Boyina, Gangadhara Rao T.; Rayavarapu, Vijaya Kumar; V. V., Subba Rao
2017-02-01
The prediction of ultimate strength remains the main challenge in the simulation of the mechanical response of composite structures. This paper examines continuum damage model to predict the strength and size effects for deformation and failure response of polymer composite laminates when subjected to complex state of stress. The paper also considers how the overall results of the exercise can be applied in design applications. The continuum damage model is described and the resulting prediction of size effects are compared against the standard benchmark solutions. The stress analysis for strength prediction of rotary wing aircraft cabin door is carried out. The goal of this study is to extend the proposed continuum damage model such that it can be accurately predict the failure around stress concentration regions. The finite element-based continuum damage mechanics model can be applied to the structures and components of arbitrary configurations where analytical solutions could not be developed.
A 3D Orthotropic Elastic Continuum Damage Material Model
Energy Technology Data Exchange (ETDEWEB)
English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brown, Arthur A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2013-08-01
A three dimensional orthotropic elastic constitutive model with continuum damage is implemented for polymer matrix composite lamina. Damage evolves based on a quadratic homogeneous function of thermodynamic forces in the orthotropic planes. A small strain formulation is used to assess damage. In order to account for large deformations, a Kirchhoff material formulation is implemented and coded for numerical simulation in Sandia’s Sierra Finite Element code suite. The theoretical formulation is described in detail. An example of material parameter determination is given and an example is presented.
Continuum damage model for ferroelectric materials and its application to multilayer actuators
Gellmann, Roman; Ricoeur, Andreas
2016-05-01
In this paper a micromechanical continuum damage model for ferroelectric materials is presented. As a constitutive law it is implemented into a finite element (FE) code. The model is based on micromechanical considerations of domain switching and its interaction with microcrack growth and coalescence. A FE analysis of a multilayer actuator is performed, showing the initiation of damage zones at the electrode tips during the poling process. Further, the influence of mechanical pre-stressing on damage evolution and actuating properties is investigated. The results provided in this work give useful information on the damage of advanced piezoelectric devices and their optimization.
Directory of Open Access Journals (Sweden)
Milašinović Dragan D.
2015-01-01
Full Text Available A new analytical model for the prediction of concrete response under uniaxial compression and its experimental verification is presented in this paper. The proposed approach, referred to as the rheological-dynamical continuum damage model, combines rheological-dynamical analogy and damage mechanics. Within the framework of this approach the key continuum parameters such as the creep coefficient, Poisson’s ratio and damage variable are functionally related. The critical values of the creep coefficient and damage variable under peak stress are used to describe the failure mode of the concrete cylinder. The ultimate strain is determined in the post-peak regime only, using the secant stress-strain relation from damage mechanics. The post-peak branch is used for the energy analysis. Experimental data for five concrete compositions were obtained during the examination presented herein. The principal difference between compressive failure and tensile fracture is that there is a residual stress in the specimens, which is a consequence of uniformly accelerated motion of load during the examination of compressive strength. The critical interpenetration displacements and crushing energy are obtained theoretically based on the concept of global failure analysis. [Projekat Ministarstva nauke Republike Srbije, br. ON 174027: Computational Mechanics in Structural Engineering i br. TR 36017: Utilization of by-products and recycled waste materials in concrete composites for sustainable construction development in Serbia: Investigation and environmental assessment of possible applications
Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.
2011-01-01
The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.
Su-Yuen, Hsu
2011-01-01
Textile composite materials have good potential for constructing composite structures where the effects of three-dimensional stresses are critical or geometric complexity is a manufacturing concern. There is a recent interest in advancing competence within Langley Research Center for modeling the degradation of mechanical properties of textile composites. In an initial effort, two critical areas are identified to pursue: (1) Construction of internal geometry of textile composites, and (2) Rate-independent continuum damage mechanics. This report documents reviews on the two subjects. Various reviewed approaches are categorized, their assumptions, methods, and progress are briefed, and then critiques are presented. Each review ends with recommended research.
Bergan, Andrew C.; Leone, Frank A., Jr.
2016-01-01
A new model is proposed that represents the kinematics of kink-band formation and propagation within the framework of a mesoscale continuum damage mechanics (CDM) model. The model uses the recently proposed deformation gradient decomposition approach to represent a kink band as a displacement jump via a cohesive interface that is embedded in an elastic bulk material. The model is capable of representing the combination of matrix failure in the frame of a misaligned fiber and instability due to shear nonlinearity. In contrast to conventional linear or bilinear strain softening laws used in most mesoscale CDM models for longitudinal compression, the constitutive response of the proposed model includes features predicted by detailed micromechanical models. These features include: 1) the rotational kinematics of the kink band, 2) an instability when the peak load is reached, and 3) a nonzero plateau stress under large strains.
Coats, Timothy William
1994-01-01
Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.
A continuum anisotropic damage model with unilateral effect
Directory of Open Access Journals (Sweden)
A. Alliche
2016-02-01
Full Text Available A continuum damage mechanics model has been derived within the framework of irreversible thermodynamics with internal variables in order to describe the behaviour of quasi-brittle materials under various loading paths. The anisotropic character induced by the progressive material degradation is explicitly taken into account, and the Helmholtz free energy is a scalar function of the basic invariants of the second order strain and damage tensors. The elastic response varies depending on the closed or open configuration of defects. The constitutive laws derived within the framework of irreversible thermodynamics theory display a dissymmetry as well as unilateral effects under tensile and compressive loading conditions. This approach verifies continuity and uniqueness of the potential energy. An application to uniaxial tension-compression loading shows a good adequacy with experimental results when available, and realistic evolutions for computed stresses and strains otherwise.
Creep Tests and Modeling Based on Continuum Damage Mechanics for T91 and T92 Steels
Pan, J. P.; Tu, S. H.; Zhu, X. W.; Tan, L. J.; Hu, B.; Wang, Q.
2017-12-01
9-11%Cr ferritic steels play an important role in high-temperature and high-pressure boilers of advanced power plants. In this paper, a continuum damage mechanics (CDM)-based creep model was proposed to study the creep behavior of T91 and T92 steels at high temperatures. Long-time creep tests were performed for both steels under different conditions. The creep rupture data and creep curves obtained from creep tests were captured well by theoretical calculation based on the CDM model over a long creep time. It is shown that the developed model is able to predict creep data for the two ferritic steels accurately up to tens of thousands of hours.
Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard
2016-08-01
Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.
Wang, John T.; Pineda, Evan J.; Ranatunga, Vipul; Smeltzer, Stanley S.
2015-01-01
A simple continuum damage mechanics (CDM) based 3D progressive damage analysis (PDA) tool for laminated composites was developed and implemented as a user defined material subroutine to link with a commercially available explicit finite element code. This PDA tool uses linear lamina properties from standard tests, predicts damage initiation with an easy-to-implement Hashin-Rotem failure criteria, and in the damage evolution phase, evaluates the degradation of material properties based on the crack band theory and traction-separation cohesive laws. It follows Matzenmiller et al.'s formulation to incorporate the degrading material properties into the damaged stiffness matrix. Since nonlinear shear and matrix stress-strain relations are not implemented, correction factors are used for slowing the reduction of the damaged shear stiffness terms to reflect the effect of these nonlinearities on the laminate strength predictions. This CDM based PDA tool is implemented as a user defined material (VUMAT) to link with the Abaqus/Explicit code. Strength predictions obtained, using this VUMAT, are correlated with test data for a set of notched specimens under tension and compression loads.
Anisotropic creep damage in the framework of continuum damage mechanics
International Nuclear Information System (INIS)
Caboche, J.L.
1983-01-01
For some years, various works have shown the possibility of applying continuum mechanics to model the evolution of the damage variable, initially introduced by Kachanov. Of interest here are the complex problems posed by the anisotropy which affects both the elastic behaviour and the viscoplastic one, and also the rupture phenomenon. The main concepts of the Continuum Damage Mechanics are briefly reviewed together with some classical ways to introduce anisotropy of damage in the particular case of proportional loadings. Based on previous works, two generalizations are presented and discussed, which use different kinds of tensors to describe the anisotropy of creep damage: - The first one, by Murakami and Ohno introduces a second rank damage tensor and a net stress tensor through a net area definition. The effective stress-strain behaviour is then obtained by a fourth rank tensor. - The second theory, by the author, uses one effective stress tensor only, defined in terms of the macroscopic strain behaviour, through a fourth-order non-symmetrical damage tensor. The two theories are compared at several levels: difference and similarities are pointed out for the damage evolution during tensile creep as well as for anisotropy effects. The possibilities are discussed and compared on the basis of some existing experimental results, which leads to a partial validation of the two approaches. (orig.)
