Continuum methods of physical modeling continuum mechanics, dimensional analysis, turbulence
Hutter, Kolumban
2004-01-01
The book unifies classical continuum mechanics and turbulence modeling, i.e. the same fundamental concepts are used to derive model equations for material behaviour and turbulence closure and complements these with methods of dimensional analysis. The intention is to equip the reader with the ability to understand the complex nonlinear modeling in material behaviour and turbulence closure as well as to derive or invent his own models. Examples are mostly taken from environmental physics and geophysics.
Romano, Antonio
2010-01-01
This book offers a broad overview of the potential of continuum mechanics to describe a wide range of macroscopic phenomena in real-world problems. Building on the fundamentals presented in the authors' previous book, Continuum Mechanics using Mathematica(R), this new work explores interesting models of continuum mechanics, with an emphasis on exploring the flexibility of their applications in a wide variety of fields.Specific topics, which have been chosen to show the power of continuum mechanics to characterize the experimental behavior of real phenomena, include: * various aspects of nonlin
Spencer, A J M
2004-01-01
The mechanics of fluids and the mechanics of solids represent the two major areas of physics and applied mathematics that meet in continuum mechanics, a field that forms the foundation of civil and mechanical engineering. This unified approach to the teaching of fluid and solid mechanics focuses on the general mechanical principles that apply to all materials. Students who have familiarized themselves with the basic principles can go on to specialize in any of the different branches of continuum mechanics. This text opens with introductory chapters on matrix algebra, vectors and Cartesian ten
Continuum Damage Mechanics A Continuum Mechanics Approach to the Analysis of Damage and Fracture
Murakami, Sumio
2012-01-01
Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry. This, in turn, has caused more interest in continuum damage mechanics and its engineering applications. This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook. The book consists of two parts and an appendix. Part I is concerned with the foundation of continuum damage mechanics. Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2. In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application ...
Antieigenvalue analysis for continuum mechanics, economics, and number theory
Directory of Open Access Journals (Sweden)
Gustafson Karl
2016-01-01
Full Text Available My recent book Antieigenvalue Analysis, World-Scientific, 2012, presented the theory of antieigenvalues from its inception in 1966 up to 2010, and its applications within those forty-five years to Numerical Analysis, Wavelets, Statistics, Quantum Mechanics, Finance, and Optimization. Here I am able to offer three further areas of application: Continuum Mechanics, Economics, and Number Theory. In particular, the critical angle of repose in a continuum model of granular materials is shown to be exactly my matrix maximum turning angle of the stress tensor of the material. The important Sharpe ratio of the Capital Asset Pricing Model is now seen in terms of my antieigenvalue theory. Euclid’s Formula for Pythagorean triples becomes a special case of my operator trigonometry.
Computational Continuum Mechanics
Shabana, Ahmed A
2011-01-01
This text presents the theory of continuum mechanics using computational methods. Ideal for students and researchers, the second edition features a new chapter on computational geometry and finite element analysis.
Continuum damage mechanics analysis of crack tip zone
International Nuclear Information System (INIS)
Yinchu, L.; Jianping, Z.
1989-01-01
The crack tip field and its intensity factor play an important role in fracture mechanics. Generally, the damage such as microcracks, microvoids etc. will initiate and grow in materials as the cracked body is subjected to external loadings, especially in the crack tip zone. The damage evolution will load to the crack tip damage field and the change of the stress, strain and displacement fields of cracks tip zone. In this paper, on the basis of continuum damage mechanics, the authors have derived the equations which the crack tip field and its intensity factor must satisfy in a loading process, calculated the angle distribution curves of stress, strain and displacement fields in a crack tip zone and have compared them with the corresponding curves of HRR field and linear elastic field in undamaged materials. The equations of crack tip field intensity factors have been solved and its solutions give the variation of the field intensity factors with the loading parameter
Continuum mechanics of anisotropic materials
Cowin, Stephen C
2013-01-01
Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.
Chaves, Eduardo W V
2013-01-01
This publication is aimed at students, teachers, and researchers of Continuum Mechanics and focused extensively on stating and developing Initial Boundary Value equations used to solve physical problems. With respect to notation, the tensorial, indicial and Voigt notations have been used indiscriminately. The book is divided into twelve chapters with the following topics: Tensors, Continuum Kinematics, Stress, The Objectivity of Tensors, The Fundamental Equations of Continuum Mechanics, An Introduction to Constitutive Equations, Linear Elasticity, Hyperelasticity, Plasticity (small and large deformations), Thermoelasticity (small and large deformations), Damage Mechanics (small and large deformations), and An Introduction to Fluids. Moreover, the text is supplemented with over 280 figures, over 100 solved problems, and 130 references.
Introduction to continuum mechanics
Lai, W Michael; Rubin, David
1996-01-01
Introduction to Continuum Mechanics is a recently updated and revised text which is perfect for either introductory courses in an undergraduate engineering curriculum or for a beginning graduate course.Continuum Mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation, and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, a
Fundamentals of continuum mechanics
Rudnicki, John W
2014-01-01
A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally. This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energ
Continuum mechanics for engineers
Mase, G Thomas; Mase, George E
2009-01-01
Continuum TheoryContinuum MechanicsStarting OverNotationEssential MathematicsScalars, Vectors and Cartesian TensorsTensor Algebra in Symbolic Notation - Summation ConventionIndicial NotationMatrices and DeterminantsTransformations of Cartesian TensorsPrincipal Values and Principal DirectionsTensor Fields, Tensor CalculusIntegral Theorems of Gauss and StokesStress PrinciplesBody and Surface Forces, Mass DensityCauchy Stress PrincipleThe Stress TensorForce and Moment Equilibrium; Stress Tensor SymmetryStress Transformation LawsPrincipal Stresses; Principal Stress DirectionsMaximum and Minimum Stress ValuesMohr's Circles For Stress Plane StressDeviator and Spherical Stress StatesOctahedral Shear StressKinematics of Deformation and MotionParticles, Configurations, Deformations and MotionMaterial and Spatial CoordinatesLangrangian and Eulerian DescriptionsThe Displacement FieldThe Material DerivativeDeformation Gradients, Finite Strain TensorsInfinitesimal Deformation TheoryCompatibility EquationsStretch RatiosRot...
Introduction to continuum mechanics
Rubin, David; Lai, W Michael
1994-01-01
Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples and problems, many with solutions. Through the addition of more advanced material (solution of classical elasticity problems, constitutive e
Multiscale methods coupling atomistic and continuum mechanics: analysis of a simple case
Blanc , Xavier; Le Bris , Claude; Legoll , Frédéric
2007-01-01
International audience; The description and computation of fine scale localized phenomena arising in a material (during nanoindentation, for instance) is a challenging problem that has given birth to many multiscale methods. In this work, we propose an analysis of a simple one-dimensional method that couples two scales, the atomistic one and the continuum mechanics one. The method includes an adaptive criterion in order to split the computational domain into two subdomains, that are described...
On the continuum mechanics approach for the analysis of single walled carbon nanotubes
Chaudhry, M. S.; Czekanski, A.
2016-04-01
Today carbon nanotubes have found various applications in structural, thermal and almost every field of engineering. Carbon nanotubes provide great strength, stiffness resilience properties. Evaluating the structural behavior of nanoscale materials is an important task. In order to understand the materialistic behavior of nanotubes, atomistic models provide a basis for continuum mechanics modelling. Although the properties of bulk materials are consistent with the size and depends mainly on the material but the properties when we are in Nano-range, continuously change with the size. Such models start from the modelling of interatomic interaction. Modelling and simulation has advantage of cost saving when compared with the experiments. So in this project our aim is to use a continuum mechanics model of carbon nanotubes from atomistic perspective and analyses some structural behaviors of nanotubes. It is generally recognized that mechanical properties of nanotubes are dependent upon their structural details. The properties of nanotubes vary with the varying with the interatomic distance, angular orientation, radius of the tube and many such parameters. Based on such models one can analyses the variation of young's modulus, strength, deformation behavior, vibration behavior and thermal behavior. In this study some of the structural behaviors of the nanotubes are analyzed with the help of continuum mechanics models. Using the properties derived from the molecular mechanics model a Finite Element Analysis of carbon nanotubes is performed and results are verified. This study provides the insight on continuum mechanics modelling of nanotubes and hence the scope to study the effect of various parameters on some structural behavior of nanotubes.
Sendova, T.; Walton, J. R.
2010-01-01
In this paper we focus on the analysis of the partial differential equations arising from a new approach to modeling brittle fracture based on an extension of continuum mechanics to the nanoscale. It is shown that ascribing constant surface tension
Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.
2011-01-01
The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.
Elementary Continuum Mechanics for Everyone
DEFF Research Database (Denmark)
Byskov, Esben
numerical method, the finite element method, including means of mending inherent problems •An informal, yet precise exposition that emphasizes not just how a topic is treated, but discusses why a particular choice is made The book opens with a derivation of kinematically nonlinear 3-D continuum mechanics...
Solernou, Albert; Hanson, Benjamin S; Richardson, Robin A; Welch, Robert; Read, Daniel J; Harlen, Oliver G; Harris, Sarah A
2018-03-01
Fluctuating Finite Element Analysis (FFEA) is a software package designed to perform continuum mechanics simulations of proteins and other globular macromolecules. It combines conventional finite element methods with stochastic thermal noise, and is appropriate for simulations of large proteins and protein complexes at the mesoscale (length-scales in the range of 5 nm to 1 μm), where there is currently a paucity of modelling tools. It requires 3D volumetric information as input, which can be low resolution structural information such as cryo-electron tomography (cryo-ET) maps or much higher resolution atomistic co-ordinates from which volumetric information can be extracted. In this article we introduce our open source software package for performing FFEA simulations which we have released under a GPLv3 license. The software package includes a C ++ implementation of FFEA, together with tools to assist the user to set up the system from Electron Microscopy Data Bank (EMDB) or Protein Data Bank (PDB) data files. We also provide a PyMOL plugin to perform basic visualisation and additional Python tools for the analysis of FFEA simulation trajectories. This manuscript provides a basic background to the FFEA method, describing the implementation of the core mechanical model and how intermolecular interactions and the solvent environment are included within this framework. We provide prospective FFEA users with a practical overview of how to set up an FFEA simulation with reference to our publicly available online tutorials and manuals that accompany this first release of the package.
FE Analysis of Rock with Hydraulic-Mechanical Coupling Based on Continuum Damage Evolution
Directory of Open Access Journals (Sweden)
Yongliang Wang
2016-01-01
Full Text Available A numerical finite element (FE analysis technology is presented for efficient and reliable solutions of rock with hydraulic-mechanical (HM coupling, researching the seepage characteristics and simulating the damage evolution of rock. To be in accord with the actual situation, the rock is naturally viewed as heterogeneous material, in which Young’s modulus, permeability, and strength property obey the typical Weibull distribution function. The classic Biot constitutive relation for rock as porous medium is introduced to establish a set of equations coupling with elastic solid deformation and seepage flow. The rock is subsequently developed into a novel conceptual and practical model considering the damage evolution of Young’s modulus and permeability, in which comprehensive utilization of several other auxiliary technologies, for example, the Drucker-Prager strength criterion, the statistical strength theory, and the continuum damage evolution, yields the damage variable calculating technology. To this end, an effective and reliable numerical FE analysis strategy is established. Numerical examples are given to show that the proposed method can establish heterogeneous rock model and be suitable for different load conditions and furthermore to demonstrate the effectiveness and reliability in the seepage and damage characteristics analysis for rock.
Continuum mechanics elasticity, plasticity, viscoelasticity
Dill, Ellis H
2006-01-01
FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...
Directory of Open Access Journals (Sweden)
Albert Solernou
2018-03-01
Full Text Available Fluctuating Finite Element Analysis (FFEA is a software package designed to perform continuum mechanics simulations of proteins and other globular macromolecules. It combines conventional finite element methods with stochastic thermal noise, and is appropriate for simulations of large proteins and protein complexes at the mesoscale (length-scales in the range of 5 nm to 1 μm, where there is currently a paucity of modelling tools. It requires 3D volumetric information as input, which can be low resolution structural information such as cryo-electron tomography (cryo-ET maps or much higher resolution atomistic co-ordinates from which volumetric information can be extracted. In this article we introduce our open source software package for performing FFEA simulations which we have released under a GPLv3 license. The software package includes a C ++ implementation of FFEA, together with tools to assist the user to set up the system from Electron Microscopy Data Bank (EMDB or Protein Data Bank (PDB data files. We also provide a PyMOL plugin to perform basic visualisation and additional Python tools for the analysis of FFEA simulation trajectories. This manuscript provides a basic background to the FFEA method, describing the implementation of the core mechanical model and how intermolecular interactions and the solvent environment are included within this framework. We provide prospective FFEA users with a practical overview of how to set up an FFEA simulation with reference to our publicly available online tutorials and manuals that accompany this first release of the package.
Variational principles of continuum mechanics I fundamentals
Berdichevskii, V L
2009-01-01
This is a concise and understandable book about variational principles of continuum mechanics. The book is accessible to applied mathematicians, physicists and engineers who have an interest in continuum mechanics.
Variational principles of continuum mechanics II applications
Berdichevsky, Victor L
2009-01-01
This concise and understandable book about variational principles of continuum mechanics presents the classical models. The book is accessible to applied mathematicians, physicists and engineers who have an interest in continuum mechanics.
Continuum mechanics of electromagnetic solids
Maugin, GA
1988-01-01
This volume is a rigorous cross-disciplinary theoretical treatment of electromechanical and magnetomechanical interactions in elastic solids. Using the modern style of continuum thermomechanics (but without excessive formalism) it starts from basic principles of mechanics and electromagnetism, and goes on to unify these two fields in a common framework. It treats linear and nonlinear static and dynamic problems in a variety of elastic solids such as piezoelectrics, electricity conductors, ferromagnets, ferroelectrics, ionic crystals and ceramics. Chapters 1-3 are introductory, describing the e
Tensor algebra and tensor analysis for engineers with applications to continuum mechanics
Itskov, Mikhail
2015-01-01
This is the fourth and revised edition of a well-received book that aims at bridging the gap between the engineering course of tensor algebra on the one side and the mathematical course of classical linear algebra on the other side. In accordance with the contemporary way of scientific publications, a modern absolute tensor notation is preferred throughout. The book provides a comprehensible exposition of the fundamental mathematical concepts of tensor calculus and enriches the presented material with many illustrative examples. In addition, the book also includes advanced chapters dealing with recent developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics. Hence, this monograph addresses graduate students as well as scientists working in this field. In each chapter numerous exercises are included, allowing for self-study and intense practice. Solutions to the exercises are also provided.
Continuum mechanics of single-substance bodies
Eringen, A Cemal
1975-01-01
Continuum Physics, Volume II: Continuum Mechanics of Single-Substance Bodies discusses the continuum mechanics of bodies constituted by a single substance, providing a thorough and precise presentation of exact theories that have evolved during the past years. This book consists of three parts-basic principles, constitutive equations for simple materials, and methods of solution. Part I of this publication is devoted to a discussion of basic principles irrespective of material geometry and constitution that are valid for all kinds of substances, including composites. The geometrical notions, k
Teaching Continuum Mechanics in a Mechanical Engineering Program
Liu, Yucheng
2011-01-01
This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…
Sendova, T.
2010-02-15
In this paper we focus on the analysis of the partial differential equations arising from a new approach to modeling brittle fracture based on an extension of continuum mechanics to the nanoscale. It is shown that ascribing constant surface tension to the fracture surfaces and using the appropriate crack surface boundary condition given by the jump momentum balance leads to a sharp crack opening profile at the crack tip but predicts logarithmically singular crack tip stress. However, a modified model, where the surface excess property is responsive to the curvature of the fracture surfaces, yields bounded stresses and a cusp-like opening profile at the crack tip. Further, two possible fracture criteria in the context of the new theory are discussed. The first is an energy-based crack growth condition, while the second employs the finite crack tip stress the model predicts. The classical notion of energy release rate is based upon the singular solution, whereas for the modeling approach adopted here, a notion analogous to the energy release rate arises through a different mechanism associated with the rate of working of the surface excess properties at the crack tip. © The Author(s), 2010.
Continuum mechanics the birthplace of mathematical models
Allen, Myron B
2015-01-01
Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer. This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe
A framework for adaptive e-learning for continuum mechanics and structural analysis
Mosquera Feijoo, Juan Carlos; Plaza Beltrán, Luis Francisco; González Rodrigo, Beatriz
2015-01-01
This paper presents a project for providing the students of Structural Engineering with the flexibility to learn outside classroom schedules. The goal is a framework for adaptive E-learning based on a repository of open educational courseware with a set of basic Structural Engineering concepts and fundamentals. These are paramount for students to expand their technical knowledge and skills in structural analysis and design of tall buildings, arch-type structures as well as bridges. Thus, conc...
Nonlinear continuum mechanics and large inelastic deformations
Dimitrienko, Yuriy I
2010-01-01
This book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics - kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead t...
Sensitivity filtering from a continuum mechanics perspective
DEFF Research Database (Denmark)
Sigmund, Ole; Maute, Kurt
2012-01-01
In topology optimization filtering is a popular approach for preventing numerical instabilities. This short note shows that the well-known sensitivity filtering technique, that prevents checkerboards and ensures mesh-independent designs in density-based topology optimization, is equivalent to min...... to minimizing compliance for nonlocal elasticity problems known from continuum mechanics. Hence, the note resolves the long-standing quest for finding an explanation and physical motivation for the sensitivity filter....
Continuum damage mechanics method for fatigue growth of surface cracks
International Nuclear Information System (INIS)
Feng Xiqiao; He Shuyan
1997-01-01
With the background of leak-before-break (LBB) analysis of pressurized vessels and pipes in nuclear plants, the fatigue growth problem of either circumferential or longitudinal semi-elliptical surface cracks subjected to cyclic loading is studied by using a continuum damage mechanics method. The fatigue damage is described by a scalar damage variable. From the damage evolution equation at the crack tip, a crack growth equation similar to famous Paris' formula is derived, which shows the physical meaning of Paris' formula. Thereby, a continuum damage mechanics approach is developed to analyze the configuration evolution of surface cracks during fatigue growth
Non-classical continuum mechanics a dictionary
Maugin, Gérard A
2017-01-01
This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, every entry is followed by a cross-reference to other related subject entries in the dictionary.
Fundamentals of continuum mechanics – classical approaches and new trends
Altenbach, H.
2018-04-01
Continuum mechanics is a branch of mechanics that deals with the analysis of the mechanical behavior of materials modeled as a continuous manifold. Continuum mechanics models begin mostly by introducing of three-dimensional Euclidean space. The points within this region are defined as material points with prescribed properties. Each material point is characterized by a position vector which is continuous in time. Thus, the body changes in a way which is realistic, globally invertible at all times and orientation-preserving, so that the body cannot intersect itself and as transformations which produce mirror reflections are not possible in nature. For the mathematical formulation of the model it is also assumed to be twice continuously differentiable, so that differential equations describing the motion may be formulated. Finally, the kinematical relations, the balance equations, the constitutive and evolution equations and the boundary and/or initial conditions should be defined. If the physical fields are non-smooth jump conditions must be taken into account. The basic equations of continuum mechanics are presented following a short introduction. Additionally, some examples of solid deformable continua will be discussed within the presentation. Finally, advanced models of continuum mechanics will be introduced. The paper is dedicated to Alexander Manzhirov’s 60th birthday.
Elementary Continuum Mechanics for Everyone - and Some More
DEFF Research Database (Denmark)
Byskov, Esben
Quite trivially, Continuum mechanics per se deals with the description of deformations of three-dimensional continua i.e. models whose properties are independent of scale in that the continuum does not possess a structure. Thus, continuum mechanics does not try to model the atomic structure...
Elementary Continuum Mechanics for Everyone - And Some More
DEFF Research Database (Denmark)
Byskov, Esben
Quite trivially, Continuum mechanics per se deals with the description of deformations of three-dimensional continua i.e. models whose properties are independent of scale in that the continuum does not possess a structure. Thus, continuum mechanics does not try to model the atomic structure...
On nonlocal modeling in continuum mechanics
Directory of Open Access Journals (Sweden)
Adam Martowicz
2018-01-01
Full Text Available The objective of the paper is to provide an overview of nonlocal formulations for models of elastic solids. The author presents the physical foundations for nonlocal theories of continuum mechanics, followed by various analytical and numerical techniques. The characteristics and range of practical applications for the presented approaches are discussed. The results of numerical simulations for the selected case studies are provided to demonstrate the properties of the described methods. The paper is illustrated with outcomes from peridynamic analyses. Fatigue and axial stretching were simulated to show the capabilities of the developed numerical tools.
Polymer quantum mechanics and its continuum limit
International Nuclear Information System (INIS)
Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.
2007-01-01
A rather nonstandard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation, has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle, and a simple cosmological model
Continuum Mechanics of Beam and Plate Flexure
DEFF Research Database (Denmark)
Jönsson, Jeppe
This text has been written and used during the spring of 1995 for a course on flexural mechanics of beams and plates at Aalborg University. The idea has been to concentrate on basic principles of the theories, which are of importance to the modern structural engineer. Today's structural engineer...... must be acquainted with the classic beam and plate theories, when reading manuals and using modern software tools such as the finite element method. Each chapter includes supplementary theory and derivations enabling consultation of the notes also at a later stage of study. A preliminary chapter...... introduces the modern notation used in textbooks and in research today. It further gives an introduction to three-dimensional continuum mechanics of elastic bodies and the related principles of virtual work. The ideas to give the students a basic understanding of the stresses and strains, the equilibrium...
Hu, M.; Rutqvist, J.
2017-12-01
The disposal of heat-generating nuclear waste in salt host rock establishes a thermal gradient around the waste package that may cause brine inclusions in the salt grains to migrate toward the waste package. In this study, a dual-continuum model is developed to analyze such a phenomenon. This model is based on the Finite Volume Method (FVM), and it is fully thermal-hydro-mechanical (THM) coupled. For fluid flow, the dual-continuum model considers flow in the interconnected pore space and also in the salt grains. The mass balance of salt and water in these two continua is separately established, and their coupling is represented by flux associated with brine migration. Together with energy balance, such a system produces a coupled TH model with strongly nonlinear features. For mechanical analysis, a new formulation is developed based on the Voronoi tessellated mesh. By relating each cell to several connected triangles, first-order approximation is constructed. The coupling between thermal and mechanical fields is only considered in terms of thermal expansion. And the coupling between the hydraulic and mechanical fields in terms of pore-volume effects is consistent with Biot's theory. Therefore, a fully coupled THM model is developed. Several demonstration examples are provided to verify the model. Last the new model is applied to analyze coupled THM behavior and the results are compared with experimental data.
SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics
Energy Technology Data Exchange (ETDEWEB)
Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.
1998-09-01
This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.
Continuum mechanics using Mathematica fundamentals, methods, and applications
Romano, Antonio
2014-01-01
This textbook's methodological approach familiarizes readers with the mathematical tools required to correctly define and solve problems in continuum mechanics. Covering essential principles and fundamental applications, this second edition of Continuum Mechanics using Mathematica® provides a solid basis for a deeper study of more challenging and specialized problems related to nonlinear elasticity, polar continua, mixtures, piezoelectricity, ferroelectricity, magneto-fluid mechanics, and state changes (see A. Romano, A. Marasco, Continuum Mechanics: Advanced Topics and Research Trends, Springer (Birkhäuser), 2010, ISBN 978-0-8176-4869-5). Key topics and features: * Concise presentation strikes a balance between fundamentals and applications * Requisite mathematical background carefully collected in two introductory chapters and one appendix * Recent developments highlighted through coverage of more significant applications to areas such as wave propagation, fluid mechanics, porous media, linear elasticity....
ICMS Workshop on Differential Geometry and Continuum Mechanics
Grinfeld, Michael; Knops, R
2015-01-01
This book examines the exciting interface between differential geometry and continuum mechanics, now recognised as being of increasing technological significance. Topics discussed include isometric embeddings in differential geometry and the relation with microstructure in nonlinear elasticity, the use of manifolds in the description of microstructure in continuum mechanics, experimental measurement of microstructure, defects, dislocations, surface energies, and nematic liquid crystals. Compensated compactness in partial differential equations is also treated. The volume is intended for specialists and non-specialists in pure and applied geometry, continuum mechanics, theoretical physics, materials and engineering sciences, and partial differential equations. It will also be of interest to postdoctoral scientists and advanced postgraduate research students. These proceedings include revised written versions of the majority of papers presented by leading experts at the ICMS Edinburgh Workshop on Differential G...
Self-Assessment Exercises in Continuum Mechanics with Autonomous Learning
Marcé-Nogué, Jordi; Gil, LLuís; Pérez, Marco A.; Sánchez, Montserrat
2013-01-01
The main objective of this work is to generate a set of exercises to improve the autonomous learning in "Continuum Mechanics" through a virtual platform. Students will have to resolve four exercises autonomously related to the subject developed in class and they will post the solutions on the virtual platform within a deadline. Students…
Boyina, Gangadhara Rao T.; Rayavarapu, Vijaya Kumar; V. V., Subba Rao
2017-02-01
The prediction of ultimate strength remains the main challenge in the simulation of the mechanical response of composite structures. This paper examines continuum damage model to predict the strength and size effects for deformation and failure response of polymer composite laminates when subjected to complex state of stress. The paper also considers how the overall results of the exercise can be applied in design applications. The continuum damage model is described and the resulting prediction of size effects are compared against the standard benchmark solutions. The stress analysis for strength prediction of rotary wing aircraft cabin door is carried out. The goal of this study is to extend the proposed continuum damage model such that it can be accurately predict the failure around stress concentration regions. The finite element-based continuum damage mechanics model can be applied to the structures and components of arbitrary configurations where analytical solutions could not be developed.
Continuum mechanical and computational aspects of material behavior
Energy Technology Data Exchange (ETDEWEB)
Fried, Eliot; Gurtin, Morton E.
2000-02-10
The focus of the work is the application of continuum mechanics to materials science, specifically to the macroscopic characterization of material behavior at small length scales. The long-term goals are a continuum-mechanical framework for the study of materials that provides a basis for general theories and leads to boundary-value problems of physical relevance, and computational methods appropriate to these problems supplemented by physically meaningful regularizations to aid in their solution. Specific studies include the following: the development of a theory of polycrystalline plasticity that incorporates free energy associated with lattice mismatch between grains; the development of a theory of geometrically necessary dislocations within the context of finite-strain plasticity; the development of a gradient theory for single-crystal plasticity with geometrically necessary dislocations; simulations of dynamical fracture using a theory that allows for the kinking and branching of cracks; computation of segregation and compaction in flowing granular materials.
From cells to tissue: A continuum model of epithelial mechanics
Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru
2017-08-01
A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.
Variational principles of continuum mechanics. Vol. 1. Fundamentals
Energy Technology Data Exchange (ETDEWEB)
Berdichevsky, Victor L. [Wayne State Univ., Detroit, MI (United States). Dept. of Mechanical Engineering
2009-07-01
The book reviews the two features of the variational approach: its use as a universal tool to describe physical phenomena and as a source for qualitative and quantitative methods of studying particular problems. Berdichevsky's work differs from other books on the subject in focusing mostly on the physical origin of variational principles as well as establishing their interrelations. For example, the Gibbs principles appear as a consequence of the Einstein formula for thermodynamic fluctuations rather than as the first principles of the theory of thermodynamic equilibrium. Mathematical issues are considered as long as they shed light on the physical outcomes and/or provide a useful technique for the direct study of variational problems. In addition, a thorough account of variational principles discovered in various branches of continuum mechanics is given. In this book, the first volume, the author covers the variational principles for systems with a finite number of degrees of freedom; the variational principles of thermodynamics; the basics of continuum mechanics; the variational principles for classical models of continuum mechanics, such as elastic and plastic bodies, and ideal and viscous fluids; and direct methods of calculus of variations. (orig.)
Directory of Open Access Journals (Sweden)
Zhi Yan
2017-01-01
Full Text Available Piezoelectric nanomaterials (PNs are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.
Yan, Zhi; Jiang, Liying
2017-01-26
Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.
Continuum damage mechanics: Present state and future trends
International Nuclear Information System (INIS)
Chaboche, J.L.
1987-01-01
Continuum Damage Mechanics (CDM) has developed since the initial works of Kachanov and Rabotnov. The paper gives a review of its main features, of the present possibilities and of further developments. Several aspects are considered successively: damage definitions and measures, damage growth equations and anisotropy effects, and use of CDM for local approaches of fracture. Various materials, loading conditions and damaging processes are incorporated in the same general framework. Particular attention is given to the possible connections between different definitions of damage, especially between the CDM definition and the information obtained from material science. (orig.)
Anisotropic creep damage in the framework of continuum damage mechanics
International Nuclear Information System (INIS)
Caboche, J.L.
1983-01-01
For some years, various works have shown the possibility of applying continuum mechanics to model the evolution of the damage variable, initially introduced by Kachanov. Of interest here are the complex problems posed by the anisotropy which affects both the elastic behaviour and the viscoplastic one, and also the rupture phenomenon. The main concepts of the Continuum Damage Mechanics are briefly reviewed together with some classical ways to introduce anisotropy of damage in the particular case of proportional loadings. Based on previous works, two generalizations are presented and discussed, which use different kinds of tensors to describe the anisotropy of creep damage: - The first one, by Murakami and Ohno introduces a second rank damage tensor and a net stress tensor through a net area definition. The effective stress-strain behaviour is then obtained by a fourth rank tensor. - The second theory, by the author, uses one effective stress tensor only, defined in terms of the macroscopic strain behaviour, through a fourth-order non-symmetrical damage tensor. The two theories are compared at several levels: difference and similarities are pointed out for the damage evolution during tensile creep as well as for anisotropy effects. The possibilities are discussed and compared on the basis of some existing experimental results, which leads to a partial validation of the two approaches. (orig.)
Growth limit of carbon onions – A continuum mechanical study
DEFF Research Database (Denmark)
Todt, Melanie; Bitsche, Robert; Hartmann, Markus A.
2014-01-01
of carbon onions and, thus, can be a reason for the limited size of such particles. The loss of stability is mainly evoked by van der Waals interactions between misfitting neighboring layers leading to self-equilibrating stress states in the layers due to mutual accommodation. The influence of the curvature......The growth of carbon onions is simulated using continuum mechanical shell models. With this models it is shown that, if a carbon onion has grown to a critical size, the formation of an additional layer leads to the occurrence of a structural instability. This instability inhibits further growth...... induced surface energy and its consequential stress state is investigated and found to be rather negligible. Furthermore, it is shown that the nonlinear character of the van der Waals interactions has to be considered to obtain maximum layer numbers comparable to experimental observations. The proposed...
Wave propagation in nanostructures nonlocal continuum mechanics formulations
Gopalakrishnan, Srinivasan
2013-01-01
Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behav...
International Nuclear Information System (INIS)
Shimizu, Hiroyuki; Fujita, Tomoo; Nakama, Shigeo; Koyama, Tomofumi; Chijimatsu, Masakazu
2011-01-01
This paper reports on the results of the numerical simulations for the analysis of coupled thermal-mechanical processes in the near field of a HLW repository using Finite Element Method (FEM) and Distinct Element Method (DEM). The FEM approach provides quantitative information of the change of stress during excavation and heating process. On the other hand, the DEM approach shows the crack propagation process at the borehole surface, and this result agrees qualitatively well with the experimental observation. By comparing these results obtained from both approaches, quantitative and qualitative insights into various aspects of the processes occurred in the near field can be obtained. (author)
A continuum mechanics constitutive framework for transverse isotropic soft tissues
Garcia-Gonzalez, D.; Jérusalem, A.; Garzon-Hernandez, S.; Zaera, R.; Arias, A.
2018-03-01
In this work, a continuum constitutive framework for the mechanical modelling of soft tissues that incorporates strain rate and temperature dependencies as well as the transverse isotropy arising from fibres embedded into a soft matrix is developed. The constitutive formulation is based on a Helmholtz free energy function decoupled into the contribution of a viscous-hyperelastic matrix and the contribution of fibres introducing dispersion dependent transverse isotropy. The proposed framework considers finite deformation kinematics, is thermodynamically consistent and allows for the particularisation of the energy potentials and flow equations of each constitutive branch. In this regard, the approach developed herein provides the basis on which specific constitutive models can be potentially formulated for a wide variety of soft tissues. To illustrate this versatility, the constitutive framework is particularised here for animal and human white matter and skin, for which constitutive models are provided. In both cases, different energy functions are considered: Neo-Hookean, Gent and Ogden. Finally, the ability of the approach at capturing the experimental behaviour of the two soft tissues is confirmed.
Chen, Xi; Cui, Qiang; Tang, Yuye; Yoo, Jejoong; Yethiraj, Arun
2008-07-01
A hierarchical simulation framework that integrates information from molecular dynamics (MD) simulations into a continuum model is established to study the mechanical response of mechanosensitive channel of large-conductance (MscL) using the finite element method (FEM). The proposed MD-decorated FEM (MDeFEM) approach is used to explore the detailed gating mechanisms of the MscL in Escherichia coli embedded in a palmitoyloleoylphosphatidylethanolamine lipid bilayer. In Part I of this study, the framework of MDeFEM is established. The transmembrane and cytoplasmic helices are taken to be elastic rods, the loops are modeled as springs, and the lipid bilayer is approximated by a three-layer sheet. The mechanical properties of the continuum components, as well as their interactions, are derived from molecular simulations based on atomic force fields. In addition, analytical closed-form continuum model and elastic network model are established to complement the MDeFEM approach and to capture the most essential features of gating. In Part II of this study, the detailed gating mechanisms of E. coli-MscL under various types of loading are presented and compared with experiments, structural model, and all-atom simulations, as well as the analytical models established in Part I. It is envisioned that such a hierarchical multiscale framework will find great value in the study of a variety of biological processes involving complex mechanical deformations such as muscle contraction and mechanotransduction.
Directory of Open Access Journals (Sweden)
Himanshu Sharma
2016-07-01
Full Text Available Due to its roots in fundamental thermodynamic framework, continuum damage approach is popular for modeling asphalt concrete behavior. Currently used continuum damage models use mixture averaged values for model parameters and assume deterministic damage process. On the other hand, significant scatter is found in fatigue data generated even under extremely controlled laboratory testing conditions. Thus, currently used continuum damage models fail to account the scatter observed in fatigue data. This paper illustrates a novel approach for probabilistic fatigue life prediction based on viscoelastic continuum damage approach. Several specimens were tested for their viscoelastic properties and damage properties under uniaxial mode of loading. The data thus generated were analyzed using viscoelastic continuum damage mechanics principles to predict fatigue life. Weibull (2 parameter, 3 parameter and lognormal distributions were fit to fatigue life predicted using viscoelastic continuum damage approach. It was observed that fatigue damage could be best-described using Weibull distribution when compared to lognormal distribution. Due to its flexibility, 3-parameter Weibull distribution was found to fit better than 2-parameter Weibull distribution. Further, significant differences were found between probabilistic fatigue curves developed in this research and traditional deterministic fatigue curve. The proposed methodology combines advantages of continuum damage mechanics as well as probabilistic approaches. These probabilistic fatigue curves can be conveniently used for reliability based pavement design. Keywords: Probabilistic fatigue curve, Continuum damage mechanics, Weibull distribution, Lognormal distribution
Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption
Ma, Qiancheng
2014-01-01
The water-vapor continuum absorption plays an important role in the radiative balance in the Earth's atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the far-wings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.
Energy Technology Data Exchange (ETDEWEB)
Hoogenboom, J.E. (Technische Hogeschool Delft (Netherlands))
1983-01-01
From the collision mechanics of inelastic discrete-level scattering several properties are derived for the secondary-neutron energy distribution (SNED) for inelastic continuum scattering, when conceived as scattering with continuously-distributed inelastic levels. Using assumptions about the level density and neutron cross section the SNED can be calculated and some examples are shown. A formula is derived to calculate from a given inelastic continuum SNED a function, which is proportional to the level density and the neutron cross section. From this relation further conditions follow for the SNED. Representations for the inelastic continuum SNED currently in use do not, in general, satisfy most of the derived conditions.
International Nuclear Information System (INIS)
Hoogenboom, J.E.
1983-01-01
From the collision mechanics of inelastic discrete-level scattering several properties are derived for the secondary-neutron energy distribution (SNED) for inelastic continuum scattering, when conceived as scattering with continuously-distributed inelastic levels. Using assumptions about the level density and neutron cross section the SNED can be calculated and some examples are shown. A formula is derived to calculate from a given inelastic continuum SNED a function, which is proportional to the level density and the neutron cross section. From this relation further conditions follow for the SNED. Representations for the inelastic continuum SNED currently in use do not, in general, satisfy most of the derived conditions. (author)
Energy Technology Data Exchange (ETDEWEB)
Zimmerman, Jonathan A.; Jones, Reese E.; Templeton, Jeremy Alan; McDowell, David L.; Mayeur, Jason R.; Tucker, Garritt J.; Bammann, Douglas J.; Gao, Huajian
2008-09-01
Materials with characteristic structures at nanoscale sizes exhibit significantly different mechani-cal responses from those predicted by conventional, macroscopic continuum theory. For example,nanocrystalline metals display an inverse Hall-Petch effect whereby the strength of the materialdecreases with decreasing grain size. The origin of this effect is believed to be a change in defor-mation mechanisms from dislocation motion across grains and pileup at grain boundaries at mi-croscopic grain sizes to rotation of grains and deformation within grain boundary interface regionsfor nanostructured materials. These rotational defects are represented by the mathematical conceptof disclinations. The ability to capture these effects within continuum theory, thereby connectingnanoscale materials phenomena and macroscale behavior, has eluded the research community.The goal of our project was to develop a consistent theory to model both the evolution ofdisclinations and their kinetics. Additionally, we sought to develop approaches to extract contin-uum mechanical information from nanoscale structure to verify any developed continuum theorythat includes dislocation and disclination behavior. These approaches yield engineering-scale ex-pressions to quantify elastic and inelastic deformation in all varieties of materials, even those thatpossess highly directional bonding within their molecular structures such as liquid crystals, cova-lent ceramics, polymers and biological materials. This level of accuracy is critical for engineeringdesign and thermo-mechanical analysis is performed in micro- and nanosystems. The researchproposed here innovates on how these nanoscale deformation mechanisms should be incorporatedinto a continuum mechanical formulation, and provides the foundation upon which to develop ameans for predicting the performance of advanced engineering materials.4 AcknowledgmentThe authors acknowledge helpful discussions with Farid F. Abraham, Youping Chen, Terry J
Maugin, Gérard A
2016-01-01
Mixing scientific, historic and socio-economic vision, this unique book complements two previously published volumes on the history of continuum mechanics from this distinguished author. In this volume, Gérard A. Maugin looks at the period from the renaissance to the twentieth century and he includes an appraisal of the ever enduring competition between molecular and continuum modelling views. Chapters trace early works in hydraulics and fluid mechanics not covered in the other volumes and the author investigates experimental approaches, essentially before the introduction of a true concept of stress tensor. The treatment of such topics as the viscoelasticity of solids and plasticity, fracture theory, and the role of geometry as a cornerstone of the field, are all explored. Readers will find a kind of socio-historical appraisal of the seminal contributions by our direct masters in the second half of the twentieth century. The analysis of the teaching and research texts by Duhem, Poincaré and Hilbert on cont...
Directory of Open Access Journals (Sweden)
Žmindák Milan
2018-01-01
Full Text Available It is well that a finite element method is very popular simulation method to predict the physical behavior of systems and structures. In the last years an increase of interest in a new type of numerical methods known as meshless methods was observed. The paper deals with application of radial basis functions on modelling of inelastic damage using continuum damage mechanics of layered plate composite structures reinforced with long unidirectional fibers. For numerical simulations of elastic-plastic damage of layered composite plates own computational programs were implemented in MATLAB programming language. We will use the Newton-Raphson method to solve nonlinear systems of equations. Evaluation damage during plasticity has been solved using return mapping algorithm. The results of elastic-plastic damage analysis of composite plate with unsymmetrical laminate stacking sequence are presented.
Stress, deformation, conservation, and rheology: a survey of key concepts in continuum mechanics
Major, J.J.
2013-01-01
This chapter provides a brief survey of key concepts in continuum mechanics. It focuses on the fundamental physical concepts that underlie derivations of the mathematical formulations of stress, strain, hydraulic head, pore-fluid pressure, and conservation equations. It then shows how stresses are linked to strain and rates of distortion through some special cases of idealized material behaviors. The goal is to equip the reader with a physical understanding of key mathematical formulations that anchor continuum mechanics in order to better understand theoretical studies published in geomorphology.
On the physical origin for the geometric theory of continuum mechanics
International Nuclear Information System (INIS)
Guenther, H.
1984-01-01
It is explained, that the basic notion for a geometric picture of the continuum mechanics is a four dimensional material manifold. The four dimensional mechanical affinity is then the unified field for any defect distribution in the general time dependent case. The minimal number of geometric relations being valid for any continuum is formulated as a set of pure affine relations. The state variables of the theory are additional tensor fields as e.g. deformation defining a metric. A material with a well defined deformation has a Newton-Cartan structure. Only if defects are included into the dynamical determination by additional equilibrium conditions, the theory has a pseudo relativistic structure. (author)
Kinematic Analysis of Continuum Robot Consisted of Driven Flexible Rods
Directory of Open Access Journals (Sweden)
Yingzhong Tian
2016-01-01
Full Text Available This paper presents the kinematic analysis of a continuum bionic robot with three flexible actuation rods. Since the motion of the end-effector is actuated by the deformation of the rods, the robot structure is with high elasticity and good compliance and the kinematic analysis of the robot requires special treatment. We propose a kinematic model based on the geometry with constant curvature. The analysis consists of two independent mappings: a general mapping for the kinematics of all robots and a specific mapping for this kind of robots. Both of those mappings are developed for the single section and for the multisections. We aim at providing a guide for kinematic analysis of the similar manipulators through this paper.
Lehoucq, R B; Sears, Mark P
2011-09-01
The purpose of this paper is to derive the energy and momentum conservation laws of the peridynamic nonlocal continuum theory using the principles of classical statistical mechanics. The peridynamic laws allow the consideration of discontinuous motion, or deformation, by relying on integral operators. These operators sum forces and power expenditures separated by a finite distance and so represent nonlocal interaction. The integral operators replace the differential divergence operators conventionally used, thereby obviating special treatment at points of discontinuity. The derivation presented employs a general multibody interatomic potential, avoiding the standard assumption of a pairwise decomposition. The integral operators are also expressed in terms of a stress tensor and heat flux vector under the assumption that these fields are differentiable, demonstrating that the classical continuum energy and momentum conservation laws are consequences of the more general peridynamic laws. An important conclusion is that nonlocal interaction is intrinsic to continuum conservation laws when derived using the principles of statistical mechanics.
Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery.
Directory of Open Access Journals (Sweden)
Ahmad Chaddad
Full Text Available This paper proposes to characterize the continuum of colorectal cancer (CRC using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma.In the proposed approach, the region of interest containing PT is first extracted from multispectral images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG filter, discrete wavelets (DW and gray level co-occurrence matrices (GLCM. To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models.Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01. Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%.These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images.
Continuum analysis of biological systems conserved quantities, fluxes and forces
Suraishkumar, G K
2014-01-01
This book addresses the analysis, in the continuum regime, of biological systems at various scales, from the cellular level to the industrial one. It presents both fundamental conservation principles (mass, charge, momentum and energy) and relevant fluxes resulting from appropriate driving forces, which are important for the analysis, design and operation of biological systems. It includes the concept of charge conservation, an important principle for biological systems that is not explicitly covered in any other book of this kind. The book is organized in five parts: mass conservation; charge conservation; momentum conservation; energy conservation; and multiple conservations simultaneously applied. All mathematical aspects are presented step by step, allowing any reader with a basic mathematical background (calculus, differential equations, linear algebra, etc.) to follow the text with ease. The book promotes an intuitive understanding of all the relevant principles and in so doing facilitates their applica...
Continuum Mechanical Modelling of Skin-pass Rolling
DEFF Research Database (Denmark)
Kijima, Hideo; Bay, Niels
2007-01-01
The special contact conditions in skin-pass rolling of steel strip is analyzed by studying plane strain upsetting of thin sheet with low reduction applying long narrow tools and dry friction conditions. An extended sticking region is estimated by an elasto-plastic FEM analysis of the plane strain...
Stress transfer modeling in CNT reinforced composites using continuum mechanics
International Nuclear Information System (INIS)
Chaboki Khiabani, A.; Sadrnejad, S. A.; Yahyaeii, M.
2008-01-01
Because of the substantial difference in stiffness between matrix and nano tube in CNT composite, the stress transfer between them controls their mechanical properties. This paper investigates the said issue, analytically and numerically, in axial load using representative volume element. The analytical model was established based on the modified Cox's shear lag model with the use of some simplified assumptions. Some, in the developed shear lag model, the CNT assumes hollow fiber. Solving the governing differential equation. led the high shear stress, in interface especially in the CNT cap. In addition, some finite element models were performed with different aspect ratios and the shear stress pattern especially in interface was calculated numerically. Despite some simplified assumptions that were performed with these two models such as elastic behavior and full connectivity, and the comparison of their results with other numerical models show adequate agreement
Continuum Mechanics using Mathematica® Fundamentals, Applications and Scientific Computing
Romano, Antonio; Marasco, Addolorata
2006-01-01
This book's methodological approach familiarizes readers with the mathematical tools required to correctly define and solve problems in continuum mechanics. The book covers essential principles and fundamental applications, and provides a solid basis for a deeper study of more challenging and specialized problems related to elasticity, fluid mechanics, plasticity, materials with memory, piezoelectricity, ferroelectricity, magneto-fluid mechanics, and state changes. Key topics and features: * Concise presentation strikes a balance between fundamentals and applications * Requisite mathematical background carefully collected in two introductory chapters and two appendices * Recent developments highlighted through coverage of more significant applications to areas such as porous media, electromagnetic fields, and phase transitions Continuum Mechanics using Mathematica® is aimed at advanced undergraduates, graduate students, and researchers in applied mathematics, mathematical physics, and engineering. It may ser...
Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig
2017-12-01
Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.
Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig
2018-05-01
Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.
A continuum mechanics-based musculo-mechanical model for esophageal transport
Kou, Wenjun; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.
2017-11-01
In this work, we extend our previous esophageal transport model using an immersed boundary (IB) method with discrete fiber-based structural model, to one using a continuum mechanics-based model that is approximated based on finite elements (IB-FE). To deal with the leakage of flow when the Lagrangian mesh becomes coarser than the fluid mesh, we employ adaptive interaction quadrature points to deal with Lagrangian-Eulerian interaction equations based on a previous work (Griffith and Luo [1]). In particular, we introduce a new anisotropic adaptive interaction quadrature rule. The new rule permits us to vary the interaction quadrature points not only at each time-step and element but also at different orientations per element. This helps to avoid the leakage issue without sacrificing the computational efficiency and accuracy in dealing with the interaction equations. For the material model, we extend our previous fiber-based model to a continuum-based model. We present formulations for general fiber-reinforced material models in the IB-FE framework. The new material model can handle non-linear elasticity and fiber-matrix interactions, and thus permits us to consider more realistic material behavior of biological tissues. To validate our method, we first study a case in which a three-dimensional short tube is dilated. Results on the pressure-displacement relationship and the stress distribution matches very well with those obtained from the implicit FE method. We remark that in our IB-FE case, the three-dimensional tube undergoes a very large deformation and the Lagrangian mesh-size becomes about 6 times of Eulerian mesh-size in the circumferential orientation. To validate the performance of the method in handling fiber-matrix material models, we perform a second study on dilating a long fiber-reinforced tube. Errors are small when we compare numerical solutions with analytical solutions. The technique is then applied to the problem of esophageal transport. We use two
Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures
Energy Technology Data Exchange (ETDEWEB)
Rafii-Tabar, Hashem, E-mail: rafii-tabar@nano.ipm.ac.ir [Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Fazelzadeh, S. Ahmad [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of)
2016-06-06
Insight into the mechanical characteristics of nanoscopic structures is of fundamental interest and indeed poses a great challenge to the research communities around the world. These structures are ultra fine in size and consequently performing standard experiments to measure their various properties is an extremely difficult and expensive endeavor. Hence, to predict the mechanical characteristics of the nanoscopic structures, different theoretical models, numerical modeling techniques, and computer-based simulation methods have been developed. Among several proposed approaches, the nonlocal continuum-based modeling is of particular significance because the results obtained from this modeling for different nanoscopic structures are in very good agreement with the data obtained from both experimental and atomistic-based studies. A review of the essentials of this model together with its applications is presented here. Our paper is a self contained presentation of the nonlocal elasticity theory and contains the analysis of the recent works employing this model within the field of nanoscopic structures. In this review, the concepts from both the classical (local) and the nonlocal elasticity theories are presented and their applications to static and dynamic behavior of nanoscopic structures with various morphologies are discussed. We first introduce the various nanoscopic structures, both carbon-based and non carbon-based types, and then after a brief review of the definitions and concepts from classical elasticity theory, and the basic assumptions underlying size-dependent continuum theories, the mathematical details of the nonlocal elasticity theory are presented. A comprehensive discussion on the nonlocal version of the beam, the plate and the shell theories that are employed in modeling of the mechanical properties and behavior of nanoscopic structures is then provided. Next, an overview of the current literature discussing the application of the nonlocal models
Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures
International Nuclear Information System (INIS)
Rafii-Tabar, Hashem; Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad
2016-01-01
Insight into the mechanical characteristics of nanoscopic structures is of fundamental interest and indeed poses a great challenge to the research communities around the world. These structures are ultra fine in size and consequently performing standard experiments to measure their various properties is an extremely difficult and expensive endeavor. Hence, to predict the mechanical characteristics of the nanoscopic structures, different theoretical models, numerical modeling techniques, and computer-based simulation methods have been developed. Among several proposed approaches, the nonlocal continuum-based modeling is of particular significance because the results obtained from this modeling for different nanoscopic structures are in very good agreement with the data obtained from both experimental and atomistic-based studies. A review of the essentials of this model together with its applications is presented here. Our paper is a self contained presentation of the nonlocal elasticity theory and contains the analysis of the recent works employing this model within the field of nanoscopic structures. In this review, the concepts from both the classical (local) and the nonlocal elasticity theories are presented and their applications to static and dynamic behavior of nanoscopic structures with various morphologies are discussed. We first introduce the various nanoscopic structures, both carbon-based and non carbon-based types, and then after a brief review of the definitions and concepts from classical elasticity theory, and the basic assumptions underlying size-dependent continuum theories, the mathematical details of the nonlocal elasticity theory are presented. A comprehensive discussion on the nonlocal version of the beam, the plate and the shell theories that are employed in modeling of the mechanical properties and behavior of nanoscopic structures is then provided. Next, an overview of the current literature discussing the application of the nonlocal models
Effect of continuum damage mechanics on spring back prediction in metal forming processes
International Nuclear Information System (INIS)
Nayebi, Ali; Shahabi, Mehdi
2017-01-01
The influence of considering the variations in material properties was investigated through continuum damage mechanics according to the Lemaitre isotropic unified damage law to predict the bending force and spring back in V-bending sheet metal forming processes, with emphasis on Finite element (FE) simulation considerations. The material constants of the damage model were calibrated through a uniaxial tensile test with an appropriate and convenient repeating strategy. Holloman’s isotropic and Ziegler’s linear kinematic hardening laws were employed to describe the behavior of a hardening material. To specify the ideal FE conditions for simulating spring back, the effect of the various numerical considerations during FE simulation was investigated and compared with the experimental outcome. Results indicate that considering continuum damage mechanics decreased the predicted bending force and improved the accuracy of spring back prediction.
