or using of Ag nanoparticulates, Au nanoparticulates, and Pd solutions on the accuracy and precision were investigated. After optimization of the experimental conditions, the mercury concentrations were determined in the collected filter. The filters with PM2.5 airborne particulates were dried, divided into small fine particles and then Hg concentrations were determined directly. In order to eliminate any error due to the sensitivity difference between aqueous standards and solid samples, the quantification was performed using solid calibrants. The limit of detection, based on three times the standard deviations for ten atomizations of an unused filter, was 30 ng/g. The Hg content was dependent on the sampling site, season etc, ranging from

  12. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    Science.gov (United States)

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. Copyright © 2015. Published by Elsevier B.V.

  13. Untreated Natural Graphite as a Graphene Source for High-Performance Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    María Simón

    2018-03-01

    Full Text Available Graphene nanosheets (GNS are synthesized from untreated natural graphite (NG for use as electroactive materials in Li-ion batteries (LIBs, which avoids the pollution-generating steps of purifying graphite. Through a modified Hummer method and subsequent thermal exfoliation, graphitic oxide and graphene were synthesized and characterized structurally, morphologically and chemically. Untreated natural graphite samples contain 45–50% carbon by weight; the rest is composed of different elements such as aluminium, calcium, iron, silicon and oxygen, which are present as calcium carbonate and silicates of aluminium and iron. Our results confirm that in the GO and GNS synthesized, calcium is removed due to oxidation, though other impurities are maintained because they are not affected by the synthesis. Despite the remaining mineral phases, the energy storage capacity of GNS electrodes is very promising. In addition, an electrochemical comparison between GNS and NG demonstrated that the specific capacity in GNS is higher during the whole cycling process, 770 mA·g−1 at 100th cycle, which is twice that of graphite.

  14. Lyman-continuum leakage as dominant source of diffuse ionized gas in the Antennae galaxy

    Science.gov (United States)

    Weilbacher, Peter M.; Monreal-Ibero, Ana; Verhamme, Anne; Sandin, Christer; Steinmetz, Matthias; Kollatschny, Wolfram; Krajnović, Davor; Kamann, Sebastian; Roth, Martin M.; Erroz-Ferrer, Santiago; Marino, Raffaella Anna; Maseda, Michael V.; Wendt, Martin; Bacon, Roland; Dreizler, Stefan; Richard, Johan; Wisotzki, Lutz

    2018-04-01

    The Antennae galaxy (NGC 4038/39) is the closest major interacting galaxy system and is therefore often studied as a merger prototype. We present the first comprehensive integral field spectroscopic dataset of this system, observed with the MUSE instrument at the ESO VLT. We cover the two regions in this system which exhibit recent star formation: the central galaxy interaction and a region near the tip of the southern tidal tail. In these fields, we detect HII regions and diffuse ionized gas to unprecedented depth. About 15% of the ionized gas was undetected by previous observing campaigns. This newly detected faint ionized gas is visible everywhere around the central merger, and shows filamentary structure. We estimate diffuse gas fractions of about 60% in the central field and 10% in the southern region. We are able to show that the southern region contains a significantly different population of HII regions, showing fainter luminosities. By comparing HII region luminosities with the HST catalog of young star clusters in the central field, we estimate that there is enough Lyman-continuum leakage in the merger to explain the amount of diffuse ionized gas that we detect. We compare the Lyman-continuum escape fraction of each HII region against emission line ratios that are sensitive to the ionization parameter. While we find no systematic trend between these properties, the most extreme line ratios seem to be strong indicators of density bounded ionization. Extrapolating the Lyman-continuum escape fractions to the southern region, we conclude that simply from the comparison of the young stellar populations to the ionized gas there is no need to invoke other ionization mechanisms than Lyman-continuum leaking HII regions for the diffuse ionized gas in the Antennae. FITS images and Table of HII regions are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A95 and at http://muse-vlt.eu/science/antennae/

  15. Measurement of Diffusion Parameters and of Anisotropy of Graphite with a Pulsed Source of Neutrons; Mesure des parametres de diffusion et de l'anisotropie du graphite a l'aide d'une source pulsee de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Sagot, M; Tellier, H [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1963-07-01

    The diffusion coefficient, cooling coefficient, and anisotropy of graphite were determined to be (2.19 {+-} 0.03) x 10{sup 5} cm{sup 2} sec{sup -1}, (37.9 {+-} 4) x 10{sup 5} cm{sup 4} sec{sup -1}, and 1.017 {+-} 0.008, respectively. The range of geometrical buckling was from 7 to 155 m{sup -2}. The values obtained are compared with published values. (authors) [French] Un programme experimental utilisant la methode de la source pulsee de neutrons a ete realise sur le graphite. La gamme des laplaciens couverte est de 7 m{sup -2} a 155 m{sup -2}. Les resultats en sont presentes dans ce rapport: - coefficient de diffusion D{sub 0} = (2,19 {+-} 0,03) x 10{sup 5} cm{sup 2} s{sup -1} - coefficient de refroidissement C = (37,9 {+-} 4) x 10{sup 5} cm{sup 4} s{sup -1} - anisotropie du graphite (D parall./D perp.) = 1,017 {+-} 0,008. Ils sont compares aux valeurs deja publiees. (auteurs)

  16. Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source

    DEFF Research Database (Denmark)

    Tu, H.; Liu, Y.; Lægsgaard, Jesper

    2012-01-01

    source with the MIIPS-integrated pulse shaper produces compressed transform-limited 9.6 fs (FWHM) pulses or arbitrarily shaped pulses at a central wavelength of 1020 nm, an average power over 100 mW, and a repetition rate of 76 MHz. In comparison to the 229-fs pump laser pulses that generate the fiber......The predicted spectral phase of a fiber continuum pulsed source rigorously quantified by the scalar generalized nonlinear Schrödinger equation is found to be in excellent agreement with that measured by multiphoton intrapulse interference phase scan (MIIPS) with background subtraction. This cross......-validation confirms the absolute pulse measurement by MIIPS and the transform-limited compression of the fiber continuum pulses by the pulse shaper performing the MIIPS measurement, and permits the subsequent coherent control on the fiber continuum pulses by this pulse shaper. The combination of the fiber continuum...

  17. Direct electrochemical oxidation of ammonia on graphite as a treatment option for stored source-separated urine.

    Science.gov (United States)

    Zöllig, Hanspeter; Fritzsche, Cristina; Morgenroth, Eberhard; Udert, Kai M

    2015-02-01

    Electrolysis can be a viable technology for ammonia removal from source-separated urine. Compared to biological nitrogen removal, electrolysis is more robust and is highly amenable to automation, which makes it especially attractive for on-site reactors. In electrolytic wastewater treatment, ammonia is usually removed by indirect oxidation through active chlorine which is produced in-situ at elevated anode potentials. However, the evolution of chlorine can lead to the formation of chlorate, perchlorate, chlorinated organic by-products and chloramines that are toxic. This study focuses on using direct ammonia oxidation on graphite at low anode potentials in order to overcome the formation of toxic by-products. With the aid of cyclic voltammetry, we demonstrated that graphite is active for direct ammonia oxidation without concomitant chlorine formation if the anode potential is between 1.1 and 1.6 V vs. SHE (standard hydrogen electrode). A comparison of potentiostatic bulk electrolysis experiments in synthetic stored urine with and without chloride confirmed that ammonia was removed exclusively by continuous direct oxidation. Direct oxidation required high pH values (pH > 9) because free ammonia was the actual reactant. In real stored urine (pH = 9.0), an ammonia removal rate of 2.9 ± 0.3 gN·m(-2)·d(-1) was achieved and the specific energy demand was 42 Wh·gN(-1) at an anode potential of 1.31 V vs. SHE. The measurements of chlorate and perchlorate as well as selected chlorinated organic by-products confirmed that no chlorinated by-products were formed in real urine. Electrode corrosion through graphite exfoliation was prevented and the surface was not poisoned by intermediate oxidation products. We conclude that direct ammonia oxidation on graphite electrodes is a treatment option for source-separated urine with three major advantages: The formation of chlorinated by-products is prevented, less energy is consumed than in indirect ammonia oxidation and

  18. Sources and transformations of anthropogenic nitrogen along an urban river–estuarine continuum

    Directory of Open Access Journals (Sweden)

    M. J. Pennino

    2016-11-01

    Full Text Available Urbanization has altered the fate and transport of anthropogenic nitrogen (N in rivers and estuaries globally. This study evaluates the capacity of an urbanizing river–estuarine continuum to transform N inputs from the world's largest advanced (e.g., phosphorus and biological N removal wastewater treatment facility. Effluent samples and surface water were collected monthly along the Potomac River estuary from Washington D.C. to the Chesapeake Bay over a distance of 150 km. In conjunction with box model mass balances, nitrate stable isotopes and mixing models were used to trace the fate of urban wastewater nitrate. Nitrate concentrations and δ15N-NO3− values were higher down-estuary from the Blue Plains wastewater outfall in Washington D.C. (2.25 ± 0.62 mg L−1 and 25.7 ± 2.9 ‰, respectively compared to upper-estuary concentrations (1.0 ± 0.2 mg L−1 and 9.3 ± 1.4 ‰, respectively. Nitrate concentration then decreased rapidly within 30 km down-estuary (to 0.8 ± 0.2 mg L−1, corresponding to an increase in organic nitrogen and dissolved organic carbon, suggesting biotic uptake and organic transformation. TN loads declined down-estuary (from an annual average of 48 000 ± 5000 kg day−1 at the sewage treatment plant outfall to 23 000 ± 13 000 kg day−1 at the estuary mouth, with the greatest percentage decrease during summer and fall. Annually, there was a 70 ± 31 % loss in wastewater NO3− along the estuary, and 28 ± 6 % of urban wastewater TN inputs were exported to the Chesapeake Bay, with the greatest contribution of wastewater TN loads during the spring. Our results suggest that biological transformations along the urban river–estuary continuum can significantly transform wastewater N inputs from major cities globally, and more work is necessary to evaluate the potential of organic nitrogen and carbon to contribute to eutrophication and hypoxia.

  19. Measurement of Diffusion Parameters and of Anisotropy of Graphite with a Pulsed Source of Neutrons

    International Nuclear Information System (INIS)

    Sagot, M.; Tellier, H.

    1963-01-01

    The diffusion coefficient, cooling coefficient, and anisotropy of graphite were determined to be (2.19 ± 0.03) x 10 5 cm 2 sec -1 , (37.9 ± 4) x 10 5 cm 4 sec -1 , and 1.017 ± 0.008, respectively. The range of geometrical buckling was from 7 to 155 m -2 . The values obtained are compared with published values. (authors) [fr

  20. Special graphites

    International Nuclear Information System (INIS)

    Leveque, P.

    1964-01-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [fr

  1. Carbon Transformations and Source - Sink Dynamics along a River, Marsh, Estuary, Ocean Continuum

    Science.gov (United States)

    Anderson, I. C.; Crosswell, J.; Czapla, K.; Van Dam, B.

    2017-12-01

    Estuaries, the transition zone between land and the coastal ocean, are highly dynamic systems in which carbon sourced from watersheds, marshes, atmosphere, and ocean may be transformed, sequestered, or exported. The net fate of carbon in estuaries, governed by the interactions of biotic and physical drivers varying on spatial and temporal scales, is currently uncertain because of limited observational data. In this study, conducted in a temperate, microtidal, and shallow North Carolina USA estuary, carbon exchanges via river, tributary, and fringing salt marsh, air-water fluxes, sediment C accumulation, and metabolism were monitored over two-years, with sharply different amounts of rainfall. Air-water CO2 fluxes and metabolic variables were simultaneously measured in channel and shoal by conducting high-resolution surveys at dawn, dusk and the following dawn. Marsh CO2 exchanges, sediment C inputs, and lateral exports of DIC and DOC were also measured. Carbon flows between estuary regions and export to the coastal ocean were calculated by quantifying residual transport of DIC and TOC down-estuary as flows were modified by sources, sinks and internal transformations. Variation in metabolic rates, CO2, TOC and DIC exchanges were large when determined for short time and limited spatial scales. However, when scaled to annual and whole estuarine scales, variation tended to decrease because of counteracting metabolic rates and fluxes between channel and shoal or between seasons. Although overall salt marshes accumulated OC, they were a negligible source of DIC and DOC to the estuary, and net inputs of C to the marsh were mainly derived from sediment OC. These results, as observed in other observational studies of estuaries, show that riverine input, light, temperature and metabolism are major controls on carbon cycling. Comparison of our results with other types of estuaries varying in depth, latitude, and nutrification demonstrates large discrepancies underscoring the

  2. INVESTIGATING PARTICLE ACCELERATION IN PROTOSTELLAR JETS: THE TRIPLE RADIO CONTINUUM SOURCE IN SERPENS

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Kamenetzky, Adriana; Valotto, Carlos [Instituto de Astronomía Teórica y Experimental, (IATE-UNC), X5000BGR Córdoba (Argentina); Carrasco-González, Carlos; Rodríguez, Luis F. [Instituto de Radioastronomía y Astrofísica (IRyA-UNAM), 58089 Morelia, México (Mexico); Araudo, Anabella [University of Oxford, Astrophysics, Keble Road, Oxford OX1 3RH (United Kingdom); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Anglada, Guillem [Instituto de Astrofísica de Andalucía, CSIC, Camino Bajo de Huétor 50, E-18008 Granada (Spain); Martí, Josep [Dept. de Física, EPS de Jaén, Universidad de Jaén, Campus Las Lagunillas s/n, A3-402, E-23071 Jaén (Spain)

    2016-02-10

    While most protostellar jets present free–free emission at radio wavelengths, synchrotron emission has also been proposed to be present in a handful of these objects. The presence of nonthermal emission has been inferred by negative spectral indices at centimeter wavelengths. In one case (the HH 80-81 jet arising from a massive protostar), its synchrotron nature was confirmed by the detection of linearly polarized radio emission. One of the main consequences of these results is that synchrotron emission implies the presence of relativistic particles among the nonrelativistic material of these jets. Therefore, an acceleration mechanism should be taking place. The most probable scenario is that particles are accelerated when the jets strongly impact against the dense envelope surrounding the protostar. Here we present an analysis of radio observations obtained with the Very Large Array of the triple radio source in the Serpens star-forming region. This object is known to be a radio jet arising from an intermediate-mass protostar. It is also one of the first protostellar jets where the presence of nonthermal emission was proposed. We analyze the dynamics of the jet and the nature of the emission and discuss these issues in the context of the physical parameters of the jet and the particle acceleration phenomenon.

  3. Continuum Mechanics

    CERN Document Server

    Romano, Antonio

    2010-01-01

    This book offers a broad overview of the potential of continuum mechanics to describe a wide range of macroscopic phenomena in real-world problems. Building on the fundamentals presented in the authors' previous book, Continuum Mechanics using Mathematica(R), this new work explores interesting models of continuum mechanics, with an emphasis on exploring the flexibility of their applications in a wide variety of fields.Specific topics, which have been chosen to show the power of continuum mechanics to characterize the experimental behavior of real phenomena, include: * various aspects of nonlin

  4. Determination of sulfur in coal and ash slurry by high-resolution continuum source electrothermal molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakadi, Flávio V.; Rosa, Lilian R.; Veiga, Márcia A.M.S. da, E-mail: mamsveiga@ffclrp.usp.br

    2013-10-01

    We propose a procedure for the determination of sulfur in coal slurries by high resolution continuum source electrothermal molecular absorption spectrometry. The slurry, whose concentration is 1 mg mL{sup −1}, was prepared by mixing 50 mg of the sample with 5% v/v nitric acid and 0.04% m/v Triton X-100 and was homogenized manually. It sustained good stability. The determination was performed via CS molecular absorption at 257.592 nm, and the optimized vaporization temperature was 2500 °C. The accuracy of the method was ensured by analysis of certified reference materials SRM 1632b (trace elements in coal) and SRM 1633b (coal fly ash) from the National Institute of Standards and Technology, using external calibration with aqueous standards prepared in the same medium and used as slurry. We achieved good agreement with the certified reference materials within 95% confidence interval, LOD of 0.01% w/w, and RSD of 6%, which confirms the potential of the proposed method. - Highlights: • HR-CS ET MAS as a technique to determine sulfur in coal and ash • Utilization of (coal and coal fly ash) slurry as a sample preparation • Simple and fast method, which uses external calibration with aqueous standards without chemical modifier.

  5. Determination of total sulfur in agricultural samples by high-resolution continuum source flame molecular absorption spectrometry.

    Science.gov (United States)

    Virgilio, Alex; Raposo, Jorge L; Cardoso, Arnaldo A; Nóbrega, Joaquim A; Gomes Neto, José A

    2011-03-23

    The usefulness of molecular absorption was investigated for the determination of total sulfur (S) in agricultural samples by high-resolution continuum source flame molecular absorption spectrometry. The lines for CS at 257.595, 257.958, and 258.056 nm and for SH at 323.658, 324.064, and 327.990 nm were evaluated. Figures of merit, such as linear dynamic range, sensitivity, linear correlation, characteristic concentration, limit of detection, and precision, were established. For selected CS lines, wavelength-integrated absorbance equivalent to 3 pixels, analytical curves in the 100-2500 mg L(-1) (257.595 nm), 250-2000 mg L(-1) (257.958 nm), and 250-5000 mg L(-1) (258.056 nm) ranges with a linear correlation coefficient better than 0.9980 were obtained. Results were in agreement at a 95% confidence level (paired t test) with those obtained by gravimetry. Recoveries of S in fungicide and fertilizer samples were within the 84-109% range, and the relative standard deviation (n=12) was typically <5%.

  6. Detection of silver nanoparticles in parsley by solid sampling high-resolution-continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Feichtmeier, Nadine S; Leopold, Kerstin

    2014-06-01

    In this work, we present a fast and simple approach for detection of silver nanoparticles (AgNPs) in biological material (parsley) by solid sampling high-resolution-continuum source atomic absorption spectrometry (HR-CS AAS). A novel evaluation strategy was developed in order to distinguish AgNPs from ionic silver and for sizing of AgNPs. For this purpose, atomisation delay was introduced as significant indication of AgNPs, whereas atomisation rates allow distinction of 20-, 60-, and 80-nm AgNPs. Atomisation delays were found to be higher for samples containing silver ions than for samples containing silver nanoparticles. A maximum difference in atomisation delay normalised by the sample weight of 6.27 ± 0.96 s mg(-1) was obtained after optimisation of the furnace program of the AAS. For this purpose, a multivariate experimental design was used varying atomisation temperature, atomisation heating rate and pyrolysis temperature. Atomisation rates were calculated as the slope of the first inflection point of the absorbance signals and correlated with the size of the AgNPs in the biological sample. Hence, solid sampling HR-CS AAS was proved to be a promising tool for identifying and distinguishing silver nanoparticles from ionic silver directly in solid biological samples.

  7. Mid infra-red hyper-spectral imaging with bright super continuum source and fast acousto-optic tuneable filter for cytological applications

    International Nuclear Information System (INIS)

    Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; Van der Zanden, Koen; Napier, Bruce

    2015-01-01

    Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described. (paper)

  8. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Hlongwane, Miranda [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Heitmann, Uwe [German Aerospace Center, Rose-Luxemburg Str. 2, 10178 Berlin (Germany); Florek, Stefan [ISAS-Leibniz-Institut fuer Analytische Wissenschaften e.V., Albert-Einstein-Str. 9,12489 Berlin (Germany)

    2012-05-15

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 {mu}g{center_dot}L{sup -1} using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed. - Highlights: Black-Right-Pointing-Pointer New calculation algorithm for HR-CS ET AAS measurements was proposed and applied. Black-Right-Pointing-Pointer The suggested formulas include two parameters to be determined experimentally. Black

  9. Marine sediments monitoring studies for trace elements with the application of fast temperature programs and solid sampling high resolution continuum source atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Orani, Anna Maria; Han, Eunmi; Mandjukov, Petko; Vassileva, Emilia, E-mail: e.vasileva-veleva@iaea.org

    2015-01-01

    Analytical procedure for the determination of As, Cd, Cu, Ni, Co and Cr in marine sediment samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS AAS) and direct solid sample analysis has been developed. The application of fast programs in combination with direct solid sampling allows to eliminate the drying and pretreatment steps, however makes impossible the use of liquid standards for calibration. Iridium treated platforms were applied throughout the present study. Calibration technique based on the use of solid certified reference materials (marine sediments) similar to the nature of the analyzed sample and statistics of regression analysis were applied to the real sediment samples. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signals. The ISO-17025 requirements and Eurachem guidelines were followed in the validation of the proposed analytical procedure. Accordingly, blanks, selectivity, calibration, linearity, working range, trueness, repeatability reproducibility, limits of detection and quantification and expanded uncertainty (k = 2) for all investigated elements were assessed. Two different approaches for the estimation of measurement uncertainty were applied and obtained results compared. The major contributors to the combined uncertainty of the analyte mass fraction were found to be the homogeneity of the samples and the microbalance precision. The influence of sample particle sizes on the total combined uncertainty was also evaluated. Traceability to SI system of units of the obtained by the proposed analytical procedure results was demonstrated. Additionally, validation of the methodology developed was effectuated by the comparison of the obtained results with independent method e.g. ICP-MS with external calibration. The use of solid sampling HR CS AAS for the determination of trace elements in marine sediment matrix gives significant advantages

  10. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    Science.gov (United States)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6-4.3%), repeatability (4-9%), reproducibility (9-11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as straightforward

  11. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia, E-mail: e.vasileva-veleva@iaea.org

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6–4.3%), repeatability (4–9%), reproducibility (9–11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as

  12. Continuum mechanics

    CERN Document Server

    Spencer, A J M

    2004-01-01

    The mechanics of fluids and the mechanics of solids represent the two major areas of physics and applied mathematics that meet in continuum mechanics, a field that forms the foundation of civil and mechanical engineering. This unified approach to the teaching of fluid and solid mechanics focuses on the general mechanical principles that apply to all materials. Students who have familiarized themselves with the basic principles can go on to specialize in any of the different branches of continuum mechanics. This text opens with introductory chapters on matrix algebra, vectors and Cartesian ten

  13. Growth of Hexagonal Columnar Nanograin Structured SiC Thin Films on Silicon Substrates with Graphene–Graphitic Carbon Nanoflakes Templates from Solid Carbon Sources

    Directory of Open Access Journals (Sweden)

    Wanshun Zhao

    2013-04-01

    Full Text Available We report a new method for growing hexagonal columnar nanograin structured silicon carbide (SiC thin films on silicon substrates by using graphene–graphitic carbon nanoflakes (GGNs templates from solid carbon sources. The growth was carried out in a conventional low pressure chemical vapor deposition system (LPCVD. The GGNs are small plates with lateral sizes of around 100 nm and overlap each other, and are made up of nanosized multilayer graphene and graphitic carbon matrix (GCM. Long and straight SiC nanograins with hexagonal shapes, and with lateral sizes of around 200–400 nm are synthesized on the GGNs, which form compact SiC thin films.

  14. Determination of sulfur in bovine serum albumin and L-cysteine using high-resolution continuum source molecular absorption spectrometry of the CS molecule

    Science.gov (United States)

    Andrade-Carpente, Eva; Peña-Vázquez, Elena; Bermejo-Barrera, Pilar

    2016-08-01

    In this study, the content of sulfur in bovine serum albumin and L-cysteine was determined using high-resolution continuum source molecular absorption spectrometry of the CS molecule, generated in a reducing air-acetylene flame. Flame conditions (height above the burner, measurement time) were optimized using a 3.0% (v/v) sulfuric acid solution. A microwave lab station (Ethos Plus MW) was used for the digestion of both compounds. During the digestion step, sulfur was converted to sulfate previous to the determination. Good repeatability (4-10%) and analytical recovery (91-106%) was obtained.

  15. A new approach for the determination of sulphur in food samples by high-resolution continuum source flame atomic absorption spectrometer.

    Science.gov (United States)

    Ozbek, N; Baysal, A

    2015-02-01

    The new approach for the determination of sulphur in foods was developed, and the sulphur concentrations of various fresh and dried food samples determined using a high-resolution continuum source flame atomic absorption spectrometer with an air/acetylene flame. The proposed method was optimised and the validated using standard reference materials, and certified values were found to be within the 95% confidence interval. The sulphur content of foods ranged from less than the LOD to 1.5mgg(-1). The method is accurate, fast, simple and sensitive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Carbon-14 Graphitization Chemistry

    Science.gov (United States)

    Miller, James; Collon, Philippe; Laverne, Jay

    2014-09-01

    Accelerator Mass Spectrometry (AMS) is a process that allows for the analysis of mass of certain materials. It is a powerful process because it results in the ability to separate rare isotopes with very low abundances from a large background, which was previously impossible. Another advantage of AMS is that it only requires very small amounts of material for measurements. An important application of this process is radiocarbon dating because the rare 14C isotopes can be separated from the stable 14N background that is 10 to 13 orders of magnitude larger, and only small amounts of the old and fragile organic samples are necessary for measurement. Our group focuses on this radiocarbon dating through AMS. When performing AMS, the sample needs to be loaded into a cathode at the back of an ion source in order to produce a beam from the material to be analyzed. For carbon samples, the material must first be converted into graphite in order to be loaded into the cathode. My role in the group is to convert the organic substances into graphite. In order to graphitize the samples, a sample is first combusted to form carbon dioxide gas and then purified and reduced into the graphite form. After a couple weeks of research and with the help of various Physics professors, I developed a plan and began to construct the setup necessary to perform the graphitization. Once the apparatus is fully completed, the carbon samples will be graphitized and loaded into the AMS machine for analysis.

  17. Artificial graphites

    International Nuclear Information System (INIS)

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  18. Flare continuum

    International Nuclear Information System (INIS)

    Robinson, R.D.

    1985-01-01

    This paper reviews the metre-wave continuum radiation which is related to similar solar emissions observed in the decimetre and centimetre spectral regions. This type of emission, known as Flare Contiuum, is related to the radio bursts of types II and IV. After summarising the history of the phenomenon and reviewing the observational work, the author discusses the various possible radiation mechanisms and their relation to the solar corona, the interplanetary medium and related regions. The theoretical topics covered include the role of high-energy particles, the trapping of such particles, gyro-synchrotron radiation, polarization and plasma interactions. (U.K.)

  19. Continuum Physics

    CERN Document Server

    Hertel, Peter

    2012-01-01

    This small book on the properties of continuously distributed matter covers a huge field. It sets out the governing principles of continuum physics and illustrates them by carefully chosen examples. These examples comprise structural mechanics and elasticity, fluid media, electricity and optics, thermoelectricity, fluctuation phenomena and more, from Archimedes' principle via Brownian motion to white dwarfs. Metamaterials, pattern formation by reaction-diffusion and surface plasmon polaritons are dealt with as well as classical topics such as Stokes' formula, beam bending and buckling, crystal optics and electro- and magnetooptic effects, dielectric waveguides, Ohm's law, surface acoustic waves, to mention just some.   The set of balance equations for content, flow and production of particles, mass, charge, momentum, energy and entropy is augmented by material, or constitutive equations. They describe entire classes of materials, such as viscid fluids and gases, elastic media, dielectrics or electrical con...

  20. Management of UKAEA graphite liabilities

    International Nuclear Information System (INIS)

    Wise, M.

    2001-01-01

    The UK Atomic Energy Authority (UKAEA) is responsible for managing its liabilities for redundant research reactors and other active facilities concerned with the development of the UK nuclear technology programme since 1947. These liabilities include irradiated graphite from a variety of different sources including low irradiation temperature reactor graphite (the Windscale Piles 1 and 2, British Energy Pile O and Graphite Low Energy Experimental Pile at Harwell and the Material Testing Reactors at Harwell and Dounreay), advanced gas-cooled reactor graphite (from the Windscale Advanced Gas-cooled Reactor) and graphite from fast reactor systems (neutron shield graphite from the Dounreay Prototype Fast Reactor and Dounreay Fast Reactor). The decommissioning and dismantling of these facilities will give rise to over 6,000 tonnes of graphite requiring disposal. The first graphite will be retrieved from the dismantling of Windscale Pile 1 and the Windscale Advanced Gas-cooled Reactor during the next five years. UKAEA has undertaken extensive studies to consider the best practicable options for disposing of these graphite liabilities in a manner that is safe whilst minimising the associated costs and technical risks. These options include (but are not limited to), disposal as Low Level Waste, incineration, or encapsulation and disposal as Intermediate Level Waste. There are a number of technical issues associated with each of these proposed disposal options; these include Wigner energy, radionuclide inventory determination, encapsulation of graphite dust, galvanic coupling interactions enhancing the corrosion of mild steel and public acceptability. UKAEA is currently developing packaging concepts and designing packaging plants for processing these graphite wastes in consultation with other holders of graphite wastes throughout Europe. 'Letters of Comfort' have been sought from both the Low Level Waste and the Intermediate Level Waste disposal organisations to support the

  1. A graphite foam reinforced by graphite particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.J.; Wang, X.Y.; Guo, L.F.; Wang, Y.M.; Wang, Y.P.; Yu, M.F.; Lau, K.T.T. [DongHua University, Shanghai (China). College of Material Science and Engineering

    2007-11-15

    Graphite foam was obtained after carbonization and graphitization of a pitch foam formed by the pyrolysis of coal tar based mesophase pitch mixed with graphite particles in a high pressure and temperature chamber. The graphite foam possessed high mechanical strength and exceptional thermal conductivity after adding the graphite particles. Experimental results showed that the thermal conductivity of modified graphite foam reached 110W/m K, and its compressive strength increased from 3.7 MPa to 12.5 MPa with the addition of 5 wt% graphite particles. Through the microscopic observation, it was also found that fewer micro-cracks were formed in the cell wall of the modified foam as compared with pure graphite foam. The graphitization degree of modified foam reached 84.9% and the ligament of graphite foam exhibited high alignment after carbonization at 1200{sup o}C for 3 h and graphitization at 3000{sup o}C for 10 min.

  2. Investigation of artifacts caused by deuterium background correction in the determination of phosphorus by electrothermal atomization using high-resolution continuum source atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Borges, Daniel L.G.; Welz, Bernhard; Silva, Marcia M.; Heitmann, Uwe

    2008-01-01

    The artifacts created in the measurement of phosphorus at the 213.6-nm non-resonance line by electrothermal atomic absorption spectrometry using line source atomic absorption spectrometry (LS AAS) and deuterium lamp background correction (D 2 BC) have been investigated using high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). The absorbance signals and the analytical curves obtained by LS AAS without and with D 2 BC, and with HR-CS AAS without and with automatic correction for continuous background absorption, and also with least-squares background correction for molecular absorption with rotational fine structure were compared. The molecular absorption due to the suboxide PO that exhibits pronounced fine structure could not be corrected by the D 2 BC system, causing significant overcorrection. Among the investigated chemical modifiers, NaF, La, Pd and Pd + Ca, the Pd modifier resulted in the best agreement of the results obtained with LS AAS and HR-CS AAS. However, a 15% to 100% higher sensitivity, expressed as slope of the analytical curve, was obtained for LS AAS compared to HR-CS AAS, depending on the modifier. Although no final proof could be found, the most likely explanation is that this artifact is caused by a yet unidentified phosphorus species that causes a spectrally continuous absorption, which is corrected without problems by HR-CS AAS, but which is not recognized and corrected by the D 2 BC system of LS AAS

  3. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  4. Thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  5. A standard graphite block

    Energy Technology Data Exchange (ETDEWEB)

    Ivkovic, M; Zdravkovic, Z; Sotic, O [Department of Reactor Physics and Dynamics, Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1966-04-15

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 {+-}3.1 cm for the following graphite characteristics: density = 1.7 g/cm{sup 3}; boron content = 0.1 ppm; absorption cross section = 3.7 mb.

  6. A standard graphite block

    International Nuclear Information System (INIS)

    Ivkovic, M.; Zdravkovic, Z.; Sotic, O.

    1966-04-01

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 ±3.1 cm for the following graphite characteristics: density = 1.7 g/cm 3 ; boron content = 0.1 ppm; absorption cross section = 3.7 mb

  7. Generation of new spatial and temporal coherent states using VECSEL technology: VORTEX, high order Laguerre-Gauss mode, continuum source

    Science.gov (United States)

    Sellahi, Mohamed; Seghilani, Mohamed Seghir; Sagnes, Isabelle; Beaudoin, Gregoire; Lafosse, Xavier; Legratiet, Luc; Lalanne, Philippe; Myara, Mikhal; Garnache, Arnaud

    2017-11-01

    Since years, the VeCSEL concept is pointed out as a technology of choice for beyond-state-of-the-art laser light sources. The targeted coherent state in CW is typically the common gaussian TEM00, single frequency, linearly polarized lightstate. In this work, we take advantage of the VeCSEL technology for the generation of other kinds of coherent states, thanks to the insertion of intracavity functions, such as low-loss intensity and phase filters integrated on a semiconductor chip. This technological development permitted to demonstrate very pure high-order Laguerre-Gauss mode, both degenerate and non-degenerate(vortex)modes, preserving the coherence properties of usual TEM00 VeCSELs. This technology paves the way for the generation of other coherences (Bessel beams) or new functionnalities (wavelength filtering, etc.). We also explore new time domain coherence : owing to a high gain semiconductor chip design and the insertion of intracavity AOM, we demonstrated the first Frequecy-Shifted-Feedback VeCSEL, with a broadband coherence state as wide as 300 GHz.

  8. High-resolution continuum source atomic absorption spectrometry for the simultaneous or sequential monitoring of multiple lines. A critical review of current possibilities

    International Nuclear Information System (INIS)

    Resano, M.; Flórez, M.R.; García-Ruiz, E.

    2013-01-01

    This work examines the capabilities and limitations of commercially available high-resolution continuum source atomic absorption spectrometry instrumentation for multi-line monitoring, discussing in detail the possible strategies to develop multi-element methodologies that are truly simultaneous, or else sequential, but from the same sample aliquot. Moreover, the simultaneous monitoring of various atomic or molecular lines may bring other important analytical advantages, such as: i) expansion of the linear range by monitoring multiplets; ii) improvements in the limit of detection and in precision by summing the signals from different lines of the same element or molecule; iii) simple correction for matrix-effects by selecting a suitable internal standard; or iv) accurate mathematical correction of spectral overlaps by simultaneous monitoring of free lines of the interfering molecule or element. This work discusses how authors have made use of these strategies to develop analytical methodologies that permit the straightforward analysis of complex samples. - Highlights: • HR CS AAS potential for simultaneous multi-line monitoring is critically examined. • Strategies to develop simultaneous multi-element methods are discussed. • Other benefits of multi-line monitoring (e.g., use of an IS or LSBC) are highlighted. • Selected examples from the literature are discussed in detail

  9. Use of slurry sampling for the direct determination of zinc in yogurt by high resolution-continuum source flame atomic absorption spectrometry.

    Science.gov (United States)

    Brandao, Geovani C; de Jesus, Raildo M; da Silva, Erik G P; Ferreira, Sergio L C

    2010-06-15

    This paper presents an analytical procedure for the direct determination of zinc in yogurt employing sampling slurry and high resolution-continuum source flame atomic absorption spectrometry (HR-CS FAAS). The step optimization established the experimental conditions of: 2.0molL(-1) hydrochloric acid, a sonication time of 20min and a sample mass of 1.0g for a slurry volume of 25mL. This method allows the determination of zinc with a limit of quantification of 0.32microgg(-1). The precision expressed as relative standard deviation (RSD) were 0.82 and 2.08% for yogurt samples containing zinc concentrations of 4.85 and 2.49microgg(-1), respectively. The accuracy was confirmed by the analysis of a certified reference material of non-fat milk powder furnished by the National Institute of Standard and Technology. The proposed method was applied for the determination of zinc in seven yogurt samples. The zinc content was varied from 2.19 to 4.85microgg(-1). These results agreed with those reported in the literature. The samples were also analyzed after acid digestion and zinc determination by FAAS. No statistical difference was observed between the results obtained by both of the procedures performed.

  10. Microwave assisted aqua regia extraction of thallium from sediment and coal fly ash samples and interference free determination by continuum source ETAAS after cloud point extraction.

    Science.gov (United States)

    Meeravali, Noorbasha N; Madhavi, K; Kumar, Sunil Jai

    2013-01-30

    A simple cloud point extraction method is described for the separation and pre-concentration of thallium from the microwave assisted aqua regia extracts of sediment and coal fly ash samples. The method is based on the formation of extractable species of thallium and its interaction with hydrophobic solubilizing sites of Triton X-114 micelles in the presence of aqua regia and electrolyte NaCl. These interactions of micelles are used for extraction of thallium from a bulk aqueous phase into a small micelles-rich phase. The potential chloride interferences are eliminated effectively, which enabled interference free determination of thallium from aqua regia extracts using continuum source ETAAS. The parameters affecting the extraction process are optimized. Under the optimized conditions, pre-concentration factor and limit of detection are 40 and 0.2 ng g(-1), respectively. The recoveries are in the range of 95-102%. A characteristic mass, 13 pg was obtained. The accuracy of the method is verified by analyzing certified reference materials such as NIST 1633b coal fly ash, NIST 1944 marine sediment and GBW 07312 stream sediments. The results obtained are in good agreement with the certified values and method is also applied to real samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Investigating effects of sample pretreatment on protein stability using size-exclusion chromatography and high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Rakow, Tobias; El Deeb, Sami; Hahne, Thomas; El-Hady, Deia Abd; AlBishri, Hassan M; Wätzig, Hermann

    2014-09-01

    In this study, size-exclusion chromatography and high-resolution atomic absorption spectrometry methods have been developed and evaluated to test the stability of proteins during sample pretreatment. This especially includes different storage conditions but also adsorption before or even during the chromatographic process. For the development of the size exclusion method, a Biosep S3000 5 μm column was used for investigating a series of representative model proteins, namely bovine serum albumin, ovalbumin, monoclonal immunoglobulin G antibody, and myoglobin. Ambient temperature storage was found to be harmful to all model proteins, whereas short-term storage up to 14 days could be done in an ordinary refrigerator. Freezing the protein solutions was always complicated and had to be evaluated for each protein in the corresponding solvent. To keep the proteins in their native state a gentle freezing temperature should be chosen, hence liquid nitrogen should be avoided. Furthermore, a high-resolution continuum source atomic absorption spectrometry method was developed to observe the adsorption of proteins on container material and chromatographic columns. Adsorption to any container led to a sample loss and lowered the recovery rates. During the pretreatment and high-performance size-exclusion chromatography, adsorption caused sample losses of up to 33%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bridged graphite oxide materials

    Science.gov (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  13. Coordinated Isotopic and TEM Studies of Presolar Graphites from Murchison

    Science.gov (United States)

    Croat, T. K.; Stadermann, F. J.; Zinner, E.; Bernatowicz, T. J.

    2004-03-01

    TEM and NanoSIMS investigations of the same presolar Murchison KFC graphites revealed high Zr, Mo, and Ru content in refractory carbides within the graphites. Along with isotopically light carbon, these suggest a low-metallicity AGB source.

  14. Gas transport in graphitic materials

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1995-02-01

    The characterization of the gas transport properties of porous solids is of interest in several fields of science and technology. Many catalysts, adsorbents, soils, graphites and carbons are porous. The gas transport through most porous solids can be well described by the dusty gas model invented by Evans, Watson and Mason. This model includes all modes of gas tranport under steady-state conditions, which are Knudsen diffusion, combined Knudsen/continuum diffusion and continuum diffusion, both for gas pairs with equal and different molecular weights. In the absence of a pressure difference gas transport in a pore system can be described by the combined Knudsen/continuum diffusion coefficient D 1 for component 1 in the pores, the Knudsen diffusion coefficient D 1K in the pores, and the continuum diffusion coefficient D 12 for a binary mixture in the pores. The resistance to stationary continuum diffusion of the pores is characterized by a geometrical factor (ε/τ) 12 = (ε/τ)D 12 , were D 12 is the continuum diffusion coefficient for a binary mixture in free space. The Wicke-Kallenbach method was often used to measure D 1 as function of pressure. D 12 and D 1K can be derived from a plot 1/D 1 νs P, and ε/τcan be calculated since D 12 is known. D 1K and the volume of dead end pores can be derived from transient measurements of the diffusional flux at low pressures. From D 1K the expression (ε/τ c ) anti l por may be calculated, which characterizes the pore system for molecular diffusion, where collisions with the pore walls are predominant. (orig.)

  15. Process for purifying graphite

    International Nuclear Information System (INIS)

    Clausius, R.A.

