#### Sample records for continuum mathematics

1. Continuum mechanics the birthplace of mathematical models

CERN Document Server

Allen, Myron B

2015-01-01

Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer.  This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe

2. A continuum mathematical model of endothelial layer maintenance and senescence

Directory of Open Access Journals (Sweden)

Friedman Avner

2007-08-01

Full Text Available Abstract Background The monolayer of endothelial cells (ECs lining the inner wall of blood vessels deteriorates as a person ages due to a complex interplay of a variety of causes including cell death arising from shear stress of blood flow and cellular oxidative stress, cellular senescence, and decreased rate of replacement of dead ECs by progenitor stem cells. Results A continuum mathematical model is developed to describe the dynamics of large EC populations of the endothelium using a system of differential equations for the number densities of cells of different generations starting from endothelial progenitors to senescent cells, as well as the densities of dead cells and the holes created upon clearing dead cells. Aging of cells is manifested in three ways, namely, losing the ability to divide when the Hayflick limit of 50 generations is reached, decreasing replication rate parameters and increasing death rate parameters as cells divide; due to the dependence of these rate parameters on cell generation, the model predicts a narrow distribution of cell densities peaking at a particular cell generation. As the chronological age of a person advances, the peak of the distribution – corresponding to the age of the endothelium – moves towards senescence correspondingly. However, computer simulations also demonstrate that sustained and enhanced stem cell homing can halt the aging process of the endothelium by maintaining a stationary cell density distribution that peaks well before the Hayflick limit. The healing rates of damaged endothelia for young, middle-aged, and old persons are compared and are found to be particularly sensitive to the stem cell homing parameter. Conclusion The proposed model describes the aging of the endothelium as being driven by cellular senescence, with a rate that does not necessarily correspond to the chronological aging of a person. It is shown that the age of the endothelium depends sensitively on the homing

3. A continuum mathematical model of endothelial layer maintenance and senescence.

Science.gov (United States)

Wang, Ying; Aguda, Baltazar D; Friedman, Avner

2007-08-10

The monolayer of endothelial cells (ECs) lining the inner wall of blood vessels deteriorates as a person ages due to a complex interplay of a variety of causes including cell death arising from shear stress of blood flow and cellular oxidative stress, cellular senescence, and decreased rate of replacement of dead ECs by progenitor stem cells. A continuum mathematical model is developed to describe the dynamics of large EC populations of the endothelium using a system of differential equations for the number densities of cells of different generations starting from endothelial progenitors to senescent cells, as well as the densities of dead cells and the holes created upon clearing dead cells. Aging of cells is manifested in three ways, namely, losing the ability to divide when the Hayflick limit of 50 generations is reached, decreasing replication rate parameters and increasing death rate parameters as cells divide; due to the dependence of these rate parameters on cell generation, the model predicts a narrow distribution of cell densities peaking at a particular cell generation. As the chronological age of a person advances, the peak of the distribution - corresponding to the age of the endothelium - moves towards senescence correspondingly. However, computer simulations also demonstrate that sustained and enhanced stem cell homing can halt the aging process of the endothelium by maintaining a stationary cell density distribution that peaks well before the Hayflick limit. The healing rates of damaged endothelia for young, middle-aged, and old persons are compared and are found to be particularly sensitive to the stem cell homing parameter. The proposed model describes the aging of the endothelium as being driven by cellular senescence, with a rate that does not necessarily correspond to the chronological aging of a person. It is shown that the age of the endothelium depends sensitively on the homing rates of EC progenitor cells.

4. Static and dynamic continuum theory liquid crystals a mathematical introduction

CERN Document Server

Stewart, Iain W

2004-01-01

Providing a rigorous, clear and accessible text for graduate students regardless of scientific background, this text introduces the basic continuum theory for nematic liquid crystals in equilibria, and details its various simple applications.

5. Continuum mathematical modelling of pathological growth of blood vessels

Science.gov (United States)

Stadnik, N. E.; Dats, E. P.

2018-04-01

The present study is devoted to the mathematical modelling of a human blood vessel pathological growth. The vessels are simulated as the thin-walled circular tube. The boundary value problem of the surface growth of an elastic thin-walled cylinder is solved. The analytical solution is obtained in terms of velocities of stress strain state parameters. The condition of thinness allows us to study finite displacements of cylinder surfaces by means of infinitesimal deformations. The stress-strain state characteristics, which depend on the mechanical parameters of the biological processes, are numerically computed and graphically analysed.

6. Mathematical toy model inspired by the problem of the adaptive origins of the sexual orientation continuum

Science.gov (United States)

Skinner, Brian

2016-09-01

Same-sex sexual behaviour is ubiquitous in the animal kingdom, but its adaptive origins remain a prominent puzzle. Here, I suggest the possibility that same-sex sexual behaviour arises as a consequence of the competition between an evolutionary drive for a wide diversity in traits, which improves the adaptability of a population, and a drive for sexual dichotomization of traits, which promotes opposite-sex attraction and increases the rate of reproduction. This trade-off is explored via a simple mathematical toy model'. The model exhibits a number of interesting features and suggests a simple mathematical form for describing the sexual orientation continuum.

7. Mathematics

CERN Document Server

Eringen, A Cemal

2013-01-01

Continuum Physics: Volume 1 - Mathematics is a collection of papers that discusses certain selected mathematical methods used in the study of continuum physics. Papers in this collection deal with developments in mathematics in continuum physics and its applications such as, group theory functional analysis, theory of invariants, and stochastic processes. Part I explains tensor analysis, including the geometry of subspaces and the geometry of Finsler. Part II discusses group theory, which also covers lattices, morphisms, and crystallographic groups. Part III reviews the theory of invariants th

8. A hybrid discrete-continuum mathematical model of pattern prediction in the developing retinal vasculature.

Science.gov (United States)

McDougall, S R; Watson, M G; Devlin, A H; Mitchell, C A; Chaplain, M A J

2012-10-01

Pathological angiogenesis has been extensively explored by the mathematical modelling community over the past few decades, specifically in the contexts of tumour-induced vascularisation and wound healing. However, there have been relatively few attempts to model angiogenesis associated with normal development, despite the availability of animal models with experimentally accessible and highly ordered vascular topologies: for example, growth and development of the vascular plexus layers in the murine retina. The current study aims to address this issue through the development of a hybrid discrete-continuum mathematical model of the developing retinal vasculature in neonatal mice that is closely coupled with an ongoing experimental programme. The model of the functional vasculature is informed by a range of morphological and molecular data obtained over a period of several days, from 6 days prior to birth to approximately 8 days after birth. The spatio-temporal formation of the superficial retinal vascular plexus (RVP) in wild-type mice occurs in a well-defined sequence. Prior to birth, astrocytes migrate from the optic nerve over the surface of the inner retina in response to a chemotactic gradient of PDGF-A, formed at an earlier stage by migrating retinal ganglion cells (RGCs). Astrocytes express a variety of chemotactic and haptotactic proteins, including VEGF and fibronectin (respectively), which subsequently induce endothelial cell sprouting and modulate growth of the RVP. The developing RVP is not an inert structure; however, the vascular bed adapts and remodels in response to a wide variety of metabolic and biomolecular stimuli. The main focus of this investigation is to understand how these interacting cellular, molecular, and metabolic cues regulate RVP growth and formation. In an earlier one-dimensional continuum model of astrocyte and endothelial migration, we showed that the measured frontal velocities of the two cell types could be accurately reproduced

9. The Mathematics of Networks Science: Scale-Free, Power-Law Graphs and Continuum Theoretical Analysis

Science.gov (United States)

2012-01-01

When hoping to initiate or sustain students' interest in mathematics teachers should always consider relevance, relevance to students' lives and in the middle and later years of instruction in high school and university, accessibility. A topic such as the mathematics behind networks science, more specifically scale-free graphs, is up-to-date,…

10. Continuum mechanics

CERN Document Server

Spencer, A J M

2004-01-01

The mechanics of fluids and the mechanics of solids represent the two major areas of physics and applied mathematics that meet in continuum mechanics, a field that forms the foundation of civil and mechanical engineering. This unified approach to the teaching of fluid and solid mechanics focuses on the general mechanical principles that apply to all materials. Students who have familiarized themselves with the basic principles can go on to specialize in any of the different branches of continuum mechanics. This text opens with introductory chapters on matrix algebra, vectors and Cartesian ten

11. Continuum Mechanics

CERN Document Server

Romano, Antonio

2010-01-01

This book offers a broad overview of the potential of continuum mechanics to describe a wide range of macroscopic phenomena in real-world problems. Building on the fundamentals presented in the authors' previous book, Continuum Mechanics using Mathematica(R), this new work explores interesting models of continuum mechanics, with an emphasis on exploring the flexibility of their applications in a wide variety of fields.Specific topics, which have been chosen to show the power of continuum mechanics to characterize the experimental behavior of real phenomena, include: * various aspects of nonlin

12. Fundamentals of continuum mechanics

CERN Document Server

Rudnicki, John W

2014-01-01

A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally.  This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energ

13. Continuum mechanics for engineers

CERN Document Server

Mase, G Thomas; Mase, George E

2009-01-01

Continuum TheoryContinuum MechanicsStarting OverNotationEssential MathematicsScalars, Vectors and Cartesian TensorsTensor Algebra in Symbolic Notation - Summation ConventionIndicial NotationMatrices and DeterminantsTransformations of Cartesian TensorsPrincipal Values and Principal DirectionsTensor Fields, Tensor CalculusIntegral Theorems of Gauss and StokesStress PrinciplesBody and Surface Forces, Mass DensityCauchy Stress PrincipleThe Stress TensorForce and Moment Equilibrium; Stress Tensor SymmetryStress Transformation LawsPrincipal Stresses; Principal Stress DirectionsMaximum and Minimum Stress ValuesMohr's Circles For Stress Plane StressDeviator and Spherical Stress StatesOctahedral Shear StressKinematics of Deformation and MotionParticles, Configurations, Deformations and MotionMaterial and Spatial CoordinatesLangrangian and Eulerian DescriptionsThe Displacement FieldThe Material DerivativeDeformation Gradients, Finite Strain TensorsInfinitesimal Deformation TheoryCompatibility EquationsStretch RatiosRot...

14. Flare continuum

International Nuclear Information System (INIS)

Robinson, R.D.

1985-01-01

This paper reviews the metre-wave continuum radiation which is related to similar solar emissions observed in the decimetre and centimetre spectral regions. This type of emission, known as Flare Contiuum, is related to the radio bursts of types II and IV. After summarising the history of the phenomenon and reviewing the observational work, the author discusses the various possible radiation mechanisms and their relation to the solar corona, the interplanetary medium and related regions. The theoretical topics covered include the role of high-energy particles, the trapping of such particles, gyro-synchrotron radiation, polarization and plasma interactions. (U.K.)

15. Mathematics

CERN Document Server

Stein, Sherman K

2010-01-01

Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi

16. Continuum Physics

CERN Document Server

Hertel, Peter

2012-01-01

This small book on the properties of continuously distributed matter covers a huge field. It sets out the governing principles of continuum physics and illustrates them by carefully chosen examples. These examples comprise structural mechanics and elasticity, fluid media, electricity and optics, thermoelectricity, fluctuation phenomena and more, from Archimedes' principle via Brownian motion to white dwarfs. Metamaterials, pattern formation by reaction-diffusion and surface plasmon polaritons are dealt with as well as classical topics such as Stokes' formula, beam bending and buckling, crystal optics and electro- and magnetooptic effects, dielectric waveguides, Ohm's law, surface acoustic waves, to mention just some.   The set of balance equations for content, flow and production of particles, mass, charge, momentum, energy and entropy is augmented by material, or constitutive equations. They describe entire classes of materials, such as viscid fluids and gases, elastic media, dielectrics or electrical con...

17. Mathematics

International Nuclear Information System (INIS)

Demazure, M.

1988-01-01

The 1988 progress report of the Mathematics center (Polytechnic School, France), is presented. The Center is composed of different research teams: analysis, Riemann geometry, group theory, formal calculus and algorithm geometry, dynamical systems, topology and singularity. For each team, the members, the research topics, the national and international cooperations, are given. The papers concerning the investigations carried out in 1988, are listed [fr

18. Hyperbolic conservation laws in continuum physics

CERN Document Server

Dafermos, Constantine M

2016-01-01

This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conser...

19. Continuum gauge theories

International Nuclear Information System (INIS)

Stora, R.

1976-09-01

The mathematics of gauge fields and some related concepts are discussed: some corrections on the principal fiber bundles emphasize the idea that the present formulation of continuum theories is incomplete. The main ingredients used through the construction of the renormalized perturbation series are then described: the Faddeev Popov argument, and the Faddeev Popov Lagrangian; the Slavnov symmetry and the nature of the Faddeev Popov ghost fields; the Slavnov identity, with an obstruction: the Adler Bardeen anomaly, and its generalization to the local cohomology of the gauge Lie algebra. Some smooth classical configurations of gauge fields which ought to play a prominent role in the evaluation of the functional integral describing the theory are also reviewed

20. Set theory and the continuum hypothesis

CERN Document Server

Cohen, Paul J

2008-01-01

This exploration of a notorious mathematical problem is the work of the man who discovered the solution. The independence of the continuum hypothesis is the focus of this study by Paul J. Cohen. It presents not only an accessible technical explanation of the author's landmark proof but also a fine introduction to mathematical logic. An emeritus professor of mathematics at Stanford University, Dr. Cohen won two of the most prestigious awards in mathematics: in 1964, he was awarded the American Mathematical Society's Bôcher Prize for analysis; and in 1966, he received the Fields Medal for Logic.

1. Discrete expansions of continuum wave functions

International Nuclear Information System (INIS)

Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.

1980-01-01

Different methods of expanding continuum wave functions in terms of discrete basis sets are discussed. The convergence properties of these expansions are investigated, both from a mathematical and a numerical point of view, for the case of potentials of Woods-Saxon and square well type. (orig.)

2. The Virtuality Continuum Revisited

NARCIS (Netherlands)

Nijholt, Antinus; Traum, D.; Zhai, Sh.; Kellogg, W.

2005-01-01

We survey the themes and the aims of a workshop devoted to the state-of-the-art virtuality continuum. In this continuum, ranging from fully virtual to real physical environments, allowing for mixed, augmented and desktop virtual reality, several perspectives can be taken. Originally, the emphasis

3. Mathematical modelling

CERN Document Server

2016-01-01

This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

4. Notes on continuum mechanics

CERN Document Server

Chaves, Eduardo W V

2013-01-01

This publication is aimed at students, teachers, and researchers of Continuum Mechanics and focused extensively on stating and developing Initial Boundary Value equations used to solve physical problems. With respect to notation, the tensorial, indicial and Voigt notations have been used indiscriminately.   The book is divided into twelve chapters with the following topics: Tensors, Continuum Kinematics, Stress, The Objectivity of Tensors, The Fundamental Equations of Continuum Mechanics, An Introduction to Constitutive Equations, Linear Elasticity, Hyperelasticity, Plasticity (small and large deformations), Thermoelasticity (small and large deformations), Damage Mechanics (small and large deformations), and An Introduction to Fluids. Moreover, the text is supplemented with over 280 figures, over 100 solved problems, and 130 references.

5. Computational Continuum Mechanics

CERN Document Server

Shabana, Ahmed A

2011-01-01

This text presents the theory of continuum mechanics using computational methods. Ideal for students and researchers, the second edition features a new chapter on computational geometry and finite element analysis.

6. Introduction to continuum mechanics

CERN Document Server

Lai, W Michael; Rubin, David

1996-01-01

Introduction to Continuum Mechanics is a recently updated and revised text which is perfect for either introductory courses in an undergraduate engineering curriculum or for a beginning graduate course.Continuum Mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation, and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, a

7. Nonlocal continuum field theories

CERN Document Server

2002-01-01

Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

8. On deformation of complex continuum immersed in a plane space

Science.gov (United States)

Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.

2018-05-01

The present paper is devoted to mathematical modelling of complex continua deformations considered as immersed in an external plane space. The complex continuum is defined as a differential manifold supplied with metrics induced by the external space. A systematic derivation of strain tensors by notion of isometric immersion of the complex continuum into a plane space of a higher dimension is proposed. Problem of establishing complete systems of irreducible objective strain and extrastrain tensors for complex continuum immersed in an external plane space is resolved. The solution to the problem is obtained by methods of the field theory and the theory of rational algebraic invariants. Strain tensors of the complex continuum are derived as irreducible algebraic invariants of contravariant vectors of the external space emerging as functional arguments in the complex continuum action density. Present analysis is restricted to rational algebraic invariants. Completeness of the considered systems of rational algebraic invariants is established for micropolar elastic continua. Rational syzygies for non-quadratic invariants are discussed. Objective strain tensors (indifferent to frame rotations in the external plane space) for micropolar continuum are alternatively obtained by properly combining multipliers of polar decompositions of deformation and extra-deformation gradients. The latter is realized only for continua immersed in a plane space of the equal mathematical dimension.

9. Continuum mechanics using Mathematica fundamentals, methods, and applications

CERN Document Server

Romano, Antonio

2014-01-01

This textbook's methodological approach familiarizes readers with the mathematical tools required to correctly define and solve problems in continuum mechanics. Covering essential principles and fundamental applications, this second edition of Continuum Mechanics using Mathematica® provides a solid basis for a deeper study of more challenging and specialized problems related to nonlinear elasticity, polar continua, mixtures, piezoelectricity, ferroelectricity, magneto-fluid mechanics, and state changes (see A. Romano, A. Marasco, Continuum Mechanics: Advanced Topics and Research Trends, Springer (Birkhäuser), 2010, ISBN 978-0-8176-4869-5). Key topics and features: * Concise presentation strikes a balance between fundamentals and applications * Requisite mathematical background carefully collected in two introductory chapters and one appendix * Recent developments highlighted through coverage of more significant applications to areas such as wave propagation, fluid mechanics, porous media, linear elasticity....

10. Non-classical continuum mechanics a dictionary

CERN Document Server

Maugin, Gérard A

2017-01-01

This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, every entry is followed by a cross-reference to other related subject entries in the dictionary.

11. Continuum modeling an approach through practical examples

CERN Document Server

2015-01-01

This book develops continuum modeling skills and approaches the topic from three sides: (1) derivation of global integral laws together with the associated local differential equations, (2) design of constitutive laws and (3) modeling boundary processes. The focus of this presentation lies on many practical examples covering aspects such as coupled flow, diffusion and reaction in porous media or microwave heating of a pizza, as well as traffic issues in bacterial colonies and energy harvesting from geothermal wells. The target audience comprises primarily graduate students in pure and applied mathematics as well as working practitioners in engineering who are faced by nonstandard rheological topics like those typically arising in the food industry.

12. Some aspects of continuum physics used in fuel pin modeling

International Nuclear Information System (INIS)

Bard, F.E.

1975-06-01

The mathematical formulation used in fuel pin modeling is described. Fuel pin modeling is not a simple extension of the experimental and interpretative methods used in classical mechanics. New concepts are needed to describe materials in a reactor environment. Some aspects of continuum physics used to develop these new constitutive equations for fuel pins are presented. (U.S.)

13. Introduction to continuum mechanics

CERN Document Server

Rubin, David; Lai, W Michael

1994-01-01

Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples and problems, many with solutions. Through the addition of more advanced material (solution of classical elasticity problems, constitutive e

14. Mathematical theory of elasticity of quasicrystals and its applications

CERN Document Server

Fan, Tianyou

2011-01-01

This book presents a clear-cut, strict and systematic mathematical overview of the continuum mechanics of novel materials, condensed matter physics and partial differential equations, and explores the mathematical theory of elasticity of quasicrystals.

15. Alfven continuum with toroidicity

International Nuclear Information System (INIS)

Riyopoulos, S.; Mahajan, S.M.

1985-06-01

The symmetry property of the MHD wave propagation operator is utilized to express the toroidal eigenmodes as a superposition of the mutually orthogonal cylindrical modes. Because of the degeneracy among cylindrical modes with the same frequency but resonant surfaces of different helicity the toroidal perturbation produces a zeroth order mixing of the above modes. The toroidal eigenmodes of frequency ω 0 2 have multiple resonant surfaces, with each surface shifted relative to its cylindrical position and carrying a multispectral content. Thus a single helicity toroidal antenna of frequency ω 0 couples strongly to all different helicity resonant surfaces with matching local Alfven frequency. Zeroth order coupling between modes in the continuum and global Alfven modes also results from toroidicity and degeneracy. Our perturbation technique is the MHD counterpart of the quantum mechanical methods and is applicable through the entire range of the MHD spectrum

16. Bound states in continuum: Quantum dots in a quantum well

Energy Technology Data Exchange (ETDEWEB)

Prodanović, Nikola, E-mail: elnpr@leeds.ac.uk [Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Milanović, Vitomir [School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Ikonić, Zoran; Indjin, Dragan; Harrison, Paul [Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom)

2013-11-01

We report on the existence of a bound state in the continuum (BIC) of quantum rods (QR). QRs are novel elongated InGaAs quantum dot nanostructures embedded in the shallower InGaAs quantum well. BIC appears as an excited confined dot state and energetically above the bottom of a well subband continuum. We prove that high height-to-diameter QR aspect ratio and the presence of a quantum well are indispensable conditions for accommodating the BIC. QRs are unique semiconductor nanostructures, exhibiting this mathematical curiosity predicted 83 years ago by Wigner and von Neumann.

17. Continuum limbed robots for locomotion

Science.gov (United States)

Mutlu, Alper

This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

18. Continuum mechanics of anisotropic materials

CERN Document Server

Cowin, Stephen C

2013-01-01

Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

19. Continuum robots and underactuated grasping

Directory of Open Access Journals (Sweden)

N. Giri

2011-02-01

Full Text Available We discuss the capabilities of continuum (continuous backbone robot structures in the performance of under-actuated grasping. Continuum robots offer the potential of robust grasps over a wide variety of object classes, due to their ability to adapt their shape to interact with the environment via non-local continuum contact conditions. Furthermore, this capability can be achieved with simple, low degree of freedom hardware. However, there are practical issues which currently limit the application of continuum robots to grasping. We discuss these issues and illustrate via an experimental continuum grasping case study.

This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

20. An advanced kinetic theory for morphing continuum with inner structures

Science.gov (United States)

Chen, James

2017-12-01

Advanced kinetic theory with the Boltzmann-Curtiss equation provides a promising tool for polyatomic gas flows, especially for fluid flows containing inner structures, such as turbulence, polyatomic gas flows and others. Although a Hamiltonian-based distribution function was proposed for diatomic gas flow, a general distribution function for the generalized Boltzmann-Curtiss equations and polyatomic gas flow is still out of reach. With assistance from Boltzmann's entropy principle, a generalized Boltzmann-Curtiss distribution for polyatomic gas flow is introduced. The corresponding governing equations at equilibrium state are derived and compared with Eringen's morphing (micropolar) continuum theory derived under the framework of rational continuum thermomechanics. Although rational continuum thermomechanics has the advantages of mathematical rigor and simplicity, the presented statistical kinetic theory approach provides a clear physical picture for what the governing equations represent.

1. The continuum of behavior guidance.

Science.gov (United States)

Nelson, Travis

2013-01-01

Behavior guidance is a continuum of techniques, basic and advanced, fundamental to the provision of quality dental care for pediatric patients. This practice must be individualized, pairing the correct method of behavior guidance with each child. To select the appropriate technique, the clinician must have a thorough understanding of each aspect of the continuum and anticipate parental expectations, child temperament, and the technical procedures necessary to complete care. By effectively using techniques within the continuum of behavior guidance, a healing relationship with the family is maintained while addressing dental disease and empowering the child to receive dental treatment throughout their lifetime. Copyright © 2013 Elsevier Inc. All rights reserved.

2. Continuum of Care (COC) Areas

Data.gov (United States)

Department of Housing and Urban Development — The purpose of the Continuum of Care (CoC) Homeless Assistance Programs is to reduce the incidence of homelessness in CoC communities by assisting homeless...

International Nuclear Information System (INIS)

Abril, J.M.; Garcia Leon, M.

1991-01-01

The study of activity vs. depth profiles in sediment cores of some man-made and natural ocurring radionuclides have shown to be a poweful tool for dating purposes. Nevertheless, in most cases, an adecuate interpretation of such profiles requires mathematical models. In this paper, by considering the sediment as a continuum, a general equation for diffusion of radionuclides through it is obtained. Consequentely, some previously published dating models are found to be particular solutions of such general advenction-diffusion problem. Special emphasis is given to the mathematical treatment of compactation effect and time dependent problems. (author)

4. Mathematical modelling of fracture hydrology

International Nuclear Information System (INIS)

Herbert, A.W.; Hodgkinson, D.P.; Lever, D.A.; Robinson, P.C.; Rae, J.

1985-06-01

This report summarises the work performed between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology', under the following headings: 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments and 5) Analysis of field experiments. (author)

5. Stress, deformation, conservation, and rheology: a survey of key concepts in continuum mechanics

Science.gov (United States)

Major, J.J.

2013-01-01

This chapter provides a brief survey of key concepts in continuum mechanics. It focuses on the fundamental physical concepts that underlie derivations of the mathematical formulations of stress, strain, hydraulic head, pore-fluid pressure, and conservation equations. It then shows how stresses are linked to strain and rates of distortion through some special cases of idealized material behaviors. The goal is to equip the reader with a physical understanding of key mathematical formulations that anchor continuum mechanics in order to better understand theoretical studies published in geomorphology.

6. Elementary Continuum Mechanics for Everyone

DEFF Research Database (Denmark)

Byskov, Esben

numerical method, the finite element method, including means of mending inherent problems •An informal, yet precise exposition that emphasizes not just how a topic is treated, but discusses why a particular choice is made The book opens with a derivation of kinematically nonlinear 3-D continuum mechanics...

7. The Co-creation Continuum

DEFF Research Database (Denmark)

Ind, Nicholas; Iglesias, Oriol; Markovic, Stefan

2017-01-01

-creation - from tactical market research tool to strategic collaborative innovation method, and shows that brands can be positioned along a continuum between these two polarities. This article also presents the implications for those that want to seize the potential of co-creation....

8. The geometry of continuum regularization

International Nuclear Information System (INIS)

Halpern, M.B.

1987-03-01

This lecture is primarily an introduction to coordinate-invariant regularization, a recent advance in the continuum regularization program. In this context, the program is seen as fundamentally geometric, with all regularization contained in regularized DeWitt superstructures on field deformations

9. Fundamentals of continuum mechanics – classical approaches and new trends

Science.gov (United States)

Altenbach, H.

2018-04-01

Continuum mechanics is a branch of mechanics that deals with the analysis of the mechanical behavior of materials modeled as a continuous manifold. Continuum mechanics models begin mostly by introducing of three-dimensional Euclidean space. The points within this region are defined as material points with prescribed properties. Each material point is characterized by a position vector which is continuous in time. Thus, the body changes in a way which is realistic, globally invertible at all times and orientation-preserving, so that the body cannot intersect itself and as transformations which produce mirror reflections are not possible in nature. For the mathematical formulation of the model it is also assumed to be twice continuously differentiable, so that differential equations describing the motion may be formulated. Finally, the kinematical relations, the balance equations, the constitutive and evolution equations and the boundary and/or initial conditions should be defined. If the physical fields are non-smooth jump conditions must be taken into account. The basic equations of continuum mechanics are presented following a short introduction. Additionally, some examples of solid deformable continua will be discussed within the presentation. Finally, advanced models of continuum mechanics will be introduced. The paper is dedicated to Alexander Manzhirov’s 60th birthday.

10. IUTAM-Symposium on The Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications

CERN Document Server

1968-01-01

5 The symposium was held in Freudenstadt from 28\\h to 31 \\ ofAugust st nd 1967 and in Stuttgart from 1 to 2 of September 1967. The proposal to hold this symposium originated with the German Society of Applied Mathematics and Mechanics (GAMM) late in 1964 and was examined by a committee of IUTAM especially appointed for this purpose. The basis of this examination was a report in which the present situation in the field and the possible aims of the symposium were surveyed. Briefly, the aims of the symposium were stated to be 1. the unification of the various approaches developed in recent years with the aim of penetrating into the microscopic world of matter by means of continuum theories; 2. the bridging of the gap between microscopic (or atomic) research on mechanics on one hand, and the phenomenological (or continuum mechanical) approach on the other hand; 3. the physical interpretation and the relation to actual material behaviour of the quantities and laws introduced into the new theories, together with ap...

11. Mathematical and Computational Aspects Related to Soil Modeling and Simulation

Science.gov (United States)

2017-09-26

and simulation challenges at the interface of applied math (homogenization, handling of discontinuous behavior, discrete vs. continuum representations...topics: a) Visco-elasto-plastic continuum models of geo-surface materials b) Discrete models of geo-surface materials (rocks/gravel/sand) c) Mixed...continuum- discrete representations. Coarse-graining and fine-graining mathematical formulations d) Multi-physics aspects related to the modeling of

12. Variational principles of continuum mechanics I fundamentals

CERN Document Server

Berdichevskii, V L

2009-01-01

This is a concise and understandable book about variational principles of continuum mechanics. The book is accessible to applied mathematicians, physicists and engineers who have an interest in continuum mechanics.

13. Variational principles of continuum mechanics II applications

CERN Document Server

Berdichevsky, Victor L

2009-01-01

This concise and understandable book about variational principles of continuum mechanics presents the classical models. The book is accessible to applied mathematicians, physicists and engineers who have an interest in continuum mechanics.

14. Continuum methods of physical modeling continuum mechanics, dimensional analysis, turbulence

CERN Document Server

Hutter, Kolumban

2004-01-01

The book unifies classical continuum mechanics and turbulence modeling, i.e. the same fundamental concepts are used to derive model equations for material behaviour and turbulence closure and complements these with methods of dimensional analysis. The intention is to equip the reader with the ability to understand the complex nonlinear modeling in material behaviour and turbulence closure as well as to derive or invent his own models. Examples are mostly taken from environmental physics and geophysics.

15. Continuum Mechanics using Mathematica® Fundamentals, Applications and Scientific Computing

CERN Document Server

2006-01-01

This book's methodological approach familiarizes readers with the mathematical tools required to correctly define and solve problems in continuum mechanics. The book covers essential principles and fundamental applications, and provides a solid basis for a deeper study of more challenging and specialized problems related to elasticity, fluid mechanics, plasticity, materials with memory, piezoelectricity, ferroelectricity, magneto-fluid mechanics, and state changes. Key topics and features: * Concise presentation strikes a balance between fundamentals and applications * Requisite mathematical background carefully collected in two introductory chapters and two appendices * Recent developments highlighted through coverage of more significant applications to areas such as porous media, electromagnetic fields, and phase transitions Continuum Mechanics using Mathematica® is aimed at advanced undergraduates, graduate students, and researchers in applied mathematics, mathematical physics, and engineering. It may ser...

16. Continuum description for jointed media

International Nuclear Information System (INIS)

Thomas, R.K.

1982-04-01

A general three-dimensional continuum description is presented for a material containing regularly spaced and approximately parallel jointing planes within a representative elementary volume. Constitutive relationships are introduced for linear behavior of the base material and nonlinear normal and shear behavior across jointing planes. Furthermore, a fracture permeability tensor is calculated so that deformation induced alterations to the in-situ values can be measured. Examples for several strain-controlled loading paths are presented

17. Frequency chirpings in Alfven continuum

Science.gov (United States)

Wang, Ge; Berk, Herb; Breizman, Boris; Zheng, Linjin

2017-10-01

We have used a self-consistent mapping technique to describe both the nonlinear wave-energetic particle resonant interaction and its spatial mode structure that depends upon the resonant energetic particle pressure. At the threshold for the onset of the energetic particle mode (EPM), strong chirping emerges in the lower continuum close to the TAE gap and then, driven by strong continuum damping, chirps rapidly to lower frequencies in the Alfven continuum. An adiabatic theory was developed that accurately replicated the results from the simulation where the nonlinearity was only due to the EPM resonant particles. The results show that the EPM-trapped particles have their action conserved during the time of rapid chirping. This adiabaticity enabled wave trapped particles to be confined within their separatrix, and produce even larger resonant structures, that can produce a large amplitude mode far from linearly predicted frequencies. In the present work we describe the effect of additional MHD nonlinearity to this calculation. We studied how the zonal flow component and its nonlinear feedback to the fundamental frequency and found that the MHD nonlinearity doesn't significantly alter the frequency chirping response that is predicted by the calculation that neglects the MHD nonlinearity.

18. Mathematics Underground

Science.gov (United States)

Luther, Kenneth H.

2012-01-01

Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…

19. Mathematics Connection

African Journals Online (AJOL)

MATHEMATICS CONNECTION aims at providing a forum topromote the development of Mathematics Education in Ghana. Articles that seekto enhance the teaching and/or learning of mathematics at all levels of theeducational system are welcome.

20. Continuum theory for nanotube piezoelectricity.

Science.gov (United States)

Michalski, P J; Sai, Na; Mele, E J

2005-09-09

We develop and solve a continuum theory for the piezoelectric response of one-dimensional nanotubes and nanowires, and apply the theory to study electromechanical effects in boron-nitride nanotubes. We find that the polarization of a nanotube depends on its aspect ratio, and a dimensionless constant specifying the ratio of the strengths of the elastic and electrostatic interactions. The solutions of the model as these two parameters are varied are discussed. The theory is applied to estimate the electric potential induced along the length of a boron-nitride nanotube in response to a uniaxial stress.

1. Continuum mechanics of electromagnetic solids

CERN Document Server

Maugin, GA

1988-01-01

This volume is a rigorous cross-disciplinary theoretical treatment of electromechanical and magnetomechanical interactions in elastic solids. Using the modern style of continuum thermomechanics (but without excessive formalism) it starts from basic principles of mechanics and electromagnetism, and goes on to unify these two fields in a common framework. It treats linear and nonlinear static and dynamic problems in a variety of elastic solids such as piezoelectrics, electricity conductors, ferromagnets, ferroelectrics, ionic crystals and ceramics. Chapters 1-3 are introductory, describing the e

2. Continuum-regularized quantum gravity

International Nuclear Information System (INIS)

Chan Huesum; Halpern, M.B.

1987-01-01

The recent continuum regularization of d-dimensional Euclidean gravity is generalized to arbitrary power-law measure and studied in some detail as a representative example of coordinate-invariant regularization. The weak-coupling expansion of the theory illustrates a generic geometrization of regularized Schwinger-Dyson rules, generalizing previous rules in flat space and flat superspace. The rules are applied in a non-trivial explicit check of Einstein invariance at one loop: the cosmological counterterm is computed and its contribution is included in a verification that the graviton mass is zero. (orig.)

3. BCS equations in the continuum

International Nuclear Information System (INIS)

Sandulescu, N.; Liotta, R. J.; Wyss, R.

1998-01-01

The properties of nuclei close to the drip line are significantly influenced by the continuum part of the single-particle spectrum. The main role is played by the resonant states which are largely confined in the region of nuclear potential and therefore stronger coupled with the bound states in an excitation process. Resonant states are also important in the nuclei beyond the drip line. In this case the decay properties of the nucleus can be directly related to the widths of the narrow resonances occupied by the unbound nucleons. The aim of this work is to propose an alternative for evaluating the effect of the resonant part of single-particle spectrum on the pairing correlations calculated within the BCS approximation. We estimated the role of resonances in the case of the isotope 170 Sn. The Resonant-BCS (RBCS) equations are solved for the case of a seniority force. The BCS approximation based on a seniority force cannot be applied in the case of a nucleus immersed in a box if all discrete states simulating the continuum are considered. In such a case the pairing correlations will increase with the number of states in the box. In our case one can still apply a seniority force with RBCS because the effect of the continuum appears here through a finite number of physical resonances, well defined by the given mean field. Because these resonances have a spatial distribution concentrated within the region of the nuclear potential, one expects that the localization probability of nucleons, far out from the nuclear surface, to be small. The gap obtained taking correctly the contribution of resonances, according to RBCS equations, is about 1.3 MeV, while pairing gap calculated only with the bound single-particle spectrum has the value Δ = 1.10 MeV. If we introduce also the resonant states, neglecting completely their widths, the gap will increase to the value Δ = 1.880 MeV. Therefore, one cannot estimate properly the pairing correlations by supplementing the spectrum

4. Continuum analysis of biological systems conserved quantities, fluxes and forces

CERN Document Server

Suraishkumar, G K

2014-01-01

This book addresses the analysis, in the continuum regime, of biological systems at various scales, from the cellular level to the industrial one. It presents both fundamental conservation principles (mass, charge, momentum and energy) and relevant fluxes resulting from appropriate driving forces, which are important for the analysis, design and operation of biological systems. It includes the concept of charge conservation, an important principle for biological systems that is not explicitly covered in any other book of this kind. The book is organized in five parts: mass conservation; charge conservation; momentum conservation; energy conservation; and multiple conservations simultaneously applied. All mathematical aspects are presented step by step, allowing any reader with a basic mathematical background (calculus, differential equations, linear algebra, etc.) to follow the text with ease. The book promotes an intuitive understanding of all the relevant principles and in so doing facilitates their applica...