A morphing approach to couple state-based peridynamics with classical continuum mechanics
Han, Fei
2016-01-04
A local/nonlocal coupling technique called the morphing method is developed to couple classical continuum mechanics with state-based peridynamics. State-based peridynamics, which enables the description of cracks that appear and propagate spontaneously, is applied to the key domain of a structure, where damage and fracture are considered to have non-negligible effects. In the rest of the structure, classical continuum mechanics is used to reduce computational costs and to simultaneously satisfy solution accuracy and boundary conditions. Both models are glued by the proposed morphing method in the transition region. The morphing method creates a balance between the stiffness tensors of classical continuum mechanics and the weighted coefficients of state-based peridynamics through the equivalent energy density of both models. Linearization of state-based peridynamics is derived by Taylor approximations based on vector operations. The discrete formulation of coupled models is also described. Two-dimensional numerical examples illustrate the validity and accuracy of the proposed technique. It is shown that the morphing method, originally developed for bond-based peridynamics, can be successfully extended to state-based peridynamics through the original developments presented here.
A morphing approach to couple state-based peridynamics with classical continuum mechanics
Han, Fei; Lubineau, Gilles; Azdoud, Yan; Askari, Abe
2016-01-01
A local/nonlocal coupling technique called the morphing method is developed to couple classical continuum mechanics with state-based peridynamics. State-based peridynamics, which enables the description of cracks that appear and propagate spontaneously, is applied to the key domain of a structure, where damage and fracture are considered to have non-negligible effects. In the rest of the structure, classical continuum mechanics is used to reduce computational costs and to simultaneously satisfy solution accuracy and boundary conditions. Both models are glued by the proposed morphing method in the transition region. The morphing method creates a balance between the stiffness tensors of classical continuum mechanics and the weighted coefficients of state-based peridynamics through the equivalent energy density of both models. Linearization of state-based peridynamics is derived by Taylor approximations based on vector operations. The discrete formulation of coupled models is also described. Two-dimensional numerical examples illustrate the validity and accuracy of the proposed technique. It is shown that the morphing method, originally developed for bond-based peridynamics, can be successfully extended to state-based peridynamics through the original developments presented here.
Morphing continuum analysis of energy transfer in compressible turbulence
Cheikh, Mohamad Ibrahim; Wonnell, Louis B.; Chen, James
2018-02-01
A shock-preserving finite volume solver with the generalized Lax-Friedrichs splitting flux for morphing continuum theory (MCT) is presented and verified. The numerical MCT solver is showcased in a supersonic turbulent flow with Mach 2.93 over an 8∘ compression ramp. The simulation results validated MCT with experiments as an alternative for modeling compressible turbulence. The required size of the smallest mesh cell for the MCT simulation is shown to be almost an order larger than that in a similar direct numerical simulation study. The comparison shows MCT is a much more computationally friendly theory than the classical Navier-Stokes equations. The dynamics of energy cascade at the length scale of individual eddies is illuminated through the subscale rotation introduced by MCT. In this regard, MCT provides a statistical averaging procedure for capturing energy transfer in compressible turbulence, not found in classical fluid theories. Analysis of the MCT results show the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding eddy rotational energy fluctuations, indicating a multiscale transfer of energy. In conclusion, MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources.
Kanematsu, Yusuke; Tachikawa, Masanori
2015-05-21
Multicomponent quantum mechanical (MC_QM) calculations with polarizable continuum model (PCM) have been tested against liquid (1)H NMR chemical shifts for a test set of 80 molecules. Improvement from conventional quantum mechanical calculations was achieved for MC_QM calculations. The advantage of the multicomponent scheme could be attributed to the geometrical change from the equilibrium geometry by the incorporation of the hydrogen nuclear quantum effect, while that of PCM can be attributed to the change of the electronic structure according to the polarization by solvent effects.
Corni, Federico; Fuchs, Hans U.; Savino, Giovanni
2018-02-01
This is a description of the conceptual foundations used for designing a novel learning environment for mechanics implemented as an Industrial Educational Laboratory - called Fisica in Moto (FiM) - at the Ducati Foundation in Bologna. In this paper, we will describe the motivation for and design of the conceptual approach to mechanics used in the lab - as such, the paper is theoretical in nature. The goal of FiM is to provide an approach to the teaching of mechanics based upon imaginative structures found in continuum physics suitable to engineering and science. We show how continuum physics creates models of mechanical phenomena by using momentum and angular momentum as primitive quantities. We analyse this approach in terms of cognitive linguistic concepts such as conceptual metaphor and narrative framing of macroscopic physical phenomena. The model discussed here has been used in the didactical design of the actual lab and raises questions for an investigation of student learning of mechanics in a narrative setting.
Directory of Open Access Journals (Sweden)
Takumi Washio
2018-04-01
Full Text Available High-performance computing approaches that combine molecular-scale and macroscale continuum mechanics have long been anticipated in various fields. Such approaches may enrich our understanding of the links between microscale molecular mechanisms and macroscopic properties in the continuum. However, there have been few successful examples to date owing to various difficulties associated with overcoming the large spatial (from 1 nm to 10 cm and temporal (from 1 ns to 1 ms gaps between the two scales. In this paper, we propose an efficient parallel scheme to couple a microscopic model using Langevin dynamics for a protein motor with a finite element continuum model of a beating heart. The proposed scheme allows us to use a macroscale time step that is an order of magnitude longer than the microscale time step of the Langevin model, without loss of stability or accuracy. This reduces the overhead required by the imbalanced loads of the microscale computations and the communication required when switching between scales. An example of the Langevin dynamics model that demonstrates the usefulness of the coupling approach is the molecular mechanism of the actomyosin system, in which the stretch-activation phenomenon can be successfully reproduced. This microscopic Langevin model is coupled with a macroscopic finite element ventricle model. In the numerical simulations, the Langevin dynamics model reveals that a single sarcomere can undergo spontaneous oscillation (15 Hz accompanied by quick lengthening due to cooperative movements of the myosin molecules pulling on the common Z-line. Also, the coupled simulations using the ventricle model show that the stretch-activation mechanism contributes to the synchronization of the quick lengthening of the sarcomeres at the end of the systolic phase. By comparing the simulation results given by the molecular model with and without the stretch-activation mechanism, we see that this synchronization contributes to
Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun
2017-01-01
Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers. PMID:29140284
1993-01-01
Modern continuum mechanics is the topic of this book. After its introduction it will be applied to a few typical systems arising in the environmental sciences and in geophysics. In large lake/ocean dynamics peculiar effects of the rotation of the Earth will be analyzed in linear/nonlinear processes of a homogenous and inhomogenous water body. Strong thermomechanical coupling paired with nonlinear rheology affects the flow of large ice sheets (such as Antarctica and Greenland) and ice shelves. Its response to the climatic forcing in an environmental of greenhouse warming may significantly affect the life of future generations. The mechanical behavior of granular materials under quasistatic loadings requires non-classical mixture concepts and encounters generally complicated elastic-plastic-type constitutive behavior. Creeping flow of soils, consolidation processes and ground water flow are described by such theories. Rapid shearing flow of granular materials lead to constitutive relations for the stresses whic...
Kollen, Boudewijn J.; Groenier, Klaas H.; Berendsen, Annette J.
Objective: Communication between professionals is essential because it contributes to an optimal continuum of care. Whether patients experience adequate continuum of care is uncertain. To address this, a questionnaire was developed to elucidate this care process from a patients' perspective. In this
State stability analysis for the fermionic projector in the continuum
Energy Technology Data Exchange (ETDEWEB)
Hoch, Stefan Ludwig
2008-07-01
The principle of the fermionic projector in the continuum gives an indication that there might be a deeper reason why elementary particles only appear with a few definite masses. In this thesis the existence of approximately state-stable configurations is shown. In order to achieve that, we make use of a variational principle for the fermionic projector in the continuum which contains certain contributions supported on the light cone. In a certain sense, these extra terms contain the structure of the underlying discrete spacetime. Lorentz invariant distributions and their convolutions are studied. Some of these are well-defined because the convolution integrals have compactly supported integrands. Other convolutions can be regularized such that the property of being ill-defined only plays a role on the light cone. These results are used to analyze the variational principle and to give criteria for state stability, which can be numerically analyzed. Some plots are presented to allow a decision about state stability and to show how possible configurations could look like. (orig.)
State stability analysis for the fermionic projector in the continuum
International Nuclear Information System (INIS)
Hoch, Stefan Ludwig
2008-01-01
The principle of the fermionic projector in the continuum gives an indication that there might be a deeper reason why elementary particles only appear with a few definite masses. In this thesis the existence of approximately state-stable configurations is shown. In order to achieve that, we make use of a variational principle for the fermionic projector in the continuum which contains certain contributions supported on the light cone. In a certain sense, these extra terms contain the structure of the underlying discrete spacetime. Lorentz invariant distributions and their convolutions are studied. Some of these are well-defined because the convolution integrals have compactly supported integrands. Other convolutions can be regularized such that the property of being ill-defined only plays a role on the light cone. These results are used to analyze the variational principle and to give criteria for state stability, which can be numerically analyzed. Some plots are presented to allow a decision about state stability and to show how possible configurations could look like. (orig.)
Directory of Open Access Journals (Sweden)
Giuseppe Guzzetta
2013-06-01
Full Text Available In order to treat deformation as one of the processes taking place in an irreversible thermodynamic transformation, two main conditions must be satisfied: (1 strain and stress should be defined in such a way that the modification of the symmetry of these tensorial quantities reflects that of the structure of the actual material of which the deforming ideal continuum is the counterpart; and (2 the unique decomposition of the above tensors into the algebraic sum of an isotropic and an anisotropic part with different physical meanings should be recognized. The first condition allows the distinction of the energy balance in irrotational and rotational deformations; the second allows the description of a thermodynamic transformation involving deformation as a function of both process quantities, whose values depend on the specific transition, or path, between two equilibrium states, and of state quantities, which describe equilibrium states of a system quantitatively. One of the main conclusions that can be drawn is that, dealing with deformable materials, the quantities that must appear in thermodynamic equations cannot be tensorial quantities, such as the stress tensor and the infinitesimal or finite strain tensor usually considered in continuum mechanics (or, even worse, their components. The appropriate quantities should be invariants involved by the strain and stress tensors here defined. Another important conclusion is that, from a thermodynamic point of view, the consideration of the measurable volume change occurring in an isothermal deformation does not itself give any meaningful information.
Steinmann, Paul
2015-01-01
This book illustrates the deep roots of the geometrically nonlinear kinematics of generalized continuum mechanics in differential geometry. Besides applications to first- order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating for generalized models of continuum mechanics such as second-order (gradient-type) elasticity and elasto-plasticity. After a motivation that arises from considering geometrically linear first- and second- order crystal plasticity in Part I several concepts from differential geometry, relevant for what follows, such as connection, parallel transport, torsion, curvature, and metric for holonomic and anholonomic coordinate transformations are reiterated in Part II. Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics are considered. There various concepts of differential geometry, in particular aspects related to compatibility, are generically applied to the kinematics of first- and second- order geometrically nonlinear con...
Bergan, Andrew C.; Leone, Frank A., Jr.
2016-01-01
A new model is proposed that represents the kinematics of kink-band formation and propagation within the framework of a mesoscale continuum damage mechanics (CDM) model. The model uses the recently proposed deformation gradient decomposition approach to represent a kink band as a displacement jump via a cohesive interface that is embedded in an elastic bulk material. The model is capable of representing the combination of matrix failure in the frame of a misaligned fiber and instability due to shear nonlinearity. In contrast to conventional linear or bilinear strain softening laws used in most mesoscale CDM models for longitudinal compression, the constitutive response of the proposed model includes features predicted by detailed micromechanical models. These features include: 1) the rotational kinematics of the kink band, 2) an instability when the peak load is reached, and 3) a nonzero plateau stress under large strains.
Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations
Peshkov, Ilya; Pavelka, Michal; Romenski, Evgeniy; Grmela, Miroslav
2018-01-01
Continuum mechanics with dislocations, with the Cattaneo-type heat conduction, with mass transfer, and with electromagnetic fields is put into the Hamiltonian form and into the form of the Godunov-type system of the first-order, symmetric hyperbolic partial differential equations (SHTC equations). The compatibility with thermodynamics of the time reversible part of the governing equations is mathematically expressed in the former formulation as degeneracy of the Hamiltonian structure and in the latter formulation as the existence of a companion conservation law. In both formulations the time irreversible part represents gradient dynamics. The Godunov-type formulation brings the mathematical rigor (the local well posedness of the Cauchy initial value problem) and the possibility to discretize while keeping the physical content of the governing equations (the Godunov finite volume discretization).
Creep Tests and Modeling Based on Continuum Damage Mechanics for T91 and T92 Steels
Pan, J. P.; Tu, S. H.; Zhu, X. W.; Tan, L. J.; Hu, B.; Wang, Q.
2017-12-01
9-11%Cr ferritic steels play an important role in high-temperature and high-pressure boilers of advanced power plants. In this paper, a continuum damage mechanics (CDM)-based creep model was proposed to study the creep behavior of T91 and T92 steels at high temperatures. Long-time creep tests were performed for both steels under different conditions. The creep rupture data and creep curves obtained from creep tests were captured well by theoretical calculation based on the CDM model over a long creep time. It is shown that the developed model is able to predict creep data for the two ferritic steels accurately up to tens of thousands of hours.
Irmen, Friederike; Wehner, Tim; Lemieux, Louis
2015-02-01
Recent changes in the understanding and classification of reflex seizures have fuelled a debate on triggering mechanisms of seizures and their conceptual organization. Previous studies and patient reports have listed extrinsic and intrinsic triggers, albeit their multifactorial and dynamic nature is poorly understood. This paper aims to review literature on extrinsic and intrinsic seizure triggers and to discuss common mechanisms among them. Among self-reported seizure triggers, emotional stress is most frequently named. Reflex seizures are typically associated with extrinsic sensory triggers; however, intrinsic cognitive or proprioceptive triggers have also been assessed. The identification of a trigger underlying a seizure may be more difficult if it is intrinsic and complex, and if triggering mechanisms are multifactorial. Therefore, since observability of triggers varies and triggers are also found in non-reflex seizures, the present concept of reflex seizures may be questioned. We suggest the possibility of a conceptual continuum between reflex and spontaneous seizures rather than a dichotomy and discuss evidence to the notion that to some extent most seizures might be triggered. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates
Directory of Open Access Journals (Sweden)
Claudio Franceschi
2018-03-01
Full Text Available Geroscience, the new interdisciplinary field that aims to understand the relationship between aging and chronic age-related diseases (ARDs and geriatric syndromes (GSs, is based on epidemiological evidence and experimental data that aging is the major risk factor for such pathologies and assumes that aging and ARDs/GSs share a common set of basic biological mechanisms. A consequence is that the primary target of medicine is to combat aging instead of any single ARD/GSs one by one, as favored by the fragmentation into hundreds of specialties and sub-specialties. If the same molecular and cellular mechanisms underpin both aging and ARDs/GSs, a major question emerges: which is the difference, if any, between aging and ARDs/GSs? The hypothesis that ARDs and GSs such as frailty can be conceptualized as accelerated aging will be discussed by analyzing in particular frailty, sarcopenia, chronic obstructive pulmonary disease, cancer, neurodegenerative diseases such as Alzheimer and Parkinson as well as Down syndrome as an example of progeroid syndrome. According to this integrated view, aging and ARDs/GSs become part of a continuum where precise boundaries do not exist and the two extremes are represented by centenarians, who largely avoided or postponed most ARDs/GSs and are characterized by decelerated aging, and patients who suffered one or more severe ARDs in their 60s, 70s, and 80s and show signs of accelerated aging, respectively. In between these two extremes, there is a continuum of intermediate trajectories representing a sort of gray area. Thus, clinically different, classical ARDs/GSs are, indeed, the result of peculiar combinations of alterations regarding the same, limited set of basic mechanisms shared with the aging process. Whether an individual will follow a trajectory of accelerated or decelerated aging will depend on his/her genetic background interacting lifelong with environmental and lifestyle factors. If ARDs and GSs are
Sedov, L
1968-01-01
At its meeting on April 23, 1965 in Paris the Bureau of IUTAM decided to have a Symposium on the Irreversible Aspects of Continaum Mechanics held in June 1966 in Vienna. In addition, a Symposium on the Transfer of Physical Characteristics in Moving Fluids which, orig inally, had been scheduled to take place in Stockholm was rescheduled to be held in Vienna immediately following the Symposium on the Irre versible Aspects of Continuum Mechanics. It was felt that the subjects of the two symposia were so closely related that participants should be given an opportunity to attend both. Both decisions were unanimously approved by the members of the General Assembly of IUTAM. Prof. H. PARKUS, Vienna, was appointed Chairman of the Symposium on the Irreversible Aspects, and Prof. L. I. SEDOV, Moscow, was appointed Chairman of the Symposium on the Transfer of Physical Characteristics, with Prof. P ARKUS being re sponsible for the local organization of both symposia. In accordance with the policy set forth by IUTAM...
Energy Technology Data Exchange (ETDEWEB)
Choi, Myungseok; Olshevskiy, Alexander; Kim, Chang-Wan [Konkuk University, Seoul (Korea, Republic of); Eom, Kilho [Sungkyunkwan University, Suwon (Korea, Republic of); Gwak, Kwanwoong [Sejong University, Seoul (Korea, Republic of); Dai, Mai Duc [Ho Chi Minh City University of Technology and Education, Ho Chi Minh (Viet Nam)
2017-05-15
Carbon nanotube (CNT) has recently received much attention due to its excellent electromechanical properties, indicating that CNT can be employed for development of Nanoelectromechanical system (NEMS) such as nanomechanical resonators. For effective design of CNT-based resonators, it is required to accurately predict the vibration behavior of CNT resonators as well as their frequency response to mass adsorption. In this work, we have studied the vibrational behavior of Multi-walled CNT (MWCNT) resonators by using a continuum mechanics modeling that was implemented in Finite element method (FEM). In particular, we consider a transversely isotropic hollow cylinder solid model with Finite element (FE) implementation for modeling the vibration behavior of Multi-walled CNT (MWCNT) resonators. It is shown that our continuum mechanics model provides the resonant frequencies of various MWCNTs being comparable to those obtained from experiments. Moreover, we have investigated the frequency response of MWCNT resonators to mass adsorption by using our continuum model with FE implementation. Our study sheds light on our continuum mechanics model that is useful in predicting not only the vibration behavior of MWCNT resonators but also their sensing performance for further effective design of MWCNT- based NEMS devices.
Leone, Frank A., Jr.
2015-01-01
A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.
General relativistic continuum mechanics and the post-Newtonian equations of motion
International Nuclear Information System (INIS)
Morrill, T.H.
1991-01-01
Aspects are examined of general relativistic continuum mechanics. Perfectly elastic materials are dealt with but not exclusively. The derivation of their equations of motion is emphasized, in the post-Newtonian approximation. A reformulation is presented based on the tetrad formalism, of Carter and Quintana's theory of general relativistic elastic continua. A field Lagrangian is derived describing perfect material media; show that the usual covariant conservations law for perfectly elastic media is fully equivalent to the Euler-Lagrange equations describing these same media; and further show that the equations of motion for such materials follow directly from Einstein's field equations. In addition, a version of this principle shows that the local mass density in curved space-time partially depends on the amount and distribution of mass energy in the entire universe and is related to the mass density that would occur if space-time were flat. The total Lagrangian was also expanded in an EIH (Einstein, Infeld, Hoffmann) series to obtain a total post-Newtonian Lagrangian. The results agree with those found by solving Einstein's equations for the metric coefficients and by deriving the post-Newtonian equations of motion from the covariant conservation law
Comparison of continuum and atomistic methods for the analysis of InAs/GaAs quantum dots
DEFF Research Database (Denmark)
Barettin, D.; Pecchia, A.; Penazzi, G.
2011-01-01
We present a comparison of continuum k · p and atomistic empirical Tight Binding methods for the analysis of the optoelectronic properties of InAs/GaAs quantum dots.......We present a comparison of continuum k · p and atomistic empirical Tight Binding methods for the analysis of the optoelectronic properties of InAs/GaAs quantum dots....
International Nuclear Information System (INIS)
Kaczmarek, J.
2002-01-01
Elementary processes responsible for phenomena in material are frequently related to scale close to atomic one. Therefore atomistic simulations are important for material sciences. On the other hand continuum mechanics is widely applied in mechanics of materials. It seems inevitable that both methods will gradually integrate. A multiscale method of integration of these approaches called collection of dynamical systems with dimensional reduction is introduced in this work. The dimensional reduction procedure realizes transition between various scale models from an elementary dynamical system (EDS) to a reduced dynamical system (RDS). Mappings which transform variables and forces, skeletal dynamical system (SDS) and a set of approximation and identification methods are main components of this procedure. The skeletal dynamical system is a set of dynamical systems parameterized by some constants and has variables related to the dimensionally reduced model. These constants are identified with the aid of solutions of the elementary dynamical system. As a result we obtain a dimensionally reduced dynamical system which describes phenomena in an averaged way in comparison with the EDS. Concept of integration of atomistic simulations with continuum mechanics consists in using a dynamical system describing evolution of atoms as an elementary dynamical system. Then, we introduce a continuum skeletal dynamical system within the dimensional reduction procedure. In order to construct such a system we have to modify a continuum mechanics formulation to some degree. Namely, we formalize scale of averaging for continuum theory and as a result we consider continuum with finite-dimensional fields only. Then, realization of dimensional reduction is possible. A numerical example of realization of the dimensional reduction procedure is shown. We consider a one dimensional chain of atoms interacting by Lennard-Jones potential. Evolution of this system is described by an elementary
Continuum soil modeling in the static analysis of buried structures
International Nuclear Information System (INIS)
Julyk, L.J.; Marlow, R.S.; Moore, C.J.; Day, J.P.; Dyrness, A.D.
1993-10-01
Soil loading traditionally has been modeled as a hydrostatic pressure, a practice acceptable for many design applications. In the analyses of buried structure with predictive goals, soil compliance and load redistribution in the presence of soil plasticity are important factors to consider in determining the appropriate response of the structure. In the analysis of existing buried waste-storage tanks at the US Department of Energy's Hanford Site, three soil-tank interaction modeling considerations are addressed. First, the soil interacts with the tank as the tank expands and contracts during thermal cycles associated with changes in the heat generated by the waste material as a result of additions and subtractions of the waste. Second, the soil transfers loads from the surface to the tank and provides support by resisting radial displacement of the tank haunch. Third, conventional finite-element mesh development causes artificial stress concentrations in the soil associated with differential settlement
International Nuclear Information System (INIS)
Kalman, Z.H.; Chaudhuri, J.; Weng, G.J.; Weissmann, S.
1980-01-01
The strain distribution in the vicinity of the notches of a double-notched, elastically bent silicon crystal was determined by measuring the diffracted X-ray intensities. The measurements were carried out on traverse-oscillation topographs of a crystal section extending through both notches. Strain distributions were determined by measuring the local densities of silver deposits (measurements of 'opacities') with a scanning electron microscope. It was shown that both the density range and spatial resolution of X-ray densitometry were larger by an order of magnitude than those of optical densitometry. The strain concentration factors associated with the notches were measured experimentally and calculated by continuum mechanics. The results were in satisfactory agreement. Also, the experimentally found rise of strains, to a maximum in the critical area adjacent to the notch root, followed the trend predicted by continuum mechanics. (Auth.)
A morphing strategy to couple non-local to local continuum mechanics
Lubineau, Gilles; Azdoud, Yan; Han, Fei; Rey, Christian C.; Askari, Abe H.
2012-01-01
A method for coupling non-local continuum models with long-range central forces to local continuum models is proposed. First, a single unified model that encompasses both local and non-local continuum representations is introduced. This model can be purely non-local, purely local or a hybrid depending on the constitutive parameters. Then, the coupling between the non-local and local descriptions is performed through a transition (morphing) affecting only the constitutive parameters. An important feature is the definition of the morphing functions, which relies on energy equivalence. This approach is useful in large-scale modeling of materials that exhibit strong non-local effects. The computational cost can be reduced while maintaining a reasonable level of accuracy. Efficiency, robustness and basic properties of the approach are discussed using one- and two-dimensional examples. © 2012 Elsevier Ltd.
A morphing strategy to couple non-local to local continuum mechanics
Lubineau, Gilles
2012-06-01
A method for coupling non-local continuum models with long-range central forces to local continuum models is proposed. First, a single unified model that encompasses both local and non-local continuum representations is introduced. This model can be purely non-local, purely local or a hybrid depending on the constitutive parameters. Then, the coupling between the non-local and local descriptions is performed through a transition (morphing) affecting only the constitutive parameters. An important feature is the definition of the morphing functions, which relies on energy equivalence. This approach is useful in large-scale modeling of materials that exhibit strong non-local effects. The computational cost can be reduced while maintaining a reasonable level of accuracy. Efficiency, robustness and basic properties of the approach are discussed using one- and two-dimensional examples. © 2012 Elsevier Ltd.
Yuan, Xuebo; Wang, Youshan
2018-02-01
Carbon nanotubes (CNTs) can undergo collapse from the ordinary cylindrical configurations to bilayer ribbons when adhered on substrates. In this study, the collapsed adhesion of CNTs on the silicon substrates is investigated using both classical molecular dynamics (MD) simulations and continuum analysis. The governing equations and transversality conditions are derived based on the minimum potential energy principle and the energy-variational method, considering both the van der Waals interactions between CNTs and substrates and those inside CNTs. Closed-form solutions for the collapsed configuration are obtained which show good agreement with the results of MD simulations. The stability of adhesive configurations is investigated by analyzing the energy states. It is found that the adhesive states of single-walled CNTs (SWCNTs) (n, n) on the silicon substrates can be categorized by two critical radii, 0.716 and 0.892 nm. For SWCNTs with radius larger than 0.892 nm, they would fully collapse on the silicon substrates. For SWCNTs with radius less than 0.716 nm, the initial cylindrical configuration is energetically favorable. For SWCNTs with radius between two critical radii, the radially deformed state is metastable. The non-contact ends of all collapsed SWCNTs are identical with the same arc length of 2.38 nm. Finally, the role of number of walls on the adhesive configuration is investigated quantitatively. For multi-walled CNTs with the number of walls exceeding a certain value, the cylindrical configuration is stable due to the increasing bending stiffness. The present study can be useful for the design of CNT-based nanodevices.
Wang, John T.; Pineda, Evan J.; Ranatunga, Vipul; Smeltzer, Stanley S.
2015-01-01
A simple continuum damage mechanics (CDM) based 3D progressive damage analysis (PDA) tool for laminated composites was developed and implemented as a user defined material subroutine to link with a commercially available explicit finite element code. This PDA tool uses linear lamina properties from standard tests, predicts damage initiation with an easy-to-implement Hashin-Rotem failure criteria, and in the damage evolution phase, evaluates the degradation of material properties based on the crack band theory and traction-separation cohesive laws. It follows Matzenmiller et al.'s formulation to incorporate the degrading material properties into the damaged stiffness matrix. Since nonlinear shear and matrix stress-strain relations are not implemented, correction factors are used for slowing the reduction of the damaged shear stiffness terms to reflect the effect of these nonlinearities on the laminate strength predictions. This CDM based PDA tool is implemented as a user defined material (VUMAT) to link with the Abaqus/Explicit code. Strength predictions obtained, using this VUMAT, are correlated with test data for a set of notched specimens under tension and compression loads.
Directory of Open Access Journals (Sweden)
Charles M. Reinke
2011-12-01
Full Text Available Recent work has demonstrated that nanostructuring of a semiconductor material to form a phononic crystal (PnC can significantly reduce its thermal conductivity. In this paper, we present a classical method that combines atomic-level information with the application of Bloch theory at the continuum level for the prediction of the thermal conductivity of finite-thickness PnCs with unit cells sized in the micron scale. Lattice dynamics calculations are done at the bulk material level, and the plane-wave expansion method is implemented at the macrosale PnC unit cell level. The combination of the lattice dynamics-based and continuum mechanics-based dispersion information is then used in the Callaway-Holland model to calculate the thermal transport properties of the PnC. We demonstrate that this hybrid approach provides both accurate and efficient predictions of the thermal conductivity.
Nonlinear Analysis on Cross-Correlation of Financial Time Series by Continuum Percolation System
Niu, Hongli; Wang, Jun
We establish a financial price process by continuum percolation system, in which we attribute price fluctuations to the investors’ attitudes towards the financial market, and consider the clusters in continuum percolation as the investors share the same investment opinion. We investigate the cross-correlations in two return time series, and analyze the multifractal behaviors in this relationship. Further, we study the corresponding behaviors for the real stock indexes of SSE and HSI as well as the liquid stocks pair of SPD and PAB by comparison. To quantify the multifractality in cross-correlation relationship, we employ multifractal detrended cross-correlation analysis method to perform an empirical research for the simulation data and the real markets data.
Computational performance of Free Mesh Method applied to continuum mechanics problems
YAGAWA, Genki
2011-01-01
The free mesh method (FMM) is a kind of the meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, or a node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm. The aim of the present paper is to review some unique numerical solutions of fluid and solid mechanics by employing FMM as well as the Enriched Free Mesh Method (EFMM), which is a new version of FMM, including compressible flow and sounding mechanism in air-reed instruments as applications to fluid mechanics, and automatic remeshing for slow crack growth, dynamic behavior of solid as well as large-scale Eigen-frequency of engine block as applications to solid mechanics. PMID:21558753
International Nuclear Information System (INIS)
Robinson, R.D.
1985-01-01
This paper reviews the metre-wave continuum radiation which is related to similar solar emissions observed in the decimetre and centimetre spectral regions. This type of emission, known as Flare Contiuum, is related to the radio bursts of types II and IV. After summarising the history of the phenomenon and reviewing the observational work, the author discusses the various possible radiation mechanisms and their relation to the solar corona, the interplanetary medium and related regions. The theoretical topics covered include the role of high-energy particles, the trapping of such particles, gyro-synchrotron radiation, polarization and plasma interactions. (U.K.)
Testing a continuum structure of self-determined motivation: A meta-analysis.
Howard, Joshua L; Gagné, Marylène; Bureau, Julien S
2017-12-01
Self-determination theory proposes a multidimensional representation of motivation comprised of several factors said to fall along a continuum of relative autonomy. The current meta-analysis examined the relationships between these motivation factors in order to demonstrate how reliably they conformed to a predictable continuum-like pattern. Based on data from 486 samples representing over 205,000 participants who completed 1 of 13 validated motivation scales, the results largely supported a continuum-like structure of motivation and indicate that self-determination is central in explaining human motivation. Further examination of heterogeneity indicated that while regulations were predictably ordered across domains and scales, the exact distance between subscales varied across samples in a way that was not explainable by a set of moderators. Results did not support the inclusion of integrated regulation or the 3 subscales of intrinsic motivation (i.e., intrinsic motivation to know, to experience stimulation, and to achieve) due to excessively high interfactor correlations and overlapping confidence intervals. Recommendations for scale refinements and the scoring of motivation are provided. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Hertel, Peter
2012-01-01
This small book on the properties of continuously distributed matter covers a huge field. It sets out the governing principles of continuum physics and illustrates them by carefully chosen examples. These examples comprise structural mechanics and elasticity, fluid media, electricity and optics, thermoelectricity, fluctuation phenomena and more, from Archimedes' principle via Brownian motion to white dwarfs. Metamaterials, pattern formation by reaction-diffusion and surface plasmon polaritons are dealt with as well as classical topics such as Stokes' formula, beam bending and buckling, crystal optics and electro- and magnetooptic effects, dielectric waveguides, Ohm's law, surface acoustic waves, to mention just some. The set of balance equations for content, flow and production of particles, mass, charge, momentum, energy and entropy is augmented by material, or constitutive equations. They describe entire classes of materials, such as viscid fluids and gases, elastic media, dielectrics or electrical con...
Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics
Directory of Open Access Journals (Sweden)
Saeid Reza Asemi
Full Text Available Recently, graphene sheets have shown significant potential for environmental engineering applications such as wastewater treatment. Different non-classical theories have been used for modeling of such nano-sized systems to take account of the effect of small length scale. Among all size-dependent theories, the nonlocal elasticity theory has been commonly used to examine the stability of nano-sized structures. Some research works have been reported about the mechanical behavior of rectangular nanoplates with the consideration of thermal effects. However, in comparison with the rectangular graphene sheets, research works about the nanoplates of circular shape are very limited, especially for the buckling properties with thermal effects. Hence, in this paper, an axisymmetric buckling analysis of circular single-layered graphene sheets (SLGS is presented by decoupling the nonlocal equations of Eringen theory. Constitutive relations are modified to describe the nonlocal effects. The governing equations are derived using equilibrium equations of the circular plate in polar coordinates. Numerical solutions for buckling loads are computed using Galerkin method. It is shown that nonlocal effects play an important role in the buckling of circular nanoplates. The effects of the small scale on the buckling loads considering various parameters such as the radius of the plate, radius-to-thickness ratio, temperature change and mode numbers are investigated.
International Nuclear Information System (INIS)
Demić, Aleksandar; Milanović, Vitomir; Radovanović, Jelena
2015-01-01
Supersymmetric quantum mechanics (SUSYQM) is a method that can be used for generating complex potentials with entirely real spectrum with bound states in the continuum (BIC). These complex potentials are isospectral with the initial one, but SUSYQM method adds discrete BIC's at selected energies. Corresponding wavefunctions created by SUSYQM are biorthogonal and complex, hence we can discuss their phase rigidity and illustrate the application of SUSYQM on the examples of three specific potential profiles (free electron, negative Dirac potential and quantum well with infinite walls). - Highlights: • We present SUSYQM method for generating complex potentials with entirely real spectrum. • Phase rigidity and normalizability of wavefunctions in complex potential is discussed. • Numerical application is performed on three specific potential profiles.
Maugin, Gérard A
2014-01-01
Conceived as a series of more or less autonomous essays, the present book critically exposes the initial developments of continuum thermo-mechanics in a post Newtonian period extending from the creative works of the Bernoullis to the First World war, i.e., roughly during first the “Age of reason” and next the “Birth of the modern world”. The emphasis is rightly placed on the original contributions from the “Continental” scientists (the Bernoulli family, Euler, d’Alembert, Lagrange, Cauchy, Piola, Duhamel, Neumann, Clebsch, Kirchhoff, Helmholtz, Saint-Venant, Boussinesq, the Cosserat brothers, Caratheodory) in competition with their British peers (Green, Kelvin, Stokes, Maxwell, Rayleigh, Love,..). It underlines the main breakthroughs as well as the secondary ones. It highlights the role of scientists who left essential prints in this history of scientific ideas. The book shows how the formidable developments that blossomed in the twentieth century (and perused in a previous book of the author in...
Corni, Federico; Fuchs, Hans U.; Savino, Giovanni
2018-01-01
This is a description of the conceptual foundations used for designing a novel learning environment for mechanics implemented as an "Industrial Educational Laboratory"--called Fisica in Moto (FiM)--at the Ducati Foundation in Bologna. In this paper, we will describe the motivation for and design of the conceptual approach to mechanics…
International Nuclear Information System (INIS)
Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo
2016-01-01
Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier
Energy Technology Data Exchange (ETDEWEB)
Dumbser, Michael, E-mail: michael.dumbser@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Peshkov, Ilya, E-mail: peshkov@math.nsc.ru [Open and Experimental Center for Heavy Oil, Université de Pau et des Pays de l' Adour, Avenue de l' Université, 64012 Pau (France); Romenski, Evgeniy, E-mail: evrom@math.nsc.ru [Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk (Russian Federation); Zanotti, Olindo, E-mail: olindo.zanotti@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy)
2016-06-01
Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier
Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A
2016-02-06
This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.
Coats, Timothy William
1994-01-01
Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.
Representative volume size: A comparison of statistical continuum mechanics and statistical physics
Energy Technology Data Exchange (ETDEWEB)
AIDUN,JOHN B.; TRUCANO,TIMOTHY G.; LO,CHI S.; FYE,RICHARD M.
1999-05-01
In this combination background and position paper, the authors argue that careful work is needed to develop accurate methods for relating the results of fine-scale numerical simulations of material processes to meaningful values of macroscopic properties for use in constitutive models suitable for finite element solid mechanics simulations. To provide a definite context for this discussion, the problem is couched in terms of the lack of general objective criteria for identifying the size of the representative volume (RV) of a material. The objective of this report is to lay out at least the beginnings of an approach for applying results and methods from statistical physics to develop concepts and tools necessary for determining the RV size, as well as alternatives to RV volume-averaging for situations in which the RV is unmanageably large. The background necessary to understand the pertinent issues and statistical physics concepts is presented.
Predicition of the first spinning cylinder test using continuum damage mechanics
International Nuclear Information System (INIS)
Lidbury, D.P.G.; Sherry, A.H.; Bilby, B.A.; Howard, I.C.; Li, Z.H.; Eripret, C.
1993-01-01
For many years large-scale experiments have been performed world-wide to validate aspects of fracture mechanics methodology. Special emphasis has been given to correlations between small- and large-scale specimen behaviour in quantifying the structural behaviour of pressure vessels, piping and closures. Within this context, the first three Spinning Cylinder Tests, performed by AEA Technology at its Risley Laboratory, addressed the phenomenon of stable crack growth by ductile tearing in contained yield and conditions simulating pressurized thermal shock loading in a PWR reactor pressure vessel. A notable feature of the test data was that the effective resistance to crack growth, as measured in terms of the J R-curve, was appreciably greater than that anticipated from small-scale testing, both at initiation and after small amounts (a few millimeters) of tearing. In the present paper, two independent finite element analyses of the First Spinning Cylinder Test (SC 1) are presented and compared. Both involved application of the Rousselier ductile damage theory in an attempt to better understand the transferability of test data from small specimens to structural validation tests. In each instance, the parameters associated with the theory's constitutive equation were calibrated in terms of data from notched-tensile and (or) fracture mechanics tests, metallographic observation and (or) chemical composition. The evolution of ductile damage local to the crack tip during SC 1 was thereby calculated and, together with a crack growth criterion based on the maximization of opening-mode stress, used as the basis for predicting cylinder R-Curves (angular velocity vs. Δa, J-integral vs. Δa). The results show the Rousselier model to be capable of correctly predicting the enhancement of tearing toughness of the cylinder relative to that of conventional test specimens, given an appropriate choice of finite element cell size in the region representing the crack tip
Qi, Fei; Ju, Feng; Bai, Dong Ming; Chen, Bai
2018-02-01
For the outstanding compliance and dexterity of continuum robot, it is increasingly used in minimally invasive surgery. The wide workspace, high dexterity and strong payload capacity are essential to the continuum robot. In this article, we investigate the workspace of a cable-driven continuum robot that we proposed. The influence of section number on the workspace is discussed when robot is operated in narrow environment. Meanwhile, the structural parameters of this continuum robot are optimized to achieve better kinematic performance. Moreover, an indicator based on the dexterous solid angle for evaluating the dexterity of robot is introduced and the distal end dexterity is compared for the three-section continuum robot with different range of variables. Results imply that the wider range of variables achieve the better dexterity. Finally, the static model of robot based on the principle of virtual work is derived to analyze the relationship between the bending shape deformation and the driven force. The simulations and experiments for plane and spatial motions are conducted to validate the feasibility of model, respectively. Results of this article can contribute to the real-time control and movement and can be a design reference for cable-driven continuum robot.
Hiermaier, Stefan
2007-01-01
Required reading for those in the relevant areas of work, this book examines the testing and modeling of materials and structures under dynamic loading conditions.Readers get an in-depth analysis of the current mathematical modeling and simulation tools available for a variety of materials, alongside discussions of the benefits and limitations these tools pose in industrial design.The models discussed are also available in commercial codes such as LS-DYNA and AOTODYN.Following a logical and well organized structure, this volume uniquely combines experimental procedures with numerical simulatio
Directory of Open Access Journals (Sweden)
D. A. Eliseev
2015-01-01
Full Text Available The solution stability of an initial boundary problem for a linear hybrid system of differential equations, which models the rotation of a rigid body with two elastic rods located in the same plane is studied in the paper. To an axis passing through the mass center of the rigid body perpendicularly to the rods location plane is applied the stabilizing moment proportional to the angle of the system rotation, derivative of the angle, integral of the angle. The external moment provides a feedback. A method of studying the behavior of solutions of the initial boundary problem is proposed. This method allows to exclude from the hybrid system of differential equations partial differential equations, which describe the dynamics of distributed elements of a mechanical system. It allows us to build one equation for an angle of the system rotation. Its characteristic equation defines the stability of solutions of all the system. In the space of feedback-coefficients the areas that provide the asymptotic stability of solutions of the initial boundary problem are built up.
Using Continuum Damage Mechanics to Simulate Iceberg Calving from Tidewater Outlet Glaciers
Mercenier, R.; Lüthi, M.; Vieli, A.
2017-12-01
Many ocean terminating glaciers in the Arctic are currently undergoingrapid retreat, thinning and strong accelerations in flow. The processof iceberg calving plays a crucial role for the related dynamical masslosses and occurs when the stresses at the calving front exceed thefracture strength of ice, driving the propagation of cracks andeventually leading to the detachment of ice blocks from the glacierfront. However, the understanding of the processes involved in icebergcalving as well as the capability of flow models to represent thecalving mechanism remain limited.Here, we use a time-dependent two-dimensional finite-element flowmodel coupled to a damage model to simulate the break-off of ice atthe front of idealized tidewater outlet glaciers. The flow modelcomputes flow velocities and the resulting stresses, which are in turnused to calculate the evolution of the glacier geometry anddamage. Damage is defined as a change of rheological properties, e.g.viscosity, due to increasing material degradation. Elements of ice areremoved when the damage variable reaches a critical threshold. Theeffects of material properties and of geometrical parameters such aswater depth, ice thickness and submarine frontal melting on thesimulated calving rates are explored through systematic sensitivityanalyses.The coupled ice flow/damage model allows for successful reproductionof calving front geometries typically observed for different waterdepths. We further use detailed observations from real glaciergeometries to better constrain the model parameters. Theproposed model approach should be applicable to simulate icebergcalving on arbitrary glaciers, and thus be used to analyse theevolution of tidewater glacier variations from the past to the future.
Turan, Başak; Selçuki, Cenk
2014-09-01
Amino acids are constituents of proteins and enzymes which take part almost in all metabolic reactions. Glutamic acid, with an ability to form a negatively charged side chain, plays a major role in intra and intermolecular interactions of proteins, peptides, and enzymes. An exhaustive conformational analysis has been performed for all eight possible forms at B3LYP/cc-pVTZ level. All possible neutral, zwitterionic, protonated, and deprotonated forms of glutamic acid structures have been investigated in solution by using polarizable continuum model mimicking water as the solvent. Nine families based on the dihedral angles have been classified for eight glutamic acid forms. The electrostatic effects included in the solvent model usually stabilize the charged forms more. However, the stability of the zwitterionic form has been underestimated due to the lack of hydrogen bonding between the solute and solvent; therefore, it is observed that compact neutral glutamic acid structures are more stable in solution than they are in vacuum. Our calculations have shown that among all eight possible forms, some are not stable in solution and are immediately converted to other more stable forms. Comparison of isoelectronic glutamic acid forms indicated that one of the structures among possible zwitterionic and anionic forms may dominate over the other possible forms. Additional investigations using explicit solvent models are necessary to determine the stability of charged forms of glutamic acid in solution as our results clearly indicate that hydrogen bonding and its type have a major role in the structure and energy of conformers.
International Nuclear Information System (INIS)
2016-01-01
International Conference - Gravitation, Cosmology and Mechanics of Continuous Environments (devoted to the 100th anniversary K.P. Stanyukovich's birth) was held in Bauman Moscow State Technical University on the 3th and 4th of March. More than 100 papers were presented by K.P. Stanyukovich's students, faculty, various universities staff and representatives of the Russian Academy of Sciences. Kirill Petrovich Stanyukovich (3 March, 1916 - 4 June, 1989) - an outstanding physicist, mathematician and engineer made a significant contribution to the development of various fields of science: gas dynamics, physics of explosion, magnetic hydrodynamics, astronomy. He developed a hydrodynamic model of gravity, the theory of gravity with a variation of the effective gravitational constant, with a variable number of particles, he offered one of the first Universe evolution scenarios from the initial vacuum stage. Kirill Petrovich was the author of a number of inventions and of 330 scientific and popular-science works. He came from an old noble family - the Stanyukovich. (The famous writer and marine painter Konstantin Stanyukovich was his granduncle). Not yet having finished school, K.P. Stanyukovich got seriously interested in astronomy and became a member of the observers’ team of the Moscow Society of Astronomy Fanciers (MSAF) where he met Leonid Alekseevich Kulik, the famous Tunguska meteorite investigator and one of the national meteoritics founders. In 1932 the first K.P. Stanyukovich's research article on meteor astronomy (in co-authorship with I.E. Vasilyev) “Lyrids in 1930” was published in the 'Bulletin of MSAF Observers. In 1931 K.P. Stanyukovich took part in the MSAF meteors observation expedition on the Karadag scientific station in the Crimea, and in 1932 proposed a new method for estimating the meteor extinction height, based on an empirical relationship between meteor brightness and path length. In the same year he was involved in the processing of bright
DEFF Research Database (Denmark)
Skov, Vibe; Thomassen, Mads; Riley, Caroline H
2012-01-01
The recent discovery of the Janus activating kinase 2 V617F mutation in most patients with polycythemia vera (PV) and half of those with essential thrombocythemia (ET) and primary myelofibrosis (PMF) has favored the hypothesis of a biological continuum from ET over PV to PMF. We performed gene...... with biological relevant overlaps between the different entities. Moreover, the analysis separates Janus activating kinase 2-negative ET patients from Janus activating kinase 2-positive ET patients. Functional annotation analysis demonstrates that clusters of gene ontology terms related to inflammation, immune...... system, apoptosis, RNA metabolism, and secretory system were the most significantly deregulated terms in the three different disease groups. Our results yield further support for the hypothesis of a biological continuum originating from ET over PV to PMF. Functional analysis suggests an important...
Hyperbolic conservation laws in continuum physics
Dafermos, Constantine M
2016-01-01
This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conser...
Paredes, Liliana
2001-01-01
Examines the variable use of verbal clitics in bilingual Spanish and proposes that the contact between Quechua and Spanish is expressed in the existence of more than one clitic system across an oral proficiency continuum in Spanish. Proposes that the clitic use in these different systems is variable and constrained by different factors.…
Detailed analysis of the continuum limit of a supersymmetric lattice model in 1D
International Nuclear Information System (INIS)
Huijse, L
2011-01-01
We present a full identification of lattice model properties with their field theoretical counterparts in the continuum limit for a supersymmetric model for itinerant spinless fermions on a one-dimensional chain. The continuum limit of this model is described by an N=(2,2) superconformal field theory (SCFT) with central charge c = 1. We identify states and operators in the lattice model with fields in the SCFT and we relate boundary conditions on the lattice to sectors in the field theory. We use the dictionary we develop in this paper to give a pedagogical explanation of a powerful tool to study supersymmetric models based on spectral flow (Huijse 2008 Phys. Rev. Lett. 101 146406). Finally, we employ the developed machinery to explain numerically observed properties of the particle density on the open chain presented in Beccaria and De Angelis (2005 Phys. Rev. Lett. 94 100401)
Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis
Giorgio, I.; Rizzi, N. L.; Turco, E.
2017-11-01
A nonlinear two-dimensional (2D) continuum with a latent internal structure is introduced as a coarse model of a plane network of beams which, in turn, is assumed as a model of a pantographic structure made up by two families of equispaced beams, superimposed and connected by pivots. The deformation measures of the beams of the network and that of the 2D body are introduced and the former are expressed in terms of the latter by making some kinematical assumptions. The expressions for the strain and kinetic energy densities of the network are then introduced and given in terms of the kinematic quantities of the 2D continuum. To account for the modelling abilities of the 2D continuum in the linear range, the eigenmode and eigenfrequencies of a given specimen are determined. The buckling and post-buckling behaviour of the same specimen, subjected to two different loading conditions are analysed as tests in the nonlinear range. The problems have been solved numerically by means of the COMSOL Multiphysics finite element software.
Energy Technology Data Exchange (ETDEWEB)
Wang, Chi-Jen [Iowa State Univ., Ames, IA (United States)
2013-01-01
In this thesis, we analyze both the spatiotemporal behavior of: (A) non-linear “reaction” models utilizing (discrete) reaction-diffusion equations; and (B) spatial transport problems on surfaces and in nanopores utilizing the relevant (continuum) diffusion or Fokker-Planck equations. Thus, there are some common themes in these studies, as they all involve partial differential equations or their discrete analogues which incorporate a description of diffusion-type processes. However, there are also some qualitative differences, as shall be discussed below.
HIV care continuum in Rwanda: a cross-sectional analysis of the national programme.