Directory of Open Access Journals (Sweden)
Nicola Bonora
2018-04-01
Full Text Available The extended Bonora damage model was used to investigate joinability of materials in self-piercing riveting process. This updated model formulation accounts for void nucleation and growth process and shear-controlled damage which is critical for shear fracture sensitive materials. Potential joint configurations with dissimilar materials have been investigated computationally. In particular the possible combination of DP600 steel, which is widely used in the automotive industry, with AL2024-T351, which is known to show shear fracture sensitivity, and oxygen-free pure copper, which is known to fail by void nucleation and growth, have been investigated. Preliminary numerical simulation results indicate that the damage modelling is capable to discriminate potential criticalities occurring in the SPR joining process opening the possibility for process parameters optimization and screening of candidate materials for optimum joint
Unified continuum damage model for matrix cracking in composite rotor blades
Energy Technology Data Exchange (ETDEWEB)
Pollayi, Hemaraju; Harursampath, Dineshkumar [Nonlinear Multifunctional Composites - Analysis and Design Lab (NMCAD Lab) Department of Aerospace Engineering Indian Institute of Science Bangalore - 560012, Karnataka (India)
2015-03-10
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.
Unified continuum damage model for matrix cracking in composite rotor blades
International Nuclear Information System (INIS)
Pollayi, Hemaraju; Harursampath, Dineshkumar
2015-01-01
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load
Continuum Damage Mechanics A Continuum Mechanics Approach to the Analysis of Damage and Fracture
Murakami, Sumio
2012-01-01
Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry. This, in turn, has caused more interest in continuum damage mechanics and its engineering applications. This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook. The book consists of two parts and an appendix. Part I is concerned with the foundation of continuum damage mechanics. Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2. In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application ...
Directory of Open Access Journals (Sweden)
Himanshu Sharma
2016-07-01
Full Text Available Due to its roots in fundamental thermodynamic framework, continuum damage approach is popular for modeling asphalt concrete behavior. Currently used continuum damage models use mixture averaged values for model parameters and assume deterministic damage process. On the other hand, significant scatter is found in fatigue data generated even under extremely controlled laboratory testing conditions. Thus, currently used continuum damage models fail to account the scatter observed in fatigue data. This paper illustrates a novel approach for probabilistic fatigue life prediction based on viscoelastic continuum damage approach. Several specimens were tested for their viscoelastic properties and damage properties under uniaxial mode of loading. The data thus generated were analyzed using viscoelastic continuum damage mechanics principles to predict fatigue life. Weibull (2 parameter, 3 parameter and lognormal distributions were fit to fatigue life predicted using viscoelastic continuum damage approach. It was observed that fatigue damage could be best-described using Weibull distribution when compared to lognormal distribution. Due to its flexibility, 3-parameter Weibull distribution was found to fit better than 2-parameter Weibull distribution. Further, significant differences were found between probabilistic fatigue curves developed in this research and traditional deterministic fatigue curve. The proposed methodology combines advantages of continuum damage mechanics as well as probabilistic approaches. These probabilistic fatigue curves can be conveniently used for reliability based pavement design. Keywords: Probabilistic fatigue curve, Continuum damage mechanics, Weibull distribution, Lognormal distribution
Continuum damage mechanics method for fatigue growth of surface cracks
International Nuclear Information System (INIS)
Feng Xiqiao; He Shuyan
1997-01-01
With the background of leak-before-break (LBB) analysis of pressurized vessels and pipes in nuclear plants, the fatigue growth problem of either circumferential or longitudinal semi-elliptical surface cracks subjected to cyclic loading is studied by using a continuum damage mechanics method. The fatigue damage is described by a scalar damage variable. From the damage evolution equation at the crack tip, a crack growth equation similar to famous Paris' formula is derived, which shows the physical meaning of Paris' formula. Thereby, a continuum damage mechanics approach is developed to analyze the configuration evolution of surface cracks during fatigue growth
A Method for treating Damage Related Criteria in Optimal Topology Design of Continuum Structures
DEFF Research Database (Denmark)
Bendsøe, Martin P; Diaz, Alejandro
1997-01-01
In this paper we present a formulation of the well-known structural topology optimization problem that accounts for the presence of loads capable of causing permanent damage to the structure. Damage is represented in the form of an internal variable model which is standard in continuum damage mec...
A Method for treating Damage Related Criteria in Optimal Topology Design of Continuum Structures
DEFF Research Database (Denmark)
Bendsøe, Martin P; Diaz, A.R.
1998-01-01
In this paper we present a formulation of the well-known structural topology optimization problem that accounts for the presence of loads capable of causing permanent damage to the structure. Damage is represented in the form of an internal variable model which is standard in continuum damage mec...
Directory of Open Access Journals (Sweden)
Žmindák Milan
2018-01-01
Full Text Available It is well that a finite element method is very popular simulation method to predict the physical behavior of systems and structures. In the last years an increase of interest in a new type of numerical methods known as meshless methods was observed. The paper deals with application of radial basis functions on modelling of inelastic damage using continuum damage mechanics of layered plate composite structures reinforced with long unidirectional fibers. For numerical simulations of elastic-plastic damage of layered composite plates own computational programs were implemented in MATLAB programming language. We will use the Newton-Raphson method to solve nonlinear systems of equations. Evaluation damage during plasticity has been solved using return mapping algorithm. The results of elastic-plastic damage analysis of composite plate with unsymmetrical laminate stacking sequence are presented.
International Nuclear Information System (INIS)
Chan, H.Y.; Srinivasan, M.P.; Benistant, F.; Mok, K.R.; Chan, Lap; Jin, H.M.
2006-01-01
The role of computer simulation in predicting intrinsic diffusion effects is amplified with the shrinkage of MOS devices. In this work, post-implant damage distributions are obtained from atomistic Monte Carlo (MC) simulations. Based on diffusion-limiting kinetics, the evolution of the damage at room temperature with time is studied. It is shown that evolution of the point defects follow the Ostwald ripening process, where larger defect clusters grow at the expense of smaller ones. A qualitative study of the effective plus factor is also conducted, taking into account various clustering and recombination processes. Clustering is found to significantly affect the remaining amount of damage, which in turn affects subsequent diffusion processes
Continuum damage mechanics: Present state and future trends
International Nuclear Information System (INIS)
Chaboche, J.L.
1987-01-01
Continuum Damage Mechanics (CDM) has developed since the initial works of Kachanov and Rabotnov. The paper gives a review of its main features, of the present possibilities and of further developments. Several aspects are considered successively: damage definitions and measures, damage growth equations and anisotropy effects, and use of CDM for local approaches of fracture. Various materials, loading conditions and damaging processes are incorporated in the same general framework. Particular attention is given to the possible connections between different definitions of damage, especially between the CDM definition and the information obtained from material science. (orig.)
Shao, Z.; Li, N.; Lin, J.
2017-09-01
The hot stamping and cold die quenching process has experienced tremendous development in order to obtain shapes of structural components with great complexity in automotive applications. Prediction of the formability of a metal sheet is significant for practical applications of forming components in the automotive industry. Since microstructural evolution in an alloy at elevated temperature has a large effect on formability, continuum damage mechanics (CDM)-based material models can be used to characterise the behaviour of metals when a forming process is conducted at elevated temperatures. In this paper, two sets of unified multi-axial constitutive equations based on material’s stress states and strain states, respectively, were calibrated and used to effectively predict the thermo-mechanical response and forming limits of alloys under complex hot stamping conditions. In order to determine and calibrate the two material models, formability tests of AA6082 using a developed novel biaxial testing system were conducted at various temperatures and strain rates under hot stamping conditions. The determined unified constitutive equations from experimental data are presented in this paper. It is found that both of the stress-state based and strain-state based material models can predict the formability of AA6082 under hot stamping conditions.
Modeling damage in concrete pavements and bridges.
2010-09-01
This project focused on micromechanical modeling of damage in concrete under general, multi-axial loading. A : continuum-level, three-dimensional constitutive model based on micromechanics was developed. The model : accounts for damage in concrete by...
Continuum methods of physical modeling continuum mechanics, dimensional analysis, turbulence
Hutter, Kolumban
2004-01-01
The book unifies classical continuum mechanics and turbulence modeling, i.e. the same fundamental concepts are used to derive model equations for material behaviour and turbulence closure and complements these with methods of dimensional analysis. The intention is to equip the reader with the ability to understand the complex nonlinear modeling in material behaviour and turbulence closure as well as to derive or invent his own models. Examples are mostly taken from environmental physics and geophysics.
Continuum damage mechanics analysis of crack tip zone
International Nuclear Information System (INIS)
Yinchu, L.; Jianping, Z.