5. Variational principles of continuum mechanics. Vol. 1. Fundamentals

Energy Technology Data Exchange (ETDEWEB)

Berdichevsky, Victor L. [Wayne State Univ., Detroit, MI (United States). Dept. of Mechanical Engineering

2009-07-01

The book reviews the two features of the variational approach: its use as a universal tool to describe physical phenomena and as a source for qualitative and quantitative methods of studying particular problems. Berdichevsky's work differs from other books on the subject in focusing mostly on the physical origin of variational principles as well as establishing their interrelations. For example, the Gibbs principles appear as a consequence of the Einstein formula for thermodynamic fluctuations rather than as the first principles of the theory of thermodynamic equilibrium. Mathematical issues are considered as long as they shed light on the physical outcomes and/or provide a useful technique for the direct study of variational problems. In addition, a thorough account of variational principles discovered in various branches of continuum mechanics is given. In this book, the first volume, the author covers the variational principles for systems with a finite number of degrees of freedom; the variational principles of thermodynamics; the basics of continuum mechanics; the variational principles for classical models of continuum mechanics, such as elastic and plastic bodies, and ideal and viscous fluids; and direct methods of calculus of variations. (orig.)

6. Continuum gamma-ray spectroscopy

International Nuclear Information System (INIS)

Diamond, R.M.

1981-06-01

When angular momentum is added to a nucleus, it is, of course, carried by the individual nucleons, but two limiting types of behavior may be distinguished: (1) a small number of high-j particles align with the rotation axis and (2) the nucleus is deformed and rotates as a whole. At high spin all nuclei seem to show a compromise utilizing both motions. The excited nuclei left as products of (HI,xn) reactions have so many pathways down that none of the γ-ray transitions have enough intensity to be seen individually until the population gathers near the yrast line. This occurs usually between spin 20 to 40 h-bar. All our information on the higher states comes from their continuum spectra. With the new techniques that are developing, including the use of multiplicity filters, total-energy spectrometers, energy correlation studies, crystal balls, and observation of giant dipole resonances in the continuum spectra, there is hope to learn much about the nature of the high-spin states

7. Continuum radiation of argon plasma

International Nuclear Information System (INIS)

D'Yachkov, L.G.

1995-01-01

A simple completely analytical method of the calculation of radiative continuum of plasmas is derived and an analysis of experimental data on continuum radiation of argon plasma is made. The method is based on the semiclassical quantum defect theory. To calculate radial matrix elements of dipole transitions the asymptotic expansion in powers of E c /ω 2/3 , with an accuracy to the linear term, where E, is the arithmetic mean of the initial and final energies of the transition, is used. This expansion has the same form for free-free, free-bound and bound-bound transitions. If the quantum defects are also approximated by a linear function of energy, the integration over the electron energy (the Maxwell-Boltzmann distribution is assumed) can be performed in analytical form. For Rydberg states the sum of photoionization continua can be replaced by an integral. We have calculated the absorption coefficient pf argon plasma. The photoionization cross section is calculated for all the states of 4s, 5s, 6s, 4p, 5p, 3d, 4d, 4s', 5s', 6s', 4p', 5p', 3d' and 4d' configurations taking into account P-coupling and multiplet splitting (56 states). Other excited states are allowed for by the integral formula together with free-free transitions

8. The mathematics behind chimera states

Science.gov (United States)

Omel’chenko, O. E.

2018-05-01

Chimera states are self-organized spatiotemporal patterns of coexisting coherence and incoherence. We give an overview of the main mathematical methods used in studies of chimera states, focusing on chimera states in spatially extended coupled oscillator systems. We discuss the continuum limit approach to these states, Ott-Antonsen manifold reduction, finite size chimera states, control of chimera states and the influence of system design on the type of chimera state that is observed.

9. Mathematical Footprints Discovering Mathematics Everywhere

CERN Document Server

Pappas, Theoni

1999-01-01

MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent

10. Extension versus Bending for Continuum Robots

Directory of Open Access Journals (Sweden)

George Grimes

2008-11-01

Full Text Available In this paper, we analyze the capabilities of a novel class of continuous-backbone ("continuum" robots. These robots are inspired by biological "trunks, and tentacles". However, the capabilities of established continuum robot designs, which feature controlled bending but not extension, fall short of those of their biological counterparts. In this paper, we argue that the addition of controlled extension provides dual and complementary functionality, and correspondingly enhanced performance, in continuum robots. We present an interval-based analysis to show how the inclusion of controllable extension significantly enhances the workspace and capabilities of continuum robots.

11. Passing waves from atomistic to continuum

Science.gov (United States)

Chen, Xiang; Diaz, Adrian; Xiong, Liming; McDowell, David L.; Chen, Youping

2018-02-01

Progress in the development of coupled atomistic-continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic-continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic-continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic-continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic-continuum interfaces. This work is the first step towards developing a concurrent atomistic-continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.

12. Physics of the continuum of borromean nuclei

Energy Technology Data Exchange (ETDEWEB)

Vaagen, J S; Rogde, T [Dept. of Physics, Univ. of Bergen (Norway); Danilin, B V [RRC The Kurchatov Inst., Kurchatov, Moscow (Russian Federation); Ershov, S N [JINR, Dubna, Moscow (Russian Federation); Thompson, I J [Dept. of Physics, Univ. of Surrey, Guildford (United Kingdom); Zhukov, M V [Chalmers Univ. of Technology and Goeteborg Univ., Goeteborg (Sweden); RNBT Collaboration

1998-06-01

The continuum states of two-neutron halo nuclei are calculated in the method of hyperspherical harmonics. Using DWIA theory appropriate for dilute halo matter we have probed the structure of the low-lying {sup 6}He continuum via calculations of charge-exchange and inelastic scattering. (orig.)

13. Giant resonances in the deformed continuum

International Nuclear Information System (INIS)

Nakatsukasa, T.; Yabana, K.

2004-01-01

Giant resonances in the continuum for deformed nuclei are studied with the time-dependent Hartree-Fock (TDHF) theory in real time and real space. The continuum effect is effectively taken into account by introducing a complex Absorbing Boundary Condition (ABC). (orig.)

14. Continuum Level Density in Complex Scaling Method

International Nuclear Information System (INIS)

Suzuki, R.; Myo, T.; Kato, K.

2005-01-01

A new calculational method of continuum level density (CLD) at unbound energies is studied in the complex scaling method (CSM). It is shown that the CLD can be calculated by employing the discretization of continuum states in the CSM without any smoothing technique

15. Philosophy and foundations of mathematics L. E. J. Brouwer

CERN Document Server

Heyting, A

1974-01-01

L.E.J. Brouwer: Collected Works, Volume 1: Philosophy and Foundations of Mathematics focuses on the principles, operations, and approaches promoted by Brouwer in studying the philosophy and foundations of mathematics. The publication first ponders on the construction of mathematics. Topics include arithmetic of integers, negative numbers, measurable continuum, irrational numbers, Cartesian geometry, similarity group, characterization of the linear system of the Cartesian or Euclidean and hyperbolic space, and non-Archimedean uniform groups on the one-dimensional continuum. The book then examin

16. Mathematical bridges

CERN Document Server

Andreescu, Titu; Tetiva, Marian

2017-01-01

Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics. Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bri...

17. An introduction to mathematical modeling a course in mechanics

CERN Document Server

Oden, Tinsley J

2011-01-01

A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equation...

18. Mathematics disorder

Science.gov (United States)

19. Parallel algorithms for continuum dynamics

International Nuclear Information System (INIS)

Hicks, D.L.; Liebrock, L.M.

1987-01-01

Simply porting existing parallel programs to a new parallel processor may not achieve the full speedup possible; to achieve the maximum efficiency may require redesigning the parallel algorithms for the specific architecture. The authors discuss here parallel algorithms that were developed first for the HEP processor and then ported to the CRAY X-MP/4, the ELXSI/10, and the Intel iPSC/32. Focus is mainly on the most recent parallel processing results produced, i.e., those on the Intel Hypercube. The applications are simulations of continuum dynamics in which the momentum and stress gradients are important. Examples of these are inertial confinement fusion experiments, severe breaks in the coolant system of a reactor, weapons physics, shock-wave physics. Speedup efficiencies on the Intel iPSC Hypercube are very sensitive to the ratio of communication to computation. Great care must be taken in designing algorithms for this machine to avoid global communication. This is much more critical on the iPSC than it was on the three previous parallel processors

20. Continuum mechanics elasticity, plasticity, viscoelasticity

CERN Document Server

Dill, Ellis H

2006-01-01

FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...

1. Lattice continuum and diffusional creep.

Science.gov (United States)

Mesarovic, Sinisa Dj

2016-04-01

Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.

2. Mathematical Chemistry

OpenAIRE

2002-01-01

A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

3. Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric

Science.gov (United States)

Balankin, Alexander S.; Bory-Reyes, Juan; Shapiro, Michael

2016-02-01

One way to deal with physical problems on nowhere differentiable fractals is the mapping of these problems into the corresponding problems for continuum with a proper fractal metric. On this way different definitions of the fractal metric were suggested to account for the essential fractal features. In this work we develop the metric differential vector calculus in a three-dimensional continuum with a non-Euclidean metric. The metric differential forms and Laplacian are introduced, fundamental identities for metric differential operators are established and integral theorems are proved by employing the metric version of the quaternionic analysis for the Moisil-Teodoresco operator, which has been introduced and partially developed in this paper. The relations between the metric and conventional operators are revealed. It should be emphasized that the metric vector calculus developed in this work provides a comprehensive mathematical formalism for the continuum with any suitable definition of fractal metric. This offers a novel tool to study physics on fractals.

4. Rainforest Mathematics

Science.gov (United States)

Kilpatrick, Jeremy

2014-01-01

This paper addresses the contested way that ethnomathematics has sometimes been received by mathematicians and others and what that disagreement might suggest about issues in mathematics education; namely, (a) the relation of ethnomathematics to academic mathematics; (b) recent efforts to reform secondary school mathematics so that it prepares…

5. Continuum spectra in light-ion reactions

Energy Technology Data Exchange (ETDEWEB)

Tamura, T.; Udagawa, T. [Texas Univ., Austin (USA). Dept. of Physics; Ikegami, H.; Muraoka, M [eds.

1980-01-01

Recent developments in the use of multi-step direct reaction method, to fit continuum cross sections of light-ion reactions, are reviewed. There has been a long-standing difficulty in reproducing sufficiently large (p, p') continuum cross section, but it has now been all but removed. It will be discussed in some detail, how this was achieved. Analyses of very recent data on analyzing powers in the continuum of (p, p') and (p, ..cap alpha..) reactions will also be discussed. Finally, analysis of the breakup of h into d and p will be presented.

6. Area Regge calculus and continuum limit

International Nuclear Information System (INIS)

Khatsymovsky, V.M.

2002-01-01

Encountered in the literature generalisations of general relativity to independent area variables are considered, the discrete (generalised Regge calculus) and continuum ones. The generalised Regge calculus can be either with purely area variables or, as we suggest, with area tensor-connection variables. Just for the latter, in particular, we prove that in analogy with corresponding statement in ordinary Regge calculus (by Feinberg, Friedberg, Lee and Ren), passing to the (appropriately defined) continuum limit yields the generalised continuum area tensor-connection general relativity

7. Continuum mechanics of single-substance bodies

CERN Document Server

Eringen, A Cemal

1975-01-01

Continuum Physics, Volume II: Continuum Mechanics of Single-Substance Bodies discusses the continuum mechanics of bodies constituted by a single substance, providing a thorough and precise presentation of exact theories that have evolved during the past years. This book consists of three parts-basic principles, constitutive equations for simple materials, and methods of solution. Part I of this publication is devoted to a discussion of basic principles irrespective of material geometry and constitution that are valid for all kinds of substances, including composites. The geometrical notions, k

8. Introduction to the foundations of mathematics

CERN Document Server

Wilder, Raymond L

2012-01-01

This classic undergraduate text by an eminent educator acquaints students with the fundamental concepts and methods of mathematics. In addition to introducing many noteworthy historical figures from the eighteenth through the mid-twentieth centuries, the book examines the axiomatic method, set theory, infinite sets, the linear continuum and the real number system, and groups. Additional topics include the Frege-Russell thesis, intuitionism, formal systems, mathematical logic, and the cultural setting of mathematics. Students and teachers will find that this elegant treatment covers a vast amou

9. Mathematical modelling

DEFF Research Database (Denmark)

Blomhøj, Morten

2004-01-01

Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...

10. Discrete Mathematics

DEFF Research Database (Denmark)

Sørensen, John Aasted

2011-01-01

The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

11. Mathematical Modeling and Pure Mathematics

Science.gov (United States)

Usiskin, Zalman

2015-01-01

Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…

12. Commitment to Quality throughout the Continuum.

Science.gov (United States)

Gillet, Pamela

1995-01-01

This editorial by the president of the Council for Exceptional Children indicates the organization's support of a continuum of special education placements for students with special needs and calls for improving transition of students from one placement to another. (JDD)

13. Computational Method for Atomistic-Continuum Homogenization

National Research Council Canada - National Science Library

Chung, Peter

2002-01-01

The homogenization method is used as a framework for developing a multiscale system of equations involving atoms at zero temperature at the small scale and continuum mechanics at the very large scale...

14. Continuum and discrete approach in modeling biofilm development and structure: a review.

Science.gov (United States)

Mattei, M R; Frunzo, L; D'Acunto, B; Pechaud, Y; Pirozzi, F; Esposito, G

2018-03-01

The scientific community has recognized that almost 99% of the microbial life on earth is represented by biofilms. Considering the impacts of their sessile lifestyle on both natural and human activities, extensive experimental activity has been carried out to understand how biofilms grow and interact with the environment. Many mathematical models have also been developed to simulate and elucidate the main processes characterizing the biofilm growth. Two main mathematical approaches for biomass representation can be distinguished: continuum and discrete. This review is aimed at exploring the main characteristics of each approach. Continuum models can simulate the biofilm processes in a quantitative and deterministic way. However, they require a multidimensional formulation to take into account the biofilm spatial heterogeneity, which makes the models quite complicated, requiring significant computational effort. Discrete models are more recent and can represent the typical multidimensional structural heterogeneity of biofilm reflecting the experimental expectations, but they generate computational results including elements of randomness and introduce stochastic effects into the solutions.

15. Continuum emission from classical nova winds

International Nuclear Information System (INIS)

Harkness, R.P.

1983-01-01

The emergent continuum of a slow classical nova during outburst is considered in the quasi-steady optically thick, transonic wind model. Models are presented for various steady mass loss rates and are related to the evolution of slow novae during decline and early post-maximum. The continuum emission is found to depart radically from a blackbody spectrum and to exhibit features common to highly extended stellar atmospheres. (author)

16. Loop quantization as a continuum limit

International Nuclear Information System (INIS)

Manrique, Elisa; Oeckl, Robert; Weber, Axel; Zapata, Jose A

2006-01-01

We present an implementation of Wilson's renormalization group and a continuum limit tailored for loop quantization. The dynamics of loop-quantized theories is constructed as a continuum limit of the dynamics of effective theories. After presenting the general formalism we show as a first explicit example the 2D Ising field theory, an interacting relativistic quantum field theory with local degrees of freedom quantized by loop quantization techniques

17. Geometric continuum regularization of quantum field theory

International Nuclear Information System (INIS)

Halpern, M.B.

1989-01-01

An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs

18. Continuum of active nuclei of galaxies

International Nuclear Information System (INIS)

Boisson, C.; Durret, F.

1987-01-01

Most of the luminosity of active galactic nuclei (NAG) is radiated in the form of a continuum extending from radio to X-ray energies. It is important to understand the origin of this continuum in order to explain the relative importance of thermal and non-thermal processes in the different classes of NAG. We present here the observational aspect. A detailed study of the mechanisms will be presented by J.L. Masnou [fr

19. Changing public stigma with continuum beliefs.

Science.gov (United States)

Corrigan, Patrick W; Schmidt, Annie; Bink, Andrea B; Nieweglowski, Katherine; Al-Khouja, Maya A; Qin, Sang; Discont, Steve

2017-10-01

Given the egregious effect of public stigma on the lives of people with mental illness, researchers have sought to unpack and identify effective components of anti-stigma programs. We expect to show that continuum messages have more positive effect on stigma and affirming attitudes (beliefs that people with mental illness recover and should be personally empowered) than categorical perspectives. The effect of continuum beliefs will interact with contact strategies. A total of 598 research participants were randomly assigned to online presentations representing one of the six conditions: three messages (continuum, categorical, or neutral control) by two processes (education or contact). Participants completed measures of continuum beliefs (as a manipulation check), stigma and affirming attitudes after viewing the condition. Continuum messages had significantly better effect on views that people with mental illness are "different," a finding that interacted with contact. Continuum messages also had better effects on recovery beliefs, once again an effect that interacted significantly with contact. Implications of these findings for improving anti-stigma programs are discussed.

20. Theoretical Mathematics

Science.gov (United States)

Stöltzner, Michael

Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a theoretical' mathematics (alongside theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.

1. Mathematical cosmology

International Nuclear Information System (INIS)

Landsberg, P.T.; Evans, D.A.

1977-01-01

The subject is dealt with in chapters, entitled: cosmology -some fundamentals; Newtonian gravitation - some fundamentals; the cosmological differential equation - the particle model and the continuum model; some simple Friedmann models; the classification of the Friedmann models; the steady-state model; universe with pressure; optical effects of the expansion according to various theories of light; optical observations and cosmological models. (U.K.)

2. Mathematics everywhere

CERN Document Server

Aigner, Martin; Spain, Philip G

2010-01-01

Mathematics is all around us. Often we do not realize it, though. Mathematics Everywhere is a collection of presentations on the role of mathematics in everyday life, through science, technology, and culture. The common theme is the unique position of mathematics as the art of pure thought and at the same time as a universally applicable science. The authors are renowned mathematicians; their presentations cover a wide range of topics. From compact discs to the stock exchange, from computer tomography to traffic routing, from electronic money to climate change, they make the "math inside" unde

3. Financial mathematics

CERN Document Server

Jothi, A Lenin

2009-01-01

Financial services, particularly banking and insurance services is the prominent sector for the development of a nation. After the liberalisation of financial sector in India, the scope of getting career opportunities has been widened. It is heartening to note that various universities in India have introduced professional courses on banking and insurance. A new field of applied mathematics has come into prominence under the name of Financial Mathematics. Financial mathematics has attained much importance in the recent years because of the role played by mathematical concepts in decision - m

4. Mathematical scandals

CERN Document Server

Pappas, Theoni

1997-01-01

In this highly readable volume of vignettes of mathematical scandals and gossip, Theoni Pappas assembles 29 fascinating stories of intrigue and the bizarre ? in short, the human background of the history of mathematics. Might a haberdasher have changed Einstein's life? Why was the first woman mathematician murdered? How come there's no Nobel Prize in mathematics?Mathematics is principally about numbers, equations, and solutions, all of them precise and timeless. But, behind this arcane matter lies the sometimes sordid world of real people, whose rivalries and deceptions

5. Engineering mathematics

CERN Document Server

Stroud, K A

2013-01-01

A groundbreaking and comprehensive reference that's been a bestseller since it first debuted in 1970, the new seventh edition of Engineering Mathematics has been thoroughly revised and expanded. Providing a broad mathematical survey, this innovative volume covers a full range of topics from the very basic to the advanced. Whether you're an engineer looking for a useful on-the-job reference or want to improve your mathematical skills, or you are a student who needs an in-depth self-study guide, Engineering Mathematics is sure to come in handy time and time again.

6. The shadow continuum : testing the records continuum model through the Djogdja Documenten and the migrated archives

NARCIS (Netherlands)

Karabinos, Michael Joseph

2015-01-01

This dissertation tests the universal suitability of the records continuum model by using two cases from the decolonization of Southeast Asia. The continuum model is a new model of records visualization invented in the 1990s that sees records as free to move throughout four ‘dimensions’ rather than

7. Mathematical logic

CERN Document Server

Kleene, Stephen Cole

1967-01-01

Undergraduate students with no prior instruction in mathematical logic will benefit from this multi-part text. Part I offers an elementary but thorough overview of mathematical logic of 1st order. Part II introduces some of the newer ideas and the more profound results of logical research in the 20th century. 1967 edition.

8. Making Mathematics.

Science.gov (United States)

Huckstep, Peter

2002-01-01

Contends teachers must resist the temptation to suggest that, while children can create stories and melodies, they cannot create mathematics. Quotes mathematician G. H. Hardy: "A mathematician, like a painter or poet, is a 'maker' of patterns." Considers mathematics should be able to stand up for itself. (BT)

9. Mathematical psychology.

Science.gov (United States)

Batchelder, William H

2010-09-01

Mathematical psychology is a sub-field of psychology that started in the 1950s and has continued to grow as an important contributor to formal psychological theory, especially in the cognitive areas of psychology such as learning, memory, classification, choice response time, decision making, attention, and problem solving. In addition, there are several scientific sub-areas that were originated by mathematical psychologists such as the foundations of measurement, stochastic memory models, and psychologically motivated reformulations of expected utility theory. Mathematical psychology does not include all uses of mathematics and statistics in psychology, and indeed there is a long history of such uses especially in the areas of perception and psychometrics. What is most unique about mathematical psychology is its approach to theory construction. While accepting the behaviorist dictum that the data in psychology must be observable and replicable, mathematical models are specified in terms of unobservable formal constructs that can predict detailed aspects of data across multiple experimental and natural settings. By now almost all the substantive areas of cognitive and experimental psychology have formal mathematical models and theories, and many of these are due to researchers that identify with mathematical psychology. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

10. Mathematics 2

CERN Document Server

Kodaira, Kunihiko

1996-01-01

This is the translation from the Japanese textbook for the grade 11 course, "General Mathematics". It is part of the easier of the three elective courses in mathematics offered at this level and is taken by about 40% of students. The book covers basic notions of probability and statistics, vectors, exponential, logarithmic, and trigonometric functions, and an introduction to differentiation and integration.

11. Discrete Mathematics

DEFF Research Database (Denmark)

Sørensen, John Aasted

2011-01-01

; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... to new problems. Relations and functions: Define a product set; define and apply equivalence relations; construct and apply functions. Apply these concepts to new problems. Natural numbers and induction: Define the natural numbers; apply the principle of induction to verify a selection of properties...

12. Mathematical biology

CERN Document Server

Murray, James D

1993-01-01

The book is a textbook (with many exercises) giving an in-depth account of the practical use of mathematical modelling in the biomedical sciences. The mathematical level required is generally not high and the emphasis is on what is required to solve the real biological problem. The subject matter is drawn, e.g. from population biology, reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii reaction, reaction-diffusion theory, biological wave phenomena, central pattern generators, neural models, spread of epidemics, mechanochemical theory of biological pattern formation and importance in evolution. Most of the models are based on real biological problems and the predictions and explanations offered as a direct result of mathematical analysis of the models are important aspects of the book. The aim is to provide a thorough training in practical mathematical biology and to show how exciting and novel mathematical challenges arise from a genuine interdisciplinary involvement with the biosci...

13. Mathematics unbound

CERN Document Server

Parshall, Karen Hunger

2002-01-01

Although today's mathematical research community takes its international character very much for granted, this "global nature" is relatively recent, having evolved over a period of roughly 150 years-from the beginning of the nineteenth century to the middle of the twentieth century. During this time, the practice of mathematics changed from being centered on a collection of disparate national communities to being characterized by an international group of scholars for whom the goal of mathematical research and cooperation transcended national boundaries. Yet, the development of an international community was far from smooth and involved obstacles such as war, political upheaval, and national rivalries. Until now, this evolution has been largely overlooked by historians and mathematicians alike. This book addresses the issue by bringing together essays by twenty experts in the history of mathematics who have investigated the genesis of today's international mathematical community. This includes not only develo...

14. Defining and testing a granular continuum element

Energy Technology Data Exchange (ETDEWEB)

Rycroft, Chris H.; Kamrin, Ken; Bazant, Martin Z.

2007-12-03

Continuum mechanics relies on the fundamental notion of amesoscopic volume "element" in which properties averaged over discreteparticles obey deterministic relationships. Recent work on granularmaterials suggests a continuum law may be inapplicable, revealinginhomogeneities at the particle level, such as force chains and slow cagebreaking. Here, we analyze large-scale Discrete-Element Method (DEM)simulations of different granular flows and show that a "granularelement" can indeed be defined at the scale of dynamical correlations,roughly three to five particle diameters. Its rheology is rather subtle,combining liquid-like dependence on deformation rate and solid-likedependence on strain. Our results confirm some aspects of classicalplasticity theory (e.g., coaxiality of stress and deformation rate),while contradicting others (i.e., incipient yield), and can guide thedevelopment of more realistic continuum models.

15. Lattice gravity near the continuum limit

International Nuclear Information System (INIS)

Feinberg, G.; Friedberg, R.; Lee, T.D.; Ren, H.C.

1984-01-01

We prove that the lattice gravity always approaches the usual continuum limit when the link length l -> 0, provided that certain general boundary conditions are satisfied. This result holds for any lattice, regular or irregular. Furthermore, for a given lattice, the deviation from its continuum limit can be expressed as a power series in l 2 . General formulas for such a perturbative calculation are given, together with a number of illustrative examples, including the graviton propagator. The lattice gravity satisfies all the invariance properties of Einstein's theory of general relativity. In addition, it is symmetric under a new class of transformations that are absent in the usual continuum theory. The possibility that the lattice theory (with a nonzero l) may be more fundamental is discussed. (orig.)

16. VEDIC MATHEMATICS

Directory of Open Access Journals (Sweden)

2015-09-01

Full Text Available It is very difficult to motivate students when it comes to a school subject like Mathematics. Teachers spend a lot of time trying to find something that will arouse interest in students. It is particularly difficult to find materials that are motivating enough for students that they eagerly wait for the next lesson. One of the solutions may be found in Vedic Mathematics. Traditional methods of teaching Mathematics create fear of this otherwise interesting subject in the majority of students. Fear increases failure. Often the traditional, conventional mathematical methods consist of very long lessons which are difficult to understand. Vedic Mathematics is an ancient system that is very flexible and encourages the development of intuition and innovation. It is a mental calculating tool that does not require a calculator because the calculator is embedded in each of us. Starting from the above problems of fear and failure in Mathematics, the goal of this paper is to do research with the control and the experimental group and to compare the test results. Two tests should be done for each of the groups. The control group would do the tests in the conventional way. The experimental group would do the first test in a conventional manner and then be subjected to different treatment, that is to say, be taught on the basis of Vedic Mathematics. After that, the second group would do the second test according to the principles of Vedic Mathematics. Expectations are that after short lectures on Vedic mathematics results of the experimental group would improve and that students will show greater interest in Mathematics.

17. Continuum gauge fields from lattice gauge fields

International Nuclear Information System (INIS)

Goeckeler, M.; Kronfeld, A.S.; Schierholz, G.; Wiese, U.J.

1993-01-01

On the lattice some of the salient features of pure gauge theories and of gauge theories with fermions in complex representations of the gauge group seem to be lost. These features can be recovered by considering part of the theory in the continuum. The prerequisite for that is the construction of continuum gauge fields from lattice gauge fields. Such a construction, which is gauge covariant and complies with geometrical constructions of the topological charge on the lattice, is given in this paper. The procedure is explicitly carried out in the U(1) theory in two dimensions, where it leads to simple results. (orig.)

18. Adaptive spacetime method using Riemann jump conditions for coupled atomistic-continuum dynamics

International Nuclear Information System (INIS)

Kraczek, B.; Miller, S.T.; Haber, R.B.; Johnson, D.D.

2010-01-01

We combine the Spacetime Discontinuous Galerkin (SDG) method for elastodynamics with the mathematically consistent Atomistic Discontinuous Galerkin (ADG) method in a new scheme that concurrently couples continuum and atomistic models of dynamic response in solids. The formulation couples non-overlapping continuum and atomistic models across sharp interfaces by weakly enforcing jump conditions, for both momentum balance and kinematic compatibility, using Riemann values to preserve the characteristic structure of the underlying hyperbolic system. Momentum balances to within machine-precision accuracy over every element, on each atom, and over the coupled system, with small, controllable energy dissipation in the continuum region that ensures numerical stability. When implemented on suitable unstructured spacetime grids, the continuum SDG model offers linear computational complexity in the number of elements and powerful adaptive analysis capabilities that readily bridge between atomic and continuum scales in both space and time. A special trace operator for the atomic velocities and an associated atomistic traction field enter the jump conditions at the coupling interface. The trace operator depends on parameters that specify, at the scale of the atomic spacing, the position of the coupling interface relative to the atoms. In a key finding, we demonstrate that optimizing these parameters suppresses spurious reflections at the coupling interface without the use of non-physical damping or special boundary conditions. We formulate the implicit SDG-ADG coupling scheme in up to three spatial dimensions, and describe an efficient iterative solution scheme that outperforms common explicit schemes, such as the Velocity Verlet integrator. Numerical examples, in 1dxtime and employing both linear and nonlinear potentials, demonstrate the performance of the SDG-ADG method and show how adaptive spacetime meshing reconciles disparate time steps and resolves atomic-scale signals in

19. Mathematical modelling of fracture hydrology

International Nuclear Information System (INIS)

Herbert, A.W.; Hodgkindon, D.P.; Lever, D.A.; Robinson, P.C.; Rae, J.

1985-01-01

This report reviews work carried out between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology' which forms part of the CEC Mirage project (CEC 1984. Come 1985. Bourke et. al. 1983). It describes the development and use of a variety of mathematical models for the flow of water and transport of radionuclides in flowing groundwater. These models have an important role to play in assessing the long-term safety of radioactive waste burial, and in the planning and interpretation of associated experiments. The work is reported under five headings, namely 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments, 5) Analysis of field experiments

20. Engineering mathematics

CERN Document Server

Bird, John

2014-01-01

A practical introduction to the core mathematics required for engineering study and practiceNow in its seventh edition, Engineering Mathematics is an established textbook that has helped thousands of students to succeed in their exams.John Bird's approach is based on worked examples and interactive problems. This makes it ideal for students from a wide range of academic backgrounds as the student can work through the material at their own pace. Mathematical theories are explained in a straightforward manner, being supported by practical engineering examples and applications in order to ensure

1. Mathematical physics

CERN Document Server

Geroch, Robert

1985-01-01

Mathematical Physics is an introduction to such basic mathematical structures as groups, vector spaces, topological spaces, measure spaces, and Hilbert space. Geroch uses category theory to emphasize both the interrelationships among different structures and the unity of mathematics. Perhaps the most valuable feature of the book is the illuminating intuitive discussion of the ""whys"" of proofs and of axioms and definitions. This book, based on Geroch's University of Chicago course, will be especially helpful to those working in theoretical physics, including such areas as relativity, particle

2. Applied mathematics

CERN Document Server

Logan, J David

2013-01-01

Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

3. Speed mathematics

CERN Document Server

Handley, Bill

2012-01-01

This new, revised edition of the bestselling Speed Mathematics features new chapters on memorising numbers and general information, calculating statistics and compound interest, square roots, logarithms and easy trig calculations. Written so anyone can understand, this book teaches simple strategies that will enable readers to make lightning-quick calculations. People who excel at mathematics use better strategies than the rest of us; they are not necessarily more intelligent. With Speed Mathematics you'll discover methods to make maths easy and fun. This book is perfect for stud

4. Continuum emission of excited sodium dimer

International Nuclear Information System (INIS)

Pardo, A.; Poyato, J.M.L.; Alonso, J.I.; Rico, F.R.

1980-01-01

A study has been made of the behaviour of excited molecular sodium using high-power Ar + laser radiation. A continuum emission was observed in the red wavelength region. This emission was thought to be caused by the formation of excited triatomic molecules. Energy transfer was observed from excited molecules to atoms. (orig.)

5. Construction mathematics

CERN Document Server

Virdi, Surinder; Virdi, Narinder Kaur

2014-01-01

Construction Mathematics is an introductory level mathematics text, written specifically for students of construction and related disciplines. Learn by tackling exercises based on real-life construction maths. Examples include: costing calculations, labour costs, cost of materials and setting out of building components. Suitable for beginners and easy to follow throughout. Learn the essential basic theory along with the practical necessities. The second edition of this popular textbook is fully updated to match new curricula, and expanded to include even more learning exercises. End of chapter exercises cover a range of theoretical as well as practical problems commonly found in construction practice, and three detailed assignments based on practical tasks give students the opportunity to apply all the knowledge they have gained. Construction Mathematics addresses all the mathematical requirements of Level 2 construction NVQs from City & Guilds/CITB and Edexcel courses, including the BTEC First Diploma in...

6. Algorithmic mathematics

CERN Document Server

Hougardy, Stefan

2016-01-01

Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.

7. Mathematical physiology

CERN Document Server

Sneyd, James

2009-01-01

There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. ...

8. Mathematical modeling

CERN Document Server

Eck, Christof; Knabner, Peter

2017-01-01

Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.

9. Mathematical statistics

CERN Document Server

Pestman, Wiebe R

2009-01-01

This textbook provides a broad and solid introduction to mathematical statistics, including the classical subjects hypothesis testing, normal regression analysis, and normal analysis of variance. In addition, non-parametric statistics and vectorial statistics are considered, as well as applications of stochastic analysis in modern statistics, e.g., Kolmogorov-Smirnov testing, smoothing techniques, robustness and density estimation. For students with some elementary mathematical background. With many exercises. Prerequisites from measure theory and linear algebra are presented.

10. Mathematics revealed

CERN Document Server

Berman, Elizabeth

1979-01-01

Mathematics Revealed focuses on the principles, processes, operations, and exercises in mathematics.The book first offers information on whole numbers, fractions, and decimals and percents. Discussions focus on measuring length, percent, decimals, numbers as products, addition and subtraction of fractions, mixed numbers and ratios, division of fractions, addition, subtraction, multiplication, and division. The text then examines positive and negative numbers and powers and computation. Topics include division and averages, multiplication, ratios, and measurements, scientific notation and estim

11. Discrete Mathematics

DEFF Research Database (Denmark)

Sørensen, John Aasted

2010-01-01

The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...

12. Discrete Mathematics

DEFF Research Database (Denmark)

Sørensen, John Aasted

2010-01-01

The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...

13. Mathematical theory of elasticity of quasicrystals and its applications

CERN Document Server

Fan, Tian-You

2016-01-01

This interdisciplinary work on condensed matter physics, the continuum mechanics of novel materials, and partial differential equations, discusses the mathematical theory of elasticity and hydrodynamics of quasicrystals, as well as its applications. By establishing new partial differential equations of higher order and their solutions under complicated boundary value and initial value conditions, the theories developed here dramatically simplify the solution of complex elasticity problems. Comprehensive and detailed mathematical derivations guide readers through the work. By combining theoretical analysis and experimental data, mathematical studies and practical applications, readers will gain a systematic, comprehensive and in-depth understanding of condensed matter physics, new continuum mechanics and applied mathematics. This new edition covers the latest developments in quasicrystal studies. In particular, it pays special attention to the hydrodynamics, soft-matter quasicrystals, and the Poisson bracket m...

14. Continuum emission in the 1980 July 1 solar flare

International Nuclear Information System (INIS)

Zirin, H.; Neidig, D.F.