Nsanzimana, Sabin; Kanters, Steve; Remera, Eric; Forrest, Jamie I; Binagwaho, Agnes; Condo, Jeanine; Mills, Edward J
2015-05-01
Rwanda has made remarkable progress towards HIV care programme with strong national monitoring and surveillance. Knowledge about the HIV care continuum model can help to improve outcomes in patients. We aimed to quantify engagement, mortality, and loss to follow-up of patients along the HIV care continuum in Rwanda in 2013. We collated data for individuals with HIV who participated in the national HIV care programme in Rwanda and calculated the numbers of individuals or proportions of the population at each stage and the transition probabilities between stages of the continuum. We calculated factors associated with mortality and loss to follow-up by fitting Cox proportional hazards regression models, one for the stage of care before antiretroviral therapy (ART) initiation and another for stage of care during ART. An estimated 204,899 individuals were HIV-positive in Rwanda in 2013. Among these individuals, 176,174 (86%) were in pre-ART or in ART stages and 129,405 (63%) had initiated ART by the end of 2013. 82·1% (95% CI 80·7-83·4) of patients with viral load measurements (n=3066) were virally suppressed (translating to 106,371 individuals or 52% of HIV-positive individuals). Mortality was 0·6% (304 patients) in the pre-ART stage and 1·0% (1255 patients) in the ART stage; 2247 (3·9%) patients were lost to follow-up in pre-ART stage and 2847 (2·2%) lost in ART stage. Risk factors for mortality among patients in both pre-ART and ART stages included older age, CD4 cell count at initiation, and male sex. Risk factors for loss to follow-up among patients at both pre-ART and ART stages included younger age (age 10-29 year) and male sex. The HIV care continuum is a multitrajectory pathway in which patients have many opportunities to leave and re-engage in care. Knowledge about the points at which individuals are most likely to leave care could improve large-scale delivery of HIV programmes. The Bill & Melinda Gates Foundation. Copyright © 2015 Elsevier Ltd. All
Tarver, Will L; Menachemi, Nir
2016-03-01
Health information technology (HIT) has the potential to play a significant role in the management of cancer. The purpose of this review is to identify and examine empirical studies that investigate the impact of HIT in cancer care on different levels of the care continuum. Electronic searches were performed in four academic databases. The authors used a three-step search process to identify 122 studies that met specific inclusion criteria. Next, a coding sheet was used to extract information from each included article to use in an analysis. Logistic regression was used to determine study-specific characteristics that were associated with positive findings. Overall, 72.4% of published analyses reported a beneficial effect of HIT. Multivariate analysis found that the impact of HIT differs across the cancer continuum with studies targeting diagnosis and treatment being, respectively, 77 (P = .001) and 39 (P = .039) percentage points less likely to report a beneficial effect when compared to those targeting prevention. In addition, studies targeting HIT to patients were 31 percentage points less likely to find a beneficial effect than those targeting providers (P = .030). Lastly, studies assessing behavior change as an outcome were 41 percentage points less likely to find a beneficial effect (P = .006), while studies targeting decision making were 27 percentage points more likely to find a beneficial effect (P = .034). Based on current evidence, HIT interventions seem to be more successful when targeting physicians, care in the prevention phase of the cancer continuum, and/or decision making. An agenda for future research is discussed. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hérisson, Benjamin; Challamel, Noël; Picandet, Vincent; Perrot, Arnaud
2016-09-01
The static behavior of the Fermi-Pasta-Ulam (FPU) axial chain under distributed loading is examined. The FPU system examined in the paper is a nonlinear elastic lattice with linear and quadratic spring interaction. A dimensionless parameter controls the possible loss of convexity of the associated quadratic and cubic energy. Exact analytical solutions based on Hurwitz zeta functions are developed in presence of linear static loading. It is shown that this nonlinear lattice possesses scale effects and possible localization properties in the absence of energy convexity. A continuous approach is then developed to capture the main phenomena observed regarding the discrete axial problem. The associated continuum is built from a continualization procedure that is mainly based on the asymptotic expansion of the difference operators involved in the lattice problem. This associated continuum is an enriched gradient-based or nonlocal axial medium. A Taylor-based and a rational differential method are both considered in the continualization procedures to approximate the FPU lattice response. The Padé approximant used in the continualization procedure fits the response of the discrete system efficiently, even in the vicinity of the limit load when the non-convex FPU energy is examined. It is concluded that the FPU lattice system behaves as a nonlocal axial system in dynamic but also static loading.
Generalized Continuum: from Voigt to the Modeling of Quasi-Brittle Materials
Directory of Open Access Journals (Sweden)
Jamile Salim Fuina
2010-12-01
Full Text Available This article discusses the use of the generalized continuum theories to incorporate the effects of the microstructure in the nonlinear finite element analysis of quasi-brittle materials and, thus, to solve mesh dependency problems. A description of the problem called numerically induced strain localization, often found in Finite Element Method material non-linear analysis, is presented. A brief historic about the Generalized Continuum Mechanics based models is presented, since the initial work of Voigt (1887 until the more recent studies. By analyzing these models, it is observed that the Cosserat and microstretch approaches are particular cases of a general formulation that describes the micromorphic continuum. After reporting attempts to incorporate the material microstructure in Classical Continuum Mechanics based models, the article shows the recent tendency of doing it according to assumptions of the Generalized Continuum Mechanics. Finally, it presents numerical results which enable to characterize this tendency as a promising way to solve the problem.
Modeling flow in fractured medium. Uncertainty analysis with stochastic continuum approach
International Nuclear Information System (INIS)
Niemi, A.
1994-01-01
For modeling groundwater flow in formation-scale fractured media, no general method exists for scaling the highly heterogeneous hydraulic conductivity data to model parameters. The deterministic approach is limited in representing the heterogeneity of a medium and the application of fracture network models has both conceptual and practical limitations as far as site-scale studies are concerned. The study investigates the applicability of stochastic continuum modeling at the scale of data support. No scaling of the field data is involved, and the original variability is preserved throughout the modeling. Contributions of various aspects to the total uncertainty in the modeling prediction can also be determined with this approach. Data from five crystalline rock sites in Finland are analyzed. (107 refs., 63 figs., 7 tabs.)
A continuum damage analysis of hydrogen attack in 2.25 Cr-1Mo vessel
DEFF Research Database (Denmark)
van der Burg, M.W.D.; van der Giessen, E.; Tvergaard, Viggo
1998-01-01
A micromechanically based continuum damage model is presented to analyze the stress, temperature and hydrogen pressure dependent material degradation process termed hydrogen attack, inside a pressure vessel. Hydrogen attack (HA) is the damage process of grain boundary facets due to a chemical...... reaction of carbides with hydrogen, thus forming cavities with high pressure methane gas. Driven by the methane gas pressure, the cavities grow, while remote tensile stresses can significantly enhance the cavitation rate. The damage model gives the strain-rate and damage rate as a function...... of the temperature, hydrogen pressure and applied stresses. The model is applied to study HA in a vessel wall, where nonuniform distributions of hydrogen pressure, temperature and stresses result in a nonuniform damage distribution over the vessel wall. Stresses inside the vessel wall first tend to accelerate...
Shock structure in continuum models of gas dynamics: stability and bifurcation analysis
International Nuclear Information System (INIS)
Simić, Srboljub S
2009-01-01
The problem of shock structure in gas dynamics is analysed through a comparative study of two continuum models: the parabolic Navier–Stokes–Fourier model and the hyperbolic system of 13 moments equations modeling viscous, heat-conducting monatomic gases within the context of extended thermodynamics. When dissipative phenomena are neglected these models both reduce to classical Euler's equations of gas dynamics. The shock profile solution, assumed in the form of a planar travelling wave, reduces the problem to a system of ordinary differential equations, and equilibrium states appear to be stationary points of the system. It is shown that in both models an upstream equilibrium state suffers an exchange of stability when the shock speed crosses the critical value which coincides with the highest characteristic speed of the Euler's system. At the same time a downstream equilibrium state could be seen as a steady bifurcating solution, while the shock profile represents a heteroclinic orbit connecting the two stationary points. Using centre manifold reduction it is demonstrated that both models, although mathematically different, obey the same transcritical bifurcation pattern in the neighbourhood of the bifurcation point corresponding to the critical value of shock speed, the speed of sound
Dhole, Sumit; Stern, Caitlin A; Servedio, Maria R
2018-04-01
The evolution of mating displays as indicators of male quality has been the subject of extensive theoretical and empirical research for over four decades. Research has also addressed the evolution of female mate choice favoring such indicators. Yet, much debate still exists about whether displays can evolve through the indirect benefits of female mate choice. Here, we use a population genetic model to investigate how the extent to which females can directly detect male quality influences the evolution of female choosiness and male displays. We use a continuum framework that incorporates indicator mechanisms that are traditionally modeled separately. Counter to intuition, we find that intermediate levels of direct detection of male quality can facilitate, rather than impede, the evolution of female choosiness and male displays in broad regions of this continuum. We examine how this evolution is driven by selective forces on genetic quality and on the display, and find that direct detection of male quality results in stronger indirect selection favoring female choosiness. Our results imply that displays maybe more likely to evolve when female choosiness has already evolved to discriminate perceptible forms of male quality. They also highlight the importance of considering general female choosiness, as well as preference, in studies of "good genes." © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Valdiviezo, Laura Alicia
2010-06-01
This essay addresses Katherine Richardson Bruna's paper: Mexican Immigrant Transnational Social Capital and Class Transformation: Examining the Role of Peer Mediation in Insurgent Science, through five main points . First, I offer a comparison between the traditional analysis of classism in Latin America and Richardson Bruna's call for a class-first analysis in the North American social sciences where there has been a tendency to obviate the specific examination of class relations and class issues. Secondly, I discuss that a class-first analysis solely cannot suffice to depict the complex dimensions in the relations of schools and society. Thus, I suggest a continuum in the class-first analysis. Third, I argue that social constructions surrounding issues of language, ethnicity, and gender necessarily intersect with issues of class and that, in fact, those other constructions offer compatible epistemologies that aid in representing the complexity of social and institutional practices in the capitalist society. Richardson Bruna's analysis of Augusto's interactions with his teacher and peers in the science class provides a fourth point of discussion in this essay. As a final point in my response I discuss Richardson Bruna's idea of making accessible class-first analysis knowledge to educators and especially to science teachers.
Yu, Xue-Fang; Yamazaki, Shohei; Taketsugu, Tetsuya
2017-08-30
Solvent effects on the excited-state double proton transfer (ESDPT) mechanism in the 7-azaindole (7AI) dimer were investigated using the time-dependent density functional theory (TDDFT) method. Excited-state potential energy profiles along the reaction paths in a locally excited (LE) state and a charge transfer (CT) state were calculated using the polarizable continuum model (PCM) to include the solvent effect. A series of non-polar and polar solvents with different dielectric constants were used to examine the polarity effect on the ESDPT mechanism. The present results suggest that in a non-polar solvent and a polar solvent with a small dielectric constant, ESDPT follows a concerted mechanism, similar to the case in the gas phase. In a polar solvent with a relatively large dielectric constant, however, ESDPT is likely to follow a stepwise mechanism via a stable zwitterionic intermediate in the LE state on the adiabatic potential energy surface, although inclusion of zero-point vibrational energy (ZPE) corrections again suggests the concerted mechanism. In the meantime, the stepwise reaction path involving the CT state with neutral intermediates is also examined, and is found to be less competitive than the concerted or stepwise path in the LE state in both non-polar and polar solvents. The present study provides a new insight into the experimental controversy of the ESDPT mechanism of the 7AI dimer in a solution.
International Nuclear Information System (INIS)
Chijimatsu, Masakazu; Koyama, Tomofumi; Shimizu, Hiroyuki; Nakama, Shigeo; Fujita, Tomoo
2013-01-01
DECOVALEX-2011 is an international cooperation project for enhancing the numerical models of radioactive waste repositories. In DECOVALEX-2011 project, the failure mechanism during excavation and heating processes observed in the Aespoe pillar stability experiment, which was carried out at the Aespoe Hard Rock Laboratory by the Swedish Nuclear Fuel and Waste Management Company, were simulated using Finite Element Method. When the calibrated parameters were used, simulation results agree qualitatively well with the experimental results. Therefore, it can be said that the spalling phenomenon is expressible even by the application with the continuum model by the use of the suitable parameters. (author)
Valentin, J; Sprenger, M; Pflüger, D; Röhrle, O
2018-05-01
Investigating the interplay between muscular activity and motion is the basis to improve our understanding of healthy or diseased musculoskeletal systems. To be able to analyze the musculoskeletal systems, computational models are used. Albeit some severe modeling assumptions, almost all existing musculoskeletal system simulations appeal to multibody simulation frameworks. Although continuum-mechanical musculoskeletal system models can compensate for some of these limitations, they are essentially not considered because of their computational complexity and cost. The proposed framework is the first activation-driven musculoskeletal system model, in which the exerted skeletal muscle forces are computed using 3-dimensional, continuum-mechanical skeletal muscle models and in which muscle activations are determined based on a constraint optimization problem. Numerical feasibility is achieved by computing sparse grid surrogates with hierarchical B-splines, and adaptive sparse grid refinement further reduces the computational effort. The choice of B-splines allows the use of all existing gradient-based optimization techniques without further numerical approximation. This paper demonstrates that the resulting surrogates have low relative errors (less than 0.76%) and can be used within forward simulations that are subject to constraint optimization. To demonstrate this, we set up several different test scenarios in which an upper limb model consisting of the elbow joint, the biceps and triceps brachii, and an external load is subjected to different optimization criteria. Even though this novel method has only been demonstrated for a 2-muscle system, it can easily be extended to musculoskeletal systems with 3 or more muscles. Copyright © 2018 John Wiley & Sons, Ltd.
Farajpour, M. R.; Shahidi, A. R.; Farajpour, A.
2018-03-01
In this study, the buckling behavior of a three-layered composite nanoplate reinforced with shape memory alloy (SMA) nanowires is examined. Whereas the upper and lower layers are reinforced with typical nanowires, SMA nanoscale wires are used to strengthen the middle layer of the system. The composite nanoplate is assumed to be under the action of biaxial compressive loading. A scale-dependent mathematical model is presented with the consideration of size effects within the context of the Eringen’s nonlocal continuum mechanics. Using the one-dimensional Brinson’s theory and the Kirchhoff theory of plates, the governing partial differential equations of SMA nanowire-reinforced hybrid nanoplates are derived. Both lateral and longitudinal deflections are taken into consideration in the theoretical formulation and method of solution. In order to reduce the governing differential equations to their corresponding algebraic equations, a discretization approach based on the differential quadrature method is employed. The critical buckling loads of the hybrid nanosystem with various boundary conditions are obtained with the use of a standard eigenvalue solver. It is found that the stability response of SMA composite nanoplates is strongly sensitive to the small scale effect.
Wetzel, Angela Payne
Previous systematic reviews indicate a lack of reporting of reliability and validity evidence in subsets of the medical education literature. Psychology and general education reviews of factor analysis also indicate gaps between current and best practices; yet, a comprehensive review of exploratory factor analysis in instrument development across the continuum of medical education had not been previously identified. Therefore, the purpose for this study was critical review of instrument development articles employing exploratory factor or principal component analysis published in medical education (2006--2010) to describe and assess the reporting of methods and validity evidence based on the Standards for Educational and Psychological Testing and factor analysis best practices. Data extraction of 64 articles measuring a variety of constructs that have been published throughout the peer-reviewed medical education literature indicate significant errors in the translation of exploratory factor analysis best practices to current practice. Further, techniques for establishing validity evidence tend to derive from a limited scope of methods including reliability statistics to support internal structure and support for test content. Instruments reviewed for this study lacked supporting evidence based on relationships with other variables and response process, and evidence based on consequences of testing was not evident. Findings suggest a need for further professional development within the medical education researcher community related to (1) appropriate factor analysis methodology and reporting and (2) the importance of pursuing multiple sources of reliability and validity evidence to construct a well-supported argument for the inferences made from the instrument. Medical education researchers and educators should be cautious in adopting instruments from the literature and carefully review available evidence. Finally, editors and reviewers are encouraged to recognize
Analysis of kinetic reaction mechanisms
Turányi, Tamás
2014-01-01
Chemical processes in many fields of science and technology, including combustion, atmospheric chemistry, environmental modelling, process engineering, and systems biology, can be described by detailed reaction mechanisms consisting of numerous reaction steps. This book describes methods for the analysis of reaction mechanisms that are applicable in all these fields. Topics addressed include: how sensitivity and uncertainty analyses allow the calculation of the overall uncertainty of simulation results and the identification of the most important input parameters, the ways in which mechanisms can be reduced without losing important kinetic and dynamic detail, and the application of reduced models for more accurate engineering optimizations. This monograph is invaluable for researchers and engineers dealing with detailed reaction mechanisms, but is also useful for graduate students of related courses in chemistry, mechanical engineering, energy and environmental science and biology.
International Nuclear Information System (INIS)
Almog, Y.; Brenner, H.
1999-01-01
The macroscale rheological properties of a dilute suspension exposed to a uniform external field and composed of identical, rigid, inhomogeneous, dipolar, spherical particles dispersed in an incompressible Newtonian fluid and possessing the same mean density as the latter fluid are derived from knowledge of its microscale properties by applying a global ensemble-averaging technique. Each dipole, which is permanently embedded in the particle, is assumed to be generated by the presence of an inhomogeneous external body-force field in the particle interior resulting from the action of the uniform external field on an inhomogeneous distribution of interior matter. It is shown that although the ensemble-average stress tensor is symmetric, the suspension nevertheless behaves macroscopically as if it possessed an asymmetric stress tensor. This seeming contradiction can be traced to the fact that the average body force acting on the contents of any arbitrarily drawn volume lying in the interior of the suspension does not vanish despite the fact that each particle is 'neutrally buoyant'. That this force is not zero stems from the fact that some particles necessarily straddle the closed surface bounding that volume, and that the distribution of external body forces over the interiors of these particles is nonuniform. As such, that portion of the spherical particle lying outside of the surface enclosing the domain exerts a force on the remaining portion of the sphere lying within that domain. We then demonstrate that the natural macroscopic model, which is derived by equating the divergence of the suspension-scale stress appearing in that model to the ensemble-average external body-force field, and which predicts a symmetric stress tensor, is macroscopically deficient with respect to the more intuitive asymmetric stress model usually proposed by continuum mechanicians for such a suspension. It is shown that the latter, continuum-mechanical model recovers all the physically
Voulgarelis, Dimitrios; Velayudhan, Ajoy; Smith, Frank
2017-01-01
Agent-based models provide a formidable tool for exploring complex and emergent behaviour of biological systems as well as accurate results but with the drawback of needing a lot of computational power and time for subsequent analysis. On the other hand, equation-based models can more easily be used for complex analysis in a much shorter timescale. This paper formulates an ordinary differential equations and stochastic differential equations model to capture the behaviour of an existing agent-based model of tumour cell reprogramming and applies it to optimization of possible treatment as well as dosage sensitivity analysis. For certain values of the parameter space a close match between the equation-based and agent-based models is achieved. The need for division of labour between the two approaches is explored. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
First amplitude analysis of resonant structures in the 5-pion continuum at COMPASS
International Nuclear Information System (INIS)
Neubert, Sebastian
2012-01-01
The study of hadronic scattering amplitudes and in particular the spectroscopy of light mesons provide a unique tool to investigate the strong interaction. At very lowenergies the meson spectrum is governed by the spontaneous breakdown of the chiral symmetry of the QCD vacuum. At higher masses a series of resonances appears. Their origin and their relation to chiral symmetry breaking is only partly understood. In particular for masses above ∝ 1.6 GeV/c 2 while a large number of states have been reported they are still poorly known experimentally. One complication are multi-body final states into which heavy mesons can decay. In this thesis a method for the amplitude analysis of the π - π + π - π + π - system is being developed. The COMPASS experiment at CERN uses the diffractive dissociation of a 190 GeV pion beam as a source of meson resonances up to masses of about 3 GeV/c 2 . A partial wave decomposition of the 5π system is presented here which for the first time allows to search for mesonic 5-body resonances. A novel technique based on an evolutionary algorithm is developed to solve the problem of finding a reliable truncation of the partial wave expansion of the hadronic amplitude. The method for the first time allows the investigation of systematic uncertainties introduced by the use truncated isobar model amplitudes. The well known π 2 (1670) and π(1800) states are found with good agreement to measurements in other channels. In addition there is evidence for several other resonant contributions, among them the controversial π 2 (1880) which is being discussed as a hybrid-meson candidate. In the course of the analysis a new software-framework for amplitude analysis has been developed, which is now being used by the COMPASS collaboration for the analysis of several hadronic channels. Future experiments in particle physics will have to collect large amounts of data in order to search for the subtle effects that would indicate new physics beyond the
Comet Halley: An optical continuum study
International Nuclear Information System (INIS)
Hoban, S.M.
1989-01-01
From an analysis of narrowband CCD images of Comet Halley from 1986 January, March, and April, certain dust structures which are redder than the remainder of the dust coma have become apparent. Mie calculations suggest that this reddening is due to an enhancement of particles with sizes comparable to the observing wavelengths. Although the mass range derived from the calculations presented here is somewhat uncertain as a result of the limitations of Mie theory, these values are in the expected range derived from the calculations presented here is somewhat uncertain as a result of particle sizes which would be both sensitive to radiation pressure and significantly reddened with respect to the solar spectrum at the observing wavelengths. Thus, the red envelopes are plausibly the result of size sorting by solar radiation pressure. The red jets observed on 1986 January 10, March 1 and March 9 can then be explained by the enhanced dust flux at the jet sources, and the subsequent trapping of a relative excess of intermediate mass (i.e. red) particles into the jets which are visible in the continuum images. Analysis of narrowband photometry of the optical continuum of Comet Halley reveals no correlation between the color of the dust and heliocentric distance, phase angle, strength of the continuum or gas-to-dust ratio. The photometric data are thus consistent with a post-ejection sorting mechanism. Chemical inhomogeneities of the nucleus are therefore not necessary to explain the observed structure in the color of the dust in Comet Halley
Reich, Felix Alexander
2017-01-01
In the literature, many models of electromagnetic momentum are proposed. Each model implies a form of the electromagnetic force density, which acts as a source in the mechanical momentum balance. The debate as to which model of the electromagnetic force is "correct" for arbitrary materials and processes is ongoing. Most authors argue in favor or against specific models by virtue of thought experiments, e.g, with light waves. The topic of this work is to show that experiments conducted on a ma...
First amplitude analysis of resonant structures in the 5-pion continuum at COMPASS
Energy Technology Data Exchange (ETDEWEB)
Neubert, Sebastian
2012-07-06
The study of hadronic scattering amplitudes and in particular the spectroscopy of light mesons provide a unique tool to investigate the strong interaction. At very lowenergies the meson spectrum is governed by the spontaneous breakdown of the chiral symmetry of the QCD vacuum. At higher masses a series of resonances appears. Their origin and their relation to chiral symmetry breaking is only partly understood. In particular for masses above {proportional_to} 1.6 GeV/c{sup 2} while a large number of states have been reported they are still poorly known experimentally. One complication are multi-body final states into which heavy mesons can decay. In this thesis a method for the amplitude analysis of the {pi}{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -} system is being developed. The COMPASS experiment at CERN uses the diffractive dissociation of a 190 GeV pion beam as a source of meson resonances up to masses of about 3 GeV/c{sup 2}. A partial wave decomposition of the 5{pi} system is presented here which for the first time allows to search for mesonic 5-body resonances. A novel technique based on an evolutionary algorithm is developed to solve the problem of finding a reliable truncation of the partial wave expansion of the hadronic amplitude. The method for the first time allows the investigation of systematic uncertainties introduced by the use truncated isobar model amplitudes. The well known {pi}{sub 2}(1670) and {pi}(1800) states are found with good agreement to measurements in other channels. In addition there is evidence for several other resonant contributions, among them the controversial {pi}{sub 2}(1880) which is being discussed as a hybrid-meson candidate. In the course of the analysis a new software-framework for amplitude analysis has been developed, which is now being used by the COMPASS collaboration for the analysis of several hadronic channels. Future experiments in particle physics will have to collect large amounts of data in order to
A Continuum-Atomistic Analysis of Transgranular Crack Propagation in Aluminum
Yamakov, V.; Saether, E.; Glaessgen, E.
2009-01-01
A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain is used to study plastic processes at a crack tip in a single crystal of aluminum. The case of mode I loading is studied. A transition from deformation twinning to full dislocation emission from the crack tip is found when the crack plane is rotated around the [111] crystallographic axis. When the crack plane normal coincides with the [112] twinning direction, the crack propagates through a twinning mechanism. When the crack plane normal coincides with the [011] slip direction, the crack propagates through the emission of full dislocations. In intermediate orientations, a transition from full dislocation emission to twinning is found to occur with an increase in the stress intensity at the crack tip. This finding confirms the suggestion that the very high strain rates, inherently present in MD simulations, which produce higher stress intensities at the crack tip, over-predict the tendency for deformation twinning compared to experiments. The present study, therefore, aims to develop a more realistic and accurate predictive modeling of fracture processes.
Shao, Z.; Li, N.; Lin, J.
2017-09-01
The hot stamping and cold die quenching process has experienced tremendous development in order to obtain shapes of structural components with great complexity in automotive applications. Prediction of the formability of a metal sheet is significant for practical applications of forming components in the automotive industry. Since microstructural evolution in an alloy at elevated temperature has a large effect on formability, continuum damage mechanics (CDM)-based material models can be used to characterise the behaviour of metals when a forming process is conducted at elevated temperatures. In this paper, two sets of unified multi-axial constitutive equations based on material’s stress states and strain states, respectively, were calibrated and used to effectively predict the thermo-mechanical response and forming limits of alloys under complex hot stamping conditions. In order to determine and calibrate the two material models, formability tests of AA6082 using a developed novel biaxial testing system were conducted at various temperatures and strain rates under hot stamping conditions. The determined unified constitutive equations from experimental data are presented in this paper. It is found that both of the stress-state based and strain-state based material models can predict the formability of AA6082 under hot stamping conditions.
Jiang, Lijian; Efendiev, Yalchin; Ginting, Victor
2010-01-01
In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.
Jiang, Lijian
2010-08-01
In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.
Directory of Open Access Journals (Sweden)
Wang Xiaojia
2018-01-01
Full Text Available A damage mechanics based approach is applied for the study of fatigue behaviour of high pressure die cast ADC12 aluminium alloy. A damage coupled elastoplastic constitutive model is presented according to the concept of effective stress and the hypothesis of strain equivalence. An elastic fatigue damage model taking into account the pore-induced stress concentration is developed to investigate fatigue damage evolution of the specimens subjected to cyclic loading. The predicted lives for the specimens with different sizes of pores are consistent with the experimental data. The pore-induced fatigue damage and the variation of fatigue life along with the size of pores are also investigated.
Directory of Open Access Journals (Sweden)
Eugeniy A. Lukashev
2017-11-01
Full Text Available The occurrence of convective currents and their development from regular forms with the subsequent transition to irregular turbulent currents draw attention to the fact that they are responsible for the efficiency of many technological processes of heat and mass transfer. Such technological processes are basic in the chemical, petrochemical, power, metallurgical and other industries. Convective flows arise in liquids and gases in the gravitational field in the presence of spatial inhomogeneity of the density created by the inhomogeneity of the temperature and the concentration of components arising during, for example, chemical reactions or other causes. With increasing temperature difference, the resting liquid loses its stability, which then leads to the appearance of a convective flow (Rayleigh–Bénard instability. A further increase in the temperature difference leads to an instability of the primary convective flow, and the hydrodynamic crisis leads to a heat transfer crisis. The paper reconstructs the early stage of the Rayleigh–Bénard convective instability considered as a nonequilibrium phase transition with the spinodal decomposition (diffusion separation mechanism.
Mechanical tolerance stackup and analysis
Fischer, Bryan R
2011-01-01
Use Tolerance Analysis Techniques to Avoid Design, Quality, and Manufacturing Problems Before They Happen Often overlooked and misunderstood, tolerance analysis is a critical part of improving products and their design processes. Because all manufactured products are subject to variation, it is crucial that designers predict and understand how these changes can affect form, fit, and function of parts and assemblies--and then communicate their findings effectively. Written by one of the developers of ASME Y14.5 and other geometric dimension and tolerancing (GD&T) standards, Mechanical Tolerance
Continuum regularized Yang-Mills theory
International Nuclear Information System (INIS)
Sadun, L.A.
1987-01-01
Using the machinery of stochastic quantization, Z. Bern, M. B. Halpern, C. Taubes and I recently proposed a continuum regularization technique for quantum field theory. This regularization may be implemented by applying a regulator to either the (d + 1)-dimensional Parisi-Wu Langevin equation or, equivalently, to the d-dimensional second order Schwinger-Dyson (SD) equations. This technique is non-perturbative, respects all gauge and Lorentz symmetries, and is consistent with a ghost-free gauge fixing (Zwanziger's). This thesis is a detailed study of this regulator, and of regularized Yang-Mills theory, using both perturbative and non-perturbative techniques. The perturbative analysis comes first. The mechanism of stochastic quantization is reviewed, and a perturbative expansion based on second-order SD equations is developed. A diagrammatic method (SD diagrams) for evaluating terms of this expansion is developed. We apply the continuum regulator to a scalar field theory. Using SD diagrams, we show that all Green functions can be rendered finite to all orders in perturbation theory. Even non-renormalizable theories can be regularized. The continuum regulator is then applied to Yang-Mills theory, in conjunction with Zwanziger's gauge fixing. A perturbative expansion of the regulator is incorporated into the diagrammatic method. It is hoped that the techniques discussed in this thesis will contribute to the construction of a renormalized Yang-Mills theory is 3 and 4 dimensions
Extension versus Bending for Continuum Robots
Directory of Open Access Journals (Sweden)
George Grimes
2008-11-01
Full Text Available In this paper, we analyze the capabilities of a novel class of continuous-backbone ("continuum" robots. These robots are inspired by biological "trunks, and tentacles". However, the capabilities of established continuum robot designs, which feature controlled bending but not extension, fall short of those of their biological counterparts. In this paper, we argue that the addition of controlled extension provides dual and complementary functionality, and correspondingly enhanced performance, in continuum robots. We present an interval-based analysis to show how the inclusion of controllable extension significantly enhances the workspace and capabilities of continuum robots.
Alfven continuum with toroidicity
International Nuclear Information System (INIS)
Riyopoulos, S.; Mahajan, S.M.
1985-06-01
The symmetry property of the MHD wave propagation operator is utilized to express the toroidal eigenmodes as a superposition of the mutually orthogonal cylindrical modes. Because of the degeneracy among cylindrical modes with the same frequency but resonant surfaces of different helicity the toroidal perturbation produces a zeroth order mixing of the above modes. The toroidal eigenmodes of frequency ω 0 2 have multiple resonant surfaces, with each surface shifted relative to its cylindrical position and carrying a multispectral content. Thus a single helicity toroidal antenna of frequency ω 0 couples strongly to all different helicity resonant surfaces with matching local Alfven frequency. Zeroth order coupling between modes in the continuum and global Alfven modes also results from toroidicity and degeneracy. Our perturbation technique is the MHD counterpart of the quantum mechanical methods and is applicable through the entire range of the MHD spectrum
Computational Method for Atomistic-Continuum Homogenization
National Research Council Canada - National Science Library
Chung, Peter
2002-01-01
The homogenization method is used as a framework for developing a multiscale system of equations involving atoms at zero temperature at the small scale and continuum mechanics at the very large scale...
Finsler-Geometric Continuum Mechanics
2016-05-01
incremental boundary value problems. Crucial to deriving such equations is an extension of the divergence theorem for- warded in reference 56. Application of...to Ω in Eq. 16, as can spatial versions of the coordinate-free Stokes’ theorem in Eq. 18 and Rund’s horizontal divergence theo- rem in Eq. 19. 2.3... divergence theorem Eq. 19 and repeated integration by parts then gives the following equivalent integral form of Eq. 49: − ∫ M {[PAa|A + (PAa CCBC + ∂̄BPAa
Mills, R.; Lotoski, J.; Lu, Y.
2017-09-01
EUV continuum radiation (10-30 nm) arising only from very low energy pulsed pinch gas discharges comprising some hydrogen was first observed at BlackLight Power, Inc. and reproduced at the Harvard Center for Astrophysics (CfA). The source was determined to be due to the transition of H to the lower-energy hydrogen or hydrino state H(1/4) whose emission matches that observed wherein alternative sources were eliminated. The identity of the catalyst that accepts 3 · 27.2 eV from the H to cause the H to H(1/4) transition was determined to HOH versus 3H. The mechanism was elucidated using different oxide-coated electrodes that were selective in forming HOH versus plasma forming metal atoms as well as from the intensity profile that was a mismatch for the multi-body reaction required during 3H catalysis. The HOH catalyst was further shown to give EUV radiation of the same nature by igniting a solid fuel comprising a source of H and HOH catalyst by passing a low voltage, high current through the fuel to produce explosive plasma. No chemical reaction can release such high-energy light. No high field existed to form highly ionized ions that could give radiation in this EUV region that persisted even without power input. This plasma source serves as strong evidence for the existence of the transition of H to hydrino H(1/4) by HOH as the catalyst and a corresponding new power source wherein initial extraordinarily brilliant light-emitting prototypes are already producing photovoltaic generated electrical power. The hydrino product of a catalyst reaction of atomic hydrogen was analyzed by multiple spectroscopic techniques. Moreover, the mH catalyst was identified to be active in astronomical sources such as the Sun, stars and interstellar medium wherein the characteristics of hydrino match those of the dark matter of the Universe.
The Virtuality Continuum Revisited
Nijholt, Antinus; Traum, D.; Zhai, Sh.; Kellogg, W.
2005-01-01
We survey the themes and the aims of a workshop devoted to the state-of-the-art virtuality continuum. In this continuum, ranging from fully virtual to real physical environments, allowing for mixed, augmented and desktop virtual reality, several perspectives can be taken. Originally, the emphasis
Energy Technology Data Exchange (ETDEWEB)
Fried, Eliot; Gurtin, Morton E.
2001-04-20
The central focus of the research carried out under this grant is the application of continuum mechanics to materials science, specifically to the macroscopic characterization of material behavior at small length scales. Specifically, research was carried out in the following general areas: dislocations in solids; point defects in liquid crystals; dynamic fracture; diffusional phase transitions in deformable solids; incoherent phase interfaces; phase field simulations of twinning and coarsening in solids; crystal plasticity; microforce theories for diffusion and recrystallization; granular flow.
Theoretical Calculation and Validation of the Water Vapor Continuum Absorption
Ma, Qiancheng; Tipping, Richard H.
1998-01-01
The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning
Continuum of active nuclei of galaxies
International Nuclear Information System (INIS)
Boisson, C.; Durret, F.
1987-01-01
Most of the luminosity of active galactic nuclei (NAG) is radiated in the form of a continuum extending from radio to X-ray energies. It is important to understand the origin of this continuum in order to explain the relative importance of thermal and non-thermal processes in the different classes of NAG. We present here the observational aspect. A detailed study of the mechanisms will be presented by J.L. Masnou [fr
Sudo, Felipe Kenji; Amado, Patricia; Alves, Gilberto Sousa; Laks, Jerson; Engelhardt, Eliasz
2017-01-01
Subcortical Vascular Cognitive Impairment (SVCI) is a clinical continuum of vascular-related cognitive impairment, including Vascular Mild Cognitive Impairment (VaMCI) and Vascular Dementia. Deficits in Executive Function (EF) are hallmarks of the disorder, but the best methods to assess this function have yet to be determined. The insidious and almost predictable course of SVCI and the multidimensional concept of EF suggest that a temporal dissociation of impairments in EF domains exists early in the disorder. This study aims to review and analyze data from the literature about performance of VaMCI patients on the most used EF tests through a meta-analytic approach. Medline, Web of Knowledge and PsycINFO were searched, using the terms: "vascular mild cognitive impairment" OR "vascular cognitive impairment no dementia" OR "vascular mild neurocognitive disorder" AND "dysexecutive" OR "executive function". Meta-analyses were conducted for each of the selected tests, using random-effect models. Systematic review showed major discrepancies among the results of the studies included. Meta-analyses evidenced poorer performance on the Trail-Making Test part B and the Stroop color test by VaMCI patients compared to controls. A continuum of EF impairments has been proposed in SVCI. Early deficits appear to occur in cognitive flexibility and inhibitory control.
Continuum spectra in light-ion reactions
Energy Technology Data Exchange (ETDEWEB)
Tamura, T.; Udagawa, T. [Texas Univ., Austin (USA). Dept. of Physics; Ikegami, H.; Muraoka, M [eds.
1980-01-01
Recent developments in the use of multi-step direct reaction method, to fit continuum cross sections of light-ion reactions, are reviewed. There has been a long-standing difficulty in reproducing sufficiently large (p, p') continuum cross section, but it has now been all but removed. It will be discussed in some detail, how this was achieved. Analyses of very recent data on analyzing powers in the continuum of (p, p') and (p, ..cap alpha..) reactions will also be discussed. Finally, analysis of the breakup of h into d and p will be presented.
Energy Technology Data Exchange (ETDEWEB)
None
2015-08-01
This issue of Continuum Magazine covers the depth and breadth of NREL's ever-expanding analytical capabilities. For example, in one project we are leading national efforts to create a computer model of one of the most complex systems ever built. This system, the eastern part of the North American power grid, will likely host an increasing percentage of renewable energy in years to come. Understanding how this system will work is important to its success - and NREL analysis is playing a major role. We are also identifying the connections among energy, the environment and the economy through analysis that will point us toward a 'water smart' future.
Hoover, Wm G; Hoover, Carol G
2010-04-01
Guided by molecular dynamics simulations, we generalize the Navier-Stokes-Fourier constitutive equations and the continuum motion equations to include both transverse and longitudinal temperatures. To do so we partition the contributions of the heat transfer, the work done, and the heat flux vector between the longitudinal and transverse temperatures. With shockwave boundary conditions time-dependent solutions of these equations converge to give stationary shockwave profiles. The profiles include anisotropic temperature and can be fitted to molecular dynamics results, demonstrating the utility and simplicity of a two-temperature description of far-from-equilibrium states.
Analysis of the quasi-continuum band emitted by highly ionised tungsten atoms in the 4-7 nm range
International Nuclear Information System (INIS)
Madeira, T.I.; Amorim, P.; Marques, J.P.; Parente, F.; Indelicato, P.
2013-01-01
For the next upcoming generation of fusion experiments, such as ITER,Tungsten has been chosen as the materials for plasma facing components. Spectra emitted by highly ionized tungsten atoms from magnetically confined plasmas show a common feature: a narrow structured quasi-continuum emission band most prominent in the range 4-7 nm, which accounts for 40-80% of the radiated power. This band has been fairly well explained by unresolved transitions from groups 4d-4p, 4f-4d (Δn = 0) and 5d-4f, 5g-4f and 5p-4d (Δn = 1). In this work we use a Multi-Configuration Dirac-Fock code in Breit self-consistent field mode to compute level energies and transition probabilities for W 27+ to W 37+ ions contributing to this emission band. Intra-shell correlation was introduced in the calculation for both initial and final states and all dipole and quadrupole radiative transitions have been considered. The wavefunctions in the initial and final states are optimized separately and the resulting non-orthogonality effect is fully taken into account. The importance of some satellite lines was assessed. Together with the ionic distributions obtained by using the FLYCHK application and assuming that the initial states population depends statistically on the temperature we were able to synthesize plasma emission spectrum profiles for several electron temperatures. (authors)
Mechanical tolerance stackup and analysis
Fischer, Bryan R
2004-01-01
BackgroundDimensioning and TolerancingTolerance Format and Decimal PlacesConverting Plus/Minus Dimensions and Tolerances into Equal Bilaterally Toleranced DimensionsVariation and Sources of VariationTolerance AnalysisWorst-case Tolerance StackupsStatistical Tolerance StackupsGeometric Dimensioning and Tolerancing (GD&T)Converting Plus/Minus Tolerancing to Positional Tolerancing and Projected Tolerance ZonesDiametral and Radial Tolerance StackupsSpecifying Material Condition Modifiers and Their Effect on Tolerance Stackups The Tolerance Stackup SketchThe Tolerance Stackup Report FormTolerance S
Multiscale volatility duration characteristics on financial multi-continuum percolation dynamics
Wang, Min; Wang, Jun
A random stock price model based on the multi-continuum percolation system is developed to investigate the nonlinear dynamics of stock price volatility duration, in an attempt to explain various statistical facts found in financial data, and have a deeper understanding of mechanisms in the financial market. The continuum percolation system is usually referred to be a random coverage process or a Boolean model, it is a member of a class of statistical physics systems. In this paper, the multi-continuum percolation (with different values of radius) is employed to model and reproduce the dispersal of information among the investors. To testify the rationality of the proposed model, the nonlinear analyses of return volatility duration series are preformed by multifractal detrending moving average analysis and Zipf analysis. The comparison empirical results indicate the similar nonlinear behaviors for the proposed model and the actual Chinese stock market.
Nonlocal continuum field theories
2002-01-01
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...
Defining and testing a granular continuum element
Energy Technology Data Exchange (ETDEWEB)
Rycroft, Chris H.; Kamrin, Ken; Bazant, Martin Z.
2007-12-03
Continuum mechanics relies on the fundamental notion of amesoscopic volume "element" in which properties averaged over discreteparticles obey deterministic relationships. Recent work on granularmaterials suggests a continuum law may be inapplicable, revealinginhomogeneities at the particle level, such as force chains and slow cagebreaking. Here, we analyze large-scale Discrete-Element Method (DEM)simulations of different granular flows and show that a "granularelement" can indeed be defined at the scale of dynamical correlations,roughly three to five particle diameters. Its rheology is rather subtle,combining liquid-like dependence on deformation rate and solid-likedependence on strain. Our results confirm some aspects of classicalplasticity theory (e.g., coaxiality of stress and deformation rate),while contradicting others (i.e., incipient yield), and can guide thedevelopment of more realistic continuum models.
Treatment of pregnant mice with 2-chloro-2'-deoxyadenosine (2CdA) on day 8 of gestation induces coloboma, microphthalmia and anophthalmia through a mechanism coupled to the effects of the p53 tumor suppressor gene (Wubah et al.'96). The present study defines the dosimetry for 2Cd...
Institute of Scientific and Technical Information of China (English)
戴天民
2003-01-01
The purpose is to reestablish the balance laws of momentum, angular momentumand energy and to derive the corresponding local and nonlocal balance equations formicromorphic continuum mechanics and couple stress theory. The desired results formicromorphic continuum mechanics and couple stress theory are naturally obtained via directtransitions and reductions from the coupled conservation law of energy for micropolarcontinuum theory, respectively. The basic balance laws and equation s for micromorphiccontinuum mechanics and couple stress theory are constituted by combining these resultsderived here and the traditional conservation laws and equations of mass and microinertiaand the entropy inequality. The incomplete degrees of the former related continuum theoriesare clarified. Finally, some special cases are conveniently derived.
Continuum radiation of argon plasma
International Nuclear Information System (INIS)
D'Yachkov, L.G.
1995-01-01
A simple completely analytical method of the calculation of radiative continuum of plasmas is derived and an analysis of experimental data on continuum radiation of argon plasma is made. The method is based on the semiclassical quantum defect theory. To calculate radial matrix elements of dipole transitions the asymptotic expansion in powers of E c /ω 2/3 , with an accuracy to the linear term, where E, is the arithmetic mean of the initial and final energies of the transition, is used. This expansion has the same form for free-free, free-bound and bound-bound transitions. If the quantum defects are also approximated by a linear function of energy, the integration over the electron energy (the Maxwell-Boltzmann distribution is assumed) can be performed in analytical form. For Rydberg states the sum of photoionization continua can be replaced by an integral. We have calculated the absorption coefficient pf argon plasma. The photoionization cross section is calculated for all the states of 4s, 5s, 6s, 4p, 5p, 3d, 4d, 4s', 5s', 6s', 4p', 5p', 3d' and 4d' configurations taking into account P-coupling and multiplet splitting (56 states). Other excited states are allowed for by the integral formula together with free-free transitions
ANALYSIS AND MODELING OF GENEVA MECHANISM
Directory of Open Access Journals (Sweden)
HARAGA Georgeta
2015-06-01
Full Text Available The paper presents some aspects theoretical and practical based on the finite element analysis and modelling of Geneva mechanism with four slots, using the CATIA graphic program. This type of mechanism is an example of intermittent gearing that translates a continuous rotation into an intermittent rotary motion. It consists of alternate periods of motion and rest without reversing direction. In this paper, some design parameters with specify a Geneva mechanism will be defined precisely such as number of driving cranks, number of slots, wheel diameter, pin diameter, etc. Finite element analysis (FEA can be used for creating a finite element model (preprocessing and visualizing the analysis results (postprocessing, and use other solvers for processing.
Sridhar, A.; Kouznetsova, V.; Geers, M.G.D.
2017-01-01
This work presents a novel multiscale semi-analytical technique for the acoustic plane wave analysis of (negative) dynamic mass density type local resonance metamaterials with complex micro-structural geometry. A two step solution strategy is adopted, in which the unit cell problem at the
Noomen, M.F.; Skidmore, A.K.; Meer, van der F.D.; Prins, H.H.T.
2006-01-01
It is known that natural gas in the soil affects vegetation health, which may be detected through analysis of reflectance spectra. Since natural gas is invisible, changes in the vegetation could potentially indicate gas leakage. Although it is known that gas in soil affects plant reflectance, the
Laursen, Tod A
2003-01-01
This book comprehensively treats the formulation and finite element approximation of contact and impact problems in nonlinear mechanics. Intended for students, researchers and practitioners interested in numerical solid and structural analysis, as well as for engineers and scientists dealing with technologies in which tribological response must be characterized, the book includes an introductory but detailed overview of nonlinear finite element formulations before dealing with contact and impact specifically. Topics encompassed include the continuum mechanics, mathematical structure, variational framework, and finite element implementations associated with contact/impact interaction. Additionally, important and currently emerging research topics in computational contact mechanics are introduced, encompassing such topics as tribological complexity, conservative treatment of inelastic impact interaction, and novel spatial discretization strategies.
Energy Technology Data Exchange (ETDEWEB)
Huber, Charles S. [Instituto Federal Sul-rio-grandense, Câmpus Pelotas, Pelotas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Universidade Federal de Santa Catarina, Departamento de Química, Florianópolis, SC (Brazil); Andrade, Jailson B. [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)
2015-06-01
High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg{sup −1} and 4.7 mg kg{sup −1}, respectively. - Highlights: • Ir, Ru and Zr were investigated as permanent modifiers. • Ca, Mg, Pd and Pd/Mg were investigated as modifiers in solution. • Indirect determination of sulfur monitoring the molecular absorbance of the CS • Direct analysis of diesel samples using a dilution in propan-1-ol.
Coupling of nonlocal and local continuum models by the Arlequinapproach
Han, Fei; Lubineau, Gilles
2011-01-01
for the 'fine scale' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can
Osis, Sean T; Hettinga, Blayne A; Ferber, Reed
2016-05-01
An ongoing challenge in the application of gait analysis to clinical settings is the standardized detection of temporal events, with unobtrusive and cost-effective equipment, for a wide range of gait types. The purpose of the current study was to investigate a targeted machine learning approach for the prediction of timing for foot strike (or initial contact) and toe-off, using only kinematics for walking, forefoot running, and heel-toe running. Data were categorized by gait type and split into a training set (∼30%) and a validation set (∼70%). A principal component analysis was performed, and separate linear models were trained and validated for foot strike and toe-off, using ground reaction force data as a gold-standard for event timing. Results indicate the model predicted both foot strike and toe-off timing to within 20ms of the gold-standard for more than 95% of cases in walking and running gaits. The machine learning approach continues to provide robust timing predictions for clinical use, and may offer a flexible methodology to handle new events and gait types. Copyright © 2016 Elsevier B.V. All rights reserved.
de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira
2015-12-01
The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.
Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C
2015-11-01
The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. Copyright © 2015. Published by Elsevier B.V.
A mechanical energy analysis of gait initiation
Miller, C. A.; Verstraete, M. C.
1999-01-01
The analysis of gait initiation (the transient state between standing and walking) is an important diagnostic tool to study pathologic gait and to evaluate prosthetic devices. While past studies have quantified mechanical energy of the body during steady-state gait, to date no one has computed the mechanical energy of the body during gait initiation. In this study, gait initiation in seven normal male subjects was studied using a mechanical energy analysis to compute total body energy. The data showed three separate states: quiet standing, gait initiation, and steady-state gait. During gait initiation, the trends in the energy data for the individual segments were similar to those seen during steady-state gait (and in Winter DA, Quanbury AO, Reimer GD. Analysis of instantaneous energy of normal gait. J Biochem 1976;9:253-257), but diminished in amplitude. However, these amplitudes increased to those seen in steady-state during the gait initiation event (GIE), with the greatest increase occurring in the second step due to the push-off of the foundation leg. The baseline level of mechanical energy was due to the potential energy of the individual segments, while the cyclic nature of the data was indicative of the kinetic energy of the particular leg in swing phase during that step. The data presented showed differences in energy trends during gait initiation from those of steady state, thereby demonstrating the importance of this event in the study of locomotion.
International Nuclear Information System (INIS)
Stora, R.
1976-09-01
The mathematics of gauge fields and some related concepts are discussed: some corrections on the principal fiber bundles emphasize the idea that the present formulation of continuum theories is incomplete. The main ingredients used through the construction of the renormalized perturbation series are then described: the Faddeev Popov argument, and the Faddeev Popov Lagrangian; the Slavnov symmetry and the nature of the Faddeev Popov ghost fields; the Slavnov identity, with an obstruction: the Adler Bardeen anomaly, and its generalization to the local cohomology of the gauge Lie algebra. Some smooth classical configurations of gauge fields which ought to play a prominent role in the evaluation of the functional integral describing the theory are also reviewed
Directory of Open Access Journals (Sweden)
Lucas Primo de Carvalho Alves
Full Text Available Melancholic features of depression (MFD seem to be a unidimensional group of signs and symptoms. However, little importance has been given to the evaluation of what features are related to a more severe disorder. That is, what are the MFD that appear only in the most depressed patients. We aim to demonstrate how each MFD is related to the severity of the major depressive disorder.We evaluated both the Hamilton depression rating scale (HDRS-17 and its 6-item melancholic subscale (HAM-D6 in 291 depressed inpatients using Rasch analysis, which computes the severity of each MFD. Overall measures of model fit were mean (±SD of items and persons residual = 0 (±1; low χ2 value; p>0.01.For the HDRS-17 model fit, mean (±SD of item residuals = 0.35 (±1.4; mean (±SD of person residuals = -0.15 (±1.09; χ2 = 309.74; p<0.00001. For the HAM-D6 model fit, mean (±SD of item residuals = 0.5 (±0.86; mean (±SD of person residuals = 0.15 (±0.91; χ2 = 56.13; p = 0.196. MFD ordered by crescent severity were depressed mood, work and activities, somatic symptoms, psychic anxiety, guilt feelings, and psychomotor retardation.Depressed mood is less severe, while guilt feelings and psychomotor retardation are more severe MFD in a psychiatric hospitalization. Understanding depression as a continuum of symptoms can improve the understanding of the disorder and may improve its perspective of treatment.