    1985-01-01

    A process for purifying graphite comprising: comminuting graphite containing mineral matter to liberate at least a portion of the graphite particles from the mineral matter; mixing the comminuted graphite particles containing mineral matter with water and hydrocarbon oil to form a fluid slurry; separating a water phase containing mineral matter and a hydrocarbon oil phase containing grahite particles; and separating the graphite particles from the hydrocarbon oil to obtain graphite particles reduced in mineral matter. Depending upon the purity of the graphite desired, steps of the process can be repeated one or more times to provide a progressively purer graphite

  16. Health information needs, source preferences and engagement behaviours of women with metastatic breast cancer across the care continuum: protocol for a scoping review.

    Science.gov (United States)

    Tucker, Carol A; Martin, M Pilar; Jones, Ray B

    2017-02-17

    The health information needs, information source preferences and engagement behaviours of women with metastatic breast cancer (mBC) depend on personal characteristics such as education level, prior knowledge, clinical complications, comorbidities and where they are in the cancer journey. A thorough understanding of the information behaviours of women living with mBC is essential to the provision of optimal care. A preliminary literature review suggests that there is little research on this topic, but that there may be lessons from a slightly broader literature. This review will identify what is known and what is not known about the health information needs, acquisition and influences of women with mBC across the care continuum. Findings will help to identify research needs and specific areas where in-depth systematic reviews may be feasible, as well as inform evidence-based interventions to address the health information needs of female patients with mBC with different demographics and characteristics and across the mBC journey. A scoping review will be performed using the guidelines of Arksey and O'Malley as updated by subsequent authors to systematically search scientific and grey literature for articles in English that discuss the health information needs, source preferences, engagement styles, and associated personal and medical attributes of women ≥18 years living with mBC at different stages of the disease course. A variety of databases (including Cumulative Index to Nursing and Allied Health Literature (CINAHL), PubMed, Excerpta Medica Database (EMBASE), Academic Search Premier, Cochrane Database of Systematic Reviews, PsycINFO, Health Source: Nursing/Academic Edition, and PQDT Open), oncology, patient advocacy and governmental websites will be searched from inception to present day. Research and non-research literature will be included; no study designs will be excluded. The six-stage Arksey and O'Malley scoping review methodological framework involves

  17. A simple and fast method for assessment of the nitrogen–phosphorus–potassium rating of fertilizers using high-resolution continuum source atomic and molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bechlin, Marcos André; Fortunato, Felipe Manfroi; Moutinho da Silva, Ricardo; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta, E-mail: anchieta@iq.unesp.br

    2014-11-01

    The determination of N, P, and K in fertilizers by high-resolution continuum source flame atomic and molecular absorption spectrometry is proposed. Under optimized conditions, measurements of the diatomic molecules NO and PO at 215.360 and 247.620 nm, respectively, and K using the wing of the alternative line at 404.722 nm allowed calibration curves to be constructed in the ranges 500–5000 mg L{sup −1} N (r = 0.9994), 100–2000 mg L{sup −1} P (r = 0.9946), and 100–2500 mg L{sup −1} K (r = 0.9995). Commercial fertilizers were analyzed by the proposed method and the concentrations of N, P, and K were found to be in agreement with those obtained by Kjeldahl, spectrophotometric, and flame atomic emission spectrometry methods, respectively, at a 95% confidence level (paired t-test). A phosphate rock certified reference material (CRM) was analyzed and the results for P and K were in agreement with the reference values. Recoveries from spiked CRM were in the ranges 97–105% (NO{sub 3}{sup −}-N), 95–103% (NH{sub 4}{sup +}-N), 93–103% (urea-N), 99–108% (P), and 99–102% (K). The relative standard deviations (n = 12) for N, P, and K were 6, 4, and 2%, respectively. - Highlights: • A single technique is proposed to analyze NPK fertilizer. • HR-CS FAAS is proposed for the first time for N, P and K determination in fertilizers. • The method employs the same sample preparation and dilution for the three analytes. • Addition of H{sub 2}O{sub 2} allows analysis of fertilizers with different nitrogen species. • Proposal provides advantages over traditional methods in terms of cost and time.

  18. Fast sequential multi-element determination of major and minor elements in environmental samples and drinking waters by high-resolution continuum source flame atomic absorption spectrometry.

    Science.gov (United States)

    Gómez-Nieto, Beatriz; Gismera, Ma Jesús; Sevilla, Ma Teresa; Procopio, Jesús R

    2015-01-07

    The fast sequential multi-element determination of 11 elements present at different concentration levels in environmental samples and drinking waters has been investigated using high-resolution continuum source flame atomic absorption spectrometry. The main lines for Cu (324.754 nm), Zn (213.857 nm), Cd (228.802 nm), Ni (232.003 nm) and Pb (217.001 nm), main and secondary absorption lines for Mn (279.482 and 279.827 nm), Fe (248.327, 248.514 and 302.064 nm) and Ca (422.673 and 239.856 nm), secondary lines with different sensitivities for Na (589.592 and 330.237 nm) and K (769.897 and 404.414 nm) and a secondary line for Mg (202.582 nm) have been chosen to perform the analysis. A flow injection system has been used for sample introduction so sample consumption has been reduced up to less than 1 mL per element, measured in triplicate. Furthermore, the use of multiplets for Fe and the side pixel registration approach for Mg have been studied in order to reduce sensitivity and extend the linear working range. The figures of merit have been calculated and the proposed method was applied to determine these elements in a pine needles reference material (SRM 1575a), drinking and natural waters and soil extracts. Recoveries of analytes added at different concentration levels to water samples and extracts of soils were within 88-115% interval. In this way, the fast sequential multi-element determination of major and minor elements can be carried out, in triplicate, with successful results without requiring additional dilutions of samples or several different strategies for sample preparation using about 8-9 mL of sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A simple and fast method for assessment of the nitrogen–phosphorus–potassium rating of fertilizers using high-resolution continuum source atomic and molecular absorption spectrometry

    International Nuclear Information System (INIS)

    Bechlin, Marcos André; Fortunato, Felipe Manfroi; Moutinho da Silva, Ricardo; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta

    2014-01-01

    The determination of N, P, and K in fertilizers by high-resolution continuum source flame atomic and molecular absorption spectrometry is proposed. Under optimized conditions, measurements of the diatomic molecules NO and PO at 215.360 and 247.620 nm, respectively, and K using the wing of the alternative line at 404.722 nm allowed calibration curves to be constructed in the ranges 500–5000 mg L −1 N (r = 0.9994), 100–2000 mg L −1 P (r = 0.9946), and 100–2500 mg L −1 K (r = 0.9995). Commercial fertilizers were analyzed by the proposed method and the concentrations of N, P, and K were found to be in agreement with those obtained by Kjeldahl, spectrophotometric, and flame atomic emission spectrometry methods, respectively, at a 95% confidence level (paired t-test). A phosphate rock certified reference material (CRM) was analyzed and the results for P and K were in agreement with the reference values. Recoveries from spiked CRM were in the ranges 97–105% (NO 3 − -N), 95–103% (NH 4 + -N), 93–103% (urea-N), 99–108% (P), and 99–102% (K). The relative standard deviations (n = 12) for N, P, and K were 6, 4, and 2%, respectively. - Highlights: • A single technique is proposed to analyze NPK fertilizer. • HR-CS FAAS is proposed for the first time for N, P and K determination in fertilizers. • The method employs the same sample preparation and dilution for the three analytes. • Addition of H 2 O 2 allows analysis of fertilizers with different nitrogen species. • Proposal provides advantages over traditional methods in terms of cost and time

  20. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Almeida, Jorge S.; Anunciação, Taiana A.; Brandão, Geovani C.; Dantas, Alailson F.; Lemos, Valfredo A.

    2015-01-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO 3 gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box–Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L −1 HNO 3 as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg −1 . Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method. - Highlights: • The determination of cadmium in vegetable oils was developed using UA-SDME. • HR-CS ET-AAS was employed as a detection technique with direct drop sampling. • The procedure allowed for a reduction in the consumption of reagents and samples

  1. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Almeida, Jorge S.; Anunciação, Taiana A.; Brandão, Geovani C.; Dantas, Alailson F.; Lemos, Valfredo A.; Teixeira, Leonardo S. G.

    2015-05-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO3 gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box-Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L- 1 HNO3 as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg- 1. Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method.

  2. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Jorge S.; Anunciação, Taiana A. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Brandão, Geovani C. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); INCT de Energia e Ambiente, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Dantas, Alailson F. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Lemos, Valfredo A. [Laboratório de Química Analítica (LQA), Universidade Estadual do Sudoeste da Bahia, Campus de Jequié, Jequié, Bahia 45506-191 (Brazil); and others

    2015-05-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO{sub 3} gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box–Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L{sup −1} HNO{sub 3} as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg{sup −1}. Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method. - Highlights: • The determination of cadmium in vegetable oils was developed using UA-SDME. • HR-CS ET-AAS was employed as a detection technique with direct drop sampling. • The procedure allowed for a reduction in the consumption of reagents and

  3. AC induction field heating of graphite foam

    Science.gov (United States)

    Klett, James W.; Rios, Orlando; Kisner, Roger

    2017-08-22

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.

  4. Temperature distribution in graphite during annealing in air cooled reactors

    International Nuclear Information System (INIS)

    Oliveira Avila, C.R. de.

    1989-01-01

    A model for the evaluation temperature distributions in graphite during annealing operation in graphite. Moderated an-cooled reactors, is presented. One single channel and one dimension for air and graphite were considered. A numerical method based on finite control volumes was used for partioning the mathematical equations. The problem solution involves the use of unsteady equations of mass, momentum and energy conservation for air, and energy conservation for graphite. The source term was considered as stored energy release during annealing for describing energy conservation in the graphite. The coupling of energy conservation equations in air and graphite is performed by the heat transfer term betwen air and graphite. The results agree with experimental data. A sensitivity analysis shown that the termal conductivity of graphite and the maximum inlet channel temperature have great effect on the maximum temperature reached in graphite during the annealing. (author)

  5. RELATIVISTIC PLASMA AS THE DOMINANT SOURCE OF THE OPTICAL CONTINUUM EMISSION IN THE BROAD-LINE RADIO GALAXY 3C 120

    International Nuclear Information System (INIS)

    Leon-Tavares, J.; Lobanov, A. P.; Arshakian, T. G.; Chavushyan, V. H.; Doroshenko, V. T.; Sergeev, S. G.; Efimov, Y. S.; Nazarov, S. V.

    2010-01-01

    We report a relation between radio emission in the inner jet of the Seyfert galaxy 3C 120 and optical continuum emission in this galaxy. Combining the optical variability data with multi-epoch high-resolution very long baseline interferometry observations reveals that an optical flare rises when a superluminal component emerges into the jet, and its maxima is related to the passage of such component through the location of a stationary feature at a distance of ∼1.3 pc from the jet origin. This indicates that a significant fraction of the optical continuum produced in 3C 120 is non-thermal, and it can ionize material in a sub-relativistic wind or outflow. We discuss implications of this finding for the ionization and structure of the broad emission line region, as well as for the use of broad emission lines for determining black hole masses in radio-loud active galactic nucleus.

  6. Phonon scattering in graphite

    International Nuclear Information System (INIS)

    Wagner, P.

    1976-04-01

    Effects on graphite thermal conductivities due to controlled alterations of the graphite structure by impurity addition, porosity, and neutron irradiation are shown to be consistent with the phonon-scattering formulation 1/l = Σ/sub i equals 1/sup/n/ 1/l/sub i/. Observed temperature effects on these doped and irradiated graphites are also explained by this mechanism

  7. The Virtuality Continuum Revisited

    NARCIS (Netherlands)

    Nijholt, Antinus; Traum, D.; Zhai, Sh.; Kellogg, W.

    2005-01-01

    We survey the themes and the aims of a workshop devoted to the state-of-the-art virtuality continuum. In this continuum, ranging from fully virtual to real physical environments, allowing for mixed, augmented and desktop virtual reality, several perspectives can be taken. Originally, the emphasis

  8. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil.

    Science.gov (United States)

    Frentiu, Tiberiu; Ponta, Michaela; Hategan, Raluca

    2013-03-01

    The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric

  9. Solid-phase extraction and separation procedure for trace aluminum in water samples and its determination by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS).

    Science.gov (United States)

    Ciftci, Harun; Er, Cigdem

    2013-03-01

    In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L(-1) HNO(3) and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L(-1) and 3.91 μg L(-1), respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.

  10. Notes on continuum mechanics

    CERN Document Server

    Chaves, Eduardo W V

    2013-01-01

    This publication is aimed at students, teachers, and researchers of Continuum Mechanics and focused extensively on stating and developing Initial Boundary Value equations used to solve physical problems. With respect to notation, the tensorial, indicial and Voigt notations have been used indiscriminately.   The book is divided into twelve chapters with the following topics: Tensors, Continuum Kinematics, Stress, The Objectivity of Tensors, The Fundamental Equations of Continuum Mechanics, An Introduction to Constitutive Equations, Linear Elasticity, Hyperelasticity, Plasticity (small and large deformations), Thermoelasticity (small and large deformations), Damage Mechanics (small and large deformations), and An Introduction to Fluids. Moreover, the text is supplemented with over 280 figures, over 100 solved problems, and 130 references.

  11. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  12. Computational Continuum Mechanics

    CERN Document Server

    Shabana, Ahmed A

    2011-01-01

    This text presents the theory of continuum mechanics using computational methods. Ideal for students and researchers, the second edition features a new chapter on computational geometry and finite element analysis.

  13. Chemically assisted release of transition metals in graphite vaporizers for atomic spectrometry

    International Nuclear Information System (INIS)

    Katskov, Dmitri; Darangwa, Nicholas; Grotti, Marco

    2006-01-01

    The processes associated with the vaporization of microgram samples and modifiers in a graphite tube ET AAS were investigated by the example of transition metals. The vapor absorption spectra and vaporization behavior of μg-amounts Cd, Zn, Cu, Ag, Au, Ni, Co, Fe, Mn and Cr were studied using the UV spectrometer with CCD detector, coupled with a continuum radiation source. The pyrocoated, Ta or W lined tubes, with Ar or He as internal gases, and filter furnace were employed in the comparative experiments. It was found that the kinetics of atomic vapor release changed depending on the specific metal-substrate-gas combination; fast vaporization at the beginning was followed by slower 'tailing.' The absorption continuum, overlapped by black body radiation at longer wavelengths, accompanied the fast vaporization mode for all metals, except Cd and Zn. The highest intensity of the continuum was observed in the pyrocoated tube with Ar. For Cu and Ag the molecular bands overlapped the absorption continuum; the continuum and bands were suppressed in the filter furnace. It is concluded that the exothermal interaction of sample vapor with the material of the tube causes the energy evolution in the gas phase. The emitted heat is dispersed near the tube wall in the protective gas and partially transferred back to the surface of the sample, thus facilitating the vaporization. The increased vapor flow causes over-saturation and gas-phase condensation in the absorption volume at some distance from the wall, where the gas temperature is not affected by the reaction. The condensation is accompanied by the release of phase transition energy via black body radiation and atomic emission. The particles of condensate and molecular clusters cause the scattering of light and molecular absorption; slow decomposition of the products of the sample vapor-substrate reaction produces the 'tailing' of atomic absorption signal. The interaction of graphite with metal vapor or oxygen, formed in the

  14. A graphite nanoeraser

    DEFF Research Database (Denmark)

    Liu, Ze; Bøggild, Peter; Yang, Jia-rui

    2011-01-01

    We present here a method for cleaning intermediate-size (up to 50 nm) contamination from highly oriented pyrolytic graphite and graphene. Electron-beam-induced deposition of carbonaceous material on graphene and graphite surfaces inside a scanning electron microscope, which is difficult to remove...... by conventional techniques, can be removed by direct mechanical wiping using a graphite nanoeraser, thus drastically reducing the amount of contamination. We discuss potential applications of this cleaning procedure....

  15. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  16. Radiolytic graphite oxidation revisited

    International Nuclear Information System (INIS)

    Minshall, P.C.; Sadler, I.A.; Wickham, A.J.

    1996-01-01

    The importance of radiolytic oxidation in graphite-moderated CO 2 -cooled reactors has long been recognised, especially in the Advanced Gas-Cooled Reactors where potential rates are higher because of the higher gas pressure and ratings than the earlier Magnox designs. In all such reactors, the rate of oxidation is partly inhibited by the CO produced in the reaction and, in the AGR, further reduced by the deliberate addition of CH 4 . Significant roles are also played by H 2 and H 2 O. This paper reviews briefly the mechanisms of these processes and the data on which they are based. However, operational experience has demonstrated that these basic principles are unsatisfactory in a number of respects. Gilsocarbon graphites produced by different manufacturers have demonstrated a significant difference in oxidation rate despite a similar specification and apparent equivalence in their pore size and distribution, considered to be the dominant influence on oxidation rate for a given coolant-gas composition. Separately, the inhibiting influence of CH 4 , which for many years had been considered to arise from the formation of a sacrificial deposit on the pore walls, cannot adequately be explained by the actual quantities of such deposits found in monitoring samples which frequently contain far less deposited carbon than do samples from Magnox reactors where the only source of such deposits is the CO. The paper also describes the current status of moderator weight-loss predictions for Magnox and AGR Moderators and the validation of the POGO and DIFFUSE6 codes respectively. 2 refs, 5 figs

  17. Optical motion control of maglev graphite.

    Science.gov (United States)

    Kobayashi, Masayuki; Abe, Jiro

    2012-12-26

    Graphite has been known as a typical diamagnetic material and can be levitated in the strong magnetic field. Here we show that the magnetically levitating pyrolytic graphite can be moved in the arbitrary place by simple photoirradiation. It is notable that the optical motion control system described in this paper requires only NdFeB permanent magnets and light source. The optical movement is driven by photothermally induced changes in the magnetic susceptibility of the graphite. Moreover, we demonstrate that light energy can be converted into rotational kinetic energy by means of the photothermal property. We find that the levitating graphite disk rotates at over 200 rpm under the sunlight, making it possible to develop a new class of light energy conversion system.

  18. THE BOLOCAM GALACTIC PLANE SURVEY. X. A COMPLETE SPECTROSCOPIC CATALOG OF DENSE MOLECULAR GAS OBSERVED TOWARD 1.1 mm DUST CONTINUUM SOURCES WITH 7.°5 ≤ l ≤ 194°

    International Nuclear Information System (INIS)

    Shirley, Yancy L.; Svoboda, Brian; Ellsworth-Bowers, Timothy P.; Schlingman, Wayne M.; Ginsburg, Adam; Battersby, Cara; Stringfellow, Guy; Glenn, Jason; Bally, John; Rosolowsky, Erik; Gerner, Thomas; Mairs, Steven; Dunham, Miranda K.

    2013-01-01

    The Bolocam Galactic Plane Survey (BGPS) is a 1.1 mm continuum survey of dense clumps of dust throughout the Galaxy covering 170 deg 2 . We present spectroscopic observations using the Heinrich Hertz Submillimeter Telescope of the dense gas tracers, HCO + and N 2 H + 3-2, for all 6194 sources in the BGPS v1.0.1 catalog between 7.°5 ≤ l ≤ 194°. This is the largest targeted spectroscopic survey of dense molecular gas in the Milky Way to date. We find unique velocities for 3126 (50.5%) of the BGPS v1.0.1 sources observed. Strong N 2 H + 3-2 emission (T mb > 0.5 K) without HCO + 3-2 emission does not occur in this catalog. We characterize the properties of the dense molecular gas emission toward the entire sample. HCO + is very sub-thermally populated and the 3-2 transitions are optically thick toward most BGPS clumps. The median observed line width is 3.3 km s –1 consistent with supersonic turbulence within BGPS clumps. We find strong correlations between dense molecular gas integrated intensities and 1.1 mm peak flux and the gas kinetic temperature derived from previously published NH 3 observations. These intensity correlations are driven by the sensitivity of the 3-2 transitions to excitation conditions rather than by variations in molecular column density or abundance. We identify a subset of 113 sources with stronger N 2 H + than HCO + integrated intensity, but we find no correlations between the N 2 H + /HCO + ratio and 1.1 mm continuum flux density, gas kinetic temperature, or line width. Self-absorbed profiles are rare (1.3%)

  19. THE BOLOCAM GALACTIC PLANE SURVEY. X. A COMPLETE SPECTROSCOPIC CATALOG OF DENSE MOLECULAR GAS OBSERVED TOWARD 1.1 mm DUST CONTINUUM SOURCES WITH 7.°5 ≤ l ≤ 194°

    Energy Technology Data Exchange (ETDEWEB)

    Shirley, Yancy L.; Svoboda, Brian [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Ellsworth-Bowers, Timothy P.; Schlingman, Wayne M.; Ginsburg, Adam; Battersby, Cara; Stringfellow, Guy; Glenn, Jason; Bally, John [CASA, University of Colorado, CB 389, Boulder, CO 80309 (United States); Rosolowsky, Erik [Department of Physics, University of Alberta, 4-181 CCIS Edmonton AB T6G 2E1 (Canada); Gerner, Thomas [Max-Planck-Institut für Astronomie (MPIA), Knigstuhl 17, D-69117 Heidelberg (Germany); Mairs, Steven [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada); Dunham, Miranda K. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2013-11-01

    The Bolocam Galactic Plane Survey (BGPS) is a 1.1 mm continuum survey of dense clumps of dust throughout the Galaxy covering 170 deg{sup 2}. We present spectroscopic observations using the Heinrich Hertz Submillimeter Telescope of the dense gas tracers, HCO{sup +} and N{sub 2}H{sup +} 3-2, for all 6194 sources in the BGPS v1.0.1 catalog between 7.°5 ≤ l ≤ 194°. This is the largest targeted spectroscopic survey of dense molecular gas in the Milky Way to date. We find unique velocities for 3126 (50.5%) of the BGPS v1.0.1 sources observed. Strong N{sub 2}H{sup +} 3-2 emission (T {sub mb} > 0.5 K) without HCO{sup +} 3-2 emission does not occur in this catalog. We characterize the properties of the dense molecular gas emission toward the entire sample. HCO{sup +} is very sub-thermally populated and the 3-2 transitions are optically thick toward most BGPS clumps. The median observed line width is 3.3 km s{sup –1} consistent with supersonic turbulence within BGPS clumps. We find strong correlations between dense molecular gas integrated intensities and 1.1 mm peak flux and the gas kinetic temperature derived from previously published NH{sub 3} observations. These intensity correlations are driven by the sensitivity of the 3-2 transitions to excitation conditions rather than by variations in molecular column density or abundance. We identify a subset of 113 sources with stronger N{sub 2}H{sup +} than HCO{sup +} integrated intensity, but we find no correlations between the N{sub 2}H{sup +}/HCO{sup +} ratio and 1.1 mm continuum flux density, gas kinetic temperature, or line width. Self-absorbed profiles are rare (1.3%)

  20. Method for producing dustless graphite spheres from waste graphite fines

    Science.gov (United States)

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  1. Graphite targets at LAMPF

    International Nuclear Information System (INIS)

    Brown, R.D.; Grisham, D.L.

    1983-01-01

    Rotating polycrystalline and stationary pyrolytic graphite target designs for the LAMPF experimental area are described. Examples of finite element calculations of temperatures and stresses are presented. Some results of a metallographic investigation of irradiated pyrolytic graphite target plates are included, together with a brief description of high temperature bearings for the rotating targets

  2. Introduction to continuum mechanics

    CERN Document Server

    Lai, W Michael; Rubin, David

    1996-01-01

    Introduction to Continuum Mechanics is a recently updated and revised text which is perfect for either introductory courses in an undergraduate engineering curriculum or for a beginning graduate course.Continuum Mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation, and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, a

  3. Fundamentals of continuum mechanics

    CERN Document Server

    Rudnicki, John W

    2014-01-01

    A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally.  This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energ

  4. Electrochemical treatment of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electrochemical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment, ECT of graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones with respect to the treatment rate and purity (ronghness) of the surface. A small quantity of sludge (6-8%) under ECT is in highly alkali electrolytes.

  5. Electrochemical treatment of graphite

    International Nuclear Information System (INIS)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electroche-- mical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment ECT graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones this is treatment rate and purity (ronghness) of the surface. A sMall quantity of sludge (6-8%) under ECT is in highly alkali electrolytes

  6. Surface coating of graphite pebbles for Korean HCCR TBM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Yun, Young-Hoon, E-mail: yunh2@dsu.ac.kr [Dongshin University, Naju (Korea, Republic of); Park, Yi-Hyun; Ahn, Mu-Young; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Highlights: • A CVR-SiC coating was successfully formed on graphite pebbles for neutron reflector. • Dense and fine-grained surface morphologies of the SiC coatings were observed. • Oxidation resistance of the CVR-SiC-coated graphite pebbles was improved. - Abstract: The new concept of the recently modified Helium-Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is to adopt a graphite reflector in the form of a pebble bed. A protective SiC coating is applied to the graphite pebbles to prohibit their reaction with steam or air as well as dust generation during TBM operation. In this research, the chemical vapor reaction (CVR) method was applied to fabricate SiC-coated graphite pebbles in a silica source. Relatively dense CVR-SiC coating was successfully formed on the graphite pebbles through the reduction of the graphite phase with SiO gas that was simply created from the silica source at 1850 °C (2 h). The microstructural features, XRD patterns, pore-size distribution and oxidation behavior of the SiC-coated graphite pebbles were investigated. To develop the practical process, which will be applied for mass production hereafter, a novel alternative method was applied to form the layer of SiC coating on the graphite pebbles over the silica source.

  7. Surface coating of graphite pebbles for Korean HCCR TBM

    International Nuclear Information System (INIS)

    Lee, Youngmin; Yun, Young-Hoon; Park, Yi-Hyun; Ahn, Mu-Young; Cho, Seungyon

    2014-01-01

    Highlights: • A CVR-SiC coating was successfully formed on graphite pebbles for neutron reflector. • Dense and fine-grained surface morphologies of the SiC coatings were observed. • Oxidation resistance of the CVR-SiC-coated graphite pebbles was improved. - Abstract: The new concept of the recently modified Helium-Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is to adopt a graphite reflector in the form of a pebble bed. A protective SiC coating is applied to the graphite pebbles to prohibit their reaction with steam or air as well as dust generation during TBM operation. In this research, the chemical vapor reaction (CVR) method was applied to fabricate SiC-coated graphite pebbles in a silica source. Relatively dense CVR-SiC coating was successfully formed on the graphite pebbles through the reduction of the graphite phase with SiO gas that was simply created from the silica source at 1850 °C (2 h). The microstructural features, XRD patterns, pore-size distribution and oxidation behavior of the SiC-coated graphite pebbles were investigated. To develop the practical process, which will be applied for mass production hereafter, a novel alternative method was applied to form the layer of SiC coating on the graphite pebbles over the silica source

  8. Asymptomatic Intracorneal Graphite Deposits following Graphite Pencil Injury

    OpenAIRE

    Philip, Swetha Sara; John, Deepa; John, Sheeja Susan

    2012-01-01

    Reports of graphite pencil lead injuries to the eye are rare. Although graphite is considered to remain inert in the eye, it has been known to cause severe inflammation and damage to ocular structures. We report a case of a 12-year-old girl with intracorneal graphite foreign bodies following a graphite pencil injury.

  9. Monte Carlo calculation of standard graphite block

    International Nuclear Information System (INIS)

    Ljubenov, V.

    2000-01-01

    This paper presents results of calculation of neutron flux space and energy distribution in the standard graphite block (SGB) obtained by the MCNP TM code. VMCCS nuclear data library, based on the ENDF / B-VI release 4 evaluation file, is used. MCNP model of the SGB considers detailed material, geometric and spectral properties of the neutron source, source carrier, graphite moderator medium, aluminium foil holders and proximate surrounding of SGB Geometric model is organised to provide the simplest homogeneous volume cells in order to obtain the maximum acceleration of neutron history tracking (author)

  10. Recent developments in graphite

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications

  11. The role of graphite morphology and matrix structure on low ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Thermal cycling resistance; graphite morphology; grey cast iron; austempered ductile iron; compacted/vermicular graphite iron; matrix decompo- sition. 1. Introduction. When a material is subjected to a temperature gradient, it tends to expand differentially. During this process, thermal stresses are induced. The source of ...

  12. A experimental system for the checking of the absorption of E.C.A.G. graphite

    International Nuclear Information System (INIS)

    Raievski, V.; Vidal, R.

    1958-01-01

    A system is described for measuring the mean absorption cross section in thermal neutrons of graphite. This system consists of a graphite stack containing a Ra-Be source and a BF3 counter. A cavity in the stack receives the graphite to be studied or the graphite standard. By comparing the counting rates their absorption ratio can be deduced. The measurement is performed on graphite rods which have been machined before being placed in the pile. It provides the possibility of detecting over a batch of 1 ton of graphite, in a single measurement, a difference in absorption of 0.1 milli barn. (author) [fr

  13. Hyperbolic conservation laws in continuum physics

    CERN Document Server

    Dafermos, Constantine M

    2016-01-01

    This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conser...

  14. Long-term records of cadmium and silver contamination in sediments and oysters from the Gironde fluvial-estuarine continuum - evidence of changing silver sources.

    Science.gov (United States)

    Lanceleur, Laurent; Schäfer, Jörg; Chiffoleau, Jean-François; Blanc, Gérard; Auger, Dominique; Renault, Sophie; Baudrimont, Magalie; Audry, Stéphane

    2011-11-01

    The Gironde fluvial estuarine system is impacted by historic metal pollution (e.g. Cd, Zn, Hg) and oysters (Crassostrea gigas) from the estuary mouth have shown extremely high Cd concentrations for decades. Based on recent work (Chiffoleau et al., 2005) revealing anomalously high Ag concentrations (up to 65 mg kg(-1); dry weight) in Gironde oysters, we compared long-term (~1955-2001) records of Ag and Cd concentrations in reservoir sediment with the respective concentrations in oysters collected between 1979 and 2010 to identify the origin and historical trend of the recently discovered Ag anomaly. Sediment cores from two reservoirs upstream and downstream from the main metal pollution source provided information on (i) geochemical background (upstream; Ag: ~0.3 mg kg(-1); Cd: ~0.8 mg kg(-1)) and (ii) historical trends in Ag and Cd pollution. The results showed parallel concentration-depth profiles of Ag and Cd supporting a common source and transport. Decreasing concentrations since 1986 (Cd: from 300 to 11 mg kg(-1); Ag: from 6.7 to 0.43 mg kg(-1)) reflected the termination of Zn ore treatment in the Decazeville basin followed by remediation actions. Accordingly, Cd concentrations in oysters decreased after 1988 (from 109 to 26 mg kg(-1), dry weight (dw)), while Ag bioaccumulation increased from 38 up to 116 mg kg(-1), dw after 1993. Based on the Cd/Ag ratio (Cd/Ag~2) in oysters sampled before the termination of zinc ore treatment (1981-1985) and assuming that nearly all Cd in oysters originated from the metal point source, we estimated the respective contribution of Ag from this source to Ag concentrations in oysters. The evolution over the past 30 years clearly suggested that the recent, unexplained Ag concentrations in oysters are due to increasing contributions (>70% after 1999) by other sources, such as photography, electronics and emerging Ag applications/materials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Patrícia M.; Morés, Silvane; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Carasek, Eduardo [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2015-03-01

    The absorption of the calcium mono-fluoride (CaF) molecule has been employed in this study for the determination of fluorine in coal using direct solid sample analysis and high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS). The rotational line at 606.440 nm was used for measuring the molecular absorption in the gas phase. The pyrolysis and vaporization temperatures were 700 °C and 2100 °C, respectively. Different chemical modifiers have been studied, such as Pd and Ir as permanent modifiers, and Pd and the mixed Pd/Mg modifier in solution. The limit of detection and the characteristic mass were 0.3 and 0.1 ng F, respectively. One certified reference material (CRM) of coal (NIST 1635) and four CRMs with a non-certified value for F (SARM 18, SARM 20, BCR 40, BCR 180) were used to evaluate the accuracy and precision of the method, obtaining good agreement (104%) with the certified value and with the informed values (ranging from 90 to 103%). - Highlights: • High-resolution Graphite Furnace Molecular Absorption Spectrometry (HR-GF MAS) • Fluorine has been determined using HR-GF MAS of the CaF molecule. • The CaF molecule was generated in a graphite furnace at a temperature of 2100 °C • Coal samples have been analyzed using direct solid sample introduction. • Aqueous standard solutions have been used for calibration.

  16. Nonlocal continuum field theories

    CERN Document Server

    2002-01-01

    Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

  17. Continuum mechanics for engineers

    CERN Document Server

    Mase, G Thomas; Mase, George E

    2009-01-01

    Continuum TheoryContinuum MechanicsStarting OverNotationEssential MathematicsScalars, Vectors and Cartesian TensorsTensor Algebra in Symbolic Notation - Summation ConventionIndicial NotationMatrices and DeterminantsTransformations of Cartesian TensorsPrincipal Values and Principal DirectionsTensor Fields, Tensor CalculusIntegral Theorems of Gauss and StokesStress PrinciplesBody and Surface Forces, Mass DensityCauchy Stress PrincipleThe Stress TensorForce and Moment Equilibrium; Stress Tensor SymmetryStress Transformation LawsPrincipal Stresses; Principal Stress DirectionsMaximum and Minimum Stress ValuesMohr's Circles For Stress Plane StressDeviator and Spherical Stress StatesOctahedral Shear StressKinematics of Deformation and MotionParticles, Configurations, Deformations and MotionMaterial and Spatial CoordinatesLangrangian and Eulerian DescriptionsThe Displacement FieldThe Material DerivativeDeformation Gradients, Finite Strain TensorsInfinitesimal Deformation TheoryCompatibility EquationsStretch RatiosRot...

  18. A experimental system for the checking of the absorption of E.C.A.G. graphite; Empilement pour le controle du graphite E.C.A.G

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V; Vidal, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1958-07-01

    A system is described for measuring the mean absorption cross section in thermal neutrons of graphite. This system consists of a graphite stack containing a Ra-Be source and a BF3 counter. A cavity in the stack receives the graphite to be studied or the graphite standard. By comparing the counting rates their absorption ratio can be deduced. The measurement is performed on graphite rods which have been machined before being placed in the pile. It provides the possibility of detecting over a batch of 1 ton of graphite, in a single measurement, a difference in absorption of 0.1 milli barn. (author) [French] On decrit un dispositif permettant de mesurer la section efficace moyenne d'absorption en neutrons thermiques du graphite. Ce dispositif est constitue par un empilement de graphite contenant une source de Ra-Be et un compteur a BF3. Une cavite menagee dans l'empilement peut recevoir le graphite a etudier ou le graphite etalon. Par comparaison des taux de comptage, on en deduit leur rapport d'absorption. La mesure est effectuee sur des barres de graphite usinees avant leur mise en place dans la pile. Elle permet de deceler sur un lot de graphite de 1 tonne, en une seule mesure, une difference d'absorption de 0,1 millibarn. (auteur)

  19. 40 CFR 436.380 - Applicability; description of the graphite subcategory.

    Science.gov (United States)

    2010-07-01

    ... graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.380 Applicability; description of the graphite subcategory. The provisions of this subpart...

  20. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  1. Preparation of graphite targets for radiocarbon dating by tandem accelerator mass spectrometer (TAMS)

    International Nuclear Information System (INIS)

    Lowe, D.C.

    1984-01-01

    The introduction of TAMS has exciting implications for radiocarbon dating but improved sample preparation methods are needed. This paper describes a promising method for the conversion of a few milligrams of wood or charcoal into graphite targets for use in a caesium sputter ion source. Targets containing a large proportion of G-type graphite produced large C - currents, but those containing a high proportion of turbostatic Tn graphite were unsatisfactory; the type of graphite in the target is clearly of significance. (author)

  2. Graphite moderator lifecycle behaviour. Proceedings of a specialists meeting

    International Nuclear Information System (INIS)

    1996-08-01

    The meeting provided the forum for graphite specialists representing operating and research organizations worldwide to exchange information in the following areas: the status of graphite development; operation and safety procedures for existing and future graphite moderated reactors; graphite testing techniques; review of the experiences gained and data acquired on the influence of neutron irradiation and oxidizing conditions on key graphite properties; and to exchange information useful for decommissioning activities. The participants provided twenty-seven papers on behalf of their countries and respective technical organizations. An open discussion followed each of the presentations. A consistently reoccurring theme throughout the specialists meeting was the noticeable reduction in the number of graphite experts remaining the nuclear power industry. Graphite moderated power reactors have provided a significant contribution to the generation of electricity throughout the past forty years and will continue to be a prominent energy source for the future. Yet, many of the renowned experts in the field of nuclear graphites are nearing the end of their careers without apparent replacement. This, coupled with changes in the focus on nuclear power by some industrialized countries, has prompted the IAEA to initiate an evaluation on the feasibility and interest by Member States of establishing a central archive facility for the storage of data on irradiated graphites. Refs, figs, tabs

  3. Preparation of in-house graphite reference material for boron

    International Nuclear Information System (INIS)

    Kumar, Sanjukta A.; Venkatesh, K.; Swain, Kallola K.; Manisha, V.; Kamble, Granthali S.; Pandey, Shailaja P.; Remya Devi, P.S.; Ghosh, M.; Verma, R.

    2016-05-01

    Graphite is extensively used in nuclear technology. Boron concentration in graphite is one of the important parameters that decide its acceptability for nuclear applications. Reliable analytical methods are essential for the determination of boron in graphite at concentration about 5 mg kg -1 . Reference materials are used for validation of existing analytical methods and developing new methodologies. In view of the importance of determination of boron in graphite and unavailability of graphite reference material, an In-house graphite reference material was prepared in Analytical Chemistry Division. Graphite source material was procured, processed to obtain powder of ≤ 75 μm (200 mesh) and bottled. Procedures were developed for the determination of boron in graphite using inductively coupled plasma optical emission spectrometry (ICPOES) and inductively coupled plasma mass spectrometry (ICPMS) techniques. Homogeneity testing was carried out on the bottled units and boron content along with the combined and expanded uncertainties were established. The assigned boron concentration in the In-house graphite reference material is (7.3±0.46) mg kg -1 . (author)

  4. Graphite moderator lifecycle behaviour. Proceedings of a specialists meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The meeting provided the forum for graphite specialists representing operating and research organizations worldwide to exchange information in the following areas: the status of graphite development; operation and safety procedures for existing and future graphite moderated reactors; graphite testing techniques; review of the experiences gained and data acquired on the influence of neutron irradiation and oxidizing conditions on key graphite properties; and to exchange information useful for decommissioning activities. The participants provided twenty-seven papers on behalf of their countries and respective technical organizations. An open discussion followed each of the presentations. A consistently reoccurring theme throughout the specialists meeting was the noticeable reduction in the number of graphite experts remaining the nuclear power industry. Graphite moderated power reactors have provided a significant contribution to the generation of electricity throughout the past forty years and will continue to be a prominent energy source for the future. Yet, many of the renowned experts in the field of nuclear graphites are nearing the end of their careers without apparent replacement. This, coupled with changes in the focus on nuclear power by some industrialized countries, has prompted the IAEA to initiate an evaluation on the feasibility and interest by Member States of establishing a central archive facility for the storage of data on irradiated graphites. Refs, figs, tabs.

  5. Nuclear graphite ageing and turnaround

    International Nuclear Information System (INIS)

    Marsden, B.J.; Hall, G.N.; Smart, J.