1981-01-01

Comparison of continuum measurements of the 1980 July 1 flare at Big Bear Solar Observatory and Sacramento Peak Observatory show strong blue emission kernels with the ratio of Balmer continuum (Bac):lambda3862 continuum:continuum above 4275 A to be about 10:5:1. The blue continuum at 3862 A is too strong to be explained by unresolved lines. The Bac intensity was 2.5 times the photosphere and the strongest lambda3862 continuum was 2 times the photosphere. The brightest continuum kernel occurred late in the flare, after the hard X-ray peak and related in time to an isolated peak in the 2.2 MeV line, suggesting that the continuum was excited by protons above 20 MeV

15. A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations

KAUST Repository

Neumann, Philipp; Tchipev, Nikola

2012-01-01

We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm

16. Mathematical Perspectives

Energy Technology Data Exchange (ETDEWEB)

Glimm, J.

2009-10-14

Progress for the past decade or so has been extraordinary. The solution of Fermat's Last Theorem [11] and of the Poincare Conjecture [1] have resolved two of the most outstanding challenges to mathematics. For both cases, deep and advanced theories and whole subfields of mathematics came into play and were developed further as part of the solutions. And still the future is wide open. Six of the original seven problems from the Clay Foundation challenge remain open, the 23 DARPA challenge problems are open. Entire new branches of mathematics have been developed, including financial mathematics and the connection between geometry and string theory, proposed to solve the problems of quantized gravity. New solutions of the Einstein equations, inspired by shock wave theory, suggest a cosmology model which fits accelerating expansion of the universe possibly eliminating assumptions of 'dark matter'. Intellectual challenges and opportunities for mathematics are greater than ever. The role of mathematics in society continues to grow; with this growth comes new opportunities and some growing pains; each will be analyzed here. We see a broadening of the intellectual and professional opportunities and responsibilities for mathematicians. These trends are also occuring across all of science. The response can be at the level of the professional societies, which can work to deepen their interactions, not only within the mathematical sciences, but also with other scientific societies. At a deeper level, the choices to be made will come from individual mathematicians. Here, of course, the individual choices will be varied, and we argue for respect and support for this diversity of responses. In such a manner, we hope to preserve the best of the present while welcoming the best of the new.

17. Continuum of eLearning: 2012 Project Summary Report

Science.gov (United States)

2012-10-01

multimedia, and Continuum of eLearning | Purpose and Vision 19 << UNCLASSIFIED>> (limited) situated learning. Future versions of the CoL self-paced...Continuum of eLearning : 2012 Project Summary Report Continuum of eLearning The Next Evolution of Joint Training on JKO October 2012 Joint...Technical Report November 2011 – August 2012 Continuum of eLearning : 2012 Project Summary Report N00140-06-D-0060 David T. Fautua, Sae Schatz, Andrea

18. The influence of continuum radiation fields on hydrogen radio recombination lines

Science.gov (United States)

Prozesky, Andri; Smits, Derck P.

2018-05-01

Calculations of hydrogen departure coefficients using a model with the angular momentum quantum levels resolved that includes the effects of external radiation fields are presented. The stimulating processes are important at radio frequencies and can influence level populations. New numerical techniques with a solid mathematical basis have been incorporated into the model to ensure convergence of the solution. Our results differ from previous results by up to 20 per cent. A direct solver with a similar accuracy but more efficient than the iterative method is used to evaluate the influence of continuum radiation on the hydrogen population structure. The effects on departure coefficients of continuum radiation from dust, the cosmic microwave background, the stellar ionising radiation, and free-free radiation are quantified. Tables of emission and absorption coefficients for interpreting observed radio recombination lines are provided.

19. Mathematical concepts

CERN Document Server

Jost, Jürgen

2015-01-01

The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: ·         simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure ·         by itself as a first introduction to abstract mathematics ·         together with existing textbooks, to put their results into a more general perspective ·         to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detaile...

20. Elementary Continuum Mechanics for Everyone - and Some More

DEFF Research Database (Denmark)

Byskov, Esben

Quite trivially, Continuum mechanics per se deals with the description of deformations of three-dimensional continua i.e. models whose properties are independent of scale in that the continuum does not possess a structure. Thus, continuum mechanics does not try to model the atomic structure...

1. Elementary Continuum Mechanics for Everyone - And Some More

DEFF Research Database (Denmark)

Byskov, Esben

Quite trivially, Continuum mechanics per se deals with the description of deformations of three-dimensional continua i.e. models whose properties are independent of scale in that the continuum does not possess a structure. Thus, continuum mechanics does not try to model the atomic structure...

2. Mathematical biophysics

CERN Document Server

Rubin, Andrew

2014-01-01

This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question "what new information can be provided by the models that cannot be obtained directly from experimental data?" Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience. Provides succinct but authoritative coverage of a broad array of biophysical topics and models Wr...

3. Mathematical tapas

CERN Document Server

Hiriart-Urruty, Jean-Baptiste

This book contains a collection of exercises (called “tapas”) at undergraduate level, mainly from the fields of real analysis, calculus, matrices, convexity, and optimization. Most of the problems presented here are non-standard and some require broad knowledge of different mathematical subjects in order to be solved. The author provides some hints and (partial) answers and also puts these carefully chosen exercises into context, presents information on their origins, and comments on possible extensions. With stars marking the levels of difficulty, these tapas show or prove something interesting, challenge the reader to solve and learn, and may have surprising results. This first volume of Mathematical Tapas will appeal to mathematicians, motivated undergraduate students from science-based areas, and those generally interested in mathematics.

4. Mathematical writing

CERN Document Server

Vivaldi, Franco

2014-01-01

This book teaches the art of writing mathematics, an essential -and difficult- skill for any mathematics student.   The book begins with an informal introduction on basic writing principles and a review of the essential dictionary for mathematics. Writing techniques are developed gradually, from the small to the large: words, phrases, sentences, paragraphs, to end with short compositions. These may represent the introduction of a concept, the abstract of a presentation or the proof of a theorem. Along the way the student will learn how to establish a coherent notation, mix words and symbols effectively, write neat formulae, and structure a definition.   Some elements of logic and all common methods of proofs are featured, including various versions of induction and existence proofs. The book concludes with advice on specific aspects of thesis writing (choosing of a title, composing an abstract, compiling a bibliography) illustrated by large number of real-life examples. Many exercises are included; over 150...

5. Physical mathematics

CERN Document Server

Cahill, Kevin

2013-01-01

Unique in its clarity, examples and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicists need in their courses and research. The author illustrates the mathematics with numerous physical examples drawn from contemporary research. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations and Bessel functions, this textbook covers topics such as the singular-value decomposition, Lie algebras, the tensors and forms of general relativity, the central limit theorem and Kolmogorov test of statistics, the Monte Carlo methods of experimental and theoretical physics, the renormalization group of condensed-matter physics and the functional derivatives and Feynman path integrals of quantum field theory.

6. Continuum analogues of contragredient Lie algebras

International Nuclear Information System (INIS)

Saveliev, M.V.; Vershik, A.M.

1989-03-01

We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs

7. Mesoscopic and continuum modelling of angiogenesis

KAUST Repository

Spill, F.

2014-03-11

Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

8. Mesoscopic and continuum modelling of angiogenesis

KAUST Repository

Spill, F.; Guerrero, P.; Alarcon, T.; Maini, P. K.; Byrne, H. M.

2014-01-01

Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

9. Nonlinear continuum mechanics and large inelastic deformations

CERN Document Server

Dimitrienko, Yuriy I

2010-01-01

This book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics - kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead t...

10. Sensitivity filtering from a continuum mechanics perspective

DEFF Research Database (Denmark)

Sigmund, Ole; Maute, Kurt

2012-01-01

In topology optimization filtering is a popular approach for preventing numerical instabilities. This short note shows that the well-known sensitivity filtering technique, that prevents checkerboards and ensures mesh-independent designs in density-based topology optimization, is equivalent to min...... to minimizing compliance for nonlocal elasticity problems known from continuum mechanics. Hence, the note resolves the long-standing quest for finding an explanation and physical motivation for the sensitivity filter....

11. How do we model continuum QCD

International Nuclear Information System (INIS)

Cornwall, J.M.

1986-01-01

The nonperturbative aspects of continuum QCD are so complex that one can only hope to approach them through well-motivated models. The author reviews the general properties that any such model must have, based on the understanding of the gluon condensate in the QCD vacuum. A specific, practical model is proposed motivated by a picture of the condensate as made of thick vortex sheets self-consistently constructed from dynamically massive gluons. (author)

12. New examples of continuum graded Lie algebras

International Nuclear Information System (INIS)

Savel'ev, M.V.

1989-01-01

Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs

13. Mathematical Lives

CERN Document Server

Bartocci, Claudio; Guerraggio, Angelo; Lucchetti, Roberto; Williams, Kim

2011-01-01

Steps forward in mathematics often reverberate in other scientific disciplines, and give rise to innovative conceptual developments or find surprising technological applications. This volume brings to the forefront some of the proponents of the mathematics of the twentieth century, who have put at our disposal new and powerful instruments for investigating the reality around us. The portraits present people who have impressive charisma and wide-ranging cultural interests, who are passionate about defending the importance of their own research, are sensitive to beauty, and attentive to the soci

14. Identifying health disparities across the tobacco continuum.

Science.gov (United States)

Fagan, Pebbles; Moolchan, Eric T; Lawrence, Deirdre; Fernander, Anita; Ponder, Paris K

2007-10-01

Few frameworks have addressed work-force diversity, inequities and inequalities as part of a comprehensive approach to eliminating tobacco-related health disparities. This paper summarizes the literature and describes the known disparities that exist along the tobacco disease continuum for minority racial and ethnic groups, those living in poverty, those with low education and blue-collar and service workers. The paper also discusses how work-force diversity, inequities in research practice and knowledge allocation and inequalities in access to and quality of health care are fundamental to addressing disparities in health. We examined the available scientific literature and existing public health reports to identify disparities across the tobacco disease continuum by minority racial/ethnic group, poverty status, education level and occupation. Results indicate that differences in risk indicators along the tobacco disease continuum do not explain fully tobacco-related cancer consequences among some minority racial/ethnic groups, particularly among the aggregate groups, blacks/African Americans and American Indians/Alaska Natives. The lack of within-race/ethnic group data and its interactions with socio-economic factors across the life-span contribute to the inconsistency we observe in the disease causal paradigm. More comprehensive models are needed to understand the relationships among disparities, social context, diversity, inequalities and inequities. A systematic approach will also help researchers, practitioners, advocates and policy makers determine critical points for interventions, the types of studies and programs needed and integrative approaches needed to eliminate tobacco-related disparities.

15. Continuum regularized Yang-Mills theory

International Nuclear Information System (INIS)

1987-01-01

Using the machinery of stochastic quantization, Z. Bern, M. B. Halpern, C. Taubes and I recently proposed a continuum regularization technique for quantum field theory. This regularization may be implemented by applying a regulator to either the (d + 1)-dimensional Parisi-Wu Langevin equation or, equivalently, to the d-dimensional second order Schwinger-Dyson (SD) equations. This technique is non-perturbative, respects all gauge and Lorentz symmetries, and is consistent with a ghost-free gauge fixing (Zwanziger's). This thesis is a detailed study of this regulator, and of regularized Yang-Mills theory, using both perturbative and non-perturbative techniques. The perturbative analysis comes first. The mechanism of stochastic quantization is reviewed, and a perturbative expansion based on second-order SD equations is developed. A diagrammatic method (SD diagrams) for evaluating terms of this expansion is developed. We apply the continuum regulator to a scalar field theory. Using SD diagrams, we show that all Green functions can be rendered finite to all orders in perturbation theory. Even non-renormalizable theories can be regularized. The continuum regulator is then applied to Yang-Mills theory, in conjunction with Zwanziger's gauge fixing. A perturbative expansion of the regulator is incorporated into the diagrammatic method. It is hoped that the techniques discussed in this thesis will contribute to the construction of a renormalized Yang-Mills theory is 3 and 4 dimensions

16. Integral equation hierarchy for continuum percolation

International Nuclear Information System (INIS)

Given, J.A.

1988-01-01

In this thesis a projection operator technique is presented that yields hierarchies of integral equations satisfied exactly by the n-point connectedness functions in a continuum version of the site-bond percolation problem. The n-point connectedness functions carry the same structural information for a percolation problem as then-point correlation functions do for a thermal problem. This method extends the Potts model mapping of Fortuin and Kastelyn to the continuum by exploiting an s-state generalization of the Widom-Rowlinson model, a continuum model for phase separation. The projection operator technique is used to produce an integral equation hierarchy for percolation similar to the Born-Green heirarchy. The Kirkwood superposition approximation (SA) is extended to percolation in order to close this hierarchy and yield a nonlinear integral equation for the two-point connectedness function. The fact that this function, in the SA, is the analytic continuation to negative density of the two-point correlation function in a corresponding thermal problem is discussed. The BGY equation for percolation is solved numerically, both by an expansion in powers of the density, and by an iterative technique due to Kirkwood. It is argued both analytically and numerically, that the BYG equation for percolation, unlike its thermal counterpart, shows non-classical critical behavior, with η = 1 and γ = 0.05 ± .1. Finally a sequence of refinements to the superposition approximations based in the theory of fluids by Rice and Lekner is discussed

17. Comet Halley: An optical continuum study

International Nuclear Information System (INIS)

Hoban, S.M.

1989-01-01

From an analysis of narrowband CCD images of Comet Halley from 1986 January, March, and April, certain dust structures which are redder than the remainder of the dust coma have become apparent. Mie calculations suggest that this reddening is due to an enhancement of particles with sizes comparable to the observing wavelengths. Although the mass range derived from the calculations presented here is somewhat uncertain as a result of the limitations of Mie theory, these values are in the expected range derived from the calculations presented here is somewhat uncertain as a result of particle sizes which would be both sensitive to radiation pressure and significantly reddened with respect to the solar spectrum at the observing wavelengths. Thus, the red envelopes are plausibly the result of size sorting by solar radiation pressure. The red jets observed on 1986 January 10, March 1 and March 9 can then be explained by the enhanced dust flux at the jet sources, and the subsequent trapping of a relative excess of intermediate mass (i.e. red) particles into the jets which are visible in the continuum images. Analysis of narrowband photometry of the optical continuum of Comet Halley reveals no correlation between the color of the dust and heliocentric distance, phase angle, strength of the continuum or gas-to-dust ratio. The photometric data are thus consistent with a post-ejection sorting mechanism. Chemical inhomogeneities of the nucleus are therefore not necessary to explain the observed structure in the color of the dust in Comet Halley

18. Lyman continuum observations of solar flares

Science.gov (United States)

Machado, M. E.; Noyes, R. W.

1978-01-01

A study is made of Lyman continuum observations of solar flares, using data obtained by the EUV spectroheliometer on the Apollo Telescope Mount. It is found that there are two main types of flare regions: an overall 'mean' flare coincident with the H-alpha flare region, and transient Lyman continuum kernels which can be identified with the H-alpha and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density .000005 g/sq cm in the quiet sun to .0003 g/sq cm in the mean flare, and to .001 g/sq cm in kernels. From these results the amount of chromospheric material 'evaporated' into the high temperature region is derived, which is found to be approximately 10 to the 15th g, in agreement with observations of X-ray emission measures.

19. Development of Advanced Continuum Models that Incorporate Nanomechanical Deformation into Engineering Analysis.

Energy Technology Data Exchange (ETDEWEB)

Zimmerman, Jonathan A.; Jones, Reese E.; Templeton, Jeremy Alan; McDowell, David L.; Mayeur, Jason R.; Tucker, Garritt J.; Bammann, Douglas J.; Gao, Huajian

2008-09-01

Materials with characteristic structures at nanoscale sizes exhibit significantly different mechani-cal responses from those predicted by conventional, macroscopic continuum theory. For example,nanocrystalline metals display an inverse Hall-Petch effect whereby the strength of the materialdecreases with decreasing grain size. The origin of this effect is believed to be a change in defor-mation mechanisms from dislocation motion across grains and pileup at grain boundaries at mi-croscopic grain sizes to rotation of grains and deformation within grain boundary interface regionsfor nanostructured materials. These rotational defects are represented by the mathematical conceptof disclinations. The ability to capture these effects within continuum theory, thereby connectingnanoscale materials phenomena and macroscale behavior, has eluded the research community.The goal of our project was to develop a consistent theory to model both the evolution ofdisclinations and their kinetics. Additionally, we sought to develop approaches to extract contin-uum mechanical information from nanoscale structure to verify any developed continuum theorythat includes dislocation and disclination behavior. These approaches yield engineering-scale ex-pressions to quantify elastic and inelastic deformation in all varieties of materials, even those thatpossess highly directional bonding within their molecular structures such as liquid crystals, cova-lent ceramics, polymers and biological materials. This level of accuracy is critical for engineeringdesign and thermo-mechanical analysis is performed in micro- and nanosystems. The researchproposed here innovates on how these nanoscale deformation mechanisms should be incorporatedinto a continuum mechanical formulation, and provides the foundation upon which to develop ameans for predicting the performance of advanced engineering materials.4 AcknowledgmentThe authors acknowledge helpful discussions with Farid F. Abraham, Youping Chen, Terry J

20. Quotable Quotes in Mathematics

Science.gov (United States)

Lo, Bruce W. N.

1983-01-01

As a way to dispel negative feelings toward mathematics, a variety of quotations are given. They are categorized by: what mathematics is, mathematicians, mathematics and other disciplines, different areas of mathematics, mathematics and humor, applications of mathematics, and pure versus applied mathematics. (MNS)

1. Mathematical cosmology

International Nuclear Information System (INIS)

Wainwright, J.

1990-01-01

The workshop on mathematical cosmology was devoted to four topics of current interest. This report contains a brief discussion of the historical background of each topic and a concise summary of the content of each talk. The topics were; the observational cosmology program, the cosmological perturbation program, isotropic singularities, and the evolution of Bianchi cosmologies. (author)

2. Mathematical quantization

CERN Document Server

Weaver, Nik

2001-01-01

With a unique approach and presenting an array of new and intriguing topics, Mathematical Quantization offers a survey of operator algebras and related structures from the point of view that these objects are quantizations of classical mathematical structures. This approach makes possible, with minimal mathematical detail, a unified treatment of a variety of topics.Detailed here for the first time, the fundamental idea of mathematical quantization is that sets are replaced by Hilbert spaces. Building on this idea, and most importantly on the fact that scalar-valued functions on a set correspond to operators on a Hilbert space, one can determine quantum analogs of a variety of classical structures. In particular, because topologies and measure classes on a set can be treated in terms of scalar-valued functions, we can transfer these constructions to the quantum realm, giving rise to C*- and von Neumann algebras.In the first half of the book, the author quickly builds the operator algebra setting. He uses this ...

3. Mathematical stereochemistry

CERN Document Server

Fujita, Shinsaku

2015-01-01

Chirality and stereogenicity are closely related concepts and their differentiation and description is still a challenge in chemoinformatics. A new stereoisogram approach, developed by the author, is introduced in this book, providing a theoretical framework for mathematical aspects of modern stereochemistry. The discussion covers point-groups and permutation symmetry and exemplifies the concepts using organic molecules and inorganic complexes.

4. Special relativity from observer's mathematics point of view

Science.gov (United States)

Khots, Boris; Khots, Dmitriy

2015-09-01

When we create mathematical models for quantum theory of light we assume that the mathematical apparatus used in modeling, at least the simplest mathematical apparatus, is infallible. In particular, this relates to the use of "infinitely small" and "infinitely large" quantities in arithmetic and the use of Newton - Cauchy definitions of a limit and derivative in analysis. We believe that is where the main problem lies in contemporary study of nature. We have introduced a new concept of Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. We use Einstein special relativity principles and get the analogue of classical Lorentz transformation. This work considers this transformation from Observer's Mathematics point of view.

5. The language of mathematics telling mathematical tales

CERN Document Server

Barton, Bill

2008-01-01

Everyday mathematical ideas are expressed differently in different languages. This book probes those differences and explores their implications for mathematics education, arguing for alternatives to how we teach and learn mathematics.

6. Mathematical modeling and optimization of complex structures

CERN Document Server

Repin, Sergey; Tuovinen, Tero

2016-01-01

This volume contains selected papers in three closely related areas: mathematical modeling in mechanics, numerical analysis, and optimization methods. The papers are based upon talks presented  on the International Conference for Mathematical Modeling and Optimization in Mechanics, held in Jyväskylä, Finland, March 6-7, 2014 dedicated to Prof. N. Banichuk on the occasion of his 70th birthday. The articles are written by well-known scientists working in computational mechanics and in optimization of complicated technical models. Also, the volume contains papers discussing the historical development, the state of the art, new ideas, and open problems arising in  modern continuum mechanics and applied optimization problems. Several papers are concerned with mathematical problems in numerical analysis, which are also closely related to important mechanical models. The main topics treated include:  * Computer simulation methods in mechanics, physics, and biology;  * Variational problems and methods; minimiz...

7. Understanding in mathematics

CERN Document Server

Sierpinska, Anna

1994-01-01

The concept of understanding in mathematics with regard to mathematics education is considered in this volume, the main problem for mathematics teachers being how to facilitate their students'' understanding of the mathematics being taught.

8. Mathematical epidemiology

CERN Document Server

Driessche, Pauline; Wu, Jianhong

2008-01-01

Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downlo...

9. Applied mathematics

International Nuclear Information System (INIS)

Nedelec, J.C.

1988-01-01

The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed [fr

10. Effect of couplings in the resonance continuum

International Nuclear Information System (INIS)

Royal, J; Larson, A; Orel, A E

2004-01-01

Electronic coupling of two or more resonances via the electron scattering continuum is investigated. The effect of this coupling as a function of the resonance curves and autoionization widths is investigated, and the conditions for the maximum effect are determined. The theory is applied to two physical problems, the product state distribution produced by the dissociative recombination of electrons with HeH + and a one-dimensional model for ion-pair production resulting from electron collisions with H + 3 . It is found that the coupling does not affect the product state distribution in HeH + but produces a significant effect in the H + 3 model

11. Discrete expansions of continuum functions. General concepts

International Nuclear Information System (INIS)

Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.

1979-01-01

Different discrete expansions of the continuum wave functions are considered: pole expansion (according to the Mittag-Lefler theorem), Weinberg states. The general property of these groups of states is their completeness in the finite region of space. They satisfy the Schroedinger type equations and are matched with free solutions of the Schroedinger equation at the boundary. Convergence of expansions for the S matrix, the Green functions and the continuous-spectrum wave functions is studied. A new group of states possessing the best convergence is introduced

12. Histidine in Continuum Electrostatics Protonation State Calculations

Science.gov (United States)

Couch, Vernon; Stuchebruckhov, Alexei

2014-01-01

A modification to the standard continuum electrostatics approach to calculate protein pKas which allows for the decoupling of histidine tautomers within a two state model is presented. Histidine with four intrinsically coupled protonation states cannot be easily incorporated into a two state formalism because the interaction between the two protonatable sites of the imidazole ring is not purely electrostatic. The presented treatment, based on a single approximation of the interrelation between histidine’s charge states, allows for a natural separation of the two protonatable sites associated with the imidazole ring as well as the inclusion of all protonation states within the calculation. PMID:22072521

13. On nonlocal modeling in continuum mechanics

Directory of Open Access Journals (Sweden)

2018-01-01

Full Text Available The objective of the paper is to provide an overview of nonlocal formulations for models of elastic solids. The author presents the physical foundations for nonlocal theories of continuum mechanics, followed by various analytical and numerical techniques. The characteristics and range of practical applications for the presented approaches are discussed. The results of numerical simulations for the selected case studies are provided to demonstrate the properties of the described methods. The paper is illustrated with outcomes from peridynamic analyses. Fatigue and axial stretching were simulated to show the capabilities of the developed numerical tools.

14. Quasi-bound states in continuum

International Nuclear Information System (INIS)

Nakamura, Hiroaki; Hatano, Naomichi; Garmon, Sterling; Petrosky, Tomio

2007-08-01

We report the prediction of quasi-bound states (resonant states with very long lifetimes) that occur in the eigenvalue continuum of propagating states for a wide region of parameter space. These quasi-bound states are generated in a quantum wire with two channels and an adatom, when the energy bands of the two channels overlap. A would-be bound state that lays just below the upper energy band is slightly destabilized by the lower energy band and thereby becomes a resonant state with a very long lifetime (a second QBIC lays above the lower energy band). (author)

15. PREFACE: Continuum Models and Discrete Systems Symposia (CMDS-12)

Science.gov (United States)

Chakrabarti, Bikas K.

2011-09-01

The 12th International Symposium on Continuum Models and Discrete Systems (CMDS-12) (http://www.saha.ac.in/cmp/cmds.12/) took place at the Saha Institute of Nuclear Physics in Kolkata from 21-25 February 2011. Previous CMDS symposia were held in Kielce (Poland, 1975), Mont Gabriel (Canada, 1977), Freudenstadt (Federal Republic of Germany, 1979), Stockholm (Sweden, 1981), Nottingham (United Kingdom, 1985), Dijon (France, 1989), Paderborn (Germany, 1992), Varna (Bulgaria, 1995), Istanbul (Turkey, 1998), Shoresh (Israel, 2003) and Paris (France, 2007). The broad interdisciplinary character, limited number of participants (not exceeding 100) and informal and friendly atmosphere of these meetings has made them a well-acknowledged place to make highly fruitful contacts and exchange ideas, methods and results. The purpose of CMDS is to bring together scientists with different backgrounds who work on continuum theories of discrete mechanical and thermodynamical systems in the fields of mathematics, theoretical and applied mechanics, physics, material science, and engineering. The spirit of the CMDS meetings is to stimulate extensive and active interdisciplinary research. The International Scientific Committee members of this conference were: David J Bergman (Chairman CMDS 10), Tel Aviv University, Israel; Bikas K Chakrabarti (Chairman CMDS 12), Saha Institute of Nuclear Physics, India; Alex Hansen, Norwegian University of Science and Technology, Norway; Hans Jürgen Herrmann, Institute for Building Materials, ETH, Switzerland; Esin Inan (Chairman CMDS 9), Istanbul Technical University, Turkey; Dominique Jeulin (Chairman CMDS 11), Ecole des Mines de Paris, France; Frank Juelicher, Max-Planck-Institute for the Physics of Complex Systems, Germany; Hikaru Kawamura, University of Osaka, Japan; Graeme Milton, University of Utah, USA; Natalia Movchan, University of Liverpool, UK; and Ping Sheng, The Hong Kong University of Science and Technology, Hong Kong. At CMDS-12 the topics

16. Dilemma in Teaching Mathematics

Science.gov (United States)

Md Kamaruddin, Nafisah Kamariah; Md Amin, Zulkarnain

2012-01-01

The challenge in mathematics education is finding the best way to teach mathematics. When students learn the reasoning and proving in mathematics, they will be proficient in mathematics. Students must know mathematics before they can apply it. Symbolism and logic is the key to both the learning of mathematics and its effective application to…

17. Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations

Science.gov (United States)

Peshkov, Ilya; Pavelka, Michal; Romenski, Evgeniy; Grmela, Miroslav

2018-01-01

Continuum mechanics with dislocations, with the Cattaneo-type heat conduction, with mass transfer, and with electromagnetic fields is put into the Hamiltonian form and into the form of the Godunov-type system of the first-order, symmetric hyperbolic partial differential equations (SHTC equations). The compatibility with thermodynamics of the time reversible part of the governing equations is mathematically expressed in the former formulation as degeneracy of the Hamiltonian structure and in the latter formulation as the existence of a companion conservation law. In both formulations the time irreversible part represents gradient dynamics. The Godunov-type formulation brings the mathematical rigor (the local well posedness of the Cauchy initial value problem) and the possibility to discretize while keeping the physical content of the governing equations (the Godunov finite volume discretization).

18. Tensor algebra and tensor analysis for engineers with applications to continuum mechanics

CERN Document Server

Itskov, Mikhail

2015-01-01

This is the fourth and revised edition of a well-received book that aims at bridging the gap between the engineering course of tensor algebra on the one side and the mathematical course of classical linear algebra on the other side. In accordance with the contemporary way of scientific publications, a modern absolute tensor notation is preferred throughout. The book provides a comprehensible exposition of the fundamental mathematical concepts of tensor calculus and enriches the presented material with many illustrative examples. In addition, the book also includes advanced chapters dealing with recent developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics. Hence, this monograph addresses graduate students as well as scientists working in this field. In each chapter numerous exercises are included, allowing for self-study and intense practice. Solutions to the exercises are also provided.

19. Multiple Temperature Model for Near Continuum Flows

International Nuclear Information System (INIS)

XU, Kun; Liu, Hongwei; Jiang, Jianzheng

2007-01-01

In the near continuum flow regime, the flow may have different translational temperatures in different directions. It is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the Navier-Stokes equations, lose accuracy. These inaccuracies may be partially due to the single temperature assumption in the Navier-Stokes equations. Here, based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) equation, a multitranslational temperature model is proposed and used in the flow calculations. In order to fix all three translational temperatures, two constraints are additionally proposed to model the energy exchange in different directions. Based on the multiple temperature assumption, the Navier-Stokes relation between the stress and strain is replaced by the temperature relaxation term, and the Navier-Stokes assumption is recovered only in the limiting case when the flow is close to the equilibrium with the same temperature in different directions. In order to validate the current model, both the Couette and Poiseuille flows are studied in the transition flow regime

20. Continuum robot arms inspired by cephalopods

Science.gov (United States)

Walker, Ian D.; Dawson, Darren M.; Flash, Tamar; Grasso, Frank W.; Hanlon, Roger T.; Hochner, Binyamin; Kier, William M.; Pagano, Christopher C.; Rahn, Christopher D.; Zhang, Qiming M.

2005-05-01

In this paper, we describe our recent results in the development of a new class of soft, continuous backbone ("continuum") robot manipulators. Our work is strongly motivated by the dexterous appendages found in cephalopods, particularly the arms and suckers of octopus, and the arms and tentacles of squid. Our ongoing investigation of these animals reveals interesting and unexpected functional aspects of their structure and behavior. The arrangement and dynamic operation of muscles and connective tissue observed in the arms of a variety of octopus species motivate the underlying design approach for our soft manipulators. These artificial manipulators feature biomimetic actuators, including artificial muscles based on both electro-active polymers (EAP) and pneumatic (McKibben) muscles. They feature a "clean" continuous backbone design, redundant degrees of freedom, and exhibit significant compliance that provides novel operational capacities during environmental interaction and object manipulation. The unusual compliance and redundant degrees of freedom provide strong potential for application to delicate tasks in cluttered and/or unstructured environments. Our aim is to endow these compliant robotic mechanisms with the diverse and dexterous grasping behavior observed in octopuses. To this end, we are conducting fundamental research into the manipulation tactics, sensory biology, and neural control of octopuses. This work in turn leads to novel approaches to motion planning and operator interfaces for the robots. The paper describes the above efforts, along with the results of our development of a series of continuum tentacle-like robots, demonstrating the unique abilities of biologically-inspired design.

1. Continuum deformation of multi-agent systems

CERN Document Server

Rastgoftar, Hossein

2016-01-01

This monograph presents new algorithms for formation control of multi-agent systems (MAS) based on principles of continuum mechanics. Beginning with an overview of traditional methods, the author then introduces an innovative new approach whereby agents of an MAS are considered as particles in a continuum evolving in ℝn whose desired configuration is required to satisfy an admissible deformation function. The necessary theory and its validation on a mobile-agent-based swarm test bed are considered for two primary tasks: homogeneous transformation of the MAS and deployment of a random distribution of agents on a desired configuration. The framework for this model is based on homogeneous transformations for the evolution of an MAS under no inter-agent communication, local inter-agent communication, and intelligent perception by agents. Different communication protocols for MAS evolution, the robustness of tracking of a desired motion by an MAS evolving in ℝn, and the effect of communication delays in an MAS...

2. Teaching Mathematical Modeling in Mathematics Education

Science.gov (United States)

Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant

2016-01-01

Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…

3. Doing Mathematics with Purpose: Mathematical Text Types

Science.gov (United States)

Dostal, Hannah M.; Robinson, Richard

2018-01-01

Mathematical literacy includes learning to read and write different types of mathematical texts as part of purposeful mathematical meaning making. Thus in this article, we describe how learning to read and write mathematical texts (proof text, algorithmic text, algebraic/symbolic text, and visual text) supports the development of students'…

4. Teachers' Mathematics as Mathematics-at-Work

Science.gov (United States)

2017-01-01

Through recognising mathematics teachers as professionals who use mathematics in their workplace, this article traces a parallel between the mathematics enacted by teachers in their practice and the mathematics used in workplaces found in studies of professionals (e.g. nurses, engineers, bankers). This parallel is developed through the five…

5. Continuum capture in the three-body problem

International Nuclear Information System (INIS)

Sellin, I.A.

1980-01-01

The three-body problem, especially the problem of electron capture to the continuum in heavy particle collisions is reviewed. Major topics covered include: second born-induced asymmetry in electron capture to the continuum; historical context, links to other tests of atomic scattering theory; experiments characterizing the velocity distribution of ECC electrons; other atomic physics tests of high velocity Born expansions; atom capture; capture by positrons; and pion capture to the continuum

6. Mathematical intuitionism

CERN Document Server

Dragalin, A G

1988-01-01

This monograph is intended to present the most important methods of proof theory in intuitionistic logic, assuming the reader to have mastered an introductory course in mathematical logic. The book starts with purely syntactical methods based on Gentzen's cut-elimination theorem, followed by intuitionistic arithmetic where Kleene's realizability method plays a central role. The author then studies algebraic models and completeness theorems for them. After giving a survey on the principles of intuitionistic analysis, the last part of the book presents the cut-elimination theorem in intuitionistic simple theory of types with an extensionality rule.

7. A continuum theory of edge dislocations

Science.gov (United States)

Berdichevsky, V. L.

2017-09-01

Continuum theory of dislocation aims to describe the behavior of large ensembles of dislocations. This task is far from completion, and, most likely, does not have a "universal solution", which is applicable to any dislocation ensemble. In this regards it is important to have guiding lines set by benchmark cases, where the transition from a discrete set of dislocations to a continuum description is made rigorously. Two such cases have been considered recently: equilibrium of dislocation walls and screw dislocations in beams. In this paper one more case is studied, equilibrium of a large set of 2D edge dislocations placed randomly in a 2D bounded region. The major characteristic of interest is energy of dislocation ensemble, because it determines the structure of continuum equations. The homogenized energy functional is obtained for the periodic dislocation ensembles with a random contents of the periodic cell. Parameters of the periodic structure can change slowly on distances of order of the size of periodic cells. The energy functional is obtained by the variational-asymptotic method. Equilibrium positions are local minima of energy. It is confirmed the earlier assertion that energy density of the system is the sum of elastic energy of averaged elastic strains and microstructure energy, which is elastic energy of the neutralized dislocation system, i.e. the dislocation system placed in a constant dislocation density field making the averaged dislocation density zero. The computation of energy is reduced to solution of a variational cell problem. This problem is solved analytically. The solution is used to investigate stability of simple dislocation arrays, i.e. arrays with one dislocation in the periodic cell. The relations obtained yield two outcomes: First, there is a state parameter of the system, dislocation polarization; averaged stresses affect only dislocation polarization and cannot change other characteristics of the system. Second, the structure of

8. Meeting in mathematics

DEFF Research Database (Denmark)

Mogensen, Arne; Georgiev, Vladimir; Ulovec, Andreas

To encourage many more young people to appreciate the real nature and spirit of mathematics and possibly to be enrolled in mathematics study it is important to involve them in doing mathematics (not just learning about mathematics). This goal could be achieved if mathematics teachers are prepared...... to identify and work with mathematically gifted students (without loosing the rest). The book offers chapters on gifted students, mathematical competences and other issues....

9. Polymer quantum mechanics and its continuum limit

International Nuclear Information System (INIS)

Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.