Electromagnetic field and mechanical stress analysis code
International Nuclear Information System (INIS)
1978-01-01
Analysis TEXMAGST is a two stage linear finite element code for the analysis of static magnetic fields in three dimensional structures and associated mechanical stresses produced by the anti J x anti B forces within these structures. The electromagnetic problem is solved in terms of magnetic vector potential A for a given current density anti J as curl 1/μ curl anti A = anti J considering the magnetic permeability as constant. The Coulombian gauge (div anti A = o) was chosen and was implemented through the use of Lagrange multipliers. The second stage of the problem - the calculation of mechanical stresses in the same three dimensional structure is solved by using the same code with few modifications - through a restart card. Body forces anti J x anti B within each element are calculated from the solution of the first stage run and represent the input to the second stage run which will give the solution for the stress problem
Continuum limbed robots for locomotion
Mutlu, Alper
This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.
Continuum robots and underactuated grasping
Directory of Open Access Journals (Sweden)
N. Giri
2011-02-01
Full Text Available We discuss the capabilities of continuum (continuous backbone robot structures in the performance of under-actuated grasping. Continuum robots offer the potential of robust grasps over a wide variety of object classes, due to their ability to adapt their shape to interact with the environment via non-local continuum contact conditions. Furthermore, this capability can be achieved with simple, low degree of freedom hardware. However, there are practical issues which currently limit the application of continuum robots to grasping. We discuss these issues and illustrate via an experimental continuum grasping case study.
This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.
Cocheret de la Morinière, E.; Pollux, B.J.A.; Nagelkerken, I.; Hemminga, M.A.; Huiskes, A.H.L.; Van der Velde, G.
2003-01-01
Juveniles of a number of reef fish species develop in shallow-water 'nursery' habitats such as mangroves and seagrass beds, and then migrate to the coral reef. This implies that some reef fish species are distributed over the mangrove-seagrass-reef continuum in subpopulations with different size
Experiments and video analysis in classical mechanics
de Jesus, Vitor L B
2017-01-01
This book is an experimental physics textbook on classical mechanics focusing on the development of experimental skills by means of discussion of different aspects of the experimental setup and the assessment of common issues such as accuracy and graphical representation. The most important topics of an experimental physics course on mechanics are covered and the main concepts are explored in detail. Each chapter didactically connects the experiment and the theoretical models available to explain it. Real data from the proposed experiments are presented and a clear discussion over the theoretical models is given. Special attention is also dedicated to the experimental uncertainty of measurements and graphical representation of the results. In many of the experiments, the application of video analysis is proposed and compared with traditional methods.
The continuum of behavior guidance.
Nelson, Travis
2013-01-01
Behavior guidance is a continuum of techniques, basic and advanced, fundamental to the provision of quality dental care for pediatric patients. This practice must be individualized, pairing the correct method of behavior guidance with each child. To select the appropriate technique, the clinician must have a thorough understanding of each aspect of the continuum and anticipate parental expectations, child temperament, and the technical procedures necessary to complete care. By effectively using techniques within the continuum of behavior guidance, a healing relationship with the family is maintained while addressing dental disease and empowering the child to receive dental treatment throughout their lifetime. Copyright © 2013 Elsevier Inc. All rights reserved.
Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.
2017-01-01
This paper describes the development of input properties for a continuum damage mechanics based material model, Mat 58, within LS-DYNA(Registered Trademark) to simulate the response of a graphite-Kevlar(Registered Trademark) hybrid plain weave fabric. A limited set of material characterization tests were performed on the hybrid graphite-Kevlar(Registered Trademark) fabric. Simple finite element models were executed in LS-DYNA(Registered Trademark) to simulate the material characterization tests and to verify the Mat 58 material model. Once verified, the Mat 58 model was used in finite element models of two composite energy absorbers: a conical-shaped design, designated the "conusoid," fabricated of four layers of hybrid graphite-Kevlar(Registered Trademark) fabric; and, a sinusoidal-shaped foam sandwich design, designated the "sinusoid," fabricated of the same hybrid fabric face sheets with a foam core. Dynamic crush tests were performed on components of the two energy absorbers, which were designed to limit average vertical accelerations to 25- to 40-g, to minimize peak crush loads, and to generate relatively long crush stroke values under dynamic loading conditions. Finite element models of the two energy absorbers utilized the Mat 58 model that had been verified through material characterization testing. Excellent predictions of the dynamic crushing response were obtained.
ANSYS mechanical APDL for finite element analysis
Thompson, Mary Kathryn
2017-01-01
ANSYS Mechanical APDL for Finite Element Analysis provides a hands-on introduction to engineering analysis using one of the most powerful commercial general purposes finite element programs on the market. Students will find a practical and integrated approach that combines finite element theory with best practices for developing, verifying, validating and interpreting the results of finite element models, while engineering professionals will appreciate the deep insight presented on the program's structure and behavior. Additional topics covered include an introduction to commands, input files, batch processing, and other advanced features in ANSYS. The book is written in a lecture/lab style, and each topic is supported by examples, exercises and suggestions for additional readings in the program documentation. Exercises gradually increase in difficulty and complexity, helping readers quickly gain confidence to independently use the program. This provides a solid foundation on which to build, preparing readers...
Department of Housing and Urban Development — The purpose of the Continuum of Care (CoC) Homeless Assistance Programs is to reduce the incidence of homelessness in CoC communities by assisting homeless...
DEFF Research Database (Denmark)
Sedaghatizadeh, N.; Atefi, G.; Fardad, A. A.
2011-01-01
In this investigation, semiempirical and numerical studies of blood flow in a viscoelastic artery were performed using the Cosserat continuum model. The large-amplitude oscillatory shear deformation model was used to quantify the nonlinear viscoelastic response of blood flow. The finite differenc...... method was used to solve the governing equations, and the particle swarm optimization algorithm was utilized to identify the non-Newtonian coefficients (kυ and γυ). The numerical results agreed well with previous experimental results....
Analysis of Fatigue Life of PMMA at Different Frequencies Based on a New Damage Mechanics Model
Directory of Open Access Journals (Sweden)
Aifeng Huang
2014-01-01
Full Text Available Low-cycle fatigue tests at different frequencies and creep tests under different stress levels of Plexiglas Resist 45 were conducted. Correspondingly, the creep fracture time, S-N curves, cyclic creep, and hysteresis loop were obtained. These results showed that the fatigue life increases with frequency at low frequency domain. After analysis, it was found that fatigue life is dependent on the load rate and is affected by the creep damage. In addition, a new continuum damage mechanics (CDM model was established to analyze creep-fatigue life, where the damage increment nonlinear summation rule was proposed and the frequency modification was made on the fatigue damage evolution equation. Differential evolution (DE algorithm was employed to determine the parameters within the model. The proposed model described fatigue life under different frequencies, and the calculated results agreed well with the experimental results.
Lattice continuum and diffusional creep.
Mesarovic, Sinisa Dj
2016-04-01
Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.
Gamma-ray continuum spectra from heavy ion reactions
International Nuclear Information System (INIS)
Beene, J.R.; Halbert, M.L.; Hensley, D.C.; Sarantites, D.G.; Westerberg, L.W.; Geoffroy, K.; Woodward, R.
1979-01-01
A detailed quantitative analysis of the yrast continuum was attempted by subtracting the underlying statistical continnuum in a way that makes allowance for ignorance of its detailed shape. This procedure makes it possible to obtain the moment of inertia as a function of spin over a wide range of spins. The results of this continuum spectra shape analysis can be used to calculate the first and second moments of the continuum multiplicity distribution. Continuum spectra were taken during the bombardment of 150 Nd by 115- and 130-MeV beams of 20 Ne, also the first and second moments of the γ-ray multiplicity distribution as a function of the gamma energy. The moment of inertia versus spin and the deduced Yrast continuua are shown. 10 references
Topics in Applied Continuum Mechanics : Symposium
Ziegler, F
1974-01-01
THE FOUNDATIONS OF THERMOELASTICITY-EXPERIMENTS AND THEORY (A. PHILLIPS) 1. Introduction 2. The initial yield surface 4 3. The subsequent yield surface 6 4. Some theoretical consequences 10 References 13 ON THE PHYSICS AND MATHEMATICS OF SELF-STRESSES (E. KRONER) 1. Introduction 22 2. The physical origin of the self-stresses 23 3. Formulation of the mathematical problem of self-stresses 27 4. The method of modified Green's functions 30 5. Concluding remarks 35 References 38 DISTORTION IN MICROPOLAR ELASTICITY (W. NOWACKI) 1. Fundamental relations and equations 39 2. Principle of virtual work 42 3. Theorem of minimum of the complimentary work 43 • 4. Reciprocity theorem 44 5. Equations in displacements and rotations 47 6. Compatibility equations 51 References 57 THE YIELD CRITERION IN THE GENERAL CASE OF NONHOMOGENEOUS STRESS AND DEFORMATION FIELDS (J. A. KONIG and W. OLSZAK) 1. Introduction 58 2. The plasticity condition 61 3. Special cases of the yield condition 62 4. Example: Pure bending 63 5. Criteria f...
Recognition and Analysis of Corrosion Failure Mechanisms
Directory of Open Access Journals (Sweden)
Steven Suess
2006-02-01
Full Text Available Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, material evaluation, data review and conclusion procurement. In analyzing corrosion failures, one must recognize the wide range of common corrosion mechanisms. The features of any corrosion failure give strong clues as to the most likely cause of the corrosion. This article details a proven approach to properly determining the root cause of a failure, and includes pictographic illustrations of the most common corrosion mechanisms, including general corrosion, pitting, galvanic corrosion, dealloying, crevice corrosion, microbiologically-influenced corrosion (MIC, corrosion fatigue, stress corrosion cracking (SCC, intergranular corrosion, fretting, erosion corrosion and hydrogen damage.
Bonnington, O; Wamoyi, J; Ddaaki, W; Bukenya, D; Ondenge, K; Skovdal, M; Renju, J; Moshabela, M; Wringe, A
2017-07-01
Stigma remains pervasive for people living with HIV (PLHIV) in sub-Saharan Africa, undermining care engagement. Using everyday , biographical and epochal temporalities, we explored the manifestation of stigma at different stages of the HIV care continuum in seven health and demographic surveillance sites in Eastern and Southern Africa. Between 2015 and 2016, we conducted qualitative in-depth interviews with 264 PLHIV, 54 health providers and 48 family members of people who had died from HIV. Topic guides explored experiences of HIV testing, care and treatment services. Data were analysed thematically, aided by NVivo 10. In everyday time across these communities, stigma was evident in the presence of gossiping and the relative absence of supportive interpersonal discourse, which fuelled judicious disclosure. This was especially disruptive at testing, counselling and early antiretroviral therapy adherence stages of care. Biographical time framed everyday stigma events, highlighting the dilemma of disclosure in relation to sexual relationship norms, as well as the interfacing of age and healthcare continuum points. Epochal patriarchal relations gave a structural context to everyday and biographical stigma dynamics. Historical shifts to social acceptance of PLHIV within these communities, while positive, were complicated by stigma in everyday life and in respect of biographical goals like having a family. Moreover, low community-level resistance to HIV-related stigma jeopardised stigma reduction strategies. Despite improvements to HIV care services, stigma remains pervasive across the HIV care continuum in these sites. Context-specific interventions are needed to address stigma and discrimination of PLHIV within the community and in health services, and greater reflection is required to ensure policies aiming to expand HIV treatment do not exacerbate stigma and result in negative HIV outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where
Energy Technology Data Exchange (ETDEWEB)
Joyce, J.M.; Bissinger, G.
1987-04-01
The ECC cusp and W peak shapes for continuum electron capture by approx. = MeV/u H/sup +/ and He/sup 2 +/ from hydrocarbon and fluorocarbon gas molecules are analyzed with the general parametric expression of Meckbach, Nemirovsky and Garibotti (i) to look for trends in the coefficients of these parameters, (ii) as a way of generating computed cusp shapes to reduce statistical fluctuations in cusp difference spectra, and (iii) to provide information on the deconvoluted d/sup 2/sigma/d..nu.. dtheta values for cusp and W peaks in the hydrocarbon gases.
Asinari, Pietro
2009-11-01
A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.
Pharmaceutical applications of dynamic mechanical thermal analysis.
Jones, David S; Tian, Yiwei; Abu-Diak, Osama; Andrews, Gavin P
2012-04-01
The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose. © 2011 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
Ind, Nicholas; Iglesias, Oriol; Markovic, Stefan
2017-01-01
-creation - from tactical market research tool to strategic collaborative innovation method, and shows that brands can be positioned along a continuum between these two polarities. This article also presents the implications for those that want to seize the potential of co-creation....
The geometry of continuum regularization
International Nuclear Information System (INIS)
Halpern, M.B.
1987-03-01
This lecture is primarily an introduction to coordinate-invariant regularization, a recent advance in the continuum regularization program. In this context, the program is seen as fundamentally geometric, with all regularization contained in regularized DeWitt superstructures on field deformations
On deformation of complex continuum immersed in a plane space
Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.
2018-05-01
The present paper is devoted to mathematical modelling of complex continua deformations considered as immersed in an external plane space. The complex continuum is defined as a differential manifold supplied with metrics induced by the external space. A systematic derivation of strain tensors by notion of isometric immersion of the complex continuum into a plane space of a higher dimension is proposed. Problem of establishing complete systems of irreducible objective strain and extrastrain tensors for complex continuum immersed in an external plane space is resolved. The solution to the problem is obtained by methods of the field theory and the theory of rational algebraic invariants. Strain tensors of the complex continuum are derived as irreducible algebraic invariants of contravariant vectors of the external space emerging as functional arguments in the complex continuum action density. Present analysis is restricted to rational algebraic invariants. Completeness of the considered systems of rational algebraic invariants is established for micropolar elastic continua. Rational syzygies for non-quadratic invariants are discussed. Objective strain tensors (indifferent to frame rotations in the external plane space) for micropolar continuum are alternatively obtained by properly combining multipliers of polar decompositions of deformation and extra-deformation gradients. The latter is realized only for continua immersed in a plane space of the equal mathematical dimension.
Set theory and the continuum hypothesis
Cohen, Paul J
2008-01-01
This exploration of a notorious mathematical problem is the work of the man who discovered the solution. The independence of the continuum hypothesis is the focus of this study by Paul J. Cohen. It presents not only an accessible technical explanation of the author's landmark proof but also a fine introduction to mathematical logic. An emeritus professor of mathematics at Stanford University, Dr. Cohen won two of the most prestigious awards in mathematics: in 1964, he was awarded the American Mathematical Society's Bôcher Prize for analysis; and in 1966, he received the Fields Medal for Logic.
A multidimensional analysis of physiological and mechanical ...
African Journals Online (AJOL)
Journal of Fundamental and Applied Sciences ... investigates the various physiological and mechanical techniques employed by archers of varying skill levels. ... Keywords: archery; muscle activations; heart rate; bow movement; postural sway ...
Thermal mechanical analysis of a solid breeding blanket
International Nuclear Information System (INIS)
Aquaro, Donato
2003-01-01
This paper deals with a theoretical model of thermal mechanical behaviour of pebble beds, used as neutron multiplier or tritium breeder in the breeding blanket of a fusion nuclear reactor. The model tries to sum up the advantages of the two approaches ('discrete' method and macroscopic method), presently used for analysing the pebble bed behaviour, without their intrinsic disadvantages. The developed method has the capability to describe the microscopic behaviour of the single sphere (as the discrete approach does), and the capability to model complex structures under variable loads, typical of the macroscopic approach, without doing the unrealistic assumption of continuum homogeneous and isotropic material. The model describes the thermal mechanical behaviour of a single sphere compressed in elastic plastic conditions. The obtained relations have been extrapolated to regular lattices of spheres and subsequently to pebble beds (characterised by a macroscopic parameter called 'packing factor') of simple geometric shapes using statistical considerations. The results of the model have been assessed by comparison with results obtained by means of numerical simulations and experimental tests. The ongoing activity is the implementation in a FEM code of a new finite element, which represents one or several regular lattices of spheres, the non linear stiffness of which is obtained from the mono dimensional compression model of one sphere. The results of the numerical simulation permits to construct and display the strain and stress distribution of the single spheres by means of an implemented graphical interface
Mwangi, Winfred; Gachuno, Onesmus; Desai, Meghna; Obor, David; Were, Vincent; Odhiambo, Frank; Nyaguara, Amek; Laserson, Kayla F
2018-05-16
Examining skilled attendance throughout pregnancy, delivery and immediate postnatal period is proxy indicator on the progress towards reduction of maternal and neonatal mortality in developing countries. We conducted a cross-sectional baseline survey of households of mothers with at least 1 child under-5 years in 2012 within the KEMRI/CDC health and demographic surveillance system (HDSS) area in rural western Kenya. Out of 8260 mother-child pairs, data on antenatal care (ANC) in the most recent pregnancy was obtained for 89% (n = 8260); 97% (n = 7387) reported attendance. Data on number of ANC visits was available for 89% (n = 7140); 52% (n = 6335) of mothers reported ≥4 ANC visits. Data on gestation month at first ANC was available for 94% (n = 7140) of mothers; 14% (n = 6690) reported first visit was in1 st trimester (0-12 weeks), 73% in 2nd trimester (14-28 weeks) and remaining 13% in third trimester. Forty nine percent (n = 8259) of mothers delivered in a Health Facility (HF), 48% at home and 3% en route to HF. Forty percent (n = 7140) and 63% (n = 4028) of mothers reporting ANC attendance and HF delivery respectively also reported receiving postnatal care (PNC). About 36% (n = 8259) of mothers reported newborn assessment (NBA). Sixty eight percent (n = 3966) of mothers that delivered at home reported taking newborn for HF check-up, with only 5% (n = 2693) doing so within 48 h of delivery. Being ≤34 years (OR 1.8; 95% CI 1.4-2.4) and at least primary education (OR 5.3; 95% CI 1.8-15.3) were significantly associated with ANC attendance. Being ≤34 years (OR 1.7; 95% CI 1.5-2.0), post-secondary vs primary education (OR 10; 95% CI 4.4-23.4), ANC attendance (OR 4.5; 95% CI 3.2-6.1), completing ≥4 ANC visits (OR 2.0; 95% CI 1.8-2.2), were strongly associated with HF delivery. The continuum of care was such that 97% (n = 7387) mothers reported ANC attendance, 49% reported both ANC and HF delivery
Some aspects of continuum physics used in fuel pin modeling
International Nuclear Information System (INIS)
Bard, F.E.
1975-06-01
The mathematical formulation used in fuel pin modeling is described. Fuel pin modeling is not a simple extension of the experimental and interpretative methods used in classical mechanics. New concepts are needed to describe materials in a reactor environment. Some aspects of continuum physics used to develop these new constitutive equations for fuel pins are presented. (U.S.)
Computational analysis of sequence selection mechanisms.
Meyerguz, Leonid; Grasso, Catherine; Kleinberg, Jon; Elber, Ron
2004-04-01
Mechanisms leading to gene variations are responsible for the diversity of species and are important components of the theory of evolution. One constraint on gene evolution is that of protein foldability; the three-dimensional shapes of proteins must be thermodynamically stable. We explore the impact of this constraint and calculate properties of foldable sequences using 3660 structures from the Protein Data Bank. We seek a selection function that receives sequences as input, and outputs survival probability based on sequence fitness to structure. We compute the number of sequences that match a particular protein structure with energy lower than the native sequence, the density of the number of sequences, the entropy, and the "selection" temperature. The mechanism of structure selection for sequences longer than 200 amino acids is approximately universal. For shorter sequences, it is not. We speculate on concrete evolutionary mechanisms that show this behavior.
Mechanical vibration and shock analysis, sinusoidal vibration
Lalanne, Christian
2014-01-01
Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m
Shape Modeling of a Concentric-tube Continuum Robot
DEFF Research Database (Denmark)
Bai, Shaoping; Xing, Charles Chuhao
2012-01-01
Concentric-tube continuum robots feature with simple and compact structures and have a great potential in medical applications. The paper is concerned with the shape modeling of a type of concentric-tube continuum robot built with a collection of super-elastic NiTiNol tubes. The mechanics...... is modeled on the basis of energy approach for both the in-plane and out-plane cases. The torsional influences on the shape of the concentric-tube robots are considered. An experimental device was build for the model validation. The results of simulation and experiments are included and analyzed....
Continuum description for jointed media
International Nuclear Information System (INIS)
Thomas, R.K.
1982-04-01
A general three-dimensional continuum description is presented for a material containing regularly spaced and approximately parallel jointing planes within a representative elementary volume. Constitutive relationships are introduced for linear behavior of the base material and nonlinear normal and shear behavior across jointing planes. Furthermore, a fracture permeability tensor is calculated so that deformation induced alterations to the in-situ values can be measured. Examples for several strain-controlled loading paths are presented
Methods of stability analysis in nonlinear mechanics
International Nuclear Information System (INIS)
Warnock, R.L.; Ruth, R.D.; Gabella, W.; Ecklund, K.
1989-01-01
We review our recent work on methods to study stability in nonlinear mechanics, especially for the problems of particle accelerators, and compare our ideals to those of other authors. We emphasize methods that (1) show promise as practical design tools, (2) are effective when the nonlinearity is large, and (3) have a strong theoretical basis. 24 refs., 2 figs., 2 tabs
Meso Mechanical Analysis of AC Mixture Response
Woldekidan, M.F.; Huurman, M.; Vaccari, E.; Poot, M.
2012-01-01
Ongoing research into performance modeling of Asphalt Concrete (AC) mixtures using meso mechanics approaches is being undertaken at Delft University of Technology (TUD). The approach has already been successfully employed for evaluating the long term performance of porous asphalt concrete. The work
Frequency chirpings in Alfven continuum
Wang, Ge; Berk, Herb; Breizman, Boris; Zheng, Linjin
2017-10-01
We have used a self-consistent mapping technique to describe both the nonlinear wave-energetic particle resonant interaction and its spatial mode structure that depends upon the resonant energetic particle pressure. At the threshold for the onset of the energetic particle mode (EPM), strong chirping emerges in the lower continuum close to the TAE gap and then, driven by strong continuum damping, chirps rapidly to lower frequencies in the Alfven continuum. An adiabatic theory was developed that accurately replicated the results from the simulation where the nonlinearity was only due to the EPM resonant particles. The results show that the EPM-trapped particles have their action conserved during the time of rapid chirping. This adiabaticity enabled wave trapped particles to be confined within their separatrix, and produce even larger resonant structures, that can produce a large amplitude mode far from linearly predicted frequencies. In the present work we describe the effect of additional MHD nonlinearity to this calculation. We studied how the zonal flow component and its nonlinear feedback to the fundamental frequency and found that the MHD nonlinearity doesn't significantly alter the frequency chirping response that is predicted by the calculation that neglects the MHD nonlinearity.
Continuum robot arms inspired by cephalopods
Walker, Ian D.; Dawson, Darren M.; Flash, Tamar; Grasso, Frank W.; Hanlon, Roger T.; Hochner, Binyamin; Kier, William M.; Pagano, Christopher C.; Rahn, Christopher D.; Zhang, Qiming M.
2005-05-01
In this paper, we describe our recent results in the development of a new class of soft, continuous backbone ("continuum") robot manipulators. Our work is strongly motivated by the dexterous appendages found in cephalopods, particularly the arms and suckers of octopus, and the arms and tentacles of squid. Our ongoing investigation of these animals reveals interesting and unexpected functional aspects of their structure and behavior. The arrangement and dynamic operation of muscles and connective tissue observed in the arms of a variety of octopus species motivate the underlying design approach for our soft manipulators. These artificial manipulators feature biomimetic actuators, including artificial muscles based on both electro-active polymers (EAP) and pneumatic (McKibben) muscles. They feature a "clean" continuous backbone design, redundant degrees of freedom, and exhibit significant compliance that provides novel operational capacities during environmental interaction and object manipulation. The unusual compliance and redundant degrees of freedom provide strong potential for application to delicate tasks in cluttered and/or unstructured environments. Our aim is to endow these compliant robotic mechanisms with the diverse and dexterous grasping behavior observed in octopuses. To this end, we are conducting fundamental research into the manipulation tactics, sensory biology, and neural control of octopuses. This work in turn leads to novel approaches to motion planning and operator interfaces for the robots. The paper describes the above efforts, along with the results of our development of a series of continuum tentacle-like robots, demonstrating the unique abilities of biologically-inspired design.
Continuum deformation of multi-agent systems
Rastgoftar, Hossein
2016-01-01
This monograph presents new algorithms for formation control of multi-agent systems (MAS) based on principles of continuum mechanics. Beginning with an overview of traditional methods, the author then introduces an innovative new approach whereby agents of an MAS are considered as particles in a continuum evolving in ℝn whose desired configuration is required to satisfy an admissible deformation function. The necessary theory and its validation on a mobile-agent-based swarm test bed are considered for two primary tasks: homogeneous transformation of the MAS and deployment of a random distribution of agents on a desired configuration. The framework for this model is based on homogeneous transformations for the evolution of an MAS under no inter-agent communication, local inter-agent communication, and intelligent perception by agents. Different communication protocols for MAS evolution, the robustness of tracking of a desired motion by an MAS evolving in ℝn, and the effect of communication delays in an MAS...
Isogeometric analysis : a calculus for computational mechanics
Benson, D.J.; Borst, de R.; Hughes, T.J.R.; Scott, M.A.; Verhoosel, C.V.; Topping, B.H.V.; Adam, J.M.; Pallarés, F.J.; Bru, R.; Romero, M.L.
2010-01-01
The first paper on isogeometric analysis appeared only five years ago [1], and the first book appeared last year [2]. Progress has been rapid. Isogeometric analysis has been applied to a wide variety of problems in solids, fluids and fluid-structure interactions. Superior accuracy to traditional
Fuel cladding mechanical properties for transient analysis
International Nuclear Information System (INIS)
Johnson, G.D.; Hunter, C.W.; Hanson, J.E.
1976-01-01
Out-of-pile simulated transient tests have been conducted on irradiated fast-reactor fuel pin cladding specimens at heating rates of 10 0 F/s (5.6 0 K/s) and 200 0 F/s (111 0 K/s) to generate mechanical property information for use in describing cladding behavior during off-normal events. Mechanical property data were then analyzed, applying the Larson-Miller Parameter to the effects of heating rate and neutron fluence. Data from simulated transient tests on TREAT-tested fuel pins demonstrate that Plant Protective System termination of 3$/s transients prevents significant damage to cladding. The breach opening produced during simulated transient testing is shown to decrease in size with increasing neutron fluence
Cunningham, J C; Sinka, I C; Zavaliangos, A
2004-08-01
In this first of two articles on the modeling of tablet compaction, the experimental inputs related to the constitutive model of the powder and the powder/tooling friction are determined. The continuum-based analysis of tableting makes use of an elasto-plastic model, which incorporates the elements of yield, plastic flow potential, and hardening, to describe the mechanical behavior of microcrystalline cellulose over the range of densities experienced during tableting. Specifically, a modified Drucker-Prager/cap plasticity model, which includes material parameters such as cohesion, internal friction, and hydrostatic yield pressure that evolve with the internal state variable relative density, was applied. Linear elasticity is assumed with the elastic parameters, Young's modulus, and Poisson's ratio dependent on the relative density. The calibration techniques were developed based on a series of simple mechanical tests including diametrical compression, simple compression, and die compaction using an instrumented die. The friction behavior is measured using an instrumented die and the experimental data are analyzed using the method of differential slices. The constitutive model and frictional properties are essential experimental inputs to the finite element-based model described in the companion article. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:2022-2039, 2004
Handbook of mathematical analysis in mechanics of viscous fluids
Novotný, Antonín
2018-01-01
Mathematics has always played a key role for researches in fluid mechanics. The purpose of this handbook is to give an overview of items that are key to handling problems in fluid mechanics. Since the field of fluid mechanics is huge, it is almost impossible to cover many topics. In this handbook, we focus on mathematical analysis on viscous Newtonian fluid. The first part is devoted to mathematical analysis on incompressible fluids while part 2 is devoted to compressible fluids.
International Nuclear Information System (INIS)
Ababou, Rachid; Canamon, Israel; Poutrel, Adrien
2012-01-01
to a coupled system of equivalent tensorial HM equations governing the HM processes in an equivalent continuum. The underlying hypotheses are (i) low Reynolds number for water flow; (ii) quasi-elastic deformations; and (iii) quasi-static mechanics. The equivalent up-scaled coefficients are symmetric tensors of rank 0, rank 2, and rank 4. The up-scaling procedure is decomposed in 3 independent steps, as follows: (Step 1) Hydraulic up-scaling, based on a flux superposition approach. This step leads to an equivalent Darcy equation with macro-permeability tensor Kij(x,y,z). (Step 2) Mechanical up-scaling step: this step leads to non-orthotropic equivalent compliance Cijmn(x,y,z) and equivalent stiffness Rijmn(x,y,z), the latter being the inverse of the former in the sense of symmetric 4. rank tensors. (Step 3) Hydro-Mechanical up-scaling step: this step leads to the coupling coefficients M(x,y,z) and Bij(x,y,z), where M is the scalar Biot modulus, and Bij is the tensorial Biot coefficient. The HM coupling coefficients M and Bij, as well as the Cijmn and Rijmn tensors, appear in a non-orthotropic version of Biot's poro-elastic law, obtained as a result of the up-scaling procedure. These coefficients contain explicit information on the properties of the matrix and on the systems of cracks. The visual representation of spatially distributed 4. rank tensor fields like Cijmn(x,y,z) and Rijmn(x,y,z) with 3x3x3x3 components is a problem in itself, even when the symmetries are taken into account. Several methods have been considered. One of the methods, used in this work, consists in representing the 3x3x3x3 compliance Cijmn with the 6x6 Kelvin-Voigt index notation, and then, isolating two symmetric 3x3 submatrices Nij and Sij. Stiffness Rijmn is treated similarly after inverting it from Cijmn. The 3x3 normal and shear matrices are then represented by ellipsoids. Another method consists in 'isotropizing' the tensorial coefficients to obtain equivalent spherical coefficients
On the design of the NIF Continuum Spectrometer
Thorn, D. B.; MacPhee, A.; Ayers, J.; Galbraith, J.; Hardy, C. M.; Izumi, N.; Bradley, D. K.; Pickworth, L. A.; Bachmann, B.; Kozioziemski, B.; Landen, O.; Clark, D.; Schneider, M. B.; Hill, K. W.; Bitter, M.; Nagel, S.; Bell, P. M.; Person, S.; Khater, H. Y.; Smith, C.; Kilkenny, J.
2017-08-01
In inertial confinement fusion (ICF) experiments on the National Ignition Facility (NIF), measurements of average ion temperature using DT neutron time of flight broadening and of DD neutrons do not show the same apparent temperature. Some of this may be due to time and space dependent temperature profiles in the imploding capsule which are not taken into account in the analysis. As such, we are attempting to measure the electron temperature by recording the free-free electron-ion scattering-spectrum from the tail of the Maxwellian temperature distribution. This will be accomplished with the new NIF Continuum Spectrometer (ConSpec) which spans the x-ray range of 20 keV to 30 keV (where any opacity corrections from the remaining mass of the ablator shell are negligible) and will be sensitive to temperatures between ˜ 3 keV and 6 keV. The optical design of the ConSpec is designed to be adaptable to an x-ray streak camera to record time resolved free-free electron continuum spectra for direct measurement of the dT/dt evolution across the burn width of a DT plasma. The spectrometer is a conically bent Bragg crystal in a focusing geometry that allows for the dispersion plane to be perpendicular to the spectrometer axis. Additionally, to address the spatial temperature dependence, both time integrated and time resolved pinhole and penumbral imaging will be provided along the same polar angle. The optical and mechanical design of the instrument is presented along with estimates for the dispersion, solid angle, photometric sensitivity, and performance.
Continuum damage model for ferroelectric materials and its application to multilayer actuators
Gellmann, Roman; Ricoeur, Andreas
2016-05-01
In this paper a micromechanical continuum damage model for ferroelectric materials is presented. As a constitutive law it is implemented into a finite element (FE) code. The model is based on micromechanical considerations of domain switching and its interaction with microcrack growth and coalescence. A FE analysis of a multilayer actuator is performed, showing the initiation of damage zones at the electrode tips during the poling process. Further, the influence of mechanical pre-stressing on damage evolution and actuating properties is investigated. The results provided in this work give useful information on the damage of advanced piezoelectric devices and their optimization.
Analysis of Mechanical Properties for GEM Foil
Chin, Yuk Ming
2016-01-01
In view of new assembly technique of the GEM detector; in which three foils stack is stretched to get the uniform gaps among the foils. We studied the mechanical properties of the foil material. We conditioned the samples in different environments to make them extra dry and wet. As holes are the major source of the charge amplification their deformation can effect the detector performance. Therefore in our studies we also studied at which level of the stress the holes deformation is seen. These tensile and holes deformation studies can help to optimize the stress during detector assembly.
1968-01-01
5 The symposium was held in Freudenstadt from 28\\h to 31 \\ ofAugust st nd 1967 and in Stuttgart from 1 to 2 of September 1967. The proposal to hold this symposium originated with the German Society of Applied Mathematics and Mechanics (GAMM) late in 1964 and was examined by a committee of IUTAM especially appointed for this purpose. The basis of this examination was a report in which the present situation in the field and the possible aims of the symposium were surveyed. Briefly, the aims of the symposium were stated to be 1. the unification of the various approaches developed in recent years with the aim of penetrating into the microscopic world of matter by means of continuum theories; 2. the bridging of the gap between microscopic (or atomic) research on mechanics on one hand, and the phenomenological (or continuum mechanical) approach on the other hand; 3. the physical interpretation and the relation to actual material behaviour of the quantities and laws introduced into the new theories, together with ap...
Embodiment design of soft continuum robots
Directory of Open Access Journals (Sweden)
Rongjie Kang
2016-04-01
Full Text Available This article presents the results of a multidisciplinary project where mechatronic engineers worked alongside biologists to develop a soft robotic arm that captures key features of octopus anatomy and neurophysiology. The concept of embodiment (the dynamic coupling between sensory-motor control, anatomy, materials and environment that allows for the animal to achieve adaptive behaviours is used as a starting point for the design process but tempered by current engineering technologies and approaches. In this article, the embodied design requirements are first discussed from a robotic viewpoint by taking into account real-life engineering limitations; then, the motor control schemes inspired by octopus nervous system are investigated. Finally, the mechanical and control design of a prototype is presented that appropriately blends bio-inspiration and engineering limitations. Simulated and experimental results show that the developed continuum robotic arm is able to reproduce octopus-like motions for bending, reaching and grasping.
Analysis of WWER 1000 collector cracking mechanisms
Energy Technology Data Exchange (ETDEWEB)
Matocha, K.; Wozniak, J. [Vitkovice J.S.C., Ostrava (Switzerland)
1997-12-31
The presentation reviews the large experimental program, started in 1993 in Vitkovice, where the main aim was: (1) a detailed study of strain and thermal ageing, dissolved oxygen content and temperature on subcritical crack growth in 10NiMo8.5 (10GN2MFA) steel, (2) a detailed study of the effect of high temperature water and tube expansion technology on fracture behaviour of ligaments between holes for heat exchange tubes, and (3) a detailed study of the effect of drilling, tube expansion technology and heat treatment on residual stresses on the surface of holes for heat exchange tubes. The aim of all these investigations was to find a dominant damage mechanism responsible for collector cracking to be able to judge the efficiency of implemented modifications and suggested countermeasures and to answer a very important question whether proper operation conditions (mainly water chemistry) make the operation of steam generators made in Vitcovice safe throughout the planned lifetime. 10 refs.
Analysis of WWER 1000 collector cracking mechanisms
Energy Technology Data Exchange (ETDEWEB)
Matocha, K; Wozniak, J [Vitkovice J.S.C., Ostrava (Switzerland)
1998-12-31
The presentation reviews the large experimental program, started in 1993 in Vitkovice, where the main aim was: (1) a detailed study of strain and thermal ageing, dissolved oxygen content and temperature on subcritical crack growth in 10NiMo8.5 (10GN2MFA) steel, (2) a detailed study of the effect of high temperature water and tube expansion technology on fracture behaviour of ligaments between holes for heat exchange tubes, and (3) a detailed study of the effect of drilling, tube expansion technology and heat treatment on residual stresses on the surface of holes for heat exchange tubes. The aim of all these investigations was to find a dominant damage mechanism responsible for collector cracking to be able to judge the efficiency of implemented modifications and suggested countermeasures and to answer a very important question whether proper operation conditions (mainly water chemistry) make the operation of steam generators made in Vitcovice safe throughout the planned lifetime. 10 refs.
Recognition and Analysis of Corrosion Failure Mechanisms
Steven Suess
2006-01-01
Corrosion has a vast impact on the global and domestic economy, and currently incurs losses of nearly $300 billion annually to the U.S. economy alone. Because of the huge impact of corrosion, it is imperative to have a systematic approach to recognizing and mitigating corrosion problems as soon as possible after they become apparent. A proper failure analysis includes collection of pertinent background data and service history, followed by visual inspection, photographic documentation, materi...
Continuum theory for nanotube piezoelectricity.
Michalski, P J; Sai, Na; Mele, E J
2005-09-09
We develop and solve a continuum theory for the piezoelectric response of one-dimensional nanotubes and nanowires, and apply the theory to study electromechanical effects in boron-nitride nanotubes. We find that the polarization of a nanotube depends on its aspect ratio, and a dimensionless constant specifying the ratio of the strengths of the elastic and electrostatic interactions. The solutions of the model as these two parameters are varied are discussed. The theory is applied to estimate the electric potential induced along the length of a boron-nitride nanotube in response to a uniaxial stress.
Continuum-regularized quantum gravity
International Nuclear Information System (INIS)
Chan Huesum; Halpern, M.B.
1987-01-01
The recent continuum regularization of d-dimensional Euclidean gravity is generalized to arbitrary power-law measure and studied in some detail as a representative example of coordinate-invariant regularization. The weak-coupling expansion of the theory illustrates a generic geometrization of regularized Schwinger-Dyson rules, generalizing previous rules in flat space and flat superspace. The rules are applied in a non-trivial explicit check of Einstein invariance at one loop: the cosmological counterterm is computed and its contribution is included in a verification that the graviton mass is zero. (orig.)
BCS equations in the continuum
International Nuclear Information System (INIS)
Sandulescu, N.; Liotta, R. J.; Wyss, R.
1998-01-01
The properties of nuclei close to the drip line are significantly influenced by the continuum part of the single-particle spectrum. The main role is played by the resonant states which are largely confined in the region of nuclear potential and therefore stronger coupled with the bound states in an excitation process. Resonant states are also important in the nuclei beyond the drip line. In this case the decay properties of the nucleus can be directly related to the widths of the narrow resonances occupied by the unbound nucleons. The aim of this work is to propose an alternative for evaluating the effect of the resonant part of single-particle spectrum on the pairing correlations calculated within the BCS approximation. We estimated the role of resonances in the case of the isotope 170 Sn. The Resonant-BCS (RBCS) equations are solved for the case of a seniority force. The BCS approximation based on a seniority force cannot be applied in the case of a nucleus immersed in a box if all discrete states simulating the continuum are considered. In such a case the pairing correlations will increase with the number of states in the box. In our case one can still apply a seniority force with RBCS because the effect of the continuum appears here through a finite number of physical resonances, well defined by the given mean field. Because these resonances have a spatial distribution concentrated within the region of the nuclear potential, one expects that the localization probability of nucleons, far out from the nuclear surface, to be small. The gap obtained taking correctly the contribution of resonances, according to RBCS equations, is about 1.3 MeV, while pairing gap calculated only with the bound single-particle spectrum has the value Δ = 1.10 MeV. If we introduce also the resonant states, neglecting completely their widths, the gap will increase to the value Δ = 1.880 MeV. Therefore, one cannot estimate properly the pairing correlations by supplementing the spectrum
Directory of Open Access Journals (Sweden)
Milašinović Dragan D.
2015-01-01
Full Text Available A new analytical model for the prediction of concrete response under uniaxial compression and its experimental verification is presented in this paper. The proposed approach, referred to as the rheological-dynamical continuum damage model, combines rheological-dynamical analogy and damage mechanics. Within the framework of this approach the key continuum parameters such as the creep coefficient, Poisson’s ratio and damage variable are functionally related. The critical values of the creep coefficient and damage variable under peak stress are used to describe the failure mode of the concrete cylinder. The ultimate strain is determined in the post-peak regime only, using the secant stress-strain relation from damage mechanics. The post-peak branch is used for the energy analysis. Experimental data for five concrete compositions were obtained during the examination presented herein. The principal difference between compressive failure and tensile fracture is that there is a residual stress in the specimens, which is a consequence of uniformly accelerated motion of load during the examination of compressive strength. The critical interpenetration displacements and crushing energy are obtained theoretically based on the concept of global failure analysis. [Projekat Ministarstva nauke Republike Srbije, br. ON 174027: Computational Mechanics in Structural Engineering i br. TR 36017: Utilization of by-products and recycled waste materials in concrete composites for sustainable construction development in Serbia: Investigation and environmental assessment of possible applications
Kinematic Analysis and Performance Evaluation of Novel PRS Parallel Mechanism
Balaji, K.; Khan, B. Shahul Hamid
2018-02-01
In this paper, a 3 DoF (Degree of Freedom) novel PRS (Prismatic-Revolute- Spherical) type parallel mechanisms has been designed and presented. The combination of striaght and arc type linkages for 3 DOF parallel mechanism is introduced for the first time. The performances of the mechanisms are evaluated based on the indices such as Minimum Singular Value (MSV), Condition Number (CN), Local Conditioning Index (LCI), Kinematic Configuration Index (KCI) and Global Conditioning Index (GCI). The overall reachable workspace of all mechanisms are presented. The kinematic measure, dexterity measure and workspace analysis for all the mechanism have been evaluated and compared.
Cellular Automata in Topology Optimization of Continuum Structures ...
African Journals Online (AJOL)
In this paper, an optimization algorithm based on cellular automata (CA) is developed for topology optimization of continuum structures with shear and flexural behavior. The design domain is divided into small triangle elements and each cell is considered as a finite element. The stress analysis is performed by the Constant ...
Molecular thermal transistor: Dimension analysis and mechanism
Behnia, S.; Panahinia, R.
2018-04-01
Recently, large challenge has been spent to realize high efficient thermal transistors. Outstanding properties of DNA make it as an excellent nano material in future technologies. In this paper, we introduced a high efficient DNA based thermal transistor. The thermal transistor operates when the system shows an increase in the thermal flux despite of decreasing temperature gradient. This is what called as negative differential thermal resistance (NDTR). Based on multifractal analysis, we could distinguish regions with NDTR state from non-NDTR state. Moreover, Based on dimension spectrum of the system, it is detected that NDTR state is accompanied by ballistic transport regime. The generalized correlation sum (analogous to specific heat) shows that an irregular decrease in the specific heat induces an increase in the mean free path (mfp) of phonons. This leads to the occurrence of NDTR.
Analysis and control of underactuated mechanical systems
Choukchou-Braham, Amal; Djemaï, Mohamed; Busawon, Krishna
2014-01-01
This monograph provides readers with tools for the analysis, and control of systems with fewer control inputs than degrees of freedom to be controlled, i.e., underactuated systems. The text deals with the consequences of a lack of a general theory that would allow methodical treatment of such systems and the ad hoc approach to control design that often results, imposing a level of organization whenever the latter is lacking. The authors take as their starting point the construction of a graphical characterization or control flow diagram reflecting the transmission of generalized forces through the degrees of freedom. Underactuated systems are classified according to the three main structures by which this is found to happen—chain, tree, and isolated vertex—and control design procedures proposed. The procedure is applied to several well-known examples of underactuated systems: acrobot; pendubot; Tora system; ball and beam; inertia wheel; and robotic arm with elastic joint. The text is illustrated with MATL...
Continuum gamma-ray spectroscopy
International Nuclear Information System (INIS)
Diamond, R.M.
1981-06-01
When angular momentum is added to a nucleus, it is, of course, carried by the individual nucleons, but two limiting types of behavior may be distinguished: (1) a small number of high-j particles align with the rotation axis and (2) the nucleus is deformed and rotates as a whole. At high spin all nuclei seem to show a compromise utilizing both motions. The excited nuclei left as products of (HI,xn) reactions have so many pathways down that none of the γ-ray transitions have enough intensity to be seen individually until the population gathers near the yrast line. This occurs usually between spin 20 to 40 h-bar. All our information on the higher states comes from their continuum spectra. With the new techniques that are developing, including the use of multiplicity filters, total-energy spectrometers, energy correlation studies, crystal balls, and observation of giant dipole resonances in the continuum spectra, there is hope to learn much about the nature of the high-spin states
A constitutive model of soft tissue: From nanoscale collagen to tissue continuum
Tang, Huang; Buehler, Markus J.; Moran, Brian
2009-01-01
dependence of the continuum response as a function of nanoscopic structural features, providing evidence for the notion that the molecular basis for protein materials is important in defining their larger-scale mechanical properties. © 2009 Biomedical
International Nuclear Information System (INIS)
Kreider, J.F.
1985-01-01
This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements
Analytical kinematics analysis and synthesis of planar mechanisms
Gans, Deborah
2013-01-01
Using computational techniques and a complex variable formulation, this book teaches the student of kinematics to handle increasingly difficult problems in both the analysis and design of mechanisms all based on the fundamental loop closure equation.
Passing waves from atomistic to continuum
Chen, Xiang; Diaz, Adrian; Xiong, Liming; McDowell, David L.; Chen, Youping
2018-02-01
Progress in the development of coupled atomistic-continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic-continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic-continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic-continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic-continuum interfaces. This work is the first step towards developing a concurrent atomistic-continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.
Dynamic response analysis as a tool for investigating transport mechanisms
International Nuclear Information System (INIS)
Dudok de Wit, Th.; Joye, B.; Lister, J.B.; Moret, J.M.
1990-01-01
Dynamic response analysis provides an attractive method for studying transport mechanisms in tokamak plasmas. The analysis of the radial response has already been widely used for heat and particle transport studies. The frequency dependence of the dynamic response, which is often omitted, reveals further properties of the dominant transport mechanisms. Extended measurements of the soft X-ray emission were carried out on the TCA tokamak in order to determine the underlying transport processes. (author) 5 refs., 2 figs
de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella
2016-05-15
A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
A constitutive model of soft tissue: From nanoscale collagen to tissue continuum
Tang, Huang
2009-04-08
Soft collagenous tissue features many hierarchies of structure, starting from tropocollagen molecules that form fibrils, and proceeding to a bundle of fibrils that form fibers. Here we report the development of an atomistically informed continuum model of collagenous tissue. Results from full atomistic and molecular modeling are linked with a continuum theory of a fiber-reinforced composite, handshaking the fibril scale to the fiber and continuum scale in a hierarchical multi-scale simulation approach. Our model enables us to study the continuum-level response of the tissue as a function of cross-link density, making a link between nanoscale collagen features and material properties at larger tissue scales. The results illustrate a strong dependence of the continuum response as a function of nanoscopic structural features, providing evidence for the notion that the molecular basis for protein materials is important in defining their larger-scale mechanical properties. © 2009 Biomedical Engineering Society.
Assessing continuum postulates in simulations of granular flow
Energy Technology Data Exchange (ETDEWEB)
Rycroft, Chris; Kamrin, Ken; Bazant, Martin
2008-08-26
Continuum mechanics relies on the fundamental notion of a mesoscopic volume"element" in which properties averaged over discrete particles obey deterministic relationships. Recent work on granular materials suggests a continuum law may be inapplicable, revealing inhomogeneities at the particle level, such as force chains and slow cage breaking. Here, we analyze large-scale three-dimensional Discrete-Element Method (DEM) simulations of different granular flows and show that an approximate"granular element" defined at the scale of observed dynamical correlations (roughly three to five particle diameters) has a reasonable continuum interpretation. By viewing all the simulations as an ensemble of granular elements which deform and move with the flow, we can track material evolution at a local level. Our results confirm some of the hypotheses of classical plasticity theory while contradicting others and suggest a subtle physical picture of granular failure, combining liquid-like dependence on deformation rate and solid-like dependence on strain. Our computational methods and results can be used to guide the development of more realistic continuum models, based on observed local relationships betweenaverage variables.
Physics of the continuum of borromean nuclei
Energy Technology Data Exchange (ETDEWEB)
Vaagen, J S; Rogde, T [Dept. of Physics, Univ. of Bergen (Norway); Danilin, B V [RRC The Kurchatov Inst., Kurchatov, Moscow (Russian Federation); Ershov, S N [JINR, Dubna, Moscow (Russian Federation); Thompson, I J [Dept. of Physics, Univ. of Surrey, Guildford (United Kingdom); Zhukov, M V [Chalmers Univ. of Technology and Goeteborg Univ., Goeteborg (Sweden); RNBT Collaboration
1998-06-01
The continuum states of two-neutron halo nuclei are calculated in the method of hyperspherical harmonics. Using DWIA theory appropriate for dilute halo matter we have probed the structure of the low-lying {sup 6}He continuum via calculations of charge-exchange and inelastic scattering. (orig.)
Giant resonances in the deformed continuum
International Nuclear Information System (INIS)
Nakatsukasa, T.; Yabana, K.