    2001-01-01

    Graphite moderated reactors are being operated in many countries including, the UK, Russia, Lithuania, Ukraine and Japan. Many of these reactors will operate well into the next century. New designs of High Temperature Graphite Moderated Reactors (HTRS) are being built in China and Japan. The design life of these graphite-moderated reactors is governed by the ageing of the graphite core due to fast neutron damage, and also, in the case of carbon dioxide cooled reactors by the rate of oxidation of the graphite. Nuclear graphites are polycrystalline in nature and it is the irradiation-induced damage to the individual graphite crystals that determines the material property changes with age. The life of a graphite component in a nuclear reactor can be related to the graphite irradiation induced dimensional changes. Graphites typically shrink with age, until a point is reached where the shrinkage stops and the graphite starts to swell. This change from shrinkage to swelling is known as ''turnaround''. It is well known that pre-oxidising graphite specimens caused ''turnaround'' to be delayed, thus extending the life of the graphite, and hence the life of the reactor. However, there was no satisfactory explanation of this behaviour. This paper presents a numerical crystal based model of dimensional change in graphite, which explains the delay in ''turnaround'' in the pre-oxidised specimens irradiated in a fast neutron flux, in terms of crystal accommodation and orientation and change in compliance due to radiolytic oxidation. (author)

  6. Abrasion behavior of graphite pebble in lifting pipe of pebble-bed HTR

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke; Su, Jiageng [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Zhou, Hongbo [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Chinergy Co., LTD., Beijing 100193 (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Yu, Suyun, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 10084 (China)

    2015-11-15

    Highlights: • Quantitative determination of abrasion rate of graphite pebbles in different lifting velocities. • Abrasion behavior of graphite pebble in helium, air and nitrogen. • In helium, intensive collisions caused by oscillatory motion result in more graphite dust production. - Abstract: A pebble-bed high-temperature gas-cooled reactor (pebble-bed HTR) uses a helium coolant, graphite core structure, and spherical fuel elements. The pebble-bed design enables on-line refueling, avoiding refueling shutdowns. During circulation process, the pebbles are lifted pneumatically via a stainless steel lifting pipe and reinserted into the reactor. Inevitably, the movement of the fuel elements as they recirculate in the reactor produces graphite dust. Mechanical wear is the primary source of graphite dust production. Specifically, the sources are mechanisms of pebble–pebble contact, pebble–wall (structural graphite) contact, and fuel handling (pebble–metal abrasion). The key contribution to graphite dust production is from the fuel handling system, particularly from the lifting pipe. During pneumatic lift, graphite pebbles undergo multiple collisions with the stainless steel lifting pipe, thereby causing abrasion of the graphite pebbles and producing graphite dust. The present work explored the abrasion behavior of graphite pebble in the lifting pipe by measuring the abrasion rate at different lifting velocities. The abrasion rate of the graphite pebble in helium was found much higher than those in air and nitrogen. This gas environment effect could be explained by either tribology behavior or dynamic behavior. Friction testing excluded the possibility of tribology reason. The dynamic behavior of the graphite pebble was captured by analysis of the audio waveforms during pneumatic lift. The analysis results revealed unique dynamic behavior of the graphite pebble in helium. Oscillation and consequently intensive collisions occur during pneumatic lift, causing

  7. Recompressed exfoliated graphite articles

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2013-08-06

    This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm.sup.3 to about 2.0 g/cm.sup.3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.

  8. Introduction to continuum mechanics

    CERN Document Server

    Rubin, David; Lai, W Michael

    1994-01-01

    Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples and problems, many with solutions. Through the addition of more advanced material (solution of classical elasticity problems, constitutive e

  9. Gully annealing by fluvially-sourced Aeolian sand: remote sensing investigations of connectivity along the Fluvial-Aeolian-hillslope continuum on the Colorado River

    Science.gov (United States)

    Sankey, Joel B.; East, Amy E.; Collins, Brian D.; Caster, Joshua J.

    2015-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term, land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This work investigates gully annealing by aeolian sediment, along the Colorado River downstream of Glen Canyon Dam in Glen, Marble, and Grand Canyons, Arizona, USA (Figure 1). In this segment of the Colorado River, gully erosion potentially affects the stability and preservation of archaeological sites that are located within valley margins. Gully erosion occurs as a function of ephemeral, rainfall-induced overland flow associated with intense episodes of seasonal precipitation. Measurements of sediment transport and topographic change have demonstrated that fluvial sand in some locations is transported inland and upslope by aeolian processes to areas affected by gully erosion, and aeolian sediment activity can be locally effective at counteracting gully erosion (Draut, 2012; Collins and others, 2009, 2012; Sankey and Draut, 2014). The degree to which specific locations are affected by upslope wind redistribution of sand from active channel sandbars to higher elevation valley margins is termed “connectivity”. Connectivity is controlled spatially throughout the river by (1) the presence of upwind sources of fluvial sand within the contemporary active river channel (e.g., sandbars), and (2) bio-physical barriers that include vegetation and topography that might impede aeolian sediment transport. The primary hypothesis of this work is that high degrees of connectivity lead to less gullying potential.

  10. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram; Patole, Archana

    2017-01-01

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a

  11. Cesium diffusion in graphite

    International Nuclear Information System (INIS)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of 137 Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of 137 Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000 0 C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ΔE of the equation D/epsilon = (D/epsilon) 0 exp [-ΔE/RT] are about 4 x 10 -2 cm 2 /s and 30 kcal/mole, respectively

  12. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  13. Intercomparison of graphite irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Hering, H; Perio, P; Seguin, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    While fast neutrons only are effective in damaging graphite, results of irradiations are more or less universally expressed in terms of thermal neutron fluxes. This paper attempts to correlate irradiations made in different reactors, i.e., in fluxes of different spectral compositions. Those attempts are based on comparison of 1) bulk length change and volume expansion, and 2) crystalline properties (e.g., lattice parameter C, magnetic susceptibility, stored energy, etc.). The methods used by various authors for determining the lattice constants of irradiated graphite are discussed. (author)

  14. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  15. Measurements of anomalous neutron transport in bulk graphite

    International Nuclear Information System (INIS)

    Bowman, C.D.; Smith, G.A.; Vogelaar, B.; Howell, C.R.; Bilpuch, E.G.; Tornow, W.

    2003-01-01

    The neutron absorption of bulk granular graphite has been measured in a classical exponential diffusion experiment. Our first measurements of April 2002 implementing both exponential decay and pulsed die-away experiments and using the TUNL pulsed accelerator at Duke University as a neutron source indicated a capture cross section for graphite a striking factor of three lower than the measured value for carbon of 3.4 millibarns. Therefore a new exponential experiment with an improved geometry enabling greater accuracy has been performed giving an apparent cross section for carbon in the form of bulk granular graphite of less than 0.5 millibarns. This result confirms our first result and is also consistent with less than one part per million of boron in our graphite. The bulk density of the graphite is 1.02 compared with the actual particle density of 1.60 indicating a packing fraction of 0.64 or a void fraction of 0.36. We suspect that the apparent suppression of absorption in bulk graphite may be associated with the strong coherent diffraction of neutrons that dominates neutron transport in graphite. Coherent diffraction has never been taken into account in graphite reactor design and no neutron transport code including general use codes such as MCNP incorporate diffraction effects even though diffraction dominates many practical thermal neutron transport problems. (orig.)

  16. Measurements of anomalous neutron transport in bulk graphite

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, C.D.; Smith, G.A. [ADNA Corp., Los Alamos, NM (United States); Vogelaar, B. [Virginia Tech., Blacksburg, VA (United States); Howell, C.R.; Bilpuch, E.G.; Tornow, W. [Triangle Univ. Nuclear Lab., Duke Univ., Durham, NC (United States)

    2003-07-01

    The neutron absorption of bulk granular graphite has been measured in a classical exponential diffusion experiment. Our first measurements of April 2002 implementing both exponential decay and pulsed die-away experiments and using the TUNL pulsed accelerator at Duke University as a neutron source indicated a capture cross section for graphite a striking factor of three lower than the measured value for carbon of 3.4 millibarns. Therefore a new exponential experiment with an improved geometry enabling greater accuracy has been performed giving an apparent cross section for carbon in the form of bulk granular graphite of less than 0.5 millibarns. This result confirms our first result and is also consistent with less than one part per million of boron in our graphite. The bulk density of the graphite is 1.02 compared with the actual particle density of 1.60 indicating a packing fraction of 0.64 or a void fraction of 0.36. We suspect that the apparent suppression of absorption in bulk graphite may be associated with the strong coherent diffraction of neutrons that dominates neutron transport in graphite. Coherent diffraction has never been taken into account in graphite reactor design and no neutron transport code including general use codes such as MCNP incorporate diffraction effects even though diffraction dominates many practical thermal neutron transport problems. (orig.)

  17. Continuum gauge theories

    International Nuclear Information System (INIS)

    Stora, R.

    1976-09-01

    The mathematics of gauge fields and some related concepts are discussed: some corrections on the principal fiber bundles emphasize the idea that the present formulation of continuum theories is incomplete. The main ingredients used through the construction of the renormalized perturbation series are then described: the Faddeev Popov argument, and the Faddeev Popov Lagrangian; the Slavnov symmetry and the nature of the Faddeev Popov ghost fields; the Slavnov identity, with an obstruction: the Adler Bardeen anomaly, and its generalization to the local cohomology of the gauge Lie algebra. Some smooth classical configurations of gauge fields which ought to play a prominent role in the evaluation of the functional integral describing the theory are also reviewed

  18. Alfven continuum with toroidicity

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Mahajan, S.M.

    1985-06-01

    The symmetry property of the MHD wave propagation operator is utilized to express the toroidal eigenmodes as a superposition of the mutually orthogonal cylindrical modes. Because of the degeneracy among cylindrical modes with the same frequency but resonant surfaces of different helicity the toroidal perturbation produces a zeroth order mixing of the above modes. The toroidal eigenmodes of frequency ω 0 2 have multiple resonant surfaces, with each surface shifted relative to its cylindrical position and carrying a multispectral content. Thus a single helicity toroidal antenna of frequency ω 0 couples strongly to all different helicity resonant surfaces with matching local Alfven frequency. Zeroth order coupling between modes in the continuum and global Alfven modes also results from toroidicity and degeneracy. Our perturbation technique is the MHD counterpart of the quantum mechanical methods and is applicable through the entire range of the MHD spectrum

  19. Electronic properties of graphite

    International Nuclear Information System (INIS)

    Schneider, J.

    2010-10-01

    In this thesis, low-temperature magneto-transport (T ∼ 10 mK) and the de Haas-van Alphen effect of both natural graphite and highly oriented pyrolytic graphite (HOPG) are examined. In the first part, low field magneto-transport up to B = 11 T is discussed. A Fourier analysis of the background removed signal shows that the electric transport in graphite is governed by two types of charge carriers, electrons and holes. Their phase and frequency values are in agreement with the predictions of the SWM-model. The SWM-model is confirmed by detailed band structure calculations using the magnetic field Hamiltonian of graphite. The movement of the Fermi at B > 2 T is calculated self-consistently assuming that the sum of the electron and hole concentrations is constant. The second part of the thesis deals with high field magneto-transport of natural graphite in the magnetic field range 0 ≤ B ≤ 28 T. Both spin splitting of magneto-transport features in tilted field configuration and the onset of the charge density wave (CDW) phase for different temperatures with the magnetic field applied normal to the sample plane are discussed. Concerning the Zeeman effect, the SWM calculations including the Fermi energy movement require a g-factor of g* equal to 2.5 ± 0.1 to reproduce the spin spilt features. The measurements of the charge density wave state confirm that its onset magnetic field can be described by a Bardeen-Cooper-Schrieffer (BCS)-type formula. The measurements of the de Haas-van Alphen effect are in agreement with the results of the magneto-transport measurements at low field. (author)

  20. Continuum limbed robots for locomotion

    Science.gov (United States)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  1. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  2. Continuum robots and underactuated grasping

    Directory of Open Access Journals (Sweden)

    N. Giri

    2011-02-01

    Full Text Available We discuss the capabilities of continuum (continuous backbone robot structures in the performance of under-actuated grasping. Continuum robots offer the potential of robust grasps over a wide variety of object classes, due to their ability to adapt their shape to interact with the environment via non-local continuum contact conditions. Furthermore, this capability can be achieved with simple, low degree of freedom hardware. However, there are practical issues which currently limit the application of continuum robots to grasping. We discuss these issues and illustrate via an experimental continuum grasping case study.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  3. Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2012-05-30

    Fluorine was determined via the rotational molecular absorption line of aluminum mono fluoride (AlF) generated in C(2)H(2)/N(2)O flame at 227.4613 nm using a high-resolution continuum source flame atomic absorption spectrophotometer (HR-CS-FAAS). The effects of AlF wavelength, burner height, fuel rate (C(2)H(2)/N(2)O) and amount of Al on the accuracy, precision and sensitivity were investigated and optimized. The Al-F absorption band at 227.4613 nm was found to be the most suitable analytical line with respect to sensitivity and spectral interferences. Maximum sensitivity and a good linearity were obtained in acetylene-nitrous oxide flame at a flow rate of 210 L h(-1) and a burner height of 8mm using 3000 mg L(-1) of Al for 10-1000 mg L(-1)of F. The accuracy and precision of the method were tested by analyzing spiked samples and waste water certified reference material. The results were in good agreement with the certified and spiked amounts as well as the precision of several days during this study was satisfactory (RSD<10%). The limit of detection and characteristic concentration of the method were 5.5 mg L(-1) and 72.8 mg L(-1), respectively. Finally, the fluorine concentrations in several toothpaste samples were determined. The results found and given by the producers were not significantly different. The method was simple, fast, accurate and sensitive. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Slurry sampling high-resolution continuum source electrothermal atomic absorption spectrometry for direct beryllium determination in soil and sediment samples after elimination of SiO interference by least-squares background correction.

    Science.gov (United States)

    Husáková, Lenka; Urbanová, Iva; Šafránková, Michaela; Šídová, Tereza

    2017-12-01

    In this work a simple, efficient, and environmentally-friendly method is proposed for determination of Be in soil and sediment samples employing slurry sampling and high-resolution continuum source electrothermal atomic absorption spectrometry (HR-CS-ETAAS). The spectral effects originating from SiO species were identified and successfully corrected by means of a mathematical correction algorithm. Fractional factorial design has been employed to assess the parameters affecting the analytical results and especially to help in the development of the slurry preparation and optimization of measuring conditions. The effects of seven analytical variables including particle size, concentration of glycerol and HNO 3 for stabilization and analyte extraction, respectively, the effect of ultrasonic agitation for slurry homogenization, concentration of chemical modifier, pyrolysis and atomization temperature were investigated by a 2 7-3 replicate (n = 3) design. Using the optimized experimental conditions, the proposed method allowed the determination of Be with a detection limit being 0.016mgkg -1 and characteristic mass 1.3pg. Optimum results were obtained after preparing the slurries by weighing 100mg of a sample with particle size < 54µm and adding 25mL of 20% w/w glycerol. The use of 1μg Rh and 50μg citric acid was found satisfactory for the analyte stabilization. Accurate data were obtained with the use of matrix-free calibration. The accuracy of the method was confirmed by analysis of two certified reference materials (NIST SRM 2702 Inorganics in Marine Sediment and IGI BIL-1 Baikal Bottom Silt) and by comparison of the results obtained for ten real samples by slurry sampling with those determined after microwave-assisted extraction by inductively coupled plasma time of flight mass spectrometry (TOF-ICP-MS). The reported method has a precision better than 7%. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Measurement of the diffusion length of thermal neutrons inside graphite

    International Nuclear Information System (INIS)

    Ertaud, A.; Beauge, R.; Fauquez, H.; De Laboulay, H.; Mercier, C.; Vautrey, L.

    1948-11-01

    The diffusion length of thermal neutrons inside a given industrial graphite is determined by measuring the neutron density inside a parallelepipedal piling up of graphite bricks (2.10 x 2.10 x 2.442 m). A 3.8 curies (Ra α → Be) source is placed inside the parallelepipedal block of graphite and thin manganese detectors are used. Corrections are added to the unweighted measurements to take into account the effects of the damping of supra-thermal neutrons in the measurement area. These corrections are experimentally deduced from the differential measurements made with a cadmium screen interposed between the source and the first plane of measurement. An error analysis completes the report. The diffusion length obtained is: L = 45.7 cm ± 0.3. The average density of the graphite used is 1.76 and the average apparent density of the piling up is 1.71. (J.S.)

  6. Selection, rejection and optimisation of pyrolytic graphite (PG) crystal analysers for use on the new IRIS graphite analyser bank

    International Nuclear Information System (INIS)

    Marshall, P.J.; Sivia, D.S.; Adams, M.A.; Telling, M.T.F.

    2000-01-01

    This report discusses design problems incurred by equipping the IRIS high-resolution inelastic spectrometer at the ISIS pulsed neutron source, UK with a new 4212 piece pyrolytic graphite crystal analyser array. Of the 4212 graphite pieces required, approximately 2500 will be newly purchased PG crystals with the remainder comprising of the currently installed graphite analysers. The quality of the new analyser pieces, with respect to manufacturing specifications, is assessed, as is the optimum arrangement of new PG pieces amongst old to circumvent degradation of the spectrometer's current angular resolution. Techniques employed to achieve these criteria include accurate calliper measurements, FORTRAN programming and statistical analysis. (author)

  7. Harwell Graphite Calorimeter

    International Nuclear Information System (INIS)

    Linacre, J.K.

    1970-01-01

    The calorimeter is of the steady state temperature difference type. It contains a graphite sample supported axially in a graphite outer jacket, the assembly being contained in a thin stainless steel outer can. The temperature of the jacket and the temperature difference between sample and jacket are measured by chromel-alumel thermocouples. The instrument is calibrated by means of an electric heater of low mass positioned on the axis of the sample. The resistance of the heater is known and both current through the heater and the potential across it may be measured. The instrument is filled with nitrogen at a pressure of one half atmosphere at room temperature. The calorimeter has been designed for prolonged operation at temperatures up to 600°C, and dose rates up to 1 Wg -1 , and instruments have been in use for periods in excess of one year

  8. Lattice continuum and diffusional creep.

    Science.gov (United States)

    Mesarovic, Sinisa Dj

    2016-04-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.

  9. Determination of thermal neutrons diffusion length in graphite

    International Nuclear Information System (INIS)

    Garcia Fite, J.

    1959-01-01

    The diffusion length of thermal neutrons in graphite using the less possible quantity of material has been determined. The proceeding used was the measurement in a graphite pile which has a punctual source of rapid neutrons inside surrounded by a reflector medium (paraffin or water). The measurement was done in the following conditions: a) introducing an aluminium plate between both materials. b) Introducing a cadmium plate between both materials. (Author) 91 refs

  10. The continuum of behavior guidance.

    Science.gov (United States)

    Nelson, Travis

    2013-01-01

    Behavior guidance is a continuum of techniques, basic and advanced, fundamental to the provision of quality dental care for pediatric patients. This practice must be individualized, pairing the correct method of behavior guidance with each child. To select the appropriate technique, the clinician must have a thorough understanding of each aspect of the continuum and anticipate parental expectations, child temperament, and the technical procedures necessary to complete care. By effectively using techniques within the continuum of behavior guidance, a healing relationship with the family is maintained while addressing dental disease and empowering the child to receive dental treatment throughout their lifetime. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Study on "1"4C content in post-irradiation graphite spheres of HTR-10

    International Nuclear Information System (INIS)

    Wang Shouang; Pi Yue; Xie Feng; Li Hong; Cao Jianzhu

    2014-01-01

    Since the production mechanism of the "1"4C in spherical fuel elements was similar to that of fuel-free graphite spheres, in order to obtain the amount of "1"4C in fuel elements and graphite spheres of HTR-10, the production mechanism of the "1"4C in graphite spheres was studied. The production sources of the "1"4C in graphite spheres and fuel elements were summarized, the amount of "1"4C in the post-irradiation graphite spheres was calculated, the decomposition techniques of graphite spheres were compared, and experimental methods for decomposing the graphite spheres and preparing the "1"4C sample were proposed. The results can lay the foundation for further experimental research and provide theoretical calculations for comparison. (authors)

  12. Increase of the density of commercial graphite

    International Nuclear Information System (INIS)

    Tobias, H.; Meyerstein, D.

    1977-12-01

    The increase of the density of commercial graphite of the type ATJ by polymerization of an impregnated monomer, followed by pyrolysis, is described. The monomer which was either styrene or acrylonitrile, was irradiated by a 60 Co source and pyrolized in a standard vacuum system. The irradiation dose for the polymerization of the monomer was determined. Suggestions for the establishment of the optimum conditions are offered

  13. Structural disorder of graphite and implications for graphite thermometry

    Science.gov (United States)

    Kirilova, Martina; Toy, Virginia; Rooney, Jeremy S.; Giorgetti, Carolina; Gordon, Keith C.; Collettini, Cristiano; Takeshita, Toru

    2018-02-01

    Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s-1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  14. Structural disorder of graphite and implications for graphite thermometry

    Directory of Open Access Journals (Sweden)

    M. Kirilova

    2018-02-01

    Full Text Available Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25  megapascal (MPa and aseismic velocities of 1, 10 and 100 µm s−1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  15. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram

    2017-07-20

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a mechanical pressing operation to generate a bromine-graphite/metal composite material.

  16. Chemical stabilization of graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bistrika, Alexander A.; Lerner, Michael M.

    2018-04-03

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditions for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.

  17. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  18. Continuum of Care (COC) Areas

    Data.gov (United States)

    Department of Housing and Urban Development — The purpose of the Continuum of Care (CoC) Homeless Assistance Programs is to reduce the incidence of homelessness in CoC communities by assisting homeless...

  19. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  20. Comet Halley: An optical continuum study

    International Nuclear Information System (INIS)

    Hoban, S.M.

    1989-01-01

    From an analysis of narrowband CCD images of Comet Halley from 1986 January, March, and April, certain dust structures which are redder than the remainder of the dust coma have become apparent. Mie calculations suggest that this reddening is due to an enhancement of particles with sizes comparable to the observing wavelengths. Although the mass range derived from the calculations presented here is somewhat uncertain as a result of the limitations of Mie theory, these values are in the expected range derived from the calculations presented here is somewhat uncertain as a result of particle sizes which would be both sensitive to radiation pressure and significantly reddened with respect to the solar spectrum at the observing wavelengths. Thus, the red envelopes are plausibly the result of size sorting by solar radiation pressure. The red jets observed on 1986 January 10, March 1 and March 9 can then be explained by the enhanced dust flux at the jet sources, and the subsequent trapping of a relative excess of intermediate mass (i.e. red) particles into the jets which are visible in the continuum images. Analysis of narrowband photometry of the optical continuum of Comet Halley reveals no correlation between the color of the dust and heliocentric distance, phase angle, strength of the continuum or gas-to-dust ratio. The photometric data are thus consistent with a post-ejection sorting mechanism. Chemical inhomogeneities of the nucleus are therefore not necessary to explain the observed structure in the color of the dust in Comet Halley

  1. Purification and preparation of graphite oxide from natural graphite

    Energy Technology Data Exchange (ETDEWEB)

    Panatarani, C., E-mail: c.panatarani@phys.unpad.ac.id; Muthahhari, N.; Joni, I. Made [Instrumentation Systems and Functional Material Processing Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Padjadjaran University, Jl. Raya Bandung-Sumedang KM 21, Jatinangor, 45363, Jawa Barat (Indonesia); Rianto, Anton [Grafindo Nusantara Ltd., Belagio Mall Lantai 2, Unit 0 L3-19, Kawasan Mega Kuningan, Kav. B4 No.3, Jakarta Selatan (Indonesia)

    2016-03-11

    Graphite oxide has attracted much interest as a possible route for preparation of natural graphite in the large-scale production and manipulation of graphene as a material with extraordinary electronic properties. Graphite oxide was prepared by modified Hummers method from purified natural graphite sample from West Kalimantan. We demonstrated that natural graphite is well-purified by acid leaching method. The purified graphite was proceed for intercalating process by modifying Hummers method. The modification is on the reaction time and temperature of the intercalation process. The materials used in the intercalating process are H{sub 2}SO{sub 4} and KMNO{sub 4}. The purified natural graphite is analyzed by carbon content based on Loss on Ignition test. The thermo gravimetricanalysis and the Fouriertransform infrared spectroscopy are performed to investigate the oxidation results of the obtained GO which is indicated by the existence of functional groups. In addition, the X-ray diffraction and energy dispersive X-ray spectroscopy are also applied to characterize respectively for the crystal structure and elemental analysis. The results confirmed that natural graphite samples with 68% carbon content was purified into 97.68 % carbon content. While the intercalation process formed a formation of functional groups in the obtained GO. The results show that the temperature and reaction times have improved the efficiency of the oxidation process. It is concluded that these method could be considered as an important route for large-scale production of graphene.

  2. Graphite in Science and Nuclear Technique

    OpenAIRE

    Zhmurikov, E. I.; Bubnenkov, I. A.; Dremov, V. V.; Samarin, S. I.; Pokrovsky, A. S.; Harkov, D. V.

    2013-01-01

    The monograph is devoted to the application of graphite and graphite composites in science and technology. The structure and electrical properties, the technological aspects of production of high-strength synthetic graphites, the dynamics of the graphite destruction, traditionally used in the nuclear industry are discussed. It is focuses on the characteristics of graphitization and properties of graphite composites based on carbon isotope 13C. The book is based, generally, on the original res...

  3. Determination of serum aluminum by electrothermal atomic absorption spectrometry: A comparison between Zeeman and continuum background correction systems

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Pamela C. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Parsons, Patrick J. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Lead Poisoning/Trace Elements Laboratory, Wadsworth Center, New York State Department of Health, P.O. Box 509, Albany, NY 12201-0509 (United States)], E-mail: patrick.parsons@wadsworth.org

    2007-03-15

    Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass (m{sub 0}), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 {+-} 0.6 pg, compared to 16.1 {+-} 0.7 pg for the Z5100, and 23.3 {+-} 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection

  4. Modification of structural graphite machining

    International Nuclear Information System (INIS)

    Lavrenev, M.M.

    1979-01-01

    Studied are machining procedures for structural graphites (GMZ, MG, MG-1, PPG) most widely used in industry, of the article mass being about 50 kg. Presented are dependences necessary for the calculation of cross sections of chip suction tappers and duster pipelines in machine shops for structural graphite machining

  5. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  6. Hypervelocity impacts into graphite

    Science.gov (United States)

    Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.

    2011-03-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  7. Hypervelocity impacts into graphite

    International Nuclear Information System (INIS)

    Latunde-Dada, S; Cheesman, C; Day, D; Harrison, W; Price, S

    2011-01-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms -1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  8. Infrared signal generation from AC induction field heating of graphite foam

    Science.gov (United States)

    Klett, James W.; Rios, Orlando

    2018-02-27

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam to produce light. An energy conversion device utilizes light energy from the heated graphite foam to perform a light energy consuming function. A device for producing light and a method of converting energy are also disclosed.

  9. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.

    1987-01-01

    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  10. Chemisputtering of interstellar graphite grains

    International Nuclear Information System (INIS)

    Draine, B.T.

    1979-01-01

    The rate of erosion of interstellar graphite grains as a result of chemical reaction with H, N, and O is estimated using the available experiment evidence. It is argued that ''chemical sputtering'' yields for interstellar graphite grains will be much less than unity, contrary to earlier estimates by Barlow and Silk. Chemical sputtering of graphite grains in evolving H II regions is found to be unimportant, except in extremely compact (n/sub H/> or approx. =10 5 cm -3 ) H II regions. Alternative explanations are considered for the apparent weakness of the lambda=2175 A extinction ''bump'' in the direction of several early type stars

  11. Obtention of nuclear grade graphite

    International Nuclear Information System (INIS)

    Ferreira, M.L.

    1984-01-01

    The impurity level of natural graphite found in some of the most important mines of the State of Minas Gerais - Brasil is determined. It is also concerned with the development and use of natural graphite in nuclear reactors. Standard methods for chemical and instrumentsal analysis such as Spectrografic Determination by Emission, Spectrografic Determination by X-Rays, Spectrografic Determination by Atomic Asorption, Photometric Determination, and also chemical and physical methods for separation of impurities as well standard method for Estimating the Thermal Neutron Absorption Cross Section of graphite were employed. Some aditionals methods of purification to the ordinary treatment such as the use of metanol and halogens are also described. (Author) [pt

  12. Elementary Continuum Mechanics for Everyone

    DEFF Research Database (Denmark)

    Byskov, Esben

    numerical method, the finite element method, including means of mending inherent problems •An informal, yet precise exposition that emphasizes not just how a topic is treated, but discusses why a particular choice is made The book opens with a derivation of kinematically nonlinear 3-D continuum mechanics...

  13. The Co-creation Continuum

    DEFF Research Database (Denmark)

    Ind, Nicholas; Iglesias, Oriol; Markovic, Stefan

    2017-01-01

    -creation - from tactical market research tool to strategic collaborative innovation method, and shows that brands can be positioned along a continuum between these two polarities. This article also presents the implications for those that want to seize the potential of co-creation....

  14. The geometry of continuum regularization

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1987-03-01

    This lecture is primarily an introduction to coordinate-invariant regularization, a recent advance in the continuum regularization program. In this context, the program is seen as fundamentally geometric, with all regularization contained in regularized DeWitt superstructures on field deformations

  15. Solar radio continuum storms and a breathing magnetic field model. Final report

    International Nuclear Information System (INIS)

    1975-01-01

    Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms

  16. Characterization of Ignalina NPP RBMK Reactors Graphite

    International Nuclear Information System (INIS)

    Hacker, P.J.; Neighbour, G.B.; Levinskas, R.; Milcius, D.

    2001-01-01

    The paper concentrates on the investigations of the initial physical properties of graphite used in production of graphite bricks of Ignalina NPP. These graphite bricks are used as nuclear moderator and major core structural components. Graphite bulk density is calculated by mensuration, pore volumes are measured by investigation of helium gas penetration in graphite pore network, the Young's modulus is determined using an ultrasonic time of flight method, the coefficient of thermal expansion is determined using a Netzsch dilatometer 402C, the fractured and machined graphite surfaces are studied using SEM, impurities are investigated qualitatively by EDAX, the degree of graphitization of the material is tested using X-ray diffraction. (author)

  17. Natural graphite demand and supply - Implications for electric vehicle battery requirements

    Science.gov (United States)

    Olson, Donald W.; Virta, Robert L.; Mahdavi, Mahbood; Sangine, Elizabeth S.; Fortier, Steven M.

    2016-01-01

    Electric vehicles have been promoted to reduce greenhouse gas emissions and lessen U.S. dependence on petroleum for transportation. Growth in U.S. sales of electric vehicles has been hindered by technical difficulties and the high cost of the lithium-ion batteries used to power many electric vehicles (more than 50% of the vehicle cost). Groundbreaking has begun for a lithium-ion battery factory in Nevada that, at capacity, could manufacture enough batteries to power 500,000 electric vehicles of various types and provide economies of scale to reduce the cost of batteries. Currently, primary synthetic graphite derived from petroleum coke is used in the anode of most lithium-ion batteries. An alternate may be the use of natural flake graphite, which would result in estimated graphite cost reductions of more than US$400 per vehicle at 2013 prices. Most natural flake graphite is sourced from China, the world's leading graphite producer. Sourcing natural flake graphite from deposits in North America could reduce raw material transportation costs and, given China's growing internal demand for flake graphite for its industries and ongoing environmental, labor, and mining issues, may ensure a more reliable and environmentally conscious supply of graphite. North America has flake graphite resources, and Canada is currently a producer, but most new mining projects in the United States require more than 10 yr to reach production, and demand could exceed supplies of flake graphite. Natural flake graphite may serve only to supplement synthetic graphite, at least for the short-term outlook.

  18. Understanding the anisotropic strain effects on lithium diffusion in graphite anodes: A first-principles study

    Science.gov (United States)

    Ji, Xiang; Wang, Yang; Zhang, Junqian

    2018-06-01

    The lithium diffusion in graphite anode, which is the most widely used commercial electrode material today, affects the charge/discharge performance of lithium-ion batteries. In this study, the anisotropic strain effects on lithium diffusion in graphite anodes are systematically investigated using first-principles calculations based on density functional theory (DFT) with van der Waals corrections. It is found that the effects of external applied strains along various directions of LixC6 (i.e., perpendicular or parallel to the basal planes of the graphite host) on lithium diffusivity are different. Along the direction perpendicular to the graphite planes, the tensile strain facilitates in-plane Li diffusion by reducing the energy barrier, and the compressive strain hinders in-plane Li diffusion by raising the energy barrier. In contrast, the in-plane biaxial tensile strain (parallel to the graphite planes) hinders in-plane Li diffusion, and the in-plane biaxial compressive strain facilitates in-plane Li diffusion. Furthermore, both in-plane and transverse shear strains slightly influence Li diffusion in graphite anodes. A discussion is presented to explain the anisotropic strain dependence of lithium diffusion. This research provides data for the continuum modelling of the electrodes in the lithium-ion batteries.

  19. Graphite in Science and Nuclear Technology

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in the science and technology. Structure and electrical properties, technological aspects of producing of high-strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry, so author concentrates on actual problems of application and testing of graphite materials in modern science and technology. Translated from chapters 1 of monog...

  20. Mesostructure of graphite composite and its lifetime

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in science and technology. Structure and electrical properties, as so technological aspects of producing of high strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry. Generally, the review relies, on the original results and concentrates on actual problems of application and testing of graphite materials in modern nuclear p...

  1. Graphite surveillance in N Reactor

    International Nuclear Information System (INIS)

    Woodruff, E.M.

    1991-09-01

    Graphite dimensional changes in N Reactor during its 24 yr operating history are reviewed. Test irradiation results, block measurements, stack profiles, top of reflector motion monitors, and visual observations of distortion are described. 18 refs., 14 figs., 1 tab

  2. Graphite oxidation in HTGR atmosphere

    International Nuclear Information System (INIS)

    Growcock, F.B.; Barry, J.J.; Finfrock, C.C.; Rivera, E.; Heiser, J.H. III

    1982-01-01

    On-going and recently completed studies of the effect of thermal oxidation on the structural integrity of HTGR candidate graphites are described, and some results are presented and discussed. This work includes the study of graphite properties which may play decisive roles in the graphites' resistance to oxidation and fracture: pore size distribution, specific surface area and impurity distribution. Studies of strength loss mechanisms in addition to normal oxidation are described. Emphasis is placed on investigations of the gas permeability of HTGR graphites and the surface burnoff phenomenon observed during recent density profile measurements. The recently completed studies of catalytic pitting and the effects of prestress and stress on reactivity and ultimate strength are also discussed

  3. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  4. Variational principles of continuum mechanics I fundamentals

    CERN Document Server

    Berdichevskii, V L

    2009-01-01

    This is a concise and understandable book about variational principles of continuum mechanics. The book is accessible to applied mathematicians, physicists and engineers who have an interest in continuum mechanics.

  5. Variational principles of continuum mechanics II applications

    CERN Document Server

    Berdichevsky, Victor L

    2009-01-01

    This concise and understandable book about variational principles of continuum mechanics presents the classical models. The book is accessible to applied mathematicians, physicists and engineers who have an interest in continuum mechanics.

  6. Graphite selection for the PBMR reflector

    International Nuclear Information System (INIS)

    Marsden, B.J.; Preston, S.D.

    2000-01-01

    A high temperature, direct cycle gas turbine, graphite moderated, helium cooled, pebble-bed reactor (PBMR) is being designed and constructed in South Africa. One of the major components in the PBMR is the graphite reflector, which must be designed to last thirty-five full power years. Fast neutron irradiation changes the dimensions and material properties of reactor graphite, thus for design purposes a suitable graphite database is required. Data on the effect of irradiation on nuclear graphites has been gathered for many years, at considerable financial cost, but unfortunately these graphites are no longer available due to rationalization of the graphite industry and loss of key graphite coke supplies. However, it is possible, using un-irradiated graphite materials properties and knowledge of the particular graphite microstructure, to determine the probable irradiation behaviour. Three types of nuclear graphites are currently being considered for the PBMR reflector: an isostatically moulded, fine grained, high strength graphite and two extruded medium grained graphites of moderately high strength. Although there is some irradiation data available for these graphites, the data does not cover the temperature and dose range required for the PBMR. The available graphites have been examined to determine their microstructure and some of the key material properties are presented. (authors)

  7. Continuum methods of physical modeling continuum mechanics, dimensional analysis, turbulence

    CERN Document Server

    Hutter, Kolumban

    2004-01-01

    The book unifies classical continuum mechanics and turbulence modeling, i.e. the same fundamental concepts are used to derive model equations for material behaviour and turbulence closure and complements these with methods of dimensional analysis. The intention is to equip the reader with the ability to understand the complex nonlinear modeling in material behaviour and turbulence closure as well as to derive or invent his own models. Examples are mostly taken from environmental physics and geophysics.

  8. Role of nuclear grade graphite in controlling oxidation in modular HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Windes, Willaim [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kane, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

  9. From Core to Capture: Graphite Management by Gasification and Carbon Capture & Storage (CCS)

    International Nuclear Information System (INIS)

    Goodwin, J.; Bradbury, D.; Black, S.; Tomlinson, T.; Livesey, B.; Robinson, J.; Lindberg, M.; Newton, C.; Jones, A.; Wickham, A.

    2016-01-01

    Radioactive graphite waste arises principally from the moderators of graphite/gas-cooled reactors at the end of life of the reactors. Commercial power producing reactors (for example, Magnox, AGR and RBMK) have graphite moderators, each containing several thousand tonnes of graphite, with the UK having the largest inventory of over 90,000 tonnes. Additionally, there are smaller quantities of graphite arising from other sources such as fuel element components. The current long term strategy for management of reactor graphite in the UK is for these wastes to be conditioned for disposal followed by transfer to a geological disposal facility (GDF). With this baseline position, these wastes will account for about 30% of the ILW inventory in a GDF. As the volume of the graphite waste is so large, it is not currently economic to retrieve and process the graphite in advance of the availability of a geological disposal facility. Recent work by the NDA has ascribed a much smaller “incremental” volume of 2% due to graphite, calculated on the basis that the GDF has to be a certain size anyway in order to dissipate the decay heat from high level waste

  10. Environmental and health effects review for obscurant graphite flakes. Final report, 1991 July--1993 May

    Energy Technology Data Exchange (ETDEWEB)

    Driver, C.J.; Ligotke, M.W.; Landis, W.G.; Downs, J.L.; Tiller, B.L.; Moore, E.B. Jr.; Cataldo, D.A.

    1993-07-01

    The health and environmental effects of obscurant graphite flakes were reviewed and compared to predicted levels of graphite flake material in the field during typical testing and training scenarios. Graphite flake dispersion and deposition for simulated mechanical and pyrotechnic releases were determined using a modified Gaussian atmospheric plume-dispersion model. The potential for wind resuspension of graphite flakes is controlled by weathering processes and incorporation rates in soil. Chemically, graphite flakes pose little risk to aquatic or terrestrial systems. Mechanical damage to plants and invertebrate and vertebrate organisms from the flakes is also minimal. In humans, the pathological and physiological response to inhaled graphite flake is similar to that induced by nuisance dusts and cause only transient pulmonary changes. Repeated exposure to very high concentrations (such as those near the source generator) may overwhelm the clearance mechanisms of the lung and result in pulmonary damage from the retained particles in unprotected individuals. However, these lesions either resolve with time or are of limited severity. Health effects of mixed aerosols of mixed aerosols of graphite and fog oil are similar to those produced by graphite flakes alone. Environmental impacts of fog oil-coated graphite flakes are not well known.

  11. Continuum description for jointed media

    International Nuclear Information System (INIS)

    Thomas, R.K.

    1982-04-01

    A general three-dimensional continuum description is presented for a material containing regularly spaced and approximately parallel jointing planes within a representative elementary volume. Constitutive relationships are introduced for linear behavior of the base material and nonlinear normal and shear behavior across jointing planes. Furthermore, a fracture permeability tensor is calculated so that deformation induced alterations to the in-situ values can be measured. Examples for several strain-controlled loading paths are presented

  12. Frequency chirpings in Alfven continuum

    Science.gov (United States)

    Wang, Ge; Berk, Herb; Breizman, Boris; Zheng, Linjin

    2017-10-01

    We have used a self-consistent mapping technique to describe both the nonlinear wave-energetic particle resonant interaction and its spatial mode structure that depends upon the resonant energetic particle pressure. At the threshold for the onset of the energetic particle mode (EPM), strong chirping emerges in the lower continuum close to the TAE gap and then, driven by strong continuum damping, chirps rapidly to lower frequencies in the Alfven continuum. An adiabatic theory was developed that accurately replicated the results from the simulation where the nonlinearity was only due to the EPM resonant particles. The results show that the EPM-trapped particles have their action conserved during the time of rapid chirping. This adiabaticity enabled wave trapped particles to be confined within their separatrix, and produce even larger resonant structures, that can produce a large amplitude mode far from linearly predicted frequencies. In the present work we describe the effect of additional MHD nonlinearity to this calculation. We studied how the zonal flow component and its nonlinear feedback to the fundamental frequency and found that the MHD nonlinearity doesn't significantly alter the frequency chirping response that is predicted by the calculation that neglects the MHD nonlinearity.

  13. Assessment of different mechanisms of C-14 production in irradiated graphite of RBMK-1500 reactors

    International Nuclear Information System (INIS)

    Narkunas, Ernestas; Smaizys, Arturas; Poskas, Povilas; Kilda, Raimondas

    2010-01-01

    Two RBMK-1500 water-cooled graphite-moderated channel-type power reactors at the Ignalina Nuclear Power Plant (INPP) are under decommissioning now. The total mass of irradiated graphite in the cores of both units is more than 3600 tons. The main source of uncertainty in the numerical assessment of graphite activity is the uncertainty of the initial impurities content in graphite. Nitrogen is one of the most important impurities, having a large neutron capture cross-section. This impurity may become the dominant source of C-14 production. RBMK reactors graphite stacks operate in the cooling mixture of helium-nitrogen gases and this may additionally increase the quantity of the nitrogen impurity. In this paper the results of the numerical modelling of graphite activation for the INPP Unit I reactor are presented. In order to evaluate the C-14 activity dependence on the nitrogen impurity content, several cases with different nitrogen content were modelled taking into account initial nitrogen impurity quantities in the graphite matrix and possible nitrogen quantities entrapped in the graphite pores from cooling gases. (orig.)