2007-01-01

A rather nonstandard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation, has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle, and a simple cosmological model

10. Constraining Lyman continuum escape using Machine Learning

Science.gov (United States)

Giri, Sambit K.; Zackrisson, Erik; Binggeli, Christian; Pelckmans, Kristiaan; Cubo, Rubén; Mellema, Garrelt

2018-05-01

The James Webb Space Telescope (JWST) will observe the rest-frame ultraviolet/optical spectra of galaxies from the epoch of reionization (EoR) in unprecedented detail. While escaping into the intergalactic medium, hydrogen-ionizing (Lyman continuum; LyC) photons from the galaxies will contribute to the bluer end of the UV slope and make nebular emission lines less prominent. We present a method to constrain leakage of the LyC photons using the spectra of high redshift (z >~ 6) galaxies. We simulate JWST/NIRSpec observations of galaxies at z =6-9 by matching the fluxes of galaxies observed in the Frontier Fields observations of galaxy cluster MACS-J0416. Our method predicts the escape fraction fesc with a mean absolute error Δfesc ~ 0.14. The method also predicts the redshifts of the galaxies with an error .

11. Continuum Mechanics of Beam and Plate Flexure

DEFF Research Database (Denmark)

Jönsson, Jeppe

This text has been written and used during the spring of 1995 for a course on flexural mechanics of beams and plates at Aalborg University. The idea has been to concentrate on basic principles of the theories, which are of importance to the modern structural engineer. Today's structural engineer...... must be acquainted with the classic beam and plate theories, when reading manuals and using modern software tools such as the finite element method. Each chapter includes supplementary theory and derivations enabling consultation of the notes also at a later stage of study. A preliminary chapter...... introduces the modern notation used in textbooks and in research today. It further gives an introduction to three-dimensional continuum mechanics of elastic bodies and the related principles of virtual work. The ideas to give the students a basic understanding of the stresses and strains, the equilibrium...

12. Embodiment design of soft continuum robots

Directory of Open Access Journals (Sweden)

Rongjie Kang

2016-04-01

Full Text Available This article presents the results of a multidisciplinary project where mechatronic engineers worked alongside biologists to develop a soft robotic arm that captures key features of octopus anatomy and neurophysiology. The concept of embodiment (the dynamic coupling between sensory-motor control, anatomy, materials and environment that allows for the animal to achieve adaptive behaviours is used as a starting point for the design process but tempered by current engineering technologies and approaches. In this article, the embodied design requirements are first discussed from a robotic viewpoint by taking into account real-life engineering limitations; then, the motor control schemes inspired by octopus nervous system are investigated. Finally, the mechanical and control design of a prototype is presented that appropriately blends bio-inspiration and engineering limitations. Simulated and experimental results show that the developed continuum robotic arm is able to reproduce octopus-like motions for bending, reaching and grasping.

13. Continuum Reverberation Mapping of AGN Accretion Disks

Energy Technology Data Exchange (ETDEWEB)

Fausnaugh, Michael M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA (United States); Peterson, Bradley M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH (United States); Space Telescope Science Institute, Baltimore, MD (United States); Starkey, David A. [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Horne, Keith, E-mail: faus@mit.edu [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Collaboration: the AGN STORM Collaboration

2017-12-05

We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011), which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3–3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T ~ R{sup −3/4} expected for a standard thin disk. Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminosity AGN.

14. Variational continuum multiphase poroelasticity theory and applications

CERN Document Server

Serpieri, Roberto

2017-01-01

This book collects the theoretical derivation of a recently presented general variational macroscopic continuum theory of multiphase poroelasticity (VMTPM), together with its applications to consolidation and stress partitioning problems of interest in several applicative engineering contexts, such as in geomechanics and biomechanics. The theory is derived based on a purely-variational deduction, rooted in the least-Action principle, by considering a minimal set of kinematic descriptors. The treatment herein considered keeps a specific focus on the derivation of most general medium-independent governing equations. It is shown that VMTPM recovers paradigms of consolidated use in multiphase poroelasticity such as Terzaghi's stress partitioning principle and Biot's equations for wave propagation. In particular, the variational treatment permits the derivation of a general medium-independent stress partitioning law, and the proposed variational theory predicts that the external stress, the fluid pressure, and the...

15. A Threshold Continuum for Aeolian Sand Transport

Science.gov (United States)

Swann, C.; Ewing, R. C.; Sherman, D. J.

2015-12-01

The threshold of motion for aeolian sand transport marks the initial entrainment of sand particles by the force of the wind. This is typically defined and modeled as a singular wind speed for a given grain size and is based on field and laboratory experimental data. However, the definition of threshold varies significantly between these empirical models, largely because the definition is based on visual-observations of initial grain movement. For example, in his seminal experiments, Bagnold defined threshold of motion when he observed that 100% of the bed was in motion. Others have used 50% and lesser values. Differences in threshold models, in turn, result is large errors in predicting the fluxes associated with sand and dust transport. Here we use a wind tunnel and novel sediment trap to capture the fractions of sand in creep, reptation and saltation at Earth and Mars pressures and show that the threshold of motion for aeolian sand transport is best defined as a continuum in which grains progress through stages defined by the proportion of grains in creep and saltation. We propose the use of scale dependent thresholds modeled by distinct probability distribution functions that differentiate the threshold based on micro to macro scale applications. For example, a geologic timescale application corresponds to a threshold when 100% of the bed in motion whereas a sub-second application corresponds to a threshold when a single particle is set in motion. We provide quantitative measurements (number and mode of particle movement) corresponding to visual observations, percent of bed in motion and degrees of transport intermittency for Earth and Mars. Understanding transport as a continuum provides a basis for revaluating sand transport thresholds on Earth, Mars and Titan.

16. Advanced dielectric continuum model of preferential solvation

Science.gov (United States)

Basilevsky, Mikhail; Odinokov, Alexey; Nikitina, Ekaterina; Grigoriev, Fedor; Petrov, Nikolai; Alfimov, Mikhail

2009-01-01

A continuum model for solvation effects in binary solvent mixtures is formulated in terms of the density functional theory. The presence of two variables, namely, the dimensionless solvent composition y and the dimensionless total solvent density z, is an essential feature of binary systems. Their coupling, hidden in the structure of the local dielectric permittivity function, is postulated at the phenomenological level. Local equilibrium conditions are derived by a variation in the free energy functional expressed in terms of the composition and density variables. They appear as a pair of coupled equations defining y and z as spatial distributions. We consider the simplest spherically symmetric case of the Born-type ion immersed in the benzene/dimethylsulfoxide (DMSO) solvent mixture. The profiles of y(R ) and z(R ) along the radius R, which measures the distance from the ion center, are found in molecular dynamics (MD) simulations. It is shown that for a given solute ion z(R ) does not depend significantly on the composition variable y. A simplified solution is then obtained by inserting z(R ), found in the MD simulation for the pure DMSO, in the single equation which defines y(R ). In this way composition dependences of the main solvation effects are investigated. The local density augmentation appears as a peak of z(R ) at the ion boundary. It is responsible for the fine solvation effects missing when the ordinary solvation theories, in which z =1, are applied. These phenomena, studied for negative ions, reproduce consistently the simulation results. For positive ions the simulation shows that z ≫1 (z =5-6 at the maximum of the z peak), which means that an extremely dense solvation shell is formed. In such a situation the continuum description fails to be valid within a consistent parametrization.

17. Continuum shell-model with complicated configurations

International Nuclear Information System (INIS)

Barz, H.W.; Hoehn, J.

1977-05-01

The traditional shell model has been combined with the coupled channels method in order to describe resonance reactions. For that purpose the configuration space is divided into two subspaces (Feshbach projection method). Complicated shell-model configurations can be included into the subspace of discrete states which contains the single particle resonance states too. In the subspace of scattering states the equation of motion is solved by using the coupled channels method. Thereby the orthogonality between scattering states and discrete states is ensured. Resonance states are defined with outgoing waves in all channels. By means of simple model calculations the special role of the continuum is investigated. In this connection the energy dependence of the resonance parameters, the isospin mixture via the continuum, threshold effect, as well as the influence of the number of channels taken into account on the widths, positions and dipole strengths of the resonance are discussed. The model is mainly applied to the description of giant resonances excited by the scattering of nucleons and photo-nucleus processes (source term method) found in reactions on light nuclei. The giant resonance observed in the 15 N(p,n) reaction is explained by the inclusion of 2p-2h states. The same is true for the giant resonance in 13 C(J = 1/2, 3/2) as well as for the giant resonance built on the first 3 - state in 16 O. By means of a correlation analysis for the reduced widths amplitudes an access to the doorway conception is found. (author)

18. Mathematics, the Computer, and the Impact on Mathematics Education.

Science.gov (United States)

Tooke, D. James

2001-01-01

Discusses the connection between mathematics and the computer; mathematics curriculum; mathematics instruction, including teachers learning to use computers; and the impact of the computer on learning mathematics. (LRW)

19. Continuum Damage Mechanics A Continuum Mechanics Approach to the Analysis of Damage and Fracture

CERN Document Server

Murakami, Sumio

2012-01-01

Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry.  This, in turn, has caused more interest in continuum damage mechanics and its engineering applications.   This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook.   The book consists of two parts and an appendix.  Part I  is concerned with the foundation of continuum damage mechanics.  Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2.  In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application ...

20. Authenticity of Mathematical Modeling

Science.gov (United States)

Tran, Dung; Dougherty, Barbara J.

2014-01-01

Some students leave high school never quite sure of the relevancy of the mathematics they have learned. They fail to see links between school mathematics and the mathematics of everyday life that requires thoughtful decision making and often complex problem solving. Is it possible to bridge the gap between school mathematics and the mathematics in…

1. Teaching Continuum Mechanics in a Mechanical Engineering Program

Science.gov (United States)

Liu, Yucheng

2011-01-01

This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…

2. Stonefly (Plecoptera) Feeding Modes: Variation Along a California River Continuum

Science.gov (United States)

Richard L. Bottorff; Allen W. Knight

1989-01-01

The distribution of Plecoptera along a California river was used to test several predictions of the River Continuum Concept about how functional feeding groups should change along a stream's length. Stoneflies were collected from stream orders 1-6 (123 km) of the Cosumnes River continuum in the central Sierra Nevada. The 69 stonefly species collected were...

3. Continuum Thinking and the Contexts of Personal Information Management

Science.gov (United States)

Huvila, Isto; Eriksen, Jon; Häusner, Eva-Maria; Jansson, Ina-Maria

2014-01-01

Introduction: Recent personal information management literature has underlined the significance of the contextuality of personal information and its use. The present article discusses the applicability of the records continuum model and its generalisation, continuum thinking, as a theoretical framework for explicating the overlap and evolution of…

4. Bursts and shocks in a continuum shell model

DEFF Research Database (Denmark)

Andersen, Ken Haste; Bohr, Tomas; Jensen, M.H.

1998-01-01

We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the right...

5. Points-Based Safe Path Planning of Continuum Robots

Directory of Open Access Journals (Sweden)

2015-07-01

Full Text Available Continuum robots exhibit great potential in a number of challenging applications where traditional rigid link robots pose certain limitations, e.g., working in unstructured environments. In order to enable the usage of continuum robots in safety-critical applications, such as surgery and nuclear decontamination, it is extremely important to ensure a safe path for the robot's movement. Existing algorithms for continuum robot path planning have certain limitations that need to be addressed. These include the fact that none of the algorithms provide safety assurance parameters and control for path planning. They are computationally expensive, applicable to a specific type of continuum robots, and mostly they do not incorporate design and kinematics constraints. In this paper, we propose a points-based path planning (PoPP algorithm for continuum robots that computes the path by imposing safety constraints and improves upon the limitations of existing approaches. In the algorithm, we exploit the constant curvature-bending property of continuum robots in their path planning process. The algorithm is computationally efficient and provides a good tradeoff between accuracy and efficiency that can be implemented to enable the safety-critical application of continuum robots. This algorithm also provides information regarding path volume and flexibility in movement. Simulation results confirm that the algorithm possesses promising potential for all types of continuum robots (following the constant curvature-bending property. We believe that this effectively balances the desired safety and efficiency requirements.

6. A Behavioral Continuum: A Look at Personality Disorders.

Science.gov (United States)

Harris, George; Kirk, Nancy A.

1985-01-01

Suggests that narcissistic, borderline, and antisocial personality disorders are not discrete diagnostic categories, but that they lie along a continuum and have in common the dimensions of degree of self-centeredness and degree of differentiation. Presents evidence supporting existence of continuum of behavior rather than discrete diagnostic…

7. Continuum of Counseling Goals: A Framework for Differentiating Counseling Strategies.

Science.gov (United States)

Bruce, Paul

1984-01-01

Presents counseling goals in a developmental continuum similar in concept to Maslow's hierarchy of needs. Discusses ego development goals, socialization goals, developmental goals, self-esteem goals, and self-realization goals and describes characteristics and implications of the continuum. (JAC)

8. Tensor Arithmetic, Geometric and Mathematic Principles of Fluid Mechanics in Implementation of Direct Computational Experiments

Directory of Open Access Journals (Sweden)

Bogdanov Alexander

2016-01-01

Full Text Available The architecture of a digital computing system determines the technical foundation of a unified mathematical language for exact arithmetic-logical description of phenomena and laws of continuum mechanics for applications in fluid mechanics and theoretical physics. The deep parallelization of the computing processes results in functional programming at a new technological level, providing traceability of the computing processes with automatic application of multiscale hybrid circuits and adaptive mathematical models for the true reproduction of the fundamental laws of physics and continuum mechanics.

9. The Continuum Limit of Causal Fermion Systems

OpenAIRE

Finster, Felix

2016-01-01

This monograph introduces the basic concepts of the theory of causal fermion systems, a recent approach to the description of fundamental physics. The theory yields quantum mechanics, general relativity and quantum field theory as limiting cases and is therefore a candidate for a unified physical theory. From the mathematical perspective, causal fermion systems provide a general framework for describing and analyzing non-smooth geometries and "quantum geometries." The dynamics is described by...

10. Teaching mathematics using excel

OpenAIRE

Bonello, Mary Rose; Camilleri, Silvana

2004-01-01

'Technology is essential in teaching and learning mathematics; it influences the mathematics that is taught and enhances students' learning.' (Principles and Standards for School Mathematics-NCTM April 2000)

11. Figures of thought mathematics and mathematical texts

CERN Document Server

Reed, David

2003-01-01

Examines the ways in which mathematical works can be read as texts, examines their textual strategiesand demonstrates that such readings provide a rich source of philosophical debate regarding mathematics.

12. Patients' experiences with continuum of care across hospitals. A multilevel analysis of Consumer Quality Index Continuum of Care

NARCIS (Netherlands)

Kollen, Boudewijn J.; Groenier, Klaas H.; Berendsen, Annette J.

Objective: Communication between professionals is essential because it contributes to an optimal continuum of care. Whether patients experience adequate continuum of care is uncertain. To address this, a questionnaire was developed to elucidate this care process from a patients' perspective. In this

13. Mathematical Modelling Approach in Mathematics Education

Science.gov (United States)

Arseven, Ayla

2015-01-01

The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…

14. Discrete Mathematics and the Secondary Mathematics Curriculum.

Science.gov (United States)

Dossey, John

Discrete mathematics, the mathematics of decision making for finite settings, is a topic of great interest in mathematics education at all levels. Attention is being focused on resolving the diversity of opinion concerning the exact nature of the subject, what content the curriculum should contain, who should study that material, and how that…

15. Introducing philosophy of mathematics

CERN Document Server

Friend, Michele

2014-01-01

What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual acc

16. Optical continuum generation on a silicon chip

Science.gov (United States)

Jalali, Bahram; Boyraz, Ozdal; Koonath, Prakash; Raghunathan, Varun; Indukuri, Tejaswi; Dimitropoulos, Dimitri

2005-08-01

Although the Raman effect is nearly two orders of magnitude stronger than the electronic Kerr nonlinearity in silicon, under pulsed operation regime where the pulse width is shorter than the phonon response time, Raman effect is suppressed and Kerr nonlinearity dominates. Continuum generation, made possible by the non-resonant Kerr nonlinearity, offers a technologically and economically appealing path to WDM communication at the inter-chip or intra-chip levels. We have studied this phenomenon experimentally and theoretically. Experimentally, a 2 fold spectral broadening is obtained by launching ~4ps optical pulses with 2.2GW/cm2 peak power into a conventional silicon waveguide. Theoretical calculations, that include the effect of two-photon-absorption, free carrier absorption and refractive index change indicate that up to >30 times spectral broadening is achievable in an optimized device. The broadening is due to self phase modulation and saturates due to two photon absorption. Additionally, we find that free carrier dynamics also contributes to the spectral broadening and cause the overall spectrum to be asymmetric with respect to the pump wavelength.

17. Diagnostic Reasoning across the Medical Education Continuum

Directory of Open Access Journals (Sweden)

C. Scott Smith

2014-07-01

Full Text Available We aimed to study linguistic and non-linguistic elements of diagnostic reasoning across the continuum of medical education. We performed semi-structured interviews of premedical students, first year medical students, third year medical students, second year internal medicine residents, and experienced faculty (ten each as they diagnosed three common causes of dyspnea. A second observer recorded emotional tone. All interviews were digitally recorded and blinded transcripts were created. Propositional analysis and concept mapping were performed. Grounded theory was used to identify salient categories and transcripts were scored with these categories. Transcripts were then unblinded. Systematic differences in propositional structure, number of concept connections, distribution of grounded theory categories, episodic and semantic memories, and emotional tone were identified. Summary concept maps were created and grounded theory concepts were explored for each learning level. We identified three major findings: (1 The “apprentice effect” in novices (high stress and low narrative competence; (2 logistic concept growth in intermediates; and (3 a cognitive state transition (between analytical and intuitive approaches in experts. These findings warrant further study and comparison.

18. Identity of Particles and Continuum Hypothesis

Science.gov (United States)

Berezin, Alexander A.

2001-04-01

Why all electrons are the same? Unlike other objects, particles and atoms (same isotopes) are forbidden to have individuality or personal history (or reveal their hidden variables, even if they do have them). Or at least, what we commonly call physics so far was unable to disprove particle's sameness (Berezin and Nakhmanson, Physics Essays, 1990). Consider two opposing hypotheses: (A) particles are indeed absolutely same, or (B) they do have individuality, but it is beyond our capacity to demonstrate. This dilemma sounds akin to undecidability of Continuum Hypothesis of existence (or not) of intermediate cardinalities between integers and reals (P.Cohen). Both yes and no of it are true. Thus, (alleged) sameness of electrons and atoms may be a physical translation (embodiment) of this fundamental Goedelian undecidability. Experiments unlikely to help: even if we find that all electrons are same within 30 decimal digits, could their masses (or charges) still differ in100-th digit? Within (B) personalized informationally rich (infinitely rich?) digital tails (starting at, say, 100-th decimal) may carry individual record of each particle history. Within (A) parameters (m, q) are indeed exactly same in all digits and their sameness is based on some inherent (meta)physical principle akin to Platonism or Eddington-type numerology.

19. Continuum Thermodynamics - Part II: Applications and Examples

Science.gov (United States)

Albers, Bettina; Wilmanski, Krzysztof

The intention by writing Part II of the book on continuum thermodynamics was the deepening of some issues covered in Part I as well as a development of certain skills in dealing with practical problems of oscopic processes. However, the main motivation for this part is the presentation of main facets of thermodynamics which appear when interdisciplinary problems are considered. There are many monographs on the subjects of solid mechanics and thermomechanics, on fluid mechanics and on coupled fields but most of them cover only special problems in great details which are characteristic for the chosen field. It is rather seldom that relations between these fields are discussed. This concerns, for instance, large deformations of the skeleton of porous materials with diffusion (e.g. lungs), couplings of deformable particles with the fluid motion in suspensions, couplings of adsorption processes and chemical reactions in immiscible mixtures with diffusion, various multi-component aspects of the motion, e.g. of avalanches, such as segregation processes, etc...

20. Multigrid treatment of implicit continuum diffusion

Science.gov (United States)

Francisquez, Manaure; Zhu, Ben; Rogers, Barrett

2017-10-01

Implicit treatment of diffusive terms of various differential orders common in continuum mechanics modeling, such as computational fluid dynamics, is investigated with spectral and multigrid algorithms in non-periodic 2D domains. In doubly periodic time dependent problems these terms can be efficiently and implicitly handled by spectral methods, but in non-periodic systems solved with distributed memory parallel computing and 2D domain decomposition, this efficiency is lost for large numbers of processors. We built and present here a multigrid algorithm for these types of problems which outperforms a spectral solution that employs the highly optimized FFTW library. This multigrid algorithm is not only suitable for high performance computing but may also be able to efficiently treat implicit diffusion of arbitrary order by introducing auxiliary equations of lower order. We test these solvers for fourth and sixth order diffusion with idealized harmonic test functions as well as a turbulent 2D magnetohydrodynamic simulation. It is also shown that an anisotropic operator without cross-terms can improve model accuracy and speed, and we examine the impact that the various diffusion operators have on the energy, the enstrophy, and the qualitative aspect of a simulation. This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).

1. Performance-based shape optimization of continuum structures

International Nuclear Information System (INIS)

Liang Qingquan

2010-01-01

This paper presents a performance-based optimization (PBO) method for optimal shape design of continuum structures with stiffness constraints. Performance-based design concepts are incorporated in the shape optimization theory to achieve optimal designs. In the PBO method, the traditional shape optimization problem of minimizing the weight of a continuum structure with displacement or mean compliance constraints is transformed to the problem of maximizing the performance of the structure. The optimal shape of a continuum structure is obtained by gradually eliminating inefficient finite elements from the structure until its performance is maximized. Performance indices are employed to monitor the performance of optimized shapes in an optimization process. Performance-based optimality criteria are incorporated in the PBO method to identify the optimum from the optimization process. The PBO method is used to produce optimal shapes of plane stress continuum structures and plates in bending. Benchmark numerical results are provided to demonstrate the effectiveness of the PBO method for generating the maximum stiffness shape design of continuum structures. It is shown that the PBO method developed overcomes the limitations of traditional shape optimization methods in optimal design of continuum structures. Performance-based optimality criteria presented can be incorporated in any shape and topology optimization methods to obtain optimal designs of continuum structures.

2. Mathematics related anxiety: Mathematics bogeyman or not?

Directory of Open Access Journals (Sweden)

Videnović Marina

2011-01-01

Full Text Available Data of the PISA 2003 survey indicate high levels of mathematics anxiety of students in Serbia. More than half of our students worry whether they will have difficulties in mathematics class or whether they will earn poor marks. Aims of this study therefore are: examining relationship between math anxiety and achievement at mathematics literacy scale; establishing possible predictors of math anxiety and identification of students' groups in relations to their relationship towards mathematics as a subject. Mathematics anxiety is statistically negatively correlated with school achievement and achievement at mathematics literacy scale. Socio-demographic factors, motivational and cognitive aspects related to learning mathematics, perception of school and classroom climate explain 40% variance of mathematics anxiety. Based on students' relationship towards mathematics they cam be divided into three groups; while dimensions that apart them are uninterested-interested in mathematics and presence-absence of anxiety. The group displaying anxiety scores lowest among the three. Applying qualitative analysis students' and teachers' attitudes on specific issues related to teaching and learning mathematics was examined.

3. SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics

Energy Technology Data Exchange (ETDEWEB)

Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.

1998-09-01

This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.

4. Continuum simulations of water flow past fullerene molecules

DEFF Research Database (Denmark)

Popadic, A.; Praprotnik, M.; Koumoutsakos, P.

2015-01-01

We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow...

5. Expansion of continuum functions on resonance wave functions and amplitudes

International Nuclear Information System (INIS)

Bang, J.; Gareev, F.A.; Gizzatkulov, M.H.; Goncharov, S.A.

1978-01-01

To overcome difficulties encountered with wave functions of continuum spectrum (for example, in a shell model with continuum) the pole expansion (by the Mittag-Leffler theorem) of wave functions, scattering amplitudes and the Green functions with positive energies are considered. It is shown that resonance functions (the Gamov functions) form a complete set over which the continuum functions could be expanded. The general view of these expansions for final potentials and for the Coulomb repulsion potential are obtained and discussed. It is shown that the application of the method to nuclear structure calculations leads to simple algebraic equations

6. Mathematical theories of classical particle channeling in perfect crystals

International Nuclear Information System (INIS)

Dumas, H. Scott

2005-01-01

We present an overview of our work on rigorous mathematical theories of channeling for highly energetic positive particles moving in classical perfect crystal potentials. Developed over the last two decades, these theories include: (i) a comprehensive, highly mathematical theory based on Nekhoroshev's theorem which embraces both axial and planar channeling as well as certain non-channeling particle motions (ii) a theory of axial channeling for relativistic particles based on a single-phase averaging method for ordinary differential equations and (iii) a theory of planar channeling for relativistic particles based on a two-phase averaging method for ordinary differential equations. Here we touch briefly on (i) and (ii), then focus on (iii). Together these theories place Lindhard's continuum model approximations on a firm mathematical foundation, and should serve as the starting point for more refined mathematical treatments of channeling

7. Topics in Applied Continuum Mechanics : Symposium

CERN Document Server

Ziegler, F

1974-01-01

THE FOUNDATIONS OF THERMOELASTICITY-EXPERIMENTS AND THEORY (A. PHILLIPS) 1. Introduction 2. The initial yield surface 4 3. The subsequent yield surface 6 4. Some theoretical consequences 10 References 13 ON THE PHYSICS AND MATHEMATICS OF SELF-STRESSES (E. KRONER) 1. Introduction 22 2. The physical origin of the self-stresses 23 3. Formulation of the mathematical problem of self-stresses 27 4. The method of modified Green's functions 30 5. Concluding remarks 35 References 38 DISTORTION IN MICROPOLAR ELASTICITY (W. NOWACKI) 1. Fundamental relations and equations 39 2. Principle of virtual work 42 3. Theorem of minimum of the complimentary work 43 • 4. Reciprocity theorem 44 5. Equations in displacements and rotations 47 6. Compatibility equations 51 References 57 THE YIELD CRITERION IN THE GENERAL CASE OF NONHOMOGENEOUS STRESS AND DEFORMATION FIELDS (J. A. KONIG and W. OLSZAK) 1. Introduction 58 2. The plasticity condition 61 3. Special cases of the yield condition 62 4. Example: Pure bending 63 5. Criteria f...

8. Making Sense of Mathematics

Science.gov (United States)

Umphrey, Jan

2011-01-01

The National Council of Teachers of Mathematics (NCTM) is a voice and advocate for mathematics educators, working to ensure that all students receive equitable mathematics learning of the highest quality. To help teachers and school leaders understand the Common Core State Standards for Mathematics (CCSSM) and to point out how the CCSSM can be…

9. Mathematics through Millenia

DEFF Research Database (Denmark)

Hansen, Vagn Lundsgaard

2005-01-01

A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations.......A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations....

10. Mathematics through millenia

DEFF Research Database (Denmark)

Hansen, Vagn Lundsgaard

A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations.......A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations....

11. Using Mathematics, Mathematical Applications, Mathematical Modelling, and Mathematical Literacy: A Theoretical Study

Science.gov (United States)

Mumcu, Hayal Yavuz

2016-01-01

The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…

12. RENEWAL OF BASIC LAWS AND PRINCIPLES FOR POLAR CONTINUUM THEORIES (Ⅱ)-MICROMORPHIC CONTINUUM THEORY AND COUPLE STRESS THEORY

Institute of Scientific and Technical Information of China (English)

戴天民

2003-01-01

The purpose is to reestablish the balance laws of momentum, angular momentumand energy and to derive the corresponding local and nonlocal balance equations formicromorphic continuum mechanics and couple stress theory. The desired results formicromorphic continuum mechanics and couple stress theory are naturally obtained via directtransitions and reductions from the coupled conservation law of energy for micropolarcontinuum theory, respectively. The basic balance laws and equation s for micromorphiccontinuum mechanics and couple stress theory are constituted by combining these resultsderived here and the traditional conservation laws and equations of mass and microinertiaand the entropy inequality. The incomplete degrees of the former related continuum theoriesare clarified. Finally, some special cases are conveniently derived.

13. Continuum approximation of the Fermi-Pasta-Ulam lattice

International Nuclear Information System (INIS)

Martina, L.

1979-01-01

A continuum approximation method is applied in order to discuss the connection between some properties of the infinite Fermi-Pasta-Ulam lattice and the ones displayed by the Korteweg-de Vries equation

14. Asymmetric continuum extreme processes in solids and fluids

CERN Document Server

Teisseyre, Roman

2014-01-01

This book deals with a class of basic deformations in asymmetric continuum theory. It describes molecular deformations and transport velocities in fluids, strain deformations in solids as well as the molecular transport, important in fracture processes.

15. Gamma-ray continuum spectra from heavy ion reactions

International Nuclear Information System (INIS)

Beene, J.R.; Halbert, M.L.; Hensley, D.C.; Sarantites, D.G.; Westerberg, L.W.; Geoffroy, K.; Woodward, R.

1979-01-01

A detailed quantitative analysis of the yrast continuum was attempted by subtracting the underlying statistical continnuum in a way that makes allowance for ignorance of its detailed shape. This procedure makes it possible to obtain the moment of inertia as a function of spin over a wide range of spins. The results of this continuum spectra shape analysis can be used to calculate the first and second moments of the continuum multiplicity distribution. Continuum spectra were taken during the bombardment of 150 Nd by 115- and 130-MeV beams of 20 Ne, also the first and second moments of the γ-ray multiplicity distribution as a function of the gamma energy. The moment of inertia versus spin and the deduced Yrast continuua are shown. 10 references

16. Coupling of nonlocal and local continuum models by the Arlequinapproach

KAUST Repository

Han, Fei; Lubineau, Gilles

2011-01-01

for the 'fine scale' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can

17. Hybrid molecular–continuum methods: From prototypes to coupling software

KAUST Repository

Neumann, Philipp; Eckhardt, Wolfgang; Bungartz, Hans-Joachim

2014-01-01

In this contribution, we review software requirements in hybrid molecular-continuum simulations. For this purpose, we analyze a prototype implementation which combines two frameworks-the Molecular Dynamics framework MarDyn and the framework Peano

18. Evaluation the Effectiveness of the US Navy Leadership Continuum Curricula

National Research Council Canada - National Science Library

Duncan-White, Delores

1997-01-01

.... A Leadership Continuum Survey Questionnaire was developed to identified and analyze the student's attitudes concerning the effectiveness of the knowledge and skills taught in the course and how these...

19. Dynamic Modelling for Planar Extensible Continuum Robot Manipulators

Science.gov (United States)

2006-01-01

to the OCTARM continuum ma- nipulator. The OCTARM manipulator is a biologically inspired soft robot manipulator resembling an elephant trunk or an... octopus arm [18]. The OCTARM, shown in Figure 1, is a three-section robot with nine degrees of freedom. Aside from two axis bending with constant...increasing interest in designing �biologically inspired � continuum robots . Some of these designs are mimicking trunks [8], [25], tentacles [17], [21], [24

20. Identification of a transcriptional signature for the wound healing continuum

OpenAIRE

Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

2014-01-01

There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Mi...

1. Finite Element Method-Based Kinematics and Closed-Loop Control of Soft, Continuum Manipulators.

Science.gov (United States)

Bieze, Thor Morales; Largilliere, Frederick; Kruszewski, Alexandre; Zhang, Zhongkai; Merzouki, Rochdi; Duriez, Christian

2018-06-01

This article presents a modeling methodology and experimental validation for soft manipulators to obtain forward kinematic model (FKM) and inverse kinematic model (IKM) under quasi-static conditions (in the literature, these manipulators are usually classified as continuum robots. However, their main characteristic of interest in this article is that they create motion by deformation, as opposed to the classical use of articulations). It offers a way to obtain the kinematic characteristics of this type of soft robots that is suitable for offline path planning and position control. The modeling methodology presented relies on continuum mechanics, which does not provide analytic solutions in the general case. Our approach proposes a real-time numerical integration strategy based on finite element method with a numerical optimization based on Lagrange multipliers to obtain FKM and IKM. To reduce the dimension of the problem, at each step, a projection of the model to the constraint space (gathering actuators, sensors, and end-effector) is performed to obtain the smallest number possible of mathematical equations to be solved. This methodology is applied to obtain the kinematics of two different manipulators with complex structural geometry. An experimental comparison is also performed in one of the robots, between two other geometric approaches and the approach that is showcased in this article. A closed-loop controller based on a state estimator is proposed. The controller is experimentally validated and its robustness is evaluated using Lypunov stability method.

2. VARIATIONAL PRINCIPLES FOR NONLOCAL CONTINUUM MODEL OF ORTHOTROPIC GRAPHENE SHEETS EMBEDDED IN AN ELASTIC MEDIUM

Institute of Scientific and Technical Information of China (English)

2012-01-01

Equations governing the vibrations and buckling of multilayered orthotropic graphene sheets can be expressed as a system of n partial differential equations where n refers to the number of sheets.This description is based on the continuum model of the graphene sheets which can also take the small scale effects into account by employing a nonlocal theory.In the present article a variational principle is derived for the nonlocal elastic theory of rectangular graphene sheets embedded in an elastic medium and undergoing transverse vibrations.Moreover the graphene sheets are subject to biaxial compression.Rayleigh quotients are obtained for the frequencies of freely vibrating graphene sheets and for the buckling load. The influence of small scale effects on the frequencies and the buckling load can be observed qualiatively from the expressions of the Rayleigh quotients.Elastic medium is modeled as a combination of Winkler and Pasternak foundations acting on the top and bottom layers of the mutilayered nano-structure.Natural boundary conditions of the problem are derived using the variational principle formulated in the study.It is observed that free boundaries lead to coupled boundary conditions due to nonlocal theory used in the continuum formulation while the local (classical) elasticity theory leads to uncoupled boundary conditions.The mathematical methods used in the study involve calculus of variations and the semi-inverse method for deriving the variational integrals.

3. Morphing Continuum Theory: A First Order Approximation to the Balance Laws

Science.gov (United States)

Wonnell, Louis; Cheikh, Mohamad Ibrahim; Chen, James

2017-11-01

Morphing Continuum Theory is constructed under the framework of Rational Continuum Mechanics (RCM) for fluid flows with inner structure. This multiscale theory has been successfully emplyed to model turbulent flows. The framework of RCM ensures the mathematical rigor of MCT, but contains new material constants related to the inner structure. The physical meanings of these material constants have yet to be determined. Here, a linear deviation from the zeroth-order Boltzmann-Curtiss distribution function is derived. When applied to the Boltzmann-Curtiss equation, a first-order approximation of the MCT governing equations is obtained. The integral equations are then related to the appropriate material constants found in the heat flux, Cauchy stress, and moment stress terms in the governing equations. These new material properties associated with the inner structure of the fluid are compared with the corresponding integrals, and a clearer physical interpretation of these coefficients emerges. The physical meanings of these material properties is determined by analyzing previous results obtained from numerical simulations of MCT for compressible and incompressible flows. The implications for the physics underlying the MCT governing equations will also be discussed. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.

4. Las Matematicas: Lenguaje Universal. Grados Intermedios, Niveles 4-6. Teacher's Guide II (Mathematics: A Universal Language. Intermediate Grades, Levels 4-6. Teacher's Guide II).

Science.gov (United States)

Dissemination and Assessment Center for Bilingual Education, Austin, TX.

This guide covers the second part of a bilingual, sequential mathematics course. The course integrates culturally relevant situations and illustrations with mathematics to reinforce the student's self-concept and encourage cultural pride. This program may be used as a self-contained continuum, as a supplement to another course of study, for…

5. Las Matematicas: Lenguaje Universal. Grados Intermedios, Niveles 1-3. Teacher's Guide I (Mathematics: A Universal Language. Intermediate Grades, Level 1-3. Teacher's Guide I).

Science.gov (United States)

Dissemination and Assessment Center for Bilingual Education, Austin, TX.

This guide covers the first part of a bilingual, sequential mathematics course. The course integrates culturally relevant situations and illustrations with mathematics to reinforce the student's self-concept and encourage cultural pride. This program may be used as a self-contained continuum, as a supplement to another course of study, for…

6. Effects of continuum breakdown on hypersonic aerothermodynamics for reacting flow

Science.gov (United States)

Holman, Timothy D.; Boyd, Iain D.