2004-01-01
Giant resonances in the continuum for deformed nuclei are studied with the time-dependent Hartree-Fock (TDHF) theory in real time and real space. The continuum effect is effectively taken into account by introducing a complex Absorbing Boundary Condition (ABC). (orig.)
Continuum Level Density in Complex Scaling Method
International Nuclear Information System (INIS)
Suzuki, R.; Myo, T.; Kato, K.
2005-01-01
A new calculational method of continuum level density (CLD) at unbound energies is studied in the complex scaling method (CSM). It is shown that the CLD can be calculated by employing the discretization of continuum states in the CSM without any smoothing technique
Isogeometric Analysis and Shape Optimization in Fluid Mechanics
DEFF Research Database (Denmark)
Nielsen, Peter Nørtoft
This thesis brings together the fields of fluid mechanics, as the study of fluids and flows, isogeometric analysis, as a numerical method to solve engineering problems using computers, and shape optimization, as the art of finding "best" shapes of objects based on some notion of goodness. The flow...... approximations, and for shape optimization purposes also due to its tight connection between the analysis and geometry models. The thesis is initiated by short introductions to fluid mechanics, and to the building blocks of isogeometric analysis. As the first contribution of the thesis, a detailed description...... isogeometric analysis may serve as a natural framework for shape optimization within fluid mechanics. We construct an efficient regularization measure for avoiding inappropriate parametrizations during optimization, and various numerical examples of shape optimization for fluids are considered, serving...
International Nuclear Information System (INIS)
Lee, T.D.
1985-01-01
This paper reviews the role of time throughout all phases of mechanics: classical mechanics, non-relativistic quantum mechanics, and relativistic quantum theory. As an example of the relativistic quantum field theory, the case of a massless scalar field interacting with an arbitrary external current is discussed. The comparison between the new discrete theory and the usual continuum formalism is presented. An example is given of a two-dimensional random lattice and its duel. The author notes that there is no evidence that the discrete mechanics is more appropriate than the usual continuum mechanics
Properties of warm nuclei in the quasi-continuum
Directory of Open Access Journals (Sweden)
Voinov A.
2010-03-01
Full Text Available Nuclear thermodynamic quantities are extracted from nuclear level densities measured with the CACTUS detector array at the Oslo Cyclotron Laboratory. The experiments are performed with light-particle inelastic or transfer reactions. A simple combinatorial model is used to describe the underlying mechanisms responsible for the exponential increasing level density as function of excitation energy. The calculated number of broken Cooper pairs and the parity distribution in continuum are discussed.
Continuum shell-model with complicated configurations
International Nuclear Information System (INIS)
Barz, H.W.; Hoehn, J.
1977-05-01
The traditional shell model has been combined with the coupled channels method in order to describe resonance reactions. For that purpose the configuration space is divided into two subspaces (Feshbach projection method). Complicated shell-model configurations can be included into the subspace of discrete states which contains the single particle resonance states too. In the subspace of scattering states the equation of motion is solved by using the coupled channels method. Thereby the orthogonality between scattering states and discrete states is ensured. Resonance states are defined with outgoing waves in all channels. By means of simple model calculations the special role of the continuum is investigated. In this connection the energy dependence of the resonance parameters, the isospin mixture via the continuum, threshold effect, as well as the influence of the number of channels taken into account on the widths, positions and dipole strengths of the resonance are discussed. The model is mainly applied to the description of giant resonances excited by the scattering of nucleons and photo-nucleus processes (source term method) found in reactions on light nuclei. The giant resonance observed in the 15 N(p,n) reaction is explained by the inclusion of 2p-2h states. The same is true for the giant resonance in 13 C(J = 1/2, 3/2) as well as for the giant resonance built on the first 3 - state in 16 O. By means of a correlation analysis for the reduced widths amplitudes an access to the doorway conception is found. (author)
Continuum Thermodynamics - Part II: Applications and Examples
Albers, Bettina; Wilmanski, Krzysztof
The intention by writing Part II of the book on continuum thermodynamics was the deepening of some issues covered in Part I as well as a development of certain skills in dealing with practical problems of oscopic processes. However, the main motivation for this part is the presentation of main facets of thermodynamics which appear when interdisciplinary problems are considered. There are many monographs on the subjects of solid mechanics and thermomechanics, on fluid mechanics and on coupled fields but most of them cover only special problems in great details which are characteristic for the chosen field. It is rather seldom that relations between these fields are discussed. This concerns, for instance, large deformations of the skeleton of porous materials with diffusion (e.g. lungs), couplings of deformable particles with the fluid motion in suspensions, couplings of adsorption processes and chemical reactions in immiscible mixtures with diffusion, various multi-component aspects of the motion, e.g. of avalanches, such as segregation processes, etc...
Chemolli, Emanuela; Gagné, Marylène
2014-06-01
Self-determination theory (SDT) proposes a multidimensional conceptualization of motivation in which the different regulations are said to fall along a continuum of self-determination. The continuum has been used as a basis for using a relative autonomy index as a means to create motivational scores. Rasch analysis was used to verify the continuum structure of the Multidimensional Work Motivation Scale and of the Academic Motivation Scale. We discuss the concept of continuum against SDT's conceptualization of motivation and argue against the use of the relative autonomy index on the grounds that evidence for a continuum structure underlying the regulations is weak and because the index is statistically problematic. We suggest exploiting the full richness of SDT's multidimensional conceptualization of motivation through the use of alternative scoring methods when investigating motivational dynamics across life domains.
Clinical analysis on 159 cases of mechanical ocular trauma
Zi-Yao Liu; Ya-Zhi Fan; Yu-Ping Zheng; Jian-Ming Wang
2013-01-01
AIM: To provide the basis of security guidance and decreasing the incidence through a general investigation of the mechanical ocular trauma among all the common causes, occasions where getting hurt as well as the characteristics of the high-risk group, and by further analysis and monitoring of the clinical cases and follow-up visit, study the related key factors of influencing the prognosis statistically. METHODS: The data of the 159 cases with mechanical ocular trauma were recorded.RESULTS: ...
Experimental and mechanical analysis of cement–nanotube ...
Indian Academy of Sciences (India)
2017-07-31
Jul 31, 2017 ... molecular dynamics (MD) and elastic continuum modelling methods. The discovery of ... Fan et al [3] developed a finite-element simulation technique for ..... layers were clustered towards the bottom of the plot in fig- ure 4, this ...
Accidental bound states in the continuum in an open Sinai billiard
Energy Technology Data Exchange (ETDEWEB)
Pilipchuk, A.S. [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk (Russian Federation); Siberian Federal University, 660080 Krasnoyarsk (Russian Federation); Sadreev, A.F., E-mail: almas@tnp.krasn.ru [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk (Russian Federation)
2017-02-19
The fundamental mechanism of the bound states in the continuum is the full destructive interference of two resonances when two eigenlevels of the closed system are crossing. There is, however, a wide class of quantum chaotic systems which display only avoided crossings of eigenlevels. As an example of such a system we consider the Sinai billiard coupled with two semi-infinite waveguides. We show that notwithstanding the absence of degeneracy bound states in the continuum occur due to accidental decoupling of the eigenstates of the billiard from the waveguides. - Highlights: • Bound states in the continuum in open chaotic billiards occur to accidental vanishing of coupling of eigenstate of billiard with waveguides.
Parallel algorithms for continuum dynamics
International Nuclear Information System (INIS)
Hicks, D.L.; Liebrock, L.M.
1987-01-01
Simply porting existing parallel programs to a new parallel processor may not achieve the full speedup possible; to achieve the maximum efficiency may require redesigning the parallel algorithms for the specific architecture. The authors discuss here parallel algorithms that were developed first for the HEP processor and then ported to the CRAY X-MP/4, the ELXSI/10, and the Intel iPSC/32. Focus is mainly on the most recent parallel processing results produced, i.e., those on the Intel Hypercube. The applications are simulations of continuum dynamics in which the momentum and stress gradients are important. Examples of these are inertial confinement fusion experiments, severe breaks in the coolant system of a reactor, weapons physics, shock-wave physics. Speedup efficiencies on the Intel iPSC Hypercube are very sensitive to the ratio of communication to computation. Great care must be taken in designing algorithms for this machine to avoid global communication. This is much more critical on the iPSC than it was on the three previous parallel processors
International Nuclear Information System (INIS)
Miannay, D.P.
1995-01-01
This book entitle ''Fracture Mechanics'', the first one of the monograph ''Materiologie'' is geared to design engineers, material engineers, non destructive inspectors and safety experts. This book covers fracture mechanics in isotropic homogeneous continuum. Only the monotonic static loading is considered. This book intended to be a reference with the current state of the art gives the fundamental of the issues under concern and avoids the developments too complicated or not yet mastered for not making reading cumbersome. The subject matter is organized as going from an easy to a more complicated level and thus follows the chronological evolution in the field. Similarly the microscopic scale is considered before the macroscopic scale, the physical understanding of phenomena linked to the experimental observation of the material preceded the understanding of the macroscopic behaviour of structures. In this latter field the relatively recent contribution of finite element computations with some analogy with the experimental observation is determining. However more sensitive analysis is not skipped
Nano-Continuum Modeling of a Nuclear Glass Specimen Altered for 25 Years
Energy Technology Data Exchange (ETDEWEB)
Steefel, Carl
2014-01-06
The purpose of this contribution is to report on preliminary nano-continuum scale modeling of nuclear waste glass corrosion. The focus of the modeling is an experiment involving a French glass SON68 specimen leached for 25 years in a granitic environment. In this report, we focus on capturing the nano-scale concentration profiles. We use a high resolution continuum model with a constant grid spacing of 1 nanometer to investigate the glass corrosion mechanisms.
A Concentric Tube Continuum Robot with Piezoelectric Actuation for MRI-Guided Closed-Loop Targeting
Su, Hao; Li, Gang; Rucker, D. Caleb; Webster, Robert J.; Fischer, Gregory S.
2016-01-01
This paper presents the design, modeling and experimental evaluation of a magnetic resonance imaging (MRI)-compatible concentric tube continuum robotic system. This system enables MRI-guided deployment of a precurved and steerable concentric tube continuum mechanism, and is suitable for clinical applications where a curved trajectory is needed. This compact 6 degree-of-freedom (DOF) robotic system is piezoelectrically-actuated, and allows simultaneous robot motion and imaging with no visually...
Yan, J. W.; Tong, L. H.; Xiang, Ping
2017-12-01
Free vibration behaviors of single-walled boron nitride nanotubes are investigated using a computational mechanics approach. Tersoff-Brenner potential is used to reflect atomic interaction between boron and nitrogen atoms. The higher-order Cauchy-Born rule is employed to establish the constitutive relationship for single-walled boron nitride nanotubes on the basis of higher-order gradient continuum theory. It bridges the gaps between the nanoscale lattice structures with a continuum body. A mesh-free modeling framework is constructed, using the moving Kriging interpolation which automatically satisfies the higher-order continuity, to implement numerical simulation in order to match the higher-order constitutive model. In comparison with conventional atomistic simulation methods, the established atomistic-continuum multi-scale approach possesses advantages in tackling atomic structures with high-accuracy and high-efficiency. Free vibration characteristics of single-walled boron nitride nanotubes with different boundary conditions, tube chiralities, lengths and radii are examined in case studies. In this research, it is pointed out that a critical radius exists for the evaluation of fundamental vibration frequencies of boron nitride nanotubes; opposite trends can be observed prior to and beyond the critical radius. Simulation results are presented and discussed.
Area Regge calculus and continuum limit
International Nuclear Information System (INIS)
Khatsymovsky, V.M.
2002-01-01
Encountered in the literature generalisations of general relativity to independent area variables are considered, the discrete (generalised Regge calculus) and continuum ones. The generalised Regge calculus can be either with purely area variables or, as we suggest, with area tensor-connection variables. Just for the latter, in particular, we prove that in analogy with corresponding statement in ordinary Regge calculus (by Feinberg, Friedberg, Lee and Ren), passing to the (appropriately defined) continuum limit yields the generalised continuum area tensor-connection general relativity
The quantum and the continuum : Einstein's dichotomous legacies
International Nuclear Information System (INIS)
Majumdar, Parthasarathi
2015-01-01
This talk begins with a summary of some of Einstein's seminal contributions in the quantum domain, like Brownian motion and the Light Quantum Hypothesis, as well as on the spacetime continuum enshrined in the theories of special and general relativity. Following up on Einstein's rationale for postulating the Light Quantum Hypothesis, we attempt to point to a possible dichotomy in his thinking about these two legacies of his, which may have been noticed by him, but was not much discussed by him in the public domain. One may speculate that this may have had something to do with his well-known distaste for the probability interpretation of quantum mechanics as a fundamental interpretation. We argue that Einstein's general relativity theory itself contains the seeds of a dramatic modification of our ideas of the Einsteinian spacetime continuum, thus underlining the dichotomy even more strongly. We then survey one modern attempt to resolve the dichotomy, at least partly, by bringing into the spacetime continuum, aspects of quantum mechanics with its underlying statistical interpretation, an approach which Einstein may not have whole-heartedly endorsed, but which seems to work so far, with good prospects for the future. (author)
Hybrid continuum-coarse-grained modeling of erythrocytes
Lyu, Jinming; Chen, Paul G.; Boedec, Gwenn; Leonetti, Marc; Jaeger, Marc
2018-06-01
The red blood cell (RBC) membrane is a composite structure, consisting of a phospholipid bilayer and an underlying membrane-associated cytoskeleton. Both continuum and particle-based coarse-grained RBC models make use of a set of vertices connected by edges to represent the RBC membrane, which can be seen as a triangular surface mesh for the former and a spring network for the latter. Here, we present a modeling approach combining an existing continuum vesicle model with a coarse-grained model for the cytoskeleton. Compared to other two-component approaches, our method relies on only one mesh, representing the cytoskeleton, whose velocity in the tangential direction of the membrane may be different from that of the lipid bilayer. The finitely extensible nonlinear elastic (FENE) spring force law in combination with a repulsive force defined as a power function (POW), called FENE-POW, is used to describe the elastic properties of the RBC membrane. The mechanical interaction between the lipid bilayer and the cytoskeleton is explicitly computed and incorporated into the vesicle model. Our model includes the fundamental mechanical properties of the RBC membrane, namely fluidity and bending rigidity of the lipid bilayer, and shear elasticity of the cytoskeleton while maintaining surface-area and volume conservation constraint. We present three simulation examples to demonstrate the effectiveness of this hybrid continuum-coarse-grained model for the study of RBCs in fluid flows.
Analysis of Links Positions in Landing Gear Mechanism
Brewczyński, D.; Tora, G.
2014-08-01
This article contains a kinematic analysis of an aircraft chassis mechanism in a range of positions. The mechanism of the chassis is made up of several smaller subsystems with different functions. The first mechanism is used to eject the chassis before landing (touchdown) and fold it to hatchway after the lift off. The second mechanism is designed to perform rotation of the crossover with the wheel, in order to adjust the position of the wheel to fit it in the limited space in the hold. The third mechanism allows movement of the chassis resulting from the change in length of the damper. To determine the position of the following links of the mechanism calculus of vectors was applied in which unit vectors were used to represent the angular position of the links. The aim of the analysis is to determine the angle of convergence and the angle of heel wheels as a function of the variable length of hydraulic cylinder, length of the shock absorber, length of the regulations rods
Dynamic mechanical analysis of carbon nanotube-reinforced nanocomposites.
Her, Shiuh-Chuan; Lin, Kuan-Yu
2017-06-16
To predict the mechanical properties of multiwalled carbon nanotube (MWCNT)-reinforced polymers, it is necessary to understand the role of the nanotube-polymer interface with regard to load transfer and the formation of the interphase region. The main objective of this study was to explore and attempt to clarify the reinforcement mechanisms of MWCNTs in epoxy matrix. Nanocomposites were fabricated by adding different amounts of MWCNTs to epoxy resin. Tensile test and dynamic mechanical analysis (DMA) were conducted to investigate the effect of MWCNT contents on the mechanical properties and thermal stability of nanocomposites. Compared with the neat epoxy, nanocomposite reinforced with 1 wt% of MWCNTs exhibited an increase of 152% and 54% in Young's modulus and tensile strength, respectively. Dynamic mechanical analysis demonstrates that both the storage modulus and glass transition temperature tend to increase with the addition of MWCNTs. Scanning electron microscopy (SEM) observations reveal that uniform dispersion and strong interfacial adhesion between the MWCNTs and epoxy are achieved, resulting in the improvement of mechanical properties and thermal stability as compared with neat epoxy.
Time-dependent reliability sensitivity analysis of motion mechanisms
International Nuclear Information System (INIS)
Wei, Pengfei; Song, Jingwen; Lu, Zhenzhou; Yue, Zhufeng
2016-01-01
Reliability sensitivity analysis aims at identifying the source of structure/mechanism failure, and quantifying the effects of each random source or their distribution parameters on failure probability or reliability. In this paper, the time-dependent parametric reliability sensitivity (PRS) analysis as well as the global reliability sensitivity (GRS) analysis is introduced for the motion mechanisms. The PRS indices are defined as the partial derivatives of the time-dependent reliability w.r.t. the distribution parameters of each random input variable, and they quantify the effect of the small change of each distribution parameter on the time-dependent reliability. The GRS indices are defined for quantifying the individual, interaction and total contributions of the uncertainty in each random input variable to the time-dependent reliability. The envelope function method combined with the first order approximation of the motion error function is introduced for efficiently estimating the time-dependent PRS and GRS indices. Both the time-dependent PRS and GRS analysis techniques can be especially useful for reliability-based design. This significance of the proposed methods as well as the effectiveness of the envelope function method for estimating the time-dependent PRS and GRS indices are demonstrated with a four-bar mechanism and a car rack-and-pinion steering linkage. - Highlights: • Time-dependent parametric reliability sensitivity analysis is presented. • Time-dependent global reliability sensitivity analysis is presented for mechanisms. • The proposed method is especially useful for enhancing the kinematic reliability. • An envelope method is introduced for efficiently implementing the proposed methods. • The proposed method is demonstrated by two real planar mechanisms.
Mechanisms of subsidence for induced damage and techniques for analysis
International Nuclear Information System (INIS)
Drumm, E.C.; Bennett, R.M.; Kane, W.F.
1988-01-01
Structural damage due to mining induced subsidence is a function of the nature of the structure and its position on the subsidence profile. A point on the profile may be in the tensile zone, the compressive zone, or the no-deformation zone at the bottom of the profile. Damage to structures in the tension zone is primarily due to a reduction of support during vertical displacement of the ground surface, and to shear stresses between the soil and structure resulting from horizontal displacements. The damage mechanisms due to tension can be investigated effectively using a two-dimensional plane stress analysis. Structures in the compression zone are subjected to positive moments in the footing and large compressive horizontal stresses in the foundation walls. A plane strain analysis of the foundation wall is utilized to examine compression zone damage mechanisms. The structural aspects affecting each mechanism are identified and potential mitigation techniques are summarized
Multigrid treatment of implicit continuum diffusion
Francisquez, Manaure; Zhu, Ben; Rogers, Barrett
2017-10-01
Implicit treatment of diffusive terms of various differential orders common in continuum mechanics modeling, such as computational fluid dynamics, is investigated with spectral and multigrid algorithms in non-periodic 2D domains. In doubly periodic time dependent problems these terms can be efficiently and implicitly handled by spectral methods, but in non-periodic systems solved with distributed memory parallel computing and 2D domain decomposition, this efficiency is lost for large numbers of processors. We built and present here a multigrid algorithm for these types of problems which outperforms a spectral solution that employs the highly optimized FFTW library. This multigrid algorithm is not only suitable for high performance computing but may also be able to efficiently treat implicit diffusion of arbitrary order by introducing auxiliary equations of lower order. We test these solvers for fourth and sixth order diffusion with idealized harmonic test functions as well as a turbulent 2D magnetohydrodynamic simulation. It is also shown that an anisotropic operator without cross-terms can improve model accuracy and speed, and we examine the impact that the various diffusion operators have on the energy, the enstrophy, and the qualitative aspect of a simulation. This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).
Analysis of a proposed crucial test of quantum mechanics
International Nuclear Information System (INIS)
Collett, M.J.; Loudon, R.
1987-01-01
An experiment based on an extension of the Einstein-Podolsky-Rosen argument has been proposed by Popper as a crucial test of the Copenhagen interpretation of quantum mechanics. Here the authors show, by a slightly more complete version of Popper's analysis, although still at a relatively primitive level of sophistication, that the proposed experiment does not in fact provide such a test. (author)
Experimental analysis of nonlinear problems in solid mechanics
International Nuclear Information System (INIS)
1982-01-01
The booklet presents abstracts of papers from the Euromech Colloqium No. 152 held from Sept. 20th to 24th, 1982 in Wuppertal, Federal Republic of Germany. All the papers are dealing with Experimental Analysis of Nonlinear Problems in Solid Mechanics. (RW)
Analysis of a Pediatric Home Mechanical Ventilator Population.
Amirnovin, Rambod; Aghamohammadi, Sara; Riley, Carley; Woo, Marlyn S; Del Castillo, Sylvia
2018-05-01
The population of children requiring home mechanical ventilation has evolved over the years and has grown to include a variety of diagnoses and needs that have led to changes in the care of this unique population. The purpose of this study was to provide a descriptive analysis of pediatric patients requiring home mechanical ventilation after hospitalization and how the evolution of this technology has impacted their care. A retrospective, observational, longitudinal analysis of 164 children enrolled in a university-affiliated home mechanical ventilation program over 26 years was performed. Data included each child's primary diagnosis, date of tracheostomy placement, duration of mechanical ventilation during hospitalization that consisted of home mechanical ventilator initiation, total length of pediatric ICU stay, ventilator settings at time of discharge from pediatric ICU, and disposition (home, facility, or died). Univariate, bivariate, and regression analysis was used as appropriate. The most common diagnosis requiring the use of home mechanical ventilation was neuromuscular disease (53%), followed by chronic pulmonary disease (29%). The median length of stay in the pediatric ICU decreased significantly after the implementation of a ventilator ward (70 d [30-142] vs 36 d [18-67], P = .02). The distribution of subjects upon discharge was home (71%), skilled nursing facility (24%), and died (4%), with an increase in the proportion of subjects discharged on PEEP and those going to nursing facilities over time ( P = 0.02). The evolution of home mechanical ventilation has allowed earlier transition out of the pediatric ICU and with increasing disposition to skilled nursing facilities over time. There has also been a change in ventilator management, including increased use of PEEP upon discharge, possibly driven by changes in ventilators and in-patient practice patterns. Copyright © 2018 by Daedalus Enterprises.
Failure analysis and seal life prediction for contacting mechanical seals
Sun, J. J.; He, X. Y.; Wei, L.; Feng, X.
2008-11-01
Fault tree analysis method was applied to quantitatively investigate the causes of the leakage failure of mechanical seals. It is pointed out that the change of the surface topography is the main reasons causing the leakage of mechanical seals under the condition of constant preloads. Based on the fractal geometry theory, the relationship between the surface topography and working time were investigated by experiments, and the effects of unit load acting on seal face on leakage path in a mechanical seal were analyzed. The model of predicting seal life of mechanical seals was established on the basis of the relationship between the surface topography and working time and allowable leakage. The seal life of 108 mechanical seal operating at the system of diesel fuel storage and transportation was predicted and the problem of the condition monitoring for the long-period operation of mechanical seal was discussed by this method. The research results indicate that the method of predicting seal life of mechanical seals is feasible, and also is foundation to make scheduled maintenance time and to achieve safe-reliability and low-cost operation for industrial devices.
Commitment to Quality throughout the Continuum.
Gillet, Pamela
1995-01-01
This editorial by the president of the Council for Exceptional Children indicates the organization's support of a continuum of special education placements for students with special needs and calls for improving transition of students from one placement to another. (JDD)
Continuum emission from classical nova winds
International Nuclear Information System (INIS)
Harkness, R.P.
1983-01-01
The emergent continuum of a slow classical nova during outburst is considered in the quasi-steady optically thick, transonic wind model. Models are presented for various steady mass loss rates and are related to the evolution of slow novae during decline and early post-maximum. The continuum emission is found to depart radically from a blackbody spectrum and to exhibit features common to highly extended stellar atmospheres. (author)
Loop quantization as a continuum limit
International Nuclear Information System (INIS)
Manrique, Elisa; Oeckl, Robert; Weber, Axel; Zapata, Jose A
2006-01-01
We present an implementation of Wilson's renormalization group and a continuum limit tailored for loop quantization. The dynamics of loop-quantized theories is constructed as a continuum limit of the dynamics of effective theories. After presenting the general formalism we show as a first explicit example the 2D Ising field theory, an interacting relativistic quantum field theory with local degrees of freedom quantized by loop quantization techniques
Geometric continuum regularization of quantum field theory
International Nuclear Information System (INIS)
Halpern, M.B.
1989-01-01
An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs
Japanese round robin analysis for probabilistic fracture mechanics
International Nuclear Information System (INIS)
Yagawa, G.; Yoshimura, S.; Handa, N.
1991-01-01
Recently attention is focused on the probabilistic fracture mechanics, a branch of fracture mechanics with probability theory for a rational mean to assess the strength of components and structures. In particular, the probabilistic fracture mechanics is recognized as the powerful means for quantitative investigation of significance of factors and rational evaluation of life on problems involving a number of uncertainties, such as degradation of material strength, accuracy and frequency of inspection. Comparison with reference experiments are generally employed to assure the analytical accuracy. However, accuracy and reliability of analytical methods in the probabilistic fracture mechanics are hardly verified by experiments. Therefore, it is strongly needed to verify the probabilistic fracture mechanics through the round robin analysis. This paper describes results from the round robin analysis of flat plate with semi-elliptic cracks on the surface, conducted by the PFM Working Group of LE Subcommittee of the Japan Welding Society under the contract of the Japan Atomic Energy Research Institute and participated by Tokyo University, Yokohama National University, the Power Reactor and Nuclear Fuel Corporation, Tokyo Electric Power Co. Central Research Institute of Electric Power Industry, Toshiba Corporation, Kawasaki Heavy Industry Co. and Mitsubishi Heavy Industry Co. (author)
Mechanical and Spectroscopic Analysis of Retrieved/Failed Dental Implants
Directory of Open Access Journals (Sweden)
Umer Daood
2017-11-01
Full Text Available The purpose of this study was to examine surface alterations and bone formation on the surface of failed dental implants (Straumann [ST] and TiUnite [TiUn] removed due to any biological reason. In addition, failure analysis was performed to test mechanical properties. Dental implants (n = 38 from two manufacturers were collected and subjected to chemical cleaning. The presence of newly formed hydroxyapatite bone around failed implants was evaluated using micro-Raman spectroscopy. Scanning electron microscopy was used to identify surface defects. Mechanical testing was performed using a Minneapolis servo-hydraulic system (MTS along with indentation using a universal testing machine and average values were recorded. A statistical analysis of mechanical properties was done using an unpaired t test, and correlation between observed defects was evaluated using Chi-square (p = 0.05. Apatite-formation was evident in both implants, but was found qualitatively more in the ST group. No significant difference was found in indentation between the two groups (p > 0.05. The percentage of “no defects” was significantly lower in the ST group (71%. Crack-like and full-crack defects were observed in 49% and 39% of TiUn. The ST group showed 11,061 cycles to failure as compared with 10,021 cycles in the TiUnite group. Implant failure mechanisms are complex with a combination of mechanical and biological reasons and these factors are variable with different implant systems.
International Nuclear Information System (INIS)
Zorski, Henryk; Bazanski, Stanislaw; Gutowski, Roman; Slawianowski, Jan; Wilmanski, Krysztof; Wozniak, Czeslaw
1992-01-01
In the last 3 decades the field of mechanics has seen spectacular progress due to the demand for applications in problems of cosmology, thermonuclear fusion, metallurgy, etc. This book provides a broad and thorough overview on the foundations of mechanics. It discusses theoretical mechanics and continuum mechanics, as well as phenomenological thermodynamics, quantum mechanics and relativistic mechanics. Each chapter presents the basic physical facts of interest without going into details and derivations and without using advanced mathematical formalism. The first part constitutes a classical exposition of Lagrange's and Hamiltonian's analytical mechanics on which most of the continuum theory is based. The section on continuum mechanics focuses mainly on the axiomatic foundations, with many pointers for further research in this area. Special attention is given to modern continuum thermodynamics, both for the foundations and applications. A section on quantum mechanics is also included, since the phenomenological description of various quantum phenomena is becoming of increasing importance. refs.; figs.; tabs
Changing public stigma with continuum beliefs.
Corrigan, Patrick W; Schmidt, Annie; Bink, Andrea B; Nieweglowski, Katherine; Al-Khouja, Maya A; Qin, Sang; Discont, Steve
2017-10-01
Given the egregious effect of public stigma on the lives of people with mental illness, researchers have sought to unpack and identify effective components of anti-stigma programs. We expect to show that continuum messages have more positive effect on stigma and affirming attitudes (beliefs that people with mental illness recover and should be personally empowered) than categorical perspectives. The effect of continuum beliefs will interact with contact strategies. A total of 598 research participants were randomly assigned to online presentations representing one of the six conditions: three messages (continuum, categorical, or neutral control) by two processes (education or contact). Participants completed measures of continuum beliefs (as a manipulation check), stigma and affirming attitudes after viewing the condition. Continuum messages had significantly better effect on views that people with mental illness are "different," a finding that interacted with contact. Continuum messages also had better effects on recovery beliefs, once again an effect that interacted significantly with contact. Implications of these findings for improving anti-stigma programs are discussed.
International Nuclear Information System (INIS)
Brus, V V
2013-01-01
A quantitative analysis of the impedance spectroscopy of semiconductor heterojunctions was carried out in the presence of interface state continuum at the heterojunction interface. A comparison of the impedance spectroscopy of semiconductor heterojunctions simulated in the context of the interface state continuum model with that simulated in the scope of the single-level state model was carried and possible misinterpretations were considered. The previously proposed approaches for the determination of the interface-state-related parameters and for the calculation of the actual barrier capacitance (the single-level state model) were modified in order to take into account the effect of interface state continuum. (paper)
Non-classical solutions of a continuum model for rock descriptions
Directory of Open Access Journals (Sweden)
Mikhail A. Guzev
2014-06-01
Full Text Available The strain-gradient and non-Euclidean continuum theories are employed for construction of non-classical solutions of continuum models. The linear approximation of both models' results in identical structures in terms of their kinematic and stress characteristics. The solutions obtained in this study exhibit a critical behaviour with respect to the external loading parameter. The conclusions are obtained based on an investigation of the solution for the scalar curvature in the non-Euclidean continuum theory. The proposed analysis enables us to use different theoretical approaches for description of rock critical behaviour under different loading conditions.
Mechanical Analysis Of Limestone In Jaya, Lhong, And Lhoknga
Directory of Open Access Journals (Sweden)
Raihan .
2012-09-01
Full Text Available Research about mechanical analysis of limestone in District Jaya, Lhong, and Lhoknga has been done from Dec. 2011 to Mei 2012. This study aim is to classify the limestones based on physical and mechanical tests as well as identify opportunities limestone utilization in accordance with the SII 0378-80 as a condition of quality natural stone for building. Research have been done by testing compressive strength, modulus Young, wear, specific gravity, porosity, and absorption. The result shows that the limestones are qualified natural stone for building the foundation, curbstone, stone and ornamental stone or paste.
Non-linear finite element analysis in structural mechanics
Rust, Wilhelm
2015-01-01
This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.
International Nuclear Information System (INIS)
Costin, L.S.; Bauer, S.J.
1991-10-01
Thermal and mechanical models for intact and jointed rock mass behavior are being developed, verified, and validated at Sandia National Laboratories for the Yucca Mountain Site Characterization Project. Benchmarking is an essential part of this effort and is one of the tools used to demonstrate verification of engineering software used to solve thermomechanical problems. This report presents the results of the third (and final) phase of the first thermomechanical benchmark exercise. In the first phase of this exercise, nonlinear heat conduction code were used to solve the thermal portion of the benchmark problem. The results from the thermal analysis were then used as input to the second and third phases of the exercise, which consisted of solving the structural portion of the benchmark problem. In the second phase of the exercise, a linear elastic rock mass model was used. In the third phase of the exercise, two different nonlinear jointed rock mass models were used to solve the thermostructural problem. Both models, the Sandia compliant joint model and the RE/SPEC joint empirical model, explicitly incorporate the effect of the joints on the response of the continuum. Three different structural codes, JAC, SANCHO, and SPECTROM-31, were used with the above models in the third phase of the study. Each model was implemented in two different codes so that direct comparisons of results from each model could be made. The results submitted by the participants showed that the finite element solutions using each model were in reasonable agreement. Some consistent differences between the solutions using the two different models were noted but are not considered important to verification of the codes. 9 refs., 18 figs., 8 tabs
A continuum model for pressure-flow relationship in human pulmonary circulation.
Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T
2011-06-01
A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.
Diagnostic Reasoning across the Medical Education Continuum
Directory of Open Access Journals (Sweden)
C. Scott Smith
2014-07-01
Full Text Available We aimed to study linguistic and non-linguistic elements of diagnostic reasoning across the continuum of medical education. We performed semi-structured interviews of premedical students, first year medical students, third year medical students, second year internal medicine residents, and experienced faculty (ten each as they diagnosed three common causes of dyspnea. A second observer recorded emotional tone. All interviews were digitally recorded and blinded transcripts were created. Propositional analysis and concept mapping were performed. Grounded theory was used to identify salient categories and transcripts were scored with these categories. Transcripts were then unblinded. Systematic differences in propositional structure, number of concept connections, distribution of grounded theory categories, episodic and semantic memories, and emotional tone were identified. Summary concept maps were created and grounded theory concepts were explored for each learning level. We identified three major findings: (1 The “apprentice effect” in novices (high stress and low narrative competence; (2 logistic concept growth in intermediates; and (3 a cognitive state transition (between analytical and intuitive approaches in experts. These findings warrant further study and comparison.
Continuum-Kinetic Models and Numerical Methods for Multiphase Applications
Nault, Isaac Michael
This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.
Elucidating a Goal-Setting Continuum in Brain Injury Rehabilitation.
Hunt, Anne W; Le Dorze, Guylaine; Trentham, Barry; Polatajko, Helene J; Dawson, Deirdre R
2015-08-01
For individuals with brain injury, active participation in goal setting is associated with better rehabilitation outcomes. However, clinicians report difficulty engaging these clients in goal setting due to perceived or real deficits (e.g., lack of awareness). We conducted a study using grounded theory methods to understand how clinicians from occupational therapy facilitate client engagement and manage challenges inherent in goal setting with this population. Through constant comparative analysis, a goal-setting continuum emerged. At one end of the continuum, therapists embrace client-determined goals and enable clients to decide their own goals. At the other, therapists accept preset organization-determined goals (e.g., "the goal is discharge") and pay little attention to client input. Although all participants aspired to embrace client-determined goal setting, most felt powerless to do so within perceived organizational constraints. Views of advocacy and empowerment help to explain our findings and inform more inclusive practice. © The Author(s) 2015.
Identification of a transcriptional signature for the wound healing continuum
Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil
2014-01-01
There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. PMID:24844339
Identification of a transcriptional signature for the wound healing continuum.
Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil
2014-01-01
There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. © 2014 The Authors. Wound Repair and Regeneration published by Wiley Periodicals, Inc. on behalf of Wound Healing Society.
Haro 11: Where is the Lyman Continuum Source?
Energy Technology Data Exchange (ETDEWEB)
Keenan, Ryan P.; Oey, M. S. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Jaskot, Anne E. [Department of Astronomy, Smith College, Northampton, MA 01063 (United States); James, Bethan L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
2017-10-10
Identifying the mechanism by which high-energy Lyman continuum (LyC) photons escaped from early galaxies is one of the most pressing questions in cosmic evolution. Haro 11 is the best known local LyC-leaking galaxy, providing an important opportunity to test our understanding of LyC escape. The observed LyC emission in this galaxy presumably originates from one of the three bright, photoionizing knots known as A, B, and C. It is known that Knot C has strong Ly α emission, and Knot B hosts an unusually bright ultraluminous X-ray source, which may be a low-luminosity active galactic nucleus. To clarify the LyC source, we carry out ionization-parameter mapping (IPM) by obtaining narrow-band imaging from the Hubble Space Telescope WFC3 and ACS cameras to construct spatially resolved ratio maps of [O iii]/[O ii] emission from the galaxy. IPM traces the ionization structure of the interstellar medium and allows us to identify optically thin regions. To optimize the continuum subtraction, we introduce a new method for determining the best continuum scale factor derived from the mode of the continuum-subtracted, image flux distribution. We find no conclusive evidence of LyC escape from Knots B or C, but instead we identify a high-ionization region extending over at least 1 kpc from Knot A. This knot shows evidence of an extremely young age (≲1 Myr), perhaps containing very massive stars (>100 M {sub ⊙}). It is weak in Ly α , so if it is confirmed as the LyC source, our results imply that LyC emission may be independent of Ly α emission.
Conformation analysis of trehalose. Molecular dynamics simulation and molecular mechanics
International Nuclear Information System (INIS)
Donnamaira, M.C.; Howard, E.I.; Grigera, J.R.
1992-09-01
Conformational analysis of the disaccharide trehalose is done by molecular dynamics and molecular mechanics. In spite of the different force fields used in each case, comparison between the molecular dynamics trajectories of the torsional angles of glycosidic linkage and energy conformational map shows a good agreement between both methods. By molecular dynamics it is observed a moderate mobility of the glycosidic linkage. The demands of computer time is comparable in both cases. (author). 6 refs, 4 figs
Uncertainty analysis on probabilistic fracture mechanics assessment methodology
International Nuclear Information System (INIS)
Rastogi, Rohit; Vinod, Gopika; Chandra, Vikas; Bhasin, Vivek; Babar, A.K.; Rao, V.V.S.S.; Vaze, K.K.; Kushwaha, H.S.; Venkat-Raj, V.
1999-01-01
Fracture Mechanics has found a profound usage in the area of design of components and assessing fitness for purpose/residual life estimation of an operating component. Since defect size and material properties are statistically distributed, various probabilistic approaches have been employed for the computation of fracture probability. Monte Carlo Simulation is one such procedure towards the analysis of fracture probability. This paper deals with uncertainty analysis using the Monte Carlo Simulation methods. These methods were developed based on the R6 failure assessment procedure, which has been widely used in analysing the integrity of structures. The application of this method is illustrated with a case study. (author)
Parametric Design and Mechanical Analysis of Beams based on SINOVATION
Xu, Z. G.; Shen, W. D.; Yang, D. Y.; Liu, W. M.
2017-07-01
In engineering practice, engineer needs to carry out complicated calculation when the loads on the beam are complex. The processes of analysis and calculation take a lot of time and the results are unreliable. So VS2005 and ADK are used to develop a software for beams design based on the 3D CAD software SINOVATION with C ++ programming language. The software can realize the mechanical analysis and parameterized design of various types of beams and output the report of design in HTML format. Efficiency and reliability of design of beams are improved.
Stepping movement analysis of control rod drive mechanism
International Nuclear Information System (INIS)
Xu Yantao; Zu Hongbiao
2013-01-01
Background: Control rod drive mechanism (CRDM) is one of the important safety-related equipment for nuclear power plants. Purpose: The operating parameters of stepping movement, including lifting loads, step distance and step velocity, are all critical design targets. Methods: FEA and numerical simulation are used to analyze stepping movement separately. Results: The motion equations of the movable magnet in stepping movement are established by load analysis. Gravitation, magnetic force, fluid resistance and spring force are all in consideration in the load analysis. The operating parameters of stepping movement are given. Conclusions: The results, including time history curves of force, speed and etc, can positively used in the design of CRDM. (authors)
Multiscale synchrony behaviors of paired financial time series by 3D multi-continuum percolation
Wang, M.; Wang, J.; Wang, B. T.
2018-02-01
Multiscale synchrony behaviors and nonlinear dynamics of paired financial time series are investigated, in an attempt to study the cross correlation relationships between two stock markets. A random stock price model is developed by a new system called three-dimensional (3D) multi-continuum percolation system, which is utilized to imitate the formation mechanism of price dynamics and explain the nonlinear behaviors found in financial time series. We assume that the price fluctuations are caused by the spread of investment information. The cluster of 3D multi-continuum percolation represents the cluster of investors who share the same investment attitude. In this paper, we focus on the paired return series, the paired volatility series, and the paired intrinsic mode functions which are decomposed by empirical mode decomposition. A new cross recurrence quantification analysis is put forward, combining with multiscale cross-sample entropy, to investigate the multiscale synchrony of these paired series from the proposed model. The corresponding research is also carried out for two China stock markets as comparison.
Dan Says - Continuum Magazine | NREL
vital role of providing technology-neutral analysis to ensure that innovations developed in the lab fit , the environment and the economy through analysis that will point us toward a "water smart" sensitivity analysis of more than 1,400 simulations computed using the NREL-developed Biomass Scenario Model
There is a continuum ambiguity for elastic πN amplitudes
International Nuclear Information System (INIS)
Atkinson, D.; Roo, M. de; Polman, T.J.T.M.
1984-01-01
The implicit-function method of constructing phase-factor continuum ambiguities in phase-shift analysis is briefly reviewed, and new numerical examples are given of ambiguities in πN phase shifts at 1997 MeV. Since the ambiguous amplitudes differ by more than 5%, while the corresponding cross sections and polarizations are equal, to better than a computational accuracy of 0.007%, numerical credence is given to the theoretical claim that the continuum ambiguity exists. (orig.)
SEACAS Theory Manuals: Part III. Finite Element Analysis in Nonlinear Solid Mechanics
Energy Technology Data Exchange (ETDEWEB)
Laursen, T.A.; Attaway, S.W.; Zadoks, R.I.
1999-03-01
This report outlines the application of finite element methodology to large deformation solid mechanics problems, detailing also some of the key technological issues that effective finite element formulations must address. The presentation is organized into three major portions: first, a discussion of finite element discretization from the global point of view, emphasizing the relationship between a virtual work principle and the associated fully discrete system, second, a discussion of finite element technology, emphasizing the important theoretical and practical features associated with an individual finite element; and third, detailed description of specific elements that enjoy widespread use, providing some examples of the theoretical ideas already described. Descriptions of problem formulation in nonlinear solid mechanics, nonlinear continuum mechanics, and constitutive modeling are given in three companion reports.
Karabinos, Michael Joseph
2015-01-01
This dissertation tests the universal suitability of the records continuum model by using two cases from the decolonization of Southeast Asia. The continuum model is a new model of records visualization invented in the 1990s that sees records as free to move throughout four ‘dimensions’ rather than
The quasi-continuum of gamma rays following the decay of superdeformed bands in the Hg region
Energy Technology Data Exchange (ETDEWEB)
Lauritsen, T.; Khoo, T.L.; Janssens, R.V.F. [Argonne National Lab., IL (United States)] [and others
1996-12-31
The quasi-continuum part of the spectrum associated with the decay-out of the yrast superdeformed band in {sup 194}Hg has been extracted. It has for the first time been possible to compare the spin and excitation energy determined from the analysis of the quasi-continuum {gamma} rays to the exact result obtained from the one-step linking transitions.
A continuum-based structural modeling approach for cellulose nanocrystals (CNCs)
Mehdi Shishehbor; Fernando L. Dri; Robert J. Moon; Pablo D. Zavattieri
2018-01-01
We present a continuum-based structural model to study the mechanical behavior of cel- lulose nanocrystals (CNCs), and analyze the effect of bonded and non-bonded interactions on the mechanical properties under various loading conditions. In particular, this model assumes the uncoupling between the bonded and non-bonded interactions and their be- havior is obtained...
Towards the mechanical characterization of abdominal wall by inverse analysis.
Simón-Allué, R; Calvo, B; Oberai, A A; Barbone, P E
2017-02-01
The aim of this study is to characterize the passive mechanical behaviour of abdominal wall in vivo in an animal model using only external cameras and numerical analysis. The main objective lies in defining a methodology that provides in vivo information of a specific patient without altering mechanical properties. It is demonstrated in the mechanical study of abdomen for hernia purposes. Mechanical tests consisted on pneumoperitoneum tests performed on New Zealand rabbits, where inner pressure was varied from 0mmHg to 12mmHg. Changes in the external abdominal surface were recorded and several points were tracked. Based on their coordinates we reconstructed a 3D finite element model of the abdominal wall, considering an incompressible hyperelastic material model defined by two parameters. The spatial distributions of these parameters (shear modulus and non linear parameter) were calculated by inverse analysis, using two different types of regularization: Total Variation Diminishing (TVD) and Tikhonov (H 1 ). After solving the inverse problem, the distribution of the material parameters were obtained along the abdominal surface. Accuracy of the results was evaluated for the last level of pressure. Results revealed a higher value of the shear modulus in a wide stripe along the craneo-caudal direction, associated with the presence of linea alba in conjunction with fascias and rectus abdominis. Non linear parameter distribution was smoother and the location of higher values varied with the regularization type. Both regularizations proved to yield in an accurate predicted displacement field, but H 1 obtained a smoother material parameter distribution while TVD included some discontinuities. The methodology here presented was able to characterize in vivo the passive non linear mechanical response of the abdominal wall. Copyright © 2016 Elsevier Ltd. All rights reserved.
Clinical analysis on 159 cases of mechanical ocular trauma
Directory of Open Access Journals (Sweden)
Zi-Yao Liu
2013-08-01
Full Text Available AIM: To provide the basis of security guidance and decreasing the incidence through a general investigation of the mechanical ocular trauma among all the common causes, occasions where getting hurt as well as the characteristics of the high-risk group, and by further analysis and monitoring of the clinical cases and follow-up visit, study the related key factors of influencing the prognosis statistically. METHODS: The data of the 159 cases with mechanical ocular trauma were recorded.RESULTS: We obtained the 159 subjects' ages, genders as well as mechanical ocular trauma characteristic data, such as ocular distributions, the seasons of the injuries occurring, the causes and the occasions of the injuries, the high-risks group and so on. The factors affecting the visual prognosis,univariate analysis showed that the difference between urban and rural areas was a related influencing factor while the consulting hours and the ages of the patients were irrelevant. In the multivariate Logistic regression model of complications that affected the visual prognosis, there were four main factors leading to poor eyesight: endophthalmitis, retinal detachment, luxation or subluxation of the lens, prolapse of vitreous. In the multivariate Logistic regression model of the visual prognosis of mechanical eye injury, there were three factors of concern that corresponded to poor eyesight: the ages less than 10, zonation Ⅲ, grade of injury more than 3. CONCLUSION: The epidemiologic features of the mechanical ocular trauma in our hospital correspond to the reports from other areas. Appropriate medical care can improve the visual prognosis. Factors such as zonation Ⅲ, ages less than 10, grade of injury more than 3, endophthalmitis with the eye injury, prolapse of vitreous, luxation or subluxation of the lens and so on, indicate poor visual prognosis.
Potential of isotope analysis (C, Cl) to identify dechlorination mechanisms
Cretnik, Stefan; Thoreson, Kristen; Bernstein, Anat; Ebert, Karin; Buchner, Daniel; Laskov, Christine; Haderlein, Stefan; Shouakar-Stash, Orfan; Kliegman, Sarah; McNeill, Kristopher; Elsner, Martin
2013-04-01
Chloroethenes are commonly used in industrial applications, and detected as carcinogenic contaminants in the environment. Their dehalogenation is of environmental importance in remediation processes. However, a detailed understanding frequently accounted problem is the accumulation of toxic degradation products such as cis-dichloroethylene (cis-DCE) at contaminated sites. Several studies have addressed the reductive dehalogenation reactions using biotic and abiotic model systems, but a crucial question in this context has remained open: Do environmental transformations occur by the same mechanism as in their corresponding in vitro model systems? The presented study shows the potential to close this research gap using the latest developments in compound specific chlorine isotope analysis, which make it possible to routinely measure chlorine isotope fractionation of chloroethenes in environmental samples and complex reaction mixtures.1,2 In particular, such chlorine isotope analysis enables the measurement of isotope fractionation for two elements (i.e., C and Cl) in chloroethenes. When isotope values of both elements are plotted against each other, different slopes reflect different underlying mechanisms and are remarkably insensitive towards masking. Our results suggest that different microbial strains (G. lovleyi strain SZ, D. hafniense Y51) and the isolated cofactor cobalamin employ similar mechanisms of reductive dechlorination of TCE. In contrast, evidence for a different mechanism was obtained with cobaloxime cautioning its use as a model for biodegradation. The study shows the potential of the dual isotope approach as a tool to directly compare transformation mechanisms of environmental scenarios, biotic transformations, and their putative chemical lab scale systems. Furthermore, it serves as an essential reference when using the dual isotope approach to assess the fate of chlorinated compounds in the environment.
Energy Technology Data Exchange (ETDEWEB)
Resano, Martín, E-mail: mresano@unizar.es [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Flórez, María del Rosario [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Queralt, Ignasi [Institute of Earth Sciences Jaume Almera ICTJA-CSIC, Sole Sabarís s/n, 08028 Barcelona (Spain); Marguí, Eva [Department of Chemistry, Faculty of Sciences, Universitat de Girona, Campus Montilivi s/n, 17071 Girona (Spain)
2015-03-01
This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH{sub 4}F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g{sup −1} (Pd), 8.3 μg g{sup −1} (Pt) and 9.3 μg g{sup −1} (Rh) for catalysts, which decreased to 0.08 μg g{sup −1} (Pd), 0.15 μg g{sup −1} (Pt) and 0.10 μg g{sup −1} (Rh) for pharmaceuticals. - Highlights: • Solid sampling HR CS GFAAS permits the fast and direct determination of Pd, Pt and Rh. • 2 determinations suffice for the 3 elements (2 of them can be measured simultaneously). • Samples as different as car catalysts and pharmaceuticals can be accurately analyzed. • Aqueous standards (pharmaceuticals) or a solid CRM (catalysts) is used for calibration.