  14. Inert annealing of irradiated graphite by inductive heating

    International Nuclear Information System (INIS)

    Botzem, W.; Woerner, J.

    2001-01-01

    Fission neutrons change physical properties of graphite being used in nuclear reactors as moderator and as structural material. The understanding of these effects on an atomic model is expressed by dislocations of carbon atoms within the graphite and the thereby stored energy is known as Wigner Energy. The dismantling of the Pile 1 core may necessitate the thermal treatment of the irradiated but otherwise undamaged graphite. This heat treatment - usually called annealing - initiates the release of stored Wigner Energy in a controlled manner. This energy could otherwise give rise to an increase in temperature under certain conditions during transport or preparation for final storage. In order to prevent such an effect it is intended to anneal the major part of Pile 1 graphite before it is packed into boxes suitable for final disposal. Different heating techniques have been assessed. Inductive heating in an inert atmosphere was selected for installation in the Pile 1 Waste Processing Facility built for the treatment and packaging of the dismantled Pile 1 waste. The graphite blocks will be heated up to 250 deg. C in the annealing ovens, which results in the release of significant amount of the stored energy. External heat sources in a final repository will never heat up the storage boxes to such a temperature. (author)

  15. High temperature soldering of graphite

    International Nuclear Information System (INIS)

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The effect is studied of the brazing temperature on the strength of the brazed joint of graphite materials. In one case, iron and nickel are used as solder, and in another, molybdenum. The contact heating of the iron and nickel with the graphite has been studied in the temperature range of 1400-2400 ged C, and molybdenum, 2200-2600 deg C. The quality of the joints has been judged by the tensile strength at temperatures of 2500-2800 deg C and by the microstructure. An investigation into the kinetics of carbon dissolution in molten iron has shown that the failure of the graphite in contact with the iron melt is due to the incorporation of iron atoms in the interbase planes. The strength of a joint formed with the participation of the vapour-gas phase is 2.5 times higher than that of a joint obtained by graphite recrystallization through the carbon-containing metal melt. The critical temperatures are determined of graphite brazing with nickel, iron, and molybdenum interlayers, which sharply increase the strength of the brazed joint as a result of the formation of a vapour-gas phase and deposition of fine-crystal carbon

  16. Experience with graphite in JET

    International Nuclear Information System (INIS)

    Pick, M.A.; Celentano, G.; Deksnis, E.; Dietz, K.J.; Shaw, R.; Sonnenberg, K.; Walravens, M.

    1987-01-01

    During the current operational period of JET more than 50% of the internal area of the machine is covered in graphite tiles. This includes the 15 m 2 of carbon tiles installed in the new toroidal limiter, the 40 poloidal belts of graphite tiles covering the U-joints and bellows as well as a two metre high ring (-- 20 m 2 ) or carbon tiles on the inner wall of the Torus. A ring of tiles in the equatorial plane (3 tiles high) consists of carbon-carbon fibre tiles. Test bed results indicated that the fine grained graphite tiles cracked at ∼ 1 kW/cm 2 for 2s of irradiation whereas the carbon-carbon fibre tiles were able to sustain a flux, limited by the irradiation facility, of 3.5 kW for 3s without any damage. The authors report on the generally positive experience they have had had with the installed graphite during the present and previous in-vessel configurations. This includes the physical integrity of the tiles under severe conditions such as high energy run-away electron beams, plasma disruptions and high heat fluxes. They report on the importance of the precise positioning of the inner wall and x-point tiles at the very high power fluxes of JET and the effect of deviations on both graphite and carbon-fibre tiles

  17. Porous (Swiss-Cheese Graphite

    Directory of Open Access Journals (Sweden)

    Joseph P. Abrahamson

    2018-05-01

    Full Text Available Porous graphite was prepared without the use of template by rapidly heating the carbonization products from mixtures of anthracene, fluorene, and pyrene with a CO2 laser. Rapid CO2 laser heating at a rate of 1.8 × 106 °C/s vaporizes out the fluorene-pyrene derived pitch while annealing the anthracene coke. The resulting structure is that of graphite with 100 nm spherical pores. The graphitizablity of the porous material is the same as pure anthracene coke. Transmission electron microscopy revealed that the interfaces between graphitic layers and the pore walls are unimpeded. Traditional furnace annealing does not result in the porous structure as the heating rates are too slow to vaporize out the pitch, thereby illustrating the advantage of fast thermal processing. The resultant porous graphite was prelithiated and used as an anode in lithium ion capacitors. The porous graphite when lithiated had a specific capacity of 200 mAh/g at 100 mA/g. The assembled lithium ion capacitor demonstrated an energy density as high as 75 Wh/kg when cycled between 2.2 V and 4.2 V.

  18. Thermal Pyrolytic Graphite Enhanced Components

    Science.gov (United States)

    Hardesty, Robert E. (Inventor)

    2015-01-01

    A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.

  19. Measurement of the diffusion length of thermal neutrons inside graphite; Mesure de la longueur de diffusion des neutrons thermiques dans le graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ertaud, A; Beauge, R; Fauquez, H; De Laboulay, H; Mercier, C; Vautrey, L

    1948-11-01

    The diffusion length of thermal neutrons inside a given industrial graphite is determined by measuring the neutron density inside a parallelepipedal piling up of graphite bricks (2.10 x 2.10 x 2.442 m). A 3.8 curies (Ra {alpha} {yields} Be) source is placed inside the parallelepipedal block of graphite and thin manganese detectors are used. Corrections are added to the unweighted measurements to take into account the effects of the damping of supra-thermal neutrons in the measurement area. These corrections are experimentally deduced from the differential measurements made with a cadmium screen interposed between the source and the first plane of measurement. An error analysis completes the report. The diffusion length obtained is: L = 45.7 cm {+-} 0.3. The average density of the graphite used is 1.76 and the average apparent density of the piling up is 1.71. (J.S.)

  20. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  1. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  2. Continuum theory for nanotube piezoelectricity.

    Science.gov (United States)

    Michalski, P J; Sai, Na; Mele, E J

    2005-09-09

    We develop and solve a continuum theory for the piezoelectric response of one-dimensional nanotubes and nanowires, and apply the theory to study electromechanical effects in boron-nitride nanotubes. We find that the polarization of a nanotube depends on its aspect ratio, and a dimensionless constant specifying the ratio of the strengths of the elastic and electrostatic interactions. The solutions of the model as these two parameters are varied are discussed. The theory is applied to estimate the electric potential induced along the length of a boron-nitride nanotube in response to a uniaxial stress.

  3. Continuum mechanics of electromagnetic solids

    CERN Document Server

    Maugin, GA

    1988-01-01

    This volume is a rigorous cross-disciplinary theoretical treatment of electromechanical and magnetomechanical interactions in elastic solids. Using the modern style of continuum thermomechanics (but without excessive formalism) it starts from basic principles of mechanics and electromagnetism, and goes on to unify these two fields in a common framework. It treats linear and nonlinear static and dynamic problems in a variety of elastic solids such as piezoelectrics, electricity conductors, ferromagnets, ferroelectrics, ionic crystals and ceramics. Chapters 1-3 are introductory, describing the e

  4. Continuum-regularized quantum gravity

    International Nuclear Information System (INIS)

    Chan Huesum; Halpern, M.B.

    1987-01-01

    The recent continuum regularization of d-dimensional Euclidean gravity is generalized to arbitrary power-law measure and studied in some detail as a representative example of coordinate-invariant regularization. The weak-coupling expansion of the theory illustrates a generic geometrization of regularized Schwinger-Dyson rules, generalizing previous rules in flat space and flat superspace. The rules are applied in a non-trivial explicit check of Einstein invariance at one loop: the cosmological counterterm is computed and its contribution is included in a verification that the graviton mass is zero. (orig.)

  5. BCS equations in the continuum

    International Nuclear Information System (INIS)

    Sandulescu, N.; Liotta, R. J.; Wyss, R.

    1998-01-01

    The properties of nuclei close to the drip line are significantly influenced by the continuum part of the single-particle spectrum. The main role is played by the resonant states which are largely confined in the region of nuclear potential and therefore stronger coupled with the bound states in an excitation process. Resonant states are also important in the nuclei beyond the drip line. In this case the decay properties of the nucleus can be directly related to the widths of the narrow resonances occupied by the unbound nucleons. The aim of this work is to propose an alternative for evaluating the effect of the resonant part of single-particle spectrum on the pairing correlations calculated within the BCS approximation. We estimated the role of resonances in the case of the isotope 170 Sn. The Resonant-BCS (RBCS) equations are solved for the case of a seniority force. The BCS approximation based on a seniority force cannot be applied in the case of a nucleus immersed in a box if all discrete states simulating the continuum are considered. In such a case the pairing correlations will increase with the number of states in the box. In our case one can still apply a seniority force with RBCS because the effect of the continuum appears here through a finite number of physical resonances, well defined by the given mean field. Because these resonances have a spatial distribution concentrated within the region of the nuclear potential, one expects that the localization probability of nucleons, far out from the nuclear surface, to be small. The gap obtained taking correctly the contribution of resonances, according to RBCS equations, is about 1.3 MeV, while pairing gap calculated only with the bound single-particle spectrum has the value Δ = 1.10 MeV. If we introduce also the resonant states, neglecting completely their widths, the gap will increase to the value Δ = 1.880 MeV. Therefore, one cannot estimate properly the pairing correlations by supplementing the spectrum

  6. Raman characterization of bulk ferromagnetic nanostructured graphite

    International Nuclear Information System (INIS)

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  7. Fabrication of Graphene by Cleaving Graphite Chemically

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shu-hua; ZHAO Xiao-ting; FAN Hou-gang; YANG Li-li; ZHANG Yong-jun; YANG Jing-hai

    2011-01-01

    Graphite was chemically cleaved to graphene by Billups Reaction,and the morphologies and microstructures of graphene were characterized by SEM,Raman and AFM.The results show that the graphite was first functionalized by l-iodododecane,which led to the cleavage of the graphene layer in the graphite.The second decoration cleaved the graphite further and graphene was obtained.The heights of the graphene layer were larger than 1 nm due to the organic decoration.

  8. Method of Joining Graphite Fibers to a Substrate

    Science.gov (United States)

    Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)

    2014-01-01

    A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.

  9. Photoemission study of K on graphite

    NARCIS (Netherlands)

    Bennich, P.; Puglia, C.; Brühwiler, P.A.; Nilsson, A.; Sandell, A.; Mårtensson, N.; Rudolf, P.

    1999-01-01

    The physical and electronic structure of the dispersed and (2×2) phases of K/graphite have been characterized by valence and core-level photoemission. Charge transfer from K to graphite is found to occur at all coverages, and includes transfer of charge to the second graphite layer. A rigid band

  10. Separation medium containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)

    2012-01-01

    A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.

  11. NMR studies on graphite-methanol system

    International Nuclear Information System (INIS)

    El-Akkad, T.M.

    1977-01-01

    The nuclear magnetic relaxation times for protons of methanol on graphite have been studied. The perpendicular and the transversal magnetization as a function of temperature were measured. The results show that the presence of graphite slowed down the methanol movement compared with that in the pure alcohol, and that the methanol molecules are attached to the graphite surface via methyl groups. (author)

  12. Continuum gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1981-06-01

    When angular momentum is added to a nucleus, it is, of course, carried by the individual nucleons, but two limiting types of behavior may be distinguished: (1) a small number of high-j particles align with the rotation axis and (2) the nucleus is deformed and rotates as a whole. At high spin all nuclei seem to show a compromise utilizing both motions. The excited nuclei left as products of (HI,xn) reactions have so many pathways down that none of the γ-ray transitions have enough intensity to be seen individually until the population gathers near the yrast line. This occurs usually between spin 20 to 40 h-bar. All our information on the higher states comes from their continuum spectra. With the new techniques that are developing, including the use of multiplicity filters, total-energy spectrometers, energy correlation studies, crystal balls, and observation of giant dipole resonances in the continuum spectra, there is hope to learn much about the nature of the high-spin states

  13. Continuum radiation of argon plasma

    International Nuclear Information System (INIS)

    D'Yachkov, L.G.

    1995-01-01

    A simple completely analytical method of the calculation of radiative continuum of plasmas is derived and an analysis of experimental data on continuum radiation of argon plasma is made. The method is based on the semiclassical quantum defect theory. To calculate radial matrix elements of dipole transitions the asymptotic expansion in powers of E c /ω 2/3 , with an accuracy to the linear term, where E, is the arithmetic mean of the initial and final energies of the transition, is used. This expansion has the same form for free-free, free-bound and bound-bound transitions. If the quantum defects are also approximated by a linear function of energy, the integration over the electron energy (the Maxwell-Boltzmann distribution is assumed) can be performed in analytical form. For Rydberg states the sum of photoionization continua can be replaced by an integral. We have calculated the absorption coefficient pf argon plasma. The photoionization cross section is calculated for all the states of 4s, 5s, 6s, 4p, 5p, 3d, 4d, 4s', 5s', 6s', 4p', 5p', 3d' and 4d' configurations taking into account P-coupling and multiplet splitting (56 states). Other excited states are allowed for by the integral formula together with free-free transitions

  14. Preliminary experiment design of graphite dust emission measurement under accident conditions for HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei, E-mail: pengwei@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Chen, Tao; Sun, Qi; Wang, Jie [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • A theoretical analysis is used to predict the total graphite dust release for an AVR LOCA. • Similarity criteria must be satisfied between the experiment and the actual HTGR system. • Model experiments should be conducted to predict the graphite dust resuspension rate. - Abstract: The graphite dust movement behavior is significant for the safety analyses of high-temperature gas cooled reactor (HTGR). The graphite dust release for accident conditions is an important source term for HTGR safety analyses. Depressurization release tests are not practical in HTGR because of a radioactivity release to the environment. Thus, a theoretical analysis and similarity principles were used to design a group of modeling experiments. Modeling experiments for fan start-up and depressurization process and actual experiments of helium circulator start-up in an HTGR were used to predict the rate of graphite dust resuspension and the graphite dust concentration, which can be used to predict the graphite dust release during accidents. The modeling experiments are easy to realize and the helium circulator start-up test does not harm the reactor system or the environment, so this experiment program is easily achieved. The revised Rock’n’Roll model was then used to calculate the AVR reactor release. The calculation results indicate that the total graphite dust releases during a LOCA will be about 0.65 g in AVR.

  15. The graphite ball detector

    International Nuclear Information System (INIS)

    Renaud, P.W.

    1975-01-01

    This work presents the design and the practical testing of a comparatively cheap measuring system for the nuclear Doppler effect in an easily variable neutron spectrum. Samples of any kind of material can be measured and even a very simple thermal nuclear reactor with irradiation facilities will be a good neutron source, the gradient of the spectrum of which can be adapted by filtering techniques. Without experiments to confirm this, it may be stated, however, that the system can also be applied when a fast reactor system or other powerful neutron source is used. (Auth.)

  16. Continuum shell-model with complicated configurations

    International Nuclear Information System (INIS)

    Barz, H.W.; Hoehn, J.

    1977-05-01

    The traditional shell model has been combined with the coupled channels method in order to describe resonance reactions. For that purpose the configuration space is divided into two subspaces (Feshbach projection method). Complicated shell-model configurations can be included into the subspace of discrete states which contains the single particle resonance states too. In the subspace of scattering states the equation of motion is solved by using the coupled channels method. Thereby the orthogonality between scattering states and discrete states is ensured. Resonance states are defined with outgoing waves in all channels. By means of simple model calculations the special role of the continuum is investigated. In this connection the energy dependence of the resonance parameters, the isospin mixture via the continuum, threshold effect, as well as the influence of the number of channels taken into account on the widths, positions and dipole strengths of the resonance are discussed. The model is mainly applied to the description of giant resonances excited by the scattering of nucleons and photo-nucleus processes (source term method) found in reactions on light nuclei. The giant resonance observed in the 15 N(p,n) reaction is explained by the inclusion of 2p-2h states. The same is true for the giant resonance in 13 C(J = 1/2, 3/2) as well as for the giant resonance built on the first 3 - state in 16 O. By means of a correlation analysis for the reduced widths amplitudes an access to the doorway conception is found. (author)

  17. Sources

    International Nuclear Information System (INIS)

    Duffy, L.P.

    1991-01-01

    This paper discusses the sources of radiation in the narrow perspective of radioactivity and the even narrow perspective of those sources that concern environmental management and restoration activities at DOE facilities, as well as a few related sources. Sources of irritation, Sources of inflammatory jingoism, and Sources of information. First, the sources of irritation fall into three categories: No reliable scientific ombudsman to speak without bias and prejudice for the public good, Technical jargon with unclear definitions exists within the radioactive nomenclature, and Scientific community keeps a low-profile with regard to public information. The next area of personal concern are the sources of inflammation. This include such things as: Plutonium being described as the most dangerous substance known to man, The amount of plutonium required to make a bomb, Talk of transuranic waste containing plutonium and its health affects, TMI-2 and Chernobyl being described as Siamese twins, Inadequate information on low-level disposal sites and current regulatory requirements under 10 CFR 61, Enhanced engineered waste disposal not being presented to the public accurately. Numerous sources of disinformation regarding low level radiation high-level radiation, Elusive nature of the scientific community, The Federal and State Health Agencies resources to address comparative risk, and Regulatory agencies speaking out without the support of the scientific community

  18. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  19. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  20. Graphite oral tattoo: case report.

    Science.gov (United States)

    Moraes, Renata Mendonça; Gouvêa Lima, Gabriela de Morais; Guilhermino, Marinaldo; Vieira, Mayana Soares; Carvalho, Yasmin Rodarte; Anbinder, Ana Lia

    2015-10-16

    Pigmented oral lesions compose a large number of pathological entities, including exogenous pigmentat oral tattoos, such as amalgam and graphite tattoos. We report a rare case of a graphite tattoo on the palate of a 62-year-old patient with a history of pencil injury, compare it with amalgam tattoos, and determine the prevalence of oral tattoos in our Oral Pathology Service. We also compare the clinical and histological findings of grafite and amalgam tattoos. Oral tattoos affect women more frequently in the region of the alveolar ridge. Graphite tattoos occur in younger patients when compared with the amalgam type. Histologically, amalgam lesions represent impregnation of the reticular fibers of vessels and nerves with silver, whereas in cases of graphite tattoos, this impregnation is not observed, but it is common to observe a granulomatous inflammatory response, less evident in cases of amalgam tattoos. Both types of lesions require no treatment, but in some cases a biopsy may be done to rule out melanocytic lesions.

  1. 'In situ' expanded graphite extinguishant

    International Nuclear Information System (INIS)

    Cao Qixin; Shou Yuemei; He Bangrong

    1987-01-01

    This report is concerning the development of the extinguishant for sodium fire and the investigation of its extinguishing property. The experiment result shows that 'in situ' expanded graphite developed by the authors is a kind of extinguishant which extinguishes sodium fire quickly and effectively and has no environment pollution during use and the amount of usage is little

  2. Extension versus Bending for Continuum Robots

    Directory of Open Access Journals (Sweden)

    George Grimes

    2008-11-01

    Full Text Available In this paper, we analyze the capabilities of a novel class of continuous-backbone ("continuum" robots. These robots are inspired by biological "trunks, and tentacles". However, the capabilities of established continuum robot designs, which feature controlled bending but not extension, fall short of those of their biological counterparts. In this paper, we argue that the addition of controlled extension provides dual and complementary functionality, and correspondingly enhanced performance, in continuum robots. We present an interval-based analysis to show how the inclusion of controllable extension significantly enhances the workspace and capabilities of continuum robots.

  3. Passing waves from atomistic to continuum

    Science.gov (United States)

    Chen, Xiang; Diaz, Adrian; Xiong, Liming; McDowell, David L.; Chen, Youping

    2018-02-01

    Progress in the development of coupled atomistic-continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic-continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic-continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic-continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic-continuum interfaces. This work is the first step towards developing a concurrent atomistic-continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.

  4. Graphite nanoreinforcements in polymer nanocomposites

    Science.gov (United States)

    Fukushima, Hiroyuki

    Nanocomposites composed of polymer matrices with clay reinforcements of less than 100 nm in size, are being considered for applications such as interior and exterior accessories for automobiles, structural components for portable electronic devices, and films for food packaging. While most nanocomposite research has focused on exfoliated clay platelets, the same nanoreinforcement concept can be applied to another layered material, graphite, to produce nanoplatelets and nanocomposites. Graphite is the stiffest material found in nature (Young's Modulus = 1060 GPa), having a modulus several times that of clay, but also with excellent electrical and thermal conductivity. The key to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate this material. Also, if the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with not only excellent mechanical properties but electrical properties as well, opening up many new structural applications as well as non-structural ones where electromagnetic shielding and high thermal conductivity are requirements. In this research, a new process to fabricate exfoliated nano-scale graphite platelets was established (Patent pending). The size of the resulted graphite platelets was less than 1 um in diameter and 10 nm in thickness, and the surface area of the material was around 100 m2/g. The reduction of size showed positive effect on mechanical properties of composites because of the increased edge area and more functional groups attached with it. Also various surface treatment techniques were applied to the graphite nanoplatelets to improve the surface condition. As a result, acrylamide grafting treatment was found to enhance the dispersion and adhesion of graphite flakes in epoxy matrices. The resulted composites showed better mechanical properties than those with commercially available carbon fibers, vapor grown carbon fibers

  5. Graphite suspension in carbon dioxide

    International Nuclear Information System (INIS)

    Roche, R.

    1965-01-01

    Since 1963 the Atomic Division of SNECMA has been conducting, under a contract with the CEA, an experimental work with a two-component fluid comprised of carbon dioxide and small graphite particles. The primary purpose was the determination of basic engineering information pertaining to the stability and the flowability of the suspension. The final form of the experimental loop consists mainly of the following items: a light-phase compressor, a heavy-phase pump, an electrical-resistance type heater section, a cooling heat exchanger, a hairpin loop, a transparent test section and a separator. During the course of the testing, it was observed that the fluid could be circulated quite easily in a broad range of variation of the suspension density and velocity - density from 30 to 170 kg/m 3 and velocity from 2 to 24 m/s. The system could be restarted and circulation maintained without any difficulty, even with the heavy-phase pump alone. The graphite did not have a tendency to pack or agglomerate during operation. No graphite deposition was observed on the wall of the tubing. A long period run (250 hours) has shown the evolution of the particle dimensions. Starting with graphite of surface area around 20 m 2 /g (graphite particles about 1 μ), the powder surface area reaches an asymptotic value of 300 m 2 /g (all the particles less than 0.3 μ). Moisture effect on flow stability, flow distribution between two parallel channels, pressure drop in straight tubes, recompression ratio in diffusers were also investigated. (author) [fr

  6. Characterisation of Chlorine Behavior in French Graphite

    International Nuclear Information System (INIS)

    Blondel, A.; Moncoffre, N.; Toulhoat, N.; Bererd, N.; Petit, L.; Laurent, G.; Lamouroux, C.

    2016-01-01

    Chlorine 36 is one of the main radionuclides of concern for French graphite waste disposal. In order to help the understanding of its leaching behaviour under disposal conditions, the respective impact of temperature, irradiation and gas radiolysis on chlorine release in reactor has been studied. Chlorine 36 has been simulated through chlorine 37 ion implantation in virgin nuclear graphite samples. Results show that part of chlorine is highly mobile in graphite in the range of French reactors operating temperatures in relation with graphite structural recovering. Ballistic damage generated by irradiation also promotes chlorine release whereas no clear impact of the coolant gas radiolysis was observed in the absence of graphite radiolytic corrosion. (author)

  7. New numerical methods for quantum field theories on the continuum

    Energy Technology Data Exchange (ETDEWEB)

    Emirdag, P.; Easter, R.; Guralnik, G.S.; Hahn, S.C

    2000-03-01

    The Source Galerkin Method is a new numerical technique that is being developed to solve Quantum Field Theories on the continuum. It is not based on Monte Carlo techniques and has a measure to evaluate relative errors. It promises to increase the accuracy and speed of calculations, and takes full advantage of symmetries of the theory. The application of this method to the non-linear {sigma} model is outlined.

  8. AGC-2 Graphite Preirradiation Data Package

    Energy Technology Data Exchange (ETDEWEB)

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2012-10-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  9. Progress in radioactive graphite waste management

    International Nuclear Information System (INIS)

    2010-07-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  10. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    Science.gov (United States)

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. sources

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2002-01-01

    Full Text Available In this paper, we study the simplified models of the ATM (Asynchronous Transfer Mode multiplexer network with Bernoulli random traffic sources. Based on the model, the performance measures are analyzed by the different output service schemes.

  12. Graphite structure and magnetic parameters of flake graphite cast iron

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan; Kage, H.

    2017-01-01

    Roč. 442, Nov (2017), s. 397-402 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * graphite structure * pearlite content Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  13. Initial Comparison of Baseline Physical and Mechanical Properties for the VHTR Candidate Graphite Grades

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Mark C. [Idaho National Lab. (INL), Idaho Falls, ID (United States). VHTR Program

    2014-09-01

    High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR) design, a graphite-moderated, helium-cooled configuration capable of producing thermal energy for power generation as well as process heat for industrial applications that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is establishing accurate as-manufactured mechanical and physical property distributions in nuclear-grade graphites by providing comprehensive data that captures the level of variation in measured values. In addition to providing a thorough comparison between these values in different graphite grades, the program is also carefully tracking individual specimen source, position, and orientation information in order to provide comparisons both in specific properties and in the associated variability between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between each of the grades of graphite that are considered “candidate” grades from four major international graphite producers. These particular grades (NBG-18, NBG-17, PCEA, IG-110, and 2114) are the major focus of the evaluations presently underway on irradiated graphite properties through the series of Advanced Graphite Creep (AGC) experiments. NBG-18, a medium-grain pitch coke graphite from SGL from which billets are formed via vibration molding, was the favored structural material in the pebble-bed configuration. NBG-17 graphite from SGL is essentially NBG-18 with the grain size reduced by a factor of two. PCEA, petroleum coke graphite from GrafTech with a similar grain size to NBG-17, is formed via an extrusion process and was initially considered the favored grade for the prismatic layout. IG-110 and 2114, from Toyo Tanso and Mersen (formerly Carbone Lorraine), respectively, are fine-grain grades produced via an isomolding

  14. Physics of the continuum of borromean nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vaagen, J S; Rogde, T [Dept. of Physics, Univ. of Bergen (Norway); Danilin, B V [RRC The Kurchatov Inst., Kurchatov, Moscow (Russian Federation); Ershov, S N [JINR, Dubna, Moscow (Russian Federation); Thompson, I J [Dept. of Physics, Univ. of Surrey, Guildford (United Kingdom); Zhukov, M V [Chalmers Univ. of Technology and Goeteborg Univ., Goeteborg (Sweden); RNBT Collaboration

    1998-06-01

    The continuum states of two-neutron halo nuclei are calculated in the method of hyperspherical harmonics. Using DWIA theory appropriate for dilute halo matter we have probed the structure of the low-lying {sup 6}He continuum via calculations of charge-exchange and inelastic scattering. (orig.)

  15. Giant resonances in the deformed continuum

    International Nuclear Information System (INIS)

    Nakatsukasa, T.; Yabana, K.

    2004-01-01

    Giant resonances in the continuum for deformed nuclei are studied with the time-dependent Hartree-Fock (TDHF) theory in real time and real space. The continuum effect is effectively taken into account by introducing a complex Absorbing Boundary Condition (ABC). (orig.)

  16. Continuum Level Density in Complex Scaling Method

    International Nuclear Information System (INIS)

    Suzuki, R.; Myo, T.; Kato, K.

    2005-01-01

    A new calculational method of continuum level density (CLD) at unbound energies is studied in the complex scaling method (CSM). It is shown that the CLD can be calculated by employing the discretization of continuum states in the CSM without any smoothing technique

  17. Diffusion of graphite. The effect of cylindrical canals

    International Nuclear Information System (INIS)

    Carle, R.; Clouet d'Orval, C.; Martelly, J.; Mazancourt, T. de; Sagot, M.; Lattes, R.; Teste du Bailler, A.

    1957-01-01

    Experiments on thermal neutron diffusion in the graphite used as moderator in the pile G1 have been carried out. The object of these experiments is to determine: - the intrinsic quality of this graphite, characterised by its diffusion length L or its Laplacian 1/L 2 - the effect of the canals, which modifies anisotropically the macroscopic diffusion equation and is characterized by two principal diffusion regions (or two principal Laplacian), valid respectively for the diffusion in the direction of the canals and in a perpendicular direction. In order to determine them two experiments are necessary, in which the second derivatives of the flux in relation to the space coordinates are very different. These experiments form the object of the first two parts. Part 1: Diffusion along the axis of a flux coming from the pile source, and limited radially by a quasi cylindrical screen of cadmium bars. This screen, or Faraday cage is designed to give to the thermal flux produced the same radius of extrapolation to zero as that of the pile source. The determination of L (with the graphite full) has been made under the same conditions. The measurements have been interpreted in two ways. The influence of the brackets holding the detectors is discussed. Part 2: Radial diffusion in the graphite surrounding the 'long' cylindrical pile. This is well described by a sum of Bessel functions. Part 3: Results (valid for d = 1.61 t = 17 deg. C). For the graphite without cavity L = 52.7 ± 0.4 cm. The effect of the canals on the diffusion area and its anisotropy are in excellent agreement with the theory of Behrens: L(parallel) = 64.6 cm and L(perpendicular) 62.2 cm. Appendix: Theory of the Faraday cage. (author) [fr

  18. Diffusion of graphite. The effect of cylindrical canals; Longueur de diffusion du graphite effet des canaux cylindriques

    Energy Technology Data Exchange (ETDEWEB)

    Carle, R; Clouet d' Orval, C; Martelly, J; Mazancourt, T de; Sagot, M; Lattes, R; Teste du Bailler, A [Commissariat a l' Energie Atomique, Dir. Industrielle, Saclay (France). Centre d' Etudes Nucleaires; Robert, C [Ecole Normale Superieure, 75 - Paris (France)

    1957-07-01

    Experiments on thermal neutron diffusion in the graphite used as moderator in the pile G1 have been carried out. The object of these experiments is to determine: - the intrinsic quality of this graphite, characterised by its diffusion length L or its Laplacian 1/L{sup 2} - the effect of the canals, which modifies anisotropically the macroscopic diffusion equation and is characterized by two principal diffusion regions (or two principal Laplacian), valid respectively for the diffusion in the direction of the canals and in a perpendicular direction. In order to determine them two experiments are necessary, in which the second derivatives of the flux in relation to the space coordinates are very different. These experiments form the object of the first two parts. Part 1: Diffusion along the axis of a flux coming from the pile source, and limited radially by a quasi cylindrical screen of cadmium bars. This screen, or Faraday cage is designed to give to the thermal flux produced the same radius of extrapolation to zero as that of the pile source. The determination of L (with the graphite full) has been made under the same conditions. The measurements have been interpreted in two ways. The influence of the brackets holding the detectors is discussed. Part 2: Radial diffusion in the graphite surrounding the 'long' cylindrical pile. This is well described by a sum of Bessel functions. Part 3: Results (valid for d = 1.61 t = 17 deg. C). For the graphite without cavity L = 52.7 {+-} 0.4 cm. The effect of the canals on the diffusion area and its anisotropy are in excellent agreement with the theory of Behrens: L(parallel) = 64.6 cm and L(perpendicular) 62.2 cm. Appendix: Theory of the Faraday cage. (author) [French] Des experiences de diffusion des neutrons thermiques dans le graphite constituant le moderateur de la pile G1 ont ete effectuees. Elles ont pour objet de determiner: - la qualite intrinseque de ce graphite, caracterisee par sa longueur de diffusion L ou son

  19. Etude d'un continuum de lumière en régime femtoseconde. Applications au domaine biologique : microscopies et spectroscopie en temps résolu.

    OpenAIRE

    Courvoisier , Céline

    2006-01-01

    For few years, a new type of source, called "continuum of light", has been developed. It presents many advantages like a wideband spectrum, a huge brilliancy, a pulsed nature. The aim of this work is to perform a complete characterization of a continuum generated by the injection of femtosecond pulses into a microstructured fiber, and to consider the use of this continuum as optical source for biomedical applications.With acousto-optic filters, the continuum has been successfully employed as ...

  20. Fission Product Sorptivity in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  1. Control of water absorption by purification of graphite

    International Nuclear Information System (INIS)

    Simpkins, J.E.; Strehlow, R.A.; Mioduszewski, P.K.; Uckan, T.

    1988-01-01

    It is well known that graphite can absorb large quantities of water, which can represent an abundant source of oxygen impurities in fusion plasmas if the corresponding components are not properly outgassed. We have outgassed various fusion-relevant graphites (e.g., POCO AXF-5Q) for 1.5 h at 1500/degree/C to release absorbed water and have subsequently exposed the samples to air for various periods of time. Re-absorption of water during the air exposure was estimated by measuring the amount of water produced in subsequent outgassing runs. The results show that the amount of water re-absorbed increases by a factor of approximately 10 within 8 h compared to the sample in the outgassed state but with no air exposure. The water content of the 'as received' material is reached after approximately 30 days. Re-absorption of water was significantly reduced by purification of the investigated graphite samples. This purification process, which consists of heating the sample at 2800/degree/C for 30 min in an argon atmosphere, reduces the levels of trace impurities which can be responsible for catalytic surface reactions on the internal surfaces of the graphite. After exposing an outgassed sample to an electron cyclotron heated plasma followed by 1 h air exposure, the amount of water desorbed was observed to increase by a factor of 6. Data will be presented to correlate this effect with trace impurities. 9 refs., 2 figs., 5 tabs

  2. Graphite for high-temperature reactors

    International Nuclear Information System (INIS)

    Hammer, W.; Leushacke, D.F.; Nickel, H.; Theymann, W.

    1976-01-01

    The different graphites necessary for HTRs are being developed, produced and tested within the Federal German ''Development Programme Nuclear Graphite''. Up to now, batches of the following graphite grades have been manufactured and fully characterized by the SIGRI Company to demonstrate reproducibility: pitch coke graphite AS2-500 for the hexagonal fuel elements and exchangeable reflector blocks; special pitch coke graphite ASI2-500 for reflector blocks of the pebble-bed reactor and as back-up material for the hexagonal fuel elements; graphite for core support columns. The material data obtained fulfill most of the requirements under present specifications. Production of large-size blocks for the permanent side reflector and the core support blocks is under way. The test programme covers all areas important for characterizing and judging HTR-graphites. In-pile testing comprises evaluation of the material for irradiation-induced changes of dimensions, mechanical and thermal properties - including behaviour under temperature cycling and creep behaviour - as well as irradiating fuel element segments and blocks. Testing out-of-pile includes: evaluation of corrosion rates and influence of corrosion on strength; strength measurements; including failure criteria. The test programme has been carried out extensively on the AS2-graphite, and the results obtained show that this graphite is suitable as HTGR fuel element graphite. (author)

  3. AGC-3 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; David Swank; David Rohrbaugh; Joseph Lord

    2013-09-01

    This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersen’s 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to

  4. Thickness gauge for the measurement of the density of graphite

    International Nuclear Information System (INIS)

    Leveque, P.; Gasnier, M.; Hours, R.; Jouquet, G.; Rappeneau, J.; Tanguy, J.C.

    1961-01-01

    A thickness gauge was built, based on absorption of Bremsstrahlung generated in a Be target by a ( 90 Sr + 90 Y) β- source. This allows rapid and precise estimation (95 per cent probable error = 0.7 per cent) of the densities in slabs of graphite having a constant thickness of 25 ± 0.05 mm, the diameter of the beam being about 1 cm. Results obtained in this way are presented. (author) [fr

  5. Electrochemical Ultracapacitors Using Graphitic Nanostacks

    Science.gov (United States)

    Marotta, Christopher

    2012-01-01

    Electrochemical ultracapacitors (ECs) have been developed using graphitic nanostacks as the electrode material. The advantages of this technology will be the reduction of device size due to superior power densities and relative powers compared to traditional activated carbon electrodes. External testing showed that these materials display reduced discharge response times compared to state-of-the-art materials. Such applications are advantageous for pulsed power applications such as burst communications (satellites, cell phones), electromechanical actuators, and battery load leveling in electric vehicles. These carbon nanostructures are highly conductive and offer an ordered mesopore network. These attributes will provide more complete electrolyte wetting, and faster release of stored charge compared to activated carbon. Electrochemical capacitor (EC) electrode materials were developed using commercially available nanomaterials and modifying them to exploit their energy storage properties. These materials would be an improvement over current ECs that employ activated carbon as the electrode material. Commercially available graphite nanofibers (GNFs) are used as precursor materials for the synthesis of graphitic nanostacks (GNSs). These materials offer much greater surface area than graphite flakes. Additionally, these materials offer a superior electrical conductivity and a greater average pore size compared to activated carbon electrodes. The state of the art in EC development uses activated carbon (AC) as the electrode material. AC has a high surface area, but its small average pore size inhibits electrolyte ingress/egress. Additionally, AC has a higher resistivity, which generates parasitic heating in high-power applications. This work focuses on fabricating EC from carbon that has a very different structure by increasing the surface area of the GNF by intercalation or exfoliation of the graphitic basal planes. Additionally, various functionalities to the GNS

  6. Parallel algorithms for continuum dynamics

    International Nuclear Information System (INIS)

    Hicks, D.L.; Liebrock, L.M.

    1987-01-01

    Simply porting existing parallel programs to a new parallel processor may not achieve the full speedup possible; to achieve the maximum efficiency may require redesigning the parallel algorithms for the specific architecture. The authors discuss here parallel algorithms that were developed first for the HEP processor and then ported to the CRAY X-MP/4, the ELXSI/10, and the Intel iPSC/32. Focus is mainly on the most recent parallel processing results produced, i.e., those on the Intel Hypercube. The applications are simulations of continuum dynamics in which the momentum and stress gradients are important. Examples of these are inertial confinement fusion experiments, severe breaks in the coolant system of a reactor, weapons physics, shock-wave physics. Speedup efficiencies on the Intel iPSC Hypercube are very sensitive to the ratio of communication to computation. Great care must be taken in designing algorithms for this machine to avoid global communication. This is much more critical on the iPSC than it was on the three previous parallel processors

  7. Continuum mechanics elasticity, plasticity, viscoelasticity

    CERN Document Server

    Dill, Ellis H

    2006-01-01

    FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...

  8. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  9. Attenuation of thermal neutron through graphite

    International Nuclear Information System (INIS)

    Adib, M.; Ismaail, H.; Fathaallah, M.; Abbas, Y.; Habib, N.; Wahba, M.

    2004-01-01

    Calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of graphite temperature and crystalline from for neutron energies from 1 me V< E<10 eV were carried out. Computer programs have been developed which allow calculation for the graphite hexagonal closed-pack structure in its polycrystalline form and pyrolytic one. I The calculated total cross-section for polycrystalline graphite were compared with the experimental values. An overall agreement is indicated between the calculated values and experimental ones. Agreement was also obtained for neutron cross-section measured for oriented pyrolytic graphite at room and liquid nitrogen temperatures. A feasibility study for use of graphite in powdered form as a cold neutron filter is details. The calculated attenuation of thermal neutrons through large mosaic pyrolytic graphite show that such crystals can be used effectively as second order filter of thermal neutron beams and that cooling improve their effectiveness

  10. Uranium Oxide Aerosol Transport in Porous Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  11. Dynamics of graphite flake on a liquid

    Science.gov (United States)

    Miura, K.; Tsuda, D.; Kaneta, Y.; Harada, R.; Ishikawa, M.; Sasaki, N.

    2006-11-01

    One-directional motion, where graphite flakes are driven by a nanotip on an octamethylcyclotetrasiloxane (OMCTS) liquid surface, is presented. A transition from quasiperiodic to chaotic motions occurs in the dynamics of a graphite flake when its velocity is increased. The dynamics of graphite flakes pulled by the nanotip on an OMCTS liquid surface can be treated as that of a nanobody on a liquid.

  12. Sealing nuclear graphite with pyrolytic carbon

    International Nuclear Information System (INIS)

    Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai

    2013-01-01

    Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR)

  13. Continuum spectra in light-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, T.; Udagawa, T. [Texas Univ., Austin (USA). Dept. of Physics; Ikegami, H.; Muraoka, M [eds.

    1980-01-01

    Recent developments in the use of multi-step direct reaction method, to fit continuum cross sections of light-ion reactions, are reviewed. There has been a long-standing difficulty in reproducing sufficiently large (p, p') continuum cross section, but it has now been all but removed. It will be discussed in some detail, how this was achieved. Analyses of very recent data on analyzing powers in the continuum of (p, p') and (p, ..cap alpha..) reactions will also be discussed. Finally, analysis of the breakup of h into d and p will be presented.