2011-02-01

This study investigates the effects of continuum breakdown on the surface aerothermodynamic properties (pressure, stress, and heat transfer rate) of a sphere in a Mach 25 flow of reacting air in regimes varying from continuum to a rarefied gas. Results are generated using both continuum [computational fluid dynamics (CFD)] and particle [direct simulation Monte Carlo (DSMC)] approaches. The DSMC method utilizes a chemistry model that calculates the backward rates from an equilibrium constant. A preferential dissociation model is modified in the CFD method to better compare with the vibrationally favored dissociation model that is utilized in the DSMC method. Tests of these models are performed to confirm their validity and to compare the chemistry models in both numerical methods. This study examines the effect of reacting air flow on continuum breakdown and the surface properties of the sphere. As the global Knudsen number increases, the amount of continuum breakdown in the flow and on the surface increases. This increase in continuum breakdown significantly affects the surface properties, causing an increase in the differences between CFD and DSMC. Explanations are provided for the trends observed.

7. Continuum-level modelling of cellular adhesion and matrix production in aggregates.

Science.gov (United States)

Geris, Liesbet; Ashbourn, Joanna M A; Clarke, Tim

2011-05-01

Key regulators in tissue-engineering processes such as cell culture and cellular organisation are the cell-cell and cell-matrix interactions. As mathematical models are increasingly applied to investigate biological phenomena in the biomedical field, it is important, for some applications, that these models incorporate an adequate description of cell adhesion. This study describes the development of a continuum model that represents a cell-in-gel culture system used in bone-tissue engineering, namely that of a cell aggregate embedded in a hydrogel. Cell adhesion is modelled through the use of non-local (integral) terms in the partial differential equations. The simulation results demonstrate that the effects of cell-cell and cell-matrix adhesion are particularly important for the survival and growth of the cell population and the production of extracellular matrix by the cells, concurring with experimental observations in the literature.

8. Integrated radio continuum spectra of galaxies

Energy Technology Data Exchange (ETDEWEB)

Marvil, Joshua; Owen, Frazer [National Radio Astronomy Observatory, 1003 Lopezville Rd, Socorro, NM 87801 (United States); Eilek, Jean, E-mail: josh.marvil@csiro.au [New Mexico Tech, Socorro, NM 87801 (United States)

2015-01-01

We investigate the spectral shape of the total continuum radiation, between 74 MHz and 5 GHz (400-6 cm in wavelength), for a large sample of bright galaxies. We take advantage of the overlapping survey coverage of the VLA Low-Frequency Sky Survey, the Westerbork Northern Sky Survey, the NRAO VLA Sky Survey, and the Green Bank 6 cm Survey to achieve significantly better resolution, sensitivity, and sample size compared to prior efforts of this nature. For our sample of 250 bright galaxies we measure a mean spectral index, α, of –0.69 between 1.4 and 4.85 GHz, –0.55 between 325 MHz and 1.4 GHz, and –0.45 between 74 and 325 MHz, which amounts to a detection of curvature in the mean spectrum. The magnitude of this curvature is approximately Δα = –0.2 per logarithmic frequency decade when fit with a generalized function having constant curvature. No trend in low-frequency spectral flattening versus galaxy inclination is evident in our data, suggesting that free-free absorption is not a satisfying explanation for the observed curvature. The ratio of thermal to non-thermal emission is estimated through two independent methods: (1) using the IRAS far-IR fluxes and (2) with the value of the total spectral index. Method (1) results in a distribution of 1.4 GHz thermal fractions of 9% ± 3%, which is consistent with previous studies, while method (2) produces a mean 1.4 GHz thermal fraction of 51% with dispersion 26%. The highly implausible values produced by method (2) indicate that the sum of typical power-law thermal and non-thermal components is not a viable model for the total spectral index between 325 and 1.4 GHz. An investigation into relationships between spectral index, infrared-derived quantities, and additional source properties reveals that galaxies with high radio luminosity in our sample are found to have, on average, a flatter radio spectral index, and early types tend to have excess radio emission when compared to the radio-infrared ratio of later

9. Mathematics without boundaries surveys in pure mathematics

CERN Document Server

Pardalos, Panos

2014-01-01

The contributions in this volume have been written by eminent scientists from the international mathematical community and present significant advances in several theories, methods and problems of Mathematical Analysis, Discrete Mathematics, Geometry and their Applications. The chapters focus on both old and recent developments in Functional Analysis, Harmonic Analysis, Complex Analysis, Operator Theory, Combinatorics, Functional Equations, Differential Equations as well as a variety of Applications. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical Sciences, and especially to graduate students looking for the  latest information.

10. An Invitation to Mathematics

CERN Document Server

Schleicher, Dierk

2011-01-01

This "Invitation to Mathematics" consists of 14 contributions, many from the world's leading mathematicians, which introduce the readers to exciting aspects of current mathematical research. The contributions are as varied as the personalities of active mathematicians, but together they show mathematics as a rich and lively field of research. The contributions are written for interested students at the age of transition between high school and university who know high school mathematics and perhaps competition mathematics and who want to find out what current research mathematics is

11. On the Definition of Energy for a Continuum, Its Conservation Laws, and the Energy-Momentum Tensor

Directory of Open Access Journals (Sweden)

Mayeul Arminjon

2016-01-01

Full Text Available We review the energy concept in the case of a continuum or a system of fields. First, we analyze the emergence of a true local conservation equation for the energy of a continuous medium, taking the example of an isentropic continuum in Newtonian gravity. Next, we consider a continuum or a system of fields in special relativity: we recall that the conservation of the energy-momentum tensor contains two local conservation equations of the same kind as before. We show that both of these equations depend on the reference frame and that, however, they can be given a rigorous meaning. Then, we review the definitions of the canonical and Hilbert energy-momentum tensors from a Lagrangian through the principle of stationary action in general space-time. Using relatively elementary mathematics, we prove precise results regarding the definition of the Hilbert tensor field, its uniqueness, and its tensoriality. We recall the meaning of its covariant conservation equation. We end with a proof of uniqueness of the energy density and flux, when both depend polynomially on the fields.

12. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

Science.gov (United States)

Ma, Qiancheng; Tipping, Richard H.

1998-01-01

The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning

13. The argument of mathematics

CERN Document Server

Aberdein, Andrew

2014-01-01

This book presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. It offers large array of examples ranging from the history of mathematics to formal proof verification.

14. Mathematical knowledge in teaching

CERN Document Server

Rowland, Tim

2011-01-01

This book examines issues of considerable significance in addressing global aspirations to raise standards of teaching and learning in mathematics by developing approaches to characterizing, assessing and developing mathematical knowledge for teaching.

15. Developing My Mathematics Identity

Science.gov (United States)

Gonzalez, Lidia

2016-01-01

Assuming the role of storyteller, the author uses her experiences as a graduate student and beginning teacher to reflect critically on issues related to mathematics, mathematics education, gender, and diversity.

16. Journal of applied mathematics

National Research Council Canada - National Science Library

2001-01-01

"[The] Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics...

17. Semiotic Scaffolding in Mathematics

DEFF Research Database (Denmark)

Johansen, Mikkel Willum; Misfeldt, Morten

2015-01-01

This paper investigates the notion of semiotic scaffolding in relation to mathematics by considering its influence on mathematical activities, and on the evolution of mathematics as a research field. We will do this by analyzing the role different representational forms play in mathematical...... cognition, and more broadly on mathematical activities. In the main part of the paper, we will present and analyze three different cases. For the first case, we investigate the semiotic scaffolding involved in pencil and paper multiplication. For the second case, we investigate how the development of new...... in both mathematical cognition and in the development of mathematics itself, but mathematical cognition cannot itself be reduced to the use of semiotic scaffolding....

18. Mathematics for the nonmathematician

CERN Document Server

Kline, Morris

1967-01-01

Erudite and entertaining overview follows development of mathematics from ancient Greeks to present. Topics include logic and mathematics, the fundamental concept, differential calculus, probability theory, much more. Exercises and problems.

19. Mathematical Modeling Using MATLAB

National Research Council Canada - National Science Library

Phillips, Donovan

1998-01-01

.... Mathematical Modeling Using MA MATLAB acts as a companion resource to A First Course in Mathematical Modeling with the goal of guiding the reader to a fuller understanding of the modeling process...

20. ALMA BAND 8 CONTINUUM EMISSION FROM ORION SOURCE I

Energy Technology Data Exchange (ETDEWEB)

Hirota, Tomoya; Matsumoto, Naoko [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka-shi, Tokyo 181-8588 (Japan); Machida, Masahiro N.; Matsushita, Yuko [Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395 (Japan); Motogi, Kazuhito; Honma, Mareki [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Hoshigaoka2-12, Mizusawa-ku, Oshu-shi, Iwate 023-0861 (Japan); Kim, Mi Kyoung [Korea Astronomy and Space Science Institute, Hwaam-dong 61-1, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Burns, Ross A., E-mail: tomoya.hirota@nao.ac.jp [Joint Institute for VLBI in Europe, Postbus 2, 7990 AA, Dwingeloo (Netherlands)

2016-12-20

We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest–southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperature is evaluated to be 700–800 K. It is much lower than that in the case of proton–electron or H{sup −} free–free radiations. Our data are consistent with the latest ALMA results by Plambeck and Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.

1. Reducing Actuator Requirements in Continuum Robots Through Optimized Cable Routing.

Science.gov (United States)

Case, Jennifer C; White, Edward L; SunSpiral, Vytas; Kramer-Bottiglio, Rebecca

2018-02-01

Continuum manipulators offer many advantages compared to their rigid-linked counterparts, such as increased degrees of freedom and workspace volume. Inspired by biological systems, such as elephant trunks and octopus tentacles, many continuum manipulators are made of multiple segments that allow large-scale deformations to be distributed throughout the body. Most continuum manipulators currently control each segment individually. For example, a planar cable-driven system is typically controlled by a pair of cables for each segment, which implies two actuators per segment. In this article, we demonstrate how highly coupled crossing cable configurations can reduce both actuator count and actuator torque requirements in a planar continuum manipulator, while maintaining workspace reachability and manipulability. We achieve highly coupled actuation by allowing cables to cross through the manipulator to create new cable configurations. We further derive an analytical model to predict the underactuated manipulator workspace and experimentally verify the model accuracy with a physical system. We use this model to compare crossing cable configurations to the traditional cable configuration using workspace performance metrics. Our work here focuses on a simplified planar robot, both in simulation and in hardware, with the goal of extending this to spiraling-cable configurations on full 3D continuum robots in future work.

CERN Document Server

Murphy, Patrick

1982-01-01

Modern Mathematics: Made Simple presents topics in modern mathematics, from elementary mathematical logic and switching circuits to multibase arithmetic and finite systems. Sets and relations, vectors and matrices, tesselations, and linear programming are also discussed.Comprised of 12 chapters, this book begins with an introduction to sets and basic operations on sets, as well as solving problems with Venn diagrams. The discussion then turns to elementary mathematical logic, with emphasis on inductive and deductive reasoning; conjunctions and disjunctions; compound statements and conditional

Science.gov (United States)

Roberts, A. M.

1974-01-01

The effect of different secondary school mathematics syllabi on first-year performance in college-level mathematics was studied in an attempt to evaluate the syllabus change. Students with a modern mathematics background performed sigficantly better on most first-year units. A topic-by-topic analysis of results is included. (DT)

4. Contrasts in Mathematical Challenges in A-Level Mathematics and Further Mathematics, and Undergraduate Mathematics Examinations

Science.gov (United States)

Darlington, Ellie

2014-01-01

This article describes part of a study which investigated the role of questions in students' approaches to learning mathematics at the secondary-tertiary interface, focussing on the enculturation of students at the University of Oxford. Use of the Mathematical Assessment Task Hierarchy taxonomy revealed A-level Mathematics and Further Mathematics…

5. Mathematics and quantum mechanics

International Nuclear Information System (INIS)

Santander, M.

2000-01-01

Several episodes in the relation between Mathematics and Quantum Mechanics are discussed; and the emphasis is put in the existence of multiple and sometimes unexpected connections between ideas originating in Mathematics and in Quantum Physics. The question of the unresasonable effectiveness of Mathematics in Physics is also presented in the same light. (Author) 3 refs

6. Mathematics Teaching as Praxis

Science.gov (United States)

Grootenboer, Peter; Edwards-Groves, Christine

2014-01-01

In this paper we argue that mathematics teaching can be conceptualised as a form of praxis. Viewing mathematics teaching as praxis foregrounds the moral nature of teaching and the educational practices that are developed in response to the educational needs in particular sites. The case for praxis in mathematics education is then made by drawing…

7. Mathematics Teaching Today

Science.gov (United States)

Martin, Tami S.; Speer, William R.

2009-01-01

This article describes features, consistent messages, and new components of "Mathematics Teaching Today: Improving Practice, Improving Student Learning" (NCTM 2007), an updated edition of "Professional Standards for Teaching Mathematics" (NCTM 1991). The new book describes aspects of high-quality mathematics teaching; offers a model for observing,…

8. Empowering Mathematical Practices

Science.gov (United States)

Coomes, Jacqueline; Lee, Hyung Sook

2017-01-01

Mathematics teachers want to empower students as mathematical thinkers and doers (NCTM 2000). Specific ways of thinking and doing mathematics were described in the Process Standards (NCTM 2000); they were further characterized as habits of mind (Mark, Goldenberg, and Sword 2010); and more recently, they were detailed in the Common Core's Standards…

9. Learning Environments in Mathematics

Science.gov (United States)

Turner, Vanshelle E.

2017-01-01

Learning mathematics is problematic for most primary school age children because mathematics is rote and the memorization of steps rather than an approach to seeing relationships that builds inquiry and understanding. Therefore, the traditional "algorithmic" way of teaching mathematics has not fully prepared students to be critical…

10. Mathematics a minimal introduction

CERN Document Server

Buium, Alexandru

2013-01-01

Pre-Mathematical Logic Languages Metalanguage Syntax Semantics Tautologies Witnesses Theories Proofs Argot Strategies Examples Mathematics ZFC Sets Maps Relations Operations Integers Induction Rationals Combinatorics Sequences Reals Topology Imaginaries Residues p-adics Groups Orders Vectors Matrices Determinants Polynomials Congruences Lines Conics Cubics Limits Series Trigonometry Integrality Reciprocity Calculus Metamodels Categories Functors Objectives Mathematical Logic Models Incompleteness Bibliography Index

11. Masculinities in mathematics

CERN Document Server

Mendick, Heather

2006-01-01

The study of mathematics, with other ''gendered'' subjects such as science and engineering, usually attracts more male than female pupils. This book explores this phenomenon, addressing the important question of why more boys than girls choose to study mathematics. It illuminates what studying mathematics means for both students and teachers.

12. Mathematics Connection: Editorial Policies

African Journals Online (AJOL)

Focus and Scope. MATHEMATICS CONNECTION aims at providing a forum to promote the development of Mathematics Education in Ghana. Articles that seek to enhance the teaching and/or learning of mathematics at all levels of the educational system are welcome ...

13. Mathematics Connection: Contact

African Journals Online (AJOL)

Principal Contact. Dr. Kofi Mereku Executive Editor Department of Mathematics Education, UCE Mathematical Association of Ghana, C/o Department of Mathematics Education University College of Education of Winneba P. O. Box 25, Winneba, Ghana Phone: +233244961318. Email: dkmereku@uew.edu.gh ...

Science.gov (United States)

Liljedahl, Peter

2004-01-01

In 1943 Jacques Hadamard gave a series of lectures on mathematical invention at the Ecole Libre des Hautes Etudes in New York City. These talks were subsequently published as The Psychology of Mathematical Invention in the Mathematical Field (Hadamard, 1945). In this article I present a study that mirrors the work of Hadamard. Results both…

15. Utah's New Mathematics Core

Science.gov (United States)

Utah State Office of Education, 2011

2011-01-01

Utah has adopted more rigorous mathematics standards known as the Utah Mathematics Core Standards. They are the foundation of the mathematics curriculum for the State of Utah. The standards include the skills and understanding students need to succeed in college and careers. They include rigorous content and application of knowledge and reflect…

16. Mathematical Sciences in Australia

Science.gov (United States)

Thomas, Jan; Muchatuta, Michelle; Wood, Leigh

2009-01-01

This article investigates enrolment trends in mathematical sciences in Australian universities. Data has been difficult to extract and the coding for mathematical disciplines has made investigation challenging. We show that the number of mathematics major undergraduates in Australia is steadily declining though the number studying…

17. Who Can Know Mathematics?

Science.gov (United States)

Walshaw, Margaret

2014-01-01

This paper explores contemporary thinking about learning mathematics, and within that, social justice within mathematics education. The discussion first looks at mechanisms offered by conventional explanations on the emancipatory project and then moves towards more recent insights developed within mathematics education. Synergies are drawn between…

18. Variation and Mathematics Pedagogy

Science.gov (United States)

Leung, Allen

2012-01-01

This discussion paper put forwards variation as a theme to structure mathematical experience and mathematics pedagogy. Patterns of variation from Marton's Theory of Variation are understood and developed as types of variation interaction that enhance mathematical understanding. An idea of a discernment unit comprising mutually supporting variation…

19. Teaching Mathematics as Agape

Science.gov (United States)

Amidon, Joel C.

2011-01-01

What happens when the problem of inequitable access to mathematics is addressed by agape (pronounced agapa) or attending to the relationships students develop with mathematics? To respond to this question, this paper offers a description of the journey towards teaching mathematics as agape. First, I organized examples of equity pedagogy around the…

20. Mathematics of Risk Taking

Author Affiliations. K B Athreya1 2 M G Nadkarni3. Department of Mathematics Iowa State University, Ames, Iowa; I M I, Department of Mathematics, Indian Institute of Science, Bangalore, 560012, India. Department of Mathematics, University of Mumbai Kalina, Mumbai, 400098, India.

1. Mathematics and Statistics Research Department progress report for period ending June 30, 1976

International Nuclear Information System (INIS)

Gosslee, D.G.; Shelton, B.K.; Ward, R.C.; Wilson, D.G.

1976-10-01

Brief summaries of work done in mathematics and related fields are presented. Research in mathematics and statistics concerned statistical estimation, statistical testing, experiment design, probability, continuum mechanics, functional integration, matrices and other operators, and mathematical software. More applied studies were conducted in the areas of analytical chemistry, biological research, chemistry and physics research, energy research, environmental research, health physics research, materials research, reactor and thermonuclear research, sampling inspection, quality control, and life testing, and uranium resource evaluation research. Additional sections deal with educational activities, presentation of research results, and professional activities. 7 figures, 9 tables

2. Unexpected strong attraction in the presence of continuum bound state

International Nuclear Information System (INIS)

Delfino, A.; Frederico, T.

1992-06-01

The result of few-particle ground-state calculation employing a two-particle non-local potential supporting a continuum bound state in addition to a negative-energy bound state has occasionally revealed unexpected large attraction in producing a very strongly bound ground state. In the presence of the continuum bound state the difference of phase shift between zero and infinite energies has an extra jump of φ as in the presence of an additional bound state. The wave function of the continuum bound state is identical with that of a strongly bound negative-energy state, which leads us to postulate a pseudo bound state in the two-particle system in order to explain the unexpected attraction. The role of the Pauli forbidden states is expected to be similar to these pseudo states. (author)

3. Alfven continuum and high-frequency eigenmodes in optimized stellarators

International Nuclear Information System (INIS)

Kolesnichenko, Ya.I.; Lutsenko, V.V.; Wobig, H.; Yakovenko, Yu.V.; Fesenyuk, O.P.

2001-01-01

An equation of shear Alfven eigenmodes (AE) in optimized stellarators of Wendelstein line (Helias configurations) is derived. The metric tensor coefficients, which are contained in this equation, are calculated analytically. Two numerical codes are developed: the first one, COBRA (COntinuum BRanches of Alfven waves), is intended for the investigation of the structure of Alfven continuum; the second, BOA (Branches Of Alfven modes), solves the eigenvalue problem. The family of possible gaps in Alfven continuum of a Helias configuration is obtained. It is predicted that there exist gaps which arise due to or are strongly affected by the variation of the shape of the plasma cross section along the large azimuth of the torus. In such gaps, discrete eigenmodes, namely, helicity-induced eigenmodes (HAE 21 ) and mirror-induced eigenmodes (MAE) are found. It is shown that plasma inhomogeneity may suppress the AEs with a wide region of localization

4. ICMS Workshop on Differential Geometry and Continuum Mechanics

CERN Document Server

Grinfeld, Michael; Knops, R

2015-01-01

This book examines the exciting interface between differential geometry and continuum mechanics, now recognised as being of increasing technological significance. Topics discussed include isometric embeddings in differential geometry and the relation with microstructure in nonlinear elasticity, the use of manifolds in the description of microstructure in continuum mechanics, experimental measurement of microstructure, defects, dislocations, surface energies, and nematic liquid crystals. Compensated compactness in partial differential equations is also treated. The volume is intended for specialists and non-specialists in pure and applied geometry, continuum mechanics, theoretical physics, materials and engineering sciences, and partial differential equations. It will also be of interest to postdoctoral scientists and advanced postgraduate research students. These proceedings include revised written versions of the majority of papers presented by leading experts at the ICMS Edinburgh Workshop on Differential G...

5. Transport of optical excitations on dendrimers in the continuum approximation

International Nuclear Information System (INIS)

Vlaming, S.M.; Heijs, D.J.; Knoester, J.

2005-01-01

We study the incoherent transport of optical excitations created at the rim of a dendritic molecule to a trap occurring at the core. The corresponding discrete random walk is treated in a continuum approximation, resulting in a diffusion-like process which admits semi-analytical solutions. The thus obtained arrival time distribution for the excitation at the trap is compared with the one for the original, discrete problem. In the case of an inward bias or even a weak outward one, the agreement is very good and the continuum approximation provides a good alternative description of the energy transfer process, even for small dendrimers. In the case of a strong outward bias, the mean trapping time, which sets the time scale for the entire distribution, depends exponentially on the number of generations in both approaches, but with a different base. The failure of the continuum approximation for this case is explained from the peaked behavior of the excitation density near the rim

6. Lattice fluid dynamics from perfect discretizations of continuum flows

International Nuclear Information System (INIS)

Katz, E.; Wiese, U.

1998-01-01

We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. copyright 1998 The American Physical Society

7. Continuum solutions of the Klein-Gordon equation

International Nuclear Information System (INIS)

Jansen, G.; Pusch, M.; Soff, G.

1987-10-01

We construct explicit solutions of the Klein-Gordon equation for continuum states. The role of the energy in the single-particle Klein-Gordon theory is elucidated. Special emphasis is laid on the determination of resonance states in the continuum for overcritical potentials. As examples for long-range interaction we depict solutions for the Coulomb potential of a point-like nucleus as an extended nucleus. The square-well potential and the exponential potential are treated to exemplify pecularities of short-range interactions. We also derive continuum solutions for a scalar interaction of square-well type. Finally we discuss the behaviour of a spin-0 particle in an external homogeneous magnetic field. (orig.)

8. HIV continuum of care in Europe and Central Asia.

Science.gov (United States)

Drew, R S; Rice, B; Rüütel, K; Delpech, V; Attawell, K A; Hales, D K; Velasco, C; Amato-Gauci, A J; Pharris, A; Tavoschi, L; Noori, T

2017-08-01

The European Centre for Disease Prevention and Control (ECDC) supports countries to monitor progress in their response to the HIV epidemic. In line with these monitoring responsibilities, we assess how, and to what extent, the continuum of care is being measured across countries. The ECDC sent out questionnaires to 55 countries in Europe and Central Asia in 2014. Nominated country representatives were questioned on how they defined and measured six elements of the continuum. We present our results using three previously described frameworks [breakpoints; Joint United Nations Programme on HIV/AIDS (UNAIDS) 90-90-90 targets; diagnosis and treatment quadrant]. Forty countries provided data for at least one element of the continuum. Countries reported most frequently on the number of people diagnosed with HIV infection (37; 93%), and on the number in receipt of antiretroviral therapy (ART) (35; 88%). There was little consensus across countries in their approach to defining linkage to, and retention in, care. The most common breakpoint (>19% reduction between two adjacent elements) related to the estimated number of people living with HIV who were diagnosed (18 of 23; 78%). We present continuum data from multiple countries that provide both a snapshot of care provision and a baseline against which changes over time in care provision across Europe and Central Asia may be measured. To better inform HIV testing and treatment programmes, standard data collection approaches and definitions across the HIV continuum of care are needed. If countries wish to ensure an unbroken HIV continuum of care, people living with HIV need to be diagnosed promptly, and ART needs to be offered to all those diagnosed. © 2017 The Authors. HIV Medicine published by John Wiley & Sons Ltd on behalf of British HIV Association.

9. What is mathematical logic?

CERN Document Server

Crossley, J N; Brickhill, CJ; Stillwell, JC

2010-01-01

Although mathematical logic can be a formidably abstruse topic, even for mathematicians, this concise book presents the subject in a lively and approachable fashion. It deals with the very important ideas in modern mathematical logic without the detailed mathematical work required of those with a professional interest in logic.The book begins with a historical survey of the development of mathematical logic from two parallel streams: formal deduction, which originated with Aristotle, Euclid, and others; and mathematical analysis, which dates back to Archimedes in the same era. The streams beg

10. Introductory discrete mathematics

CERN Document Server

Balakrishnan, V K

2010-01-01

This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.Chapters 0-3 cover fundamental operations involv

11. Mathematics for physical chemistry

CERN Document Server

Mortimer, Robert G

2013-01-01

Mathematics for Physical Chemistry is the ideal supplementary text for practicing chemists and students who want to sharpen their mathematics skills while enrolled in general through physical chemistry courses. This book specifically emphasizes the use of mathematics in the context of physical chemistry, as opposed to being simply a mathematics text. This 4e includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The early chapters are constructed around a sequence of mathematical topics, wit

12. Fundamental concepts of mathematics

CERN Document Server

Goodstein, R L

Fundamental Concepts of Mathematics, 2nd Edition provides an account of some basic concepts in modern mathematics. The book is primarily intended for mathematics teachers and lay people who wants to improve their skills in mathematics. Among the concepts and problems presented in the book include the determination of which integral polynomials have integral solutions; sentence logic and informal set theory; and why four colors is enough to color a map. Unlike in the first edition, the second edition provides detailed solutions to exercises contained in the text. Mathematics teachers and people

13. Mathematics for the imagination

CERN Document Server

Higgins, Peter

2002-01-01

Mathematics for the Imagination provides an accessible and entertaining investigation into mathematical problems in the world around us. From world navigation, family trees, and calendars to patterns, tessellations, and number tricks, this informative and fun new book helps you to understand the maths behind real-life questions and rediscover your arithmetical mind.This is a follow-up to the popular Mathematics for the Curious, Peter Higgins's first investigation into real-life mathematical problems.A highly involving book which encourages the reader to enter into the spirit of mathematical ex

14. Philosophy of mathematics

CERN Document Server

Gabbay, Dov M; Woods, John

2009-01-01

One of the most striking features of mathematics is the fact that we are much more certain about the mathematical knowledge we have than about what mathematical knowledge is knowledge of. Are numbers, sets, functions and groups physical entities of some kind? Are they objectively existing objects in some non-physical, mathematical realm? Are they ideas that are present only in the mind? Or do mathematical truths not involve referents of any kind? It is these kinds of questions that have encouraged philosophers and mathematicians alike to focus their attention on issues in the philosophy of mat

15. The nature of mathematics

CERN Document Server

Jourdain, Philip E B

2007-01-01

Anyone with an interest in mathematics will welcome the republication of this little volume by a remarkable mathematician who was also a logician, a philosopher, and an occasional writer of fiction and poetry. Originally published in 1913, and later included in the acclaimed anthology The World of Mathematics, Jourdain's survey shows how and why the methods of mathematics were developed, traces the development of mathematical science from the earliest to modern times, and chronicles the application of mathematics to natural science.Starting with the ancient Egyptians and Greeks, the author p

16. The development of mathematics

CERN Document Server

Bell, Eric Temple

1945-01-01

""This important book . . . presents a broad account of the part played by mathematics in the evolution of civilization, describing clearly the main principles, methods, and theories of mathematics that have survived from about 4000 BC to 1940.""― BooklistIn this time-honored study, one of the 20th century's foremost scholars and interpreters of the history and meaning of mathematics masterfully outlines the development of its leading ideas, and clearly explains the mathematics involved in each. According to the author, a professor of mathematics at the California Institute of Technology from

17. Mathematics in ancient Greece

CERN Document Server

Dantzig, Tobias

2006-01-01

More than a history of mathematics, this lively book traces mathematical ideas and processes to their sources, stressing the methods used by the masters of the ancient world. Author Tobias Dantzig portrays the human story behind mathematics, showing how flashes of insight in the minds of certain gifted individuals helped mathematics take enormous forward strides. Dantzig demonstrates how the Greeks organized their precursors' melange of geometric maxims into an elegantly abstract deductive system. He also explains the ways in which some of the famous mathematical brainteasers of antiquity led

18. Relativistic continuum physics for the description of heavy ion collisions

International Nuclear Information System (INIS)

Lukacs, Bela

1986-01-01

The application of relativistic continuum physics to the description of the nuclear fireball evolution from the start of expansion to the breaking is discussed. The basic formalism and basic assumptions of relativistic hydrodynamics and thermodynamics are analyzed in detail. The four basic assumptions are not valid in the case of nuclear fireball produced in heavy ion collisions, but thermodynamics can be extended in different ways to incorporate anisotropy, fluctuations, gradients and the lack of the local equilibrium. The extended continuum formalism is applicable to the description of the nuclear fireball dynamics, including the nuclear - quark matter phase transition. (D.Gy.)

19. Continuum damage mechanics method for fatigue growth of surface cracks

International Nuclear Information System (INIS)

Feng Xiqiao; He Shuyan

1997-01-01

With the background of leak-before-break (LBB) analysis of pressurized vessels and pipes in nuclear plants, the fatigue growth problem of either circumferential or longitudinal semi-elliptical surface cracks subjected to cyclic loading is studied by using a continuum damage mechanics method. The fatigue damage is described by a scalar damage variable. From the damage evolution equation at the crack tip, a crack growth equation similar to famous Paris' formula is derived, which shows the physical meaning of Paris' formula. Thereby, a continuum damage mechanics approach is developed to analyze the configuration evolution of surface cracks during fatigue growth

20. Fractional Quantum Field Theory: From Lattice to Continuum

Directory of Open Access Journals (Sweden)

Vasily E. Tarasov

2014-01-01

Full Text Available An approach to formulate fractional field theories on unbounded lattice space-time is suggested. A fractional-order analog of the lattice quantum field theories is considered. Lattice analogs of the fractional-order 4-dimensional differential operators are proposed. We prove that continuum limit of the suggested lattice field theory gives a fractional field theory for the continuum 4-dimensional space-time. The fractional field equations, which are derived from equations for lattice space-time with long-range properties of power-law type, contain the Riesz type derivatives on noninteger orders with respect to space-time coordinates.

1. Shape Modeling of a Concentric-tube Continuum Robot

DEFF Research Database (Denmark)

Bai, Shaoping; Xing, Charles Chuhao

2012-01-01

Concentric-tube continuum robots feature with simple and compact structures and have a great potential in medical applications. The paper is concerned with the shape modeling of a type of concentric-tube continuum robot built with a collection of super-elastic NiTiNol tubes. The mechanics...... is modeled on the basis of energy approach for both the in-plane and out-plane cases. The torsional influences on the shape of the concentric-tube robots are considered. An experimental device was build for the model validation. The results of simulation and experiments are included and analyzed....

2. Towards an improved continuum theory for phase transformations

International Nuclear Information System (INIS)

Tijssens, M.G.A.; James, R.D.

2003-01-01

We develop a continuum theory for martensitic phase transformations in which explicit use is made of atomistic calculations based on density functional theory. Following the work of Rabe and coworkers, branches of the phonon-dispersion relation with imaginary frequencies are selected to construct a localized basis tailored to the symmetry of the crystal lattice. This so-called Wannier basis helps to construct an effective Hamiltonian of a particularly simple form. We extend the methodology by incorporating finite deformations and passing the effective Hamiltonian fully to continuum level. The developments so far are implemented on the shape memory material NiTi

3. A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations

KAUST Repository

Neumann, Philipp

2012-06-01

We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm as well as parallel execution of the hybrid simulation. We describe the implementational concept of the tool and its parallel extensions. We particularly focus on the parallel execution of particle insertions into dense molecular systems and propose a respective parallel algorithm. Our implementations are validated for serial and parallel setups in two and three dimensions. © 2012 IEEE.

4. The continuum of spreading depolarizations in acute cortical lesion development

DEFF Research Database (Denmark)

Hartings, Jed A; Shuttleworth, C William; Kirov, Sergei A

2017-01-01

A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum....... The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion...

5. Mathematics for physicists

CERN Document Server

Martin, B R

2015-01-01

Mathematics for Physicists is a relatively short volume covering all the essential mathematics needed for a typical first degree in physics, from a starting point that is compatible with modern school mathematics syllabuses. Early chapters deliberately overlap with senior school mathematics, to a degree that will depend on the background of the individual reader, who may quickly skip over those topics with which he or she is already familiar. The rest of the book covers the mathematics that is usually compulsory for all students in their first two years of a typical university physics degree, plus a little more. There are worked examples throughout the text, and chapter-end problem sets. Mathematics for Physicists features: * Interfaces with modern school mathematics syllabuses * All topics usually taught in the first two years of a physics degree * Worked examples throughout * Problems in every chapter, with answers to selected questions at the end of the book and full solutions on a website This text will ...

6. Meaning in mathematics education

CERN Document Server

Valero, Paola; Hoyles, Celia; Skovsmose, Ole

2005-01-01

What does it mean to know mathematics? How does meaning in mathematics education connect to common sense or to the meaning of mathematics itself? How are meanings constructed and communicated and what are the dilemmas related to these processes? There are many answers to these questions, some of which might appear to be contradictory. Thus understanding the complexity of meaning in mathematics education is a matter of huge importance. There are twin directions in which discussions have developed - theoretical and practical - and this book seeks to move the debate forward along both dimensions while seeking to relate them where appropriate. A discussion of meaning can start from a theoretical examination of mathematics and how mathematicians over time have made sense of their work. However, from a more practical perspective, anybody involved in teaching mathematics is faced with the need to orchestrate the myriad of meanings derived from multiple sources that students develop of mathematical knowledge.

7. The History of Mathematics and Mathematical Education

Science.gov (United States)

Grattan-Guinness, I.

1977-01-01

Answers to questions which were asked after the author's various lectures in Australia are gathered here. Topics touched upon include "new" mathematics, unknown constants and free variables, propositional functions, linear algebra, arithmetic and geometry, and student assessment. (MN)

8. Methodological Approaches to Experimental Teaching of Mathematics to University Students

Directory of Open Access Journals (Sweden)

Nikolay I.

2018-03-01

Full Text Available Introduction: the article imparts authors’ thoughtson a new teaching methodology for mathematical education in universities. The aim of the study is to substantiate the efficiency of the comprehensive usage of mathematical electronic courses, computer tests, original textbooks and methodologies when teaching mathematics to future agrarian engineers. The authors consider this implementation a unified educational process. Materials and Methods: the synthesis of international and domestic pedagogical experience of teaching students in university and the following methods of empirical research were used: pedagogical experiment, pedagogical measurementsand experimental teaching of mathematics. The authors applied the methodology of revealing interdisciplinary links on the continuum of mathematical problems using the key examples and exercises. Results: the online course “Mathematics” was designed and developed on the platform of Learning Management System Moodle. The article presents the results of test assignments assessing students’ intellectual abilities and analysis of solutions of various types of mathematical problems by students. The pedagogical experiment substantiated the integrated selection of textbooks, online course and online tests using the methodology of determination of the key examples and exercises. Discussion and Conclusions: the analysis of the experimental work suggested that the new methodology is able to have positive effect on the learning process. The learning programme determined the problem points for each student. The findings of this study have a number of important implications for future educational practice.