Outgas analysis of mechanical cryocoolers for long lifetime
Sato, Yoichi; Shinozaki, Keisuke; Sawada, Kenichiro; Sugita, Hiroyuki; Mitsuda, Kazuhisa; Yamasaki, Noriko Y.; Nakagawa, Takao; Tsunematsu, Shoji; Otsuka, Kiyomi; Kanao, Kenichi; Yoshida, Seiji; Narasaki, Katsuhiro
2017-12-01
Mechanical cryocoolers for space applications are required to have high reliability to achieve long-term operation in orbit. ASTRO-H (Hitomi), the 6th Japanese X-ray astronomy mission, has a major scientific instrument onboard-the Soft X-ray Spectrometer (SXS) with several 20K-class two-stage Stirling (2ST) coolers and a 4K-class Joule Thomson (JT) cooler, which must operate for 3 years to ensure the lifetime of liquid helium as a cryogen for cooling of its detectors [1,2]. Other astronomical missions such as SPICA [3,4], LiteBIRD [5], and Athena [6] also have top requirements for these mechanical cryocoolers, including a 1K-class JT cooler to be operated for more than 3-5 years with no cryogen system. The reliability and lifetime of mechanical cryocoolers are generally understood to depend on (1) mechanical wear of the piston seal and valve seal, and (2) He working gas contaminated by impurity outgases, mainly H2O and CO2 released from the materials in the components of the cryocoolers. The second factor could be critical relative to causing blockage in the JT heat exchanger plumbing and the JT orifice or resulting in blockage in the Stirling regenerator and thereby degrading its performance. Thus, reducing the potential for outgassing in the cryocooler design and fabrication process, and predicting the total amount of outgases in the cryocooler are very important to ensure cryocooler lifetime and cooling performance in orbit. This paper investigates the outgas analysis of the 2ST and the 1K/4K-JT coolers for achieving a long lifetime. First, gas analysis was conducted for the materials and components of the mechanical cryocoolers, focusing on non-metallic materials as impurity gas sources. Then gas analysis of the mechanical wear effect of the piston seal materials and linear ball bearings was investigated. Finally, outgassing from a fully assembled cryocooler was measured to evaluate whether the outgas reduction process works properly to meet the requirement
Multi technical analysis of wear mechanisms in axial piston pumps
Schuhler, G.; Jourani, A.; Bouvier, S.; Perrochat, J.-M.
2017-05-01
Axial piston pumps convert a motor rotation motion into hydraulic or pneumatic power. Their compactness and efficiency of approximately 0.9 make them suitable for actuation applications especially in aeronautics. However, they suffer a limited life due to the wear of their components. In the literature, studies of axial piston pumps deal with contact between its different elements under lubrication conditions. Nevertheless, they are more focused on analytic or numerical approaches. This study consists in an experimental analysis of worn pump components to highlight and understand wear mechanisms. Piston shoes are central components in the axial piston pump since they are involved in three tribological contacts. These three contacts are thereby studied: piston shoes/swashplate, piston shoes/pistons and piston shoes/shoes hold down plate (SHDP). To perform this analysis, helicopter hydraulic pumps after different operating times have been studied. The wear damage mechanisms and wear debris are analysed using SEM observations. 3D surface roughness measurements are then used to characterize worn surfaces. The observations reveal that in the contact between shoes and swashplate, the main wear mechanism is three-body abrasive wear due to coarse carbides removal. Between shoes and pistons, wear occurs in a less severe way and is mainly due to the debris generated in the first contact and conveyed by the lubricating fluid. In the third contact, the debris are also the prime cause of the abrasive wear and the generation of deep craters in the piston shoes.
Statistical mechanical analysis of LMFBR fuel cladding tubes
International Nuclear Information System (INIS)
Poncelet, J.-P.; Pay, A.
1977-01-01
The most important design requirement on fuel pin cladding for LMFBR's is its mechanical integrity. Disruptive factors include internal pressure from mixed oxide fuel fission gas release, thermal stresses and high temperature creep, neutron-induced differential void-swelling as a source of stress in the cladding and irradiation creep of stainless steel material, corrosion by fission products. Under irradiation these load-restraining mechanisms are accentuated by stainless steel embrittlement and strength alterations. To account for the numerous uncertainties involved in the analysis by theoretical models and computer codes statistical tools are unavoidably requested, i.e. Monte Carlo simulation methods. Thanks to these techniques, uncertainties in nominal characteristics, material properties and environmental conditions can be linked up in a correct way and used for a more accurate conceptual design. First, a thermal creep damage index is set up through a sufficiently sophisticated clad physical analysis including arbitrary time dependence of power and neutron flux as well as effects of sodium temperature, burnup and steel mechanical behavior. Although this strain limit approach implies a more general but time consuming model., on the counterpart the net output is improved and e.g. clad temperature, stress and strain maxima may be easily assessed. A full spectrum of variables are statistically treated to account for their probability distributions. Creep damage probability may be obtained and can contribute to a quantitative fuel probability estimation
Analysis of Mechanical Stresses/Strains in Superconducting Wire
Barry, Matthew; Chen, Jingping; Zhai, Yuhu
2016-10-01
The optimization of superconducting magnet performance and development of high-field superconducting magnets will greatly impact the next generation of fusion devices. A successful magnet development, however, relies deeply on the understanding of superconducting materials. Among the numerous factors that impact a superconductor's performance, mechanical stress is the most important because of the extreme operation temperature and large electromagnetic forces. In this study, mechanical theory is used to calculate the stresses/strains in typical superconducting strands, which consist of a stabilizer, a barrier, a matrix and superconducting filaments. Both thermal loads and mechanical loads are included in the analysis to simulate operation conditions. Because this model simulates the typical architecture of major superconducting materials, such as Nb3Sn, MgB2, Bi-2212 etc., it provides a good overall picture for us to understand the behavior of these superconductors in terms of thermal and mechanical loads. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.
Analysis of a Hybrid Mechanical Regenerative Braking System
Directory of Open Access Journals (Sweden)
Toh Xiang Wen Matthew
2018-01-01
Full Text Available Regenerative braking systems for conventional vehicles are gaining attention as fossil fuels continue to be depleted. The major forms of regenerative braking systems include electrical and mechanical systems, with the former being more widely adopted at present. However mechanical systems are still feasible, including the possible hybrid systems of two mechanical energy recovery systems. A literature study was made to compare the various mechanical energy recovery systems. These systems were compared based on their advantages and disadvantages with regards to energy storage, usage, and maintenance. Based on the comparison, the most promising concept appeared to be one that combined the flywheel and the pneumatic energy recovery systems. A CAD model of this hybrid system was produced to better visualise the design. This was followed by analytical modelling of the energy recovery systems. The analysis indicated that the angular velocity had an extremely significant impact on the power loss and energy efficiency. The results showed that the hybrid system can provide better efficiency but only when operating within certain parameters. Future work is required to further improve the efficiency of this hybrid system.
A Geometry Deformation Model for Braided Continuum Manipulators
Directory of Open Access Journals (Sweden)
S. M. Hadi Sadati
2017-06-01
Full Text Available Continuum manipulators have gained significant attention in the robotic community due to their high dexterity, deformability, and reachability. Modeling of such manipulators has been shown to be very complex and challenging. Despite many research attempts, a general and comprehensive modeling method is yet to be established. In this paper, for the first time, we introduce the bending effect in the model of a braided extensile pneumatic actuator with both stiff and bendable threads. Then, the effect of the manipulator cross-section deformation on the constant curvature and variable curvature models is investigated using simple analytical results from a novel geometry deformation method and is compared to experimental results. We achieve 38% mean reference error simulation accuracy using our constant curvature model for a braided continuum manipulator in presence of body load and 10% using our variable curvature model in presence of extensive external loads. With proper model assumptions and taking to account the cross-section deformation, a 7–13% increase in the simulation mean error accuracy is achieved compared to a fixed cross-section model. The presented models can be used for the exact modeling and design optimization of compound continuum manipulators by providing an analytical tool for the sensitivity analysis of the manipulator performance. Our main aim is the application in minimal invasive manipulation with limited workspaces and manipulators with regional tunable stiffness in their cross section.
Integrated Information Systems Across the Weather-Climate Continuum
Pulwarty, R. S.; Higgins, W.; Nierenberg, C.; Trtanj, J.
2015-12-01
The increasing demand for well-organized (integrated) end-to-end research-based information has been highlighted in several National Academy studies, in IPCC Reports (such as the SREX and Fifth Assessment) and by public and private constituents. Such information constitutes a significant component of the "environmental intelligence" needed to address myriad societal needs for early warning and resilience across the weather-climate continuum. The next generation of climate research in service to the nation requires an even more visible, authoritative and robust commitment to scientific integration in support of adaptive information systems that address emergent risks and inform longer-term resilience strategies. A proven mechanism for resourcing such requirements is to demonstrate vision, purpose, support, connection to constituencies, and prototypes of desired capabilities. In this presentation we will discuss efforts at NOAA, and elsewhere, that: Improve information on how changes in extremes in key phenomena such as drought, floods, and heat stress impact management decisions for resource planning and disaster risk reduction Develop regional integrated information systems to address these emergent challenges, that integrate observations, monitoring and prediction, impacts assessments and scenarios, preparedness and adaptation, and coordination and capacity-building. Such systems, as illustrated through efforts such as NIDIS, have strengthened the integration across the foundational research enterprise (through for instance, RISAs, Modeling Analysis Predictions and Projections) by increasing agility for responding to emergent risks. The recently- initiated Climate Services Information System, in support of the WMO Global Framework for Climate Services draws on the above models and will be introduced during the presentation.
Lattice gravity near the continuum limit
International Nuclear Information System (INIS)
Feinberg, G.; Friedberg, R.; Lee, T.D.; Ren, H.C.
1984-01-01
We prove that the lattice gravity always approaches the usual continuum limit when the link length l -> 0, provided that certain general boundary conditions are satisfied. This result holds for any lattice, regular or irregular. Furthermore, for a given lattice, the deviation from its continuum limit can be expressed as a power series in l 2 . General formulas for such a perturbative calculation are given, together with a number of illustrative examples, including the graviton propagator. The lattice gravity satisfies all the invariance properties of Einstein's theory of general relativity. In addition, it is symmetric under a new class of transformations that are absent in the usual continuum theory. The possibility that the lattice theory (with a nonzero l) may be more fundamental is discussed. (orig.)
On the Nature of Off-limb Flare Continuum Sources Detected by SDO /HMI
Energy Technology Data Exchange (ETDEWEB)
Heinzel, P.; Kašparová, J. [Astronomical Institute, Czech Academy of Sciences, 25165 Ondřejov (Czech Republic); Kleint, L.; Krucker, S., E-mail: pheinzel@asu.cas.cz [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland)
2017-09-20
The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory has provided unique observations of off-limb flare emission. White-light continuum enhancements were detected in the “continuum” channel of the Fe 6173 Å line during the impulsive phase of the observed flares. In this paper we aim to determine which radiation mechanism is responsible for such enhancement being seen above the limb, at chromospheric heights around or below 1000 km. Using a simple analytical approach, we compare two candidate mechanisms, the hydrogen recombination continuum (Paschen) and the Thomson continuum due to scattering of disk radiation on flare electrons. Both mechanisms depend on the electron density, which is typically enhanced during the impulsive phase of a flare as the result of collisional ionization (both thermal and also non-thermal due to electron beams). We conclude that for electron densities higher than 10{sup 12} cm{sup −3}, the Paschen recombination continuum significantly dominates the Thomson scattering continuum and there is some contribution from the hydrogen free–free emission. This is further supported by detailed radiation-hydrodynamical (RHD) simulations of the flare chromosphere heated by the electron beams. We use the RHD code FLARIX to compute the temporal evolution of the flare-heating in a semi-circular loop. The synthesized continuum structure above the limb resembles the off-limb flare structures detected by HMI, namely their height above the limb, as well as the radiation intensity. These results are consistent with recent findings related to hydrogen Balmer continuum enhancements, which were clearly detected in disk flares by the IRIS near-ultraviolet spectrometer.
Analysis of Environmental Law Enforcement Mechanism Based on Economic Principle
Cao, Hongjun; Shao, Haohao; Cai, Xuesen
2017-11-01
Strengthening and improving the environmental law enforcement mechanism is an important way to protect the ecological environment. This paper is based on economical principles, we did analysis of the marginal management costs by using Pigou means and the marginal transaction costs by using Coase means vary with the quantity growth of pollutant discharge Enterprises. We analyzed all this information, then we got the conclusion as follows. In the process of strengthening the environmental law enforcement mechanism, firstly, we should fully mobilize all aspects of environmental law enforcement, such as legislative bodies and law enforcement agencies, public welfare organizations, television, newspapers, enterprises, people and so on, they need to form a reasonable and organic structure system; then we should use various management means, such as government regulation, legal sanctions, fines, persuasion and denounce, they also need to form an organic structural system.
Finite element analysis of mechanical stability of coarsened nanoporous gold
International Nuclear Information System (INIS)
Cho, Hoon-Hwe; Chen-Wiegart, Yu-chen Karen; Dunand, David C.
2016-01-01
The mechanical stability of nanoporous gold (np-Au) at various stages of thermal coarsening is studied via finite element analysis under volumetric compression using np-Au architectures imaged via X-ray nano-tomography. As the np-Au is coarsened thermally over ligament sizes ranging from 185 to 465 nm, the pore volume fraction is determinant for the mechanical stability of the coarsened np-Au, unlike the curvature and surface orientation of the ligaments. The computed Young's modulus and yield strength of the structures are compared with the Gibson–Ashby model. The geometry of the structures determines the locations where stress concentrations occur at the onset of yielding.
Statistical mechanical analysis of LMFBR fuel cladding tubes
International Nuclear Information System (INIS)
Poncelet, J.-P.; Pay, A.
1977-01-01
The most important design requirement on fuel pin cladding for LMFBR's is its mechanical integrity. Disruptive factors include internal pressure from mixed oxide fuel fission gas release, thermal stresses and high temperature creep, neutron-induced differential void-swelling as a source of stress in the cladding and irradiation creep of stainless steel material, corrosion by fission products. Under irradiation these load-restraining mechanisms are accentuated by stainless steel embrittlement and strength alterations. To account for the numerous uncertainties involved in the analysis by theoretical models and computer codes statistical tools are unavoidably requested, i.e. Monte Carlo simulation methods. Thanks to these techniques, uncertainties in nominal characteristics, material properties and environmental conditions can be linked up in a correct way and used for a more accurate conceptual design. (Auth.)
Mechanical Properties for Reliability Analysis of Structures in Glassy Carbon
Garion, Cédric
2014-01-01
Despite its good physical properties, the glassy carbon material is not widely used, especially for structural applications. Nevertheless, its transparency to particles and temperature resistance are interesting properties for the applications to vacuum chambers and components in high energy physics. For example, it has been proposed for fast shutter valve in particle accelerator [1] [2]. The mechanical properties have to be carefully determined to assess the reliability of structures in such a material. In this paper, mechanical tests have been carried out to determine the elastic parameters, the strength and toughness on commercial grades. A statistical approach, based on the Weibull’s distribution, is used to characterize the material both in tension and compression. The results are compared to the literature and the difference of properties for these two loading cases is shown. Based on a Finite Element analysis, a statistical approach is applied to define the reliability of a structural component in gl...
Statistical Mechanics Analysis of ATP Binding to a Multisubunit Enzyme
International Nuclear Information System (INIS)
Zhang Yun-Xin
2014-01-01
Due to inter-subunit communication, multisubunit enzymes usually hydrolyze ATP in a concerted fashion. However, so far the principle of this process remains poorly understood. In this study, from the viewpoint of statistical mechanics, a simple model is presented. In this model, we assume that the binding of ATP will change the potential of the corresponding enzyme subunit, and the degree of this change depends on the state of its adjacent subunits. The probability of enzyme in a given state satisfies the Boltzmann's distribution. Although it looks much simple, this model can fit the recent experimental data of chaperonin TRiC/CCT well. From this model, the dominant state of TRiC/CCT can be obtained. This study provide a new way to understand biophysical processe by statistical mechanics analysis. (interdisciplinary physics and related areas of science and technology)
Nonlinear analysis of collapse mechanism in superstructure vehicle
Nor, M. K. Mohd; Ho, C. S.; Ma'at, N.
2017-04-01
The EU directive 2001/85/EC is an official European text which describes the specifications for "single deck class II and III vehicles" required to be approved by the regulation UN/ECE no.66 (R66). To prevent the catastrophic consequences by occupant during an accident, the Malaysian government has reinforced the same regulation upon superstructure construction. This paper discusses collapse mechanism analysis of a superstructure vehicle using a Crash D nonlinear analysis computer program based on this regulation. The analysis starts by hand calculation to define the required energy absorption by the chosen structure. Simple calculations were then performed to define the weakest collapse mechanism after undesirable collapse modes are eliminated. There are few factors highlighted in this work to pass the regulation. Using the selected cross section, Crash D simulation showed a good result. Generally, the deformation is linearly correlates to the energy absorption for the structure with low stiffness. Failure of critical members such as vertical lower side wall must be avoided to sustain safety of the passenger compartment and prevent from severe and fatal injuries to the trapped occupant.
Coupling of nonlocal and local continuum models by the Arlequinapproach
Han, Fei
2011-08-09
The objective of this work is to develop and apply the Arlequin framework to couple nonlocal and local continuum mechanical models. A mechanically-based model of nonlocal elasticity, which involves both contact and long-range forces, is used for the \\'fine scale\\' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can be neglected. Both models overlap in a coupling subdomain called the \\'gluing area\\' in which the total energy is separated into nonlocal and local contributions by complementary weight functions. A weak compatibility is ensured between kinematics of both models using Lagrange multipliers over the gluing area. The discrete formulation of this specific Arlequin coupling framework is derived and fully described. The validity and limits of the technique are demonstrated through two-dimensional numerical applications and results are compared against those of the fully nonlocal elasticity method. © 2011 John Wiley & Sons, Ltd.
Continuum gauge fields from lattice gauge fields
International Nuclear Information System (INIS)
Goeckeler, M.; Kronfeld, A.S.; Schierholz, G.; Wiese, U.J.
1993-01-01
On the lattice some of the salient features of pure gauge theories and of gauge theories with fermions in complex representations of the gauge group seem to be lost. These features can be recovered by considering part of the theory in the continuum. The prerequisite for that is the construction of continuum gauge fields from lattice gauge fields. Such a construction, which is gauge covariant and complies with geometrical constructions of the topological charge on the lattice, is given in this paper. The procedure is explicitly carried out in the U(1) theory in two dimensions, where it leads to simple results. (orig.)
Selection of pipeline steels with an engineering fracture mechanical analysis
Energy Technology Data Exchange (ETDEWEB)
Stenbacka, N [Swedish State Power Board, Vaellingby
1985-01-01
Selection of pipeline steels is discussed on the basis of two mutually independent failure mechanisms: elastic fracture and plastic collapse. The presentation is restricted to axial flaws. A formal analysis shows that brittle fracture in modern pipelines has no high priority in design, since steels used today have a high fracture toughness. Instead, a case of practical concern is tha plastic collapse mode, where failure is flow stress controlled. Conditions governing this design case are specified. In conjunction with this, criterions for material selection with regard to fracture toughness is presented.
Analysis of mechanical fabrication experience with CEBAF's production SRF cavities
International Nuclear Information System (INIS)
Mammosser, J.; Kneisel, P.; Benesch, J.
1993-06-01
CEBAF has received a total of 360 five-cell niobium cavities, the largest group of industrially fabricated superconducting cavities so far. An extensive data base exists on the fabrication, surface treatment, assembly and cavity performance parameters. Analysis of the mechanical features of the cavities includes the following: the spread in fabrication tolerances of the cells derived from field profiles of the ''as fabricated'' cavities and the ''as fabricated'' external Q-values of the fundamental power coupler compared to dimensional deviations. A comparison is made of the pressure sensitivity of cavities made of materials from different manufacturers between 760 torr (4.2 K) and 23 torr (2 K)
Rules for the analysis of mechanical structures at elevated temperatures
International Nuclear Information System (INIS)
Jakubowicz, H.; Petrequin, P.; Schaller, K.
1979-01-01
This paper describes how the experience gained by the CEA (French Atomic Energy Commission) in design, construction and operation of pool type LMFBR, as well as in research an development, is used to establish rules for the analysis of mechanical structures at elevated temperatures. These rules are written by different working groups and approved by a committee named RAMSES. The working methods of the RAMSES committee are described. Some of the approved recommendations are presented. The ongoing work and futur topics are also described
Functional analysis and quantum mechanics: an introduction for physicists
International Nuclear Information System (INIS)
Ranade, Kedar S.
2015-01-01
We give an introduction to certain topics from functional analysis which are relevant for physics in general and in particular for quantum mechanics. Starting from some examples, we discuss the theory of Hilbert spaces, spectral theory of unbounded operators, distributions and their applications and present some facts from operator algebras. We do not give proofs, but present examples and analogies from physics which should be useful to get a feeling for the topics considered. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Analysis of the degradation mechanisms in an impacted ceramic
International Nuclear Information System (INIS)
Denoual, C.; Cottenot, C. E.; Hild, F.
1998-01-01
To analyze the degradation mechanisms in a natural sintered SiC (SSiC) ceramic during impact, three edge-on impact configurations are considered. First, the ceramic is confined by aluminum to allow a post-mortem analysis. In the second configuration, a polished surface of the ceramic is observed each micro-second by a high-speed camera to follow the damage generation and evolution. The third configuration uses a high-speed Moire photography system to measure dynamic 2-D strain fields. Sequences of fringe patterns are analyzed
Market mechanisms for compensating hazardous work: a critical analysis
International Nuclear Information System (INIS)
Shakow, D.
1984-01-01
Adam Smith's theory that the marketplace can compensate workers for social inequities (i.e., hazards, boredom, etc.) in the work place is applied to the nuclear industry. The author argues that market mechanisms are unlikely to ensure adequate compensation for work-related hazards. He summarizes and critiques the neoclassical compensating-wage hypothesis, then reviews empirical evidence in support of the hypothesis in light of an alternative hypothesis derived from the literature on labor market segmentation. He challenges the assumption of perfect labor mobility and perfect information. A promising direction for further research would be a structural analysis of the emerging market for temporary workers. 13 references, 2 figures
Functional analysis and quantum mechanics: an introduction for physicists
Energy Technology Data Exchange (ETDEWEB)
Ranade, Kedar S. [Ulm Univ. (Germany). Inst. fuer Quantenphysik and Center for Integrated Quantum Science and Technology (IQST)
2015-09-15
We give an introduction to certain topics from functional analysis which are relevant for physics in general and in particular for quantum mechanics. Starting from some examples, we discuss the theory of Hilbert spaces, spectral theory of unbounded operators, distributions and their applications and present some facts from operator algebras. We do not give proofs, but present examples and analogies from physics which should be useful to get a feeling for the topics considered. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
A κ-generalized statistical mechanics approach to income analysis
International Nuclear Information System (INIS)
Clementi, F; Gallegati, M; Kaniadakis, G
2009-01-01
This paper proposes a statistical mechanics approach to the analysis of income distribution and inequality. A new distribution function, having its roots in the framework of κ-generalized statistics, is derived that is particularly suitable for describing the whole spectrum of incomes, from the low–middle income region up to the high income Pareto power-law regime. Analytical expressions for the shape, moments and some other basic statistical properties are given. Furthermore, several well-known econometric tools for measuring inequality, which all exist in a closed form, are considered. A method for parameter estimation is also discussed. The model is shown to fit remarkably well the data on personal income for the United States, and the analysis of inequality performed in terms of its parameters is revealed as very powerful
A κ-generalized statistical mechanics approach to income analysis
Clementi, F.; Gallegati, M.; Kaniadakis, G.
2009-02-01
This paper proposes a statistical mechanics approach to the analysis of income distribution and inequality. A new distribution function, having its roots in the framework of κ-generalized statistics, is derived that is particularly suitable for describing the whole spectrum of incomes, from the low-middle income region up to the high income Pareto power-law regime. Analytical expressions for the shape, moments and some other basic statistical properties are given. Furthermore, several well-known econometric tools for measuring inequality, which all exist in a closed form, are considered. A method for parameter estimation is also discussed. The model is shown to fit remarkably well the data on personal income for the United States, and the analysis of inequality performed in terms of its parameters is revealed as very powerful.
Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine
International Nuclear Information System (INIS)
Fajar, D M; Khotimah, S N; Khairurrijal
2016-01-01
A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine. (paper)
Item response theory analysis of the mechanics baseline test
Cardamone, Caroline N.; Abbott, Jonathan E.; Rayyan, Saif; Seaton, Daniel T.; Pawl, Andrew; Pritchard, David E.
2012-02-01
Item response theory is useful in both the development and evaluation of assessments and in computing standardized measures of student performance. In item response theory, individual parameters (difficulty, discrimination) for each item or question are fit by item response models. These parameters provide a means for evaluating a test and offer a better measure of student skill than a raw test score, because each skill calculation considers not only the number of questions answered correctly, but the individual properties of all questions answered. Here, we present the results from an analysis of the Mechanics Baseline Test given at MIT during 2005-2010. Using the item parameters, we identify questions on the Mechanics Baseline Test that are not effective in discriminating between MIT students of different abilities. We show that a limited subset of the highest quality questions on the Mechanics Baseline Test returns accurate measures of student skill. We compare student skills as determined by item response theory to the more traditional measurement of the raw score and show that a comparable measure of learning gain can be computed.
Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine
Fajar, D. M.; Khotimah, S. N.; Khairurrijal
2016-08-01
A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine.
Steam Generator Analysis Tools and Modeling of Degradation Mechanisms
International Nuclear Information System (INIS)
Yetisir, M.; Pietralik, J.; Tapping, R.L.
2004-01-01
The degradation of steam generators (SGs) has a significant effect on nuclear heat transport system effectiveness and the lifetime and overall efficiency of a nuclear power plant. Hence, quantification of the effects of degradation mechanisms is an integral part of a SG degradation management strategy. Numerical analysis tools such as THIRST, a 3-dimensional (3D) thermal hydraulics code for recirculating SGs; SLUDGE, a 3D sludge prediction code; CHECWORKS a flow-accelerated corrosion prediction code for nuclear piping, PIPO-FE, a SG tube vibration code; and VIBIC and H3DMAP, 3D non-linear finite-element codes to predict SG tube fretting wear can be used to assess the impacts of various maintenance activities on SG thermal performance. These tools are also found to be invaluable at the design stage to influence the design by determining margins or by helping the designers minimize or avoid known degradation mechanisms. In this paper, the aforementioned numerical tools and their application to degradation mechanisms in CANDU recirculating SGs are described. In addition, the following degradation mechanisms are identified and their effect on SG thermal efficiency and lifetime are quantified: primary-side fouling, secondary-side fouling, fretting wear, and flow-accelerated corrosion (FAC). Primary-side tube inner diameter fouling has been a major contributor to SG thermal degradation. Using the results of thermalhydraulic analysis and field data, fouling margins are calculated. Individual effects of primary- and secondary-side fouling are separated through analyses, which allow station operators to decide what type of maintenance activity to perform and when to perform the maintenance activity. Prediction of the fretting-wear rate of tubes allows designers to decide on the number and locations of support plates and U-bend supports. The prediction of FAC rates for SG internals allows designers to select proper materials, and allows operators to adjust the SG maintenance
Mechanical breakdown in the nuclear multifragmentation phenomena. Thermodynamic analysis
International Nuclear Information System (INIS)
Bulavin, L.A.; Cherevko, K.V.; Sysoev, V.M.
2012-01-01
Based on a similarity of the Van der Waals and nucleon-nucleon interaction the known thermodynamic relations for ordinary liquids are used to analyze the possible decay channels in the proton induced nuclear multifragmentation phenomena. The main features of the different phase trajectories in the P-V plane are compared with the experimental data on multifragmentation. It allowed choosing the phase trajectories with the correct qualitative picture of the phenomena. Based on the thermodynamic analysis of the proton-induced multifragmentation phenomena the most appropriate decay channel corresponding to the realistic phase trajectory is chosen. Macroscopic analysis of the suggested decay channel is done in order to check the possibility of the mechanical breakdown of the heated system. Based on a simple thermodynamic model preliminary quantitative calculations of corresponding macroscopic parameters (energy, pressure) are done and therefore the model verification on macroscopic level is held. It is shown that on macroscopic level the chosen decay channel through the mechanical breakdown meets the necessary conditions for describing the proton-induced multifragmentation phenomena
Electromagnetic analysis of control element drive mechanism for KSNP
International Nuclear Information System (INIS)
Kim, H. M.; Kim, I. G.; Kim, I. Y.
2002-01-01
The magnetic jack type Control Element Drive Mechanism (CEDM) for Korean Standard Nuclear Power Plant (KSNP) is an electromechanical device which provides controlled linear motion to the Control Element Assembly (CEA) through the Extension Shaft Assembly (ESA) in response to operational signals received from the Control Element Drive Mechanism Control System (CEDMCS). The CEDM is operated by applying localized magnetic flux fields to movable latch and lift magnets, which are in the coolant pressure boundary. The CEDM design had been developed through electromechanical testing of the system including the magnetic force lifting the ESA. But it will be inefficient if parametric studies should be performed to improve the CEDM by test due to the consumption of high cost and long duration. So it becomes necessary to develop a computational model to simulate the electromagnetic characteristics of the CEDM to improve the CEDM design efficiently. In this paper, the electromagnetic analysis using a 2D finite element model has been carried out to simulate magnetic force of the lift magnet of the CEDM, to provide effective evaluation between leakage flux and lift force and to compare with test results. Analysis results show the lift force satisfied the test results and design requirement and the lift force depend on the shape of the components, leakage flux and B-H curve
Continuum emission of excited sodium dimer
International Nuclear Information System (INIS)
Pardo, A.; Poyato, J.M.L.; Alonso, J.I.; Rico, F.R.
1980-01-01
A study has been made of the behaviour of excited molecular sodium using high-power Ar + laser radiation. A continuum emission was observed in the red wavelength region. This emission was thought to be caused by the formation of excited triatomic molecules. Energy transfer was observed from excited molecules to atoms. (orig.)
Discrete expansions of continuum wave functions
International Nuclear Information System (INIS)
Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.
1980-01-01
Different methods of expanding continuum wave functions in terms of discrete basis sets are discussed. The convergence properties of these expansions are investigated, both from a mathematical and a numerical point of view, for the case of potentials of Woods-Saxon and square well type. (orig.)
Thermo-mechanical analysis of PWR bolts susceptible to IASCC
International Nuclear Information System (INIS)
Matteoli, C.; Hannink, M.H.C.; Blom, F.J.; Marck, S.C. van der; Charpin-Jacobs, F.
2015-01-01
Irradiation Assisted Stress Corrosion Cracking (IASCC) is considered a primary ageing issue for the Reactor Pressure Vessel (RPV) internals of Pressurized Water Reactors (PWR). In particular, this complex phenomenon which develops in an environment featuring thermal and mechanical stresses, interaction with corrosive compounds and irradiation, is affecting the bolts connecting the baffles and the formers in the Nuclear Power Plants' RPVs. The baffle-former assembly is the structure that borders the fuel assemblies region, contributing to keep them in position and separating in the radial direction, the core region from the downcomer region. An evaluation of the stresses and temperatures reached in the baffle-former bolts during normal operation was performed by means of a coupled thermo-mechanical study which uses reactor physics calculations to obtain the fluence in the reactor core and as a consequence the heat deposition in the RPV internals. The heat deposition data are coupled with a finite element model of the bolts and the RPV internals in order to perform a complete analysis taking in account thermal, mechanical and radiation loadings. The study is first carried out focusing on a section of the RPV internals, showing a single row of baffle-former bolts. Then the work is extended to the full core height. The model set up in this work, includes an in-depth study of the behavior of the core internals, in particular baffle-former bolts. The model has the capability of understanding the mechanical and thermal behavior of essential internal components in a PWR. (authors)
Directory of Open Access Journals (Sweden)
Edilson Grünheidt Borges
2002-12-01
Full Text Available Quantum chemistry and multivariate analysis were used to estimate the partition coefficients between n-octanol and water for a serie of 188 compounds, with the values of the q 2 until 0.86 for crossvalidation test. The quantum-mechanical descriptors are obtained with ab initio calculation, using the solvation effects of the Polarizable Continuum Method. Two different Hartree-Fock bases were used, and two different ways for simulating solvent cavity formation. The results for each of the cases were analised, and each methodology proposed is indicated for particular case.
Nuclear plant components: mechanical analysis and lifetime evaluation
International Nuclear Information System (INIS)
Chator, T.
1993-09-01
This paper concerns the methodology adopted by the Research and Development Division to handle mechanical problems found in structures and machines. Usually, these often very complex studies (3-D structures, complex loadings, non linear behavior laws) call for advanced tools and calculation means. In order to do these complex studies, R and D Division is developing a software. It handles very complex thermo-mechanical analysis using the Finite Element Method. It enables us to analyse static, dynamic, elasto-plastic problems as well as contact problems or evaluating damage and lifetime of structures. This paper will be illustrated by actual industrial case examples. The major ones will be dealing with: 1. Analysis of a new impeller/shaft assembly of a primary coolant pump. The 3D meshing is submitted simultaneously to thermal load, pressure, hydraulic, centrifugal and axial forces and clamping of studs; contacts between shaft/impeller, nuts bearing side/shaft bearing side. For this study, we have developed a new method to handle the clamping of studs. The stud elongation value is given into the software which automatically computes the distorsions between both the structures in contact and then the final position of bearing areas (using an iterative non-linear algorithm of modified Newton-Raphson type). 2. Analysis of the stress intensity factor of crack. The 3D meshing (representing the crack) is submitted simultaneously to axial and radial forces. In this case, we use the Theta method to calculate the energy restitution rate in order to determine the stress intensity factors. (authors). 7 figs., 1 tab., 3 refs
COMTA - a computer code for fuel mechanical and thermal analysis
International Nuclear Information System (INIS)
Basu, S.; Sawhney, S.S.; Anand, A.K.; Anantharaman, K.; Mehta, S.K.
1979-01-01
COMTA is a generalized computer code for integrity analysis of the free standing fuel cladding, with natural UO 2 or mixed oxide fuel pellets. Thermal and Mechanical analysis is done simultaneously for any power history of the fuel pin. For analysis, the fuel cladding is assumed to be axisymmetric and is subjected to axisymmetric load due to contact pressure, gas pressure, coolant pressure and thermal loads. Axial variation of load is neglected and creep and plasticity are assumed to occur at constant volume. The pellet is assumed to be made of concentric annuli. The fission gas release integral is dependent on the temperature and the power produced in each annulus. To calculate the temperature distribution in the fuel pin, the variation of bulk coolant temperature is given as an input to the code. Gap conductance is calculated at every time step, considering fuel densification, fuel relocation and gap closure, filler gas dilution by released fission gas, gap closure by expansion and irradiation swelling. Overall gap conductance is contributed by heat transfer due to the three modes; conduction convection and radiation as per modified Ross and Stoute model. Equilibrium equations, compatibility equations, stress strain relationships (including thermal strains and permanent strains due to creep and plasticity) are used to obtain triaxial stresses and strains. Thermal strain is assumed to be zero at hot zero power conditions. The boundary conditions are obtained for radial stresses at outside and inside surfaces by making these equal to coolant pressure and internal pressure respectively. A multi-mechanism creep model which accounts for thermal and irradiation creep is used to calculate the overall creep rate. Effective plastic strain is a function of effective stress and material constants. (orig.)
Application of micropolar plasticity to post failure analysis in geomechanics
Manzari, Majid T.
2004-08-01
A micropolar elastoplastic model for soils is formulated and a series of finite element analyses are employed to demonstrate the use of a micropolar continuum in overcoming the numerical difficulties encountered in application of finite element method in standard Cauchy-Boltzmann continuum. Three examples of failure analysis involving a deep excavation, shallow foundation, and a retaining wall are presented. In all these cases, it is observed that the length scale introduced in the polar continuum regularizes the incremental boundary value problem and allows the numerical simulation to be continued until a clear collapse mechanism is achieved. The issue of grain size effect is also discussed. Copyright
Hybrid molecular–continuum methods: From prototypes to coupling software
Neumann, Philipp
2014-02-01
In this contribution, we review software requirements in hybrid molecular-continuum simulations. For this purpose, we analyze a prototype implementation which combines two frameworks-the Molecular Dynamics framework MarDyn and the framework Peano for spatially adaptive mesh-based simulations-and point out particular challenges of a general coupling software. Based on this analysis, we discuss the software design of our recently published coupling tool. We explain details on its overall structure and show how the challenges that arise in respective couplings are resolved by the software. © 2013 Elsevier Ltd. All rights reserved.
Continuum emission in the 1980 July 1 solar flare
International Nuclear Information System (INIS)
Zirin, H.; Neidig, D.F.
1981-01-01
Comparison of continuum measurements of the 1980 July 1 flare at Big Bear Solar Observatory and Sacramento Peak Observatory show strong blue emission kernels with the ratio of Balmer continuum (Bac):lambda3862 continuum:continuum above 4275 A to be about 10:5:1. The blue continuum at 3862 A is too strong to be explained by unresolved lines. The Bac intensity was 2.5 times the photosphere and the strongest lambda3862 continuum was 2 times the photosphere. The brightest continuum kernel occurred late in the flare, after the hard X-ray peak and related in time to an isolated peak in the 2.2 MeV line, suggesting that the continuum was excited by protons above 20 MeV
A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations
Neumann, Philipp; Tchipev, Nikola
2012-01-01
We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm
The modelling and analysis of the mechanics of ropes
Leech, C M
2014-01-01
This book considers the modelling and analysis of the many types of ropes, linear fibre assemblies. The construction of these structures is very diverse and in the work these are considered from the modelling point of view. As well as the conventional twisted structures, braid and plaited structures and parallel assemblies are modelled and analysed, first for their assembly and secondly for their mechanical behaviour. Also since the components are assemblies of components, fibres into yarns, into strands, and into ropes the hierarchical nature of the construction is considered. The focus of the modelling is essentially toward load extension behaviour but there is reference to bending of ropes, encompassed by the two extremes, no slip between the components and zero friction resistance to component slip. Friction in ropes is considered both between the rope components, sliding, sawing and scissoring, and within the components, dilation and distortion, these latter modes being used to model component set, the p...
Mechanical analysis of ceramic head for modular hip prosthesis
International Nuclear Information System (INIS)
Ravagli, E.
1995-03-01
A study, performed with the department of orthopaedics of the Rome Catholic University, has found out the two possible parameters mainly responsible for head breaking, i. e. errors in conical mating between head and stem, and cracks in the heads. This study has been continued in the frame of the STRIDE-CETMA project, aimed at founding and developing a centre for technologically advanced materials in Brindisi Technology Park (Italy). This report starts a systematic mechanical analysis of the above mentioned head, with the purpose of characterizing it exhaustively. The evaluations made lead to the conclusion that in nomimal conditions, the head is largely overdimensioned, taking into account the maximum load applied to the prosthesis
Mechanical Characteristics Analysis of Surrounding Rock on Anchor Bar Reinforcement
Gu, Shuan-cheng; Zhou, Pan; Huang, Rong-bin
2018-03-01
Through the homogenization method, the composite of rock and anchor bar is considered as the equivalent material of continuous, homogeneous, isotropic and strength parameter enhancement, which is defined as reinforcement body. On the basis of elasticity, the composite and the reinforcement are analyzed, Based on strengthening theory of surrounding rock and displacement equivalent conditions, the expression of reinforcement body strength parameters and mechanical parameters is deduced. The example calculation shows that the theoretical results are close to the results of the Jia-mei Gao[9], however, closer to the results of FLAC3D numerical simulation, it is proved that the model and surrounding rock reinforcement body theory are reasonable. the model is easy to analyze and calculate, provides a new way for determining reasonable bolt support parameters, can also provides reference for the stability analysis of underground cavern bolting support.
Mechanical analysis of UMo/Al dispersion fuel
International Nuclear Information System (INIS)
Jeong, Gwan Yoon; Kim, Yeon Soo; Sohn, Dong-Seong
2015-01-01
Deformation of fuel particles and mass transfer from the transverse end of fuel meat toward the meat center was observed. This caused plate thickness peaking at a location between the meat edge and the meat center. The underlying mechanism for this fuel volume transport is believed to be fission induced creep of the U–Mo/Al meat. Fuel meat swelling was measured using optical microscopy images of the cross sections of the irradiated test plates. The time-dependent meat swelling was modeled for use in numerical simulation. A distinctive discrepancy between the predicted and measured meat thickness was found at the meat ends, which was assumed to be due to creep-induced mass relocation from the meat end to the meat center region that was not considered in the meat swelling model. ABAQUS FEA simulation was performed to reproduce the observed phenomenon at the meat ends. Through the simulation, we obtained the effective creep rate constants for the interaction layers (IL) and aluminum matrix. In addition, we obtained the corresponding stress and strain analysis results that can be used to understand mechanical behavior of U–Mo/Al dispersion fuel.
Mechanical analysis of UMo/Al dispersion fuel
Energy Technology Data Exchange (ETDEWEB)
Jeong, Gwan Yoon [Ulsan National Institute of Science and Technology, Department of Nuclear Engineering, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Sohn, Dong-Seong, E-mail: dssohn@unist.ac.kr [Ulsan National Institute of Science and Technology, Department of Nuclear Engineering, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of)
2015-11-15
Deformation of fuel particles and mass transfer from the transverse end of fuel meat toward the meat center was observed. This caused plate thickness peaking at a location between the meat edge and the meat center. The underlying mechanism for this fuel volume transport is believed to be fission induced creep of the U–Mo/Al meat. Fuel meat swelling was measured using optical microscopy images of the cross sections of the irradiated test plates. The time-dependent meat swelling was modeled for use in numerical simulation. A distinctive discrepancy between the predicted and measured meat thickness was found at the meat ends, which was assumed to be due to creep-induced mass relocation from the meat end to the meat center region that was not considered in the meat swelling model. ABAQUS FEA simulation was performed to reproduce the observed phenomenon at the meat ends. Through the simulation, we obtained the effective creep rate constants for the interaction layers (IL) and aluminum matrix. In addition, we obtained the corresponding stress and strain analysis results that can be used to understand mechanical behavior of U–Mo/Al dispersion fuel.
Correlation between videogame mechanics and executive functions through EEG analysis.
Mondéjar, Tania; Hervás, Ramón; Johnson, Esperanza; Gutierrez, Carlos; Latorre, José Miguel
2016-10-01
This paper addresses a different point of view of videogames, specifically serious games for health. This paper contributes to that area with a multidisciplinary perspective focus on neurosciences and computation. The experiment population has been pre-adolescents between the ages of 8 and 12 without any cognitive issues. The experiment consisted in users playing videogames as well as performing traditional psychological assessments; during these tasks the frontal brain activity was evaluated. The main goal was to analyse how the frontal lobe of the brain (executive function) works in terms of prominent cognitive skills during five types of game mechanics widely used in commercial videogames. The analysis was made by collecting brain signals during the two phases of the experiment, where the signals were analysed with an electroencephalogram neuroheadset. The validated hypotheses were whether videogames can develop executive functioning and if it was possible to identify which kind of cognitive skills are developed during each kind of typical videogame mechanic. The results contribute to the design of serious games for health purposes on a conceptual level, particularly in support of the diagnosis and treatment of cognitive-related pathologies. Copyright © 2016 Elsevier Inc. All rights reserved.
Mechanical and Thermal Analysis of Classical Functionally Graded Coated Beam
Directory of Open Access Journals (Sweden)
Toudehdehghan Abdolreza
2018-01-01
Full Text Available The governing equation of a classical rectangular coated beam made of two layers subjected to thermal and uniformly distributed mechanical loads are derived by using the principle of virtual displacements and based on Euler-Bernoulli deformation beam theory (EBT. The aim of this paper was to analyze the static behavior of clamped-clamped thin coated beam under thermo-mechanical load using MATLAB. Two models were considered for composite coated. The first model was consisting of ceramic layer as a coated and substrate which was metal (HC model. The second model was consisting of Functionally Graded Material (FGM as a coated layer and metal substrate (FGC model. From the result it was apparent that the superiority of the FGC composite against conventional coated composite has been demonstrated. From the analysis, the stress level throughout the thickness at the interface of the coated beam for the FGC was reduced. Yet, the deflection in return was observed to increase. Therefore, this could cater to various new engineering applications where warrant the utilization of material that has properties that are well-beyond the capabilities of the conventional or yesteryears materials.
Schizophrenia and the neurodevelopmental continuum:evidence from genomics.
Owen, Michael J; O'Donovan, Michael C
2017-10-01
The idea that disturbances occurring early in brain development contribute to the pathogenesis of schizophrenia, often referred to as the neurodevelopmental hypothesis, has become widely accepted. Despite this, the disorder is viewed as being distinct nosologically, and by implication pathophysiologically and clinically, from syndromes such as autism spectrum disorders, attention-deficit/hyperactivity disorder (ADHD) and intellectual disability, which typically present in childhood and are grouped together as "neurodevelopmental disorders". An alternative view is that neurodevelopmental disorders, including schizophrenia, rather than being etiologically discrete entities, are better conceptualized as lying on an etiological and neurodevelopmental continuum, with the major clinical syndromes reflecting the severity, timing and predominant pattern of abnormal brain development and resulting functional abnormalities. It has also been suggested that, within the neurodevelopmental continuum, severe mental illnesses occupy a gradient of decreasing neurodevelopmental impairment as follows: intellectual disability, autism spectrum disorders, ADHD, schizophrenia and bipolar disorder. Recent genomic studies have identified large numbers of specific risk DNA changes and offer a direct and robust test of the predictions of the neurodevelopmental continuum model and gradient hypothesis. These findings are reviewed in detail. They not only support the view that schizophrenia is a disorder whose origins lie in disturbances of brain development, but also that it shares genetic risk and pathogenic mechanisms with the early onset neurodevelopmental disorders (intellectual disability, autism spectrum disorders and ADHD). They also support the idea that these disorders lie on a gradient of severity, implying that they differ to some extent quantitatively as well as qualitatively. These findings have important implications for nosology, clinical practice and research. © 2017 World
International Nuclear Information System (INIS)
Daeinabi, Khadijeh; Korayem, Moharam Habibnejad
2011-01-01
Atomic force microscopy is applied to measure intermolecular forces and mechanical properties of materials, nano-particle manipulation, surface scanning and imaging with atomic accuracy in the nano-world. During nano-manipulation process, contact forces cause indentation in contact area between nano-particle and tip/substrate which is considerable at nano-scale and affects the nano-manipulation process. Several nano-contact mechanics models such as Hertz, Derjaguin–Muller–Toporov (DMT), Johnson–Kendall–Roberts–Sperling (JKRS), Burnham–Colton–Pollock (BCP), Maugis–Dugdale (MD), Carpick–Ogletree–Salmeron (COS), Pietrement–Troyon (PT), and Sun et al. have been applied as the continuum mechanics approaches at nano-scale. In this article, indentation depth and contact radius between tip and substrate with nano-particle for both spherical and conical tip shape during nano-manipulation process are analyzed and compared by applying theoretical, semiempirical, and empirical nano-contact mechanics models. The effects of adhesion force, as the main contrast point in different nano-contact mechanics models, on nano-manipulation analysis is investigated for different contact radius, and the critical point is discussed for mentioned models.
Continuum of eLearning: 2012 Project Summary Report
2012-10-01
multimedia, and Continuum of eLearning | Purpose and Vision 19 << UNCLASSIFIED>> (limited) situated learning. Future versions of the CoL self-paced...Continuum of eLearning : 2012 Project Summary Report Continuum of eLearning The Next Evolution of Joint Training on JKO October 2012 Joint...Technical Report November 2011 – August 2012 Continuum of eLearning : 2012 Project Summary Report N00140-06-D-0060 David T. Fautua, Sae Schatz, Andrea
Analysis of sponge zones for computational fluid mechanics
International Nuclear Information System (INIS)
Bodony, Daniel J.
2006-01-01
The use of sponge regions, or sponge zones, which add the forcing term -σ(q - q ref ) to the right-hand-side of the governing equations in computational fluid mechanics as an ad hoc boundary treatment is widespread. They are used to absorb and minimize reflections from computational boundaries and as forcing sponges to introduce prescribed disturbances into a calculation. A less common usage is as a means of extending a calculation from a smaller domain into a larger one, such as in computing the far-field sound generated in a localized region. By analogy to the penalty method of finite elements, the method is placed on a solid foundation, complete with estimates of convergence. The analysis generalizes the work of Israeli and Orszag [M. Israeli, S.A. Orszag, Approximation of radiation boundary conditions, J. Comp. Phys. 41 (1981) 115-135] and confirms their findings when applied as a special case to one-dimensional wave propagation in an absorbing sponge. It is found that the rate of convergence of the actual solution to the target solution, with an appropriate norm, is inversely proportional to the sponge strength. A detailed analysis for acoustic wave propagation in one-dimension verifies the convergence rate given by the general theory. The exponential point-wise convergence derived by Israeli and Orszag in the high-frequency limit is recovered and found to hold over all frequencies. A weakly nonlinear analysis of the method when applied to Burgers' equation shows similar convergence properties. Three numerical examples are given to confirm the analysis: the acoustic extension of a two-dimensional time-harmonic point source, the acoustic extension of a three-dimensional initial-value problem of a sound pulse, and the introduction of unstable eigenmodes from linear stability theory into a two-dimensional shear layer
Directory of Open Access Journals (Sweden)
Gustavo Cabrera
2017-11-01
Full Text Available The procedure for the synthesis of 3-cyano-4-hydroxycoumarin is presented along with the results from the analysis of its tautomeric equilibrium using Density Functional Theory (DFT and Polarizable Continuum Model (PCM. The geometry of the compounds was optimized with Gaussian 03 and from the resulting structures, a group of thermodynamic and kinetic parameters were determined. It was found that 3-cyano-4-hydroxycoumarin was the most stable tautomer, as was also shown by spectroscopic techniques. Other parameters, such as: transition state energy, equlibrium constant, kinetic constant, bond orders and bond angles, were also calculated.
Analysis and modeling of coupled thermo-hydro-mechanical phenomena in 3D fractured media
International Nuclear Information System (INIS)
Canamon Valera, I.