1989-01-01
The crack tip field and its intensity factor play an important role in fracture mechanics. Generally, the damage such as microcracks, microvoids etc. will initiate and grow in materials as the cracked body is subjected to external loadings, especially in the crack tip zone. The damage evolution will load to the crack tip damage field and the change of the stress, strain and displacement fields of cracks tip zone. In this paper, on the basis of continuum damage mechanics, the authors have derived the equations which the crack tip field and its intensity factor must satisfy in a loading process, calculated the angle distribution curves of stress, strain and displacement fields in a crack tip zone and have compared them with the corresponding curves of HRR field and linear elastic field in undamaged materials. The equations of crack tip field intensity factors have been solved and its solutions give the variation of the field intensity factors with the loading parameter
Effect of continuum damage mechanics on spring back prediction in metal forming processes
International Nuclear Information System (INIS)
Nayebi, Ali; Shahabi, Mehdi
2017-01-01
The influence of considering the variations in material properties was investigated through continuum damage mechanics according to the Lemaitre isotropic unified damage law to predict the bending force and spring back in V-bending sheet metal forming processes, with emphasis on Finite element (FE) simulation considerations. The material constants of the damage model were calibrated through a uniaxial tensile test with an appropriate and convenient repeating strategy. Holloman’s isotropic and Ziegler’s linear kinematic hardening laws were employed to describe the behavior of a hardening material. To specify the ideal FE conditions for simulating spring back, the effect of the various numerical considerations during FE simulation was investigated and compared with the experimental outcome. Results indicate that considering continuum damage mechanics decreased the predicted bending force and improved the accuracy of spring back prediction.
A continuum damage analysis of hydrogen attack in 2.25 Cr-1Mo vessel
DEFF Research Database (Denmark)
van der Burg, M.W.D.; van der Giessen, E.; Tvergaard, Viggo
1998-01-01
A micromechanically based continuum damage model is presented to analyze the stress, temperature and hydrogen pressure dependent material degradation process termed hydrogen attack, inside a pressure vessel. Hydrogen attack (HA) is the damage process of grain boundary facets due to a chemical...... reaction of carbides with hydrogen, thus forming cavities with high pressure methane gas. Driven by the methane gas pressure, the cavities grow, while remote tensile stresses can significantly enhance the cavitation rate. The damage model gives the strain-rate and damage rate as a function...... of the temperature, hydrogen pressure and applied stresses. The model is applied to study HA in a vessel wall, where nonuniform distributions of hydrogen pressure, temperature and stresses result in a nonuniform damage distribution over the vessel wall. Stresses inside the vessel wall first tend to accelerate...
International Nuclear Information System (INIS)
Cornwall, J.M.
1986-01-01
The nonperturbative aspects of continuum QCD are so complex that one can only hope to approach them through well-motivated models. The author reviews the general properties that any such model must have, based on the understanding of the gluon condensate in the QCD vacuum. A specific, practical model is proposed motivated by a picture of the condensate as made of thick vortex sheets self-consistently constructed from dynamically massive gluons. (author)
Continuum Model for River Networks
Giacometti, Achille; Maritan, Amos; Banavar, Jayanth R.
1995-07-01
The effects of erosion, avalanching, and random precipitation are captured in a simple stochastic partial differential equation for modeling the evolution of river networks. Our model leads to a self-organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution proceeds. An algebraic distribution of the average basin areas and a power law relationship between the drainage basin area and the river length are found.
Mesoscopic and continuum modelling of angiogenesis
Spill, F.
2014-03-11
Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.
Mesoscopic and continuum modelling of angiogenesis
Spill, F.; Guerrero, P.; Alarcon, T.; Maini, P. K.; Byrne, H. M.
2014-01-01
Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.
Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.
2017-01-01
This paper describes the development of input properties for a continuum damage mechanics based material model, Mat 58, within LS-DYNA(Registered Trademark) to simulate the response of a graphite-Kevlar(Registered Trademark) hybrid plain weave fabric. A limited set of material characterization tests were performed on the hybrid graphite-Kevlar(Registered Trademark) fabric. Simple finite element models were executed in LS-DYNA(Registered Trademark) to simulate the material characterization tests and to verify the Mat 58 material model. Once verified, the Mat 58 model was used in finite element models of two composite energy absorbers: a conical-shaped design, designated the "conusoid," fabricated of four layers of hybrid graphite-Kevlar(Registered Trademark) fabric; and, a sinusoidal-shaped foam sandwich design, designated the "sinusoid," fabricated of the same hybrid fabric face sheets with a foam core. Dynamic crush tests were performed on components of the two energy absorbers, which were designed to limit average vertical accelerations to 25- to 40-g, to minimize peak crush loads, and to generate relatively long crush stroke values under dynamic loading conditions. Finite element models of the two energy absorbers utilized the Mat 58 model that had been verified through material characterization testing. Excellent predictions of the dynamic crushing response were obtained.
A linear model of ductile plastic damage
International Nuclear Information System (INIS)
Lemaitre, J.
1983-01-01
A three-dimensional model of isotropic ductile plastic damage based on a continuum damage variable on the effective stress concept and on thermodynamics is derived. As shown by experiments on several metals and alloys, the model, integrated in the case of proportional loading, is linear with respect to the accumulated plastic strain and shows a large influence of stress triaxiality [fr
Karabinos, Michael Joseph
2015-01-01
This dissertation tests the universal suitability of the records continuum model by using two cases from the decolonization of Southeast Asia. The continuum model is a new model of records visualization invented in the 1990s that sees records as free to move throughout four ‘dimensions’ rather than
Continuum mechanics the birthplace of mathematical models
Allen, Myron B
2015-01-01
Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer. This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe
FE Analysis of Rock with Hydraulic-Mechanical Coupling Based on Continuum Damage Evolution
Directory of Open Access Journals (Sweden)
Yongliang Wang
2016-01-01
Full Text Available A numerical finite element (FE analysis technology is presented for efficient and reliable solutions of rock with hydraulic-mechanical (HM coupling, researching the seepage characteristics and simulating the damage evolution of rock. To be in accord with the actual situation, the rock is naturally viewed as heterogeneous material, in which Young’s modulus, permeability, and strength property obey the typical Weibull distribution function. The classic Biot constitutive relation for rock as porous medium is introduced to establish a set of equations coupling with elastic solid deformation and seepage flow. The rock is subsequently developed into a novel conceptual and practical model considering the damage evolution of Young’s modulus and permeability, in which comprehensive utilization of several other auxiliary technologies, for example, the Drucker-Prager strength criterion, the statistical strength theory, and the continuum damage evolution, yields the damage variable calculating technology. To this end, an effective and reliable numerical FE analysis strategy is established. Numerical examples are given to show that the proposed method can establish heterogeneous rock model and be suitable for different load conditions and furthermore to demonstrate the effectiveness and reliability in the seepage and damage characteristics analysis for rock.
Continuum modeling an approach through practical examples
Muntean, Adrian
2015-01-01
This book develops continuum modeling skills and approaches the topic from three sides: (1) derivation of global integral laws together with the associated local differential equations, (2) design of constitutive laws and (3) modeling boundary processes. The focus of this presentation lies on many practical examples covering aspects such as coupled flow, diffusion and reaction in porous media or microwave heating of a pizza, as well as traffic issues in bacterial colonies and energy harvesting from geothermal wells. The target audience comprises primarily graduate students in pure and applied mathematics as well as working practitioners in engineering who are faced by nonstandard rheological topics like those typically arising in the food industry.
On nonlocal modeling in continuum mechanics
Directory of Open Access Journals (Sweden)
Adam Martowicz
2018-01-01
Full Text Available The objective of the paper is to provide an overview of nonlocal formulations for models of elastic solids. The author presents the physical foundations for nonlocal theories of continuum mechanics, followed by various analytical and numerical techniques. The characteristics and range of practical applications for the presented approaches are discussed. The results of numerical simulations for the selected case studies are provided to demonstrate the properties of the described methods. The paper is illustrated with outcomes from peridynamic analyses. Fatigue and axial stretching were simulated to show the capabilities of the developed numerical tools.