9. Mathematical methods in electro-magneto-elasticity

CERN Document Server

Bardzokas, DI; Filshtinsky, LA

2007-01-01

The mechanics of Coupled Fields is a discipline at the edge of modern research connecting Continuum Mechanics with Solid State Physics. It integrates the Mechanics of Continuous Media, Heat Conductivity and the theory of Electromagnetism that are usually studied separately. For an accurate description of the influence of static and dynamic loadings, high temperatures and strong electromagnetic fields in elastic media and constructive installations, a new approach is required; an approach that has the potential to establish a synergism between the above mentioned fields. Throughout the book a vast number of problems are considered: two-dimensional problems of electro-magneto-elasticity as well as static and dynamical problems for piecewise homogenous compound piezoelectric plates weakened by cracks and openings. The boundary conditions, the constructive equations and the mathematical methods for their solution are thoroughly presented, so that the reader can get a clear quantitative and qualitative understandi...

10. Continuum limit and improved action in lattice theories. Pt. 1

International Nuclear Information System (INIS)

Symanzik, K.

1983-03-01

Corrections to continuum theory results stemming from finite lattice-spacing can be diminished systematically by use of lattice actions that include also suitable irrelevant terms. We describe in detail the principles of such constructions at the example of PHI 4 theory. (orig.)

11. Proposed higher order continuum-based models for an elastic ...

African Journals Online (AJOL)

Three new variants of continuum-based models for an elastic subgrade are proposed. The subgrade is idealized as a homogenous, isotropic elastic layer of thickness H overlying a firm stratum. All components of the stress tensor in the subgrade are taken into account. Reasonable assumptions are made regarding the ...

12. On the continuum limit of a classical compressible Heisenberg chain

International Nuclear Information System (INIS)

Fivez, J.

1982-01-01

The equations of motion are derived for the classical compressible Heisenberg chain in the continuum limit to lowest non-trivial order in the derivatives. It is possible to eliminate the translations from the equation for the spins. The resulting equation does not admit of simple magnetic solitary wave solutions, in contradiction to the results of other authors. (author)

13. From discrete particles to continuum fields in mixtures

NARCIS (Netherlands)

Weinhart, Thomas; Thornton, Anthony Richard; Yu, A; Dong, K; Yang, R; Luding, S; Luding, Stefan

2013-01-01

We present a novel way to extract continuum fields from discrete particle systems that is applicable to flowing mixtures as well as boundaries and interfaces. The mass and momentum balance equations for mixed flows are expressed in terms of the partial densities, velocities, stresses and interaction

14. Modeling of Continuum Manipulators Using Pythagorean Hodograph Curves.

Science.gov (United States)

Singh, Inderjeet; Amara, Yacine; Melingui, Achille; Mani Pathak, Pushparaj; Merzouki, Rochdi

2018-05-10

Research on continuum manipulators is increasingly developing in the context of bionic robotics because of their many advantages over conventional rigid manipulators. Due to their soft structure, they have inherent flexibility, which makes it a huge challenge to control them with high performances. Before elaborating a control strategy of such robots, it is essential to reconstruct first the behavior of the robot through development of an approximate behavioral model. This can be kinematic or dynamic depending on the conditions of operation of the robot itself. Kinematically, two types of modeling methods exist to describe the robot behavior; quantitative methods describe a model-based method, and qualitative methods describe a learning-based method. In kinematic modeling of continuum manipulator, the assumption of constant curvature is often considered to simplify the model formulation. In this work, a quantitative modeling method is proposed, based on the Pythagorean hodograph (PH) curves. The aim is to obtain a three-dimensional reconstruction of the shape of the continuum manipulator with variable curvature, allowing the calculation of its inverse kinematic model (IKM). It is noticed that the performances of the PH-based kinematic modeling of continuum manipulators are considerable regarding position accuracy, shape reconstruction, and time/cost of the model calculation, than other kinematic modeling methods, for two cases: free load manipulation and variable load manipulation. This modeling method is applied to the compact bionic handling assistant (CBHA) manipulator for validation. The results are compared with other IKMs developed in case of CBHA manipulator.

15. Assessing continuum postulates in simulations of granular flow

Energy Technology Data Exchange (ETDEWEB)

Rycroft, Chris; Kamrin, Ken; Bazant, Martin

2008-08-26

Continuum mechanics relies on the fundamental notion of a mesoscopic volume"element" in which properties averaged over discrete particles obey deterministic relationships. Recent work on granular materials suggests a continuum law may be inapplicable, revealing inhomogeneities at the particle level, such as force chains and slow cage breaking. Here, we analyze large-scale three-dimensional Discrete-Element Method (DEM) simulations of different granular flows and show that an approximate"granular element" defined at the scale of observed dynamical correlations (roughly three to five particle diameters) has a reasonable continuum interpretation. By viewing all the simulations as an ensemble of granular elements which deform and move with the flow, we can track material evolution at a local level. Our results confirm some of the hypotheses of classical plasticity theory while contradicting others and suggest a subtle physical picture of granular failure, combining liquid-like dependence on deformation rate and solid-like dependence on strain. Our computational methods and results can be used to guide the development of more realistic continuum models, based on observed local relationships betweenaverage variables.

16. Absorption of continuum radiation in a resonant expanding gaseous sphere

International Nuclear Information System (INIS)

Shaparev, N Y

2014-01-01

The paper deals with absorption of external continuum radiation in a self-similarly expanding gaseous sphere. Frequency probability and integral probability of radiation absorption in the resonance frequency range are determined depending on the expansion velocity gradient and thickness of the optical medium. It is shown that expansion results in a reduced optical thickness of the medium and enhanced integral absorption. (paper)

17. Relativistic continuum random phase approximation in spherical nuclei

International Nuclear Information System (INIS)

Daoutidis, Ioannis

2009-01-01

Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

18. The Continuum of Literacy in American Indian Communities.

Science.gov (United States)

Zepeda, Ofelia

1995-01-01

Describes the O'odham language and oral tradition of the Tohono O'odham Indians of southern Arizona, relating it to the development of O'odham children's English literacy. Oral tradition and school literacy constitute opposite ends of a literacy continuum, in which English literacy is often isolated from and in conflict with O'odham literacy. (10…

19. Self-Assessment Exercises in Continuum Mechanics with Autonomous Learning

Science.gov (United States)

Marcé-Nogué, Jordi; Gil, LLuís; Pérez, Marco A.; Sánchez, Montserrat

2013-01-01

The main objective of this work is to generate a set of exercises to improve the autonomous learning in "Continuum Mechanics" through a virtual platform. Students will have to resolve four exercises autonomously related to the subject developed in class and they will post the solutions on the virtual platform within a deadline. Students…

20. The Eating Disorders Continuum, Self-Esteem, and Perfectionism

Science.gov (United States)

Peck, Lisa D.; Lightsey, Owen Richard

2008-01-01

Among 261 undergraduate women, increased severity of eating disorders along a continuum was associated with decreased self-esteem, increased perfectionism, and increased scores on 7 subscales of the Eating Disorders Inventory-2. Women with eating disorders differed from both symptomatic women and asymptomatic women on all variables, whereas…

1. Shouldering the blame for impingement: the rotator cuff continuum ...

African Journals Online (AJOL)

The aim of this article was to summarise recent research on shoulder impingement and rotator cuff pathology. A continuum model of rotator cuff pathology is described, and the challenges of accurate clinical diagnosis, imaging and best management discussed. Keywords: shoulder impingement syndrome, subacromial ...

2. One millimeter continuum observations of high redshift quasars

International Nuclear Information System (INIS)

Ennis, D.J.; Soifer, B.T.

1981-01-01

Upper limits to the one-millimeter continuum flux densities of the high redshift quasars B2 1225 + 31, Ton 490, and PHL 957 are presented. The upper limit to the power observed from these quasars at 1 mm is, on the average, one half of the observed power in the continuum at L-alpha. These observations are used to constrain the temperature of a hypothetical dust shell which reddens the quasar line and continuum emission by an extinction optical depth sufficient to account for the anomalously low L-alpha/H-alpha emission line ratio observed in each of these quasars. For the quasars studied, dust shell temperatures between 25 K and 50 to 95 K are prohibited by the present data. A dust shell at a temperature within this span reradiating all the power absorbed from the quasar ultraviolet continuum would produce a one-millimeter flux density greater than the measured upper limit. The average radius of the model dust shell cannot be between 70 kpc and 1 Mpc

3. Nuclear structure investigations with inclusion of continuum states

International Nuclear Information System (INIS)

Rotter, I.

1983-09-01

The influence of the continuum on the properties of discrete nuclear states is reviewed. It is described on the basis of a continuum shell model. The coupling of the discrete states to the continuum results in an additional term to the Hamiltonian, commonly used in the study of nuclear structure, and an additional term to the wavefunction of the discrete state. These additional terms characterise finite nuclei in contrast to nuclear matter. They result in some symmetry violation of the residual nuclear interaction such as charge symmetry violation, and describe the nuclear surface, respectively. The energies and widths of resonance states result from the complex eigenvalues of the Hamiltonian. The partial widths are shown to be factorisable into a spectroscopic factor and into a penetration factor if the spectroscopic factor is large. An expression for the S-matrix is derived in which instead of the so-called resonance parameters, functions appear which are calculated in the framework of the model. The line shape of resonances is also influenced by these functions. As an extreme case, a resonance may have the appearance of a cusp. The conclusions drawn are supported by the results of numerical calculations performed in the continuum shell model for light nuclei with realistic shell model wavefunctions. (author)

4. Photon pairs: Quantum chromodynamics continuum and the Higgs ...

Resummation is needed to obtain reliable predictions in the range of transverse momentum where the cross-section is the largest. Results are compared with data from the Fermilab Tevatron and predictions are made for the large hadron collider. The QCD continuum is shown to have a softer spectrum than the Higgs boson ...

5. Continuum limit of discrete Sommerfeld problems on square lattice

BASANT LAL SHARMA

Sommerfeld half-plane; crack; rigid ribbon; continuum limit; Wiener–Hopf; Toeplitz ... case of which, when it approaches zero, is called 'contin- .... etc, denote constants in expressions, inequalities, etc. The ..... The latter holds on a possibly weighted space, depending ..... where jj ء jj refers to the corresponding operator norm.

6. Relativistic continuum random phase approximation in spherical nuclei

Energy Technology Data Exchange (ETDEWEB)

Daoutidis, Ioannis

2009-10-01

Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

7. Cellular Automata in Topology Optimization of Continuum Structures ...

African Journals Online (AJOL)

In this paper, an optimization algorithm based on cellular automata (CA) is developed for topology optimization of continuum structures with shear and flexural behavior. The design domain is divided into small triangle elements and each cell is considered as a finite element. The stress analysis is performed by the Constant ...

8. Photon pairs: Quantum chromodynamics continuum and the Higgs ...

is the largest. Results are compared with data from the Fermilab Tevatron and predictions are made for the large hadron collider. The QCD continuum is shown to have a softer spectrum than the Higgs boson signal at the LHC. Keywords. Higgs; photon pairs; quantum chromodynamics. PACS Nos 12.15.Ji; 12.38.Cy; 13.85.

9. Topology Optimization of Continuum Structures with Local Stress Constraints

DEFF Research Database (Denmark)

Duysinx, Pierre; Bendsøe, Martin P

1998-01-01

We introduce an extension of current technologies for topology optimization of continuum structures which allows for treating local stress criteria. We first consider relevant stress criteria for porous composite materials, initially by studying the stress states of the so-called rank 2 layered m...

10. A radio continuum and infrared study of Galactic HII regions

NARCIS (Netherlands)

Martin-Hernandez, NL; van der Hulst, JM; Tielens, AGGM

We present observations of the 4.8 and 8.6 GHz continuum emission towards 11 southern H II regions made with the Australian Telescope Compact Array. The observed objects were selected from the Infrared Space Observatory (ISO) spectral catalogue of compact H II regions (Peeters et al. 2002b). The

11. Aspects of Mathematical Logic

CERN Document Server

Casari, Ettore

2011-01-01

H. Hermes: Basic notions and applications of the theory of decidability.- D. Kurepa: On several continuum hypotheses.- A. Mostowski: Models of set theory.- A. Robinson: Problems and methods of model theory.- S. Sochor, B. Balcar: The general theory of semisets. Syntactic models of the set theory.

12. Reverberation Mapping of the Continuum Source in Active Galactic Nuclei

Science.gov (United States)

Fausnaugh, Michael Martin

I present results from a monitoring campaign of 11 active galactic nuclei (AGN) conducted in Spring of 2014. I use the reverberation mapping method to probe the interior structures of the AGN, specifically the broad line regions (BLRs) and accretion disks. One of these AGN, NGC 5548, was also subject to multi-wavelength (X-ray, UV, optical, and near-IR) monitoring using 25 ground-based telescopes and four space-based facilities. For NGC 5548, I detect lags between the continuum emission at different wavelengths that follow a trend consistent with the prediction for continuum reprocessing by an accretion disk with temperature profile T ∝ R -3/4. However, the lags imply a disk radius that is 3 times larger than the prediction from standard thin-disk models. The lags at wavelengths longer than the Vband are also equal to or greater than the lags of high-ionization-state emission lines (such as HeII lambda1640 and lambda4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region. Using optical spectra from the Large Binocular Telescope, I estimate the bias of the interband continuum lags due to BLR emission observed in the filters, and I find that the bias for filters with high levels of BLR contamination (˜20%) can be important for the shortest continuum lags. This likely has a significant impact on the u and U bands owing to Balmer continuum emission. I then develop a new procedure for the internal (night-to-night) calibration of time series spectra that can reach precisions of ˜1 millimagnitude and improves traditional techniques by up to a factor of 5. At this level, other systematic issues (e.g., the nightly sensitivity functions and Fe II contamination) limit the final precision of the observed light curves. Using the new calibration method, I next present the data and first results from the optical spectroscopic monitoring component of the reverberation mapping campaign. Five AGN were sufficiently

13. Mathematical Sciences Institute Workshop

CERN Document Server

Scott, Philip

1990-01-01

A so-called "effective" algorithm may require arbitrarily large finite amounts of time and space resources, and hence may not be practical in the real world. A "feasible" algorithm is one which only requires a limited amount of space and/or time for execution; the general idea is that a feasible algorithm is one which may be practical on today's or at least tomorrow's computers. There is no definitive analogue of Church's thesis giving a mathematical definition of feasibility; however, the most widely studied mathematical model of feasible computability is polynomial-time computability. Feasible Mathematics includes both the study of feasible computation from a mathematical and logical point of view and the reworking of traditional mathematics from the point of view of feasible computation. The diversity of Feasible Mathematics is illustrated by the. contents of this volume which includes papers on weak fragments of arithmetic, on higher type functionals, on bounded linear logic, on sub recursive definitions ...

14. Open problems in mathematics

CERN Document Server

Nash, Jr, John Forbes

2016-01-01

The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer sc...

15. Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations

Directory of Open Access Journals (Sweden)

Olivier Sarbach

2012-08-01

Full Text Available Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein's theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merger and ringdown. Powerful mathematical tools can be used to establish qualitative statements about the solutions, such as their existence, uniqueness, continuous dependence on the initial data, or their asymptotic behavior over large time scales. However, one is often interested in computing the solution itself, and unless the partial differential equation is very simple, or the initial data possesses a high degree of symmetry, this computation requires approximation by numerical discretization. When solving such discrete problems on a machine, one is faced with a finite limit to computational resources, which leads to the replacement of the infinite continuum domain with a finite computer grid. This, in turn, leads to a discrete initial-boundary value problem. The hope is to recover, with high accuracy, the exact solution in the limit where the grid spacing converges to zero with the boundary being pushed to infinity. The goal of this article is to review some of the theory necessary to understand the continuum and discrete initial boundary-value problems arising from hyperbolic partial differential equations and to discuss its applications to numerical relativity; in particular, we present well-posed initial and initial-boundary value formulations of Einstein's equations, and we discuss multi-domain high-order finite difference and spectral methods to solve them.

16. Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations.

Science.gov (United States)

Sarbach, Olivier; Tiglio, Manuel

2012-01-01

Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein's theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merger and ringdown. Powerful mathematical tools can be used to establish qualitative statements about the solutions, such as their existence, uniqueness, continuous dependence on the initial data, or their asymptotic behavior over large time scales. However, one is often interested in computing the solution itself, and unless the partial differential equation is very simple, or the initial data possesses a high degree of symmetry, this computation requires approximation by numerical discretization. When solving such discrete problems on a machine, one is faced with a finite limit to computational resources, which leads to the replacement of the infinite continuum domain with a finite computer grid. This, in turn, leads to a discrete initial-boundary value problem. The hope is to recover, with high accuracy, the exact solution in the limit where the grid spacing converges to zero with the boundary being pushed to infinity. The goal of this article is to review some of the theory necessary to understand the continuum and discrete initial boundary-value problems arising from hyperbolic partial differential equations and to discuss its applications to numerical relativity; in particular, we present well-posed initial and initial-boundary value formulations of Einstein's equations, and we discuss multi-domain high-order finite difference and spectral methods to solve them.

17. On the continuum theory of the two-fluid solar wind for small mass ratio

International Nuclear Information System (INIS)

Johnson, R.S.

1976-01-01

The continuum theory for the two-fluid solar wind is considered. The fluid is assumed to be a fully ionized neutral plasma of electrons and protons which is compressible, viscous and heat conducting with a constant Prandtl number and a viscosity proportional to (temperature) sup(ω), ω > 1. The gas is under the influence of a gravitational field centred on the Sun. It is assumed that the bulk velocity (at any point) is the same for both electrons and protons, but that an energy transfer can occur between the two species due to binary (Coulomb) collisions. The equations are non-dimensionalized and it is shown that the natural parameter to use in the construction of an asymptotic solution is the mass ratio. The limit mass ratio → zero corresponds to the small Prandtl number limit for the one-fluid theory developed by Johnson (Proc. R. Soc. (Lond) A; 347:537 (1976)). By using the method of matched asymptotic expansions, a solution is constructed that starts from the base of the corona and extends out to a diffuse shock layer. The results obtained exactly parallel the one-fluid theory and many details are identified and absorbed into this analysis. It is shown how the temperatures in the corona eventually become the well-known behaviours: rsup(-2/7) (electrons), rsup(-6/7) (protons) when ω = 5/2 and r is the radial coordinate. However, the continuum theory will probably have failed in the shock layer region - the more so since this occurs at about 100 light years distance - and further mathematical details are omitted. The numerical estimates given here compare tolerably well with the observed data and very favourably with other work on the same equations. (author)

CERN Document Server

Maruyama, Toru

2015-01-01

The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories.

CERN Document Server

Maruyama, Toru

2014-01-01

A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research.

CERN Document Server

Yamazaki, Akira

2006-01-01

A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking for effective mathematical tools for their researchers.

1. Ideation in mathematical writing

DEFF Research Database (Denmark)

Misfeldt, Morten

2007-01-01

This paper considers idea generation during the mathematical writing process. Two contrasting explanations of the creative potential in connection to writing is presented; writing as a process of setting and obtaining rhetorical goals and writing as a process of discovery. These views...... are then related to two empirically found categories of functions that writing serves researchers in the field of mathematics, concluding that both views contributes to understanding the creative potential in relation to mathematical writing....

CERN Document Server

Yamazaki, Akira

2006-01-01

A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions.Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking for effective mathematical tools for their researchers.

3. Interactive Mathematics Textbooks

DEFF Research Database (Denmark)

Sinclair, Robert

1999-01-01

We claim that important considerations have been overlooked in designinginteractive mathematics educational software in the past.In particular,most previous work has concentrated on how to make use ofpre-existing software in mathematics education, rather than firstasking the more...... fundamentalquestion of which requirements mathematics education puts on software, and thendesigning software to fulfil these requirements.We present a working prototype system which takes a script defining an interactivemathematicaldocument and then provides a reader with an interactive realization of thatdocument....

4. Learning Mathematics through Programming

DEFF Research Database (Denmark)

Misfeldt, Morten; Ejsing-Duun, Stine

2015-01-01

In this paper we explore the potentials for learning mathematics through programming by a combination of theoretically derived potentials and cases of practical pedagogical work. We propose a model with three interdependent learning potentials as programming which can: (1) help reframe the students...... to mathematics is paramount. Analyzing two cases, we suggest a number of ways in which didactical attention to epistemic mediation can support learning mathematics....

5. Educating mathematics teacher educators

DEFF Research Database (Denmark)

Højgaard, Tomas; Jankvist, Uffe Thomas

2014-01-01

The paper argues for a three-dimensional course design structure for future mathematics teacher educators. More precisely we describe the design and implementation of a course basing itself on: the two mathematical competencies of modelling and problem tackling, this being the first dimension......; the two mathematical topics of differential equations and stochastics, this being the second dimension; and finally a third dimension the purpose of which is to deepen the two others by means of a didactical perspective....

CERN Document Server

Maruyama, Toru

2017-01-01

The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories.

CERN Document Server

Maruyama, Toru

2016-01-01

The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories.

Directory of Open Access Journals (Sweden)

Alexander Domoshnitsky

2012-10-01

Full Text Available Modern Internet technologies open new possibilities in wide spectrum of traditional methods used in mathematical education. One of the areas, where these technologies can be efficiently used, is an organization of mathematical competitions. Contestants can stay at their schools or universities and try to solve as many mathematical problems as possible and then submit their solutions through Internet. Simple Internet technologies supply audio and video connection between participants and organizers.

9. Order statistics and energy-ordered histograms: an analytical approach to continuum gamma-ray spectra

International Nuclear Information System (INIS)

Urrego, J.P.; Cristancho, F.

2001-01-01

Full text: Fusion-evaporation heavy ion collisions have enable us to explore new regions of phase space E - I, particularly high spin and excitation energy regions, where level densities are so high that modern detectors are unable to resolve individual gamma-ray transitions and consequently the resulting spectrum is continuous and undoubtedly contains a lot of new physics. In spite of that, very few experiments have been designed to extract conclusions about behavior of nuclei in continuum, thus in order to obtain a continuum spectroscopy it is necessary to apply to numerical simulations. In this sense GAMBLE a Monte Carlo based code- is a powerful tool that with some modifications allows us to test a new method to analyze the outcome of experiments focused on the properties of phase space regions in nuclear continuum: The use of Energy-Ordered Spectra (EOS) . Let's suppose that in a experiment is collected all gamma radiation emitted by a specific nucleus in a fixed intrinsic excitation energy range and that the different EOS are constructed. Although it has been shown that comparisons between such EOS and Monte Carlo simulations give information about the level density and the strength function their interpretation is not too clear because the large number of input values needed in a code like GAMBLE. On the other hand, if we could have an analytical description of EOS, the understanding of the underlying physics would be more simple because one could control exactly the involved variables and eventually simulation would be unnecessary. Promissory advances in that direction come from mathematical theory of Order Statistics (OS) In this work it is described the modified code GAMBLE and some simulated EOS for 170 Hf are shown. The simulations are made with different formulations for both level density (Fermi Gas at constant and variable temperature) and gamma strength function (GDR, single particle). Further it is described in detail how OS are employed in the

10. Mathematical Ties That Bind.

Science.gov (United States)

House, Peggy A.

1994-01-01

Describes some mathematical investigations of the necktie which includes applications of geometry, statistics, data analysis, sampling, probability, symmetry, proportion, problem solving, and business. (MKR)

CERN Document Server

Bunch, Bryan

1982-01-01

Stimulating, thought-provoking analysis of the most interesting intellectual inconsistencies in mathematics, physics, and language, including being led astray by algebra (De Morgan's paradox). 1982 edition.

12. Sixth form pure mathematics

CERN Document Server

Plumpton, C

1968-01-01

Sixth Form Pure Mathematics, Volume 1, Second Edition, is the first of a series of volumes on Pure Mathematics and Theoretical Mechanics for Sixth Form students whose aim is entrance into British and Commonwealth Universities or Technical Colleges. A knowledge of Pure Mathematics up to G.C.E. O-level is assumed and the subject is developed by a concentric treatment in which each new topic is used to illustrate ideas already treated. The major topics of Algebra, Calculus, Coordinate Geometry, and Trigonometry are developed together. This volume covers most of the Pure Mathematics required for t

13. Berkeley's Philosophy of Mathematics

CERN Document Server

Jesseph, Douglas M

1993-01-01

In this first modern, critical assessment of the place of mathematics in Berkeley's philosophy and Berkeley's place in the history of mathematics, Douglas M. Jesseph provides a bold reinterpretation of Berkeley's work. Jesseph challenges the prevailing view that Berkeley's mathematical writings are peripheral to his philosophy and argues that mathematics is in fact central to his thought, developing out of his critique of abstraction. Jesseph's argument situates Berkeley's ideas within the larger historical and intellectual context of the Scientific Revolution. Jesseph begins with Berkeley's r

14. Teaching secondary mathematics

CERN Document Server

Rock, David

2013-01-01

Solidly grounded in up-to-date research, theory and technology,?Teaching Secondary Mathematics?is a practical, student-friendly, and popular text for secondary mathematics methods courses. It provides clear and useful approaches for mathematics teachers, and shows how concepts typically found in a secondary mathematics curriculum can be taught in a positive and encouraging way. The thoroughly revised fourth edition combines this pragmatic approach with truly innovative and integrated technology content throughout. Synthesized content between the book and comprehensive companion websi

15. Mathematics in civilization

CERN Document Server

Resnikoff, Howard L

2015-01-01

Space flight, computers, lasers, and information technology ― these are but a few examples of the spectacular growth, development, and far-reaching applications of mathematics. But what of the field's past? Upon which intellectual milestones were the foundations of modern mathematics constructed? How has our comprehension of the physical universe, language, and the nature of thought itself been influenced and informed by the developments of mathematics through the ages?This lucid presentation examines how mathematics shaped and was shaped by the course of human events. In a format suited to co

16. Meaning in mathematics

CERN Document Server

2011-01-01

Is mathematics a highly sophisticated intellectual game in which the adepts display their skill by tackling invented problems, or are mathematicians engaged in acts of discovery as they explore an independent realm of mathematical reality? Why does this seemingly abstract discipline provide the key to unlocking the deep secrets of the physical universe? How one answers these questions will significantly influence metaphysical thinking about reality. This book is intended to fill a gap between popular 'wonders of mathematics' books and the technical writings of the philosophers of mathematics.

17. Mathematics at University

DEFF Research Database (Denmark)

Winsløw, Carl

2015-01-01

Mathematics is studied in universities by a large number of students. At the same time it is a field of research for a (smaller) number of university teachers. What relations, if any, exist between university research and teaching of mathematics? Can research “support” teaching? What research...... and what teaching? In this presentation we propose a theoretical framework to study these questions more precisely, based on the anthropological theory of didactics. As a main application, the links between the practices of mathematical research and university mathematics teaching are examined...

18. Mathematics in India

CERN Document Server

Plofker, Kim

2009-01-01

Based on extensive research in Sanskrit sources, Mathematics in India chronicles the development of mathematical techniques and texts in South Asia from antiquity to the early modern period. Kim Plofker reexamines the few facts about Indian mathematics that have become common knowledge--such as the Indian origin of Arabic numerals--and she sets them in a larger textual and cultural framework. The book details aspects of the subject that have been largely passed over in the past, including the relationships between Indian mathematics and astronomy, and their cross-fertilizations with Islamic sc

19. Handbook of mathematics

CERN Document Server

Kuipers, L

1969-01-01

International Series of Monographs in Pure and Applied Mathematics, Volume 99: Handbook of Mathematics provides the fundamental mathematical knowledge needed for scientific and technological research. The book starts with the history of mathematics and the number systems. The text then progresses to discussions of linear algebra and analytical geometry including polar theories of conic sections and quadratic surfaces. The book then explains differential and integral calculus, covering topics, such as algebra of limits, the concept of continuity, the theorem of continuous functions (with examp

20. Philosophy and mathematics: interactions.

Science.gov (United States)

Rashed, Roshdi

From Plato to the beginnings of the last century, mathematics provided philosophers with methods of exposition, procedures of demonstration, and instruments of analysis. The unprecedented development of mathematics on the one hand, and the mathematicians' appropriation of Logic from the philosophers on the other hand, have given rise to two problems with which the philosophers have to contend: (1) Is there still a place for the philosophy of mathematics? and (2) To what extent is a philosophy of mathematics still possible? This article offers some reflections on these questions, which have preoccupied a good many philosophers and continue to do so.

1. Mathematical mind-benders

CERN Document Server

Winkler, Peter

2007-01-01

Peter Winkler is at it again. Following the enthusiastic reaction to Mathematical Puzzles: A Connoisseur's Collection, Peter has compiled a new collection of elegant mathematical puzzles to challenge and entertain the reader. The original puzzle connoisseur shares these puzzles, old and new, so that you can add them to your own anthology. This book is for lovers of mathematics, lovers of puzzles, lovers of a challenge. Most of all, it is for those who think that the world of mathematics is orderly, logical, and intuitive-and are ready to learn otherwise! A pdf with errata is updated by the aut

2. Exploring Differential Effects of Mathematics Courses on Mathematics Achievement

Science.gov (United States)

Ma, Xin; McIntyre, Laureen J.

2005-01-01

Using data from the Longitudinal Study of Mathematics Participation (N = 1,518 students from 34 schools), we investigated the effects of pure and applied mathematics courses on mathematics achievement, controlling for prior mathematics achievement. Results of multilevel modelling showed that the effects of pure mathematics were significant after…

3. Hands-On Mathematics: Two Cases from Ancient Chinese Mathematics

Science.gov (United States)

Wang, Youjun

2009-01-01

In modern mathematical teaching, it has become increasingly emphasized that mathematical knowledge should be taught by problem-solving, hands-on activities, and interactive learning experiences. Comparing the ideas of modern mathematical education with the development of ancient Chinese mathematics, we find that the history of mathematics in…

4. A Capstone Mathematics Course for Prospective Secondary Mathematics Teachers

Science.gov (United States)

Artzt, Alice F.; Sultan, Alan; Curcio, Frances R.; Gurl, Theresa

2012-01-01

This article describes an innovative capstone mathematics course that links college mathematics with school mathematics and pedagogy. It describes how college juniors in a secondary mathematics teacher preparation program engage in leadership experiences that enable them to learn mathematics for teaching while developing student-centered…

5. On Mathematical Understanding: Perspectives of Experienced Chinese Mathematics Teachers

Science.gov (United States)

Cai, Jinfa; Ding, Meixia

2017-01-01

Researchers have long debated the meaning of mathematical understanding and ways to achieve mathematical understanding. This study investigated experienced Chinese mathematics teachers' views about mathematical understanding. It was found that these mathematics teachers embrace the view that understanding is a web of connections, which is a result…

6. Using Mathematics Literature with Prospective Secondary Mathematics Teachers

Science.gov (United States)

Jett, Christopher C.

2014-01-01

Literature in mathematics has been found to foster positive improvements in mathematics learning. This manuscript reports on a mathematics teacher educator's use of literature via literature circles with 11 prospective secondary mathematics teachers in a mathematics content course. Using survey and reflection data, the author found that…

7. Finite Mathematics and Discrete Mathematics: Is There a Difference?

Science.gov (United States)

Johnson, Marvin L.

Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…

8. Proof and knowledge in mathematics

CERN Document Server

Detlefsen, Michael

2005-01-01

These questions arise from any attempt to discover an epistemology for mathematics. This collection of essays considers various questions concerning the nature of justification in mathematics and possible sources of that justification. Among these are the question of whether mathematical justification is a priori or a posteriori in character, whether logical and mathematical differ, and if formalization plays a significant role in mathematical justification,

9. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-efficacy Beliefs towards Mathematics and Mathematics Teaching

OpenAIRE

Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

2017-01-01

The purpose of the research is to investigate the relationships betweenself-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacybeliefs toward mathematics teaching, mathematics teaching anxiety variables andtesting the relationships between these variables with structural equationmodel. The sample of the research, which was conducted in accordance withrelational survey model, consists of 380 university students, who studied atthe department of Elementary Mathematics Educ...

10. 77 FR 45421 - Homeless Emergency Assistance and Rapid Transition to Housing: Continuum of Care Program

Science.gov (United States)

2012-07-31

... which service providers are familiar. The following highlights key definitions used in the Continuum of... Continuum of Care in 1995. Local grantees and stakeholders are familiar with the Continuum of Care as the... violence, dating violence, sexual assault, and stalking. In developing the baseline requirements for a...

11. Computer Aided Mathematics

DEFF Research Database (Denmark)

Sinclair, Robert

1998-01-01

Course notes of a PhD course held in 1998. The central idea is to introduce students to computational mathematics using object oriented programming in C++.......Course notes of a PhD course held in 1998. The central idea is to introduce students to computational mathematics using object oriented programming in C++....

12. History of Mathematics

DEFF Research Database (Denmark)

Hansen, Vagn Lundsgaard; Gray, Jeremy

Volume 1 in Theme on "History of Mathematics", in "Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO.......Volume 1 in Theme on "History of Mathematics", in "Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO....

13. The Education of Mathematics

Directory of Open Access Journals (Sweden)

Abu Darda

2016-01-01

Full Text Available The objective of mathematics education is not only preparingmathematicians but making well-informed citizens. This is a broad generalterms for objective of the teaching of mathematics. And, this might beimplemented as “accurate thorough knowledge” or “original logicalthinking”. So, teaching mathematics is not the conversation andtransmission of mathematical knowledge, but on the aim of preparing wellinformedcitizens trained in independent, critical thinking.By the mathematics, sciences become simple, clearer, and easier to bedeveloped. The mathematics is often applied for solving any problem ofother field of sciences, either in the physics such as astronomy, chemistry,technique; or social sciences such as economy, demography, and assurance.Those all need an analysis reading ability.Mathematical skill, therefore, relates strongly with the analysisreading ability in the human intellectual structure. This study is about therelationship between them. And, result of the study shows us as below:Both Mathematical skill and analysis reading ability possess the “high type”of thinking operation. Both also involve the same content of the abstractintelligent, i.e. symbolic and semantic contents. Last but not least, both alsouse the same product of thinking, i.e. units, classes, relations, and systems.Both can be transformed and have an implication.

14. Mathematics for computer graphics

CERN Document Server

Vince, John

2006-01-01

Helps you understand the mathematical ideas used in computer animation, virtual reality, CAD, and other areas of computer graphics. This work also helps you to rediscover the mathematical techniques required to solve problems and design computer programs for computer graphic applications

15. What is mathematics?

DEFF Research Database (Denmark)

Høyrup, Jens

2017-01-01

The paper discusses the question “What is mathematics?” from a point of view inspired by anthropology. In this perspective, the character of mathematical thinking and argument is strongly affected - almost essentially determined, indeed - by the dynamics of the specific social, mostly professional...

16. Mathematical Graphic Organizers

Science.gov (United States)

Zollman, Alan

2009-01-01

As part of a math-science partnership, a university mathematics educator and ten elementary school teachers developed a novel approach to mathematical problem solving derived from research on reading and writing pedagogy. Specifically, research indicates that students who use graphic organizers to arrange their ideas improve their comprehension…

17. Mathematical thinking and origami

Science.gov (United States)

Wares, Arsalan

2016-01-01

The purpose of this paper is to describe the mathematics that emanates from the construction of an origami box. We first construct a simple origami box from a rectangular sheet and then discuss some of the mathematical questions that arise in the context of geometry and calculus.

18. Modularizing Remedial Mathematics

Science.gov (United States)

Wong, Aaron

2013-01-01

As remedial mathematics education has become an increasingly important topic of conversation in higher education. Mathematics departments have been put under increased pressure to change their programs to increase the student success rate. A number of models have been introduced over the last decade that represent a wide range of new ideas and…

Science.gov (United States)

Fennell, Francis; Kobett, Beth McCord; Wray, Jonathan A.

2013-01-01

Elementary school mathematics leaders often come to the realization that their position, however titled and determined, although dedicated to addressing needs in math teaching and learning, also entails and directly involves leadership. Elementary school math specialists/instructional leaders (referenced here as elementary mathematics leaders, or…

20. Archives: Mathematics Connection

African Journals Online (AJOL)

1. Mathematics Teaching and Inclusion

DEFF Research Database (Denmark)

This volume contains the proceedings of the 3rd Nordic Research Conference on Special Needs Education in Mathematics, which took place in Rebild organised by Aalborg University in November 23-25, 2005. The theme of the conference was Mathematics Education and Inclusion. The conference theme...

2. Mathematics and Literature

Institute of Scientific and Technical Information of China (English)

田琳

2016-01-01

In both China and the West, mathematics is closely connected with literature. The maths thought implied in Chinese and western literature is worth our study, and the maths thought in the field of literature is also appear in aesthetics and philoso-phy, so literature, mathematics, aesthetics and philosophy become a network of interconnected.