2006-11-01
This doctoral research was conducted as part of a joint France-Spain co-tutelage PhD thesis in the framework of a bilateral agreement between two universities, the Institut National Polytechnique de Toulouse (INPT) and the Universidad Politecnica de Madrid (UPM). It concerns a problem of common interest at the national and international levels, namely, the disposal of radioactive waste in deep geological repositories. The present work is devoted, more precisely, to near-field hydrogeological aspects involving mass and heat transport phenomena. The first part of the work is devoted to a specific data interpretation problem (pressures, relative humidities, temperatures) in a multi-barrier experimental system at the scale of a few meters - the 'Mock-Up Test' of the FEBEX project, conducted in Spain. Over 500 time series are characterized in terms of spatial, temporal, and/or frequency/scale-based statistical analysis techniques. The time evolution and coupling of physical phenomena during the experiment are analyzed, and conclusions are drawn concerning the behavior and reliability of the sensors. The second part of the thesis develops in more detail the 3-Dimensional (3D) modeling of coupled Thermo-Hydro-Mechanical phenomena in a fractured porous rock, this time at the scale of a hundred meters, based on the data of the 'In-Situ Test' of the FEBEX project conducted at the Grimsel Test Site in the Swiss Alps. As a first step, a reconstruction of the 3D fracture network is obtained by Monte Carlo simulation, taking into account through optimization the geomorphological data collected around the FEBEX gallery. The heterogeneous distribution of traces observed on the cylindrical wall of the tunnel is fairly well reproduced in the simulated network. In a second step, we develop a method to estimate the equivalent permeability of a many-fractured block by extending the superposition method of Ababou et al. [1994] to the case where the permeability of the rock matrix is not
Analysis of transient fuel failure mechanisms: selected ANL programs
International Nuclear Information System (INIS)
Deitrich, L.W.
1975-01-01
Analytical programs at Argonne National Laboratory related to fuel pin failure mechanisms in fast-reactor accident transients are described. The studies include transient fuel pin mechanics, mechanics of unclad fuel, and mechanical effects concerning potential fuel failure propagation. (U.S.).
Mechanical behavior analysis on electrostatically actuated rectangular microplates
Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Ye, Zhiying; Dai, Lu; Zhao, Yulong
2015-03-01
Microplates are widely used in various MEMS devices based on electrostatic actuation such as MEMS switches, micro pumps and capacitive micromachined ultrasonic transducers (CMUTs). Accurate predictions for the mechanical behavior of the microplate under electrostatic force are important not only for the design and optimization of these electrostatic devices but also for their operation. This paper presents a novel reduced-order model for electrostatically actuated rectangular and square microplates with a new method to treat the nonlinear electrostatic force. The model was developed using Galerkin method which turned the partial-differential equation governing the microplates into an ordinary equation system. Using this model and cosine-like deflection functions, explicit expressions were established for the deflection and pull-in voltage of the rectangular and square microplates. The theoretical results were well validated with the finite element method simulations and experimental data of literature. The expressions for the deflection analysis are able to predict the deflection up to the pull-in position with an error less than 5.0%. The expressions for the pull-in voltage analysis can determine the pull-in voltages with errors less than 1.0%. Additionally, the method to calculate the capacitance variation of the electrostatically actuated microplates was proposed. These theoretical analyses are helpful for design and optimization of electrostatically actuated microdevices.
Mechanical behavior analysis on electrostatically actuated rectangular microplates
International Nuclear Information System (INIS)
Li, Zhikang; Zhao, Libo; Jiang, Zhuangde; Ye, Zhiying; Zhao, Yulong; Dai, Lu
2015-01-01
Microplates are widely used in various MEMS devices based on electrostatic actuation such as MEMS switches, micro pumps and capacitive micromachined ultrasonic transducers (CMUTs). Accurate predictions for the mechanical behavior of the microplate under electrostatic force are important not only for the design and optimization of these electrostatic devices but also for their operation. This paper presents a novel reduced-order model for electrostatically actuated rectangular and square microplates with a new method to treat the nonlinear electrostatic force. The model was developed using Galerkin method which turned the partial-differential equation governing the microplates into an ordinary equation system. Using this model and cosine-like deflection functions, explicit expressions were established for the deflection and pull-in voltage of the rectangular and square microplates. The theoretical results were well validated with the finite element method simulations and experimental data of literature. The expressions for the deflection analysis are able to predict the deflection up to the pull-in position with an error less than 5.0%. The expressions for the pull-in voltage analysis can determine the pull-in voltages with errors less than 1.0%. Additionally, the method to calculate the capacitance variation of the electrostatically actuated microplates was proposed. These theoretical analyses are helpful for design and optimization of electrostatically actuated microdevices. (paper)
Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction.
Ikegami, Keisuke; Yoshimura, Takashi
2016-02-01
Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms. Copyright © 2015 Elsevier Inc. All rights reserved.
Benchmarking Continuum Solvent Models for Keto-Enol Tautomerizations.
McCann, Billy W; McFarland, Stuart; Acevedo, Orlando
2015-08-13
Experimental free energies of tautomerization, ΔGT, were used to benchmark the gas-phase predictions of 17 different quantum mechanical methods and eight basis sets for seven keto-enol tautomer pairs dominated by their enolic form. The G4 method and M06/6-31+G(d,p) yielded the most accurate results, with mean absolute errors (MAE's) of 0.95 and 0.71 kcal/mol, respectively. Using these two theory levels, the solution-phase ΔGT values for 23 unique tautomer pairs composed of aliphatic ketones, β-dicarbonyls, and heterocycles were computed in multiple protic and aprotic solvents. The continuum solvation models, namely, polarizable continuum model (PCM), polarizable conductor calculation model (CPCM), and universal solvation model (SMD), gave relatively similar MAE's of ∼1.6-1.7 kcal/mol for G4 and ∼1.9-2.0 kcal/mol with M06/6-31+G(d,p). Partitioning the tautomer pairs into their respective molecular types, that is, aliphatic ketones, β-dicarbonyls, and heterocycles, and separating out the aqueous versus nonaqueous results finds G4/PCM utilizing the UA0 cavity to be the overall most accurate combination. Free energies of activation, ΔG(‡), for the base-catalyzed keto-enol interconversion of 2-nitrocyclohexanone were also computed using six bases and five solvents. The M06/6-31+G(d,p) reproduced the ΔG(‡) with MAE's of 1.5 and 1.8 kcal/mol using CPCM and SMD, respectively, for all combinations of base and solvent. That specific enolization was previously proposed to proceed via a concerted mechanism in less polar solvents but shift to a stepwise mechanism in more polar solvents. However, the current calculations suggest that the stepwise mechanism operates in all solvents.
Monitoring the HIV continuum of care in key populations across Europe and Central Asia.
Brown, A E; Attawell, K; Hales, D; Rice, B D; Pharris, A; Supervie, V; Van Beckhoven, D; Delpech, V C; An der Heiden, M; Marcus, U; Maly, M; Noori, T
2018-05-08
The aim of the study was to measure and compare national continuum of HIV care estimates in Europe and Central Asia in three key subpopulations: men who have sex with men (MSM), people who inject drugs (PWID) and migrants. Responses to a 2016 European Centre for Disease Prevention and Control (ECDC) survey of 55 European and Central Asian countries were used to describe continuums of HIV care for the subpopulations. Data were analysed using three frameworks: Joint United Nations Programme on HIV/AIDS (UNAIDS) 90-90-90 targets; breakpoint analysis identifying reductions between adjacent continuum stages; quadrant analysis categorizing countries using 90% cut-offs for continuum stages. Overall, 29 of 48 countries reported national data for all HIV continuum stages (numbers living with HIV, diagnosed, receiving treatment and virally suppressed). Six countries reported all stages for MSM, seven for PWID and two for migrants. Thirty-one countries did not report data for MSM (34 for PWID and 41 for migrants). In countries that provided key-population data, overall, 63%, 40% and 41% of MSM, PWID and migrants living with HIV were virally suppressed, respectively (compared with 68%, 65% and 68% nationally, for countries reporting key-population data). Variation was observed between countries, with higher outcomes in subpopulations in Western Europe compared with Eastern Europe and Central Asia. Few reporting countries can produce the continuum of HIV care for the three key populations. Where data are available, differences exist in outcomes between the general and key populations. While MSM broadly mirror national outcomes (in the West), PWID and migrants experience poorer treatment and viral suppression. Countries must develop continuum measures for key populations to identify and address inequalities. © 2018 British HIV Association.
Continuum analogues of contragredient Lie algebras
International Nuclear Information System (INIS)
Saveliev, M.V.; Vershik, A.M.
1989-03-01
We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs
Mesoscopic and continuum modelling of angiogenesis
Spill, F.
2014-03-11
Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.
Mesoscopic and continuum modelling of angiogenesis
Spill, F.; Guerrero, P.; Alarcon, T.; Maini, P. K.; Byrne, H. M.
2014-01-01
Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.
Atom depth analysis delineates mechanisms of protein intermolecular interactions
International Nuclear Information System (INIS)
Alocci, Davide; Bernini, Andrea; Niccolai, Neri
2013-01-01
Highlights: •3D atom depth analysis is proposed to identify different layers in protein structures. •Amino acid contents for each layers have been analyzed for a large protein dataset. •Charged amino acids in the most external layer are present at very different extents. •Atom depth indexes of K residues reflect their side chains flexibility. •Mobile surface charges can be responsible for long range protein–protein recognition. -- Abstract: The systematic analysis of amino acid distribution, performed inside a large set of resolved protein structures, sheds light on possible mechanisms driving non random protein–protein approaches. Protein Data Bank entries have been selected using as filters a series of restrictions ensuring that the shape of protein surface is not modified by interactions with large or small ligands. 3D atom depth has been evaluated for all the atoms of the 2,410 selected structures. The amino acid relative population in each of the structural layers formed by grouping atoms on the basis of their calculated depths, has been evaluated. We have identified seven structural layers, the inner ones reproducing the core of proteins and the outer one incorporating their most protruding moieties. Quantitative analysis of amino acid contents of structural layers identified, as expected, different behaviors. Atoms of Q, R, K, N, D residues are increasingly more abundant in going from core to surfaces. An opposite trend is observed for V, I, L, A, C, and G. An intermediate behavior is exhibited by P, S, T, M, W, H, F and Y. The outer structural layer hosts predominantly E and K residues whose charged moieties, protruding from outer regions of the protein surface, reorient free from steric hindrances, determining specific electrodynamics maps. This feature may represent a protein signature for long distance effects, driving the formation of encounter complexes and the eventual short distance approaches that are required for protein
International Nuclear Information System (INIS)
Cornwall, J.M.
1986-01-01
The nonperturbative aspects of continuum QCD are so complex that one can only hope to approach them through well-motivated models. The author reviews the general properties that any such model must have, based on the understanding of the gluon condensate in the QCD vacuum. A specific, practical model is proposed motivated by a picture of the condensate as made of thick vortex sheets self-consistently constructed from dynamically massive gluons. (author)
New examples of continuum graded Lie algebras
International Nuclear Information System (INIS)
Savel'ev, M.V.
1989-01-01
Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs
ANALYSIS OF THE MECHANICAL STRENGTH OF A DRIVING MECHANISM CALLED SHOCK
Directory of Open Access Journals (Sweden)
Dan ILINCIOIU
2015-05-01
Full Text Available It evaluates the maximum static and dynamic stresses produced in the elements of a quadrilateral mechanism transporting a vehicle in the storage in an urban park. Determine multiplier shock hazard if the mechanism freezes and increases mechanical stress.
Mehdi Behzad; Medhi Tajvidi; Ghanbar Ehrahimi; Robert H. Falk
2004-01-01
In this study, effect of MAPE (maleic anhydride polyethylene) as the compatibilizer on the mechanical properties of wood-flour polyethylene composites has been investigated by using Dynamic Mechanical Analysis (DMA). Composites were made at 25% and 50% by weight fiber contents and 1% and 2% compatibilizer respectively. Controls were also made at the same fiber contents...
Identifying health disparities across the tobacco continuum.
Fagan, Pebbles; Moolchan, Eric T; Lawrence, Deirdre; Fernander, Anita; Ponder, Paris K
2007-10-01
Few frameworks have addressed work-force diversity, inequities and inequalities as part of a comprehensive approach to eliminating tobacco-related health disparities. This paper summarizes the literature and describes the known disparities that exist along the tobacco disease continuum for minority racial and ethnic groups, those living in poverty, those with low education and blue-collar and service workers. The paper also discusses how work-force diversity, inequities in research practice and knowledge allocation and inequalities in access to and quality of health care are fundamental to addressing disparities in health. We examined the available scientific literature and existing public health reports to identify disparities across the tobacco disease continuum by minority racial/ethnic group, poverty status, education level and occupation. Results indicate that differences in risk indicators along the tobacco disease continuum do not explain fully tobacco-related cancer consequences among some minority racial/ethnic groups, particularly among the aggregate groups, blacks/African Americans and American Indians/Alaska Natives. The lack of within-race/ethnic group data and its interactions with socio-economic factors across the life-span contribute to the inconsistency we observe in the disease causal paradigm. More comprehensive models are needed to understand the relationships among disparities, social context, diversity, inequalities and inequities. A systematic approach will also help researchers, practitioners, advocates and policy makers determine critical points for interventions, the types of studies and programs needed and integrative approaches needed to eliminate tobacco-related disparities.
Integral equation hierarchy for continuum percolation
International Nuclear Information System (INIS)
Given, J.A.
1988-01-01
In this thesis a projection operator technique is presented that yields hierarchies of integral equations satisfied exactly by the n-point connectedness functions in a continuum version of the site-bond percolation problem. The n-point connectedness functions carry the same structural information for a percolation problem as then-point correlation functions do for a thermal problem. This method extends the Potts model mapping of Fortuin and Kastelyn to the continuum by exploiting an s-state generalization of the Widom-Rowlinson model, a continuum model for phase separation. The projection operator technique is used to produce an integral equation hierarchy for percolation similar to the Born-Green heirarchy. The Kirkwood superposition approximation (SA) is extended to percolation in order to close this hierarchy and yield a nonlinear integral equation for the two-point connectedness function. The fact that this function, in the SA, is the analytic continuation to negative density of the two-point correlation function in a corresponding thermal problem is discussed. The BGY equation for percolation is solved numerically, both by an expansion in powers of the density, and by an iterative technique due to Kirkwood. It is argued both analytically and numerically, that the BYG equation for percolation, unlike its thermal counterpart, shows non-classical critical behavior, with η = 1 and γ = 0.05 ± .1. Finally a sequence of refinements to the superposition approximations based in the theory of fluids by Rice and Lekner is discussed
Lyman continuum observations of solar flares
Machado, M. E.; Noyes, R. W.
1978-01-01
A study is made of Lyman continuum observations of solar flares, using data obtained by the EUV spectroheliometer on the Apollo Telescope Mount. It is found that there are two main types of flare regions: an overall 'mean' flare coincident with the H-alpha flare region, and transient Lyman continuum kernels which can be identified with the H-alpha and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density .000005 g/sq cm in the quiet sun to .0003 g/sq cm in the mean flare, and to .001 g/sq cm in kernels. From these results the amount of chromospheric material 'evaporated' into the high temperature region is derived, which is found to be approximately 10 to the 15th g, in agreement with observations of X-ray emission measures.
Morphing continuum theory for turbulence: Theory, computation, and visualization
Chen, James
2017-10-01
A high order morphing continuum theory (MCT) is introduced to model highly compressible turbulence. The theory is formulated under the rigorous framework of rational continuum mechanics. A set of linear constitutive equations and balance laws are deduced and presented from the Coleman-Noll procedure and Onsager's reciprocal relations. The governing equations are then arranged in conservation form and solved through the finite volume method with a second-order Lax-Friedrichs scheme for shock preservation. A numerical example of transonic flow over a three-dimensional bump is presented using MCT and the finite volume method. The comparison shows that MCT-based direct numerical simulation (DNS) provides a better prediction than Navier-Stokes (NS)-based DNS with less than 10% of the mesh number when compared with experiments. A MCT-based and frame-indifferent Q criterion is also derived to show the coherent eddy structure of the downstream turbulence in the numerical example. It should be emphasized that unlike the NS-based Q criterion, the MCT-based Q criterion is objective without the limitation of Galilean invariance.
A survey of infrared continuum versus line radiation from metal halide lamps
International Nuclear Information System (INIS)
Kato, M; Herd, M T; Lawler, J E
2008-01-01
Near-infrared radiation (near-IR) losses from the arcs of six commercial metal halide high intensity discharge (MH-HID) lamps with various power levels and with both Na/Sc and rare earth doses were surveyed in this paper. A radiometrically calibrated Fourier transform infrared spectrometer was used. Lamps with rare earth doses have appreciably better color rendering indices (CRIs) than lamps with Na/Sc doses. The ratios of near-IR continuum emission over near-IR line emission from these six lamps were compared. The near-IR continuum dominates near-IR losses from lamps with rare earth doses and the continuum is significant, but not dominant, from lamps with Na/Sc doses. There was no strong dependence of this ratio on input power or color temperature (T c ). Total near-IR losses were estimated using absolutely calibrated, horizontal irradiance measurements. Estimated total near-IR losses were correlated with CRI. The lamps with rare earth doses yield the best CRIs, but have appreciably higher near-IR losses due primarily to continuum processes. One of these rare earth MH-HID lamps was used in a more detailed study of the microscopic physics of the continuum mechanism (Herd M T and Lawler E 2007 J. Phys. D: Appl. Phys. 40 3386)
Reproducing the nonlinear dynamic behavior of a structured beam with a generalized continuum model
Vila, J.; Fernández-Sáez, J.; Zaera, R.
2018-04-01
In this paper we study the coupled axial-transverse nonlinear vibrations of a kind of one dimensional structured solids by application of the so called Inertia Gradient Nonlinear continuum model. To show the accuracy of this axiomatic model, previously proposed by the authors, its predictions are compared with numeric results from a previously defined finite discrete chain of lumped masses and springs, for several number of particles. A continualization of the discrete model equations based on Taylor series allowed us to set equivalent values of the mechanical properties in both discrete and axiomatic continuum models. Contrary to the classical continuum model, the inertia gradient nonlinear continuum model used herein is able to capture scale effects, which arise for modes in which the wavelength is comparable to the characteristic distance of the structured solid. The main conclusion of the work is that the proposed generalized continuum model captures the scale effects in both linear and nonlinear regimes, reproducing the behavior of the 1D nonlinear discrete model adequately.
Analysis of Noise Mechanisms in Cell-Size Control.
Modi, Saurabh; Vargas-Garcia, Cesar Augusto; Ghusinga, Khem Raj; Singh, Abhyudai
2017-06-06
At the single-cell level, noise arises from multiple sources, such as inherent stochasticity of biomolecular processes, random partitioning of resources at division, and fluctuations in cellular growth rates. How these diverse noise mechanisms combine to drive variations in cell size within an isoclonal population is not well understood. Here, we investigate the contributions of different noise sources in well-known paradigms of cell-size control, such as adder (division occurs after adding a fixed size from birth), sizer (division occurs after reaching a size threshold), and timer (division occurs after a fixed time from birth). Analysis reveals that variation in cell size is most sensitive to errors in partitioning of volume among daughter cells, and not surprisingly, this process is well regulated among microbes. Moreover, depending on the dominant noise mechanism, different size-control strategies (or a combination of them) provide efficient buffering of size variations. We further explore mixer models of size control, where a timer phase precedes/follows an adder, as has been proposed in Caulobacter crescentus. Although mixing a timer and an adder can sometimes attenuate size variations, it invariably leads to higher-order moments growing unboundedly over time. This results in a power-law distribution for the cell size, with an exponent that depends inversely on the noise in the timer phase. Consistent with theory, we find evidence of power-law statistics in the tail of C. crescentus cell-size distribution, although there is a discrepancy between the observed power-law exponent and that predicted from the noise parameters. The discrepancy, however, is removed after data reveal that the size added by individual newborns in the adder phase itself exhibits power-law statistics. Taken together, this study provides key insights into the role of noise mechanisms in size homeostasis, and suggests an inextricable link between timer-based models of size control and
Some topics in continuum theory of liquid crystals
Energy Technology Data Exchange (ETDEWEB)
Anderson, Claire
2000-07-01
Since advancements by Ericksen and Leslie in the 1960's, interest in the continuum theory for liquid crystals has escalated. In this thesis, we present the well established continuum theory for nematics, and apply it to the simple Tsvetkov experiment. This analysis is further extended by studying a similar geometric setup which allows additional degrees of freedom. Steady state solutions are studied, and stable/unstable solutions discussed. The bulk of this thesis however, is concerned with the smectic continuum theory. The theory presented allows variable layer spacing, and hence goes beyond the scope of that proposed by Leslie, Stewart and Nakagawa in 1991. With this theory, we initially study a sample of SmA liquid crystal in the bookshelf geometry between two parallel plates, and subject to a strongly anchored pretilt at the boundaries. Weakly anchored solutions are also briefly discussed at the end of this chapter. This work is extended by considering the same problem with a SmC sample, and the distinct differences between the SmA and SmC solutions are highlighted. Symmetric chevron solutions of C1 and C2 type are discussed fully, and energy considerations are made to find the physically realistic configurations. Again, the last part of this chapter is dedicated to solutions subject to weak anchoring. Finally, we take a brief look at Freedericksz transitions when a magnetic field is applied across a cell containing a SmA sample in the bookshelf geometry. The Freedericksz thresholds for two possible deformations are obtained by linearising the appropriate equation, and solving the resulting eigenvalue problem. Numerical calculations finally show where the transitions occur, and confirm the accuracy of the threshold values obtained analytically. (author)
Some topics in continuum theory of liquid crystals
International Nuclear Information System (INIS)
Anderson, Claire
2000-01-01
Since advancements by Ericksen and Leslie in the 1960's, interest in the continuum theory for liquid crystals has escalated. In this thesis, we present the well established continuum theory for nematics, and apply it to the simple Tsvetkov experiment. This analysis is further extended by studying a similar geometric setup which allows additional degrees of freedom. Steady state solutions are studied, and stable/unstable solutions discussed. The bulk of this thesis however, is concerned with the smectic continuum theory. The theory presented allows variable layer spacing, and hence goes beyond the scope of that proposed by Leslie, Stewart and Nakagawa in 1991. With this theory, we initially study a sample of SmA liquid crystal in the bookshelf geometry between two parallel plates, and subject to a strongly anchored pretilt at the boundaries. Weakly anchored solutions are also briefly discussed at the end of this chapter. This work is extended by considering the same problem with a SmC sample, and the distinct differences between the SmA and SmC solutions are highlighted. Symmetric chevron solutions of C1 and C2 type are discussed fully, and energy considerations are made to find the physically realistic configurations. Again, the last part of this chapter is dedicated to solutions subject to weak anchoring. Finally, we take a brief look at Freedericksz transitions when a magnetic field is applied across a cell containing a SmA sample in the bookshelf geometry. The Freedericksz thresholds for two possible deformations are obtained by linearising the appropriate equation, and solving the resulting eigenvalue problem. Numerical calculations finally show where the transitions occur, and confirm the accuracy of the threshold values obtained analytically. (author)
[Continuum based fast Fourier transform processing of infrared spectrum].
Liu, Qing-Jie; Lin, Qi-Zhong; Wang, Qin-Jun; Li, Hui; Li, Shuai
2009-12-01
To recognize ground objects with infrared spectrum, high frequency noise removing is one of the most important phases in spectrum feature analysis and extraction. A new method for infrared spectrum preprocessing was given combining spectrum continuum processing and Fast Fourier Transform (CFFT). Continuum was firstly removed from the noise polluted infrared spectrum to standardize hyper-spectra. Then the spectrum was transformed into frequency domain (FD) with fast Fourier transform (FFT), separating noise information from target information After noise eliminating from useful information with a low-pass filter, the filtered FD spectrum was transformed into time domain (TD) with fast Fourier inverse transform. Finally the continuum was recovered to the spectrum, and the filtered infrared spectrum was achieved. Experiment was performed for chlorite spectrum in USGS polluted with two kinds of simulated white noise to validate the filtering ability of CFFT by contrast with cubic function of five point (CFFP) in time domain and traditional FFT in frequency domain. A circle of CFFP has limited filtering effect, so it should work much with more circles and consume more time to achieve better filtering result. As for conventional FFT, Gibbs phenomenon has great effect on preprocessing result at edge bands because of special character of rock or mineral spectra, while works well at middle bands. Mean squared error of CFFT is 0. 000 012 336 with cut-off frequency of 150, while that of FFT and CFFP is 0. 000 061 074 with cut-off frequency of 150 and 0.000 022 963 with 150 working circles respectively. Besides the filtering result of CFFT can be improved by adjusting the filter cut-off frequency, and has little effect on working time. The CFFT method overcomes the Gibbs problem of FFT in spectrum filtering, and can be more convenient, dependable, and effective than traditional TD filter methods.
Dynamic Analysis of Hammer Mechanism "Twin Hammer" of Impact Wrench
Konečný, M.; Slavík, J.
This paper describes function of the hammer mechanism "Twin hammer" the impact wrench, calculation of dynamic forces exerted on the mechanism and determining the contact pressures between the parts of the mechanism. The modelling of parts was performed in system Pro ENGINEER—standard. The simulation and finding dynamic forces was performed in advanced module Pro ENGINEER—mechanism design and finding contacts pressures in modul Pro ENGENEER—mechanica.
Continuum Mechanical and Computational Aspects of Material Behavior
Energy Technology Data Exchange (ETDEWEB)
Fried, Eliot [McGill Univ., Montreal, QC (Canada)
2015-02-11
Fluid flows are typically classified as laminar or turbulent. While the glassy, regular flow of water from a slightly opened tap is laminar, the sinuous, irregular flow of water from a fully opened tap is turbulent. In a laminar flow, the velocity and other relevant fields are deterministic functions of position and time. Photos taken at different times, no matter how far removed, of steady laminar flow from a tap will be identical. In a turbulent flow, the velocity and other relevant fields manifest complex spatial and temporal fluctuations. A video of steady turbulent flow from a tap will exhibit a constantly changing pattern and many length and time scales. In nature and technology, laminar flows are more the exception than the rule. Fluvial, oceanic, pyroclastic, atmospheric, and interstellar flows are generally turbulent, as are the flows of blood through the left ventricle and air in the lungs. Flows around land, sea, and air vehicles and through pipelines, heating, cooling, and ventilation systems are generally turbulent, as are most flows involved in industrial processing, combustion, chemical reactions, and crystal growth. Over the past year, a significant portion of our research activity has focused on numerical studies of Navier-Stokes-αβ model and extensions thereof. Our results regarding these and other approaches to turbulence modeling are described below.
A Continuum Mechanical Approach to Geodesics in Shape Space
2010-01-01
mean curvature flow equation. Calc. Var., 3:253–271, 1995. [30] Siddharth Manay, Daniel Cremers , Byung-Woo Hong, Anthony J. Yezzi, and Stefano Soatto...P. W. Michor and D. Mumford. Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc., 8:1–48, 2006. 37 [33] Peter W. Michor, David ... Cremers . Shape matching by variational computation of geodesics on a manifold. In Pattern Recognition, LNCS 4174, pages 142–151, 2006. [38] P
Continuum and micro-mechanics treatment of constraint in fracture
International Nuclear Information System (INIS)
Dodds, R.H. Jr.; Shih, C.F.
1993-01-01
This paper explores the fundamental concepts of the J-Q description of crack-tip fields, the fracture toughness locus and micromechanics approaches to predict the variability of macroscopic fracture toughness with constraint under elastic-plastic conditions. While these concepts derived from plane-strain considerations, initial applications in fully 3-D geometries are very promising. Computational results are presented for a surface cracked plate containing a 6:1 semi-elliptical, a=t/4 flaw subjected to remote uniaxial and biaxial tension. Crack-tip stress fields consistent with the J-Q theory are demonstrated to exist at each location along the crack front. The micromechanics model employs the J-Q description of crack-front stresses to interpret fracture toughness values measured on laboratory specimens for fracture assessment of the surface cracked plate. The computational results suggest only a minor effect of the biaxial loading on the crack tip stress fields and, consequently, on the propensity for fracture relative to the uniaxial loading. 45 refs., 19 figs., 3 tabs
Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.
Lin, Hwai-Ting; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan
2004-01-01
estimates of muscular forces during motion, indicating that this prototype modelling and analysis technique will aid in study, analysis and therapy of the mechanics and underlying pathomechanics involved in various musculoskeletal overuse syndromes.
Nonlinear mechanics a supplement to theoretical mechanics of particles and continua
Fetter, Alexander L
2006-01-01
In their prior Dover book, Theoretical Mechanics of Particles and Continua, Alexander L. Fetter and John Dirk Walecka provided a lucid and self-contained account of classical mechanics, together with appropriate mathematical methods. This supplement-an update of that volume-offers a bridge to contemporary mechanics.The original book's focus on continuum mechanics-with chapters on sound waves in fluids, surface waves on fluids, heat conduction, and viscous fluids-forms the basis for this supplement's discussion of nonlinear continuous systems. Topics include linearized stability analysis; a det
Analysis of the partnership network in the clean development mechanism
International Nuclear Information System (INIS)
Kang, Moon Jung; Park, Jihyoun
2013-01-01
The clean development mechanism (CDM) is a global collaborative action proposed at the Kyoto Protocol in response to climate change issues. The CDM contributes to cost-efficient reduction of greenhouse gas emissions in industrialized countries and promotes sustainable development in developing countries. Its fundamental framework is based on partnerships between industrialized and developing countries. This study employs social network analysis to investigate the dynamics of the partnership networks observed in 3816 CDM projects registered in the database of the United Nations Framework Convention on Climate Change over the period of 2005 to 2011. Our three main findings can be summarized as follows. First, the CDM partnership network is a small world; however, its density tends to decrease as the number of participants for a CDM project decreases. Second, the partnership networks’ leading groups tend to shift from partner countries into host countries. Third, a host country that pursues more partnership-based projects takes better control of resources and knowledge-flow in the ego-network formed around that country, and can thus better utilize global resources for its CDM projects. - Highlights: ► We investigate dynamics of the international partnership networks of CDM projects. ► The density of CDM networks tends to decrease by time. ► The partnership networks’ leading groups tend to shift into host countries. ► A host country with more partnerships better utilizes global knowledge resources.
Analysis of barosensitive mechanisms in yeast for Pressure Regulated Fermentation
Nomura, Kazuki; Iwahashi, Hitoshi; Iguchi, Akinori; Shigematsu, Toru
2013-06-01
Introduction: We are intending to develop a novel food processing technology, Pressure Regulated Fermentation (PReF), using pressure sensitive (barosensitive) fermentation microorganisms. Objectives of our study are to clarify barosensitive mechanisms for application to PReF technology. We isolated Saccharomyces cerevisiae barosensitive mutant a924E1 that was derived from the parent KA31a. Methods: Gene expression levels were analyzed by DNA microarray. The altered genes of expression levels were classified according to the gene function. Mutated genes were estimated by mating and producing diploid strains and confirmed by PCR of mitochondrial DNA (mtDNA). Results and Discussion: Gene expression profiles showed that genes of `Energy' function and that of encoding protein localized in ``Mitochondria'' were significantly down regulated in the mutant. These results suggest the respiratory deficiency and relationship between barosensitivity and respiratory deficiency. Since the respiratory functions of diploids showed non Mendelian inheritance, the respiratory deficiency was indicated to be due to mtDNA mutation. PCR analysis showed that the region of COX1 locus was deleted. COX1 gene encodes the subunit 1 of cytochrome c oxidase. For this reason, barosensitivity is strongly correlated with mitochondrial functions.
Adsorption Behavior of Uranium and Mechanism Analysis on Banyan Leaves
International Nuclear Information System (INIS)
Xia Liangshu; Tan Kaixuan; Wang Xiao; Zheng Weina
2010-01-01
The adsorption behavior of uranium on banyan leaves was studied with static experiments. The adsorption process was analyzed in terms of thermodynamics and kinetics, and the adsorption mechanism was analyzed with FTIR and SEM. In the studied condition, the equilibrium adsorption data fit to Freundlich isotherms, with a relation coefficient greater than 0.99. The adsorption of uranium on banyan leaves is an endothermic process. Kinetic analysis shows that the adsorption rate is mainly controlled by surface adsorption. The process of adsorption can be described by an equation of Pseudo 2nd-order model. The calculation data are in good agreement with the experimental data,and the relation coefficient is 0.9998. The thermodynamic data indicate that the synergistic uranium biosorption by banyan leaves is a spontaneous and endothermal adsorption process. The adsorption of uranium on banyan leaves changes the cell's surface form of banyan leaves.In the adsorption process, UO 2 2+ mainly chelates with -OH,C=O,P-O and Si=O etc. on the cell's surface and forms the complexes. The adsorption of uranium should be of surface coordination. (authors)
Caltagirone, Jean-Paul
2014-01-01
This book presents the fundamental principles of mechanics to re-establish the equations of Discrete Mechanics. It introduces physics and thermodynamics associated to the physical modeling. The development and the complementarity of sciences lead to review today the old concepts that were the basis for the development of continuum mechanics. The differential geometry is used to review the conservation laws of mechanics. For instance, this formalism requires a different location of vector and scalar quantities in space. The equations of Discrete Mechanics form a system of equations where the H
Gao, B. C.; Meng, X. K.; Shen, M. X.; Peng, X. D.
2016-05-01
A transient thermal-mechanical coupling model for a contacting mechanical seal during start-up has been developed. It takes into consideration the coupling relationship among thermal-mechanical deformation, film thickness, temperature and heat generation. The finite element method and multi-iteration technology are applied to solve the temperature distribution and thermal-mechanical deformation as well as their evolution behavior. Results show that the seal gap transforms from negative coning to positive coning and the contact area of the mechanical seal gradually decreases during start-up. The location of the maximum temperature and maximum contact pressure move from the outer diameter to inside diameter. The heat generation and the friction torque increase sharply at first and then decrease. Meanwhile, the contact force decreases and the fluid film force and leakage rate increase.
A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm
International Nuclear Information System (INIS)
Renda, F; Cianchetti, M; Giorelli, M; Arienti, A; Laschi, C
2012-01-01
Control and modelling of continuum robots are challenging tasks for robotic researchers. Most works on modelling are limited to piecewise constant curvature. In many cases they neglect to model the actuators or avoid a continuum approach. In particular, in the latter case this leads to a complex model hardly implemented. In this work, a geometrically exact steady-state model of a tendon-driven manipulator inspired by the octopus arm is presented. It takes a continuum approach, fast enough to be implemented in the control law, and includes a model of the actuation system. The model was experimentally validated and the results are reported. In conclusion, the model presented can be used as a tool for mechanical design of continuum tendon-driven manipulators, for planning control strategies or as internal model in an embedded system. (paper)
Analysis of Heat Generation Mechanism in Ultrasound Infrared Thermography
International Nuclear Information System (INIS)
Choi, Man Yong; Lee, Seung Seok; Park, Jeong Hak; Kang, Ki Soo; Kim, Won Tae
2009-01-01
Heat generation mechanism of ultrasound infrared thermography is still not well understood, yet and there are two reliable assumptions of heat generation, friction and thermo-mechanical effect. This paper investigates the principal cause of heat generation at fatigue crack with experimental and numerical approach. Our results show most of heat generation is contributed by friction between crack interface and thermo-mechanical effect is a negligible quantity
Anomalous vibrational properties in the continuum limit of glasses
Shimada, Masanari; Mizuno, Hideyuki; Ikeda, Atsushi
2018-02-01
The low-temperature thermal properties of glasses are anomalous with respect to those of crystals. These thermal anomalies indicate that the low-frequency vibrational properties of glasses differ from those of crystals. Recent studies revealed that, in the simplest model of glasses, i.e., the harmonic potential system, phonon modes coexist with soft localized modes in the low-frequency (continuum) limit. However, the nature of low-frequency vibrational modes of more realistic models is still controversial. In the present work, we study the Lennard-Jones (LJ) system using large-scale molecular-dynamics (MD) simulation and establish that the vibrational property of the LJ glass converges to coexistence of the phonon modes and the soft localized modes in the continuum limit as in the case of the harmonic potential system. Importantly, we find that the low-frequency vibrations are rather sensitive to the numerical scheme of potential truncation, which is usually implemented in the MD simulation, and this is the reason why contradictory arguments have been reported by previous works. We also discuss the physical origin of this sensitiveness by means of a linear stability analysis.
Characterization of porosity in support of mechanical property analysis
International Nuclear Information System (INIS)
Price, R.H.; Martin, R.J. III; Boyd, P.J.
1992-01-01
Previous laboratory investigations of tuff have shown that porosity has a dominant, general effect on mechanical properties. As a result, it is very important for the interpretation of mechanical property data that porosity is measured on each sample tested. Porosity alone, however, does not address all of the issues important to mechanical behavior. Variability in size and distribution of pore space produces significantly different mechanical properties. A nondestructive technique for characterizing the internal structure of the sample prior to testing is being developed and the results are being analyzed. The information obtained from this technique can help in both qualitative and quantitative interpretation of test results
Cancer Patient Navigator Tasks across the Cancer Care Continuum
Braun, Kathryn L.; Kagawa-Singer, Marjorie; Holden, Alan E. C.; Burhansstipanov, Linda; Tran, Jacqueline H.; Seals, Brenda F.; Corbie-Smith, Giselle; Tsark, JoAnn U.; Harjo, Lisa; Foo, Mary Anne; Ramirez, Amelie G.
2011-01-01
Cancer patient navigation (PN) programs have been shown to increase access to and utilization of cancer care for poor and underserved individuals. Despite mounting evidence of its value, cancer patient navigation is not universally understood or provided. We describe five PN programs and the range of tasks their navigators provide across the cancer care continuum (education and outreach, screening, diagnosis and staging, treatment, survivorship, and end-of-life). Tasks are organized by their potential to make cancer services understandable, available, accessible, affordable, appropriate, and accountable. Although navigators perform similar tasks across the five programs, their specific approaches reflect differences in community culture, context, program setting, and funding. Task lists can inform the development of programs, job descriptions, training, and evaluation. They also may be useful in the move to certify navigators and establish mechanisms for reimbursement for navigation services. PMID:22423178
Cignarella, Andrea; Tedesco, Serena; Cappellari, Roberta; Fadini, Gian Paolo
2018-03-30
The monocyte-macrophage cell lineage represents a major player in innate immunity, and is involved in many physiologic and pathologic conditions. Particularly, monocyte-macrophages play a very important role in atherosclerosis and cardiovascular disease. Monocyte heterogeneity is well recognized but the biologic and clinical meaning of the various monocyte subtypes is not entirely understood. Traditionally, monocytes can be divided in classical, intermediate, and nonclassical based on expression of the surface antigens CD14 and CD16. While macrophage diversity is now well recognized to organize as a continuum, monocyte subsets have long been considered as separated entities. However, mounting evidence obtained by tracking the ontology of human monocytes help clarifying that monocytes mature from classical to nonclassical ones, through an intermediate phenotype. This concept is therefore best depicted as a continuum, whereas the subdivision into discrete CD14/CD16 subsets appears an oversimplification. In this review, we discuss the evidence supporting the existence of a monocyte continuum along with the technical challenges of monocyte characterization. In particular, we describe the advantage of considering monocytes along a continuous distribution for the evaluation of cardiovascular risk. We make the point that small transition along the monocyte continuum better reflects cardiovascular risk than a simplified analysis of discrete monocyte subsets. Recognizing the monocyte continuum can be helpful to model other pathophysiologic conditions where these cells are involved. ©2018 Society for Leukocyte Biology.
Analysis of health promotion and prevention financing mechanisms in Thailand.
Watabe, Akihito; Wongwatanakul, Weranuch; Thamarangsi, Thaksaphon; Prakongsai, Phusit; Yuasa, Motoyuki
2017-08-01
In the transition to the post-2015 agenda, many countries are striving towards universal health coverage (UHC). Achieving this, governments need to shift from curative care to promotion and prevention services. This research analyses Thailand's financing system for health promotion and prevention, and assesses policy options for health financing reforms. The study employed a mixed-methods approach and integrates multiple sources of evidence, including scientific and grey literature, expenditure data, and semi-structured interviews with key stakeholders in Thailand. The analysis was underpinned by the use of a well-known health financing framework. In Thailand, three agencies plus local governments share major funding roles for health promotion and prevention services: the Ministry of Public Health (MOPH), the National Health Security Office, the Thai Health Promotion Foundation and Tambon Health Insurance Funds. The total expenditure on prevention and public health in 2010 was 10.8% of the total health expenditure, greater than many middle-income countries that average 7.0-9.2%. MOPH was the largest contributor at 32.9%, the Universal Coverage scheme was the second at 23.1%, followed by the local governments and ThaiHealth at 22.8 and 7.3%, respectively. Thailand's health financing system for promotion and prevention is strategic and innovative due to the three complementary mechanisms in operation. There are several methodological limitations to determine the adequate level of spending. The health financing reforms in Thailand could usefully inform policymakers on ways to increase spending on promotion and prevention. Further comparative policy research is needed to generate evidence to support efforts towards UHC. © The Author 2016. Published by Oxford University Press.
Effect of couplings in the resonance continuum
International Nuclear Information System (INIS)
Royal, J; Larson, A; Orel, A E
2004-01-01
Electronic coupling of two or more resonances via the electron scattering continuum is investigated. The effect of this coupling as a function of the resonance curves and autoionization widths is investigated, and the conditions for the maximum effect are determined. The theory is applied to two physical problems, the product state distribution produced by the dissociative recombination of electrons with HeH + and a one-dimensional model for ion-pair production resulting from electron collisions with H + 3 . It is found that the coupling does not affect the product state distribution in HeH + but produces a significant effect in the H + 3 model
Discrete expansions of continuum functions. General concepts
International Nuclear Information System (INIS)
Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.
1979-01-01
Different discrete expansions of the continuum wave functions are considered: pole expansion (according to the Mittag-Lefler theorem), Weinberg states. The general property of these groups of states is their completeness in the finite region of space. They satisfy the Schroedinger type equations and are matched with free solutions of the Schroedinger equation at the boundary. Convergence of expansions for the S matrix, the Green functions and the continuous-spectrum wave functions is studied. A new group of states possessing the best convergence is introduced
Histidine in Continuum Electrostatics Protonation State Calculations
Couch, Vernon; Stuchebruckhov, Alexei
2014-01-01
A modification to the standard continuum electrostatics approach to calculate protein pKas which allows for the decoupling of histidine tautomers within a two state model is presented. Histidine with four intrinsically coupled protonation states cannot be easily incorporated into a two state formalism because the interaction between the two protonatable sites of the imidazole ring is not purely electrostatic. The presented treatment, based on a single approximation of the interrelation between histidine’s charge states, allows for a natural separation of the two protonatable sites associated with the imidazole ring as well as the inclusion of all protonation states within the calculation. PMID:22072521
Continuum modeling an approach through practical examples
Muntean, Adrian
2015-01-01
This book develops continuum modeling skills and approaches the topic from three sides: (1) derivation of global integral laws together with the associated local differential equations, (2) design of constitutive laws and (3) modeling boundary processes. The focus of this presentation lies on many practical examples covering aspects such as coupled flow, diffusion and reaction in porous media or microwave heating of a pizza, as well as traffic issues in bacterial colonies and energy harvesting from geothermal wells. The target audience comprises primarily graduate students in pure and applied mathematics as well as working practitioners in engineering who are faced by nonstandard rheological topics like those typically arising in the food industry.
Quasi-bound states in continuum
International Nuclear Information System (INIS)
Nakamura, Hiroaki; Hatano, Naomichi; Garmon, Sterling; Petrosky, Tomio
2007-08-01
We report the prediction of quasi-bound states (resonant states with very long lifetimes) that occur in the eigenvalue continuum of propagating states for a wide region of parameter space. These quasi-bound states are generated in a quantum wire with two channels and an adatom, when the energy bands of the two channels overlap. A would-be bound state that lays just below the upper energy band is slightly destabilized by the lower energy band and thereby becomes a resonant state with a very long lifetime (a second QBIC lays above the lower energy band). (author)
comparative analysis of mechanical and manual modes of traffic
African Journals Online (AJOL)
user
with a difference of (0.999x10^6 ) between the mechanical and manual, this value shows a downward effect using manual data .... Various methods can be adopted for verification such as listed ..... Maintenance cost is high using mechanical.
An experimental analysis of fracture mechanisms by acoustic ...
African Journals Online (AJOL)
Afin d'analyser le comportement mécanique globale de l'assemblage, des essais de traction .... named as Groups A, B and C (Tab. 5). Table.1: Mechanical properties of epoxy matrix Vicotex 914. Table.2: Mechanical properties of fibers T300. Young. 's modul us. E. Poisson's ratio. Ν shear modulus. G. Tensile strength yield.
Experimental Analysis of Tensile Mechanical Properties of Sprayed FRP
Directory of Open Access Journals (Sweden)
Zhao Yang
2016-01-01
Full Text Available To study the tensile mechanical properties of sprayed FRP, 13 groups of specimens were tested through uniaxial tensile experiments, being analyzed about stress-strain curve, tensile strength, elastic modulus, breaking elongation, and other mechanical properties. Influencing factors on tensile mechanical properties of sprayed FRP such as fiber type, resin type, fiber volume ratio, fiber length, and composite thickness were studied in the paper too. The results show that both fiber type and resin type have an obvious influence on tensile mechanical properties of sprayed FRP. There will be a specific fiber volume ratio for sprayed FRP to obtain the best tensile mechanical property. The increase of fiber length can lead to better tensile performance, while that of composite thickness results in property degradation. The study can provide reference to popularization and application of sprayed FRP material used in structure reinforcement.
Balankin, Alexander S.; Bory-Reyes, Juan; Shapiro, Michael
2016-02-01
One way to deal with physical problems on nowhere differentiable fractals is the mapping of these problems into the corresponding problems for continuum with a proper fractal metric. On this way different definitions of the fractal metric were suggested to account for the essential fractal features. In this work we develop the metric differential vector calculus in a three-dimensional continuum with a non-Euclidean metric. The metric differential forms and Laplacian are introduced, fundamental identities for metric differential operators are established and integral theorems are proved by employing the metric version of the quaternionic analysis for the Moisil-Teodoresco operator, which has been introduced and partially developed in this paper. The relations between the metric and conventional operators are revealed. It should be emphasized that the metric vector calculus developed in this work provides a comprehensive mathematical formalism for the continuum with any suitable definition of fractal metric. This offers a novel tool to study physics on fractals.
Dissipation consistent fabric tensor definition from DEM to continuum for granular media
Li, X. S.; Dafalias, Y. F.
2015-05-01
In elastoplastic soil models aimed at capturing the impact of fabric anisotropy, a necessary ingredient is a measure of anisotropic fabric in the form of an evolving tensor. While it is possible to formulate such a fabric tensor based on indirect phenomenological observations at the continuum level, it is more effective and insightful to have the tensor defined first based on direct particle level microstructural observations and subsequently deduce a corresponding continuum definition. A practical means able to provide such observations, at least in the context of fabric evolution mechanisms, is the discrete element method (DEM). Some DEM defined fabric tensors such as the one based on the statistics of interparticle contact normals have already gained widespread acceptance as a quantitative measure of fabric anisotropy among researchers of granular material behavior. On the other hand, a fabric tensor in continuum elastoplastic modeling has been treated as a tensor-valued internal variable whose evolution must be properly linked to physical dissipation. Accordingly, the adaptation of a DEM fabric tensor definition to a continuum constitutive modeling theory must be thermodynamically consistent in regards to dissipation mechanisms. The present paper addresses this issue in detail, brings up possible pitfalls if such consistency is violated and proposes remedies and guidelines for such adaptation within a recently developed Anisotropic Critical State Theory (ACST) for granular materials.
Missing links in the root-soil organic matter continuum
Energy Technology Data Exchange (ETDEWEB)
O' Brien, Sarah L. [Argonne National Laboratory (ANL); Iversen, Colleen M [ORNL
2009-01-01
wide range of soil processes, from the exudation of labile C compounds to the development of fungal associations. For example, Zoe Cardon demonstrated that the root-mediated redistribution of deep soil water to relatively dry shallower soil, increased soil CO{sub 2} efflux and nutrient cycling near the surface in an arid ecosystem. Andrew Kulmatiski also discussed the importance of rooting distribution throughout the soil profile for strategies of water uptake by different species in an African savanna. Later, Julie Jastrow demonstrated that living roots shape soil physical structure by promoting the formation of soil aggregates, which facilitated accrual of SOM in restored grasslands. Taken together, the evidence is compelling that living roots, and organic matter derived from root detritus, are important parts of the continuum of organic matter in the soil. Larger soil organisms (i.e. 50 {micro}m to many cm in body size) play an important role in the root-SOM continuum by grazing on roots and microbes, comminuting organic matter and aggregating soil in fecal pellets. However, litterbag and soil incubation studies necessarily exclude invertebrates, and research on faunal activity and trophic dynamics tends to be independent from research on the biogeochemistry of SOM cycling. Tim Filley used plant-derived biomarkers in invertebrate residues to bridge the gap between larger soil organisms, such as earthworms and beetle larvae, and SOM distribution. He found that larger soil organisms help to stabilize root-derived organic matter in soil aggregates. Similar coupling of biogeochemistry with food web studies could prove fruitful for describing mechanisms that underlie critical ecosystem processes. Despite considerable research efforts, the breadth of the microbial role in the root-SOM continuum remains unresolved. Using advanced pyrosequencing techniques, David Nelson demonstrated the importance of archea as nitrifiers in agricultural systems exposed to elevated [CO{sub 2
Coupled Mechanical-Electrochemical-Thermal Analysis of Failure Propagation in Lithium-ion Batteries
Energy Technology Data Exchange (ETDEWEB)
Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad
2016-07-28
This is a presentation given at the 12th World Congress for Computational Mechanics on coupled mechanical-electrochemical-thermal analysis of failure propagation in lithium-ion batteries for electric vehicles.
A Structural Analysis of a Mechanical Heart Valve Prosthesis with Flat Leaflet
Kwon, Young Joo
This paper addresses the basic concept of MDO methodology and the structural analysis that should be performed in the design process of a mechanical heart valve prosthesis with flat leaflet using MDO methodology. In the structural design of the mechanical heart valve (MHV) prosthesis, the fluid mechanics analysis is executed for the blood flow passing through the leaflets of a mechanical heart valve prosthesis. Thereafter, the rigid body dynamics analysis of the leaflet motion is performed to obtain the structural condition for the structural mechanics analysis of the deformed leaflet. Then the structural mechanics analysis of the deformed leaflet follows to confirm the minimum thickness of the leaflet for the structural durability of the mechanical heart valve prosthesis. This paper shows that the minimum leaflet thickness can be evaluated to be 0.6mm among the suggested thicknesses.