  14. Area Regge calculus and continuum limit

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2002-01-01

    Encountered in the literature generalisations of general relativity to independent area variables are considered, the discrete (generalised Regge calculus) and continuum ones. The generalised Regge calculus can be either with purely area variables or, as we suggest, with area tensor-connection variables. Just for the latter, in particular, we prove that in analogy with corresponding statement in ordinary Regge calculus (by Feinberg, Friedberg, Lee and Ren), passing to the (appropriately defined) continuum limit yields the generalised continuum area tensor-connection general relativity

  15. Continuum mechanics of single-substance bodies

    CERN Document Server

    Eringen, A Cemal

    1975-01-01

    Continuum Physics, Volume II: Continuum Mechanics of Single-Substance Bodies discusses the continuum mechanics of bodies constituted by a single substance, providing a thorough and precise presentation of exact theories that have evolved during the past years. This book consists of three parts-basic principles, constitutive equations for simple materials, and methods of solution. Part I of this publication is devoted to a discussion of basic principles irrespective of material geometry and constitution that are valid for all kinds of substances, including composites. The geometrical notions, k

  16. Density separation of combustion-derived soot and petrogenic graphitic black carbon: Quantification and isotopic characterization

    International Nuclear Information System (INIS)

    Veilleux, M-H; Gelinas, Y; Dickens, A F; Brandes, J

    2009-01-01

    The black carbon continuum is composed of a series of carbon-rich components derived from combustion or metamorphism and characterized by contrasting environmental behavior and susceptibility to oxidation. In this work, we present a micro-scale density fractionation method that allows isolating the small quantities of soot-like and graphitic material usually found in natural samples. Organic carbon and δ 13 C mass balance calculations were used to quantify the relative contributions of the two fractions to thermally-stable organic matter from a series of aquatic sediments. Varying proportions of soot-like and graphitic material were found in these samples, with large variations in δ 13 C signatures suggesting important differences in their origin and/or dynamics in the environment.

  17. AMS-C14 analysis of graphite obtained with an Automated Graphitization Equipment (AGE III) from aerosol collected on quartz filters

    Energy Technology Data Exchange (ETDEWEB)

    Solís, C.; Chávez, E.; Ortiz, M.E.; Andrade, E. [Instituto de Física, Universidad Nacional Autónoma de México, 04510 México D.F. (Mexico); Ortíz, E. [Universidad Autónoma Metropolitana, Unidad Azcapotzalco, México D.F. (Mexico); Szidat, S. [Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern (Switzerland); Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Wacker, L. [Laboratory of Ion Physics, ETH, Honggerberg, Zurich (Switzerland)

    2015-10-15

    AMS-{sup 14}C applications often require the analysis of small samples. Such is the case of atmospheric aerosols where frequently only a small amount of sample is available. The ion beam physics group at the ETH, Zurich, has designed an Automated Graphitization Equipment (AGE III) for routine graphite production for AMS analysis from organic samples of approximately 1 mg. In this study, we explore the potential use of the AGE III for graphitization of particulate carbon collected in quartz filters. In order to test the methodology, samples of reference materials and blanks with different sizes were prepared in the AGE III and the graphite was analyzed in a MICADAS AMS (ETH) system. The graphite samples prepared in the AGE III showed recovery yields higher than 80% and reproducible {sup 14}C values for masses ranging from 50 to 300 μg. Also, reproducible radiocarbon values were obtained for aerosol filters of small sizes that had been graphitized in the AGE III. As a study case, the tested methodology was applied to PM{sub 10} samples collected in two urban cities in Mexico in order to compare the source apportionment of biomass and fossil fuel combustion. The obtained {sup 14}C data showed that carbonaceous aerosols from Mexico City have much lower biogenic signature than the smaller city of Cuernavaca.

  18. Nanostructured carbon films with oriented graphitic planes

    International Nuclear Information System (INIS)

    Teo, E. H. T.; Kalish, R.; Kulik, J.; Kauffmann, Y.; Lifshitz, Y.

    2011-01-01

    Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphitic planes under different conditions.

  19. Production of nuclear graphite in France

    International Nuclear Information System (INIS)

    Legendre, P.; Mondet, L.; Arragon, Ph.; Cornuault, P.; Gueron, J.; Hering, H.

    1955-01-01

    The graphite intended for the construction of the reactors is obtained by the usual process: confection of a cake from coke of oil and tar, cooked (in a electric oven) then the product of cook is graphitized, also by electric heating. The use of the air transportation and the control of conditions cooking and graphitization have permitted to increase the nuclear graphite production as well as to better control their physical and mechanical properties and to reduce to the minimum the unwanted stains. (M.B.) [fr

  20. Nuclear graphite for high temperature reactors

    International Nuclear Information System (INIS)

    Marsden, B.J.

    2001-01-01

    The cores and reflectors in modern High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable.The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modern HTRs. (author)

  1. Structural analysis of polycrystalline (graphitized) materials

    International Nuclear Information System (INIS)

    Efremenko, M.M.; Kravchik, A.E.; Osmakov, A.S.

    1993-01-01

    Specific features of the structure of polycrystal carbon materials (CM), characterized by high enough degree of structural perfection and different genesis are analyzed. From the viewpoint of fine and supercrystallite structure analysis of the most characteristic groups of graphitized CM: artificial graphites, and natural graphites, as well, has been carried out. It is ascertained that in paracrystal CM a monolayer of hexagonally-bound carbon atoms is the basic element of the structure, and in graphitized CM - a microlayer. The importance of the evaluation of the degree of three-dimensional ordering of the microlayer is shown

  2. Principle design and data of graphite components

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Oku, Tatsuo

    2004-01-01

    The High Temperature Engineering Test Reactor (HTTR) constructed by Japan Atomic Energy Research Institute (JAERI) is a graphite-moderated and helium-gas-cooled reactor with prismatic fuel elements of hexagonal blocks. The reactor internal structures of the HTTR are mainly made up of graphite components. As well known, the graphite is a brittle material and there were no available design criteria for brittle materials. Therefore, JAERI had to develop the design criteria taking account of the brittle fracture behavior. In this paper, concept and key specification of the developed graphite design criteria is described, and also an outline of the quality control specified in the design criteria is mentioned

  3. Low temperature vapor phase digestion of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  4. The Fracture Toughness of Nuclear Graphites Grades

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erdman, III, Donald L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, Rick R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunter, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hannel, Cara C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    New measurements of graphite mode I critical stress intensity factor, KIc (commonly referred to as the fracture toughness) and the mode II critical shear stress intensity, KIIc, are reported and compared with prior data for KIc and KIIc. The new data are for graphite grades PCEA, IG-110 and 2114. Variations of KIc and acoustic emission (AE) data with graphite texture are reported and discussed. The Codes and Standards applications of fracture toughness, KIc, data are also discussed. A specified minimum value for nuclear graphite KIc is recommended.

  5. Electrolysis of acidic sodium chloride solution with a graphite anode. I. Graphite electrode

    NARCIS (Netherlands)

    Janssen, L.J.J.; Hoogland, J.G.

    1969-01-01

    A graphite anode evolving Cl from a chloride soln. is slowly oxidized to CO and CO2. This oxidn. causes a change in the characteristics of the electrode in aging, comprising a change of the nature of the graphite surface and an increase of the surface area. It appears that a new graphite electrode

  6. Commitment to Quality throughout the Continuum.

    Science.gov (United States)

    Gillet, Pamela

    1995-01-01

    This editorial by the president of the Council for Exceptional Children indicates the organization's support of a continuum of special education placements for students with special needs and calls for improving transition of students from one placement to another. (JDD)

  7. Computational Method for Atomistic-Continuum Homogenization

    National Research Council Canada - National Science Library

    Chung, Peter

    2002-01-01

    The homogenization method is used as a framework for developing a multiscale system of equations involving atoms at zero temperature at the small scale and continuum mechanics at the very large scale...

  8. Exponential experiment on a uranium-graphite lattice; Experience exponentielle sur un reseau uranium-graphite

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, J; Martelly, J

    1958-12-01

    An exponential experiment on a natural uranium and graphite lattice is described. The critical buckling for a cubic pile made with this lattice is B{sup 2} = 0.726 {+-} 0.011 m{sup -2} and the anisotropy {alpha} = (B{sub L}{sup 2}/B{sub T}{sup 2}) is 0.987 {+-} 0.006. The behavior of the neutron density in the lattice near the reflector and sources is discussed in detail. (authors) [French] Une experience exponentielle sur reseau a uranium naturel et graphite est decrite. Le Laplacien de la pile cubique nue, critique, constituee avec un tel reseau serait: B{sup 2} = 0.726 {+-} 0.011 m{sup -2} et l'anisotropie {alpha} (B{sub L}{sup 2}/B{sub T}{sup 2}) est egale a 0.987 {+-} 0.006. La perturbation apportee a la densite de neutrons dans le reseau par le voisinage du reflecteur est discutee en detail. (auteurs)

  9. Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube

    Science.gov (United States)

    Zhang, Zhiqiang [Lexington, KY; Lockwood, Frances E [Georgetown, KY

    2008-03-25

    A fluid media such as oil or water, and a selected effective amount of carbon nanomaterials necessary to enhance the thermal conductivity of the fluid. One of the preferred carbon nanomaterials is a high thermal conductivity graphite, exceeding that of the neat fluid to be dispersed therein in thermal conductivity, and ground, milled, or naturally prepared with mean particle size less than 500 nm, and preferably less than 200 nm, and most preferably less than 100 nm. The graphite is dispersed in the fluid by one or more of various methods, including ultrasonication, milling, and chemical dispersion. Carbon nanotubes with graphitic structure is another preferred source of carbon nanomaterial, although other carbon nanomaterials are acceptable. To confer long term stability, the use of one or more chemical dispersants is preferred. The thermal conductivity enhancement, compared to the fluid without carbon nanomaterial, is proportional to the amount of carbon nanomaterials (carbon nanotubes and/or graphite) added.

  10. Continuum emission from classical nova winds

    International Nuclear Information System (INIS)

    Harkness, R.P.

    1983-01-01

    The emergent continuum of a slow classical nova during outburst is considered in the quasi-steady optically thick, transonic wind model. Models are presented for various steady mass loss rates and are related to the evolution of slow novae during decline and early post-maximum. The continuum emission is found to depart radically from a blackbody spectrum and to exhibit features common to highly extended stellar atmospheres. (author)

  11. Loop quantization as a continuum limit

    International Nuclear Information System (INIS)

    Manrique, Elisa; Oeckl, Robert; Weber, Axel; Zapata, Jose A

    2006-01-01

    We present an implementation of Wilson's renormalization group and a continuum limit tailored for loop quantization. The dynamics of loop-quantized theories is constructed as a continuum limit of the dynamics of effective theories. After presenting the general formalism we show as a first explicit example the 2D Ising field theory, an interacting relativistic quantum field theory with local degrees of freedom quantized by loop quantization techniques

  12. Geometric continuum regularization of quantum field theory

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1989-01-01

    An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs

  13. Continuum of active nuclei of galaxies

    International Nuclear Information System (INIS)

    Boisson, C.; Durret, F.

    1987-01-01

    Most of the luminosity of active galactic nuclei (NAG) is radiated in the form of a continuum extending from radio to X-ray energies. It is important to understand the origin of this continuum in order to explain the relative importance of thermal and non-thermal processes in the different classes of NAG. We present here the observational aspect. A detailed study of the mechanisms will be presented by J.L. Masnou [fr

  14. Hydrogen storage in graphitic nanofibres

    OpenAIRE

    McCaldin, Simon Roger

    2007-01-01

    There is huge need to develop an alternative to hydrocarbons fuel, which does not produce CO2 or contribute to global warming - 'the hydrogen economy' is such an alternative, however the storage of hydrogen is the key technical barrier that must be overcome. The potential of graphitic nanofibres (GNFs) to be used as materials to allow the solid-state storage of hydrogen has thus been investigated. This has been conducted with a view to further developing the understanding of the mechanism(s) ...

  15. Changing public stigma with continuum beliefs.

    Science.gov (United States)

    Corrigan, Patrick W; Schmidt, Annie; Bink, Andrea B; Nieweglowski, Katherine; Al-Khouja, Maya A; Qin, Sang; Discont, Steve

    2017-10-01

    Given the egregious effect of public stigma on the lives of people with mental illness, researchers have sought to unpack and identify effective components of anti-stigma programs. We expect to show that continuum messages have more positive effect on stigma and affirming attitudes (beliefs that people with mental illness recover and should be personally empowered) than categorical perspectives. The effect of continuum beliefs will interact with contact strategies. A total of 598 research participants were randomly assigned to online presentations representing one of the six conditions: three messages (continuum, categorical, or neutral control) by two processes (education or contact). Participants completed measures of continuum beliefs (as a manipulation check), stigma and affirming attitudes after viewing the condition. Continuum messages had significantly better effect on views that people with mental illness are "different," a finding that interacted with contact. Continuum messages also had better effects on recovery beliefs, once again an effect that interacted significantly with contact. Implications of these findings for improving anti-stigma programs are discussed.

  16. Mixed graphite cast iron for automotive exhaust component applications

    OpenAIRE

    De-lin Li

    2017-01-01

    Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard speci...

  17. Nuclear graphite waste management. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-05-01

    The purpose of the seminar was to bring together the specialists dealing with various aspects of radioactive graphite waste management to exchange and review information on the decommissioning, characterisation, processing and disposal of irradiated graphite from reactor cores and other graphite waste associated with reactor operation. The seminar covered radioactive graphite characterisation, the effect of irradiation on graphite components, Wigner energy, radioactive graphite waste treatment, conditioning, interim storage and long term disposal options. Individual papers presented at the seminar were indexed separately

  18. Variational principles of continuum mechanics. Vol. 1. Fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Berdichevsky, Victor L. [Wayne State Univ., Detroit, MI (United States). Dept. of Mechanical Engineering

    2009-07-01

    The book reviews the two features of the variational approach: its use as a universal tool to describe physical phenomena and as a source for qualitative and quantitative methods of studying particular problems. Berdichevsky's work differs from other books on the subject in focusing mostly on the physical origin of variational principles as well as establishing their interrelations. For example, the Gibbs principles appear as a consequence of the Einstein formula for thermodynamic fluctuations rather than as the first principles of the theory of thermodynamic equilibrium. Mathematical issues are considered as long as they shed light on the physical outcomes and/or provide a useful technique for the direct study of variational problems. In addition, a thorough account of variational principles discovered in various branches of continuum mechanics is given. In this book, the first volume, the author covers the variational principles for systems with a finite number of degrees of freedom; the variational principles of thermodynamics; the basics of continuum mechanics; the variational principles for classical models of continuum mechanics, such as elastic and plastic bodies, and ideal and viscous fluids; and direct methods of calculus of variations. (orig.)

  19. Analysis of Wigner energy release process in graphite stack of shut-down uranium-graphite reactor

    OpenAIRE

    Bespala, E. V.; Pavliuk, A. O.; Kotlyarevskiy, S. G.

    2015-01-01

    Data, which finding during thermal differential analysis of sampled irradiated graphite are presented. Results of computational modeling of Winger energy release process from irradiated graphite staking are demonstrated. It's shown, that spontaneous combustion of graphite possible only in adiabatic case.

  20. Establishing a Continuum of Acute Kidney Injury – Tracing AKI Using Data Source Linkage and Long-Term Follow-Up: Workgroup Statements from the 15th ADQI Consensus Conference

    Directory of Open Access Journals (Sweden)

    Ravindra Mehta

    2016-02-01

    Full Text Available Background: Acute kidney injury (AKI is independently associated with the development of chronic kidney disease, endstage kidney disease and increased all-cause and cardiovascular-specific mortality. The severity of the renal insult and the development of multiple AKI episodes increase the risk of occurrence of these outcomes. Despite these long-term effects, only a minority of patients receive nephrologist follow up after an episode of AKI; those that do may have improved outcomes. Furthermore, relatively simple quality improvement strategies have the potential to change this status quo. Methods: On this background, a working group of the 15 th Acute Dialysis Quality Initiative (ADQI conference applied the consensus-building process informed by review of English language articles identified through PubMed search to address questions related to the opportunities, methodological requirements and barriers for longitudinal follow-up of patients with AKI in the era of electronic health records and Big Data. Results: Four consensus statements answering the key questions identified by the working group are developed. Conclusions: We have identified minimal data elements and potential data sources necessary to trace the natural history of patients from onset of AKI to long-term outcome. Minimum infrastructure and key barriers to achieving these goals are outlined together with proposed solutions.

  1. Mixed graphite cast iron for automotive exhaust component applications

    Directory of Open Access Journals (Sweden)

    De-lin Li

    2017-11-01

    Full Text Available Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard specification (A1095 has been created for compacted, mixed, and spheroidal graphite silicon-molybdenum iron castings. This paper attempts to outline the latest progress in mixed graphite iron published.

  2. Methodology of characterization of radioactive graphite

    International Nuclear Information System (INIS)

    Pina, G.; Rodriguez, M.; Lara, E.; Magro, E.; Gascon, J. L.; Leganes, J. L.

    2014-01-01

    Since the dismantling of Vandellos I, ENRESA has promoted the precise knowledge of the inventory of irradiated graphite (graphite-i) through establishing methodologies for radiological characterization of the vector of radionuclides of interest and their correlations as the primary means of characterization strategy to establish the safer management of this material in its life cycle. (Author)

  3. Significance of primary irradiation creep in graphite

    CSIR Research Space (South Africa)

    Erasmus, C

    2013-05-01

    Full Text Available Traditionally primary irradiation creep is introduced into graphite analysis by applying the appropriate amount of creep strain to the model at the initial time-step. This is valid for graphite components that are subjected to high fast neutron flux...

  4. Inhibition of oxidation in nuclear graphite

    International Nuclear Information System (INIS)

    Winston, Philip L.; Sterbentz, James W.; Windes, William E.

    2015-01-01

    Graphite is a fundamental material of high-temperature gas-cooled nuclear reactors, providing both structure and neutron moderation. Its high thermal conductivity, chemical inertness, thermal heat capacity, and high thermal structural stability under normal and off-normal conditions contribute to the inherent safety of these reactor designs. One of the primary safety issues for a high-temperature graphite reactor core is the possibility of rapid oxidation of the carbon structure during an off-normal design basis event where an oxidising atmosphere (air ingress) can be introduced to the hot core. Although the current Generation IV high-temperature reactor designs attempt to mitigate any damage caused by a postulated air ingress event, the use of graphite components that inhibit oxidation is a logical step to increase the safety of these reactors. Recent experimental studies of graphite containing between 5.5 and 7 wt% boron carbide (B 4 C) indicate that oxidation is dramatically reduced even at prolonged exposures at temperatures up to 900 deg. C. The proposed addition of B 4 C to graphite components in the nuclear core would necessarily be enriched in B-11 isotope in order to minimise B-10 neutron absorption and graphite swelling. The enriched boron can be added to the graphite during billet fabrication. Experimental oxidation rate results and potential applications for borated graphite in nuclear reactor components will be discussed. (authors)

  5. Metal/graphite - composites in fusion engineering

    International Nuclear Information System (INIS)

    Staffler, R.; Kneringer, G.; Kny, E.; Reheis, N.

    1989-01-01

    Metal/graphite composites have been well known in medical industry for many years. X-ray tubes used in modern radiography, particularly in computerized tomography are equipped with rotating targets able to absorb a maximum of heat in a given time. Modern rotating targets consist of a refractory metal/graphite composite. Today the use of graphite as a plasma facing material is one predominant concept in fusion engineering. Depending on the thermal load, the graphite components have to be directly cooled (i.e. divertor plates) or inertially cooled (i.e. firstwall tiles). In case of direct cooling a metallurgical joining such as high temperature brazing between graphite and a metallic cooling structure shows the most promising results /1/. Inertially cooled graphite tiles have to be joined to a metallic backing plate in order to get a stable attachment to the supporting structure. The main requirements on the metallic partner of a metal/graphite composite used in the first wall area are: high melting point, high thermal strength, high thermal conductivity, low vapor pressure and a thermal expansion matching that of graphite. These properties are typical for the refractory metals such as molybdenum, tungsten and their alloys. 4 refs., 13 figs., 1 tab

  6. Metal/graphite - composites in fusion engineering

    International Nuclear Information System (INIS)

    Staffler, R.; Kneringer, G.; Kny, E.; Reheis, N.

    1995-01-01

    Metal/graphite composites have been well known in medical industry for many years. X-ray tubes used in modern radiography, particulary in computerized tomography are equipped with rotating targets able to absorb a maximum of heat in a given time. Modern rotating targets consist of a refractory metal/graphite composite. Today the use of graphite as a plasma facing material is one predominant concept in fusion engineering. Depending on the thermal load, the graphite components have to be directly cooled (i.e. divertor plates) or inertially cooled (i.e. firstwall tiles). In case of direct cooling a metallurgical joining such as high temperature brazing between graphite and a metalic cooling structure shows the most promising results /1/. Inertially cooled graphite tiles have to be joined to a metallic backing plate in order to get a stable attachment to the supporting structure. The main requirements on the metallic partner of a metal/graphite composite and in the first wall area are: high melting point, high thermal strength, high thermal conductivity, low vapour pressure and a thermal expansion matching that of graphite. These properties are typical for the refractory metals such as molybdenum, tungsten and their alloys. (author)

  7. Tire containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A tire, tire lining or inner tube, containing a polymer composite, made of at least one rubber and/or at least one elastomer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g.

  8. Effect of graphite target power density on tribological properties of graphite-like carbon films

    Science.gov (United States)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  9. Hydrogen storage in graphite nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Park, C.; Tan, C.D.; Hidalgo, R.; Baker, R.T.K.; Rodriguez, N.M. [Northeastern Univ., Boston, MA (United States). Chemistry Dept.

    1998-08-01

    Graphite nanofibers (GNF) are a type of material that is produced by the decomposition of carbon containing gases over metal catalyst particles at temperatures around 600 C. These molecularly engineered structures consist of graphene sheets perfectly arranged in a parallel, perpendicular or at angle orientation with respect to the fiber axis. The most important feature of the material is that only edges are exposed. Such an arrangement imparts the material with unique properties for gas adsorption because the evenly separated layers constitute the most ordered set of nanopores that can accommodate an adsorbate in the most efficient manner. In addition, the non-rigid pore walls can also expand so as to accommodate hydrogen in a multilayer conformation. Of the many varieties of structures that can be produced the authors have discovered that when gram quantities of a selected number of GNF are exposed to hydrogen at pressures of {approximately} 2,000 psi, they are capable of adsorbing and storing up to 40 wt% of hydrogen. It is believed that a strong interaction is established between hydrogen and the delocalized p-electrons present in the graphite layers and therefore a new type of chemistry is occurring within these confined structures.

  10. Extraction method based on emulsion breaking for the determination of Cu, Fe and Pb in Brazilian automotive gasoline samples by high-resolution continuum source flame atomic absorption spectrometry

    Science.gov (United States)

    Leite, Clarice C.; de Jesus, Alexandre; Kolling, Leandro; Ferrão, Marco F.; Samios, Dimitrios; Silva, Márcia M.

    2018-04-01

    This work reports a new method for extraction of Cu, Fe and Pb from Brazilian automotive gasoline and their determination by high-resolution continuous source flame atomic absorption spectrometry (HR-CS FAAS). The method was based on the formation of water-in-oil emulsion by mixing 2.0 mL of extraction solution constituted by 12% (w/v) Triton X-100 and 5% (v/v) HNO3 with 10 mL of sample. After heating at 90 °C for 10 min, two well-defined phases were formed. The bottom phase (approximately 3.5 mL), composed of acidified water and part of the ethanol originally present in the gasoline sample, containing the extracted analytes was analyzed. The surfactant and HNO3 concentrations and the heating temperature employed in the process were optimized by Doehlert design, using a Brazilian gasoline sample spiked with Cu, Fe and Pb (organometallic compounds). The efficiency of extraction was investigated and it ranged from 80 to 89%. The calibration was accomplished by using matrix matching method. For this, the standards were obtained performing the same extraction procedure used for the sample, using emulsions obtained with a gasoline sample free of analytes and the addition of inorganic standards. Limits of detection obtained were 3.0, 5.0 and 14.0 μg L-1 for Cu, Fe and Pb, respectively. These limits were estimated for the original sample taking into account the preconcentration factor obtained. The accuracy of the proposed method was assured by recovery tests spiking the samples with organometallic standards and the obtained values ranged from 98 to 105%. Ten gasoline samples were analyzed and Fe was found in four samples (0.04-0.35 mg L-1) while Cu (0.28 mg L-1) and Pb (0.60 mg L-1) was found in just one sample.

  11. Methane generated from graphite--tritium interaction

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    When hydrogen isotopes are separated by cryogenic distillation, as little as 1 ppM of methane will eventually plug the still as frost accumulates on the column packings. Elemental carbon exposed to tritium generates methane spontaneously, and yet some dry transfer pumps, otherwise compatible with tritium, convey the gas with graphite rotors. This study was to determine the methane production rate for graphite in tritium. A pump manufacturer supplied graphite samples that we exposed to tritium gas at 0.8 atm. After 137 days we measured a methane synthesis rate of 6 ng/h per cm 2 of graphite exposed. At this rate methane might grow to a concentration of 0.01 ppM when pure tritium is transferred once through a typical graphite--rotor transfer pump. Such a low methane level will not cause column blockage, even if the cryogenic still is operated continuously for many years

  12. Chemical sputtering of graphite by H+ ions

    International Nuclear Information System (INIS)

    Busharov, N.P.; Gorbatov, E.A.; Gusev, V.M.; Guseva, M.I.; Martynenko, Y.V.

    1976-01-01

    In a study of the sputtering coefficient S for the sputtering of graphite by 10-keV H + ions as a function of the graphite temperature during the bombardment, it is found that at T> or =750degreeC the coefficient S is independent of the target temperature and has an anomalously high value, S=0.085 atom/ion. The high rate of sputtering of graphite by atomic hydrogen ions is shown to be due to chemical sputtering of the graphite, resulting primarily in the formation of CH 4 molecules. At T=1100degreeC, S falls off by a factor of about 3. A model for the chemical sputtering of graphite is proposed

  13. Graphite selection for the FMIT test cell

    International Nuclear Information System (INIS)

    Morgan, W.C.

    1982-06-01

    This document provides the basis for procuring a grade of graphite, at minimum cost, having minimum dimensional changes at low irradiation temperatures (nominal range 90 to 140 0 C). In light of those constraints, the author concludes that the most feasible approach is to attempt to reproduce a grade of graphite (TSGBF) which has exhibited a high degree of dimensional stability during low-temperature irradiations and on which irradiation-induced changes in other physical properties have been measured. The effects of differences in raw materials, especially coke morphology, and processing conditions, primarily graphitization temperture are briefly reviewed in terms of the practicality of producing a new grade of graphite with physical properties and irradiation-induced changes which would be very similar to those of TSGBF graphite. The production history and physical properties of TSGBF are also reviewed; no attempt is made, to project changes in dimensions or physical properties under the projected irradiation conditions

  14. AGC-2 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; W. David Swank; David Rohrbaugh; Joseph Lord

    2013-08-01

    This report described the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the second Advanced Graphite Capsule (AGC-2) irradiation capsule. The AGC-2 capsule is the second in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. Similar to the AGC-1 specimen pre-irradiation examination report, material property tests were conducted on specimens from 18 nuclear graphite types but on an increased number of specimens (512) prior to loading into the AGC-2 irradiation assembly. All AGC-2 specimen testing was conducted at Idaho National Laboratory (INL) from October 2009 to August 2010. This report also details the specimen loading methodology for the graphite specimens inside the AGC-2 irradiation capsule. The AGC-2 capsule design requires “matched pair” creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-2 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce “matched pairs” of graphite samples above and below the AGC-2 capsule elevation mid-point to provide specimens with similar neutron dose levels.

  15. The shadow continuum : testing the records continuum model through the Djogdja Documenten and the migrated archives

    NARCIS (Netherlands)

    Karabinos, Michael Joseph

    2015-01-01

    This dissertation tests the universal suitability of the records continuum model by using two cases from the decolonization of Southeast Asia. The continuum model is a new model of records visualization invented in the 1990s that sees records as free to move throughout four ‘dimensions’ rather than

  16. Radio-continuum emission from quasar host galaxies

    International Nuclear Information System (INIS)

    Condon, J. J.; Gower, A. C.; Hutchings, J. B.; Victoria Univ., Canada; Dominion Astrophysical Observatory, Victoria)

    1987-01-01

    Seven low-redshift quasars that are likely to be in spiral galaxies have been observed in a search for radio-continuum emission from the host galaxies of quasars. The properties of the individual quasars are listed, and 1.49 GHz contour maps of the seven quasar fields are presented. Map parameters and radio source parameters are given along with optical images of three of the objects. The results indicate that these quasars probably do reside in spiral galaxies. The radio luminosities, sizes, orientations, and u values all indicate that relativistic beaming alone cannot be used to explain the differences between the present sources and the far stronger radio sources seen in blazars or larger optically selected quasar samples. However, an apparent correlation between the radio luminosity and the ratio of the optical nuclear to host-galaxy luminosity is consistent with some beaming of nuclear radiation. 26 references

  17. Graphite Oxidation Thermodynamics/Reactions

    International Nuclear Information System (INIS)

    Propp, W.A.

    1998-01-01

    The vulnerability of graphite-matrix spent nuclear fuel to oxidation by the ambient atmosphere if the fuel canister is breached was evaluated. Thermochemical and kinetic data over the anticipated range of storage temperatures (200 to 400 C) were used to calculate the times required for a total carbon mass loss of 1 mgcm-2 from a fuel specimen. At 200 C, the time required to produce even this small loss is large, 900,000 yr. However, at 400 C the time required is only 1.9 yr. The rate of oxidation at 200 C is negligible, and the rate even at 400 C is so small as to be of no practical consequence. Therefore, oxidation of the spent nuclear fuel upon a loss of canister integrity is not anticipated to be a concern based upon the results of this study

  18. Low cost sic coated erosion resistant graphite

    International Nuclear Information System (INIS)

    Zafar, M.F.; Nicholls, J.R.

    2007-01-01

    The development of materials with unique and improved properties using low cost processes is essential to increase performance and reduce cost of the solid rocket motors. Specifically advancements are needed for boost phase nozzle. As these motors operate at very high pressure and temperatures, the nozzle must survive high thermal stresses with minimal erosion to maintain performance. Currently three material choices are being exploited; which are refractory metals, graphite and carbon-carbon composites. Of these three materials graphite is the most attractive choice because of its low cost, light weight, and easy forming. However graphite is prone to erosion, both chemical and mechanical, which may affect the ballistic conditions and mechanical properties of the nozzle. To minimize this erosion high density graphite is usually preferred; which is again very expensive. Another technique used to minimize the erosion is Pyrolytic Graphite (PG) coating inside the nozzle. However PG coating is prone to cracking and spallation along with very cumbersome deposition process. Another possible methodology to avoid this erosion is to convert the inside surface of the rocket nozzle to Silicon Carbide (SiC), which is very erosion resistant and have much better thermal stability compared to graphite and even PG. Due to its functionally gradient nature such a layer will be very adherent and resistant to spallation. The current research is focused on synthesizing, characterizing and oxidation testing of such a converted SiC layer on commercial grade graphite. (author)

  19. Leveraging comprehensive baseline datasets to quantify property variability in nuclear-grade graphites

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Mark C., E-mail: mark.carroll@inl.gov [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-2213 (United States); Windes, William E.; Rohrbaugh, David T. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-2213 (United States); Strizak, Joseph P.; Burchell, Timothy D. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6088 (United States)

    2016-10-15

    Highlights: • An effort is underway to fully quantify the properties of nuclear-grade graphites. • Physical and mechanical properties of graphite are best characterized by distributions. • The Weibull distribution is most representative of graphite based on goodness-of-fit. • Fine-grained isomolded grades exhibit higher Weibull modulus values, indicative of more homogeneous properties. - Abstract: The full characterization of the physical and mechanical properties of candidate nuclear-grade graphites is highly dependent upon an understanding of the distribution of values that are inherent to graphite. Not only do the material properties of graphites vary considerably between grades owing to the raw materials sources, filler particle type and size, methods of compaction, and production process parameters, but variability is observed between billets of the same grade from a single batch and even across spatial positions within a single billet. Properly enveloping the expected properties of interest requires both a substantial amount of data to statistically capture this variability and a representative distribution capable of accurately describing the range of values. A two-parameter Weibull distribution is confirmed to be representative of the distribution of physical (density, modulus) and mechanical (compressive, flexure, and tensile strength) values in five different nuclear-grades of graphite. The fine-grained isomolded grades tend toward higher Weibull modulus and characteristic strength values, while the extruded grade being examined exhibits relatively large distributions in property values. With the number of candidate graphite specimens that can undergo full irradiation exposure and subsequent testing having limited feasibility with regard to economics and timely evaluations, a proper capture of the raw material variability in an unirradiated state can provide crucial supplementary resolution to the limited amount of available data on irradiated

  20. Statistical Comparison of the Baseline Mechanical Properties of NBG-18 and PCEA Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Mark C. Carroll; David T. Rohrbaugh

    2013-08-01

    High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR), a graphite-moderated, helium-cooled design that is capable of producing process heat for power generation and for industrial process that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is endeavoring to minimize the conservative estimates of as-manufactured mechanical and physical properties by providing comprehensive data that captures the level of variation in measured values. In addition to providing a comprehensive comparison between these values in different nuclear grades, the program is also carefully tracking individual specimen source, position, and orientation information in order to provide comparisons and variations between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between the two grades of graphite that were initially favored in the two main VHTR designs. NBG-18, a medium-grain pitch coke graphite from SGL formed via vibration molding, was the favored structural material in the pebble-bed configuration, while PCEA, a smaller grain, petroleum coke, extruded graphite from GrafTech was favored for the prismatic configuration. An analysis of the comparison between these two grades will include not only the differences in fundamental and statistically-significant individual strength levels, but also the differences in variability in properties within each of the grades that will ultimately provide the basis for the prediction of in-service performance. The comparative performance of the different types of nuclear grade graphites will continue to evolve as thousands more specimens are fully characterized from the numerous grades of graphite being evaluated.

  1. High-temperature solid electrolyte interphases (SEI) in graphite electrodes

    Science.gov (United States)

    Rodrigues, Marco-Tulio F.; Sayed, Farheen N.; Gullapalli, Hemtej; Ajayan, Pulickel M.

    2018-03-01

    Thermal fragility of the solid electrolyte interphase (SEI) is a major source of performance decay in graphite anodes, and efforts to overcome the issues offered by extreme environments to Li-ion batteries have had limited success. Here, we demonstrate that the SEI can be extensively reinforced by carrying the formation cycles at elevated temperatures. Under these conditions, decomposition of the ionic liquid present in the electrolyte favored the formation of a thicker and more protective layer. Cells in which the solid electrolyte interphase was cast at 90 °C were significantly less prone to self-discharge when exposed to high temperature, with no obvious damages to the formed SEI. This additional resilience was accomplished at the expense of rate capability, as charge transfer became growingly inefficient in these systems. At slower rates, however, cells that underwent SEI formation at 90 °C presented superior performances, as a result of improved Li+ transport through the SEI, and optimal wetting of graphite by the electrolyte. This work analyzes different graphite hosts and ionic liquids, showing that this effect is more pervasive than anticipated, and offering the unique perspective that, for certain systems, temperature can actually be an asset for passivation.

  2. Defining and testing a granular continuum element

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris H.; Kamrin, Ken; Bazant, Martin Z.

    2007-12-03

    Continuum mechanics relies on the fundamental notion of amesoscopic volume "element" in which properties averaged over discreteparticles obey deterministic relationships. Recent work on granularmaterials suggests a continuum law may be inapplicable, revealinginhomogeneities at the particle level, such as force chains and slow cagebreaking. Here, we analyze large-scale Discrete-Element Method (DEM)simulations of different granular flows and show that a "granularelement" can indeed be defined at the scale of dynamical correlations,roughly three to five particle diameters. Its rheology is rather subtle,combining liquid-like dependence on deformation rate and solid-likedependence on strain. Our results confirm some aspects of classicalplasticity theory (e.g., coaxiality of stress and deformation rate),while contradicting others (i.e., incipient yield), and can guide thedevelopment of more realistic continuum models.

  3. Lattice gravity near the continuum limit

    International Nuclear Information System (INIS)

    Feinberg, G.; Friedberg, R.; Lee, T.D.; Ren, H.C.

    1984-01-01

    We prove that the lattice gravity always approaches the usual continuum limit when the link length l -> 0, provided that certain general boundary conditions are satisfied. This result holds for any lattice, regular or irregular. Furthermore, for a given lattice, the deviation from its continuum limit can be expressed as a power series in l 2 . General formulas for such a perturbative calculation are given, together with a number of illustrative examples, including the graviton propagator. The lattice gravity satisfies all the invariance properties of Einstein's theory of general relativity. In addition, it is symmetric under a new class of transformations that are absent in the usual continuum theory. The possibility that the lattice theory (with a nonzero l) may be more fundamental is discussed. (orig.)

  4. Channel uranium-graphite reactor mounting

    International Nuclear Information System (INIS)

    Polushkin, K.K.; Kuznetsov, A.G.; Zheleznyakov, B.N.

    1981-01-01

    According to theoretical principles of general engineering technology the engineering experience of construction-mounting works at the NPP with channel uranium-graphite reactors is systematized. Main parameters and structural features of the 1000 MW channel uranium-graphite reactors are considered. The succession of mounting operations, premounting equipment and pipelines preparation and mounting works technique are described. The most efficient methods of fitting, welding and machining of reactor elements are recommended. Main problems of technical control service are discussed. A typical netted diagram of main equipment of channel uranium-graphite reactors mounting is given

  5. Synthesis of soluble graphite and graphene.

    Science.gov (United States)

    Kelly, K F; Billups, W E

    2013-01-15

    Because of graphene's anticipated applications in electronics and its thermal, mechanical, and optical properties, many scientists and engineers are interested in this material. Graphene is an isolated layer of the π-stacked hexagonal allotrope of carbon known as graphite. The interlayer cohesive energy of graphite, or exfoliation energy, that results from van der Waals attractions over the interlayer spacing distance of 3.34 Å (61 meV/C atom) is many times weaker than the intralayer covalent bonding. Since graphene itself does not occur naturally, scientists and engineers are still learning how to isolate and manipulate individual layers of graphene. Some researchers have relied on the physical separation of the sheets, a process that can sometimes be as simple as peeling of sheets from crystalline graphite using Scotch tape. Other researchers have taken an ensemble approach, where they exploit the chemical conversion of graphite to the individual layers. The typical intermediary state is graphite oxide, which is often produced using strong oxidants under acidic conditions. Structurally, researchers hypothesize that acidic functional groups functionalize the oxidized material at the edges and a network of epoxy groups cover the sp(2)-bonded carbon network. The exfoliated material formed under these conditions can be used to form dispersions that are usually unstable. However, more importantly, irreversible defects form in the basal plane during oxidation and remain even after reduction of graphite oxide back to graphene-like material. As part of our interest in the dissolution of carbon nanomaterials, we have explored the derivatization of graphite following the same procedures that preserve the sp(2) bonding and the associated unique physical and electronic properties in the chemical processing of single-walled carbon nanotubes. In this Account, we describe efficient routes to exfoliate graphite either into graphitic nanoparticles or into graphene without

  6. Adsorption of lead over graphite oxide.

    Science.gov (United States)

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M; Oki, Aderemi

    2014-01-24

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption Spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb(2+) was found to be 98%, 91% and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water. Published by Elsevier B.V.

  7. Interface structure between tetraglyme and graphite

    Science.gov (United States)

    Minato, Taketoshi; Araki, Yuki; Umeda, Kenichi; Yamanaka, Toshiro; Okazaki, Ken-ichi; Onishi, Hiroshi; Abe, Takeshi; Ogumi, Zempachi

    2017-09-01

    Clarification of the details of the interface structure between liquids and solids is crucial for understanding the fundamental processes of physical functions. Herein, we investigate the structure of the interface between tetraglyme and graphite and propose a model for the interface structure based on the observation of frequency-modulation atomic force microscopy in liquids. The ordering and distorted adsorption of tetraglyme on graphite were observed. It is found that tetraglyme stably adsorbs on graphite. Density functional theory calculations supported the adsorption structure. In the liquid phase, there is a layered structure of the molecular distribution with an average distance of 0.60 nm between layers.