Multiple Temperature Model for Near Continuum Flows
International Nuclear Information System (INIS)
XU, Kun; Liu, Hongwei; Jiang, Jianzheng
2007-01-01
In the near continuum flow regime, the flow may have different translational temperatures in different directions. It is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the Navier-Stokes equations, lose accuracy. These inaccuracies may be partially due to the single temperature assumption in the Navier-Stokes equations. Here, based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) equation, a multitranslational temperature model is proposed and used in the flow calculations. In order to fix all three translational temperatures, two constraints are additionally proposed to model the energy exchange in different directions. Based on the multiple temperature assumption, the Navier-Stokes relation between the stress and strain is replaced by the temperature relaxation term, and the Navier-Stokes assumption is recovered only in the limiting case when the flow is close to the equilibrium with the same temperature in different directions. In order to validate the current model, both the Couette and Poiseuille flows are studied in the transition flow regime
Directory of Open Access Journals (Sweden)
Wei Cao
2016-04-01
Full Text Available For this study, the Binzhou perpetual pavement test sections constructed in Shandong Province, China, were simulated for long-term fatigue performance using the layered viscoelastic pavement analysis for critical distresses (LVECD finite element software package. In this framework, asphalt concrete was treated in the context of linear viscoelastic continuum damage theory. A recently developed unified fatigue failure criterion that defined the boundaries of the applicable region of the theory was also incorporated. The mechanistic modeling of the fatigue mechanisms was able to accommodate the complex temperature variations and loading conditions of the field pavements in a rigorous manner. All of the material models were conveniently characterized by dynamic modulus tests and direct tension cyclic fatigue tests in the laboratory using cylindrical specimens. By comparing the obtained damage characteristic curves and failure criteria, it is found that mixtures with small aggregate particle sizes, a dense gradation, and modified asphalt binder tended to exhibit the best fatigue resistance at the material level. The 15-year finite element structural simulation results for all the test sections indicate that fatigue performance has a strong dependence on the thickness of the asphalt pavements. Based on the predicted location and severity of the fatigue damage, it is recommended that Sections 1 and 3 of the Binzhou test sections be employed for perpetual pavement design.
Leone, Frank A., Jr.
2015-01-01
A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.
Continuum damage growth analysis using element free Galerkin ...
Indian Academy of Sciences (India)
and two-dimensional problems are presented to illustrate the effectiveness of the proposed method ... will enhance the computational cost required. .... where εpD is the damage threshold in pure tension, m is the correction parameter, σu is the.
Continuum shell-model with complicated configurations
International Nuclear Information System (INIS)
Barz, H.W.; Hoehn, J.
1977-05-01
The traditional shell model has been combined with the coupled channels method in order to describe resonance reactions. For that purpose the configuration space is divided into two subspaces (Feshbach projection method). Complicated shell-model configurations can be included into the subspace of discrete states which contains the single particle resonance states too. In the subspace of scattering states the equation of motion is solved by using the coupled channels method. Thereby the orthogonality between scattering states and discrete states is ensured. Resonance states are defined with outgoing waves in all channels. By means of simple model calculations the special role of the continuum is investigated. In this connection the energy dependence of the resonance parameters, the isospin mixture via the continuum, threshold effect, as well as the influence of the number of channels taken into account on the widths, positions and dipole strengths of the resonance are discussed. The model is mainly applied to the description of giant resonances excited by the scattering of nucleons and photo-nucleus processes (source term method) found in reactions on light nuclei. The giant resonance observed in the 15 N(p,n) reaction is explained by the inclusion of 2p-2h states. The same is true for the giant resonance in 13 C(J = 1/2, 3/2) as well as for the giant resonance built on the first 3 - state in 16 O. By means of a correlation analysis for the reduced widths amplitudes an access to the doorway conception is found. (author)
Advanced dielectric continuum model of preferential solvation
Basilevsky, Mikhail; Odinokov, Alexey; Nikitina, Ekaterina; Grigoriev, Fedor; Petrov, Nikolai; Alfimov, Mikhail
2009-01-01
A continuum model for solvation effects in binary solvent mixtures is formulated in terms of the density functional theory. The presence of two variables, namely, the dimensionless solvent composition y and the dimensionless total solvent density z, is an essential feature of binary systems. Their coupling, hidden in the structure of the local dielectric permittivity function, is postulated at the phenomenological level. Local equilibrium conditions are derived by a variation in the free energy functional expressed in terms of the composition and density variables. They appear as a pair of coupled equations defining y and z as spatial distributions. We consider the simplest spherically symmetric case of the Born-type ion immersed in the benzene/dimethylsulfoxide (DMSO) solvent mixture. The profiles of y(R ) and z(R ) along the radius R, which measures the distance from the ion center, are found in molecular dynamics (MD) simulations. It is shown that for a given solute ion z(R ) does not depend significantly on the composition variable y. A simplified solution is then obtained by inserting z(R ), found in the MD simulation for the pure DMSO, in the single equation which defines y(R ). In this way composition dependences of the main solvation effects are investigated. The local density augmentation appears as a peak of z(R ) at the ion boundary. It is responsible for the fine solvation effects missing when the ordinary solvation theories, in which z =1, are applied. These phenomena, studied for negative ions, reproduce consistently the simulation results. For positive ions the simulation shows that z ≫1 (z =5-6 at the maximum of the z peak), which means that an extremely dense solvation shell is formed. In such a situation the continuum description fails to be valid within a consistent parametrization.
Bursts and shocks in a continuum shell model
DEFF Research Database (Denmark)
Andersen, Ken Haste; Bohr, Tomas; Jensen, M.H.
1998-01-01
We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the right...
Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A
2016-02-06
This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.
Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun
2017-01-01
Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers. PMID:29140284
Modeling of Continuum Manipulators Using Pythagorean Hodograph Curves.
Singh, Inderjeet; Amara, Yacine; Melingui, Achille; Mani Pathak, Pushparaj; Merzouki, Rochdi
2018-05-10
Research on continuum manipulators is increasingly developing in the context of bionic robotics because of their many advantages over conventional rigid manipulators. Due to their soft structure, they have inherent flexibility, which makes it a huge challenge to control them with high performances. Before elaborating a control strategy of such robots, it is essential to reconstruct first the behavior of the robot through development of an approximate behavioral model. This can be kinematic or dynamic depending on the conditions of operation of the robot itself. Kinematically, two types of modeling methods exist to describe the robot behavior; quantitative methods describe a model-based method, and qualitative methods describe a learning-based method. In kinematic modeling of continuum manipulator, the assumption of constant curvature is often considered to simplify the model formulation. In this work, a quantitative modeling method is proposed, based on the Pythagorean hodograph (PH) curves. The aim is to obtain a three-dimensional reconstruction of the shape of the continuum manipulator with variable curvature, allowing the calculation of its inverse kinematic model (IKM). It is noticed that the performances of the PH-based kinematic modeling of continuum manipulators are considerable regarding position accuracy, shape reconstruction, and time/cost of the model calculation, than other kinematic modeling methods, for two cases: free load manipulation and variable load manipulation. This modeling method is applied to the compact bionic handling assistant (CBHA) manipulator for validation. The results are compared with other IKMs developed in case of CBHA manipulator.
Shape Modeling of a Concentric-tube Continuum Robot
DEFF Research Database (Denmark)
Bai, Shaoping; Xing, Charles Chuhao
2012-01-01
Concentric-tube continuum robots feature with simple and compact structures and have a great potential in medical applications. The paper is concerned with the shape modeling of a type of concentric-tube continuum robot built with a collection of super-elastic NiTiNol tubes. The mechanics...... is modeled on the basis of energy approach for both the in-plane and out-plane cases. The torsional influences on the shape of the concentric-tube robots are considered. An experimental device was build for the model validation. The results of simulation and experiments are included and analyzed....
Adhesive contact: from atomistic model to continuum model
International Nuclear Information System (INIS)
Fan Kang-Qi; Jia Jian-Yuan; Zhu Ying-Min; Zhang Xiu-Yan
2011-01-01
Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard-Jones potential are not well defined. This paper employs a self-consistent method to derive the Lennard-Jones surface force law from the interatomic Lennard-Jones potential with emphasis on the relationships between the parameters. The effect of using correct parameters in the adhesion models is demonstrated in single sphere-flat contact via continuum models and an atomistic model. Furthermore, the adhesion hysteresis behaviour is investigated, and the S-shaped force-distance relation is revealed by the atomistic model. It shows that the adhesion hysteresis loop is generated by the jump-to-contact and jump-off-contact, which are illustrated by the S-shaped force-distance curve. (atomic and molecular physics)
A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.
Energy Technology Data Exchange (ETDEWEB)
English, Shawn Allen
2014-09-01
A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.
Some aspects of continuum physics used in fuel pin modeling
International Nuclear Information System (INIS)
Bard, F.E.
1975-06-01
The mathematical formulation used in fuel pin modeling is described. Fuel pin modeling is not a simple extension of the experimental and interpretative methods used in classical mechanics. New concepts are needed to describe materials in a reactor environment. Some aspects of continuum physics used to develop these new constitutive equations for fuel pins are presented. (U.S.)