Energy analysis of control rod drive mechanism in HTR-10
International Nuclear Information System (INIS)
Bo Hanliang; Wu Yuanqiang
2000-01-01
This paper presents a theoretical model for the control rod drive mechanism for the 10 MW High Temperature Gas Cooled Reactor (HTR-10) and analyzes accidents which may occur in the drive mechanism, for example, chain break, coupling damage and other damage scenarios. The results show that the matching problem between buffer capability and coupling strength is the main reason for coupling damage; increased temperatures would reduce eddy damping and cause a mismatch between buffer capability and coupling strength; and the displacement of the buffer spring will affect the coupling force. The results provide a theoretical basis for the design of the control rod drive mechanism for HTR-10
Comparative performance analysis of a dual-solenoid mechanical oscillator
International Nuclear Information System (INIS)
Lee, V C C; Lee, H V; Harno, H G; Woo, K C
2015-01-01
An innovative dual-solenoid electro-mechanical-vibro-impact system has been constructed and experimentally studied. Comparative studies against a mechanical spring system and a permanent magnet system have been performed, where it is shown that the dual-solenoid system is able to produce oscillations better than the permanent magnet system and more energy efficiently. Comparison with a higher-powered dual solenoid system has also been conducted where a stationary solenoid has shown to be a more dominant parameter. In addition, it is also discovered that a mechanical oscillator in the dual-solenoid system is independent of the angular frequency. (paper)
On the continuum limit of a Z4 lattice gauge theory
International Nuclear Information System (INIS)
Pena, A.; Socolovsky, M.
1983-01-01
The continuum limit of a Z 4 gauge plus matter lattice theory is identified with massless scalar and vector fields with quartic self-interactions phi 4 and (AμAμ) 2 , respectively. The analysis is based on the mean field approximation after gauge fixing. (orig.)
Thermal mechanical analysis of applications with internal heat generation
Govindarajan, Srisharan Garg
control blade, spatial variations in temperature within the control blade occur from the non-uniform heat generation within the BORAL as a result of the non-uniform thermal neutron flux along the longitudinal direction when the control blade is partially withdrawn. There is also variation in the heating profile through the thickness and about the circumferential width of the control blade. Mathematical curve-fits are generated for the non-uniform volumetric heat generation profile caused by the thermal neutron absorption and the functions are applied as heating conditions within a finite element model of the control blade built using the commercial finite element code Abaqus FEA. The finite element model is solved as a fully coupled thermal mechanical problem as in the case of the annular target. The resulting deflection is compared with the channel gap to determine if there is a significant risk of the control blade binding during reactor operation. Hence, this dissertation will consist of two sections. The first section will seek to present the thermal and structural safety analyses of the annular targets for the production of molybdenum-99. Since there hasn't been any detailed, documented, study on these annular targets in the past, the work complied in this dissertation will help to understand the thermal-mechanical behavior and failure margins of the target during in-vessel irradiation. As the work presented in this dissertation provides a general performance analysis envelope for the annular target, the tools developed in the process can also be used as useful references for future analyses that are specific to any reactor. The numerical analysis approach adopted and the analytical models developed, can also be applied to other applications, outside the Mo-99 project domain, where internal heat generation exists such as in electronic components and nuclear reactor control blades. The second section will focus on estimating the thermally induced deflection and hence
Multiple Temperature Model for Near Continuum Flows
International Nuclear Information System (INIS)
XU, Kun; Liu, Hongwei; Jiang, Jianzheng
2007-01-01
In the near continuum flow regime, the flow may have different translational temperatures in different directions. It is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the Navier-Stokes equations, lose accuracy. These inaccuracies may be partially due to the single temperature assumption in the Navier-Stokes equations. Here, based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) equation, a multitranslational temperature model is proposed and used in the flow calculations. In order to fix all three translational temperatures, two constraints are additionally proposed to model the energy exchange in different directions. Based on the multiple temperature assumption, the Navier-Stokes relation between the stress and strain is replaced by the temperature relaxation term, and the Navier-Stokes assumption is recovered only in the limiting case when the flow is close to the equilibrium with the same temperature in different directions. In order to validate the current model, both the Couette and Poiseuille flows are studied in the transition flow regime
Morphological and mechanical analysis of electrospun shape memory polymer fibers
Energy Technology Data Exchange (ETDEWEB)
Budun, Sinem [Institute of Pure and Applied Science, Marmara University, 34722 Istanbul (Turkey); İşgören, Erkan [Textile Technology, Technical Education Faculty, Marmara University, 34722 Istanbul (Turkey); Erdem, Ramazan, E-mail: ramazanerdem@akdeniz.edu.tr [Textile Technologies, Serik G-S. Sural Vocational School of Higher Education, Akdeniz University, 07500 Antalya (Turkey); Yüksek, Metin [Textile Engineering, Technology Faculty, Marmara University, 34722 Istanbul (Turkey)
2016-09-01
Highlights: • Fiber morphology of PU based shape memory fibers varied especially with polymer concentration and applied voltage. • The smallest diameter (381 ± 165 nm) and almost uniform (without bead) fibers were belonged to the sample Y10K30 with a feeding rate of 1 ml/h and an applied voltage of 30 kV at 24.5 cm distance. • All calculated shape fixity results were above 80% and the best value (92 ± 4%) was obtained for Y10K30. • All gained shape recovery results were determined above 100% and the highest measurement (130 ± 4%) was belonged to Y15K39. • The greatest tensile property was obtained for Y10K30 (14.7 ± 3.2 MPa) in machine direction and for Y10K39 (12.9 ± 0.8 MPa) in transverse direction. Y15K39 (411 ± 24%) and Y20K30 (402 ± 34%) possessed the highest elongation results compared with the other electrospun webs. - Abstract: Shape memory block co-polymer Polyurethane (PU) fibers were fabricated by electrospinning technique. Four different solution concentrations (5 wt.%, 10 wt.%, 15 wt.% and 20 wt.%) were prepared by using Tetrahydrofuran (THF)/N,N-dimethylformamide (DMF) (50:50, v/v) as solvents, and three different voltages (30 kV, 35 kV and 38.9 kV) were determined for the electrospinning process. Solution properties were explored in terms of viscosity and electrical conductivity. It was observed that as the polymer concentration increased in the solution, the conductivity declined. Morphological characteristics of the obtained fibers were analyzed through Scanning Electron Microscopy (SEM) measurements. Findings indicated that fiber morphology varied especially with polymer concentration and applied voltage. Obtained fiber diameter ranged from 112 ± 34 nm to 2046 ± 654 nm, respectively. DSC analysis presented that chain orientation of the polymer increased after electrospinning process. Shape fixity and shape recovery calculations were realized. The best shape fixity value (92 ± 4%) was obtained for Y10K30 and the highest shape
Characterization of porosity in support of mechanical property analysis
International Nuclear Information System (INIS)
Price, R.H.; Martin, R.J. III; Boyd, P.J.
1993-01-01
The general applicability of laboratory data for engineering purposes is a prime concern for the design and licensing of a potential repository of high level nuclear waste at Yucca Mountain. In order for the results of experiments to be applicable to the repository scale, the data must be scaled to in situ size and conditions. Previous laboratory investigations of tuff have shown that porosity has a dominant, general effect on mechanical properties. As a result, it is very important for the interpretation of mechanical property data that porosity is measured on each sampled test. Porosity alone, however, does not address all of the issues important to mechanical behavior. Variability in size and distribution of pore space produces significantly different mechanical properties. A nondestructive technique for characterizing the internal structure of the sample prior to testing is being developed and the results are being analyzed. The information obtained from this technique can help in both qualitative and quantitative interpretation of test results
An Analysis of the Dispute Settlement Mechanism under the
African Journals Online (AJOL)
user
This article examines and evaluates the consumer redress mechanism, .... 23 The behaviour or conduct must be prohibited in terms of the Competition Act ...... appropriate orders and provide "sufficient" remedies to avoid the involvement of the.
Comparative analysis of deterministic and probabilistic fracture mechanical assessment tools
Energy Technology Data Exchange (ETDEWEB)
Heckmann, Klaus [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany); Saifi, Qais [VTT Technical Research Centre of Finland, Espoo (Finland)
2016-11-15
Uncertainties in material properties, manufacturing processes, loading conditions and damage mechanisms complicate the quantification of structural reliability. Probabilistic structure mechanical computing codes serve as tools for assessing leak- and break probabilities of nuclear piping components. Probabilistic fracture mechanical tools were compared in different benchmark activities, usually revealing minor, but systematic discrepancies between results of different codes. In this joint paper, probabilistic fracture mechanical codes are compared. Crack initiation, crack growth and the influence of in-service inspections are analyzed. Example cases for stress corrosion cracking and fatigue in LWR conditions are analyzed. The evolution of annual failure probabilities during simulated operation time is investigated, in order to identify the reasons for differences in the results of different codes. The comparison of the tools is used for further improvements of the codes applied by the partners.
Analysis of the Lifecycle of Mechanical Engineering Products
Gubaidulina, Rauza Khamidovna; Gruby, S. V.; Davlatov, G. D.
2016-01-01
Principal phases of the lifecycle of mechanical engineering products are analyzed in the paper. The authors have developed methods and procedures to improve designing, manufacturing, operating and recycling of the machine. It has been revealed that economic lifecycle of the product is a base for appropriate organization of mechanical engineering production. This lifecycle is calculated as a minimal sum total of consumer and producer costs. The machine construction and its manufacturing techno...
Security Analysis of Yeh-Tsai Security Mechanism
Yum, Dae Hyun; Shin, Jong Hoon; Lee, Pil Joong
Yeh and Tsai recently proposed an enhanced mobile commerce security mechanism. They modified the lightweight security mechanism due to Lam, Chung, Gu, and Sun to relieve the burden of mobile clients. However, this article shows that a malicious WAP gateway can successfully obtain the mobile client's PIN by sending a fake public key of a mobile commerce server and exploiting information leakage caused by addition operation. We also present a countermeasure against the proposed attack.
An experimental analysis of fracture mechanisms by acoustic ...
African Journals Online (AJOL)
This work is focused on the study of the evolution of damage mode and failure mechanisms of woven composite bolted assembly carbon fiber/epoxy. In the present paper three configurations are studied [0°,45°,0°,45°], [0°,45°,0°,45°]s and [0°,45°,0°,45,0°]s. In order to analyze a global mechanical behavior of the assembly, ...
STRUCTURAL ANALYSIS, GEOMETRY AND STATICS OF A COACH UNFOLDING MECHANISM
Directory of Open Access Journals (Sweden)
Ovidiu ANTONESCU
2016-05-01
Full Text Available Starting from the constructive scheme of the mechanism, the kinematic scheme is drawn in three distinct positions (folded, middle and unfolded. By means of this scheme the mobility of the mechanism is calculated and the structural-topological formula of it is obtained. In the last section of the paper an algorithm of geometric calculus has been elaborated, starting from a kinematic link articulated to the base, element which is considered the driving component.
Continuum capture in the three-body problem
International Nuclear Information System (INIS)
Sellin, I.A.
1980-01-01
The three-body problem, especially the problem of electron capture to the continuum in heavy particle collisions is reviewed. Major topics covered include: second born-induced asymmetry in electron capture to the continuum; historical context, links to other tests of atomic scattering theory; experiments characterizing the velocity distribution of ECC electrons; other atomic physics tests of high velocity Born expansions; atom capture; capture by positrons; and pion capture to the continuum
Spartan Release Engagement Mechanism (REM) stress and fracture analysis
Marlowe, D. S.; West, E. J.
1984-01-01
The revised stress and fracture analysis of the Spartan REM hardware for current load conditions and mass properties is presented. The stress analysis was performed using a NASTRAN math model of the Spartan REM adapter, base, and payload. Appendix A contains the material properties, loads, and stress analysis of the hardware. The computer output and model description are in Appendix B. Factors of safety used in the stress analysis were 1.4 on tested items and 2.0 on all other items. Fracture analysis of the items considered fracture critical was accomplished using the MSFC Crack Growth Analysis code. Loads and stresses were obtaind from the stress analysis. The fracture analysis notes are located in Appendix A and the computer output in Appendix B. All items analyzed met design and fracture criteria.
Probabilistic Analysis of Failures Mechanisms of Large Dams
Shams Ghahfarokhi, G.
2014-01-01
Risk and reliability analysis is presently being performed in almost all fields of engineering depending upon the specific field and its particular area. Probabilistic risk analysis (PRA), also called quantitative risk analysis (QRA) is a central feature of hydraulic engineering structural design.
Quantum control mechanism analysis through field based Hamiltonian encoding
International Nuclear Information System (INIS)
Mitra, Abhra; Rabitz, Herschel
2006-01-01
Optimal control of quantum dynamics in the laboratory is proving to be increasingly successful. The control fields can be complex, and the mechanisms by which they operate have often remained obscure. Hamiltonian encoding (HE) has been proposed as a method for understanding mechanisms in quantum dynamics. In this context mechanism is defined in terms of the dominant quantum pathways leading to the final state of the controlled system. HE operates by encoding a special modulation into the Hamiltonian and decoding its signature in the dynamics to determine the dominant pathway amplitudes. Earlier work encoded the modulation directly into the Hamiltonian operators. This present work introduces the alternative scheme of field based HE, where the modulation is encoded into the control field and not directly into the Hamiltonian operators. This distinct form of modulation yields a new perspective on mechanism and is computationally faster than the earlier approach. Field based encoding is also an important step towards a laboratory based algorithm for HE as it is the only form of encoding that may be experimentally executed. HE is also extended to cover systems with noise and uncertainty and finally, a hierarchical algorithm is introduced to reveal mechanism in a stepwise fashion of ever increasing detail as desired. This new hierarchical algorithm is an improvement over earlier approaches to HE where the entire mechanism was determined in one stroke. The improvement comes from the use of less complex modulation schemes, which leads to fewer evaluations of Schroedinger's equation. A number of simulations are presented on simple systems to illustrate the new field based encoding technique for mechanism assessment
Mechanics of advanced materials analysis of properties and performance
Matveenko, Valery
2015-01-01
The last decades have seen a large extension of types of materials employed in various applications. In many cases these materials demonstrate mechanical properties and performance that vary significantly from those of their traditional counterparts. Such uniqueness is sought – or even specially manufactured – to meet increased requirements on modern components and structures related to their specific use. As a result, mechanical behaviors of these materials under different loading and environmental conditions are outside the boundaries of traditional mechanics of materials, presupposing development of new characterization techniques, theoretical descriptions and numerical tools. The book presents interesting examples of recent developments in this area. Among the studied materials are bulk metallic glasses, metamaterials, special composites, piezoelectric smart structures, nonwovens, etc.
Transient Dynamic Mechanical Analysis of Resilin-based Elastomeric Hydrogels
Li, Linqing; Kiick, Kristi
2014-04-01
The outstanding high-frequency properties of emerging resilin-like polypeptides (RLPs) have motivated their development for vocal fold tissue regeneration and other applications. Recombinant RLP hydrogels show efficient gelation, tunable mechanical properties, and display excellent extensibility, but little has been reported about their transient mechanical properties. In this manuscript, we describe the transient mechanical behavior of new RLP hydrogels investigated via both sinusoidal oscillatory shear deformation and uniaxial tensile testing. Oscillatory stress relaxation and creep experiments confirm that RLP-based hydrogels display significantly reduced stress relaxation and improved strain recovery compared to PEG-based control hydrogels. Uniaxial tensile testing confirms the negligible hysteresis, reversible elasticity and superior resilience (up to 98%) of hydrated RLP hydrogels, with Young’s modulus values that compare favorably with those previously reported for resilin and that mimic the tensile properties of the vocal fold ligament at low strain (engineering applications, of a range of RLP hydrogels.
A closed-loop analysis of the tubuloglomerular feedback mechanism
DEFF Research Database (Denmark)
Holstein-Rathlou, N H
1991-01-01
The tubuloglomerular feedback (TGF) mechanism is of importance in the regulation of glomerular filtration rate (GFR). A second mechanism of potential importance is the change in proximal pressure caused by a change, for example, in the rate of proximal fluid reabsorption. The quantitative contrib...... and the late proximal flow rate, with changes in the proximal pressure of lesser importance. Furthermore, under closed-loop conditions the operating point for the TGF mechanism is at or close to the point of maximal sensitivity....... nl/min in steps of 5 nl/min. The open-loop gain (OLG) was 3.1 (range 1.5-9.9, n = 13) at the unperturbed tubular flow rate, and decreased as the tubular flow rate was either increased or decreased. The proximal pressure increased by 0.21 +/- 0.03 mmHg per unit increase in late proximal flow rate (nl...
A Trace-Driven Analysis of Wireless Group Communication Mechanisms
Directory of Open Access Journals (Sweden)
Surendar Chandra
2012-08-01
Full Text Available Wireless access is increasingly ubiquitous while mobile devices that use them are resource rich. These trends allow wireless users to collaborate with each other. We investigate various group communication paradigms that underly collaboration applications. We synthesize durations when members collaborate using wireless device availability traces. Wireless users operate from a variety of locations. Hence, we analyzed the behavior of wireless users in universities, corporations, conference venues, and city-wide hotspots. We show that the availability durations are longer in corporations followed by university and then in hotspots. The number of simultaneously available wireless users is small in all the scenarios. The session lengths are becoming smaller while the durations between sessions are becoming larger. We observed user churn in all the scenarios. We show that synchronous mechanisms require less effort to maintain update synchronicity among the group members. However, distributed mechanisms require a large number of replicas in order to propagate updates among the users. For asynchronous mechanisms, we show that pull-based mechanisms naturally randomize the times when updates are propagated and thus achieve better performance than push based mechanisms.We develop an adaptive approach that customizes the update frequency using the last session duration and show that this mechanism exhibits good performance when the required update frequency intervals are large. We also show that for a given number of gossips, it is preferable to propagate updates to all available nodes rather than increasing the frequency while correspondingly reducing the number of nodes to propagate updates.We develop a middleware to illustrate the practicality of our approach.
Characterization of esophageal physiology using mechanical state analysis
Directory of Open Access Journals (Sweden)
Richard Eduard Leibbrandt
2016-02-01
Full Text Available The esophagus functions to transport swallowed fluids and food from the pharynx to the stomach. The esophageal muscles governing bolus transport comprise circular striated muscle of the proximal esophagus and circular smooth muscle of the distal esophagus. Longitudinal smooth muscle contraction provides a mechanical advantage to bolus transit during circular smooth muscle contraction. Esophageal striated muscle is directly controlled by neural circuits originating in the central nervous system, resulting in coordinated contractions. In contrast, the esophageal smooth muscle is controlled by enteric circuits modulated by extrinsic central neural connections resulting in neural relaxation and contraction. The esophageal muscles are modulated by sensory information arising from within the lumen. Contraction or relaxation, which changes the diameter of the lumen, alters the intraluminal pressure and ultimately inhibits or promotes flow of content. This relationship that exists between the changes in diameter and concurrent changes in intraluminal pressure has been used previously to identify the ‘mechanical states’ of the circular muscle; that is when the muscles are passively or actively, relaxing or contracting. Detecting these changes in the mechanical state of the muscle has been difficult and, as the current interpretation of esophageal motility is based largely upon pressure measurement (manometry, subtle changes in the muscle function during peristalsis can be missed. We hypothesized that quantification of mechanical states of the esophageal circular muscles and the pressure-diameter properties that define them, would allow objective characterization of the mechanisms that govern esophageal peristalsis. To achieve this we analyzed barium swallows captured by simultaneous videofluoroscopy and pressure with impedance recording. From these data we demonstrated that intraluminal impedance measurements could be used to determine changes in the
Characterization of Esophageal Physiology Using Mechanical State Analysis.
Leibbrandt, Richard E; Dinning, Phil G; Costa, Marcello; Cock, Charles; Wiklendt, Lukasz; Wang, Guangsong; Tack, Jan; van Beckevoort, Dirk; Rommel, Nathalie; Omari, Taher I
2016-01-01
The esophagus functions to transport swallowed fluids and food from the pharynx to the stomach. The esophageal muscles governing bolus transport comprise circular striated muscle of the proximal esophagus and circular smooth muscle of the distal esophagus. Longitudinal smooth muscle contraction provides a mechanical advantage to bolus transit during circular smooth muscle contraction. Esophageal striated muscle is directly controlled by neural circuits originating in the central nervous system, resulting in coordinated contractions. In contrast, the esophageal smooth muscle is controlled by enteric circuits modulated by extrinsic central neural connections resulting in neural relaxation and contraction. The esophageal muscles are modulated by sensory information arising from within the lumen. Contraction or relaxation, which changes the diameter of the lumen, alters the intraluminal pressure and ultimately inhibits or promotes flow of content. This relationship that exists between the changes in diameter and concurrent changes in intraluminal pressure has been used previously to identify the "mechanical states" of the circular muscle; that is when the muscles are passively or actively, relaxing or contracting. Detecting these changes in the mechanical state of the muscle has been difficult and as the current interpretation of esophageal motility is based largely upon pressure measurement (manometry), subtle changes in the muscle function during peristalsis can be missed. We hypothesized that quantification of mechanical states of the esophageal circular muscles and the pressure-diameter properties that define them, would allow objective characterization of the mechanisms that govern esophageal peristalsis. To achieve this we analyzed barium swallows captured by simultaneous videofluoroscopy and pressure with impedance recording. From these data we demonstrated that intraluminal impedance measurements could be used to determine changes in the internal diameter of
Hartog, J P Den
1961-01-01
First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e
Adaptive spacetime method using Riemann jump conditions for coupled atomistic-continuum dynamics
International Nuclear Information System (INIS)
Kraczek, B.; Miller, S.T.; Haber, R.B.; Johnson, D.D.
2010-01-01
We combine the Spacetime Discontinuous Galerkin (SDG) method for elastodynamics with the mathematically consistent Atomistic Discontinuous Galerkin (ADG) method in a new scheme that concurrently couples continuum and atomistic models of dynamic response in solids. The formulation couples non-overlapping continuum and atomistic models across sharp interfaces by weakly enforcing jump conditions, for both momentum balance and kinematic compatibility, using Riemann values to preserve the characteristic structure of the underlying hyperbolic system. Momentum balances to within machine-precision accuracy over every element, on each atom, and over the coupled system, with small, controllable energy dissipation in the continuum region that ensures numerical stability. When implemented on suitable unstructured spacetime grids, the continuum SDG model offers linear computational complexity in the number of elements and powerful adaptive analysis capabilities that readily bridge between atomic and continuum scales in both space and time. A special trace operator for the atomic velocities and an associated atomistic traction field enter the jump conditions at the coupling interface. The trace operator depends on parameters that specify, at the scale of the atomic spacing, the position of the coupling interface relative to the atoms. In a key finding, we demonstrate that optimizing these parameters suppresses spurious reflections at the coupling interface without the use of non-physical damping or special boundary conditions. We formulate the implicit SDG-ADG coupling scheme in up to three spatial dimensions, and describe an efficient iterative solution scheme that outperforms common explicit schemes, such as the Velocity Verlet integrator. Numerical examples, in 1dxtime and employing both linear and nonlinear potentials, demonstrate the performance of the SDG-ADG method and show how adaptive spacetime meshing reconciles disparate time steps and resolves atomic-scale signals in
A continuum theory of edge dislocations
Berdichevsky, V. L.
2017-09-01
Continuum theory of dislocation aims to describe the behavior of large ensembles of dislocations. This task is far from completion, and, most likely, does not have a "universal solution", which is applicable to any dislocation ensemble. In this regards it is important to have guiding lines set by benchmark cases, where the transition from a discrete set of dislocations to a continuum description is made rigorously. Two such cases have been considered recently: equilibrium of dislocation walls and screw dislocations in beams. In this paper one more case is studied, equilibrium of a large set of 2D edge dislocations placed randomly in a 2D bounded region. The major characteristic of interest is energy of dislocation ensemble, because it determines the structure of continuum equations. The homogenized energy functional is obtained for the periodic dislocation ensembles with a random contents of the periodic cell. Parameters of the periodic structure can change slowly on distances of order of the size of periodic cells. The energy functional is obtained by the variational-asymptotic method. Equilibrium positions are local minima of energy. It is confirmed the earlier assertion that energy density of the system is the sum of elastic energy of averaged elastic strains and microstructure energy, which is elastic energy of the neutralized dislocation system, i.e. the dislocation system placed in a constant dislocation density field making the averaged dislocation density zero. The computation of energy is reduced to solution of a variational cell problem. This problem is solved analytically. The solution is used to investigate stability of simple dislocation arrays, i.e. arrays with one dislocation in the periodic cell. The relations obtained yield two outcomes: First, there is a state parameter of the system, dislocation polarization; averaged stresses affect only dislocation polarization and cannot change other characteristics of the system. Second, the structure of
Seismic analysis of mechanical systems at Pickering NGS
International Nuclear Information System (INIS)
Ghobarah, A.
1995-11-01
The objective of this study is to assess the seismic withstand capacity of selected safety-related mechanical systems associated with the Pressure Relief Duct (PRD) at the Pickering A Nuclear Generating Station. These systems are attached to the PRD and include the Emergency Coolant Injection System piping, the Vacuum Ducts, the Emergency Water Storage System, the PRD expansion joint seals and the PRD to Reactor Building joint seals. The input support motion to the mechanical systems is taken to be the seismic response of the PRD determined in an earlier study using various levels of predetermined ground response spectrum envelope. (author). 12 refs., 13 tabs., 48 figs
Development of Numerical Analysis Techniques Based on Damage Mechanics and Fracture Mechanics
International Nuclear Information System (INIS)
Chang, Yoon Suk; Lee, Dock Jin; Choi, Shin Beom; Kim, Sun Hye; Cho, Doo Ho; Lee, Hyun Boo
2010-04-01
The scatter of measured fracture toughness data and transferability problems among different crack configurations as well as geometry and loading conditions are major obstacles for application of fracture mechanics. To address these issues, recently, concerns on the local approach employing reliable micro-mechanical damage models are being increased again in connection with a progress of computational technology. In the present research, as part of development of fracture mechanical evaluation model for material degradation of reactor pressure boundary, several investigations on fracture behaviors were carried out. Especially, a numerical scheme to determine key parameters consisting both cleavage and ductile fracture estimate models was changed efficiently by incorporating a genetic algorithm. Also, with regard to the well-known master curve, newly reported methods such as bimodal master curve, randomly inhomogeneous master curve and single point estimation were reviewed to deal with homogeneous and inhomogeneous material characteristics. A series of preliminary finite element analyses was conducted to examine the element size effect on micro-mechanical models. Then, a new thickness correction equation was derived from parametric three-dimensional numerical simulations, which was founded on the current test standard, ASTM E1921, but could lead to get more realistic fracture toughness values. As a result, promising modified master curves as well as fracture toughness diagrams to convert data between pre-cracked V-notched and compact tension specimens were generated. Moreover, a user-subroutine in relation to GTN(Gurson-Tvergaard-Needleman) model was made by adopting Hill's 48 yield potential theory. By applying GTN model combined with the subroutine to small punch specimens, the effect of inhomogeneous properties on fracture behaviors of miniature specimens was confirmed. Therefore, it is anticipated that the aforementioned enhanced research results can be utilized
Computational Modeling and Analysis of Mechanically Painful Stimulations
DEFF Research Database (Denmark)
Manafi Khanian, Bahram
Cuff algometry is used for quantitative assessment of deep-tissue sensitivity. The main purpose of this PhD dissertation is to provide a novel insight into the intrinsic and extrinsic factors which are involved in mechanically induced pain during cuff pressure algometry. A computational 3D finite...
Design and analysis of shutdown mechanisms of PFBR
International Nuclear Information System (INIS)
Vijayashree, R.; Rajan Babu, V.; Puthiyavinayagam, P.; Chellapandi, P.; Chetal, S.C.
2009-01-01
Prototype Fast Breeder Reactor (PFBR) is equipped with two independent, fast acting and diverse shutdown systems. The absorber rod of the first system is called Control and Safety Rod (CSR) and that of the second system is called Diverse Safety Rod (DSR). The respective drive mechanisms are called Control and Safety Rod Drive Mechanism (CSRDM) and Diverse Safety Rod Drive Mechanism (DSRDM). The conceptual features of the Absorber Rods (ARs) and Absorber Rod Drive Mechanisms (ARDMs) are given in the figures. The functions and design specifications of the ARDMs are listed. The theoretical results of the performance of the shutdown systems during scram are presented. The design was always backed up with testing and design validation. The individual subassemblies testing and the design have proceeded side by side, the efforts finally culminated into the manufacturing of 1:1 scale prototype ARDMs and ARs. The prototypes were extensively tested in air, water and sodium to qualify them for reactor application. A companion paper in this conference gives the details of design validation by testing. This paper gives a brief account of the design of ARDMs and ARs. (author)
Analysis of soft rock mineral components and roadway failure mechanism
Institute of Scientific and Technical Information of China (English)
陈杰
2001-01-01
The mineral components and microstructure of soft rock sampled from roadway floor inXiagou pit are determined by X-ray diffraction and scanning electron microscope. Ccmbined withthe test of expansion and water softening property of the soft rock, the roadway failure mechanism is analyzed, and the reasonable repair supporting principle of roadway is put forward.
An Analysis of Knowledge Management Mechanisms in Healthcare Portals
Lee, Chei Sian; Goh, Dion Hoe-Lian; Chua, Alton Y. K.
2010-01-01
Healthcare portals are becoming increasingly popular with Internet users since they play an important role in supporting interaction between individuals and healthcare organizations with a Web presence. Additionally, many of these organizations make use of knowledge management mechanisms on their healthcare portals to manage the abundance of…
Bandwidth Analysis of Functional Interconnects Used as Test Access Mechanism
Van den Berg, A.; Ren, P.; Marinissen, E.J.; Gaydadjiev, G.; Goossens, K.
2010-01-01
Test data travels through a System on Chip (SOC) from the chip pins to the Core-Under-Test (CUT) and vice versa via a Test Access Mechanism (TAM). Conventionally, a TAM is implemented using dedicated communication infrastructure. However, also existing functional interconnect, such as a bus or
Bandwidth analysis of functional interconnects used as test access mechanism
Berg, van den Ardy; Ren, P.; Marinissen, Erik Jan; Gaydadjiev, G.N.; Goossens, K.G.W.
2010-01-01
Test data travels through a System on Chip (SOC) from the chip pins to the Core-Under-Test (CUT) and vice versa via a Test Access Mechanism (TAM). Conventionally, a TAM is implemented using dedicated communication infrastructure. However, also existing functional interconnect, such as a bus or
Mechanics, analysis and geometry 200 years after Lagrange
1991-01-01
Providing a logically balanced and authoritative account of the different branches and problems of mathematical physics that Lagrange studied and developed, this volume presents up-to-date developments in differential goemetry, dynamical systems, the calculus of variations, and celestial and analytical mechanics.
Mechanical analysis of a heat-shock induced developmental defect
Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane
2014-03-01
Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.
Analysis of Costs and Returns of Mechanized Fishing Boat ...
African Journals Online (AJOL)
Administrator
Dr. K.S. Bose is Associate Professor, Department of Business Education, Addis. Ababa University ... Studies on comparative fishing ability and economic performance of. 9.15 m (30') ... improved practices and the extent of annual fish captures among the ... mechanized sector consisting of small trawlers, (32 to 42 footer with.
PREFACE: Continuum Models and Discrete Systems Symposia (CMDS-12)
Chakrabarti, Bikas K.
2011-09-01
The 12th International Symposium on Continuum Models and Discrete Systems (CMDS-12) (http://www.saha.ac.in/cmp/cmds.12/) took place at the Saha Institute of Nuclear Physics in Kolkata from 21-25 February 2011. Previous CMDS symposia were held in Kielce (Poland, 1975), Mont Gabriel (Canada, 1977), Freudenstadt (Federal Republic of Germany, 1979), Stockholm (Sweden, 1981), Nottingham (United Kingdom, 1985), Dijon (France, 1989), Paderborn (Germany, 1992), Varna (Bulgaria, 1995), Istanbul (Turkey, 1998), Shoresh (Israel, 2003) and Paris (France, 2007). The broad interdisciplinary character, limited number of participants (not exceeding 100) and informal and friendly atmosphere of these meetings has made them a well-acknowledged place to make highly fruitful contacts and exchange ideas, methods and results. The purpose of CMDS is to bring together scientists with different backgrounds who work on continuum theories of discrete mechanical and thermodynamical systems in the fields of mathematics, theoretical and applied mechanics, physics, material science, and engineering. The spirit of the CMDS meetings is to stimulate extensive and active interdisciplinary research. The International Scientific Committee members of this conference were: David J Bergman (Chairman CMDS 10), Tel Aviv University, Israel; Bikas K Chakrabarti (Chairman CMDS 12), Saha Institute of Nuclear Physics, India; Alex Hansen, Norwegian University of Science and Technology, Norway; Hans Jürgen Herrmann, Institute for Building Materials, ETH, Switzerland; Esin Inan (Chairman CMDS 9), Istanbul Technical University, Turkey; Dominique Jeulin (Chairman CMDS 11), Ecole des Mines de Paris, France; Frank Juelicher, Max-Planck-Institute for the Physics of Complex Systems, Germany; Hikaru Kawamura, University of Osaka, Japan; Graeme Milton, University of Utah, USA; Natalia Movchan, University of Liverpool, UK; and Ping Sheng, The Hong Kong University of Science and Technology, Hong Kong. At CMDS-12 the topics
Comprehensive mechanisms for combustion chemistry: Experiment, modeling, and sensitivity analysis
Energy Technology Data Exchange (ETDEWEB)
Dryer, F.L.; Yetter, R.A. [Princeton Univ., NJ (United States)
1993-12-01
This research program is an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work are conducted in large diameter flow reactors, at pressures from one to twenty atmospheres, temperatures from 550 K to 1200 K, and with observed reaction times from 10{sup {minus}2} to 5 seconds. Gas sampling of stable reactant, intermediate, and product species concentrations provides not only substantial definition of the phenomenology of reaction mechanisms, but a significantly constrained set of kinetic information with negligible diffusive coupling. Analytical techniques used for detecting hydrocarbons and carbon oxides include gas chromatography (GC), and gas infrared (NDIR) and FTIR methods are utilized for continuous on-line sample detection of light absorption measurements of OH have also been performed in an atmospheric pressure flow reactor (APFR), and a variable pressure flow (VPFR) reactor is presently being instrumented to perform optical measurements of radicals and highly reactive molecular intermediates. The numerical aspects of the work utilize zero and one-dimensional pre-mixed, detailed kinetic studies, including path, elemental gradient sensitivity, and feature sensitivity analyses. The program emphasizes the use of hierarchical mechanistic construction to understand and develop detailed kinetic mechanisms. Numerical studies are utilized for guiding experimental parameter selections, for interpreting observations, for extending the predictive range of mechanism constructs, and to study the effects of diffusive transport coupling on reaction behavior in flames. Modeling using well defined and validated mechanisms for the CO/H{sub 2}/oxidant systems.
Constraining Lyman continuum escape using Machine Learning
Giri, Sambit K.; Zackrisson, Erik; Binggeli, Christian; Pelckmans, Kristiaan; Cubo, Rubén; Mellema, Garrelt
2018-05-01
The James Webb Space Telescope (JWST) will observe the rest-frame ultraviolet/optical spectra of galaxies from the epoch of reionization (EoR) in unprecedented detail. While escaping into the intergalactic medium, hydrogen-ionizing (Lyman continuum; LyC) photons from the galaxies will contribute to the bluer end of the UV slope and make nebular emission lines less prominent. We present a method to constrain leakage of the LyC photons using the spectra of high redshift (z >~ 6) galaxies. We simulate JWST/NIRSpec observations of galaxies at z =6-9 by matching the fluxes of galaxies observed in the Frontier Fields observations of galaxy cluster MACS-J0416. Our method predicts the escape fraction fesc with a mean absolute error Δfesc ~ 0.14. The method also predicts the redshifts of the galaxies with an error .
Continuum Reverberation Mapping of AGN Accretion Disks
Energy Technology Data Exchange (ETDEWEB)
Fausnaugh, Michael M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA (United States); Peterson, Bradley M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH (United States); Space Telescope Science Institute, Baltimore, MD (United States); Starkey, David A. [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Horne, Keith, E-mail: faus@mit.edu [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Collaboration: the AGN STORM Collaboration
2017-12-05
We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011), which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3–3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T ~ R{sup −3/4} expected for a standard thin disk. Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminosity AGN.
Variational continuum multiphase poroelasticity theory and applications
Serpieri, Roberto
2017-01-01
This book collects the theoretical derivation of a recently presented general variational macroscopic continuum theory of multiphase poroelasticity (VMTPM), together with its applications to consolidation and stress partitioning problems of interest in several applicative engineering contexts, such as in geomechanics and biomechanics. The theory is derived based on a purely-variational deduction, rooted in the least-Action principle, by considering a minimal set of kinematic descriptors. The treatment herein considered keeps a specific focus on the derivation of most general medium-independent governing equations. It is shown that VMTPM recovers paradigms of consolidated use in multiphase poroelasticity such as Terzaghi's stress partitioning principle and Biot's equations for wave propagation. In particular, the variational treatment permits the derivation of a general medium-independent stress partitioning law, and the proposed variational theory predicts that the external stress, the fluid pressure, and the...
comparison of elastic-plastic FE method and engineering method for RPV fracture mechanics analysis
International Nuclear Information System (INIS)
Sun Yingxue; Zheng Bin; Zhang Fenggang
2009-01-01
This paper described the FE analysis of elastic-plastic fracture mechanics for a crack in RPV belt line using ABAQUS code. It calculated and evaluated the stress intensity factor and J integral of crack under PTS transients. The result is also compared with that by engineering analysis method. It shows that the results using engineering analysis method is a little larger than the results using FE analysis of 3D elastic-plastic fracture mechanics, thus the engineering analysis method is conservative than the elastic-plastic fracture mechanics method. (authors)
A Threshold Continuum for Aeolian Sand Transport
Swann, C.; Ewing, R. C.; Sherman, D. J.
2015-12-01
The threshold of motion for aeolian sand transport marks the initial entrainment of sand particles by the force of the wind. This is typically defined and modeled as a singular wind speed for a given grain size and is based on field and laboratory experimental data. However, the definition of threshold varies significantly between these empirical models, largely because the definition is based on visual-observations of initial grain movement. For example, in his seminal experiments, Bagnold defined threshold of motion when he observed that 100% of the bed was in motion. Others have used 50% and lesser values. Differences in threshold models, in turn, result is large errors in predicting the fluxes associated with sand and dust transport. Here we use a wind tunnel and novel sediment trap to capture the fractions of sand in creep, reptation and saltation at Earth and Mars pressures and show that the threshold of motion for aeolian sand transport is best defined as a continuum in which grains progress through stages defined by the proportion of grains in creep and saltation. We propose the use of scale dependent thresholds modeled by distinct probability distribution functions that differentiate the threshold based on micro to macro scale applications. For example, a geologic timescale application corresponds to a threshold when 100% of the bed in motion whereas a sub-second application corresponds to a threshold when a single particle is set in motion. We provide quantitative measurements (number and mode of particle movement) corresponding to visual observations, percent of bed in motion and degrees of transport intermittency for Earth and Mars. Understanding transport as a continuum provides a basis for revaluating sand transport thresholds on Earth, Mars and Titan.
Advanced dielectric continuum model of preferential solvation
Basilevsky, Mikhail; Odinokov, Alexey; Nikitina, Ekaterina; Grigoriev, Fedor; Petrov, Nikolai; Alfimov, Mikhail
2009-01-01
A continuum model for solvation effects in binary solvent mixtures is formulated in terms of the density functional theory. The presence of two variables, namely, the dimensionless solvent composition y and the dimensionless total solvent density z, is an essential feature of binary systems. Their coupling, hidden in the structure of the local dielectric permittivity function, is postulated at the phenomenological level. Local equilibrium conditions are derived by a variation in the free energy functional expressed in terms of the composition and density variables. They appear as a pair of coupled equations defining y and z as spatial distributions. We consider the simplest spherically symmetric case of the Born-type ion immersed in the benzene/dimethylsulfoxide (DMSO) solvent mixture. The profiles of y(R ) and z(R ) along the radius R, which measures the distance from the ion center, are found in molecular dynamics (MD) simulations. It is shown that for a given solute ion z(R ) does not depend significantly on the composition variable y. A simplified solution is then obtained by inserting z(R ), found in the MD simulation for the pure DMSO, in the single equation which defines y(R ). In this way composition dependences of the main solvation effects are investigated. The local density augmentation appears as a peak of z(R ) at the ion boundary. It is responsible for the fine solvation effects missing when the ordinary solvation theories, in which z =1, are applied. These phenomena, studied for negative ions, reproduce consistently the simulation results. For positive ions the simulation shows that z ≫1 (z =5-6 at the maximum of the z peak), which means that an extremely dense solvation shell is formed. In such a situation the continuum description fails to be valid within a consistent parametrization.
Bacterial Biogeography across the Amazon River-Ocean Continuum
Directory of Open Access Journals (Sweden)
Mary Doherty
2017-05-01
Full Text Available Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and >2.0 μm. River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May and low (December discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in
Non-conformal contact mechanical characteristic analysis on spherical components
Energy Technology Data Exchange (ETDEWEB)
Zhen-zhi, G.; Bin, H.; Zheng-ming, G.; Feng-mei, Y.; Jin, Q [The 2. Artillery Engineering Univ., Xi' an (China)
2017-03-15
Non-conformal spherical-contact mechanical problems is a three-dimensional coordination or similar to the coordination spherical contact. Due to the complexity of the problem of spherical-contact and difficulties of solving higher-order partial differential equations, problems of three-dimensional coordination or similar to the coordination spherical-contact is still no exact analytical method for solving. It is based on three-dimensional taper model is proposed a model based on the contour surface of the spherical contact and concluded of the formula of the contact pressure and constructed of finite element model by contact pressure distribution under the non-conformal spherical. The results shows spherical contact model can reflect non-conformal spherical-contacting mechanical problems more than taper-contacting model, and apply for the actual project.
Seismic analysis of control and safety rod drive mechanism
International Nuclear Information System (INIS)
Meher Prasad, A.; Jaya, K.P.; Chellapandi, P.; Rajan Babu, V.; Selvaraj, T.
2003-01-01
Control rod and its driving mechanism for a Fast Breeder Reactor is to facilitate safe shutdown of the reactor in case of emergency. A theoretical study on the seismic qualification of control and safety rod driving mechanism is carried out. Earthquake excitations under Operational Basis (ORE) and Safe Shutdown condition (SSE) are considered. The time required for the control rod to reach the bottom position in order to shut down the reaction under excited condition is traced out. The maximum displaced positions and extreme stresses in various parts of the system under excitations are evaluated. The system modeled using beam elements. The connections between different parts are modeled through rigid elements. The interaction between various parts are modeled using GAP elements. (author)
Numerical Modeling and Mechanical Analysis of Flexible Risers
Li, J. Y.; Qiu, Z. X.; Ju, J. S.
2015-01-01
ABAQUS is used to create a detailed finite element model for a 10-layer unbonded flexible riser to simulate the riser’s mechanical behavior under three load conditions: tension force and internal and external pressure. It presents a technique to create detailed finite element model and to analyze flexible risers. In FEM model, all layers are modeled separately with contact interfaces; interaction between steel trips in certain layers has been considered as well. FEM model considering contact ...
Three-dimensional structural image analysis and mechanics of snow
Theile, Thiemo
2011-01-01
Summary This work deals with the problem of predicting the mechanical behaviour of dry snow based on the geometries and properties of its constituents. This approach is known as homogenisation. The main constituents of dry snow are ice and air. Their geometry, i.e. the microstructure, varies widely depending on the type of snow. The shape of individual, sintered snow grains varies and may take the form of stellar crystals, rounded and facetted grains or depth hoar crystals. ...
Analysis of Drag Reduction Methods and Mechanisms of Turbulent
Directory of Open Access Journals (Sweden)
Gu Yunqing
2017-01-01
Full Text Available Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected.
Numerical analysis of biosonar beamforming mechanisms and strategies in bats.
Müller, Rolf
2010-09-01
Beamforming is critical to the function of most sonar systems. The conspicuous noseleaf and pinna shapes in bats suggest that beamforming mechanisms based on diffraction of the outgoing and incoming ultrasonic waves play a major role in bat biosonar. Numerical methods can be used to investigate the relationships between baffle geometry, acoustic mechanisms, and resulting beampatterns. Key advantages of numerical approaches are: efficient, high-resolution estimation of beampatterns, spatially dense predictions of near-field amplitudes, and the malleability of the underlying shape representations. A numerical approach that combines near-field predictions based on a finite-element formulation for harmonic solutions to the Helmholtz equation with a free-field projection based on the Kirchhoff integral to obtain estimates of the far-field beampattern is reviewed. This method has been used to predict physical beamforming mechanisms such as frequency-dependent beamforming with half-open resonance cavities in the noseleaf of horseshoe bats and beam narrowing through extension of the pinna aperture with skin folds in false vampire bats. The fine structure of biosonar beampatterns is discussed for the case of the Chinese noctule and methods for assessing the spatial information conveyed by beampatterns are demonstrated for the brown long-eared bat.
Analysis of mechanical behavior and hysteresis heat generating mechanism of PDM motor
International Nuclear Information System (INIS)
Shi, Changshuai; Zhu, Xiaohua; Tang, Liping; Deng, Juan
2017-01-01
Positive displacement motor (PDM), which is prone to high temperature fatigue failure, can be weakened in its application in deep and superdeep well. In order to study the forced state, deformation regularity and thermal hysteresis of PDM motor, the paper established the three-dimensional thermal-mechanical coupled Finite element model (FEM). Based on the theoretical research, experimental study and numerical simulation, the study found that the displacement of stator lining shows a sinusoidal variation under internal pressure, when adapting the general form of sine function to fitting inner contour line deformation function. Then the paper analyzed the hysteresis heat generating mechanism of the motor, learning that hysteresis thermogenous of stator lining occurs due to the viscoelastic of rubber material and cyclic loading of stator lining. A heartburn happens gradually in the center of the thickest part of the stator lining as temperature increases, which means work efficiency and service life of PDM will be decreased when used in deep or superdeep well. In this paper, we established a theory equation for the choice of interference fit and motor line type optimization design, showing hysteresis heat generating analyzing model and method are reasonable enough to significantly improve PDM’s structure and help better use PDM in deep and surdeep well
Analysis of mechanical behavior and hysteresis heat generating mechanism of PDM motor
Energy Technology Data Exchange (ETDEWEB)
Shi, Changshuai; Zhu, Xiaohua; Tang, Liping [Southwest Petroleum University, Chengdu (China); Deng, Juan [Avic Chengdu Engine (Group) Co.,Ltd, Chengdu (China)
2017-03-15
Positive displacement motor (PDM), which is prone to high temperature fatigue failure, can be weakened in its application in deep and superdeep well. In order to study the forced state, deformation regularity and thermal hysteresis of PDM motor, the paper established the three-dimensional thermal-mechanical coupled Finite element model (FEM). Based on the theoretical research, experimental study and numerical simulation, the study found that the displacement of stator lining shows a sinusoidal variation under internal pressure, when adapting the general form of sine function to fitting inner contour line deformation function. Then the paper analyzed the hysteresis heat generating mechanism of the motor, learning that hysteresis thermogenous of stator lining occurs due to the viscoelastic of rubber material and cyclic loading of stator lining. A heartburn happens gradually in the center of the thickest part of the stator lining as temperature increases, which means work efficiency and service life of PDM will be decreased when used in deep or superdeep well. In this paper, we established a theory equation for the choice of interference fit and motor line type optimization design, showing hysteresis heat generating analyzing model and method are reasonable enough to significantly improve PDM’s structure and help better use PDM in deep and surdeep well.
Stonefly (Plecoptera) Feeding Modes: Variation Along a California River Continuum
Richard L. Bottorff; Allen W. Knight
1989-01-01
The distribution of Plecoptera along a California river was used to test several predictions of the River Continuum Concept about how functional feeding groups should change along a stream's length. Stoneflies were collected from stream orders 1-6 (123 km) of the Cosumnes River continuum in the central Sierra Nevada. The 69 stonefly species collected were...
Continuum Thinking and the Contexts of Personal Information Management
Huvila, Isto; Eriksen, Jon; Häusner, Eva-Maria; Jansson, Ina-Maria
2014-01-01
Introduction: Recent personal information management literature has underlined the significance of the contextuality of personal information and its use. The present article discusses the applicability of the records continuum model and its generalisation, continuum thinking, as a theoretical framework for explicating the overlap and evolution of…
Bursts and shocks in a continuum shell model
DEFF Research Database (Denmark)
Andersen, Ken Haste; Bohr, Tomas; Jensen, M.H.
1998-01-01
We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the right...
Points-Based Safe Path Planning of Continuum Robots
Directory of Open Access Journals (Sweden)
Khuram Shahzad
2015-07-01
Full Text Available Continuum robots exhibit great potential in a number of challenging applications where traditional rigid link robots pose certain limitations, e.g., working in unstructured environments. In order to enable the usage of continuum robots in safety-critical applications, such as surgery and nuclear decontamination, it is extremely important to ensure a safe path for the robot's movement. Existing algorithms for continuum robot path planning have certain limitations that need to be addressed. These include the fact that none of the algorithms provide safety assurance parameters and control for path planning. They are computationally expensive, applicable to a specific type of continuum robots, and mostly they do not incorporate design and kinematics constraints. In this paper, we propose a points-based path planning (PoPP algorithm for continuum robots that computes the path by imposing safety constraints and improves upon the limitations of existing approaches. In the algorithm, we exploit the constant curvature-bending property of continuum robots in their path planning process. The algorithm is computationally efficient and provides a good tradeoff between accuracy and efficiency that can be implemented to enable the safety-critical application of continuum robots. This algorithm also provides information regarding path volume and flexibility in movement. Simulation results confirm that the algorithm possesses promising potential for all types of continuum robots (following the constant curvature-bending property. We believe that this effectively balances the desired safety and efficiency requirements.
A Behavioral Continuum: A Look at Personality Disorders.
Harris, George; Kirk, Nancy A.
1985-01-01
Suggests that narcissistic, borderline, and antisocial personality disorders are not discrete diagnostic categories, but that they lie along a continuum and have in common the dimensions of degree of self-centeredness and degree of differentiation. Presents evidence supporting existence of continuum of behavior rather than discrete diagnostic…