  8. Status of Chronic Oxidation Studies of Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert W. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    Graphite will undergo extremely slow, but continuous oxidation by traces of moisture that will be present, albeit at very low levels, in the helium coolant of HTGR. This chronic oxidation may cause degradation of mechanical strength and thermal properties of graphite components if a porous oxidation layer penetrates deep enough in the bulk of graphite components during the lifetime of the reactor. The current research on graphite chronic oxidation is motivated by the acute need to understand the behavior of each graphite grade during prolonged exposure to high temperature chemical attack by moisture. The goal is to provide the elements needed to develop predictive models for long-time oxidation behavior of graphite components in the cooling helium of HTGR. The tasks derived from this goal are: (1) Oxidation rate measurements in order to determine and validate a comprehensive kinetic model suitable for prediction of intrinsic oxidation rates as a function of temperature and oxidant gas composition; (2) Characterization of effective diffusivity of water vapor in the graphite pore system in order to account for the in-pore transport of moisture; and (3) Development and validation of a predictive model for the penetration depth of the oxidized layer, in order to assess the risk of oxidation caused damage of particular graphite grades after prolonged exposure to the environment of helium coolant in HTGR. The most important and most time consuming of these tasks is the measurement of oxidation rates in accelerated oxidation tests (but still under kinetic control) and the development of a reliable kinetic model. This report summarizes the status of chronic oxidation studies on graphite, and then focuses on model development activities, progress of kinetic measurements, validation of results, and improvement of the kinetic models. Analysis of current and past results obtained with three grades of showed that the classical Langmuir-Hinshelwood model cannot reproduce all

  9. Continuum gauge fields from lattice gauge fields

    International Nuclear Information System (INIS)

    Goeckeler, M.; Kronfeld, A.S.; Schierholz, G.; Wiese, U.J.

    1993-01-01

    On the lattice some of the salient features of pure gauge theories and of gauge theories with fermions in complex representations of the gauge group seem to be lost. These features can be recovered by considering part of the theory in the continuum. The prerequisite for that is the construction of continuum gauge fields from lattice gauge fields. Such a construction, which is gauge covariant and complies with geometrical constructions of the topological charge on the lattice, is given in this paper. The procedure is explicitly carried out in the U(1) theory in two dimensions, where it leads to simple results. (orig.)

  10. Superhydrophilic graphite surfaces and water-dispersible graphite colloids by electrochemical exfoliation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yueh-Feng [Department of Chemical and Materials Engineering, National Central University, Jhongli, 320 Taiwan (China); Chen, Shih-Ming; Lai, Wei-Hao [Materials and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, 31040 Taiwan (China); Sheng, Yu-Jane [Department of Chemical Engineering, National Taiwan University, Taipei, 106 Taiwan (China); Tsao, Heng-Kwong [Department of Chemical and Materials Engineering, Department of Physics, National Central University, Jhongli, 320 Taiwan (China)

    2013-08-14

    Superhydrophilic graphite surfaces and water-dispersible graphite colloids are obtained by electrochemical exfoliation with hydrophobic graphite electrodes. Such counterintuitive characteristics are caused by partial oxidation and investigated by examining both graphite electrodes and exfoliated particles after electrolysis. The extent of surface oxidation can be explored through contact angle measurement, scanning electron microscope, electrical sheet resistance, x-ray photoelectron spectroscopy, zeta-potential analyzer, thermogravimetric analysis, UV-visible, and Raman spectroscopy. The degree of wettability of the graphite anode can be altered by the electrolytic current and time. The water contact angle declines generally with increasing the electrolytic current or time. After a sufficient time, the graphite anode becomes superhydrophilic and its hydrophobicity can be recovered by peeling with adhesive tape. This consequence reveals that the anodic graphite is oxidized by oxygen bubbles but the oxidation just occurs at the outer layers of the graphite sheet. Moreover, the characteristics of oxidation revealed by UV peak shift, peak ratio between D and G bands, and negative zeta-potential indicate the presence of graphite oxide on the outer shell of the exfoliated colloids. However, thermogravimetric analysis for the extent of decomposition of oxygen functional groups verifies that the amount of oxygen groups is significantly less than that of graphite oxide prepared via Hummer method. The structure of this partially oxidized graphite may consist of a graphite core covered with an oxidized shell. The properties of the exfoliated colloids are also influenced by pH of the electrolytic solution. As pH is increased, the extent of oxidation descends and the thickness of oxidized shell decreases. Those results reveal that the degree of oxidation of exfoliated nanoparticles can be manipulated simply by controlling pH.

  11. Performance of AC/graphite capacitors at high weight ratios of AC/graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Yoshio, Masaki [Advanced Research Center, Department of Applied Chemistry, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2008-03-01

    The effect of negative to positive electrode materials' weight ratio on the electrochemical performance of both activated carbon (AC)/AC and AC/graphite capacitors has been investigated, especially in the terms of capacity and cycle-ability. The limited capacity charge mode has been proposed to improve the cycle performance of AC/graphite capacitors at high weight ratios of AC/graphite. (author)

  12. Double plasma arc in a graphite tube - application of discharge atmospheres

    International Nuclear Information System (INIS)

    Arens, C.; Nickel, H.; Mazurkiewicz, M.; Vukanovic, D.

    1981-01-01

    With a view to safety and economic efficiency element-specific limits are required for permissible impurities in reactor graphite. This leads to the necessity of developing suitable methods of analysis. Emission spectroscopy has proved to be a method of analysis featuring a high detection capability and offering the possibility of determining several elements simultaneously. A prolongation of the particle residence time in the plasma (and, thus, an increase in radiation intensity) was the objective when developing a novel spectrochemical source of excitation. The method uses two d.c. arcs burning in a horizontally arranged graphite tube. The double plasma arc in a graphite tube has proved to be an excellent source of excitation for the analysis of powder and solutions. (orig./IHOE)

  13. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2001-01-01

    In this paper an radioactive waste processing of graphite from graphite moderated nuclear reactors at its decommissioning is discussed. Methods of processing of irradiated graphite are presented. It can be concluded that advanced methods for graphite radioactive waste handling are available nowadays. Implementation of these methods will allow to enhance environmental safety of nuclear power that will benefit its progress in the future

  14. A Graphite Isotope Ratio Method: A Primer on Estimating Plutonium Production in Graphite Moderated Reactors

    International Nuclear Information System (INIS)

    Gesh, Christopher J.

    2004-01-01

    The Graphite Isotope Ratio Method (GIRM) is a technique used to estimate the total plutonium production in a graphite-moderated reactor. The cumulative plutonium production in that reactor can be accurately determined by measuring neutron irradiation induced isotopic ratio changes in certain impurity elements within the graphite moderator. The method does not require detailed knowledge of a reactor's operating history, although that knowledge can decrease the uncertainty of the production estimate. The basic premise of the Graphite Isotope Ratio Method is that the fluence in non-fuel core components is directly related to the cumulative plutonium production in the nuclear fuel

  15. Synthesis of graphene nanoplatelets from peroxosulfate graphite intercalation compounds

    OpenAIRE

    MELEZHYK A.V.; TKACHEV A.G.

    2014-01-01

    Ultrasonic exfoliation of expanded graphite compound obtained by cold expansion of graphite intercalated with peroxodisulfuric acid was shown to allow the creation of graphene nanoplatelets with thickness of about 5-10 nm. The resulting graphene material contained surface oxide groups. The expanded graphite intercalation compound was exfoliated by ultrasound much easier than thermally expanded graphite. A mechanism for the cleavage of graphite to graphene nanoplatelets is proposed. It include...

  16. Graphite reactor physics; Physique des piles a graphite

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, P; Cogne, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Noc, B [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    The study of graphite-natural uranium power reactor physics, undertaken ten years ago when the Marcoule piles were built, has continued to keep in step with the development of this type of pile. From 1960 onwards the critical facility Marius has been available for a systematic study of the properties of lattices as a function of their pitch, of fuel geometry and of the diameter of cooling channels. This study has covered a very wide field: lattice pitch varying from 19 to 38 cm. uranium rods and tubes of cross-sections from 6 to 35 cm{sup 2}, channels with diameters between 70 and 140 mm. The lattice calculation methods could thus be checked and where necessary adapted. The running of the Marcoule piles and the experiments carried out on them during the last few years have supplied valuable information on the overall evolution of the neutronic properties of the fuel as a function of irradiation. More detailed experiments have also been performed in Marius with plutonium-containing fuels (irradiated or synthetic fuels), and will be undertaken at the beginning of 1965 at high temperature in the critical facility Cesar, which is just being completed at Cadarache. Spent fuel analyses complement these results and help in their interpretation. The thermalization and spectra theories developed in France can thus be verified over the whole valid temperature range. The efficiency of control rods as a function of their dimensions, the materials of which they are made and the lattices surrounding them has been measured in Marius, and the results compared with calculation on the one hand and with the measurements carried out in EDF 1 on the other. Studies on the control proper of graphite piles were concerned essentially with the risks of spatial instability and the means of detecting and controlling them, and with flux distortions caused by the control rods. (authors) [French] Entreprise il y a dix ans a l'occasion de la construction des piles de Marcoule, l'etude de la

  17. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  18. Review: BNL Tokamak graphite blanket design concepts

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  19. Immobilization of Rocky Flats Graphite Fines Residue

    International Nuclear Information System (INIS)

    Rudisill, T.S.

    1999-01-01

    The development of the immobilization process for graphite fines has proceeded through a series of experimental programs. The experimental procedures and results from each series of experiments are discussed in this report

  20. Study on graphite samples for nuclear usage

    International Nuclear Information System (INIS)

    Suarez, J.C.M.; Silva Roseira, M. da

    1994-01-01

    Available as short communication only. The graphite, due to its properties (mechanical strength, thermal conductivity, high-temperature stability, machinability etc.) have many industrial applications, and consequently, an important strategic value. In the nuclear area, it has been used as moderator and reflector of neutrons in the fission process of uranium. The graphite can be produced from many types of carbonaceous materials by a variety of process dominated by the manufactures. This is the reason why there are in the world market a lot of graphite types with different physical and mechanical properties. The present investigation studies some physical characteristics of the graphite samples destined to use in a nuclear reactor. (author). 8 refs, 1 fig, 1 tab

  1. Collective modes in superconducting rhombohedral graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kauppila, Ville [O.V. Lounasmaa Laboratory, Aalto University (Finland); Hyart, Timo; Heikkilae, Tero [University of Jyvaeskylae (Finland)

    2015-07-01

    Recently it was realized that coupling particles with a Dirac dispersion (such as electrons in graphene) can lead to a topologically protected state with flat band dispersion. Such a state could support superconductivity with unusually high critical temperatures. Perhaps the most promising way to realize such coupling in real materials is in the surface of rhombohedrally stacked graphite. We consider collective excitations (i.e. the Higgs modes) in surface superconducting rhombohedral graphite. We find two amplitude and two phase modes corresponding to the two surfaces of the graphite where the superconductivity lives. We calculate the dispersion of these modes. We also derive the Ginzburg-Landau theory for this material. We show that in superconducting rhombohedral graphite, the collective modes, unlike in conventional BCS superconductors, give a large contribution to thermodynamic properties of the material.

  2. Large Scale Reduction of Graphite Oxide

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction...

  3. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  4. Continuum emission of excited sodium dimer

    International Nuclear Information System (INIS)

    Pardo, A.; Poyato, J.M.L.; Alonso, J.I.; Rico, F.R.

    1980-01-01

    A study has been made of the behaviour of excited molecular sodium using high-power Ar + laser radiation. A continuum emission was observed in the red wavelength region. This emission was thought to be caused by the formation of excited triatomic molecules. Energy transfer was observed from excited molecules to atoms. (orig.)

  5. Discrete expansions of continuum wave functions

    International Nuclear Information System (INIS)

    Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.

    1980-01-01

    Different methods of expanding continuum wave functions in terms of discrete basis sets are discussed. The convergence properties of these expansions are investigated, both from a mathematical and a numerical point of view, for the case of potentials of Woods-Saxon and square well type. (orig.)

  6. Vapour pressure of caesium over nuclear graphite

    International Nuclear Information System (INIS)

    Faircloth, R.L.; Pummery, F.C.W.

    1976-01-01

    The vapour pressure of caesium over a fine-grained isotropic moulded gilsocarbon nuclear graphite intended for use in the manufacture of fuel tubes for the high temperature reactor has been determined as a function of temperature and concentration by means of the Knudsen effusion technique. The concentration range 0 to 10 μg caesium/g graphite was investigated and it was concluded that a Langmuir adsorption situation exists under these conditions. (author)

  7. Elastic properties of graphite and interstitial defects

    International Nuclear Information System (INIS)

    Ayasse, J.-B.

    1977-01-01

    The graphite elastic constants C 33 and C 44 , reflecting the interaction of the graphitic planes, were experimentally measured as a function of irradiation and temperature. A model of non-central strength atomic interaction was established to explain the experimental results obtained. This model is valid at zero temperature. The temperature dependence of the elastic properties was analyzed. The influence of the elastic property variations on the specific heat of the lattice at very low temperature was investigated [fr

  8. Energy evaluations, graphite corrosion in Bugey I

    International Nuclear Information System (INIS)

    Brisbois, J.; Fiche, C.

    1967-01-01

    Bugey I presents a problem of radiolytic corrosion of the graphite by the CO 2 under pressure at high temperature. This report aims to evaluate the energy transferred to the gas by a Bugey I core cell, in normal operating conditions. The water, the carbon oxides and the hydrogen formed quantities are deduced as the consumed graphite and methane. Experimental studies are realized in parallel to validate the presented results. (A.L.B.)

  9. High temperature tests for graphite materials

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This study was performed within the framework of the EURISOL for facilities SPIRAL-II (GANIL, France) and SPES (LNL, Italy), and aims to investigate the anticipated strength properties of fine-grained graphite at elevated temperatures. It appears that the major parameters that affect to the lifetime of a graphite target of this IP are the temperature and heating time. High temperature tests were conducted to simulate the heating under the influence of a beam of heavy particles by passing thro...

  10. Graphite Composite Panel Polishing Fixture

    Science.gov (United States)

    Hagopian, John; Strojny, Carl; Budinoff, Jason

    2011-01-01

    The use of high-strength, lightweight composites for the fixture is the novel feature of this innovation. The main advantage is the light weight and high stiffness-to-mass ratio relative to aluminum. Meter-class optics require support during the grinding/polishing process with large tools. The use of aluminum as a polishing fixture is standard, with pitch providing a compliant layer to allow support without deformation. Unfortunately, with meter-scale optics, a meter-scale fixture weighs over 120 lb (.55 kg) and may distort the optics being fabricated by loading the mirror and/or tool used in fabrication. The use of composite structures that are lightweight yet stiff allows standard techniques to be used while providing for a decrease in fixture weight by almost 70 percent. Mounts classically used to support large mirrors during fabrication are especially heavy and difficult to handle. The mount must be especially stiff to avoid deformation during the optical fabrication process, where a very large and heavy lap often can distort the mount and optic being fabricated. If the optic is placed on top of the lapping tool, the weight of the optic and the fixture can distort the lap. Fixtures to support the mirror during fabrication are often very large plates of aluminum, often 2 in. (.5 cm) or more in thickness and weight upwards of 150 lb (68 kg). With the addition of a backing material such as pitch and the mirror itself, the assembly can often weigh over 250 lb (.113 kg) for a meter-class optic. This innovation is the use of a lightweight graphite panel with an aluminum honeycomb core for use as the polishing fixture. These materials have been used in the aerospace industry as structural members due to their light weight and high stiffness. The grinding polishing fixture consists of the graphite composite panel, fittings, and fixtures to allow interface to the polishing machine, and introduction of pitch buttons to support the optic under fabrication. In its

  11. Integrated radio continuum spectra of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Marvil, Joshua; Owen, Frazer [National Radio Astronomy Observatory, 1003 Lopezville Rd, Socorro, NM 87801 (United States); Eilek, Jean, E-mail: josh.marvil@csiro.au [New Mexico Tech, Socorro, NM 87801 (United States)

    2015-01-01

    We investigate the spectral shape of the total continuum radiation, between 74 MHz and 5 GHz (400-6 cm in wavelength), for a large sample of bright galaxies. We take advantage of the overlapping survey coverage of the VLA Low-Frequency Sky Survey, the Westerbork Northern Sky Survey, the NRAO VLA Sky Survey, and the Green Bank 6 cm Survey to achieve significantly better resolution, sensitivity, and sample size compared to prior efforts of this nature. For our sample of 250 bright galaxies we measure a mean spectral index, α, of –0.69 between 1.4 and 4.85 GHz, –0.55 between 325 MHz and 1.4 GHz, and –0.45 between 74 and 325 MHz, which amounts to a detection of curvature in the mean spectrum. The magnitude of this curvature is approximately Δα = –0.2 per logarithmic frequency decade when fit with a generalized function having constant curvature. No trend in low-frequency spectral flattening versus galaxy inclination is evident in our data, suggesting that free-free absorption is not a satisfying explanation for the observed curvature. The ratio of thermal to non-thermal emission is estimated through two independent methods: (1) using the IRAS far-IR fluxes and (2) with the value of the total spectral index. Method (1) results in a distribution of 1.4 GHz thermal fractions of 9% ± 3%, which is consistent with previous studies, while method (2) produces a mean 1.4 GHz thermal fraction of 51% with dispersion 26%. The highly implausible values produced by method (2) indicate that the sum of typical power-law thermal and non-thermal components is not a viable model for the total spectral index between 325 and 1.4 GHz. An investigation into relationships between spectral index, infrared-derived quantities, and additional source properties reveals that galaxies with high radio luminosity in our sample are found to have, on average, a flatter radio spectral index, and early types tend to have excess radio emission when compared to the radio-infrared ratio of later

  12. Structure and functionality of bromine doped graphite.

    Science.gov (United States)

    Hamdan, Rashid; Kemper, A F; Cao, Chao; Cheng, H P

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br2). However, with increased compression (decreased layer-layer separation) Br2 molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br2 molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity.

  13. Determination of thermal neutrons diffusion length in graphite; Determinacion de la Longitud de Difusion de los Neutrones Termicos en Grafito

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Fite, J

    1959-07-01

    The diffusion length of thermal neutrons in graphite using the less possible quantity of material has been determined. The proceeding used was the measurement in a graphite pile which has a punctual source of rapid neutrons inside surrounded by a reflector medium (paraffin or water). The measurement was done in the following conditions: a) introducing an aluminium plate between both materials. b) Introducing a cadmium plate between both materials. (Author) 91 refs.

  14. Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre

    DEFF Research Database (Denmark)

    Chow, K.K.; Takushima, Y.; Lin, C.

    2006-01-01

    Flat super-continuum generation spanning over the whole telecommunication band using a passively modelocked fibre laser source at 1550 nm together with a dispersion-flattened nonlinear photoinc crystal fibre is demonstrated. Since the pulses propagate in the normal dispersion regime of the fibre...

  15. Solid sampling graphite furnace atomic absorption spectrometry for the direct analysis of microextraction solvent bars used for metal ultra-trace pre-concentration

    Science.gov (United States)

    González-Álvarez, Rafael Jesús; Pinto, Juan J.; Bellido-Milla, Dolores; Moreno, Carlos

    2017-09-01

    The potential applicability of the continuum source solid sampling graphite furnace atomic absorption spectroscopy (CS SS-GF AAS) technique has been studied to carry out the direct analysis of microextraction solvent bars used for metal ultra-trace pre-concentration in natural waters. An optimisation of the temperature program was developed for this purpose. Preliminary chamber furnace studies were performed in order to understand the behaviour of the bars with the increasing temperature. Solvent bars were filled with an acceptor solution, impregnated with an organic extractant and placed into the chamber furnace to carry out several temperature programs. Results led to perform a correct optimisation of the drying and pyrolysis steps of the furnace temperature program, which was tested with silver once completed. Blank solvent bars as well as standards containing silver were measured, obtaining a calibration curve with a correlation coefficient of 0.991. The results exhibited good repeatability and reproducibility, with relative standard deviations below 10% in both cases, indicating a promising applicability of the CS SS-GF AAS technique to directly determine metallic species in microextraction solvent bars.

  16. A 3-D inelastic analysis of HTR graphite structures and a comparison with A 2-D approach

    International Nuclear Information System (INIS)

    Willaschek, J.

    1979-01-01

    In High Temperature Reactor Cores (HTR) a large number of elements are constructed of nuclear graphite. The dimensions of the graphite components are limited by stresses and strains resulting from thermal loads, irradiation induced dimensional changes and stress-dependent irradiation creep. Therefore it is necessary to examine the feasibility of design concepts with regard to the structural integrity of the material. This paper presents an analysis of a radial reflector concept for use in a 3000 MWth HTR for process heat production. This concept of a pebble bed reactor (OTTO cycle) requires reflector dimensions and shapes which have previously not been used and which may exceed acceptable stress limits. Graphite reflector elements in a HTR are subject to a high fluence of fast neutrons. The fluence varies spatially within an element. Irradiation-induced strains occur which in turn vary non-linearly with the fluence. At low fluences the graphite shrinks. With increasing fluence shrinkage is saturated and after a 'turn-around' point the graphite begins to swell. The net effect of fluence gradient and irradiation-induced strain is a 'necking' of the element which moves radially outwards with time. In this paper a three-dimensional inelastic analysis of a graphite block with the above deformation history is described. The influence of irradiation on dimensional stability and other material properties was taken into account. Numerical results were obtained with the finite-element computer code ADINA, modified at INTERATOM for the task in hand. The radial reflector block was modelled using 21-node three-dimensional continuum elements of elastic-creep material. The element stiffness matrices were calculated using the standard 2x2x2 Gauss integration; material nonlinearities with quadratic displacement functions and linearised initial strains were employed. (orig.)

  17. Continuum emission in the 1980 July 1 solar flare

    International Nuclear Information System (INIS)

    Zirin, H.; Neidig, D.F.

    1981-01-01

    Comparison of continuum measurements of the 1980 July 1 flare at Big Bear Solar Observatory and Sacramento Peak Observatory show strong blue emission kernels with the ratio of Balmer continuum (Bac):lambda3862 continuum:continuum above 4275 A to be about 10:5:1. The blue continuum at 3862 A is too strong to be explained by unresolved lines. The Bac intensity was 2.5 times the photosphere and the strongest lambda3862 continuum was 2 times the photosphere. The brightest continuum kernel occurred late in the flare, after the hard X-ray peak and related in time to an isolated peak in the 2.2 MeV line, suggesting that the continuum was excited by protons above 20 MeV

  18. A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations

    KAUST Repository

    Neumann, Philipp; Tchipev, Nikola

    2012-01-01

    We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm

  19. Effect of starting microstructure upon the nucleation sites and distribution of graphite particles during a graphitising anneal of an experimental medium-carbon machining steel

    Energy Technology Data Exchange (ETDEWEB)

    Inam, A., E-mail: aqil.ceet@pu.edu.pk; Brydson, R., E-mail: mtlrmdb@leeds.ac.uk; Edmonds, D.V., E-mail: d.v.edmonds@leeds.ac.uk

    2015-08-15

    The potential for using graphite particles as an internal lubricant during machining is considered. Graphite particles were found to form during graphitisation of experimental medium-carbon steel alloyed with Si and Al. The graphite nucleation sites were strongly influenced by the starting microstructure, whether ferrite–pearlite, bainite or martensite, as revealed by light and electron microscopy. Favourable nucleation sites in the ferrite–pearlite starting microstructure were, not unexpectedly, found to be located within pearlite colonies, no doubt due to the presence of abundant cementite as a source of carbon. In consequence, the final distribution of graphite nodules in ferrite–pearlite microstructures was less uniform than for the bainite microstructure studied. In the case of martensite, this study found a predominance of nucleation at grain boundaries, again leading to less uniform graphite dispersions. - Highlights: • Metallography of formation of graphite particles in experimental carbon steel. • Potential for using graphite in steel as an internal lubricant during machining. • Microstructure features expected to influence improved machinability studied. • Influence of pre-anneal starting microstructure on graphite nucleation sites. • Influence of pre-anneal starting microstructure on graphite distribution. • Potential benefit is new free-cutting steel compositions without e.g. Pb alloying.

  20. Production of nuclear graphite in France; Production de graphite nucleaire en France

    Energy Technology Data Exchange (ETDEWEB)

    Legendre, P; Mondet, L [Societe Pechiney, 74 - Chedde (France); Arragon, Ph; Cornuault, P; Gueron, J; Hering, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The graphite intended for the construction of the reactors is obtained by the usual process: confection of a cake from coke of oil and tar, cooked (in a electric oven) then the product of cook is graphitized, also by electric heating. The use of the air transportation and the control of conditions cooking and graphitization have permitted to increase the nuclear graphite production as well as to better control their physical and mechanical properties and to reduce to the minimum the unwanted stains. (M.B.) [French] Le graphite destine a la construction des reacteurs est obtenu par le procede usuel: confection d'une pate a partir de coke de petrole et de brai, cuisson de cette pate (au four electrique) puis graphitation du produit cuit, egalement par chauffage electrique. L'usage du transport pneumatique et le controle des conditions cuisson et de graphitation ont permit d'augmenter la production de graphite nucleaire ainsi que de mieux controler ses proprietes physiques et mecaniques et de reduire au minimum les souillures accidentelles. (M.B.)

  1. Pressure-Driven Commensurate-Incommensurate Transition Low-Temperature Submonolayer Krypton on Graphite

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Als-Nielsen, Jens Aage; Bohr, Jakob

    1981-01-01

    By using D2 gas as a source of two-dimensional spreading pressure, we have studied the commensurate-incommensurate (C-I) transition in submonolayer Kr on ZYX graphite at temperatures near 40 K. High-resolution synchrotron x-ray diffraction results show both hysteresis and C-I phase coexistence...

  2. Continuum of eLearning: 2012 Project Summary Report

    Science.gov (United States)

    2012-10-01

    multimedia, and Continuum of eLearning | Purpose and Vision 19 << UNCLASSIFIED>> (limited) situated learning. Future versions of the CoL self-paced...Continuum of eLearning : 2012 Project Summary Report Continuum of eLearning The Next Evolution of Joint Training on JKO October 2012 Joint...Technical Report November 2011 – August 2012 Continuum of eLearning : 2012 Project Summary Report N00140-06-D-0060 David T. Fautua, Sae Schatz, Andrea

  3. Irradiation damage in graphite due to fast neutrons in fission and fusion systems

    International Nuclear Information System (INIS)

    2000-09-01

    Gas cooled reactors have been in operation for the production of electricity for over forty years, encompassing a total of 56 units operated in seven countries. The predominant experience has been with carbon dioxide cooled reactors (52 units), with the majority operated in the United Kingdom. In addition, four prototype helium cooled power plants were operated in the United States and Germany. The United Kingdom has no plans for further construction of carbon dioxide units, and the last helium cooled unit was shutdown in 1990. However, there has been an increasing interest in modular helium cooled reactors during the 1990s as a possible future nuclear option. Graphite is a primary material for the construction of gas cooled reactor cores, serving as a low absorption neutron moderator and providing a high temperature, high strength structure. Commercial gas cooled reactor cores (both carbon dioxide cooled and helium cooled) utilise large quantities of graphite. The structural behaviour of graphite (strength, dimensional stability, susceptibility to cracking, etc.) is a complex function of the source material, manufacturing process, chemical environment, and temperature and irradiation history. A large body of data on graphite structural performance has accumulated from operation of commercial gas cooled reactors, beginning in the 1950s and continuing to the present. The IAEA is supporting a project to collect graphite data and archive it in a retrievable form as an International Database on Irradiated Nuclear Graphite Properties, with limited general access and more detailed access by participating Member States. Because of the large size of the database, the complexity of the phenomena and the number of variables involved, a general understanding of graphite behaviour is essential to the understanding and use of the data

  4. Synthesis of partially graphitic ordered mesoporous carbons with high surface areas

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenjun; Wan, Ying [Department of Chemistry, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234 (China); Dou, Yuqian; Zhao, Dongyuan [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2011-01-01

    Graphitic carbons with ordered mesostructure and high surface areas (of great interest in applications such as energy storage) have been synthesized by a direct triblock-copolymer-templating method. Pluronic F127 is used as a structure-directing agent, with a low-molecular-weight phenolic resol as a carbon source, ferric oxide as a catalyst, and silica as an additive. Inorganic oxides can be completely eliminated from the carbon. Small-angle XRD and N{sub 2} sorption analysis show that the resultant carbon materials possess an ordered 2D hexagonal mesostructure, uniform bimodal mesopores (about 1.5 and 6 nm), high surface area ({proportional_to}1300 m{sup 2}/g), and large pore volumes ({proportional_to}1.50 cm{sup 3}/g) after low-temperature pyrolysis (900 C). All surface areas come from mesopores. Wide-angle XRD patterns demonstrate that the presence of the ferric oxide catalyst and the silica additive lead to a marked enhancement of graphitic ordering in the framework. Raman spectra provide evidence of the increased content of graphitic sp{sup 2} carbon structures. Transmission electron microscopy images confirm that numerous domains in the ordered mesostructures are composed of characteristic graphitic carbon nanostructures. The evolution of the graphitic structure is dependent on the temperature and the concentrations of the silica additive, and ferric oxide catalyst. Electrochemical measurements performed on this graphitic mesoporous carbon when used as an electrode material for an electrochemical double layer capacitor shows rectangular-shaped cyclic voltammetry curves over a wide range of scan rates, even up to 200 mV/s, with a large capacitance of 155 F/g in KOH electrolyte. This method can be widely applied to the synthesis of graphitized carbon nanostructures. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Modifications of Graphite and Multiwall Carbon Nanotubes in the Presence of Urea

    Science.gov (United States)

    Duraia, El-Shazly M.; Fahami, Abbas; Beall, Gary W.

    2018-02-01

    The effect of high-energy ball milling on two carbon allotropes, graphite and multiwall carbon nanotubes (MWCNT) in the presence of urea has been studied. Samples were investigated using Raman spectroscopy, x-ray diffraction, scanning electron microscope (SEM) and x-ray photoelectron spectroscopy (XPS). Nitrogen-doped graphene has been successfully synthesized via a simple scalable mechanochemistry method using urea and graphite powder precursors. XPS results revealed the existence of the different nitrogen atoms configurations including pyridine, pyrrodic and graphitic N. SEM observations showed that the graphene nanosheets morphology become more wrinkles folded and crumbled as the milling time increased. The ID/IG ratio also increased as the milling time rose. The presence of both D' and G + D bands at 1621 cm-1 and 2940 cm-1, respectively, demonstrated the nitrogen incorporation in the graphene lattice Two factors contribute to the used urea: first it helps to exfoliate graphite into graphene, and second it preserves the graphitic structure from damage during the milling process as well as acting as a solid-state nitrogen source. Based on the phase analysis, the d-spacing of MWCNT samples in the presence of urea decreased due to the mechanical force in the milling process as the milling time increased. On the other hand, in the graphite case, due to its open flat surface, the graphite (002) peak shifts toward lower two theta as the milling time increase. Such findings are important and could be used for large-scale production of N-doped graphene, diminishing the use of either dangerous chemicals or sophisticated equipment.

  6. Graphite matrix materials for nuclear waste isolation

    International Nuclear Information System (INIS)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept

  7. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  8. EEL Calculations and Measurements of Graphite and Graphitic-CNx Core-Losses

    International Nuclear Information System (INIS)

    Seepujak, A; Bangert, U; Harvey, A J; Blank, V D; Kulnitskiy, B A; Batov, D V

    2006-01-01

    Core EEL spectra of MWCNTs (multi-wall carbon nanotubes) grown in a nitrogen atmosphere were acquired utilising a dedicated STEM equipped with a Gatan Enfina system. Splitting of the carbon K-edge π* resonance into two peaks provided evidence of two nondegenerate carbon bonding states. In order to confirm the presence of a CN x bonding state, a full-potential linearised augmented plane-wave method was utilised to simulate core EEL spectra of graphite and graphitic-CN x compounds. The simulations confirmed splitting of the carbon K-edge π* resonance in graphitic-CN x materials, with the pristine graphite π* resonance remaining unsplit. The simulations also confirmed the increasing degree of amorphicity with higher concentrations (25%) of substitutional nitrogen in graphite

  9. Removal of 14C from Irradiated Graphite for Graphite Recycle and Waste Volume Reduction

    International Nuclear Information System (INIS)

    Dunzik-Gougar, Mary Lou; Windes, Will; Marsden, Barry

    2014-01-01

    The aim of the research presented here was to identify the chemical form of 14 C in irradiated graphite. A greater understanding of the chemical form of this longest-lived isotope in irradiated graphite will inform not only management of legacy waste, but also development of next generation gas-cooled reactors. Approximately 250,000 metric tons of irradiated graphite waste exists worldwide, with the largest single quantity originating in the Magnox and AGR reactors of UK. The waste quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation I gas-cooled, graphite moderated reactors. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 14 C, with a half-life of 5730 years.

  10. 1300 micron continuum observations of the Sagittarius B2 molecular cloud core

    International Nuclear Information System (INIS)

    Goldsmith, P.F.; Snell, R.L.; Lis, D.C.

    1987-01-01

    Observations with 23-arcsec angular resolution are obtained of the continuum emission at 1300 microns wavelength from the central region of the Sgr B2 molecular cloud, which contains the north and middle high-mass star-forming regions and associated radio continuum and maser sources. The spatial resolution of the present data shows that the 1300-micron continuum emission peak is located at Sgr B2(N), in contrast to the midinfrared emission, which is centered on Sgr B2(M). Comparison with 53 micron data having comparable angular resolution suggests that there is optically thick foreground dust which prevents detection of Sgr B2(N) at wavelengths not greater than 100 microns. Within the about 1.5 x 3.5 pc region mapped, the total mass is 500,000 solar masses and the mean H2 density is 300,000/cu cm, somewhat larger than found in previous investigations. 27 references

  11. Elementary Continuum Mechanics for Everyone - and Some More

    DEFF Research Database (Denmark)

    Byskov, Esben

    Quite trivially, Continuum mechanics per se deals with the description of deformations of three-dimensional continua i.e. models whose properties are independent of scale in that the continuum does not possess a structure. Thus, continuum mechanics does not try to model the atomic structure...

  12. Elementary Continuum Mechanics for Everyone - And Some More

    DEFF Research Database (Denmark)

    Byskov, Esben

    Quite trivially, Continuum mechanics per se deals with the description of deformations of three-dimensional continua i.e. models whose properties are independent of scale in that the continuum does not possess a structure. Thus, continuum mechanics does not try to model the atomic structure...

  13. Graphite as an indicator of contact influence of Western Keivy alkaline granite intrusion, the Kola Peninsula

    Directory of Open Access Journals (Sweden)

    Fomina E. N.

    2017-03-01

    Full Text Available The results of complex petro-mineragraphic, Raman and isotope- geochemical study of three types of graphite- bearing rocks circulated at different distances from the alkaline granites: (1 kyanite schists of Bolshiye Keivy, sampled at a considerable distance from a contact with alkaline gran ites; (2 sillimanite schists, sampled close to the contact, and (3 silexites, located in the inner part of th e alkaline granite massif Western Keivy have been presented. Five morphogenetic types of graphite have been revealed in the rocks under consideration: fine- grained Gr-1, intergranular Gr-2, nest-shaped Gr-3, vein Gr- 4 and spherulitic Gr-5. Current study demonstrates that these five types of graphite distinctly vary not only i n morphology, but also in temperature of crystallization, as determined by RSCM-Raman geothermometer, and in carbon isotop e composition. The most likely source for the anomalous "light" graphite Gr-1 and Gr-2 [δ 13 C(PDB = −43...−45 ‰] from kyanite schists is a water- methane fluid originating from sedimentary rocks with org anic compounds. The carbon of graphite Gr-5 of the silexites selected at the inner part of alkaline granite massif West ern Keivy, on the contrary, proved to be most "heavy" [δ 13 C(PDB = −8 ‰], which indicates its origin from the lower crustal or mantle carbon dioxide fluid. Thus, carbon extracted into the rocks of Keivy structure from at least two contrasting isotope sources. Graphite Gr-3, that makes up the bulk of graphite of exocontact sil limanite schists, is also isotopically light, but not anomalously [δ 13 C(PDB = −17...−28 ‰]. The crystallization temperature of the gi ven graphite (435−520 ºC, and its structural relationships with other minerals of th e rock evidence of its synmetamorphic origin. The presence of veinlets of isotopically heavy [δ 13 C(PDB = −10 ‰...−11 ‰] high-temperature (570−670 ºC graphite intersecting minerals of the metamorphic paragenesis (i

  14. Desorption of H atoms from graphite (0001) using XUV free electron laser pulses

    DEFF Research Database (Denmark)

    Siemer, B.; Olsen, Thomas; Hoger, T.

    2010-01-01

    The desorption of neutral H atoms from graphite with femtosecond XUV pulses is reported. The velocity distribution of the atoms peaks at extremely low kinetic energies. A DFT-based electron scattering calculation traces this distribution to desorption out of specific adsorption sites on graphite......, and identifies the highest vibrational state in the adsorbate potential as a major source for the slow atoms. It is evident that multiple electron scattering processes are required for this desorption. A direct electronic excitation of a repulsive hydrogen-carbon bond seems not to be important....

  15. Influence of Metal-Coated Graphite Powders on Microstructure and Properties of the Bronze-Matrix/Graphite Composites

    Science.gov (United States)

    Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke

    2017-02-01

    In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.

  16. Continuum analogues of contragredient Lie algebras

    International Nuclear Information System (INIS)

    Saveliev, M.V.; Vershik, A.M.

    1989-03-01

    We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs

  17. Mesoscopic and continuum modelling of angiogenesis

    KAUST Repository

    Spill, F.

    2014-03-11

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  18. Mesoscopic and continuum modelling of angiogenesis

    KAUST Repository

    Spill, F.; Guerrero, P.; Alarcon, T.; Maini, P. K.; Byrne, H. M.

    2014-01-01

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  19. Nonlinear continuum mechanics and large inelastic deformations

    CERN Document Server

    Dimitrienko, Yuriy I

    2010-01-01

    This book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics - kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead t...

  20. Glassy carbon coated graphite for nuclear applications

    International Nuclear Information System (INIS)

    Delpeux S; Cacciaguerra T; Duclaux L

    2005-01-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF 2 , ThF 4 , and UF 4 ) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin or polyvinyl chloride precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm 3 and closed pores with nano-metric size (∼ 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons, in good agreement with the proposed texture model for glassy carbon. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry of the graphite substrate. The deposit regions where

  1. Glassy carbon coated graphite for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Delpeux, S.; Cacciaguerra, T.; Duclaux, L. [Orleans Univ., CRMD, CNRS, 45 (France)

    2005-07-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF{sub 2}, ThF{sub 4}, and UF{sub 4}) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin [1,2] or polyvinyl chloride [3] precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm{sup 3} and closed pores with nano-metric size ({approx} 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons (Fig 1), in good agreement with the proposed texture model for glassy carbon (Fig 2) [4]. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry

  2. Sensitivity filtering from a continuum mechanics perspective

    DEFF Research Database (Denmark)

    Sigmund, Ole; Maute, Kurt

    2012-01-01

    In topology optimization filtering is a popular approach for preventing numerical instabilities. This short note shows that the well-known sensitivity filtering technique, that prevents checkerboards and ensures mesh-independent designs in density-based topology optimization, is equivalent to min...... to minimizing compliance for nonlocal elasticity problems known from continuum mechanics. Hence, the note resolves the long-standing quest for finding an explanation and physical motivation for the sensitivity filter....

  3. Continuum mechanics the birthplace of mathematical models

    CERN Document Server

    Allen, Myron B

    2015-01-01

    Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer.  This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe

  4. How do we model continuum QCD

    International Nuclear Information System (INIS)

    Cornwall, J.M.

    1986-01-01

    The nonperturbative aspects of continuum QCD are so complex that one can only hope to approach them through well-motivated models. The author reviews the general properties that any such model must have, based on the understanding of the gluon condensate in the QCD vacuum. A specific, practical model is proposed motivated by a picture of the condensate as made of thick vortex sheets self-consistently constructed from dynamically massive gluons. (author)

  5. New examples of continuum graded Lie algebras

    International Nuclear Information System (INIS)

    Savel'ev, M.V.

    1989-01-01

    Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs

  6. Nano-cracks in a synthetic graphite composite for nuclear applications

    Science.gov (United States)

    Liu, Dong; Cherns, David

    2018-05-01

    Mrozowski nano-cracks in nuclear graphite were studied by transmission electron microscopy and selected area diffraction. The material consisted of single crystal platelets typically 1-2 nm thick and stacked with large relative rotations around the c-axis; individual platelets had both hexagonal and cubic stacking order. The lattice spacing of the (0002) planes was about 3% larger at the platelet boundaries which were the source of a high fraction of the nano-cracks. Tilting experiments demonstrated that these cracks were empty, and not, as often suggested, filled by amorphous material. In addition to conventional Mrozowski cracks, a new type of nano-crack is reported, which originates from the termination of a graphite platelet due to crystallographic requirements. Both types are crucial to understanding the evolution of macro-scale graphite properties with neutron irradiation.