A continuum mathematical model of endothelial layer maintenance and senescence
Directory of Open Access Journals (Sweden)
Friedman Avner
2007-08-01
Full Text Available Abstract Background The monolayer of endothelial cells (ECs lining the inner wall of blood vessels deteriorates as a person ages due to a complex interplay of a variety of causes including cell death arising from shear stress of blood flow and cellular oxidative stress, cellular senescence, and decreased rate of replacement of dead ECs by progenitor stem cells. Results A continuum mathematical model is developed to describe the dynamics of large EC populations of the endothelium using a system of differential equations for the number densities of cells of different generations starting from endothelial progenitors to senescent cells, as well as the densities of dead cells and the holes created upon clearing dead cells. Aging of cells is manifested in three ways, namely, losing the ability to divide when the Hayflick limit of 50 generations is reached, decreasing replication rate parameters and increasing death rate parameters as cells divide; due to the dependence of these rate parameters on cell generation, the model predicts a narrow distribution of cell densities peaking at a particular cell generation. As the chronological age of a person advances, the peak of the distribution – corresponding to the age of the endothelium – moves towards senescence correspondingly. However, computer simulations also demonstrate that sustained and enhanced stem cell homing can halt the aging process of the endothelium by maintaining a stationary cell density distribution that peaks well before the Hayflick limit. The healing rates of damaged endothelia for young, middle-aged, and old persons are compared and are found to be particularly sensitive to the stem cell homing parameter. Conclusion The proposed model describes the aging of the endothelium as being driven by cellular senescence, with a rate that does not necessarily correspond to the chronological aging of a person. It is shown that the age of the endothelium depends sensitively on the homing
A continuum mathematical model of endothelial layer maintenance and senescence.
Wang, Ying; Aguda, Baltazar D; Friedman, Avner
2007-08-10
The monolayer of endothelial cells (ECs) lining the inner wall of blood vessels deteriorates as a person ages due to a complex interplay of a variety of causes including cell death arising from shear stress of blood flow and cellular oxidative stress, cellular senescence, and decreased rate of replacement of dead ECs by progenitor stem cells. A continuum mathematical model is developed to describe the dynamics of large EC populations of the endothelium using a system of differential equations for the number densities of cells of different generations starting from endothelial progenitors to senescent cells, as well as the densities of dead cells and the holes created upon clearing dead cells. Aging of cells is manifested in three ways, namely, losing the ability to divide when the Hayflick limit of 50 generations is reached, decreasing replication rate parameters and increasing death rate parameters as cells divide; due to the dependence of these rate parameters on cell generation, the model predicts a narrow distribution of cell densities peaking at a particular cell generation. As the chronological age of a person advances, the peak of the distribution - corresponding to the age of the endothelium - moves towards senescence correspondingly. However, computer simulations also demonstrate that sustained and enhanced stem cell homing can halt the aging process of the endothelium by maintaining a stationary cell density distribution that peaks well before the Hayflick limit. The healing rates of damaged endothelia for young, middle-aged, and old persons are compared and are found to be particularly sensitive to the stem cell homing parameter. The proposed model describes the aging of the endothelium as being driven by cellular senescence, with a rate that does not necessarily correspond to the chronological aging of a person. It is shown that the age of the endothelium depends sensitively on the homing rates of EC progenitor cells.
Continuum Modeling of Biological Network Formation
Albi, Giacomo; Burger, Martin; Haskovec, Jan; Markowich, Peter A.; Schlottbom, Matthias
2017-01-01
We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes
Proposed higher order continuum-based models for an elastic ...
African Journals Online (AJOL)
Three new variants of continuum-based models for an elastic subgrade are proposed. The subgrade is idealized as a homogenous, isotropic elastic layer of thickness H overlying a firm stratum. All components of the stress tensor in the subgrade are taken into account. Reasonable assumptions are made regarding the ...
Continuum-Kinetic Models and Numerical Methods for Multiphase Applications
Nault, Isaac Michael
This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.
A Geometry Deformation Model for Braided Continuum Manipulators
Directory of Open Access Journals (Sweden)
S. M. Hadi Sadati
2017-06-01
Full Text Available Continuum manipulators have gained significant attention in the robotic community due to their high dexterity, deformability, and reachability. Modeling of such manipulators has been shown to be very complex and challenging. Despite many research attempts, a general and comprehensive modeling method is yet to be established. In this paper, for the first time, we introduce the bending effect in the model of a braided extensile pneumatic actuator with both stiff and bendable threads. Then, the effect of the manipulator cross-section deformation on the constant curvature and variable curvature models is investigated using simple analytical results from a novel geometry deformation method and is compared to experimental results. We achieve 38% mean reference error simulation accuracy using our constant curvature model for a braided continuum manipulator in presence of body load and 10% using our variable curvature model in presence of extensive external loads. With proper model assumptions and taking to account the cross-section deformation, a 7–13% increase in the simulation mean error accuracy is achieved compared to a fixed cross-section model. The presented models can be used for the exact modeling and design optimization of compound continuum manipulators by providing an analytical tool for the sensitivity analysis of the manipulator performance. Our main aim is the application in minimal invasive manipulation with limited workspaces and manipulators with regional tunable stiffness in their cross section.
Continuum Modeling of Biological Network Formation
Albi, Giacomo
2017-04-10
We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes the pressure field using a Darcy type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. We first introduce micro- and mesoscopic models and show how they are connected to the macroscopic PDE system. Then, we provide an overview of analytical results for the PDE model, focusing mainly on the existence of weak and mild solutions and analysis of the steady states. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on finite elements and study the qualitative properties of network structures for various parameter values.
Non compact continuum limit of two coupled Potts models
International Nuclear Information System (INIS)
Vernier, Éric; Jacobsen, Jesper Lykke; Saleur, Hubert
2014-01-01
We study two Q-state Potts models coupled by the product of their energy operators, in the regime 2 3 (2) vertex model. It corresponds to a selfdual system of two antiferromagnetic Potts models, coupled ferromagnetically. We derive the Bethe ansatz equations and study them numerically for two arbitrary twist angles. The continuum limit is shown to involve two compact bosons and one non compact boson, with discrete states emerging from the continuum at appropriate twists. The non compact boson entails strong logarithmic corrections to the finite-size behaviour of the scaling levels, an understanding of which allows us to correct an earlier proposal for some of the critical exponents. In particular, we infer the full set of magnetic scaling dimensions (watermelon operators) of the Potts model. (paper)
Hybrid continuum-coarse-grained modeling of erythrocytes
Lyu, Jinming; Chen, Paul G.; Boedec, Gwenn; Leonetti, Marc; Jaeger, Marc
2018-06-01
The red blood cell (RBC) membrane is a composite structure, consisting of a phospholipid bilayer and an underlying membrane-associated cytoskeleton. Both continuum and particle-based coarse-grained RBC models make use of a set of vertices connected by edges to represent the RBC membrane, which can be seen as a triangular surface mesh for the former and a spring network for the latter. Here, we present a modeling approach combining an existing continuum vesicle model with a coarse-grained model for the cytoskeleton. Compared to other two-component approaches, our method relies on only one mesh, representing the cytoskeleton, whose velocity in the tangential direction of the membrane may be different from that of the lipid bilayer. The finitely extensible nonlinear elastic (FENE) spring force law in combination with a repulsive force defined as a power function (POW), called FENE-POW, is used to describe the elastic properties of the RBC membrane. The mechanical interaction between the lipid bilayer and the cytoskeleton is explicitly computed and incorporated into the vesicle model. Our model includes the fundamental mechanical properties of the RBC membrane, namely fluidity and bending rigidity of the lipid bilayer, and shear elasticity of the cytoskeleton while maintaining surface-area and volume conservation constraint. We present three simulation examples to demonstrate the effectiveness of this hybrid continuum-coarse-grained model for the study of RBCs in fluid flows.
Constitutive relationships and models in continuum theories of multiphase flows
International Nuclear Information System (INIS)
Decker, R.
1989-09-01
In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included
SR 97. Alternative models project. Stochastic continuum modelling of Aberg
International Nuclear Information System (INIS)
Widen, H.; Walker, D.
1999-08-01
As part of studies into the siting of a deep repository for nuclear waste, Swedish Nuclear Fuel and Waste Management Company (SKB) has commissioned the Alternative Models Project (AMP). The AMP is a comparison of three alternative modelling approaches to bedrock performance assessment for a single hypothetical repository, arbitrarily named Aberg. The Aberg repository will adopt input parameters from the Aespoe Hard Rock Laboratory in southern Sweden. The models are restricted to an explicit domain, boundary conditions and canister location to facilitate the comparison. The boundary conditions are based on the regional groundwater model provided in digital format. This study is the application of HYDRASTAR, a stochastic continuum groundwater flow and transport-modelling program. The study uses 34 realisations of 945 canister locations in the hypothetical repository to evaluate the uncertainty of the advective travel time, canister flux (Darcy velocity at a canister) and F-ratio. Several comparisons of variability are constructed between individual canister locations and individual realisations. For the ensemble of all realisations with all canister locations, the study found a median travel time of 27 years, a median canister flux of 7.1 x 10 -4 m/yr and a median F-ratio of 3.3 x 10 5 yr/m. The overall pattern of regional flow is preserved in the site-scale model, as is reflected in flow paths and exit locations. The site-scale model slightly over-predicts the boundary fluxes from the single realisation of the regional model. The explicitly prescribed domain was seen to be slightly restrictive, with 6% of the stream tubes failing to exit the upper surface of the model. Sensitivity analysis and calibration are suggested as possible extensions of the modelling study
Challenges in Continuum Modelling of Intergranular Fracture
DEFF Research Database (Denmark)
Coffman, Valerie; Sethna, James P.; Ingraffea, A. R.