3. Dyslexia, Dyspraxia and Mathematics.

Science.gov (United States)

Yeo, Dorian

This book explores how primary school children with dyslexia or dyspraxia and difficulty in math can learn math and provides practical support and detailed teaching suggestions. It considers cognitive features that underlie difficulty with mathematics generally or with specific aspects of mathematics. It outlines the ways in which children usually…

4. Mathematics. [SITE 2002 Section].

Science.gov (United States)

Connell, Michael L., Ed.; Lowery, Norene Vail, Ed.; Harnisch, Delwyn L., Ed.

This document contains the following papers on mathematics from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "Teachers' Learning of Mathematics in the Presence of Technology: Participatory Cognitive Apprenticeship" (Mara Alagic); (2) "A Fractal Is a Pattern in Your Neighborhood" (Craig N. Bach); (3)…

5. 21st Century Mathematics

Science.gov (United States)

Seeley, Cathy

2004-01-01

This article addresses some important issues in mathematics instruction at the middle and secondary levels, including the structuring of a district's mathematics program; the choice of textbooks and use of calculators in the classroom; the need for more rigorous lesson planning practices; and the dangers of teaching to standardized tests rather…

6. Mathematical Education for Geographers

Science.gov (United States)

Wilson, Alan

1978-01-01

Outlines mathematical topics of use to college geography students identifies teaching methods for mathematical techniques in geography at the University of Leeds; and discusses problem of providing students with a framework for synthesizing all content of geography education. For journal availability, see SO 506 593. (Author/AV)

7. CLASSICS On Teaching Mathematics

give a better and more correct idea of modern mathematics than whole volumes of the. Bourbaki ... The de-geometrisation of mathematical education and the divorce from physics sever these ties. ... is their traditional national trait. I do not ...

8. What Is Discrete Mathematics?

Science.gov (United States)

Sharp, Karen Tobey

This paper cites information received from a number of sources, e.g., mathematics teachers in two-year colleges, publishers, and convention speakers, about the nature of discrete mathematics and about what topics a course in this subject should contain. Note is taken of the book edited by Ralston and Young which discusses the future of college…

9. Discrete Mathematics Re "Tooled."

Science.gov (United States)

Grassl, Richard M.; Mingus, Tabitha T. Y.

1999-01-01

Indicates the importance of teaching discrete mathematics. Describes how the use of technology can enhance the teaching and learning of discrete mathematics. Explorations using Excel, Derive, and the TI-92 proved how preservice and inservice teachers experienced a new dimension in problem solving and discovery. (ASK)

10. Skill Games for Mathematics.

Science.gov (United States)

Corle, Clyde G.

This guide is to assist teachers with motivational ideas for teaching elementary school mathematics. The items included are a wide variety of games (paper and pencil, verbal, and physical), jingles, contests, teaching devices, and thought provoking exercises. Suggestions for selection of mathematical games are offered. The devices are used to…

11. Mathematics through Experience

Science.gov (United States)

Hristozova, Nedyalka

2016-01-01

The author shares some examples from her Bulgarian project, "Mathematics Through Experience", which approaches mathematics from a practical, real-life perspective in order to develop creative thinking: just like science! What was most important to her was to motivate her students to study maths and science by giving them a taste of how…

12. Under Threes' Mathematical Learning

Science.gov (United States)

Franzén, Karin

2015-01-01

The article focuses on mathematics for toddlers in preschool, with the aim of challenging a strong learning discourse that mainly focuses on cognitive learning. By devoting more attention to other perspectives on learning, the hope is to better promote children's early mathematical development. Sweden is one of few countries to have a curriculum…

13. Rethinking the mathematics curriculum

CERN Document Server

Hoyles, Celia; Woodhouse, Geoffrey

1998-01-01

At a time when political interest in mathematics education is at its highest, this book demonstrates that the issues are far from straightforward. A wide range of international contributors address such questions as: What is mathematics, and what is it for? What skills does mathematics education need to provide as technology advances? What are the implications for teacher education? What can we learn from past attempts to change the mathematics curriculum? Rethinking the Mathematics Curriculum offers stimulating discussions, showing much is to be learnt from the differences in culture, national expectations, and political restraints revealed in the book. This accessible book will be of particular interest to policy makers, curriculum developers, educators, researchers and employers as well as the general reader.

14. Developing mathematical modelling competence

DEFF Research Database (Denmark)

Blomhøj, Morten; Jensen, Tomas Højgaard

2003-01-01

In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding...... the balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....

CERN Document Server

Jeffrey, Alan

2001-01-01

Advanced Engineering Mathematics provides comprehensive and contemporary coverage of key mathematical ideas, techniques, and their widespread applications, for students majoring in engineering, computer science, mathematics and physics. Using a wide range of examples throughout the book, Jeffrey illustrates how to construct simple mathematical models, how to apply mathematical reasoning to select a particular solution from a range of possible alternatives, and how to determine which solution has physical significance. Jeffrey includes material that is not found in works of a similar nature, such as the use of the matrix exponential when solving systems of ordinary differential equations. The text provides many detailed, worked examples following the introduction of each new idea, and large problem sets provide both routine practice, and, in many cases, greater challenge and insight for students. Most chapters end with a set of computer projects that require the use of any CAS (such as Maple or Mathematica) th...

16. Mathematics of aperiodic order

CERN Document Server

Lenz, Daniel; Savinien, Jean

2015-01-01

What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the – later Nobel prize-winning – discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomolog...

17. MATHEMATICAL MODEL MANIPULATOR ROBOTS

Directory of Open Access Journals (Sweden)

O. N. Krakhmalev

2015-12-01

Full Text Available A mathematical model to describe the dynamics of manipulator robots. Mathematical model are the implementation of the method based on the Lagrange equation and using the transformation matrices of elastic coordinates. Mathematical model make it possible to determine the elastic deviations of manipulator robots from programmed motion trajectories caused by elastic deformations in hinges, which are taken into account in directions of change of the corresponding generalized coordinates. Mathematical model is approximated and makes it possible to determine small elastic quasi-static deviations and elastic vibrations. The results of modeling the dynamics by model are compared to the example of a two-link manipulator system. The considered model can be used when performing investigations of the mathematical accuracy of the manipulator robots.

18. Mathematics in everyday life

CERN Document Server

Haigh, John

2016-01-01

How does mathematics impact everyday events? The purpose of this book is to show a range of examples where mathematics can be seen at work in everyday life. From money (APR, mortgage repayments, personal finance), simple first and second order ODEs, sport and games (tennis, rugby, athletics, darts, tournament design, soccer, snooker), business (stock control, linear programming, check digits, promotion policies, investment), the social sciences (voting methods, Simpson’s Paradox, drug testing, measurements of inequality) to TV game shows and even gambling (lotteries, roulette, poker, horse racing), the mathematics behind commonplace events is explored. Fully worked examples illustrate the ideas discussed and each chapter ends with a collection of exercises. Everyday Mathematics supports other first year modules by giving students extra practice in working with calculus, linear algebra, geometry, trigonometry and probability. Secondary/high school level mathematics is all that is required for students to und...

CERN Document Server

1977-01-01

For two weeks in August, 1975 more than 140 mathematicians and other scientists gathered at the Universite de Sherbrooke. The occasion was the 15th Biennial Seminar of the Canadian Mathematical Congress, entitled Mathematics and the Life Sciences. Participants in this inter­ disciplinary gathering included researchers and graduate students in mathematics, seven different areas of biological science, physics, chemistry and medical science. Geographically, those present came from the United States and the United Kingdom as well as from academic departments and government agencies scattered across Canada. In choosing this particular interdisciplinary topic the programme committee had two chief objectives. These were to promote Canadian research in mathematical problems of the life sciences, and to encourage co-operation and exchanges between mathematical scientists" biologists and medical re­ searchers. To accomplish these objective the committee assembled a stim­ ulating programme of lectures and talks. Six ...

20. Antieigenvalue analysis for continuum mechanics, economics, and number theory

Directory of Open Access Journals (Sweden)

Gustafson Karl

2016-01-01

Full Text Available My recent book Antieigenvalue Analysis, World-Scientific, 2012, presented the theory of antieigenvalues from its inception in 1966 up to 2010, and its applications within those forty-five years to Numerical Analysis, Wavelets, Statistics, Quantum Mechanics, Finance, and Optimization. Here I am able to offer three further areas of application: Continuum Mechanics, Economics, and Number Theory. In particular, the critical angle of repose in a continuum model of granular materials is shown to be exactly my matrix maximum turning angle of the stress tensor of the material. The important Sharpe ratio of the Capital Asset Pricing Model is now seen in terms of my antieigenvalue theory. Euclid’s Formula for Pythagorean triples becomes a special case of my operator trigonometry.

1. Topology and layout optimization of discrete and continuum structures

Science.gov (United States)

Bendsoe, Martin P.; Kikuchi, Noboru

1993-01-01

The basic features of the ground structure method for truss structure an continuum problems are described. Problems with a large number of potential structural elements are considered using the compliance of the structure as the objective function. The design problem is the minimization of compliance for a given structural weight, and the design variables for truss problems are the cross-sectional areas of the individual truss members, while for continuum problems they are the variable densities of material in each of the elements of the FEM discretization. It is shown how homogenization theory can be applied to provide a relation between material density and the effective material properties of a periodic medium with a known microstructure of material and voids.

2. Three-body continuum states on a Lagrange mesh

International Nuclear Information System (INIS)

Descouvemont, P.; Tursunov, E.; Baye, D.

2006-01-01

Three-body continuum states are investigated with the hyperspherical method on a Lagrange mesh. The R-matrix theory is used to treat the asymptotic behaviour of scattering wave functions. The formalism is developed for neutral as well as for charged systems. We point out some specificities of continuum states in the hyperspherical method. The collision matrix can be determined with a good accuracy by using propagation techniques. The method is applied to the 6 He (=α+n+n) and 6 Be (=α+p+p) systems, as well as to 14 Be (=Be12+n+n). For 6 He, we essentially recover results of the literature. Application to 14 Be suggests the existence of an excited 2 + state below threshold. The calculated B(E2) value should make this state observable with Coulomb excitation experiments

3. Continuum modelling for carbon and boron nitride nanostructures

International Nuclear Information System (INIS)

Thamwattana, Ngamta; Hill, James M

2007-01-01

Continuum based models are presented here for certain boron nitride and carbon nanostructures. In particular, certain fullerene interactions, C 60 -C 60 , B 36 N 36 -B 36 N 36 and C 60 -B 36 N 36 , and fullerene-nanotube oscillator interactions, C 60 -boron nitride nanotube, C 60 -carbon nanotube, B 36 N 36 -boron nitride nanotube and B 36 N 36 -carbon nanotube, are studied using the Lennard-Jones potential and the continuum approach, which assumes a uniform distribution of atoms on the surface of each molecule. Issues regarding the encapsulation of a fullerene into a nanotube are also addressed, including acceptance and suction energies of the fullerenes, preferred position of the fullerenes inside the nanotube and the gigahertz frequency oscillation of the inner molecule inside the outer nanotube. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures

4. Continuum-mediated dark matter–baryon scattering

CERN Document Server

2016-01-01

Many models of dark matter scattering with baryons may be treated either as a simple contact interaction or as the exchange of a light mediator particle. We study an alternative, in which a continuum of light mediator states may be exchanged. This could arise, for instance, from coupling to a sector which is approximately conformal at the relevant momentum transfer scale. In the non-relativistic effective theory of dark matter-baryon scattering, which is useful for parametrizing direct detection signals, the effect of such continuum mediators is to multiply the amplitude by a function of the momentum transfer q, which in the simplest case is just a power law. We develop the basic framework and study two examples: the case where the mediator is a scalar operator coupling to the Higgs portal (which turns out to be highly constrained) and the case of an antisymmetric tensor operator \${\\cal O}_{\\mu \

5. Derivation of Electromagnetism from the Elastodynamics of the Spacetime Continuum

Directory of Open Access Journals (Sweden)

Millette P. A.

2013-04-01

Full Text Available We derive Electromagnetism from the Elastodynamics of the Spacetime Continuum based on the identification of the theory’s antisymmetric rotation tensor with the elec- tromagnetic field-strength tensor. The theory provides a physical explanation of the electromagnetic potential, which arises from transverse ( shearing displacements of the spacetime continuum, in contrast to mass which arises from longitudinal (dilatational displacements. In addition, the theory provides a physical explanation of the current density four-vector, as the 4-gradient of the volume dilatation of the spacetime con- tinuum. The Lorentz condition is obtained directly from the theory. In addition, we obtain a generalization of Electromagnetism for the situation where a volume force is present, in the general non-macroscopic case. Maxwell’s equations are found to remain unchanged, but the current density has an additional term proportional to the volume force.

6. PCE: web tools to compute protein continuum electrostatics

Science.gov (United States)

Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.

2005-01-01

PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492

7. Global spiral structure of M81 - radio continuum maps

International Nuclear Information System (INIS)

Bash, F.N.; Kaufman, M.; Ohio State Univ., Columbus)

1986-01-01

VLA observations of the radio continuum emission from M81 at 6 and 20 cm are presented and used to check the predictions of density-wave theories. Both thermal and nonthermal radiation from the spiral arms are detected. Most of the bright knots along the radio arms are giant radio H II regions. The nonthermal emission defines spiral arms that are patchy and well-resolved, with a width of 1-2 kpc. The observed nonthermal arms are too broad to agree with the continuum gasdynamical calculations of Roberts (1969), Shu et al. (1972), and Visser (1978, 1980) for a classical density wave model. The observed arm widths appear consistent with the predictions of density-wave models that emphasize the clumpy nature of the ISM. The 20 cm arms appear to spiral outward from a faint inner H I ring, suggesting that the ring is produced by the inner Lindblad resonance. 36 references

8. Continuum effects in the scattering of exotic nuclei

Energy Technology Data Exchange (ETDEWEB)

Druet, T. [Universite Libre de Bruxelles (ULB), Physique Quantique, C.P. 165/82, Brussels (Belgium); Universite Libre de Bruxelles (ULB), Physique Nucleaire Theorique et Physique Mathematique, Brussels (Belgium); Descouvemont, P. [Universite Libre de Bruxelles (ULB), Physique Nucleaire Theorique et Physique Mathematique, Brussels (Belgium)

2012-10-15

We discuss continuum effects in the scattering of exotic nuclei, and more specifically on the {sup 11}Be + {sup 64}Zn scattering. {sup 11}Be is a typical example of an exotic nucleus, with a low binding energy. Elastic, inelastic and breakup cross-sections of the {sup 11}Be + {sup 64}Zn system are computed in the Continuum Discretized Coupled Channel formalism, at energies near the Coulomb barrier. We show that converged cross-sections need high angular momenta as well as as large excitation energies in the wave functions of the projectile. Extensions to other systems are simulated by different collision energies, and by varying the binding energy of {sup 11}Be. (orig.)

9. Continuum mechanical and computational aspects of material behavior

Energy Technology Data Exchange (ETDEWEB)

Fried, Eliot; Gurtin, Morton E.

2000-02-10

The focus of the work is the application of continuum mechanics to materials science, specifically to the macroscopic characterization of material behavior at small length scales. The long-term goals are a continuum-mechanical framework for the study of materials that provides a basis for general theories and leads to boundary-value problems of physical relevance, and computational methods appropriate to these problems supplemented by physically meaningful regularizations to aid in their solution. Specific studies include the following: the development of a theory of polycrystalline plasticity that incorporates free energy associated with lattice mismatch between grains; the development of a theory of geometrically necessary dislocations within the context of finite-strain plasticity; the development of a gradient theory for single-crystal plasticity with geometrically necessary dislocations; simulations of dynamical fracture using a theory that allows for the kinking and branching of cracks; computation of segregation and compaction in flowing granular materials.

10. The Glymphatic-Lymphatic Continuum: Opportunities for Osteopathic Manipulative Medicine.

Science.gov (United States)

Hitscherich, Kyle; Smith, Kyle; Cuoco, Joshua A; Ruvolo, Kathryn E; Mancini, Jayme D; Leheste, Joerg R; Torres, German

2016-03-01

The brain has long been thought to lack a lymphatic drainage system. Recent studies, however, show the presence of a brain-wide paravascular system appropriately named the glymphatic system based on its similarity to the lymphatic system in function and its dependence on astroglial water flux. Besides the clearance of cerebrospinal fluid and interstitial fluid, the glymphatic system also facilitates the clearance of interstitial solutes such as amyloid-β and tau from the brain. As cerebrospinal fluid and interstitial fluid are cleared through the glymphatic system, eventually draining into the lymphatic vessels of the neck, this continuous fluid circuit offers a paradigm shift in osteopathic manipulative medicine. For instance, manipulation of the glymphatic-lymphatic continuum could be used to promote experimental initiatives for nonpharmacologic, noninvasive management of neurologic disorders. In the present review, the authors describe what is known about the glymphatic system and identify several osteopathic experimental strategies rooted in a mechanistic understanding of the glymphatic-lymphatic continuum.

11. Non compact continuum limit of two coupled Potts models

International Nuclear Information System (INIS)

Vernier, Éric; Jacobsen, Jesper Lykke; Saleur, Hubert

2014-01-01

We study two Q-state Potts models coupled by the product of their energy operators, in the regime 2  3 (2) vertex model. It corresponds to a selfdual system of two antiferromagnetic Potts models, coupled ferromagnetically. We derive the Bethe ansatz equations and study them numerically for two arbitrary twist angles. The continuum limit is shown to involve two compact bosons and one non compact boson, with discrete states emerging from the continuum at appropriate twists. The non compact boson entails strong logarithmic corrections to the finite-size behaviour of the scaling levels, an understanding of which allows us to correct an earlier proposal for some of the critical exponents. In particular, we infer the full set of magnetic scaling dimensions (watermelon operators) of the Potts model. (paper)

12. Elucidating a Goal-Setting Continuum in Brain Injury Rehabilitation.

Science.gov (United States)

Hunt, Anne W; Le Dorze, Guylaine; Trentham, Barry; Polatajko, Helene J; Dawson, Deirdre R

2015-08-01

For individuals with brain injury, active participation in goal setting is associated with better rehabilitation outcomes. However, clinicians report difficulty engaging these clients in goal setting due to perceived or real deficits (e.g., lack of awareness). We conducted a study using grounded theory methods to understand how clinicians from occupational therapy facilitate client engagement and manage challenges inherent in goal setting with this population. Through constant comparative analysis, a goal-setting continuum emerged. At one end of the continuum, therapists embrace client-determined goals and enable clients to decide their own goals. At the other, therapists accept preset organization-determined goals (e.g., "the goal is discharge") and pay little attention to client input. Although all participants aspired to embrace client-determined goal setting, most felt powerless to do so within perceived organizational constraints. Views of advocacy and empowerment help to explain our findings and inform more inclusive practice. © The Author(s) 2015.

13. Radio continuum emission from young stellar objects in L1641

International Nuclear Information System (INIS)

Morgan, J.A.; Snell, R.L.; Strom, K.M.

1990-01-01

The results of a 6 and 20 cm radio continuum survey of young stellar objects in the L1641 region located south of the Orion Nebula are presented. Four are identified as low-luminosity young stellar objects in L1641 and three more as Herbig-Haro or Herbig-Haro-like objects. These objects have bolometric luminosities between 80 and 300 solar, and their 6-20 cm spectral index suggests optically thick, free-free emission. They are characterized by a rising spectrum between 2.2 and 25 microns, have no optical counterparts, and are associated with stellar wind activity. Thus, detectable radio continuum emission may be produced only by the youngest and most luminous objects in L1641. 34 refs

14. Plastic dislocation motion via nonequilibrium molecular and continuum dynamics

International Nuclear Information System (INIS)

Hoover, W.G.; Ladd, A.J.C.; Hoover, N.E.

1980-01-01

The classical two-dimensional close-packed triangular lattice, with nearest-neighbor spring forces, is a convenient standard material for the investigation of dislocation motion and plastic flow. Two kinds of calculations, based on this standard material, are described here: (1) Molecular Dynamics simulations, incorporating adiabatic strains described with the help of Doll's Tensor, and (2) Continuum Dynamics simulations, incorporating periodic boundaries and dislocation interaction through stress-field superposition

15. Haro 11: Where is the Lyman Continuum Source?

Energy Technology Data Exchange (ETDEWEB)

Keenan, Ryan P.; Oey, M. S. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Jaskot, Anne E. [Department of Astronomy, Smith College, Northampton, MA 01063 (United States); James, Bethan L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

2017-10-10

Identifying the mechanism by which high-energy Lyman continuum (LyC) photons escaped from early galaxies is one of the most pressing questions in cosmic evolution. Haro 11 is the best known local LyC-leaking galaxy, providing an important opportunity to test our understanding of LyC escape. The observed LyC emission in this galaxy presumably originates from one of the three bright, photoionizing knots known as A, B, and C. It is known that Knot C has strong Ly α emission, and Knot B hosts an unusually bright ultraluminous X-ray source, which may be a low-luminosity active galactic nucleus. To clarify the LyC source, we carry out ionization-parameter mapping (IPM) by obtaining narrow-band imaging from the Hubble Space Telescope WFC3 and ACS cameras to construct spatially resolved ratio maps of [O iii]/[O ii] emission from the galaxy. IPM traces the ionization structure of the interstellar medium and allows us to identify optically thin regions. To optimize the continuum subtraction, we introduce a new method for determining the best continuum scale factor derived from the mode of the continuum-subtracted, image flux distribution. We find no conclusive evidence of LyC escape from Knots B or C, but instead we identify a high-ionization region extending over at least 1 kpc from Knot A. This knot shows evidence of an extremely young age (≲1 Myr), perhaps containing very massive stars (>100 M {sub ⊙}). It is weak in Ly α , so if it is confirmed as the LyC source, our results imply that LyC emission may be independent of Ly α emission.

16. Continuum-limit scaling of overlap fermions as valence quarks

International Nuclear Information System (INIS)

Cichy, Krzysztof; Herdoiza, Gregorio; Jansen, Karl

2009-10-01

We present the results of a mixed action approach, employing dynamical twisted mass fermions in the sea sector and overlap valence fermions, with the aim of testing the continuum limit scaling behaviour of physical quantities, taking the pion decay constant as an example. To render the computations practical, we impose for this purpose a fixed finite volume with lattice size L∼1.3 fm. We also briefly review the techniques we have used to deal with overlap fermions. (orig.)

17. Continuum symmetry restoration in lattice models with staggered fermions

International Nuclear Information System (INIS)

Morel, A.

1986-09-01

This talk is a report on results obtained by T. Jolicoeur, R. Lacaze, B. Petersson and the author: staggered fermions can be consistently interpreted as flavoured quarks in the continuum limit of asymptotically free theories on the lattice. This statement is supported by analytical results for the Gross-Neveu model at large N and for a QCD two point function, and by a numerical simulation of SU(2) quenched QCD

18. Large mass limit of the continuum theories in Kaplan's formulation

International Nuclear Information System (INIS)

Kawano, T.; Kikukawa, Y.

1994-01-01

Being inspired by Kaplan's proposal for simulating chiral fermions on a lattice, we examine the continuum analogue of his domain-wall construction for two-dimensional chiral Schwinger models. Adopting a slightly unusual dimensional regularization, we explicitly evaluate the one-loop effective action in the limit that the domain-wall mass goes to infinity. For anomaly-free cases, the effective action turns out to be gauge invariant in the two-dimensional sense

19. Perturbative matching of continuum and lattice quasi-distributions

Directory of Open Access Journals (Sweden)

Ishikawa Tomomi

2018-01-01

Full Text Available Matching of the quasi parton distribution functions between continuum and lattice is addressed using lattice perturbation theory specifically withWilson-type fermions. The matching is done for nonlocal quark bilinear operators with a straightWilson line in a spatial direction. We also investigate operator mixing in the renormalization and possible O(a operators for the nonlocal operators based on a symmetry argument on lattice.

20. Constitutive relationships and models in continuum theories of multiphase flows

International Nuclear Information System (INIS)

Decker, R.

1989-09-01

In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included

1. New numerical methods for quantum field theories on the continuum

Energy Technology Data Exchange (ETDEWEB)

Emirdag, P.; Easter, R.; Guralnik, G.S.; Hahn, S.C

2000-03-01

The Source Galerkin Method is a new numerical technique that is being developed to solve Quantum Field Theories on the continuum. It is not based on Monte Carlo techniques and has a measure to evaluate relative errors. It promises to increase the accuracy and speed of calculations, and takes full advantage of symmetries of the theory. The application of this method to the non-linear {sigma} model is outlined.

2. Properties of warm nuclei in the quasi-continuum

Directory of Open Access Journals (Sweden)

Voinov A.

2010-03-01

Full Text Available Nuclear thermodynamic quantities are extracted from nuclear level densities measured with the CACTUS detector array at the Oslo Cyclotron Laboratory. The experiments are performed with light-particle inelastic or transfer reactions. A simple combinatorial model is used to describe the underlying mechanisms responsible for the exponential increasing level density as function of excitation energy. The calculated number of broken Cooper pairs and the parity distribution in continuum are discussed.

3. Linking Preservice Teachers' Mathematics Self-Efficacy and Mathematics Teaching Efficacy to Their Mathematical Performance

Science.gov (United States)

Bates, Alan B.; Latham, Nancy; Kim, Jin-ah

2011-01-01

This study examined preservice teachers' mathematics self-efficacy and mathematics teaching efficacy and compared them to their mathematical performance. Participants included 89 early childhood preservice teachers at a Midwestern university. Instruments included the Mathematics Self-Efficacy Scale (MSES), Mathematics Teaching Efficacy Beliefs…

4. Examining Fourth-Grade Mathematics Writing: Features of Organization, Mathematics Vocabulary, and Mathematical Representations

Science.gov (United States)

Hebert, Michael A.; Powell, Sarah R.

2016-01-01

Increasingly, students are expected to write about mathematics. Mathematics writing may be informal (e.g., journals, exit slips) or formal (e.g., writing prompts on high-stakes mathematics assessments). In order to develop an effective mathematics-writing intervention, research needs to be conducted on how students organize mathematics writing and…

5. A Geometry Deformation Model for Braided Continuum Manipulators

Directory of Open Access Journals (Sweden)

2017-06-01

Full Text Available Continuum manipulators have gained significant attention in the robotic community due to their high dexterity, deformability, and reachability. Modeling of such manipulators has been shown to be very complex and challenging. Despite many research attempts, a general and comprehensive modeling method is yet to be established. In this paper, for the first time, we introduce the bending effect in the model of a braided extensile pneumatic actuator with both stiff and bendable threads. Then, the effect of the manipulator cross-section deformation on the constant curvature and variable curvature models is investigated using simple analytical results from a novel geometry deformation method and is compared to experimental results. We achieve 38% mean reference error simulation accuracy using our constant curvature model for a braided continuum manipulator in presence of body load and 10% using our variable curvature model in presence of extensive external loads. With proper model assumptions and taking to account the cross-section deformation, a 7–13% increase in the simulation mean error accuracy is achieved compared to a fixed cross-section model. The presented models can be used for the exact modeling and design optimization of compound continuum manipulators by providing an analytical tool for the sensitivity analysis of the manipulator performance. Our main aim is the application in minimal invasive manipulation with limited workspaces and manipulators with regional tunable stiffness in their cross section.

6. The quantum and the continuum : Einstein's dichotomous legacies

International Nuclear Information System (INIS)

Majumdar, Parthasarathi

2015-01-01

This talk begins with a summary of some of Einstein's seminal contributions in the quantum domain, like Brownian motion and the Light Quantum Hypothesis, as well as on the spacetime continuum enshrined in the theories of special and general relativity. Following up on Einstein's rationale for postulating the Light Quantum Hypothesis, we attempt to point to a possible dichotomy in his thinking about these two legacies of his, which may have been noticed by him, but was not much discussed by him in the public domain. One may speculate that this may have had something to do with his well-known distaste for the probability interpretation of quantum mechanics as a fundamental interpretation. We argue that Einstein's general relativity theory itself contains the seeds of a dramatic modification of our ideas of the Einsteinian spacetime continuum, thus underlining the dichotomy even more strongly. We then survey one modern attempt to resolve the dichotomy, at least partly, by bringing into the spacetime continuum, aspects of quantum mechanics with its underlying statistical interpretation, an approach which Einstein may not have whole-heartedly endorsed, but which seems to work so far, with good prospects for the future. (author)

7. Identification of a transcriptional signature for the wound healing continuum

Science.gov (United States)

Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

2014-01-01

There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. PMID:24844339

8. Additive manufacturing of patient-specific tubular continuum manipulators

Science.gov (United States)

Amanov, Ernar; Nguyen, Thien-Dang; Burgner-Kahrs, Jessica

2015-03-01

Tubular continuum robots, which are composed of multiple concentric, precurved, elastic tubes, provide more dexterity than traditional surgical instruments at the same diameter. The tubes can be precurved such that the resulting manipulator fulfills surgical task requirements. Up to now the only material used for the component tubes of those manipulators is NiTi, a super-elastic shape-memory alloy of nickel and titan. NiTi is a cost-intensive material and fabrication processes are complex, requiring (proprietary) technology, e.g. for shape setting. In this paper, we evaluate component tubes made of 3 different thermoplastic materials (PLA, PCL and nylon) using fused filament fabrication technology (3D printing). This enables quick and cost-effective production of custom, patient-specific continuum manipulators, produced on site on demand. Stress-strain and deformation characteristics are evaluated experimentally for 16 fabricated tubes of each thermoplastic with diameters and shapes equivalent to those of NiTi tubes. Tubes made of PCL and nylon exhibit properties comparable to those made of NiTi. We further demonstrate a tubular continuum manipulator composed of 3 nylon tubes in a transnasal, transsphenoidal skull base surgery scenario in vitro.

9. Spatial stochasticity and non-continuum effects in gas flows

Energy Technology Data Exchange (ETDEWEB)

Dadzie, S. Kokou, E-mail: k.dadzie@glyndwr.ac.uk [Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); Reese, Jason M., E-mail: jason.reese@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom)

2012-02-06

We investigate the relationship between spatial stochasticity and non-continuum effects in gas flows. A kinetic model for a dilute gas is developed using strictly a stochastic molecular model reasoning, without primarily referring to either the Liouville or the Boltzmann equations for dilute gases. The kinetic equation, a stochastic version of the well-known deterministic Boltzmann equation for dilute gas, is then associated with a set of macroscopic equations for the case of a monatomic gas. Tests based on a heat conduction configuration and sound wave dispersion show that spatial stochasticity can explain some non-continuum effects seen in gases. -- Highlights: ► We investigate effects of molecular spatial stochasticity in non-continuum regime. ► Present a simplify spatial stochastic kinetic equation. ► Present a spatial stochastic macroscopic flow equations. ► Show effects of the new model on sound wave dispersion prediction. ► Show effects of the new approach in density profiles in a heat conduction.

10. Continuum-Kinetic Models and Numerical Methods for Multiphase Applications

Science.gov (United States)

Nault, Isaac Michael

This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.

11. YM2: Continuum expectations, lattice convergence, and lassos

International Nuclear Information System (INIS)

Driver, B.K.

1989-01-01

The two dimensional Yang-Mills theory (YM 2 ) is analyzed in both the continuum and the lattice. In the complete axial gauge the continuum theory may be defined in terms of a Lie algebra valued white noise, and parallel translation may be defined by stochastic differential equations. This machinery is used to compute the expectations of gauge invariant functions of the parallel translation operators along a collection of curves C. The expectation values are expressed as finite dimensional integrals with densities that are products of the heat kernel on the structure group. The time parameters of the heat kernels are determined by the areas enclosed by the collection C, and the arguments are determined by the crossing topologies of the curves in C. The expectations for the Wilson lattice models have a similar structure, and from this it follows that in the limit of small lattice spacing the lattice expectations converge to the continuum expectations. It is also shown that the lasso variables advocated by L. Gross exist and are sufficient to generate all the measurable functions on the YM 2 -measure space. (orig.)

12. Hybrid continuum-coarse-grained modeling of erythrocytes

Science.gov (United States)

Lyu, Jinming; Chen, Paul G.; Boedec, Gwenn; Leonetti, Marc; Jaeger, Marc

2018-06-01

The red blood cell (RBC) membrane is a composite structure, consisting of a phospholipid bilayer and an underlying membrane-associated cytoskeleton. Both continuum and particle-based coarse-grained RBC models make use of a set of vertices connected by edges to represent the RBC membrane, which can be seen as a triangular surface mesh for the former and a spring network for the latter. Here, we present a modeling approach combining an existing continuum vesicle model with a coarse-grained model for the cytoskeleton. Compared to other two-component approaches, our method relies on only one mesh, representing the cytoskeleton, whose velocity in the tangential direction of the membrane may be different from that of the lipid bilayer. The finitely extensible nonlinear elastic (FENE) spring force law in combination with a repulsive force defined as a power function (POW), called FENE-POW, is used to describe the elastic properties of the RBC membrane. The mechanical interaction between the lipid bilayer and the cytoskeleton is explicitly computed and incorporated into the vesicle model. Our model includes the fundamental mechanical properties of the RBC membrane, namely fluidity and bending rigidity of the lipid bilayer, and shear elasticity of the cytoskeleton while maintaining surface-area and volume conservation constraint. We present three simulation examples to demonstrate the effectiveness of this hybrid continuum-coarse-grained model for the study of RBCs in fluid flows.

13. Criminal justice continuum for opioid users at risk of overdose.

Science.gov (United States)

Brinkley-Rubinstein, Lauren; Zaller, Nickolas; Martino, Sarah; Cloud, David H; McCauley, Erin; Heise, Andrew; Seal, David

2018-02-24

The United States (US) is in the midst of an epidemic of opioid use; however, overdose mortality disproportionately affects certain subgroups. For example, more than half of state prisoners and approximately two-thirds of county jail detainees report issues with substance use. Overdose is one of the leading causes of mortality among individuals released from correctional settings. Even though the criminal justice (CJ) system interacts with a disproportionately high number of individuals at risk of opioid use and overdose, few CJ agencies screen for opioid use disorder (OUD). Even less provide access to medication assisted treatment (e.g. methadone, buprenorphine, and depot naltrexone), which is one of the most effective tools to combat addiction and lower overdose risk. However, there is an opportunity to implement programs across the CJ continuum in collaboration with law enforcement, courts, correctional facilities, community service providers, and probation and parole. In the current paper, we introduce the concept of a "CJ Continuum of Care for Opioid Users at Risk of Overdose", grounded by the Sequential Intercept Model. We present each step on the CJ Continuum and include a general overview and highlight opportunities for: 1) screening for OUD and overdose risk, 2) treatment and/or diversion, and 3) overdose prevention and naloxone provision. Copyright © 2018 Elsevier Ltd. All rights reserved.

14. Identification of a transcriptional signature for the wound healing continuum.

Science.gov (United States)

Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

2014-01-01

There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. © 2014 The Authors. Wound Repair and Regeneration published by Wiley Periodicals, Inc. on behalf of Wound Healing Society.

15. Overcoming Conditioned Helplessness in Mathematics.

Science.gov (United States)

Wieschenberg, Agnes Arvai

1994-01-01

A discussion of mathematics anxiety and learned helplessness in mathematics focuses on student failure and avoidance in college mathematics learning. It explores possible causes and suggests classroom activities to foster students' interest and success. (MSE)

16. The Empathizing-Systemizing Theory, Social Abilities, and Mathematical Achievement in Children.

Science.gov (United States)

Escovar, Emily; Rosenberg-Lee, Miriam; Uddin, Lucina Q; Menon, Vinod

2016-03-14

The Empathizing-Systemizing (E-S) theory describes a profile of traits that have been linked to autism spectrum disorders, and are thought to encompass a continuum that includes typically developing (TD) individuals. Although systemizing is hypothesized to be related to mathematical abilities, empirical support for this relationship is lacking. We examine the link between empathizing and systemizing tendencies and mathematical achievement in 112 TD children (57 girls) to elucidate how socio-cognitive constructs influence early development of mathematical skills. Assessment of mathematical achievement included standardized tests designed to examine calculation skills and conceptual mathematical reasoning. Empathizing and systemizing were assessed using the Combined Empathy Quotient-Child (EQ-C) and Systemizing Quotient-Child (SQ-C). Contrary to our hypothesis, we found that mathematical achievement was not related to systemizing or the discrepancy between systemizing and empathizing. Surprisingly, children with higher empathy demonstrated lower calculation skills. Further analysis using the Social Responsiveness Scale (SRS) revealed that the relationship between EQ-C and mathematical achievement was mediated by social ability rather than autistic behaviors. Finally, social awareness was found to play a differential role in mediating the relationship between EQ-C and mathematical achievement in girls. These results identify empathy, and social skills more generally, as previously unknown predictors of mathematical achievement.