  7. Heat loss mechanisms in a measurement of specific heat capacity of graphite

    International Nuclear Information System (INIS)

    Shipley, D.R.; Duane, S.

    1996-01-01

    Absorbed dose to graphite in electron beams with nominal energies in the range 3-20 MeV is determined by measuring the temperature rise in the core of a primary standard graphite calorimeter. This temperature rise is related to absorbed dose by a separate measurement of the specific heat capacity of the graphite core. There is, however, a small but significant amount of heat loss from the sample in the determination of specific heat capacity and corrections for these losses are required. This report discusses the sources of heat loss in the measurements and, where possible, provides estimates for the magnitude of these losses. For those mechanisms which are significant, a more realistic model of the measurement system is analysed and corrections for the losses are provided. (UK)

  8. In situ observations of graphite formation during solidification of cast iron

    DEFF Research Database (Denmark)

    Bjerre, Mathias Karsten

    solidification and growth continues throughout solid state cooling and the eutectoid transformation. Years of research have greatly improved the understanding of the basic mechanisms that control graphite growth as well as the ability to control graphite morphology during industrial production of cast components......, the solidification of cast iron is studied with focus on formation and growth of spheroidal graphite. To this end, an experiment is conducted at the Diamond Light Source synchrotron facility in Harwell, UK: Employing an environmental cell devel-oped at the Manchester X-ray Imaging Facility at the University...... state growth presented in the present thesis. From the analysis it is clear that the presented data is of an unprecedented quality and that it represents a solid basis for validation of future models. Solidification simulations of a ductile cast iron component highlights the importance of the nucleation...

  9. Sub-parts-per-quadrillion-level graphite furnace atomic absorption spectrophotometry based on laser wave mixing.

    Science.gov (United States)

    Mickadeit, Fritz K; Berniolles, Sandrine; Kemp, Helen R; Tong, William G

    2004-03-15

    Nonlinear laser wave mixing in a common graphite furnace atomizer is presented as a zeptomole-level, sub-Doppler, high-resolution atomic absorption spectrophotometric method. A nonplanar three-dimensional wave-mixing optical setup is used to generate the signal beam in its own space. Signal collection is efficient and convenient using a template-based optical alignment. The graphite furnace atomizer offers advantages including fast and convenient introduction of solid, liquid, or gas analytes, clean atomization environment, and minimum background noise. Taking advantage of the unique features of the wave-mixing optical method and those of the graphite furnace atomizer, one can obtain both excellent spectral resolution and detection sensitivity. A preliminary concentration detection limit of 0.07 parts-per-quadrillion and a preliminary mass detection limit of 0.7 ag or 8 zmol are determined for rubidium using a compact laser diode as the excitation source.

  10. Low-temperature synthesis of nanocrystalline ZrC coatings on flake graphite by molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jun, E-mail: dingjun@wust.edu.cn; Guo, Ding; Deng, Chengji; Zhu, Hongxi; Yu, Chao

    2017-06-15

    Highlights: • Uniform ZrC coatings are prepared on flake graphite at 900 °C. • ZrC coatings are composed of nanosized (30–50 nm) particles. • The template growth mechanism is believed to be dominant in the molten salt synthesis process. - Abstract: A novel molten salt synthetic route has been developed to prepare nanocrystalline zirconium carbide (ZrC) coatings on flake graphite at 900 °C, using Zr powder and flake graphite as the source materials in a static argon atmosphere, along with molten salts as the media. The effects of different molten salt media, the sintered temperature, and the heat preservation time on the phase and microstructure of the synthetic materials were investigated. The ZrC coatings formed on the flake graphite were uniform and composed of nanosized particles (30–50 nm). With an increase in the reaction temperature, the ZrC nanosized particles were more denser, and the heat preservation time and thickness of the ZrC coating also increased accordingly. Electron microscopy was used to observe the ZrC coatings on the flake graphite, indicating that a “template mechanism” played an important role during the molten salt synthesis.

  11. Hydrogen adsorption on and solubility in graphites

    International Nuclear Information System (INIS)

    Kanashenko, S.L.; Wampler, W.R.

    1996-01-01

    The experimental data on adsorption and solubility of hydrogen isotopes in graphite over a wide range of temperatures and pressures are reviewed. Langmuir adsorption isotherms are proposed for the hydrogen-graphite interaction. The entropy and enthalpy of adsorption are estimated, allowing for effects of relaxation of dangling sp 2 bonds. Three kinds of traps are proposed: edge carbon atoms of interstitial loops with an adsorption enthalpy relative to H 2 gas of -4.4 eV/H 2 (unrelaxed, Trap 1), edge carbon atoms at grain surfaces with an adsorption enthalpy of -2.3 eV/H 2 (relaxed, Trap 2), and basal plane adsorption sites with an enthalpy of +2.43 eV/H 2 (Trap 3). The adsorption capacity of different types of graphite depends on the concentration of traps which depends on the crystalline microstructure of the material. The number of potential sites for the 'true solubility' (Trap 3) is assumed to be about one site per carbon atom in all types of graphite, but the endothermic character of this solubility leads to a negligible H inventory compared to the concentration of hydrogen in type 1 and type 2 traps for temperatures and gas pressures used in the experiments. Irradiation with neutrons or carbon atoms increases the concentration of type 1 and type 2 traps from about 20 and 200 appm respectively for unirradiated (POCO AXF-5Q) graphite to about 1500 and 5000 appm, respectively, at damage levels above 1 dpa. (orig.)

  12. Irradiation-induced amorphization process in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-04-01

    Effects of the element process of irradiation damage on irradiation-induced amorphization processes of graphite was studied. High orientation thermal decomposed graphite was cut about 100 nm width and used as samples. The irradiation experiments are carried out under the conditions of electronic energy of 100-400 KeV, ion energy of 200-600 KeV, ionic species Xe, Ar, Ne, C and He and the irradiation temperature at from room temperature to 900 K. The critical dose ({phi}a) increases exponentially with increasing irradiation temperature. The displacement threshold energy of graphite on c-axis direction was 27 eV and {phi}a{sup e} = 0.5 dpa. dpa is the average number of displacement to atom. The critical dose of ion irradiation ({phi}a{sup i}) was 0.2 dpa at room temperature, and amorphous graphite was produced by less than half of dose of electronic irradiation. Amorphization of graphite depending upon temperature is discussed. (S.Y.)

  13. Identifying health disparities across the tobacco continuum.

    Science.gov (United States)

    Fagan, Pebbles; Moolchan, Eric T; Lawrence, Deirdre; Fernander, Anita; Ponder, Paris K

    2007-10-01

    Few frameworks have addressed work-force diversity, inequities and inequalities as part of a comprehensive approach to eliminating tobacco-related health disparities. This paper summarizes the literature and describes the known disparities that exist along the tobacco disease continuum for minority racial and ethnic groups, those living in poverty, those with low education and blue-collar and service workers. The paper also discusses how work-force diversity, inequities in research practice and knowledge allocation and inequalities in access to and quality of health care are fundamental to addressing disparities in health. We examined the available scientific literature and existing public health reports to identify disparities across the tobacco disease continuum by minority racial/ethnic group, poverty status, education level and occupation. Results indicate that differences in risk indicators along the tobacco disease continuum do not explain fully tobacco-related cancer consequences among some minority racial/ethnic groups, particularly among the aggregate groups, blacks/African Americans and American Indians/Alaska Natives. The lack of within-race/ethnic group data and its interactions with socio-economic factors across the life-span contribute to the inconsistency we observe in the disease causal paradigm. More comprehensive models are needed to understand the relationships among disparities, social context, diversity, inequalities and inequities. A systematic approach will also help researchers, practitioners, advocates and policy makers determine critical points for interventions, the types of studies and programs needed and integrative approaches needed to eliminate tobacco-related disparities.

  14. Continuum regularized Yang-Mills theory

    International Nuclear Information System (INIS)

    Sadun, L.A.

    1987-01-01

    Using the machinery of stochastic quantization, Z. Bern, M. B. Halpern, C. Taubes and I recently proposed a continuum regularization technique for quantum field theory. This regularization may be implemented by applying a regulator to either the (d + 1)-dimensional Parisi-Wu Langevin equation or, equivalently, to the d-dimensional second order Schwinger-Dyson (SD) equations. This technique is non-perturbative, respects all gauge and Lorentz symmetries, and is consistent with a ghost-free gauge fixing (Zwanziger's). This thesis is a detailed study of this regulator, and of regularized Yang-Mills theory, using both perturbative and non-perturbative techniques. The perturbative analysis comes first. The mechanism of stochastic quantization is reviewed, and a perturbative expansion based on second-order SD equations is developed. A diagrammatic method (SD diagrams) for evaluating terms of this expansion is developed. We apply the continuum regulator to a scalar field theory. Using SD diagrams, we show that all Green functions can be rendered finite to all orders in perturbation theory. Even non-renormalizable theories can be regularized. The continuum regulator is then applied to Yang-Mills theory, in conjunction with Zwanziger's gauge fixing. A perturbative expansion of the regulator is incorporated into the diagrammatic method. It is hoped that the techniques discussed in this thesis will contribute to the construction of a renormalized Yang-Mills theory is 3 and 4 dimensions

  15. Integral equation hierarchy for continuum percolation

    International Nuclear Information System (INIS)

    Given, J.A.

    1988-01-01

    In this thesis a projection operator technique is presented that yields hierarchies of integral equations satisfied exactly by the n-point connectedness functions in a continuum version of the site-bond percolation problem. The n-point connectedness functions carry the same structural information for a percolation problem as then-point correlation functions do for a thermal problem. This method extends the Potts model mapping of Fortuin and Kastelyn to the continuum by exploiting an s-state generalization of the Widom-Rowlinson model, a continuum model for phase separation. The projection operator technique is used to produce an integral equation hierarchy for percolation similar to the Born-Green heirarchy. The Kirkwood superposition approximation (SA) is extended to percolation in order to close this hierarchy and yield a nonlinear integral equation for the two-point connectedness function. The fact that this function, in the SA, is the analytic continuation to negative density of the two-point correlation function in a corresponding thermal problem is discussed. The BGY equation for percolation is solved numerically, both by an expansion in powers of the density, and by an iterative technique due to Kirkwood. It is argued both analytically and numerically, that the BYG equation for percolation, unlike its thermal counterpart, shows non-classical critical behavior, with η = 1 and γ = 0.05 ± .1. Finally a sequence of refinements to the superposition approximations based in the theory of fluids by Rice and Lekner is discussed

  16. Lyman continuum observations of solar flares

    Science.gov (United States)

    Machado, M. E.; Noyes, R. W.

    1978-01-01

    A study is made of Lyman continuum observations of solar flares, using data obtained by the EUV spectroheliometer on the Apollo Telescope Mount. It is found that there are two main types of flare regions: an overall 'mean' flare coincident with the H-alpha flare region, and transient Lyman continuum kernels which can be identified with the H-alpha and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density .000005 g/sq cm in the quiet sun to .0003 g/sq cm in the mean flare, and to .001 g/sq cm in kernels. From these results the amount of chromospheric material 'evaporated' into the high temperature region is derived, which is found to be approximately 10 to the 15th g, in agreement with observations of X-ray emission measures.

  17. OBSERVATIONAL STUDY OF THE CONTINUUM AND WATER MASER EMISSION IN THE IRAS 19217+1651 REGION

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Esnard, T.; Trinidad, M. A. [Departamento de Astronomia, Universidad de Guanajuato, Apdo Postal 144, Guanajuato, GTO, Mexico CP 36000 (Mexico); Migenes, V., E-mail: tatiana@iga.cu, E-mail: trinidad@astro.ugto.mx, E-mail: vmigenes@byu.edu [Department of Physics and Astronomy, Brigham Young University, ESC-N145, Provo, UT 84602 (United States)

    2012-12-20

    We report interferometric observations of the high-mass star-forming region IRAS 19217+1651. We observed the radio continuum (1.3 cm and 3.6 cm) and water maser emission using the Very Large Array (VLA-EVLA) in transition mode (configuration A). Two radio continuum sources were detected at both wavelengths, I19217-A and I19217-B. In addition, 17 maser spots were observed distributed mainly in two groups, M1 and M2, and one isolated maser. This latter could be indicating the relative position of another continuum source which we did not detect. The results indicate that I19217-A appears to be consistent with an ultracompact H II region associated with a zero-age main-sequence B0-type star. Furthermore, the 1.3 cm continuum emission of this source suggests a cometary morphology. In addition, I19217-B appears to be an H II region consisting of at least two stars, which may be contributing to its complex structure. It was also found that the H{sub 2}O masers of the group M1 are apparently associated with the continuum source I19217-A. These are tracing motions which are not gravitationally bound according to their spatial distribution and kinematics. They also seem to be describing outflows in the direction of the elongated cometary region. On the other hand, the second maser group, M2, could be tracing the base of a jet. Finally, infrared data from Spitzer, Midcourse Space Experiment, and IRIS show that IRAS 19217+1651 is embedded inside a large open bubble, like a broken ring, which possibly has affected the morphology of the cometary H II region observed at 1.3 cm.

  18. Electrochemical performance of SnO{sub 2}/modified graphite composite material as anode of lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Qiang [Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004 (China); Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000 (China); Yang, Guan-Hua; Huang, You-Guo; Zhang, Xiao-Hui; Yan, Zhi-Xiong [Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004 (China); Li, Qing-Yu, E-mail: liqingyu62@126.com [Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004 (China)

    2015-11-01

    In this report, we synthesized SnO{sub 2}/modified graphite anode composite material by a simple reflux method using SnCl{sub 4}·5H{sub 2}O as tin source and modified graphite as carbon source. The as-obtained composite was investigated with the help of X-ray diffraction (XRD), scanning electron microscopy (SEM) and galvanostatic cycling tests. The results show that the composite has a wave-shaped fold structure and the SnO{sub 2} nanoparticles on it have an average size of about 50 nm. Compared to pure modified graphite, the SnO{sub 2}/modified graphite exhibits a better electrochemical performance with a reversible specific capacity of 581.7 mAh g{sup −1} after 80 cycles, owing to high mechanical stress and elasticity of modified graphite could hinder the volume effect of SnO{sub 2} nanoparticles during the Li{sup +} insertion/extraction process. All these favourable characters reveal that the composite is a great potential anode material in high-performance lithium ion batteries. - Highlights: • A simple synthetic method of SnO{sub 2}/modified graphite composite as anode. • The as-prepared composite with layered structure alleviates the huge reunion of SnO{sub 2}. • The composite exhibits a good capacity retention rate of 85.8% after 25 cycles.

  19. Dislocation density and graphitization of diamond crystals

    International Nuclear Information System (INIS)

    Pantea, C.; Voronin, G.A.; Zerda, T.W.; Gubicza, J.; Ungar, T.

    2002-01-01

    Two sets of diamond specimens compressed at 2 GPa at temperatures varying between 1060 K and 1760 K were prepared; one in which graphitization was promoted by the presence of water and another in which graphitization of diamond was practically absent. X-ray diffraction peak profiles of both sets were analyzed for the microstructure by using the modified Williamson-Hall method and by fitting the Fourier coefficients of the measured profiles by theoretical functions for crystallite size and lattice strain. The procedures determined mean size and size distribution of crystallites as well as the density and the character of the dislocations. The same experimental conditions resulted in different microstructures for the two sets of samples. They were explained in terms of hydrostatic conditions present in the graphitized samples

  20. Capacitive behavior of highly-oxidized graphite

    Science.gov (United States)

    Ciszewski, Mateusz; Mianowski, Andrzej

    2014-09-01

    Capacitive behavior of a highly-oxidized graphite is presented in this paper. The graphite oxide was synthesized using an oxidizing mixture of potassium chlorate and concentrated fuming nitric acid. As-oxidized graphite was quantitatively and qualitatively analyzed with respect to the oxygen content and the species of oxygen-containing groups. Electrochemical measurements were performed in a two-electrode symmetric cell using KOH electrolyte. It was shown that prolonged oxidation causes an increase in the oxygen content while the interlayer distance remains constant. Specific capacitance increased with oxygen content in the electrode as a result of pseudo-capacitive effects, from 0.47 to 0.54 F/g for a scan rate of 20 mV/s and 0.67 to 1.15 F/g for a scan rate of 5 mV/s. Better cyclability was observed for the electrode with a higher oxygen amount.

  1. Reactivity of lithium exposed graphite surface

    International Nuclear Information System (INIS)

    Harilal, S.S.; Allain, J.P.; Hassanein, A.; Hendricks, M.R.; Nieto-Perez, M.

    2009-01-01

    Lithium as a plasma-facing component has many attractive features in fusion devices. We investigated chemical properties of the lithiated graphite surfaces during deposition using X-ray photoelectron spectroscopy and low-energy ion scattering spectroscopy. In this study we try to address some of the known issues during lithium deposition, viz., the chemical state of lithium on graphite substrate, oxide layer formation mechanisms, Li passivation effects over time, and chemical change during exposure of the sample to ambient air. X-ray photoelectron studies indicate changes in the chemical composition with various thickness of lithium on graphite during deposition. An oxide layer formation is noticed during lithium deposition even though all the experiments were performed in ultrahigh vacuum. The metal oxide is immediately transformed into carbonate when the deposited sample is exposed to air.

  2. Reduced graphite oxide in supercapacitor electrodes.

    Science.gov (United States)

    Lobato, Belén; Vretenár, Viliam; Kotrusz, Peter; Hulman, Martin; Centeno, Teresa A

    2015-05-15

    The current energy needs have put the focus on highly efficient energy storage systems such as supercapacitors. At present, much attention focuses on graphene-like materials as promising supercapacitor electrodes. Here we show that reduced graphite oxide offers a very interesting potential. Materials obtained by oxidation of natural graphite and subsequent sonication and reduction by hydrazine achieve specific capacitances as high as 170 F/g in H2SO4 and 84F/g in (C2H5)4NBF4/acetonitrile. Although the particle size of the raw graphite has no significant effect on the physico-chemical characteristics of the reduced materials, that exfoliated from smaller particles (materials may suffer from a drop in their specific surface area upon fabrication of electrodes with features of the existing commercial devices. This should be taken into account for a reliable interpretation of their performance in supercapacitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Graphite core design in UK reactors

    International Nuclear Information System (INIS)

    Davies, M.W.

    1996-01-01

    The cores in the first power producing Magnox reactors in the UK were designed with only a limited amount of information available regarding the anisotropic dimensional change behaviour of Pile Grade graphite. As more information was gained it was necessary to make modifications to the design, some minor, some major. As the cores being built became larger, and with the switch to the Advanced Gas-cooled Reactor (AGR) with its much higher power density, additional problems had to be overcome such as increased dimensional change and radiolytic oxidation by the carbon dioxide coolant. For the AGRs a more isotropic graphite was required, with a lower initial open pore volume and higher strength. Gilsocarbon graphite was developed and was selected for all the AGRs built in the UK. Methane bearing coolants are used to limit radiolytic oxidation. (author). 5 figs

  4. Sensing capabilities of graphite based MR elastomers

    International Nuclear Information System (INIS)

    Tian, T F; Li, W H; Deng, Y M

    2011-01-01

    This paper presents both experimental and theoretical investigations of the sensing capabilities of graphite based magnetorheological elastomers (MREs). In this study, eight MRE samples with varying graphite weight fractions were fabricated and their resistance under different magnetic fields and external loadings were measured with a multi-meter. With an increment of graphite weight fraction, the resistance of MRE sample decreases steadily. Higher magnetic fields result in a resistance increase. Based on an ideal assumption of a perfect chain structure, a mathematical model was developed to investigate the relationship between the MRE resistance with external loading. In this model, the current flowing through the chain structure consists of both a tunnel current and a conductivity current, both of which depend on external loadings. The modelling parameters have been identified and reconstructed from comparison with experimental results. The comparison indicates that both experimental results and modelling predictions agree favourably well

  5. Cluster Ion Implantation in Graphite and Diamond

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2014-01-01

    Cluster ion beam technique is a versatile tool which can be used for controllable formation of nanosize objects as well as modification and processing of surfaces and shallow layers on an atomic scale. The current paper present an overview and analysis of data obtained on a few sets of graphite...... and diamond samples implanted by keV-energy size-selected cobalt and argon clusters. One of the emphases is put on pinning of metal clusters on graphite with a possibility of following selective etching of graphene layers. The other topic of concern is related to the development of scaling law for cluster...... implantation. Implantation of cobalt and argon clusters into two different allotropic forms of carbon, namely, graphite and diamond is analysed and compared in order to approach universal theory of cluster stopping in matter....

  6. Graphite based Schottky diodes formed semiconducting substrates

    Science.gov (United States)

    Schumann, Todd; Tongay, Sefaattin; Hebard, Arthur

    2010-03-01

    We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). The fabrication can be as easy as allowing a dab of graphite paint to air dry on any one of the investigated semiconductors. Near room temperature, the forward-bias diode characteristics are well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.

  7. Graphite moderated reactor for thermoelectric generation

    International Nuclear Information System (INIS)

    Akazawa, Issei; Yamada, Akira; Mizogami, Yorikata

    1998-01-01

    Fuel rods filled with cladded fuel particles distributed and filled are buried each at a predetermined distance in graphite blocks situated in a reactor core. Perforation channels for helium gas as coolants are formed to the periphery thereof passing through vertically. An alkali metal thermoelectric power generation module is disposed to the upper lid of a reactor container while being supported by a securing receptacle. Helium gas in the coolant channels in the graphite blocks in the reactor core absorbs nuclear reaction heat, to be heated to a high temperature, rises upwardly by the reduction of the specific gravity, and then flows into an upper space above the laminated graphite block layer. Then the gas collides against a ceiling and turns, and flows down in a circular gap around the circumference of the alkali metal thermoelectric generation module. In this case, it transfers heat to the alkali metal thermoelectric generation module. (I.N.)

  8. Nondestructive evaluation of nuclear-grade graphite

    Science.gov (United States)

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-01

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  9. Electrostatic Manipulation of Graphene On Graphite

    Science.gov (United States)

    Untiedt, Carlos; Rubio-Verdu, Carmen; Saenz-Arce, Giovanni; Martinez-Asencio, Jesús; Milan, David C.; Moaied, Mohamed; Palacios, Juan J.; Caturla, Maria Jose

    2015-03-01

    Here we report the use of a Scanning Tunneling Microscope (STM) under ambient and vacuum conditions to study the controlled exfoliation of the last layer of a graphite surface when an electrostatic force is applied from a STM tip. In this work we have focused on the study of two parameters: the applied voltage needed to compensate the graphite interlayer attractive force and the one needed to break atomic bonds to produce folded structures. Additionally, we have studied the influence of edge structure in the breaking geometry. Independently of the edge orientation the graphite layer is found to tear through the zig-zag direction and the lifled layer shows a zig-zag folding direction. Molecular Dinamics simulations and DFT calculations have been performed to understand our results, showing a strong correlation with the experiments. Comunidad Valenciana through Prometeo project.

  10. THE EFFECT OF APPLIED STRESS ON THE GRAPHITIZATION OF PYROLYTIC GRAPHITE

    Energy Technology Data Exchange (ETDEWEB)

    Bragg, R H; Crooks, D D; Fenn, Jr, R W; Hammond, M L

    1963-06-15

    Metallographic and x-ray diffraction studies were made of the effect of applied stress at high temperature on the structure of pyrolytic graphite (PG). The dominant factor was whether the PG was above or below its graphitization temperature, which, in turn, was not strongly dependent on applied stress. Below the graphitization temperature, the PG showed a high proportion of disordered layers (0.9), a fairly large mean tilt angle (20 deg ) and a small crystailite size (La --150 A). Fracture occurred at low stress and strain and the materiai exhibited a high apparent Young's modulus ( approximates 4 x 10/sup 6/ psi). Above the graphitization temperature, graphitization was considerably enhanced by strain up to about 8%. The disorder parameter was decreased from a zero strain value of 0.3 to 0.l5 with strain, the mean tilt angle was decreased to 4 deg , and a fivefold increase in crystallite size occurred. When the strainenhanced graphitization was complete, the material exhibited a low apparent modulus ( approximates 0.5 x 10/sup 6/ psi) and large plastic strains (>100%) for a constant stress ( approximates 55 ksi). Graphitization was shown to be a spontaneous process that is promoted by breaking cross-links thermally, and the process is furthered by chemical attack and plastic strain. (auth)

  11. Cementation of Nuclear Graphite Using Geopolymers

    International Nuclear Information System (INIS)

    Girke, N.A.; Steinmetz, H-J.; Bukaemsky, A.; Bosbach, D.; Hermann, E.; Griebel, I.

    2016-01-01

    Geopolymers are solid aluminosilicate materials usually formed by alkali hydroxide or alkali silicate activation of solid precursors such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geopolymer technology is in the development of alternatives to Portland-based cements. Variations in the ratio of aluminium to silicon, and alkali to silicon or addition of structure support, produce geopolymers with different physical and mechanical properties. These materials have an amorphous three-dimensional structure that gives geopolymers certain properties, such as fire and acid resistance, low leach rate, which make them an ideal substitute for ordinary Portland cement (OPC) in a wide range of applications especially in conditioning and storage of radioactive waste. Therefore investigations have been initiated on how and to which amount graphite as a hydrophobic material can be mixed with cement or concrete to form stable waste products and which concretes fulfil the necessary specifications best. As a result, geopolymers have been identified as a promising matrix for graphite containing nuclear wastes. With geopolymers, both favourable properties in the cementation process and a high long time structural stability of the products can be achieved. Investigations include: • direct mixing of graphite with geopolymers with or without sand as a mechanically stabilizing medium; • production of cement-graphite granulates as intermediate products and embedding of these granulates in geopolymer; • coating of formed graphite pieces with geopolymer.The report shows that carbon in the form of graphite can both be integrated with different grain size spectra as well as shaped in the hydraulic binder geopolymer and meets the requirements for a stable long-term immobilisation. (author)

  12. Continuum variational and diffusion quantum Monte Carlo calculations

    International Nuclear Information System (INIS)

    Needs, R J; Towler, M D; Drummond, N D; Lopez RIos, P

    2010-01-01

    This topical review describes the methodology of continuum variational and diffusion quantum Monte Carlo calculations. These stochastic methods are based on many-body wavefunctions and are capable of achieving very high accuracy. The algorithms are intrinsically parallel and well suited to implementation on petascale computers, and the computational cost scales as a polynomial in the number of particles. A guide to the systems and topics which have been investigated using these methods is given. The bulk of the article is devoted to an overview of the basic quantum Monte Carlo methods, the forms and optimization of wavefunctions, performing calculations under periodic boundary conditions, using pseudopotentials, excited-state calculations, sources of calculational inaccuracy, and calculating energy differences and forces. (topical review)

  13. Graphite crystals grown within electromagnetically levitated metallic droplets

    International Nuclear Information System (INIS)

    Amini, Shaahin; Kalaantari, Haamun; Mojgani, Sasan; Abbaschian, Reza

    2012-01-01

    Various graphite morphologies were observed to grow within the electromagnetically levitated nickel–carbon melts, including primary flakes and spheres, curved surface graphite and eutectic flakes, as well as engulfed and entrapped particles. As the supersaturated metallic solutions were cooled within the electromagnetic (EM) levitation coil, the primary graphite flakes and spheres formed and accumulated near the periphery of the droplet due to EM circulation. The primary graphite islands, moreover, nucleated and grew on the droplet surface which eventually formed a macroscopic curved graphite crystal covering the entire liquid. Upon further cooling, the liquid surrounding the primary graphite went under a coupled eutectic reaction while the liquid in the center formed a divorced eutectic due to EM mixing. This brought about the formation of graphite fine flakes and agglomerated particles close to the surface and in the center of the droplet, respectively. The graphite morphologies, growth mechanisms, defects, irregularities and growth instabilities were interpreted with detailed optical and scanning electron microscopies.

  14. Expansion and exfoliation of graphite to form graphene

    KAUST Repository

    Patole, Shashikan P.; Da Costa, Pedro M. F. J.

    2017-01-01

    Graphene production methods are described based on subjecting non- covalent graphite intercalated compounds, such as graphite bisulfate, to expansion conditions such as shocks of heat and/or microwaves followed by turbulence-assisted exfoliation

  15. A 2-D nucleation-growth model of spheroidal graphite

    International Nuclear Information System (INIS)

    Lacaze, Jacques; Bourdie, Jacques; Castro-Román, Manuel Jesus

    2017-01-01

    Analysis of recent experimental investigations, in particular by transmission electron microscopy, suggests spheroidal graphite grows by 2-D nucleation of new graphite layers at the outer surface of the nodules. These layers spread over the surface along the prismatic direction of graphite which is the energetically preferred growth direction of graphite when the apparent growth direction of the nodules is along the basal direction of graphite. 2-D nucleation-growth models first developed for precipitation of pure substances are then adapted to graphite growth from the liquid in spheroidal graphite cast irons. Lateral extension of the new graphite layers is controlled by carbon diffusion in the liquid. This allows describing quantitatively previous experimental results giving strong support to this approach.

  16. Computational prediction of dust production in graphite moderated pebble bed reactors

    Science.gov (United States)

    Rostamian, Maziar

    wear rate is obtained. The nonlinear wear law proposed in this study serves as a model to predict the effect of changing surface topology on the wear behavior of graphite. This tribological model is valid for applications where mass removal is in the form of powder formation rather than flake or chip formation. Dust explosion tests performed by Poulsen, University of Idaho, under the same project, have revealed that the smallest amount of graphite dust mass that can lead to explosions is three orders of magnitudes larger than the maximum amount predicted to be generated in the present work. Therefore, it is concluded that pebble-pebble frictional contact is not a plausible source of dust generation and subsequent explosion hazard under normal operating conditions or even accident scenarios. (Abstract shortened by UMI.)

  17. Thermal Properties of G-348 Graphite

    Energy Technology Data Exchange (ETDEWEB)

    McEligot, Donald M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Valentin, Francisco I. [City Univ. (CUNY), NY (United States)

    2017-04-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08 (R-2014). Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  18. London forces in highly oriented pyrolytic graphite

    Directory of Open Access Journals (Sweden)

    L.V. Poperenko

    2017-07-01

    Full Text Available Surface of highly oriented pyrolytic graphite with terrace steps was studied using scanning tunneling microscopy with high spatial resolution. Spots with positive and negative charges were found in the vicinity of the steps. Values of the charges depended both on the microscope needle scan velocity and on its motion direction. The observed effect was theoretically explained with account of London forces that arise between the needle tip and the graphite surface. In this scheme, a terrace step works as a nanoscale diode for surface electric currents.

  19. Large Scale Reduction of Graphite Oxide Project

    Science.gov (United States)

    Calle, Carlos; Mackey, Paul; Falker, John; Zeitlin, Nancy

    2015-01-01

    This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction methods are expensive, time-consuming or restricted to small, limited formats. Graphene has potential uses in ultracapacitors, energy storage, solar cells, flexible and light-weight circuits, touch screens, and chemical sensors. In addition, graphite oxide is a sustainable material that can be produced from any form of carbon, making this method environmentally friendly and adaptable for in-situ reduction.

  20. Chemical atomization of graphite by H+ ions

    International Nuclear Information System (INIS)

    Busharov, I.P.; Gorbatov, E.A.; Gusev, V.M.; Guseva, M.I.; Martynenko, Yu.V.

    A simple model of the mechanism of chemical atomization is given, on whose basis a decrease in chemical atomization is qualitatively predicted for high temperatures. Mass spectrometric investigations of the atomization products cited, which found CH 4 and CH 3 molecules during the irradiation of graphite and H + ions thereby confirmed the presence of chemical atomization. A relationship of S and temperature of graphite T during irradiation was obtained which showed a decrease in the coefficient of atomization of a high temperature. (U.S.)

  1. The electrochemical properties of graphite and carbon

    International Nuclear Information System (INIS)

    Yeager, E.; Gupta, S.; Molla, J.A.

    1983-01-01

    Carbon and graphite are often used as supports for electrocatalysts, but also have an electrocatalytic function in such electrode reactions as O 2 reduction in alkaline electrolytes, Cl 2 generation in brine and SOCl 2 reduction in lithium-thionyl chloride batteries. These catalytic functions involve specific chemical functional groups bound to the carbon and graphite surfaces. The factors controlling O 2 reduction with various types of carbon electrodes of both low and high surface area are reviewed. Of particular importance is the role of hydrogen peroxide. The role of the functionality of the carbon in the electrocatalysis will be discussed

  2. Radiation creep of graphite. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Blackstone, R [Commission of the European Communities, Petten (Netherlands). Joint Nuclear Research Center

    1977-03-01

    Graphite, a class of materials with many unique and unusual properties, shows a remarkably high creep ductility under irradiation. As this behaviour compensates to some extent some of the more worrying radiation effects, such as dimensional changes and their strong temperature dependence, it is a property of large technological interest. There are various ways of observing and measuring in-pile creep of graphite, varying in degree of sophistication and in cost, in accuracy and in the type of data that is generated. This paper attempts to review briefly the various experimental methods, and the knowledge generated so far. An indication is given of the areas in which further knowledge is wanted.

  3. Radiation creep of graphite. An introduction

    International Nuclear Information System (INIS)

    Blackstone, R.

    1977-01-01

    Graphite, a class of materials with many unique and unusual properties, shows a remarkably high creep ductility under irradiation. As this behavior compensates to some extent some of the more worrying radiation effects, such as dimensional changes and their strong temperature dependence, it is a property of large technological interest. There are various ways of observing and measuring in-pile creep of graphite, varying in degree of sophistication and in cost, in accuracy and in the type of data that is generated. This paper attempts to review briefly the various experimental methods, and the knowledge generated so far. An indication is given of the areas in which further knowledge is wanted

  4. Radiation creep of graphite. An introduction

    International Nuclear Information System (INIS)

    Blackstone, R.

    1977-01-01

    Graphite, a class of materials with many unique and unusual properties, shows a remarkably high creep ductility under irradiation. As this behaviour compensates to some extent some of the more worrying radiation effects, such as dimensional changes and their strong temperature dependence, it is a property of large technological interest. There are various ways of observing and measuring in-pile creep of graphite, varying in degree of sophistication and in cost, in accuracy and in the type of data that is generated. This paper attempts to review briefly the various experimental methods, and the knowledge generated so far. An indication is given of the areas in which further knowledge is wanted. (Auth.)

  5. Electrical properties of Egyptian natural graphite

    International Nuclear Information System (INIS)

    El-Shazly, O.; El-Wahidy, E.F.; Elanany, N.; Saad, N.A.

    1992-06-01

    The electrical properties of Egyptian natural graphite flakes, obtained from the graphite schists of Wadi Bent, Eastern Desert, were measured. The flakes were ground and compressed into pellets. The standard four probe dc method was used to measure the temperature dependence of the electric resistivity from room temperature down to 12 K. The transverse and longitudinal magnetoresistance were measured in the low magnetic field range at temperatures 300 K, 77 K and 12 K. The transverse magnetoresistance data was used to estimate the average mobility, assuming a simple two-band model. (author). 20 refs, 4 figs, 1 tab

  6. Direct reading spectrochemical analysis of nuclear graphite

    International Nuclear Information System (INIS)

    Roca Adell, M.; Becerro Ruiz, E.; Alvarez Gonzalez, F.

    1964-01-01

    A description is given about the application of a direct-reading spectrometer the Quantometer, to the determination of boron. calcium, iron, titanium and vanadium in nuclear grade graphite. for boron the powdered sample is mixed with 1% cupric fluoride and excited in a 10-amperes direct current arc and graphite electrodes with a crater 7 mm wide and 10 mm deep. For the other elements a smaller crater has been used and dilution with a number of matrices has been investigated; the best results are achieved by employing 25% cupric fluoride. The sensitivity limit for boron is 0,15 ppm. (Author) 21 refs

  7. Graphite target for the spiral project

    International Nuclear Information System (INIS)

    Putaux, J.C.; Ducourtieux, M.; Ferro, A.; Foury, P.; Kotfila, L.; Mueller, A.C.; Obert, J.; Pauwels, N.; Potier, J.C.; Proust, J.; Loiselet, M.

    1996-01-01

    A study of the thermal and physical properties of graphite targets for the SPIRAL project is presented. The main objective is to develop an optimized set-up both mechanically and thermally resistant, presenting good release properties (hot targets with thin slices). The results of irradiation tests concerning the mechanical and thermal resistance of the first prototype of SPIRAL target with conical geometry are presented. The micro-structural properties of the graphite target is also studied, in order to check that the release properties are not deteriorated by the irradiation. Finally, the results concerning the latest pilot target internally heated by an electrical current are shown. (author)

  8. STS Observations of Landau Levels at Graphite Surfaces

    OpenAIRE

    Matsui, T.; Kambara, H.; Niimi, Y.; Tagami, K.; Tsukada, M.; Fukuyama, Hiroshi

    2004-01-01

    Scanning tunneling spectroscopy measurements were made on surfaces of two different kinds of graphite samples, Kish graphite and highly oriented pyrolytic graphite (HOPG), at very low temperatures and in high magnetic fields. We observed a series of peaks in the tunnel spectra, which grow with increasing field, both at positive and negative bias voltages. These are associated with Landau quantization of the quasi two-dimensional electrons and holes in graphite in magnetic fields perpendicular...

  9. Electronic structure of incident carbon ions on a graphite surface

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Takeuchi, Takae; Yamamoto, Masao.

    1997-01-01

    The electronic structure of an incident carbon ion on a graphite surface is discussed on the basis of ab initio molecular orbital calculations. A carbon cation forms a covalent bond with the graphite, and a carbon nonion is attracted to the graphite surface through van der Waals interaction. A carbon anion has no stable state on a graphite surface. The charge effects of incident ions become clear upon detailed examination of the electronic structure. (author)

  10. Effect of thermal annealing on property changes of neutron-irradiated non-graphitized carbon materials and nuclear graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1991-06-01

    Changes in dimension of non-graphitized carbon materials and nuclear graphite, and the bulk density, electrical resistivity, Young's modulus and thermal expansivity of nuclear graphite were studied after neutron irradiation at 1128-1483 K and the successive thermal annealing up to 2573 K. Carbon materials showed larger and anisotropic dimensional shrinkage than that of nuclear graphite after the irradiation. The irradiation-induced dimensional shrinkage of carbon materials decreased during annealing at temperatures from 1773 to 2023 K, followed by a slight increase at higher temperatures. On the other hand, the irradiated nuclear graphite hardly showed the changes in length, density and thermal expansivity under the thermal annealing, but the electrical resistivity and Young's modulus showed a gradual decrease with annealing temperature. It has been clarified that there exists significant difference in the effect of thermal annealing on irradiation-induced dimensional shrinkage between graphitized nuclear graphite and non-graphitized carbon materials. (author)

  11. Fracture behavior of nuclear graphites under tensile impact loading

    International Nuclear Information System (INIS)

    Ugachi, Hirokazu; Ishiyama, Shintaro; Eto, Motokuni

    1994-01-01

    Impact tensile strength test was performed with two kinds of HTTR graphites, fine grained isotropic graphite, IG-11 and coarse grained near isotropic graphite, PGX and deformation and fracture behavior under the strain rate of over 100s -1 was measured and the following results were derived: (1) Tensile strength for IG-11 graphite does not depend on the strain rate less than 1 s -1 , but over 1 s -1 , tensile strength for IG-11 graphite increase larger than that measured under 1 s -1 . At the strain rate more than 100 s -1 , remarkable decrease of tensile strength for IG-11 graphite was found. Tensile strength of PGX graphite does not depend on the strain rate less than 1 s -1 , but beyond this value, the sharp tensile strength decrease occurs. (2) Under 100 s -1 , fracture strain for both graphites increase with increase of strain rate and over 100 s -1 , drastic increase of fracture strain for IG-11 graphite was found. (3) At the part of gage length, volume of specimen increase with increase of tensile loading level and strain rate. (4) Poisson's ratio for both graphites decrease with increase of tensile loading level and strain rate. (5) Remarkable change of stress-strain curve for both graphites under 100 s -1 was not found, but over 100 s -1 , the slope of these curve for IG-11 graphite decrease drastically. (author)

  12. Oxidation behavior of IG and NBG nuclear graphites

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woong-Ki; Kim, Byung-Joo [Jeonju Institute of Machinery and Carbon Composites Palbokdong-2ga, 817, Jeonju, Jeollabuk-do 561-844 (Korea, Republic of); Kim, Eung-Seon; Chi, Se-Hwan [Dept. of Nuclear Hydrogen Project, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.k [Dept. of Chemistry, Inha Univ., 253, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2011-01-15

    Graphical abstract: Water contact angles on nuclear graphite before and after oxidation treatments: the pictures show the contact angles obtained under deionized water on oxidation-treated and untreated nuclear graphite. The water contact angles are decreased after oxidation due to the increase in the hydrophilic. Display Omitted Research highlights: The average pore size of graphites shows an increase after the oxidation treatments. They also show that oxidation produces the surface functional groups on the graphite surfaces. The surface area of each graphite behaves in a unique manner. - Abstract: This work studies the oxidation-induced characteristics of four nuclear graphites (NBG-17, NBG-25, IG-110, and IG-430). The oxidation characteristics of the nuclear graphites were measured at 600 {sup o}C. The surface properties of the oxidation graphites were characterized by means of scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle methods. The N{sub 2}/77 K adsorption isotherm characteristics, including the specific surface area and micropore volume, were investigated by means of BET and t-plot methods. The experimental results show an increase in the average pore size of graphites; they also show that oxidation produces the surface functional groups on the graphite surfaces. The surface area of each graphite behaves in a unique manner. For example the surface area of NBG-17 increases slightly whereas the surface area of IG-110 increases significantly. This result confirms that the original surface state of each graphite is unique.