2011-01-01
of grain boundaries, but also in crucial ways on edges, corners and triple junctions of even greater geometrical complexity. To address the first two challenges, we explore the physical underpinnings for creating functional forms to capture the hierarchical commensurability structure in the grain boundary......Intergranular fracture in polycrystals is often simulated by finite elements coupled to a cohesive zone model for the interfaces, requiring cohesive laws for grain boundaries as a function of their geometry. We discuss three challenges in understanding intergranular fracture in polycrystals. First...... properties. To address the last challenge, we demonstrate a method for atomistically extracting the fracture properties of geometrically complex local regions on the fly from within a finite element simulation....
Continuum symmetry restoration in lattice models with staggered fermions
International Nuclear Information System (INIS)
Morel, A.
1986-09-01
This talk is a report on results obtained by T. Jolicoeur, R. Lacaze, B. Petersson and the author: staggered fermions can be consistently interpreted as flavoured quarks in the continuum limit of asymptotically free theories on the lattice. This statement is supported by analytical results for the Gross-Neveu model at large N and for a QCD two point function, and by a numerical simulation of SU(2) quenched QCD
Continuum modelling for carbon and boron nitride nanostructures
International Nuclear Information System (INIS)
Thamwattana, Ngamta; Hill, James M
2007-01-01
Continuum based models are presented here for certain boron nitride and carbon nanostructures. In particular, certain fullerene interactions, C 60 -C 60 , B 36 N 36 -B 36 N 36 and C 60 -B 36 N 36 , and fullerene-nanotube oscillator interactions, C 60 -boron nitride nanotube, C 60 -carbon nanotube, B 36 N 36 -boron nitride nanotube and B 36 N 36 -carbon nanotube, are studied using the Lennard-Jones potential and the continuum approach, which assumes a uniform distribution of atoms on the surface of each molecule. Issues regarding the encapsulation of a fullerene into a nanotube are also addressed, including acceptance and suction energies of the fullerenes, preferred position of the fullerenes inside the nanotube and the gigahertz frequency oscillation of the inner molecule inside the outer nanotube. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures
Nebular Continuum and Line Emission in Stellar Population Synthesis Models
Energy Technology Data Exchange (ETDEWEB)
Byler, Nell; Dalcanton, Julianne J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Conroy, Charlie; Johnson, Benjamin D., E-mail: ebyler@astro.washington.edu [Department of Astronomy, Harvard University, Cambridge, MA 02138 (United States)
2017-05-01
Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H α , and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.
From cells to tissue: A continuum model of epithelial mechanics
Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru
2017-08-01
A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.
Fluid-Structure Interaction in Continuum Models of Bacterial Biofilms
Hicks, Jared A.
Bacterial biofilms are aggregates of cells that adhere to nearly any solid-fluid interface. While many have harmful effects, such as industrial damage and nosocomial infections, certain biofilm species are now generating renewable energy as the fundamental components of Microbial Fuel Cells (MFCs). In an MFC, bacteria consume organic waste and, as they respire, produce free electrons. To do so efficiently, the bacteria must operate at peak metabolic activity, and so require an ample supply of nutrients. But existing MFC systems face several nutrient delivery problems, including clogging and downstream depletion. Ameliorating these problems will require a better understanding of the interplay between structural development and the surrounding fluid flow. In addition to delivering nutrients that affect biofilm growth, the fluid also exerts stresses that cause erosion, detachment, and deformation. These structural changes, in turn, affect the flow and alter the nutrient distribution. To account for this feedback effect, I have developed a continuum model that couples the growth and deformation processes. My model augments an existing growth model with evolution equations derived from Morphoelasticity Theory, by showing that the growth tensor can be directly related to the biofilm velocity potential. This result helps overcome one of the major practical limitations of Morphoelasticity--there is no physical framework for specifying the growth tensor. Through further analysis of the growth tensor, I define the related adjugate and anisotropic growth tensors, which can be more meaningful measures of growth for some models. Under the assumption of small strain, I show that there exists a small correction to the biofilm growth velocity (the accommodation velocity) that represents the effect of the elastic response on the evolution of the biofilm shape. I derive a solvability condition for the accommodation velocity, and show that it leads to a novel evolution equation for
Coupling of nonlocal and local continuum models by the Arlequinapproach
Han, Fei
2011-08-09
The objective of this work is to develop and apply the Arlequin framework to couple nonlocal and local continuum mechanical models. A mechanically-based model of nonlocal elasticity, which involves both contact and long-range forces, is used for the \\'fine scale\\' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can be neglected. Both models overlap in a coupling subdomain called the \\'gluing area\\' in which the total energy is separated into nonlocal and local contributions by complementary weight functions. A weak compatibility is ensured between kinematics of both models using Lagrange multipliers over the gluing area. The discrete formulation of this specific Arlequin coupling framework is derived and fully described. The validity and limits of the technique are demonstrated through two-dimensional numerical applications and results are compared against those of the fully nonlocal elasticity method. © 2011 John Wiley & Sons, Ltd.
Using Continuum Damage Mechanics to Simulate Iceberg Calving from Tidewater Outlet Glaciers
Mercenier, R.; Lüthi, M.; Vieli, A.
2017-12-01
Many ocean terminating glaciers in the Arctic are currently undergoingrapid retreat, thinning and strong accelerations in flow. The processof iceberg calving plays a crucial role for the related dynamical masslosses and occurs when the stresses at the calving front exceed thefracture strength of ice, driving the propagation of cracks andeventually leading to the detachment of ice blocks from the glacierfront. However, the understanding of the processes involved in icebergcalving as well as the capability of flow models to represent thecalving mechanism remain limited.Here, we use a time-dependent two-dimensional finite-element flowmodel coupled to a damage model to simulate the break-off of ice atthe front of idealized tidewater outlet glaciers. The flow modelcomputes flow velocities and the resulting stresses, which are in turnused to calculate the evolution of the glacier geometry anddamage. Damage is defined as a change of rheological properties, e.g.viscosity, due to increasing material degradation. Elements of ice areremoved when the damage variable reaches a critical threshold. Theeffects of material properties and of geometrical parameters such aswater depth, ice thickness and submarine frontal melting on thesimulated calving rates are explored through systematic sensitivityanalyses.The coupled ice flow/damage model allows for successful reproductionof calving front geometries typically observed for different waterdepths. We further use detailed observations from real glaciergeometries to better constrain the model parameters. Theproposed model approach should be applicable to simulate icebergcalving on arbitrary glaciers, and thus be used to analyse theevolution of tidewater glacier variations from the past to the future.
On the equivalence of continuum and lattice models for fluids
International Nuclear Information System (INIS)
Panagiotopoulos, Athanassios Z.
2000-01-01
It was demonstrated that finely discretized lattice models for fluids with particles interacting via Lennard-Jones or exponential-6 potentials have essentially identical thermodynamic and structural properties to their continuum counterparts. Grand canonical histogram reweighting Monte Carlo calculations were performed for systems with repulsion exponents between 11 and 22. Critical parameters were determined from mixed-field finite-size scaling methods. Numerical equivalence of lattice and continuous space models, within simulation uncertainties, was observed for lattices with ratio of particle diameter σ to grid spacing of 10. The lattice model calculations were more efficient computationally by factors between 10 and 20. It was also shown that Lennard-Jones and exponential-6 based models with identical critical properties can be constructed by appropriate choice of the repulsion exponent. (c) 2000 American Institute of Physics
A Cyclical Approach to Continuum Modeling: A Conceptual Model of Diabetic Foot Care
Directory of Open Access Journals (Sweden)
Martha L. Carvour
2017-12-01
Full Text Available “Cascade” or “continuum” models have been developed for a number of diseases and conditions. These models define the desired, successive steps in care for that disease or condition and depict the proportion of the population that has completed each step. These models may be used to compare care across subgroups or populations and to identify and evaluate interventions intended to improve outcomes on the population level. Previous cascade or continuum models have been limited by several factors. These models are best suited to processes with stepwise outcomes—such as screening, diagnosis, and treatment—with a single defined outcome (e.g., treatment or cure for each member of the population. However, continuum modeling is not well developed for complex processes with non-sequential or recurring steps or those without singular outcomes. As shown here using the example of diabetic foot care, the concept of continuum modeling may be re-envisioned with a cyclical approach. Cyclical continuum modeling may permit incorporation of non-sequential and recurring steps into a single continuum, while recognizing the presence of multiple desirable outcomes within the population. Cyclical models may simultaneously represent the distribution of clinical severity and clinical resource use across a population, thereby extending the benefits of traditional continuum models to complex processes for which population-based monitoring is desired. The models may also support communication with other stakeholders in the process of care, including health care providers and patients.