17. Philosophical dimensions in mathematics education

CERN Document Server

Francois, Karen

2007-01-01

This book brings together diverse recent developments exploring the philosophy of mathematics in education. The unique combination of ethnomathematics, philosophy, history, education, statistics and mathematics offers a variety of different perspectives from which existing boundaries in mathematics education can be extended. The ten chapters in this book offer a balance between philosophy of and philosophy in mathematics education. Attention is paid to the implementation of a philosophy of mathematics within the mathematics curriculum.

18. Mathematics as verbal behavior.

Science.gov (United States)

Marr, M Jackson

2015-04-01

"Behavior which is effective only through the mediation of other persons has so many distinguishing dynamic and topographical properties that a special treatment is justified and indeed demanded" (Skinner, 1957, p. 2). Skinner's demand for a special treatment of verbal behavior can be extended within that field to domains such as music, poetry, drama, and the topic of this paper: mathematics. For centuries, mathematics has been of special concern to philosophers who have continually argued to the present day about what some deem its "special nature." Two interrelated principal questions have been: (1) Are the subjects of mathematical interest pre-existing in some transcendental realm and thus are "discovered" as one might discover a new planet; and (2) Why is mathematics so effective in the practices of science and engineering even though originally such mathematics was "pure" with applications neither contemplated or even desired? I argue that considering the actual practice of mathematics in its history and in the context of acquired verbal behavior one can address at least some of its apparent mysteries. To this end, I discuss some of the structural and functional features of mathematics including verbal operants, rule-and contingency-modulated behavior, relational frames, the shaping of abstraction, and the development of intuition. How is it possible to understand Nature by properly talking about it? Essentially, it is because nature taught us how to talk. Copyright © 2015 Elsevier B.V. All rights reserved.

19. Map of fluid flow in fractal porous medium into fractal continuum flow.

Science.gov (United States)

Balankin, Alexander S; Elizarraraz, Benjamin Espinoza

2012-05-01

This paper is devoted to fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. Hydrodynamics of fractal continuum flow is developed on the basis of a self-consistent model of fractal continuum employing vector local fractional differential operators allied with the Hausdorff derivative. The generalized forms of Green-Gauss and Kelvin-Stokes theorems for fractional calculus are proved. The Hausdorff material derivative is defined and the form of Reynolds transport theorem for fractal continuum flow is obtained. The fundamental conservation laws for a fractal continuum flow are established. The Stokes law and the analog of Darcy's law for fractal continuum flow are suggested. The pressure-transient equation accounting the fractal metric of fractal continuum flow is derived. The generalization of the pressure-transient equation accounting the fractal topology of fractal continuum flow is proposed. The mapping of fluid flow in a fractally permeable medium into a fractal continuum flow is discussed. It is stated that the spectral dimension of the fractal continuum flow d(s) is equal to its mass fractal dimension D, even when the spectral dimension of the fractally porous or fissured medium is less than D. A comparison of the fractal continuum flow approach with other models of fluid flow in fractally permeable media and the experimental field data for reservoir tests are provided.

20. Mathematical Modelling of Surfactant Self-assembly at Interfaces

KAUST Repository

Morgan, C. E.

2015-01-01

© 2015 Society for Industrial and Applied Mathematics. We present a mathematical model to describe the distribution of surfactant pairs in a multilayer structure beneath an adsorbed monolayer. A mesoscopic model comprising a set of ordinary differential equations that couple the rearrangement of surfactant within the multilayer to the surface adsorption kinetics is first derived. This model is then extended to the macroscopic scale by taking the continuum limit that exploits the typically large number of surfactant layers, which results in a novel third-order partial differential equation. The model is generalized to allow for the presence of two adsorbing boundaries, which results in an implicit free-boundary problem. The system predicts physically observed features in multilayer systems such as the initial formation of smaller lamellar structures and the typical number of layers that form in equilibrium.

1. Methods of applied mathematics with a software overview

CERN Document Server

Davis, Jon H

2016-01-01

This textbook, now in its second edition, provides students with a firm grasp of the fundamental notions and techniques of applied mathematics as well as the software skills to implement them. The text emphasizes the computational aspects of problem solving as well as the limitations and implicit assumptions inherent in the formal methods. Readers are also given a sense of the wide variety of problems in which the presented techniques are useful. Broadly organized around the theme of applied Fourier analysis, the treatment covers classical applications in partial differential equations and boundary value problems, and a substantial number of topics associated with Laplace, Fourier, and discrete transform theories. Some advanced topics are explored in the final chapters such as short-time Fourier analysis and geometrically based transforms applicable to boundary value problems. The topics covered are useful in a variety of applied fields such as continuum mechanics, mathematical physics, control theory, and si...

2. Constructing mathematical knowledge

CERN Document Server

Ernest, Paul

2012-01-01

This book provides a panorama of complimentary and forward looking perspectives on the learning of mathematics and epistemology from some of the leading contributors to the field. It explores constructivist and social theories of learning, and discusses the role of the computer in the light of these theories. It brings analyses from psychoanalysis, Hermeneutics and other perspectives to bear on the issues of mathematics and learning. It enquires into the nature of enquiry itself, and an important emergent theme is the role of language. Finally it relates the history of mathematics to its te

3. Mentoring in mathematics education

CERN Document Server

Hyde, Rosalyn

2013-01-01

Designed to support both teachers and university-based tutors in mentoring pre-service and newly qualified mathematics teachers at both primary and secondary levels, Mentoring Mathematics Teachers offers straightforward practical advice that is based on practice, underpinned by research, and geared specifically towards this challenging subject area.Developed by members of The Association of Mathematics Education Teachers, the authors draw upon the most up-to-date research and theory to provide evidence-based practical guidance. Themes covered include:

4. Mathematics and biology

International Nuclear Information System (INIS)

Khan, I.A.

1991-06-01

In India and in so many other countries, the science students are generally separated into two main streams: one opting mathematical sciences, the other studying biological sciences. As a result, medicos and biologists have no adequate knowledge of mathematical sciences. It causes a great drawback to them in order to be perfect and updated in their profession, due to the tremendous application of mathematics in bio-sciences, now-a-days. The main aim of this article is to emphasize on the need of the time to produce the mathematico-biologists in abundance for the better service of mankind. (author)

CERN Document Server

Alexander, Serena; Poggo, Tammy

2014-01-01

Features the complete set of answers to the exercises in Mathematics Year 5, to save you time marking work and enable you to identify areas requiring further attention. The book includes diagrams and workings where necessary, to ensure pupils understand how to present their answers. Also available from Galore Park www.galorepark.co.uk :. - Mathematics Year 5. - Mathematics Year 6. - 11+ Maths Practice Exercises. - 11+ Maths Revision Guide. - 10-Minute Maths Tests Workbook Age 8-10. - 10-Minute Maths Tests Workbook Age 9-11. - Mental Arithmetic Workbook Age 8-10. - Mental Arithmetic Workbook Ag

6. Mathematics and Measurement.

Science.gov (United States)

Boisvert, R F; Donahue, M J; Lozier, D W; McMichael, R; Rust, B W

2001-01-01

In this paper we describe the role that mathematics plays in measurement science at NIST. We first survey the history behind NIST's current work in this area, starting with the NBS Math Tables project of the 1930s. We then provide examples of more recent efforts in the application of mathematics to measurement science, including the solution of ill-posed inverse problems, characterization of the accuracy of software for micromagnetic modeling, and in the development and dissemination of mathematical reference data. Finally, we comment on emerging issues in measurement science to which mathematicians will devote their energies in coming years.

7. Higher engineering mathematics

CERN Document Server

John Bird

2014-01-01

A practical introduction to the core mathematics principles required at higher engineering levelJohn Bird's approach to mathematics, based on numerous worked examples and interactive problems, is ideal for vocational students that require an advanced textbook.Theory is kept to a minimum, with the emphasis firmly placed on problem-solving skills, making this a thoroughly practical introduction to the advanced mathematics engineering that students need to master. The extensive and thorough topic coverage makes this an ideal text for upper level vocational courses. Now in

8. Applied impulsive mathematical models

CERN Document Server

Stamova, Ivanka

2016-01-01

Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.

9. Equations of mathematical physics

CERN Document Server

Tikhonov, A N

2011-01-01

Mathematical physics plays an important role in the study of many physical processes - hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced-undergraduate or graduate-level text considers only those problems leading to partial differential equations. The authors - two well-known Russian mathematicians - have focused on typical physical processes and the principal types of equations deailing with them. Special attention is paid throughout to mathematical formulation, ri

10. The Mathematics of Knots

CERN Document Server

Banagl, Markus

2011-01-01

The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested

11. Contemporary mathematical physics

CERN Document Server

Dobrushin, R L; Shubin, M A; Vershik, Anatoly M

1996-01-01

This first of a two-volume collection is a celebration of the scientific heritage of F. A. Berezin (1931-1980). Before his untimely death, Berezin had an important influence on physics and mathematics, discovering new ideas in mathematical physics, representation theory, analysis, geometry, and other areas of mathematics. His crowning achievements were the introduction of a new notion of deformation quantization, and Grassmannian analysis ("supermathematics"). Collected here are papers by his many of his colleagues and others who worked in related areas, representing a wide spectrum of topics

12. Constructivism in mathematics

CERN Document Server

Troelstra, AS

1988-01-01

Studies in Logic and the Foundations of Mathematics, Volume 123: Constructivism in Mathematics: An Introduction, Vol. II focuses on various studies in mathematics and logic, including metric spaces, polynomial rings, and Heyting algebras.The publication first takes a look at the topology of metric spaces, algebra, and finite-type arithmetic and theories of operators. Discussions focus on intuitionistic finite-type arithmetic, theories of operators and classes, rings and modules, linear algebra, polynomial rings, fields and local rings, complete separable metric spaces, and located sets. The te

13. Mathematical modelling techniques

CERN Document Server

Aris, Rutherford

1995-01-01

""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode

14. First aid in mathematics

CERN Document Server

Sulley, Robert

2014-01-01

Achieve the best possible standard with this bestselling book of traditional practice and guidance - now in colour!. First Aid in Mathematics provides all the help and support needed for learning and practising Mathematics. It offers comprehensive coverage of core mathematical topics in clear and accessible language. It is suitable for both native English speakers and students of English as a second language and can be used in class, or as a reference and revision book. - Develops a strong basis of understanding with core topics covered in clear and accessible language. - Improves student's ab

15. Makers of mathematics

CERN Document Server

Hollingdale, S. H

1989-01-01

Fascinating and highly readable, this book recounts the history of mathematics as revealed in the lives and writings of the most distinguished practitioners of the art: Archimedes, Descartes, Fermat, Pascal, Newton, Leibniz, Euler, Gauss, Hamilton, Einstein, and many more. Author Stuart Hollingdale introduces and explains the roles of these gifted and often colorful figures in the development of mathematics as well as the ways in which their work relates to mathematics as a whole.Although the emphasis in this absorbing survey is primarily biographical, Hollingdale also discusses major historic

16. Fundamentals of university mathematics

CERN Document Server

McGregor, C M; Stothers, W W

2010-01-01

The third edition of this popular and effective textbook provides in one volume a unified treatment of topics essential for first year university students studying for degrees in mathematics. Students of computer science, physics and statistics will also find this book a helpful guide to all the basic mathematics they require. It clearly and comprehensively covers much of the material that other textbooks tend to assume, assisting students in the transition to university-level mathematics.Expertly revised and updated, the chapters cover topics such as number systems, set and functions, differe

17. Mathematization in introductory physics

Science.gov (United States)

Brahmia, Suzanne M.

Mathematization is central to STEM disciplines as a cornerstone of the quantitative reasoning that characterizes these fields. Introductory physics is required for most STEM majors in part so that students develop expert-like mathematization. This dissertation describes coordinated research and curriculum development for strengthening mathematization in introductory physics; it blends scholarship in physics and mathematics education in the form of three papers. The first paper explores mathematization in the context of physics, and makes an original contribution to the measurement of physics students' struggle to mathematize. Instructors naturally assume students have a conceptual mastery of algebra before embarking on a college physics course because these students are enrolled in math courses beyond algebra. This paper provides evidence that refutes the validity of this assumption and categorizes some of the barriers students commonly encounter with quantification and representing ideas symbolically. The second paper develops a model of instruction that can help students progress from their starting points to their instructor's desired endpoints. Instructors recognize that the introductory physics course introduces new ideas at an astonishing rate. More than most physicists realize, however, the way that mathematics is used in the course is foreign to a large portion of class. This paper puts forth an instructional model that can move all students toward better quantitative and physical reasoning, despite the substantial variability of those students' initial states. The third paper describes the design and testing of curricular materials that foster mathematical creativity to prepare students to better understand physics reasoning. Few students enter introductory physics with experience generating equations in response to specific challenges involving unfamiliar quantities and units, yet this generative use of mathematics is typical of the thinking involved in

18. The Greatest Mathematical Discovery?

Energy Technology Data Exchange (ETDEWEB)

Bailey, David H.; Borwein, Jonathan M.

2010-05-12

What mathematical discovery more than 1500 years ago: (1) Is one of the greatest, if not the greatest, single discovery in the field of mathematics? (2) Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? (3) Was fiercely resisted in Europe for hundreds of years after its discovery? (4) Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, together with the basic arithmetic computational schemes, which were discovered in India about 500 CE.

19. Shock structure in continuum models of gas dynamics: stability and bifurcation analysis

International Nuclear Information System (INIS)

Simić, Srboljub S

2009-01-01

The problem of shock structure in gas dynamics is analysed through a comparative study of two continuum models: the parabolic Navier–Stokes–Fourier model and the hyperbolic system of 13 moments equations modeling viscous, heat-conducting monatomic gases within the context of extended thermodynamics. When dissipative phenomena are neglected these models both reduce to classical Euler's equations of gas dynamics. The shock profile solution, assumed in the form of a planar travelling wave, reduces the problem to a system of ordinary differential equations, and equilibrium states appear to be stationary points of the system. It is shown that in both models an upstream equilibrium state suffers an exchange of stability when the shock speed crosses the critical value which coincides with the highest characteristic speed of the Euler's system. At the same time a downstream equilibrium state could be seen as a steady bifurcating solution, while the shock profile represents a heteroclinic orbit connecting the two stationary points. Using centre manifold reduction it is demonstrated that both models, although mathematically different, obey the same transcritical bifurcation pattern in the neighbourhood of the bifurcation point corresponding to the critical value of shock speed, the speed of sound

20. Mathematical omnibus thirty lectures on classic mathematics

CERN Document Server

Fuchs, Dmitry; Fuchs, Dmitry

2007-01-01

The book consists of thirty lectures on diverse topics, covering much of the mathematical landscape rather than focusing on one area. The reader will learn numerous results that often belong to neither the standard undergraduate nor graduate curriculum and will discover connections between classical and contemporary ideas in algebra, combinatorics, geometry, and topology. The reader's effort will be rewarded in seeing the harmony of each subject. The common thread in the selected subjects is their illustration of the unity and beauty of mathematics. Most lectures contain exercises, and solutions or answers are given to selected exercises. A special feature of the book is an abundance of drawings (more than four hundred), artwork by an accomplished artist, and about a hundred portraits of mathematicians. Almost every lecture contains surprises for even the seasoned researcher.

1. Mathematics for the liberal arts

CERN Document Server

Bindner, Donald; Hemmeter, Joe

2014-01-01

Presents a clear bridge between mathematics and the liberal arts Mathematics for the Liberal Arts provides a comprehensible and precise introduction to modern mathematics intertwined with the history of mathematical discoveries. The book discusses mathematical ideas in the context of the unfolding story of human thought and highlights the application of mathematics in everyday life. Divided into two parts, Mathematics for the Liberal Arts first traces the history of mathematics from the ancient world to the Middle Ages, then moves on to the Renaissance and finishes with the development of modern mathematics. In the second part, the book explores major topics of calculus and number theory, including problem-solving techniques and real-world applications. This book emphasizes learning through doing, presents a practical approach, and features: A detailed explanation of why mathematical principles are true and how the mathematical processes workNumerous figures and diagrams as well as hundreds of worked example...

2. Mathematics, anxiety, and the brain.

Science.gov (United States)

Moustafa, Ahmed A; Tindle, Richard; Ansari, Zaheda; Doyle, Margery J; Hewedi, Doaa H; Eissa, Abeer

2017-05-24

Given that achievement in learning mathematics at school correlates with work and social achievements, it is important to understand the cognitive processes underlying abilities to learn mathematics efficiently as well as reasons underlying the occurrence of mathematics anxiety (i.e. feelings of tension and fear upon facing mathematical problems or numbers) among certain individuals. Over the last two decades, many studies have shown that learning mathematical and numerical concepts relies on many cognitive processes, including working memory, spatial skills, and linguistic abilities. In this review, we discuss the relationship between mathematical learning and cognitive processes as well as the neural substrates underlying successful mathematical learning and problem solving. More importantly, we also discuss the relationship between these cognitive processes, mathematics anxiety, and mathematics learning disabilities (dyscalculia). Our review shows that mathematical cognition relies on a complex brain network, and dysfunction to different segments of this network leads to varying manifestations of mathematical learning disabilities.

3. Mathematics and Statistics Research Department progress report for period ending June 30, 1975

International Nuclear Information System (INIS)

Coveyou, R.R.; Gosslee, D.G.; Wilson, D.G.

1975-10-01

Brief reports on mathematical and statistical research and consulting and collaboration are given for the following areas: statistical estimation, statistical testing, experimental design, probability, energy systems modeling, continuum mechanics, matrices and other operators, numerical analysis, biomathematics and biostatistics, analytical chemistry, biology and medicine, health physics research, management, materials research, physics research, and programming. Information on seminars, publications, etc., is also included. (10 figures, 4 tables)

4. Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches

Science.gov (United States)

Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem

2014-01-01

Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…

5. Mathematical Intelligence and Mathematical Creativity: A Causal Relationship

Science.gov (United States)

Tyagi, Tarun Kumar

2017-01-01

This study investigated the causal relationship between mathematical creativity and mathematical intelligence. Four hundred thirty-nine 8th-grade students, age ranged from 11 to 14 years, were included in the sample of this study by random cluster technique on which mathematical creativity and Hindi adaptation of mathematical intelligence test…

6. Elementary Mathematics Teachers' Perceptions and Lived Experiences on Mathematical Communication

Science.gov (United States)

Kaya, Defne; Aydin, Hasan

2016-01-01

Mathematical thinking skills and meaningful mathematical understanding are among the goals of current mathematics education. There is a wide consensus among scholars about the purpose of developing mathematical understanding and higher order thinking skills in students. However, how to develop those skills in classroom settings is an area that…

7. Using Mathematics in Science: Working with Your Mathematics Department

Science.gov (United States)

Lyon, Steve

2014-01-01

Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…

8. Mathematics Curriculum, the Philosophy of Mathematics and its ...

African Journals Online (AJOL)

It is my observation that the current school mathematics curriculum in Ethiopia is not producing competent mathematics students. Many mathematicians in Ethiopia and other part of the world have often expressed grief that the majority of students do not understand mathematical concepts, or do not see why mathematical ...

9. Mathematical games, abstract games

CERN Document Server

Neto, Joao Pedro

2013-01-01

User-friendly, visually appealing collection offers both new and classic strategic board games. Includes abstract games for two and three players and mathematical games such as Nim and games on graphs.

10. Visualization and mathematics III

CERN Document Server

2003-01-01

This research book on Mathematical Visualization contains state of the art presentations on visualization problems in mathematics, on fundamental mathematical research in computer graphics, and on software frameworks for the application of visualization to real-world problems. All contributions were written by leading experts in the field and peer-refereed by an international editorial team. The book grew out of the third international workshop "Visualization and Mathematics", which was held from May 22-25, 2002 in Berlin. The themes of the book cover important recent developments on - Geometry and Combinatorics of Meshes - Discrete Vector Fields and Topology - Geometric Modelling - Image Based Visualization - Software Environments and Applications - Education and Communication The variety of topics makes the book a suitable resource for researchers, lecturers, and practitioners; http://www-sfb288.math.tu-berlin.de/vismath/

11. Refresher Course in Mathematics

at Department of Mathematics, Berhampur University, Berhampur 760007, Orissa ... Applications are invited. from University/College teachers and Researchers interested in ... Pre-requisites: A basic knowledge of analysis, topology, differential ...

12. Mathematical methods for physicists

CERN Document Server

Arfken, George B

2005-01-01

This best-selling title provides in one handy volume the essential mathematical tools and techniques used to solve problems in physics. It is a vital addition to the bookshelf of any serious student of physics or research professional in the field. The authors have put considerable effort into revamping this new edition.* Updates the leading graduate-level text in mathematical physics* Provides comprehensive coverage of the mathematics necessary for advanced study in physics and engineering* Focuses on problem-solving skills and offers a vast array of exercises * Clearly illustrates and proves mathematical relationsNew in the Sixth Edition:* Updated content throughout, based on users'' feedback * More advanced sections, including differential forms and the elegant forms of Maxwell''s equations* A new chapter on probability and statistics* More elementary sections have been deleted

13. Mathematics for multimedia

CERN Document Server

2003-01-01

Mathematics and Multimedia focuses on the mathematics behind multimedia applications. This timely and thoroughly modern text is a rigorous survey of selected results from algebra and analysis, requiring only undergraduate math skills.The topics are gems' chosen for their usefulness in understanding and creating application software for multimedia signal processing and communication.The book is aimed at a wide audience, including computer science and mathematics majors and those interested in employing mathematics in multimedia design and implementation. For the instructor, the material is divided into six chapters that may be presented in six lecture hours each. Thus, the entire text may be covered in one semester, with time left for examinations and student projects. For the student,there are more than 100 exercises with complete solutions, and numerous example programs in Standard C. Each chapter ends with suggestions for further reading. A companion website provides more insight for both instructors and s...

14. Applied Mathematics Seminar 1982

International Nuclear Information System (INIS)

1983-01-01

This report contains the abstracts of the lectures delivered at 1982 Applied Mathematics Seminar of the DPD/LCC/CNPq and Colloquy on Applied Mathematics of LCC/CNPq. The Seminar comprised 36 conferences. Among these, 30 were presented by researchers associated to brazilian institutions, 9 of them to the LCC/CNPq, and the other 6 were given by visiting lecturers according to the following distribution: 4 from the USA, 1 from England and 1 from Venezuela. The 1981 Applied Mathematics Seminar was organized by Leon R. Sinay and Nelson do Valle Silva. The Colloquy on Applied Mathematics was held from october 1982 on, being organized by Ricardo S. Kubrusly and Leon R. Sinay. (Author) [pt

15. Mathematics for operations research

CERN Document Server

1994-01-01

Effective procedures for mathematical tasks in many fields: resolving linear independence, finding null spaces and factors of matrices; differentiating vectors and matrices by chain rule, many more. Techniques illustrated in examples. 1,300 problems. 1978 edition.

16. Mathematics for physical chemistry

CERN Document Server

Mortimer, Robert G

2005-01-01

Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data.* Numerous examples and problems interspersed throughout the presentations * Each extensive chapter contains a preview, objectives, and ...

17. Mathematical analysis II

CERN Document Server

Canuto, Claudio

2015-01-01

The purpose of the volume is to provide a support textbook for a second lecture course on Mathematical Analysis. The contents are organised to suit, in particular, students of Engineering, Computer Science and Physics, all areas in which mathematical tools play a crucial role. The basic notions and methods concerning integral and differential calculus for multivariable functions, series of functions and ordinary differential equations are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The pedagogical layout echoes the one used in the companion text Mathematical Analysis I. The book’s structure has a specifically-designed modular nature, which allows for great flexibility in the preparation of a lecture course on Mathematical Analysis. The style privileges clarity in the exposition and a linear progression through the theory. The material is organised on two levels. The first, reflected in this book, allows students to grasp the essential ideas, ...

CERN Document Server

Farlow, Stanley J

2014-01-01

Students and puzzle enthusiasts will get plenty of enjoyment plus some painless mathematical instruction from 28 conundrums, including The Curve That Shook the World, Space Travel in a Wineglass, and Through Cantor's Looking Glass.

19. Fundamentals of scientific mathematics

CERN Document Server

Owen, George E

2003-01-01

Offering undergraduates a solid mathematical background (and functioning equally well for independent study), this rewarding, beautifully illustrated text covers geometry and matrices, vector algebra, analytic geometry, functions, and differential and integral calculus. 1961 edition.

20. Mathematics for energy

International Nuclear Information System (INIS)

Snow, D.R.

1975-01-01

This paper provides mathematicians and other persons interested in energy problems with some ideas of the kinds of mathematics being applied and a few ideas for further investigation both in the relevant mathematics and in mathematical modeling. This paper is not meant to be an extensive bibliography on the subject, but references are provided. The Conference emphasized large scale and economic considerations related to energy rather than specific technologies, but additional mathematical problems arising in current and future technologies are suggested. Several of the papers dealt with linear programming models of large scale systems related to energy. These included economic models, policy models, energy sector models for supply and demand and environmental concerns. One of the economic models utilized variational techniques including such things as the Hamiltonian, the Euler-Lagrange differential equation, transversality and natural boundary conditions

1. Mathematics and physics

CERN Document Server

Manin, Yu I

1981-01-01

A bird's eye view of mathematics ; physical quantities, dimensions and constants : the source of numbers in physics ; a drop of milk : observer, observation, observable and unobservable ; space-time as a physical system ; action and symmetry.

2. Handbook of mathematics

CERN Document Server

Bronshtein, I N; Musiol, Gerhard; Mühlig, Heiner

2015-01-01

This guide book to mathematics contains in handbook form the fundamental working knowledge of mathematics which is needed as an everyday guide for working scientists and engineers, as well as for students. Easy to understand, and convenient to use, this guide book gives concisely the information necessary to evaluate most problems which occur in concrete applications. In the newer editions emphasis was laid on those fields of mathematics that became more important for the formulation and modeling of technical and natural processes, namely Numerical Mathematics, Probability Theory and Statistics, as well as Information Processing. Besides many enhancements and  new paragraphs,  new sections on Geometric and Coordinate Transformations, Quaternions and Applications, and Lie Groups and Lie Algebras were added for the sixth edition.

3. Mathematics and Sports

particularly to the mathematics decision viz., that of how to optimally combine making, otherwise known as operations evaluations of several experts on nonquan-. --------~-------- ... a short account of how the ratings of sports- persons are arrived ...

4. Mathematics and Statistics Research Department progress report for period ending June 30, 1977

International Nuclear Information System (INIS)

Lever, W.E.; Shepherd, D.E.; Ward, R.C.; Wilson, D.G.

1977-09-01

Brief descriptions are given of work done in mathematical and statistical research (moving-boundary problems; numerical analysis; continuum mechanics; matrices and other operators; experiment design; statistical testing; multivariate, multipopulation classification; statistical estimation) and statistical and mathematical collaboration (analytical chemistry, biological research, chemistry and physics research, energy research, engineering technology research, environmental sciences research, health physics research, meterials research, sampling inspection and quality control, uranium resource evaluation research). Most of the descriptions are a page or less in length. Educational activities, publications, seminar titles, etc., are also included

5. Mathematics for electronic technology

CERN Document Server

Howson, D P

1975-01-01

Mathematics for Electronic Technology is a nine-chapter book that begins with the elucidation of the introductory concepts related to use of mathematics in electronic engineering, including differentiation, integration, partial differentiation, infinite series, vectors, vector algebra, and surface, volume and line integrals. Subsequent chapters explore the determinants, differential equations, matrix analysis, complex variable, topography, graph theory, and numerical analysis used in this field. The use of Fourier method for harmonic analysis and the Laplace transform is also described. The ma

6. Mathematics and electromagnetism

International Nuclear Information System (INIS)

Rodriguez Danta, M.

2000-01-01

Symbiosis between mathematics and electromagnetism is analyzed in a simple and concise manner by taking a historical perspective. The universal tool character of mathematical models allowed the transfer of models from several branches of physics into the realm of electromagnetism by drawing analogies. The mutual interdependence between covariant formulation and tensor calculus is marked. The paper focuses on the guiding idea of field theory and Maxwell's equations. Likewise, geometrization of interactions in connection with gauge fields is also noted. (Author)

7. Mathematical foundations of thermodynamics

CERN Document Server

Giles, R; Stark, M; Ulam, S

2013-01-01

Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn

8. Mathematics and linguistics

Energy Technology Data Exchange (ETDEWEB)

Landauer, C.; Bellman, K.L.

1996-12-31

In this paper, we study foundational issues that we believe will help us develop a theoretically sound approach to constructing complex systems. The two theoretical approaches that have helped us understand and develop computational systems in the past are mathematics and linguistics. We describe some differences and strengths of the approaches, and propose a research program to combine the richness of linguistic reasoning with the precision of mathematics.

9. Mathematical Optimiation in Economics

CERN Document Server

De Finetti, Bruno

2011-01-01

Preface by B. de Finetti.- G.Th. Guilbaud: Les equilibres dans les modeles economiques.-H.W. Kuhn: Locational problems and mathematical programming.- M. Morishima: The multi-sectoral theory of economic growth.- B. Martos, J. Kornai: Experiments in Hungary with industry-wide and economy wide programming.- A. Prekopa: Probability distribution problems concerning stochastic programming problems.- R. Frisch: General principles and mathematical techniques of macroeconomic programming.

10. [Building mathematics in imagination].

Science.gov (United States)

Patras, Frédéric

2015-01-01

The extraordinary quantitative achievements of contemporary science often hide their qualitative dimension. In mathematics, the understanding of fundamental theoretical phenomena we have got today goes much beyond that achieved in previous periods. This also holds when it comes to the theorisation of mathematical practice.Philosophically, these changes remain largely to be properly analyzed. The present article will address this issue from the point of view of Bachelard's epistemology.

OpenAIRE

Hanjš, Ž.

1999-01-01

Today mathematical competitions are very popular with primary and secondary school students and there are many countries all around the world where they are regularly organised. There are several rounds and a lot of students are included, especially at the beginning rounds. The best students from the previous round have the right to continue on the higher level of competition. The final level for the secondary school student competitors is the International Mathematical Olympiad (IMO). The te...

12. Understanding mathematical proof

CERN Document Server

Taylor, John

2014-01-01

Introduction The need for proof The language of mathematics Reasoning Deductive reasoning and truth Example proofs Logic and ReasoningIntroduction Propositions, connectives, and truth tables Logical equivalence and logical implication Predicates and quantification Logical reasoning Sets and Functions Introduction Sets and membership Operations on setsThe Cartesian product Functions and composite functions Properties of functions The Structure of Mathematical ProofsIntroduction Some proofs dissected An informal framework for proofs Direct proof A more formal framework Finding Proofs Direct proo

13. The reality of Mathematics

Science.gov (United States)

Ligomenides, Panos A.

2009-05-01

The power of mathematics is discussed as a way of expressing reasoning, aesthetics and insight in symbolic non-verbal communication. The human culture of discovering mathematical ways of thinking in the enterprise of exploring the understanding of the nature and the evolution of our world through hypotheses, theories and experimental affirmation of the scientific notion of algorithmic and non-algorithmic []computation', is examined and commended upon.

14. Engineering Mathematics I : Electromagnetics, Fluid Mechanics, Material Physics and Financial Engineering

CERN Document Server

Rančić, Milica

2016-01-01

This book highlights the latest advances in engineering mathematics with a main focus on the mathematical models, structures, concepts, problems and computational methods and algorithms most relevant for applications in modern technologies and engineering. In particular, it features mathematical methods and models of applied analysis, probability theory, differential equations, tensor analysis and computational modelling used in applications to important problems concerning electromagnetics, antenna technologies, fluid dynamics, material and continuum physics and financial engineering. The individual chapters cover both theory and applications, and include a wealth of figures, schemes, algorithms, tables and results of data analysis and simulation. Presenting new methods and results, reviews of cutting-edge research, and open problems for future research, they equip readers to develop new mathematical methods and concepts of their own, and to further compare and analyse the methods and results discussed. The ...

15. New mathematical cuneiform texts

CERN Document Server

Friberg, Jöran

2016-01-01

This monograph presents in great detail a large number of both unpublished and previously published Babylonian mathematical texts in the cuneiform script. It is a continuation of the work A Remarkable Collection of Babylonian Mathematical Texts (Springer 2007) written by Jöran Friberg, the leading expert on Babylonian mathematics. Focussing on the big picture, Friberg explores in this book several Late Babylonian arithmetical and metro-mathematical table texts from the sites of Babylon, Uruk and Sippar, collections of mathematical exercises from four Old Babylonian sites, as well as a new text from Early Dynastic/Early Sargonic Umma, which is the oldest known collection of mathematical exercises. A table of reciprocals from the end of the third millennium BC, differing radically from well-documented but younger tables of reciprocals from the Neo-Sumerian and Old-Babylonian periods, as well as a fragment of a Neo-Sumerian clay tablet showing a new type of a labyrinth are also discussed. The material is presen...

16. A history of mathematics

CERN Document Server

Boyer, Carl B

1989-01-01

"Boyer and Merzbach distill thousands of years of mathematics into this fascinating chronicle. From the Greeks to Godel, the mathematics is brilliant; the cast of characters is distinguished; the ebb and flow of ideas is everywhere evident. And, while tracing the development of European mathematics, the authors do not overlook the contributions of Chinese, Indian, and Arabic civilizations. Without doubt, this is--and will long remain--a classic one-volume history of mathematics and mathematicians who create it." --William Dunham Author, Journey Through Genius, The Great Theorems of Mathematics "When we read a book like A History of Mathematics, we get the picture of a mounting structure, ever taller and broader and more beautiful and magnificent--and with a foundation, moreover, that is as untainted and as functional now as it was when Thales worked out the first geometrical theorems nearly 26 centuries ago." --From the Foreword by Isaac Asimov "One of the most useful and comprehensive general introductions t...

17. Nuclear medicine and mathematics

Energy Technology Data Exchange (ETDEWEB)

Pedroso de Lima, J.J. [Dept. de Biofisica e Proc. de Imagem, IBILI - Faculdade de Medicina, Coimbra (Portugal)

1996-06-01

The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new allies` of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

18. Nuclear medicine and mathematics

International Nuclear Information System (INIS)

Pedroso de Lima, J.J.

1996-01-01

The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new 'allies' of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

19. Learning higher mathematics

CERN Document Server

Pontrjagin, Lev Semenovič

1984-01-01

Lev Semenovic Pontrjagin (1908) is one of the outstanding figures in 20th century mathematics. In a long career he has made fundamental con­ tributions to many branches of mathematics, both pure and applied. He has received every honor that a grateful government can bestow. Though in no way constrained to do so, he has through the years taught mathematics courses at Moscow State University. In the year 1975 he set himself the task of writing a series of books on secondary school and beginning university mathematics. In his own words, "I wished to set forth the foundations of higher mathematics in a form that would have been accessible to myself as a lad, but making use of all my experience as a scientist and a teacher, ac­ cumulated over many years. " The present volume is a translation of the first two out of four moderately sized volumes on this theme planned by Pro­ fessor Pontrjagin. The book begins at the beginning of modern mathematics, analytic ge­ ometry in the plane and 3-dimensional space. Refin...

20. Predicting Success in College Mathematics from High School Mathematics Preparation

OpenAIRE

Shepley, Richard A.

1983-01-01

The purpose of this study was to develop a model to predict the college mathematics courses a freshman could expect to pass by considering their high school mathematics preparation. The high school information that was used consisted of the student's sex, the student's grade point average in mathematics, the highest level of high school mathematics courses taken, and the number of mathematics courses taken in high school. The high school sample was drawn from graduated Seniors in the State...