  13. Influence of irradiation on high-strength graphites

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.; Grebennik, V.N.; Kalyagina, I.P.

    1989-01-01

    To ensure efficiency of the graphite elements of the construction of the masonry of reactors, the graphite must possess high radiation stability, strength, and heat resistance. In this connection, the physical properties of graphites based on uncalcined petroleum coke with a binder - high-temperature hard coal pitch - the amount of which reaches 40% are considered in this paper

  14. Porous graphite electrodes for rechargeable ion-transfer batteries

    Energy Technology Data Exchange (ETDEWEB)

    Novak, P; Scheifele, W; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The influence of preparation pressure and pore-forming additives on the properties of graphite-based, Li{sup +}-intercalating electrodes for ion-transfer batteries have been investigated. The electrochemical performance of graphite electrodes could be improved by adjusting the porosity. Specific charge of >300 Ah/kg (with respect to the graphite mass) could be achieved. (author) 4 figs., 2 refs.

  15. Non-classical continuum mechanics a dictionary

    CERN Document Server

    Maugin, Gérard A

    2017-01-01

    This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, every entry is followed by a cross-reference to other related subject entries in the dictionary.

  16. Effect of couplings in the resonance continuum

    International Nuclear Information System (INIS)

    Royal, J; Larson, A; Orel, A E

    2004-01-01

    Electronic coupling of two or more resonances via the electron scattering continuum is investigated. The effect of this coupling as a function of the resonance curves and autoionization widths is investigated, and the conditions for the maximum effect are determined. The theory is applied to two physical problems, the product state distribution produced by the dissociative recombination of electrons with HeH + and a one-dimensional model for ion-pair production resulting from electron collisions with H + 3 . It is found that the coupling does not affect the product state distribution in HeH + but produces a significant effect in the H + 3 model

  17. Discrete expansions of continuum functions. General concepts

    International Nuclear Information System (INIS)

    Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.

    1979-01-01

    Different discrete expansions of the continuum wave functions are considered: pole expansion (according to the Mittag-Lefler theorem), Weinberg states. The general property of these groups of states is their completeness in the finite region of space. They satisfy the Schroedinger type equations and are matched with free solutions of the Schroedinger equation at the boundary. Convergence of expansions for the S matrix, the Green functions and the continuous-spectrum wave functions is studied. A new group of states possessing the best convergence is introduced

  18. Histidine in Continuum Electrostatics Protonation State Calculations

    Science.gov (United States)

    Couch, Vernon; Stuchebruckhov, Alexei

    2014-01-01

    A modification to the standard continuum electrostatics approach to calculate protein pKas which allows for the decoupling of histidine tautomers within a two state model is presented. Histidine with four intrinsically coupled protonation states cannot be easily incorporated into a two state formalism because the interaction between the two protonatable sites of the imidazole ring is not purely electrostatic. The presented treatment, based on a single approximation of the interrelation between histidine’s charge states, allows for a natural separation of the two protonatable sites associated with the imidazole ring as well as the inclusion of all protonation states within the calculation. PMID:22072521

  19. Set theory and the continuum hypothesis

    CERN Document Server

    Cohen, Paul J

    2008-01-01

    This exploration of a notorious mathematical problem is the work of the man who discovered the solution. The independence of the continuum hypothesis is the focus of this study by Paul J. Cohen. It presents not only an accessible technical explanation of the author's landmark proof but also a fine introduction to mathematical logic. An emeritus professor of mathematics at Stanford University, Dr. Cohen won two of the most prestigious awards in mathematics: in 1964, he was awarded the American Mathematical Society's Bôcher Prize for analysis; and in 1966, he received the Fields Medal for Logic.

  20. On nonlocal modeling in continuum mechanics

    Directory of Open Access Journals (Sweden)

    Adam Martowicz

    2018-01-01

    Full Text Available The objective of the paper is to provide an overview of nonlocal formulations for models of elastic solids. The author presents the physical foundations for nonlocal theories of continuum mechanics, followed by various analytical and numerical techniques. The characteristics and range of practical applications for the presented approaches are discussed. The results of numerical simulations for the selected case studies are provided to demonstrate the properties of the described methods. The paper is illustrated with outcomes from peridynamic analyses. Fatigue and axial stretching were simulated to show the capabilities of the developed numerical tools.

  1. Continuum modeling an approach through practical examples

    CERN Document Server

    Muntean, Adrian

    2015-01-01

    This book develops continuum modeling skills and approaches the topic from three sides: (1) derivation of global integral laws together with the associated local differential equations, (2) design of constitutive laws and (3) modeling boundary processes. The focus of this presentation lies on many practical examples covering aspects such as coupled flow, diffusion and reaction in porous media or microwave heating of a pizza, as well as traffic issues in bacterial colonies and energy harvesting from geothermal wells. The target audience comprises primarily graduate students in pure and applied mathematics as well as working practitioners in engineering who are faced by nonstandard rheological topics like those typically arising in the food industry.

  2. Quasi-bound states in continuum

    International Nuclear Information System (INIS)

    Nakamura, Hiroaki; Hatano, Naomichi; Garmon, Sterling; Petrosky, Tomio

    2007-08-01

    We report the prediction of quasi-bound states (resonant states with very long lifetimes) that occur in the eigenvalue continuum of propagating states for a wide region of parameter space. These quasi-bound states are generated in a quantum wire with two channels and an adatom, when the energy bands of the two channels overlap. A would-be bound state that lays just below the upper energy band is slightly destabilized by the lower energy band and thereby becomes a resonant state with a very long lifetime (a second QBIC lays above the lower energy band). (author)

  3. Preparation of graphite derivatives by selective reduction of graphite oxide and isocyanate functionalization

    Czech Academy of Sciences Publication Activity Database

    Kumar, A. R. S. S.; Piana, Francesco; Mičušík, M.; Pionteck, J.; Banerjee, S.; Voit, B.

    2016-01-01

    Roč. 182, 1 October (2016), s. 237-245 ISSN 0254-0584 Institutional support: RVO:61389013 Keywords : graphite oxide * surface modification * conductive nanoparticles Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.084, year: 2016

  4. Missing links in the root-soil organic matter continuum

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Sarah L. [Argonne National Laboratory (ANL); Iversen, Colleen M [ORNL

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors. The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models. Although leaf litter has often been considered to be the main source of organic inputs to soil, Ann Russell synthesized a convincing body of work demonstrating that roots, rather than surface residues, control the accumulation of SOM in a variety of ecosystems. Living roots, which are chemically diverse and highly dynamic, also influence a

  5. Ion beam induced surface graphitization of CVD diamond for x-ray beam position monitor applications

    International Nuclear Information System (INIS)

    Liu, Chian; Shu, D.; Kuzay, T.M.; Wen, L.; Melendres, C.A.; Argonne National Lab., IL

    1996-01-01

    The Advanced Photon Source at ANL is a third-generation synchrotron facility that generates powerful x-ray beams on its undulator beamlines. It is important to know the position and angle of the x- ray beam during experiments. Due to very high heat flux levels, several patented x-ray beam position monitors (XBPM) exploiting chemical vapor deposition (CVD) diamond have been developed. These XBPMs have a thin layer of low-atomic-mass metallic coating so that photoemission from the x rays generate a minute but measurable current for position determination. Graphitization of the CVD diamond surface creates a very thin, intrinsic and conducting layer that can stand much higher temperatures and minimal x-ray transmission losses compared to the coated metallic layers. In this paper, a laboratory sputter ion source was used to transform selected surfaces of a CVD diamond substrate into graphite. The effect of 1-5 keV argon ion bombardment on CVD diamond surfaces at various target temperatures from 200 to 500 C was studied using Auger electron spectroscopy and in-situ electrical resistivity measurements. Graphitization after the ion bombardment has been confirmed and optimum conditions for graphitization studied. Raman spectroscopy was used to identify the overall diamond structure in the bulk of CVD diamond substrate after the ion bombardments. It was found that target temperature plays an important role in stability and electrical conductivity of the irradiated CVD diamonds

  6. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic

  7. Graphite and carbon/carbon components for hot gas ducts

    International Nuclear Information System (INIS)

    Popp, G.; Gruber, U.; Boeder, H.; Janssen, K.

    1984-01-01

    The large coal reserves in the Federal Republic of Germany and the uncertainty of the future energy situation on the world market make it appear sound policy to devote some thought to the gasification of coal. For certain chemical processes, moreover, it would be advantageous to have a reasonably priced source of process heat available. In the Federal Republic of Germany this process heat shall be produced in a high-temperature nuclear reactor (HTR), the primary heating temperatures being in the range between 950 deg. C and 1050 deg. C. One serious problem in utilisation of high temperature heat is the resistance of the construction materials. Ceramic materials with high temperature resistance are considered. The material includes graphite and CC carbon fibre reinforced carbon. As a result of the project promoted by Ministerium fur Wirtschaft (Federal Republic of Germany) it has been demonstrated that both CC and graphite manufactured by SIGRI GmbH are well suited for use in high temperature reactors

  8. Irradiation creep in reactor graphites for HTR applications. [Neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Veringa, H J; Blackstone, R [Stichting Reactor Centrum Nederland, Petten

    1976-01-01

    A series of restrained shrinkage experiments on a number of graphites in the temperature range 400 to 1400/sup 0/C is described. A description is given of the experimental method and method of data evaluation. The results are compared with data from other sources. Analysis of data confirms that the creep coefficient, which is defined as the radiation induced creep strain per unit stress per unit neutron fluence, is inversely proportional to the pre-irradiation value of the Young's modulus of the material. The radiation creep coefficient increases with temperature in the range 400 to 1400/sup 0/C. It can be represented by the sum of two temperature dependent functions, one of which is inversely proportional to the neutron flux density, the other independent of the neutron flux density. When the data are analysed in this way it is found that the graphites investigated in the present work, although made from widely different starting materials and by different processes, show the same dependence of the irradiation creep coefficient on the temperature and the neutron flux density.

  9. The irradiation creep in reactor graphites for HTR applications

    International Nuclear Information System (INIS)

    Veringa, H.J.; Blackstone, R.

    1976-01-01

    A series of restrained shrinkage experiments on a number of graphites in the temperature range 400 to 1400 0 C is described. A description is given of the experimental method and method of data evaluation. The results are compared with data from other sources. Analysis of data confirms that the creep coefficient, which is defined as the radiation induced creep strain per unit stress per unit neutron fluence, is inversely proportional to the pre-irradiation value of the Young's modulus of the material. The radiation creep coefficient increases with temperature in the range 400 to 1400 0 C. It can be represented by the sum of two temperature dependent functions, one of which is inversely proportional to the neutron flux density, the other independent of the neutron flux density. When the data are analysed in this way it is found that the graphites investigated in the present work, although made from widely different starting materials and by different processes, show the same dependence of the irradiation creep coefficient on the temperature and the neutron flux density. (author)

  10. Polyphase diffusion of fission products in graphite

    International Nuclear Information System (INIS)

    Dannert, V.

    1989-05-01

    The report attempts to give an introduction into the subject of fission product transport in nuclear graphite and results in an extended proposal of a transport-model. Beginning with a rough description of the graphite in question, an idea about the physical transport-phenomena in graphite is developed. Some of the basic experimental methods, especially techniques of porosimetry, determination of sorption-isotherms and of course several transport-experiments, are briefly described and their results are discussed. Some of the most frequent transport models are introduced and assessed with the criteria emphasized in this report. An extended model is proposed including the following main ideas: The transport of the fission-products is regarded as a two-phase-diffusion process through the open pores of the graphite. The two phases are: surface-diffusion and gas-diffusion. A time-dependent coupling of the two diffusion-phases by sorption-isotherms and a concentration-dependence of the surface diffusion coefficient, also related to the physical behaviour of the sorption-isotherms, are the basic properties of the proposed model. (orig./HP) [de

  11. US graphite reactor D ampersand D experience

    International Nuclear Information System (INIS)

    Garrett, S.M.K.; Williams, N.C.

    1997-02-01

    This report describes the results of the U.S. Graphite Reactor Experience Task for the Decommissioning Strategy Plan for the Leningrad Nuclear Power Plant (NPP) Unit 1 Study. The work described in this report was performed by the Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE)

  12. Analysis of a T-10 graphite limiter

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Laux, M.; Lingertat, J.; Pech, P.; Reiner, H.D.; Strusny, H.; Wolff, H.

    1981-01-01

    Parts of a T-10 graphite limiter used during ohmic heated discharges have been investigated. Erosion and deposition phenomena have been studied by morphological and elemental surface analysis methods. From the results estimates of the plasma parameters near the limiter surface have been made. (orig.)

  13. Raw materials for reflector graphite (for reactors)

    International Nuclear Information System (INIS)

    Wilhelmi, G.; Mindermann, D.

    1992-01-01

    The manufacturing concept for the core components of German high temperature reactor (HTR) types of graphite was previously entirely directed to the use of German tar coke (St coke). As the plants for producing this material no longer complied technically with the current environmental protection requirements, one had to assume that they would soon be shut down. To prevent bottlenecks in the erection of future HTR plants, alternative cokes produced by modern processes by Japanese manufacturers were checked for their suitability for the manufacture of reactor graphite. This report describes the investigations carried out on these materials from the safe delayed coking process. The project work, apart from analysis of the main data of the candidate coke considered, included the processing of the raw materials into directly and secondarily extruded graphite rods on the laboratory scale, including characterisation. As the results show, the material data achieved with the previous raw material can be reproduced with Japanese St coke. The tar coke LPC-A from the Nippon Steel Chemical Co., Ltd was decided on as the new standard coke for manufacturing reflector graphite. (orig.) With 15 tabs., 2 figs [de

  14. Formation of dislocation dipoles in irradiated graphite

    International Nuclear Information System (INIS)

    Niwase, Keisuke

    2005-01-01

    Recently, we have proposed a dislocation dipole accumulation model to explain the irradiation-induced amorphization of graphite. However, the structure of dislocation dipole in the hexagonal networks is still an open question at the atomic-level. In this paper, we propose a possible formation process of the dislocation dipole

  15. Functional interface of polymer modified graphite anode

    Energy Technology Data Exchange (ETDEWEB)

    Komaba, S.; Ozeki, T.; Okushi, K. [Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan)

    2009-04-01

    Graphite electrodes were modified by polyacrylic acid (PAA), polymethacrylic acid (PMA), and polyvinyl alcohol (PVA). Their electrochemical properties were examined in 1 mol dm{sup -3} LiClO{sub 4} ethylene carbonate:dimethyl carbonate (EC:DMC) and propylene carbonate (PC) solutions as an anode of lithium ion batteries. Generally, lithium ions hardly intercalate into graphite in the PC electrolyte due to a decomposition of the PC electrolyte at ca. 0.8 V vs. Li/Li{sup +}, and it results in the exfoliation of the graphene layers. However, the modified graphite electrodes with PAA, PMA, and PVA demonstrated the stable charge-discharge performance due to the reversible lithium intercalation not only in the EC:DMC but also in the PC electrolytes since the electrolyte decomposition and co-intercalation of solvent were successfully suppressed by the polymer modification. It is thought that these improvements were attributed to the interfacial function of the polymer layer on the graphite which interacted with the solvated lithium ions at the electrode interface. (author)

  16. Functional interface of polymer modified graphite anode

    Science.gov (United States)

    Komaba, S.; Ozeki, T.; Okushi, K.

    Graphite electrodes were modified by polyacrylic acid (PAA), polymethacrylic acid (PMA), and polyvinyl alcohol (PVA). Their electrochemical properties were examined in 1 mol dm -3 LiClO 4 ethylene carbonate:dimethyl carbonate (EC:DMC) and propylene carbonate (PC) solutions as an anode of lithium ion batteries. Generally, lithium ions hardly intercalate into graphite in the PC electrolyte due to a decomposition of the PC electrolyte at ca. 0.8 V vs. Li/Li +, and it results in the exfoliation of the graphene layers. However, the modified graphite electrodes with PAA, PMA, and PVA demonstrated the stable charge-discharge performance due to the reversible lithium intercalation not only in the EC:DMC but also in the PC electrolytes since the electrolyte decomposition and co-intercalation of solvent were successfully suppressed by the polymer modification. It is thought that these improvements were attributed to the interfacial function of the polymer layer on the graphite which interacted with the solvated lithium ions at the electrode interface.

  17. Removal of iron from impure graphites

    International Nuclear Information System (INIS)

    Growcock, F.B.; Heiser, J.

    1979-01-01

    Iron-impregnated and ash-rich graphites have been purified by leaching with gaseous I 2 at 900 0 C. With addition of H 2 , the rate of removal of impurity iron can be markedly increased and becomes comparable to that obtained with Cl 2 . I 2 has an advantage in that it can also volatilize Ca and perhaps Ba and Sr

  18. Structural strength of core graphite bars

    International Nuclear Information System (INIS)

    Kikuchi, K.; Futakawa, M.

    1987-01-01

    A HTR core consists of fuel, hot plenum, reflector and thermal barrier blocks. Each graphite block is supported by three thin cylindrical graphite bars called support post. Static and dynamic core loads are transmitted by the support posts to the thermal barrier blocks and a support plate. These posts are in contact with the blocks through hemispherical post seats to absorb the relative displacement caused by seismic force and the difference of thermal expansion of materials at the time of the start-up and shutdown of a reactor. The mixed fracture criterion of principal stress and modified Mohr-Coulomb's theory as well as the fracture criterion of principal stress based on elastic stress analysis was discussed in connection with the application to HTR graphite components. The buckling fracture of a support post was taken in consideration as one of the fracture modes. The effect that the length/diameter ratio of a post, small rotation and the curvature of post ends and seats exerted on the fracture strength was studied by using IG-110 graphite. Contacting stress analysis was carried out by using the structural analysis code 'COSMOS-7'. The experimental method, the analysis of buckling strength and the results are reported. The fracture of a support post is caused by the mixed mode of bending deformation, split fracture and shearing fracture. (Kako, I.)

  19. Thermoexpanded graphite modification by titanium dioxide

    International Nuclear Information System (INIS)

    Semko, L.S.; Gorbik, P.P.; Chujko, O.O.; Kruchek, Ya.Yi.; Dzyubenko, L.S.; Orans'ka, O.Yi.

    2006-01-01

    A method of the synthesis of thermoexpanded graphite (TEG) powders coated by titanium dioxide is developed. The conversion of n-buthylorthotitanate into TiO 2 on the TEG surface is investigated. The optimal parameters of the synthesis and the structure of titanium dioxide clusters on the TEG surface are determined

  20. GRAPHITIZED STEELS IN MACHINE-BUILDING

    Directory of Open Access Journals (Sweden)

    I. V. Akimov

    2010-01-01

    Full Text Available It is shown that graphitized steels in some cases due to its intermediate disposition by structure and characteristics among low-carbon steels and cast irons, can provide the necessary combination of characteristics of construction material and consequently to increase safety and durability of details of metallurgical and machinebuilding industry machines.

  1. Metal/graphite-composite materials for fusion device

    International Nuclear Information System (INIS)

    Kneringer, G.; Kny, E.; Fischer, W.; Reheis, N.; Staffler, R.; Samm, U.; Winter, J.

    1995-01-01

    The utilization of graphite as a structural material depends to an important extent on the availability of a joining technique suitable for the production of reliable large scale metal/graphite-composites. This study has been conducted to evaluate vacuum brazes and procedures for graphite and metals which can be used in fusion applications up to about 1500 degree C. The braze materials included: AgCuTi, CuTi, NiTi, Ti, ZrTi, Zr. Brazing temperatures ranged from 850 degree C to 1900 degree C. The influence of graphite quality on wettability and pore-penetration of the braze has been investigated. Screening tests of metal/graphite-assemblies with joint areas exceeding some square-centimeters have shown that they can only successfully be produced when graphite is brazed to a metal, such as tungsten or molybdenum with a coefficient of thermal expansion closely matching that of graphite. Therefore all experimental work on evaluation of joints has been concentrated on molybdenum/graphite brazings. The tensile strength of molybdenum/graphite-composites compares favorably with the tensile strength of bulk graphite from room temperature close to the melting temperature of the braze. In electron beam testing the threshold damage line for molybdenum/graphite-composites has been evaluated. Results show that even composites with the low melting AgCuTi-braze are expected to withstand 10 MW/m 2 power density for at least 10 3 cycles. Limiter testing in TEXTOR shows that molybdenum/graphite-segments with 3 mm graphite brazed on molybdenum-substrate withstand severe repeated TEXTOR plasma discharge conditions without serious damage. Results prove that actively cooled components on the basis of a molybdenum/graphite-composite can sustain a higher heat flux than bulk graphite alone. (author)

  2. Acceptance test for graphite components and construction status of HTTR

    International Nuclear Information System (INIS)

    Iyoku, T.; Ishihara, M.; Maruyama, S.; Shiozawa, S.; Tsuji, N.; Miki, T.

    1996-01-01

    In March, 1991, the Japan Atomic Energy Research Institute (JAERI) started to constructed the High Temperature engineering Test Reactor(HTTR) which is a 30-MW(thermal) helium gas-cooled reactor with a core composed of prismatic graphite blocks piled on the core support graphite structures. Two types of graphite materials are used in the HTTR. One is the garde IG-110, isotropic fine grain graphite, another is the grade PGX, medium-to-fine grained molded graphite. These materials were selected on the basis of the appropriate properties required by the HTTR reactor design. Industry-wide standards for an acceptance test of graphite materials used as main components of a nuclear reactor had not been established. The acceptance standard for graphite components of the HTTR, therefore, was drafted by JAERI and reviewed by specialists outside JAERI. The acceptance standard consists of the material testing, non-destructive examination such as the ultrasonic and eddy current testings, dimensional and visual inspections and assembly test. Ultrasonic and eddy current testings are applied to graphite logs to detect an internal flaw and to graphite components to detect a surface flaw, respectively. The assembly test is performed at the works, prior to their installation in the reactor pressure vessel, to examine fabricating precision of each component and alignment of piled-up structures. The graphite components of the HTTR had been tested on the basis of the acceptance standard. It was confirmed that the graphite manufacturing process was well controlled and high quality graphite components were provided to the HTTR. All graphite components except for the fuel graphite blocks are to be installed in the reactor pressure vessel of the HTTR in September 1995. The paper describes the construction status of the HTTR focusing on the graphite components. The acceptance test results are also presented in this paper. (author). Figs

  3. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes

    Science.gov (United States)

    Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa

    2016-09-01

    Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.

  4. Nuclear graphite wear properties and estimation of graphite dust production in HTR-10

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaowei, E-mail: xwluo@tsinghua.edu.cn; Wang, Xiaoxin; Shi, Li; Yu, Xiaoyu; Yu, Suyuan

    2017-04-15

    Highlights: • Graphite dust. • The wear properties of graphite. • Pebble bed. • High Temperature Gas-cooled Reactor. • Fuel element. - Abstract: The issue of the graphite dust has been a research focus for the safety of High Temperature Gas-cooled Reactors (HTGRs), especially for the pebble bed reactors. Most of the graphite dust is produced from the wear of fuel elements during cycling of fuel elements. However, due to the complexity of the motion of the fuel elements in the pebble bed, there is no systematic method developed to predict the amount the graphite dust in a pebble bed reactor. In this paper, the study of the flow of the fuel elements in the pebble bed was carried out. Both theoretical calculation and numerical analysis by Discrete Element Method (DEM) software PFC3D were conducted to obtain the normal forces and sliding distances of the fuel elements in pebble bed. The wearing theory was then integrated with PFC3D to estimate the amount of the graphite dust in a pebble bed reactor, 10 MW High Temperature gas-cooled test Reactor (HTR-10).

  5. Graphite oxidation and structural strength of graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheno; Kim, Eung Soo; Oh, Chang H.

    2009-01-01

    The air-ingress event by a large pipe break is an important accident considered in design of very high-temperature gas-cooled reactors (VHTR). Core-collapse prediction is a main safety issue. Structural failure model are technically required. The objective of this study is to develop structural failure model for the supporting graphite material in the lower plenum of the GT-MHR (gas-turbine-modular high temperature reactor). Graphite support column is important for VHTR structural integrity. Graphite support columns are under the axial load. Critical strength of graphite column is related to slenderness ratio and bulk density. Through compression tests for fresh and oxidized graphite columns we show that compressive strength of IG-110 was 79.46 MPa. And, the buckling strength of IG-110 column was expressed by the empirical formula: σ 0 =σ straight-line - C L/r, σ straight-line =91.31 MPa, C=1.01. The results of uniform and non-uniform oxidation tests show that the strength degradation of oxidized graphite column is expressed in the following non-dimensional form: σ/σ 0 =exp(-kd), k=0.111. Also, from the results of the uniform oxidation test with a complicated-shape column, we found out that the above non-dimensional equation obtained from the uniform oxidation test is applicable to a uniform oxidation case with a complicated-shape column. (author)

  6. Effects of the Air Flow Rate on The Oxidation of NBG-18 and 25 Nuclear Graphite Grades

    International Nuclear Information System (INIS)

    Chi, Se-Hwan; Kim, Gen-Chan; Jang, Joon-Hee

    2007-01-01

    For a VHTR, graphite oxidation is regarded as a critical phenomenon for degrading the integrity of graphite components under normal or abnormal conditions. The oxidation of a graphite core component can occur by air which may permeate into the primary coolant operation and/or by impurities contained in the He coolant, or by air ingress during a severe accident. It is well known that the oxidation properties of a graphite are highly dependent on the source of raw materials, impurities, microstructures (crystallites, pore structure), and on the processing and environmental parameters, such as the forming methods, the coolant type, moisture and impurity content, temperature, flow rate and the oxygen potential of the coolants. A lot of work has been performed on the oxidation of graphite since the 1960s, and, for example, in the case of the temperature, a widely accepted oxidation model on the effects of a temperature has already been developed. However, in the case of the flow rate, even for its expected effects in a VHTR, for example, as to the expected changes in the bypass flow (10-20 %) during an operation, no systematic works have been performed. In this respect, as a preliminary study, the effects of an air flow rate on the oxidation of NBG-18 and 25 nuclear graphite were investigated

  7. Graphite Oxidation Simulation in HTR Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  8. Graphite waste incineration in a fluidized bed

    International Nuclear Information System (INIS)

    Guiroy, J.J.

    1996-01-01

    French gas-cooled reactors belonging to the Atomic Energy Commission (CEA), Electricite de France (EDF), Hifrensa (Spain), etc., commissioned between the 1950s and 1970s, have generated large quantities of graphite wastes, mainly in the form of spent fuel sleeves. Furthermore, some of these reactors scheduled for dismantling in the near future (such as the G2 and G3 reactors at Marcoule) have cores consisting of graphite blocks. Consequently, a fraction of the contaminated graphite, amounting to 6000 t in France for example, must be processed in the coming years. For this processing, incineration using a circulating fluidized bed combustor has been selected as a possible solution and validated. However, the first operation to be performed involves recovering this graphite waste, and particularly, first of all, the spent fuel sleeves that were stored in silos during the years of reactor operation. Subsequent to the final shutdown of the Spanish gas-cooled reactor unit, Vandellos 1, the operating utility Hifrensa awarded contracts to a Framatome Iberica SA/ENSA consortium for removing, sorting, and prepackaging of the waste stored in three silos on the Vandellos site, essentially graphite sleeves. On the other hand, a program to validate the Framatome fluidized bed incineration process was carried out using a prototype incinerator installed at Le Creusot, France. The validation program included 22 twelve-hour tests and one 120-hour test. Particular attention was paid to the safety aspects of this project. During the performance of the validation program, a preliminary safety assessment was carried out. An impact assessment was performed with the help of the French Institute for Protection and Nuclear Safety, taking into account the preliminary spectra supplied by the CEA and EDF, and the activities of the radionuclides susceptible of being released into the atmosphere during the incineration. (author). 4 refs, 11 figs, 1 tab

  9. Graphitization in Carbon MEMS and Carbon NEMS

    Science.gov (United States)

    Sharma, Swati

    Carbon MEMS (CMEMS) and Carbon NEMS (CNEMS) are an emerging class of miniaturized devices. Due to the numerous advantages such as scalable manufacturing processes, inexpensive and readily available precursor polymer materials, tunable surface properties and biocompatibility, carbon has become a preferred material for a wide variety of future sensing applications. Single suspended carbon nanowires (CNWs) integrated on CMEMS structures fabricated by electrospinning of SU8 photoresist on photolithographially patterned SU8 followed by pyrolysis are utilized for understanding the graphitization process in micro and nano carbon materials. These monolithic CNW-CMEMS structures enable the fabrication of very high aspect ratio CNWs of predefined length. The CNWs thus fabricated display core---shell structures having a graphitic shell with a glassy carbon core. The electrical conductivity of these CNWs is increased by about 100% compared to glassy carbon as a result of enhanced graphitization. We explore various tunable fabrication and pyrolysis parameters to improve graphitization in the resulting CNWs. We also suggest gas-sensing application of the thus fabricated single suspended CNW-CMEMS devices by using the CNW as a nano-hotplate for local chemical vapor deposition. In this thesis we also report on results from an optimization study of SU8 photoresist derived carbon electrodes. These electrodes were applied to the simultaneous detection of traces of Cd(II) and Pb(II) through anodic stripping voltammetry and detection limits as low as 0.7 and 0.8 microgL-1 were achieved. To further improve upon the electrochemical behavior of the carbon electrodes we elucidate a modified pyrolysis technique featuring an ultra-fast temperature ramp for obtaining bubbled porous carbon from lithographically patterned SU8. We conclude this dissertation by suggesting the possible future works on enhancing graphitization as well as on electrochemical applications

  10. Multiple Temperature Model for Near Continuum Flows

    International Nuclear Information System (INIS)

    XU, Kun; Liu, Hongwei; Jiang, Jianzheng

    2007-01-01

    In the near continuum flow regime, the flow may have different translational temperatures in different directions. It is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the Navier-Stokes equations, lose accuracy. These inaccuracies may be partially due to the single temperature assumption in the Navier-Stokes equations. Here, based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) equation, a multitranslational temperature model is proposed and used in the flow calculations. In order to fix all three translational temperatures, two constraints are additionally proposed to model the energy exchange in different directions. Based on the multiple temperature assumption, the Navier-Stokes relation between the stress and strain is replaced by the temperature relaxation term, and the Navier-Stokes assumption is recovered only in the limiting case when the flow is close to the equilibrium with the same temperature in different directions. In order to validate the current model, both the Couette and Poiseuille flows are studied in the transition flow regime

  11. Continuum robot arms inspired by cephalopods

    Science.gov (United States)

    Walker, Ian D.; Dawson, Darren M.; Flash, Tamar; Grasso, Frank W.; Hanlon, Roger T.; Hochner, Binyamin; Kier, William M.; Pagano, Christopher C.; Rahn, Christopher D.; Zhang, Qiming M.

    2005-05-01

    In this paper, we describe our recent results in the development of a new class of soft, continuous backbone ("continuum") robot manipulators. Our work is strongly motivated by the dexterous appendages found in cephalopods, particularly the arms and suckers of octopus, and the arms and tentacles of squid. Our ongoing investigation of these animals reveals interesting and unexpected functional aspects of their structure and behavior. The arrangement and dynamic operation of muscles and connective tissue observed in the arms of a variety of octopus species motivate the underlying design approach for our soft manipulators. These artificial manipulators feature biomimetic actuators, including artificial muscles based on both electro-active polymers (EAP) and pneumatic (McKibben) muscles. They feature a "clean" continuous backbone design, redundant degrees of freedom, and exhibit significant compliance that provides novel operational capacities during environmental interaction and object manipulation. The unusual compliance and redundant degrees of freedom provide strong potential for application to delicate tasks in cluttered and/or unstructured environments. Our aim is to endow these compliant robotic mechanisms with the diverse and dexterous grasping behavior observed in octopuses. To this end, we are conducting fundamental research into the manipulation tactics, sensory biology, and neural control of octopuses. This work in turn leads to novel approaches to motion planning and operator interfaces for the robots. The paper describes the above efforts, along with the results of our development of a series of continuum tentacle-like robots, demonstrating the unique abilities of biologically-inspired design.

  12. Continuum deformation of multi-agent systems

    CERN Document Server

    Rastgoftar, Hossein

    2016-01-01

    This monograph presents new algorithms for formation control of multi-agent systems (MAS) based on principles of continuum mechanics. Beginning with an overview of traditional methods, the author then introduces an innovative new approach whereby agents of an MAS are considered as particles in a continuum evolving in ℝn whose desired configuration is required to satisfy an admissible deformation function. The necessary theory and its validation on a mobile-agent-based swarm test bed are considered for two primary tasks: homogeneous transformation of the MAS and deployment of a random distribution of agents on a desired configuration. The framework for this model is based on homogeneous transformations for the evolution of an MAS under no inter-agent communication, local inter-agent communication, and intelligent perception by agents. Different communication protocols for MAS evolution, the robustness of tracking of a desired motion by an MAS evolving in ℝn, and the effect of communication delays in an MAS...

  13. Radio continuum interferometry of dark clouds: A search for newly formed HII regions

    International Nuclear Information System (INIS)

    Gilmore, W.S.

    1978-01-01

    A search for compact HII regions embedded in dark clouds has been carried out in an effort to study local massive star formation. Approximately 20% of the total area of opaque dark cloud material in the sky with Av greater than or equal to 6 mag was surveyed with the NRAO three-element interferometer at 2695 MHz, and at least 5% more was surveyed with the NRAO 300-foot telescope at 4750 MHz. The regions surveyed include the dark cloud complexes in Perseus, Taurus, Orion, and Ophiuchus, as well as several smaller cloud complexes and individual clouds. No hidden compact HII regions embedded inside dark clouds were detected with certainty in the radio continuum. However, eleven HII regions with associated visible emission and eighteen other possible HII regions were detected. Five infrared sources thought to have the luminosities of early B stars were not detected in the radio continuum. These five sources showed high correlation with the presence of CO self-absorption, CO emission over a wide range of velocities, and type I OH masers, but an absence of coincident visible nebulosity and detectable radio continuum emission. Therefore, it is suggested that they represent an earlier evolutionary stage than those HII region detected in the radio continuum. This first evolutionary state marks the presence of ''pre-emergent'' (with respect to the molecular cloud) cocoon stars. HII regions in the second evolutionary state are marked by the presence of detectable radio continuum emission, i.e., they are stronger than 10 mJy at 2695 MHz. They have associated visible nebulosity, are relatively large, and appear to be located at the edges of molecular clouds. These are designated as ''emergent edge'' HII regions. The fact that many young HII regions are edge HII regions implies that massive stars are born near the edges of clouds, a phenomenon previously suggested by several other investigators

  14. Continuum capture in the three-body problem

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1980-01-01

    The three-body problem, especially the problem of electron capture to the continuum in heavy particle collisions is reviewed. Major topics covered include: second born-induced asymmetry in electron capture to the continuum; historical context, links to other tests of atomic scattering theory; experiments characterizing the velocity distribution of ECC electrons; other atomic physics tests of high velocity Born expansions; atom capture; capture by positrons; and pion capture to the continuum

  15. Method of manufacturing a graphite coated fuel can

    International Nuclear Information System (INIS)

    Saito, Koichi; Uchida, Shunsuke.

    1984-01-01

    Purpose: To improve the close bondability and homogeneity of a graphite coating formed at the inner surface of a fuel can. Method: A coating containing graphite dispersed in a volatile organic solvent is used and a graphite coating is formed to the inner surface of a fuel can by way of a plunger method. After applying graphite coating, an inert gas is caused to flow at a certain flow rate to the inside of the fuel can horizontally rotaged so that gassification and evaporation of the volatile organic solvent contained in the graphite coating may be promoted. Since drying of the graphite coating coated to the inner surface of the fuel can thus be controlled, a graphite coating with satisfactory close bondability and homogeneity can be formed. (Kawakami, Y.)

  16. Ion irradiated graphite exposed to fusion-relevant deuterium plasma

    International Nuclear Information System (INIS)

    Deslandes, Alec; Guenette, Mathew C.; Corr, Cormac S.; Karatchevtseva, Inna; Thomsen, Lars; Ionescu, Mihail; Lumpkin, Gregory R.; Riley, Daniel P.

    2014-01-01

    Graphite samples were irradiated with 5 MeV carbon ions to simulate the damage caused by collision cascades from neutron irradiation in a fusion environment. The ion irradiated graphite samples were then exposed to a deuterium plasma in the linear plasma device, MAGPIE, for a total ion fluence of ∼1 × 10 24 ions m −2 . Raman and near edge X-ray absorption fine structure (NEXAFS) spectroscopy were used to characterize modifications to the graphitic structure. Ion irradiation was observed to decrease the graphitic content and induce disorder in the graphite. Subsequent plasma exposure decreased the graphitic content further. Structural and surface chemistry changes were observed to be greatest for the sample irradiated with the greatest fluence of MeV ions. D retention was measured using elastic recoil detection analysis and showed that ion irradiation increased the amount of retained deuterium in graphite by a factor of four

  17. GRAPHITIZATION OF METASEDIMENTARY ROCKS IN THE WESTERN KONYA

    Directory of Open Access Journals (Sweden)

    Hüseyin KURT

    2000-01-01

    Full Text Available The Paleozoic-Mesozoic metasedimentary rocks in the study area are metacarbonate, metachert, metapelite, metasandstone and metaconglomerate. Graphite layers are 1cm to 2m thick, extend laterally for tens of meters and are intercalated with metasedimentary rocks. Generally, the graphite is black in color, with a well developed cleavage which is concordant with the cleavage of the host rocks. In addition, the crystal and flake graphites formed in metasedimentary rocks are mostly aligned parallel to the cleavage planes. These metamorphic rocks are subjected to shearing and granulation providing structural control for the development of graphite. It was probably this phenomenon that first led to emphasize the relationship between graphite and metasedimentary rocks. Graphite mineralization has been controlled by bedding, microfractures and granulations. Briefly, the metamorphism has converted carbonaceous matter into graphite .

  18. Hydrophilization of graphite using plasma above/in a solution

    Science.gov (United States)

    Hoshino, Shuhei; Kawahara, Kazuma; Takeuchi, Nozomi

    2018-01-01

    A hydrophilization method for graphite is required for applications such as conductive ink. In typical chemical oxidation methods for graphite have the problems of producing many defects in graphite and a large environmental impact. In recent years, the plasma treatment has attracted attention because of the high quality of the treated samples and the low environmental impact. In this study, we proposed an above-solution plasma treatment with a high contact probability of graphite and plasma since graphite accumulates on the solution surface due to its hydrophobicity, which we compared with a so-called solution plasma treatment. Graphite was hydrophilized via reactions with OH radicals generated by the plasma. It was confirmed that hydroxyl and carboxyl groups were modified to the graphite and the dispersibility was improved. The above-solution plasma achieved more energy-efficient hydrophilization than the solution plasma and it was possible to enhance the dispersibility by increasing the plasma-solution contact area.

  19. Crystallization degree change of expanded graphite by milling and annealing

    International Nuclear Information System (INIS)

    Tang Qunwei; Wu Jihuai; Sun Hui; Fang Shijun

    2009-01-01

    Expanded graphite was ball milled with a planetary mill in air atmosphere, and subsequently thermal annealed. The samples were characterized by using X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). It was found that in the milling initial stage (less than 12 h), the crystallization degree of the expanded graphite declined gradually, but after milling more than 16 h, a recrystallization of the expanded graphite toke place, and ordered nanoscale expanded graphite was formed gradually. In the annealing initial stage, the non-crystallization of the graphite occurred, but, beyond an annealing time, recrystallizations of the graphite arise. Higher annealing temperature supported the recrystallization. The milled and annealed expanded graphite still preserved the crystalline structure as raw material and hold high thermal stability.

  20. Progress in radioactive graphite waste management. Additional information

    International Nuclear Information System (INIS)

    2010-06-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management