Traveling waves in a continuum model of 1D schools
Oza, Anand; Kanso, Eva; Shelley, Michael
2017-11-01
We construct and analyze a continuum model of a 1D school of flapping swimmers. Our starting point is a delay differential equation that models the interaction between a swimmer and its upstream neighbors' wakes, which is motivated by recent experiments in the Applied Math Lab at NYU. We coarse-grain the evolution equations and derive PDEs for the swimmer density and variables describing the upstream wake. We study the equations both analytically and numerically, and find that a uniform density of swimmers destabilizes into a traveling wave. Our model makes a number of predictions about the properties of such traveling waves, and sheds light on the role of hydrodynamics in mediating the structure of swimming schools.
Benchmarking Continuum Solvent Models for Keto-Enol Tautomerizations.
McCann, Billy W; McFarland, Stuart; Acevedo, Orlando
2015-08-13
Experimental free energies of tautomerization, ΔGT, were used to benchmark the gas-phase predictions of 17 different quantum mechanical methods and eight basis sets for seven keto-enol tautomer pairs dominated by their enolic form. The G4 method and M06/6-31+G(d,p) yielded the most accurate results, with mean absolute errors (MAE's) of 0.95 and 0.71 kcal/mol, respectively. Using these two theory levels, the solution-phase ΔGT values for 23 unique tautomer pairs composed of aliphatic ketones, β-dicarbonyls, and heterocycles were computed in multiple protic and aprotic solvents. The continuum solvation models, namely, polarizable continuum model (PCM), polarizable conductor calculation model (CPCM), and universal solvation model (SMD), gave relatively similar MAE's of ∼1.6-1.7 kcal/mol for G4 and ∼1.9-2.0 kcal/mol with M06/6-31+G(d,p). Partitioning the tautomer pairs into their respective molecular types, that is, aliphatic ketones, β-dicarbonyls, and heterocycles, and separating out the aqueous versus nonaqueous results finds G4/PCM utilizing the UA0 cavity to be the overall most accurate combination. Free energies of activation, ΔG(‡), for the base-catalyzed keto-enol interconversion of 2-nitrocyclohexanone were also computed using six bases and five solvents. The M06/6-31+G(d,p) reproduced the ΔG(‡) with MAE's of 1.5 and 1.8 kcal/mol using CPCM and SMD, respectively, for all combinations of base and solvent. That specific enolization was previously proposed to proceed via a concerted mechanism in less polar solvents but shift to a stepwise mechanism in more polar solvents. However, the current calculations suggest that the stepwise mechanism operates in all solvents.
Multivariate pluvial flood damage models
International Nuclear Information System (INIS)
Van Ootegem, Luc; Verhofstadt, Elsy; Van Herck, Kristine; Creten, Tom
2015-01-01
Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks
Multivariate pluvial flood damage models
Energy Technology Data Exchange (ETDEWEB)
Van Ootegem, Luc [HIVA — University of Louvain (Belgium); SHERPPA — Ghent University (Belgium); Verhofstadt, Elsy [SHERPPA — Ghent University (Belgium); Van Herck, Kristine; Creten, Tom [HIVA — University of Louvain (Belgium)
2015-09-15
Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.
Continuum modelling of segregating tridisperse granular chute flow
Deng, Zhekai; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.
2018-03-01
Segregation and mixing of size multidisperse granular materials remain challenging problems in many industrial applications. In this paper, we apply a continuum-based model that captures the effects of segregation, diffusion and advection for size tridisperse granular flow in quasi-two-dimensional chute flow. The model uses the kinematics of the flow and other physical parameters such as the diffusion coefficient and the percolation length scale, quantities that can be determined directly from experiment, simulation or theory and that are not arbitrarily adjustable. The predictions from the model are consistent with experimentally validated discrete element method (DEM) simulations over a wide range of flow conditions and particle sizes. The degree of segregation depends on the Péclet number, Pe, defined as the ratio of the segregation rate to the diffusion rate, the relative segregation strength κij between particle species i and j, and a characteristic length L, which is determined by the strength of segregation between smallest and largest particles. A parametric study of particle size, κij, Pe and L demonstrates how particle segregation patterns depend on the interplay of advection, segregation and diffusion. Finally, the segregation pattern is also affected by the velocity profile and the degree of basal slip at the chute surface. The model is applicable to different flow geometries, and should be easily adapted to segregation driven by other particle properties such as density and shape.
Guthrie, Steven P.
In two articles on outdoor programming models, Watters distinguished four models on a continuum ranging from the common adventure model, with minimal organizational structure and leadership control, to the guide service model, in which leaders are autocratic and trips are highly structured. Club programs and instructional programs were in between,…
Continuum model for chiral induced spin selectivity in helical molecules
Energy Technology Data Exchange (ETDEWEB)
Medina, Ernesto [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); González-Arraga, Luis A. [IMDEA Nanoscience, Cantoblanco, 28049 Madrid (Spain); Finkelstein-Shapiro, Daniel; Mujica, Vladimiro [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Berche, Bertrand [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France)
2015-05-21
A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.
Romano, Antonio
2010-01-01
This book offers a broad overview of the potential of continuum mechanics to describe a wide range of macroscopic phenomena in real-world problems. Building on the fundamentals presented in the authors' previous book, Continuum Mechanics using Mathematica(R), this new work explores interesting models of continuum mechanics, with an emphasis on exploring the flexibility of their applications in a wide variety of fields.Specific topics, which have been chosen to show the power of continuum mechanics to characterize the experimental behavior of real phenomena, include: * various aspects of nonlin
Coupling of nonlocal and local continuum models by the Arlequinapproach
Han, Fei; Lubineau, Gilles
2011-01-01
for the 'fine scale' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can
Aggregation patterns from nonlocal interactions: Discrete stochastic and continuum modeling
Hackett-Jones, Emily J.
2012-04-17
Conservation equations governed by a nonlocal interaction potential generate aggregates from an initial uniform distribution of particles. We address the evolution and formation of these aggregating steady states when the interaction potential has both attractive and repulsive singularities. Currently, no existence theory for such potentials is available. We develop and compare two complementary solution methods, a continuous pseudoinverse method and a discrete stochastic lattice approach, and formally show a connection between the two. Interesting aggregation patterns involving multiple peaks for a simple doubly singular attractive-repulsive potential are determined. For a swarming Morse potential, characteristic slow-fast dynamics in the scaled inverse energy is observed in the evolution to steady state in both the continuous and discrete approaches. The discrete approach is found to be remarkably robust to modifications in movement rules, related to the potential function. The comparable evolution dynamics and steady states of the discrete model with the continuum model suggest that the discrete stochastic approach is a promising way of probing aggregation patterns arising from two- and three-dimensional nonlocal interaction conservation equations. © 2012 American Physical Society.
PREFACE: Continuum Models and Discrete Systems Symposia (CMDS-12)
Chakrabarti, Bikas K.
2011-09-01
The 12th International Symposium on Continuum Models and Discrete Systems (CMDS-12) (http://www.saha.ac.in/cmp/cmds.12/) took place at the Saha Institute of Nuclear Physics in Kolkata from 21-25 February 2011. Previous CMDS symposia were held in Kielce (Poland, 1975), Mont Gabriel (Canada, 1977), Freudenstadt (Federal Republic of Germany, 1979), Stockholm (Sweden, 1981), Nottingham (United Kingdom, 1985), Dijon (France, 1989), Paderborn (Germany, 1992), Varna (Bulgaria, 1995), Istanbul (Turkey, 1998), Shoresh (Israel, 2003) and Paris (France, 2007). The broad interdisciplinary character, limited number of participants (not exceeding 100) and informal and friendly atmosphere of these meetings has made them a well-acknowledged place to make highly fruitful contacts and exchange ideas, methods and results. The purpose of CMDS is to bring together scientists with different backgrounds who work on continuum theories of discrete mechanical and thermodynamical systems in the fields of mathematics, theoretical and applied mechanics, physics, material science, and engineering. The spirit of the CMDS meetings is to stimulate extensive and active interdisciplinary research. The International Scientific Committee members of this conference were: David J Bergman (Chairman CMDS 10), Tel Aviv University, Israel; Bikas K Chakrabarti (Chairman CMDS 12), Saha Institute of Nuclear Physics, India; Alex Hansen, Norwegian University of Science and Technology, Norway; Hans Jürgen Herrmann, Institute for Building Materials, ETH, Switzerland; Esin Inan (Chairman CMDS 9), Istanbul Technical University, Turkey; Dominique Jeulin (Chairman CMDS 11), Ecole des Mines de Paris, France; Frank Juelicher, Max-Planck-Institute for the Physics of Complex Systems, Germany; Hikaru Kawamura, University of Osaka, Japan; Graeme Milton, University of Utah, USA; Natalia Movchan, University of Liverpool, UK; and Ping Sheng, The Hong Kong University of Science and Technology, Hong Kong. At CMDS-12 the topics
Dynamic Modelling for Planar Extensible Continuum Robot Manipulators
2006-01-01
to the OCTARM continuum ma- nipulator. The OCTARM manipulator is a biologically inspired soft robot manipulator resembling an elephant trunk or an... octopus arm [18]. The OCTARM, shown in Figure 1, is a three-section robot with nine degrees of freedom. Aside from two axis bending with constant...increasing interest in designing �biologically inspired � continuum robots . Some of these designs are mimicking trunks [8], [25], tentacles [17], [21], [24
Predicition of the first spinning cylinder test using continuum damage mechanics
International Nuclear Information System (INIS)
Lidbury, D.P.G.; Sherry, A.H.; Bilby, B.A.; Howard, I.C.; Li, Z.H.; Eripret, C.
1993-01-01
For many years large-scale experiments have been performed world-wide to validate aspects of fracture mechanics methodology. Special emphasis has been given to correlations between small- and large-scale specimen behaviour in quantifying the structural behaviour of pressure vessels, piping and closures. Within this context, the first three Spinning Cylinder Tests, performed by AEA Technology at its Risley Laboratory, addressed the phenomenon of stable crack growth by ductile tearing in contained yield and conditions simulating pressurized thermal shock loading in a PWR reactor pressure vessel. A notable feature of the test data was that the effective resistance to crack growth, as measured in terms of the J R-curve, was appreciably greater than that anticipated from small-scale testing, both at initiation and after small amounts (a few millimeters) of tearing. In the present paper, two independent finite element analyses of the First Spinning Cylinder Test (SC 1) are presented and compared. Both involved application of the Rousselier ductile damage theory in an attempt to better understand the transferability of test data from small specimens to structural validation tests. In each instance, the parameters associated with the theory's constitutive equation were calibrated in terms of data from notched-tensile and (or) fracture mechanics tests, metallographic observation and (or) chemical composition. The evolution of ductile damage local to the crack tip during SC 1 was thereby calculated and, together with a crack growth criterion based on the maximization of opening-mode stress, used as the basis for predicting cylinder R-Curves (angular velocity vs. Δa, J-integral vs. Δa). The results show the Rousselier model to be capable of correctly predicting the enhancement of tearing toughness of the cylinder relative to that of conventional test specimens, given an appropriate choice of finite element cell size in the region representing the crack tip
Directory of Open Access Journals (Sweden)
Wang Xiaojia
2018-01-01
Full Text Available A damage mechanics based approach is applied for the study of fatigue behaviour of high pressure die cast ADC12 aluminium alloy. A damage coupled elastoplastic constitutive model is presented according to the concept of effective stress and the hypothesis of strain equivalence. An elastic fatigue damage model taking into account the pore-induced stress concentration is developed to investigate fatigue damage evolution of the specimens subjected to cyclic loading. The predicted lives for the specimens with different sizes of pores are consistent with the experimental data. The pore-induced fatigue damage and the variation of fatigue life along with the size of pores are also investigated.
Modeling biological tissue growth: discrete to continuum representations.
Hywood, Jack D; Hackett-Jones, Emily J; Landman, Kerry A
2013-09-01
There is much interest in building deterministic continuum models from discrete agent-based models governed by local stochastic rules where an agent represents a biological cell. In developmental biology, cells are able to move and undergo cell division on and within growing tissues. A growing tissue is itself made up of cells which undergo cell division, thereby providing a significant transport mechanism for other cells within it. We develop a discrete agent-based model where domain agents represent tissue cells. Each agent has the ability to undergo a proliferation event whereby an additional domain agent is incorporated into the lattice. If a probability distribution describes the waiting times between proliferation events for an individual agent, then the total length of the domain is a random variable. The average behavior of these stochastically proliferating agents defining the growing lattice is determined in terms of a Fokker-Planck equation, with an advection and diffusion term. The diffusion term differs from the one obtained Landman and Binder [J. Theor. Biol. 259, 541 (2009)] when the rate of growth of the domain is specified, but the choice of agents is random. This discrepancy is reconciled by determining a discrete-time master equation for this process and an associated asymmetric nonexclusion random walk, together with consideration of synchronous and asynchronous updating schemes. All theoretical results are confirmed with numerical simulations. This study furthers our understanding of the relationship between agent-based rules, their implementation, and their associated partial differential equations. Since tissue growth is a significant cellular transport mechanism during embryonic growth, it is important to use the correct partial differential equation description when combining with other cellular functions.
A continuum model for flow induced by metachronal coordination between beating cilia
Hussong, J.; Breugem, W.P.; Westerweel, J.
2011-01-01
In this numerical study we investigate the flow induced by metachronal coordination between beating cilia arranged in a densely packed layer by means of a continuum model. The continuum approach allows us to treat the problem as two-dimensional as well as stationary, in a reference frame moving with
Generalized Continuum: from Voigt to the Modeling of Quasi-Brittle Materials
Directory of Open Access Journals (Sweden)
Jamile Salim Fuina
2010-12-01
Full Text Available This article discusses the use of the generalized continuum theories to incorporate the effects of the microstructure in the nonlinear finite element analysis of quasi-brittle materials and, thus, to solve mesh dependency problems. A description of the problem called numerically induced strain localization, often found in Finite Element Method material non-linear analysis, is presented. A brief historic about the Generalized Continuum Mechanics based models is presented, since the initial work of Voigt (1887 until the more recent studies. By analyzing these models, it is observed that the Cosserat and microstretch approaches are particular cases of a general formulation that describes the micromorphic continuum. After reporting attempts to incorporate the material microstructure in Classical Continuum Mechanics based models, the article shows the recent tendency of doing it according to assumptions of the Generalized Continuum Mechanics. Finally, it presents numerical results which enable to characterize this tendency as a promising way to solve the problem.
A constitutive model of soft tissue: From nanoscale collagen to tissue continuum
Tang, Huang
2009-04-08
Soft collagenous tissue features many hierarchies of structure, starting from tropocollagen molecules that form fibrils, and proceeding to a bundle of fibrils that form fibers. Here we report the development of an atomistically informed continuum model of collagenous tissue. Results from full atomistic and molecular modeling are linked with a continuum theory of a fiber-reinforced composite, handshaking the fibril scale to the fiber and continuum scale in a hierarchical multi-scale simulation approach. Our model enables us to study the continuum-level response of the tissue as a function of cross-link density, making a link between nanoscale collagen features and material properties at larger tissue scales. The results illustrate a strong dependence of the continuum response as a function of nanoscopic structural features, providing evidence for the notion that the molecular basis for protein materials is important in defining their larger-scale mechanical properties. © 2009 Biomedical Engineering Society.
Two-dimensional strain gradient damage modeling: a variational approach
Placidi, Luca; Misra, Anil; Barchiesi, Emilio
2018-06-01
In this paper, we formulate a linear elastic second gradient isotropic two-dimensional continuum model accounting for irreversible damage. The failure is defined as the condition in which the damage parameter reaches 1, at least in one point of the domain. The quasi-static approximation is done, i.e., the kinetic energy is assumed to be negligible. In order to deal with dissipation, a damage dissipation term is considered in the deformation energy functional. The key goal of this paper is to apply a non-standard variational procedure to exploit the damage irreversibility argument. As a result, we derive not only the equilibrium equations but, notably, also the Karush-Kuhn-Tucker conditions. Finally, numerical simulations for exemplary problems are discussed as some constitutive parameters are varying, with the inclusion of a mesh-independence evidence. Element-free Galerkin method and moving least square shape functions have been employed.
Solar radio continuum storms and a breathing magnetic field model. Final report
International Nuclear Information System (INIS)
1975-01-01
Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms
Nano-Continuum Modeling of a Nuclear Glass Specimen Altered for 25 Years
Energy Technology Data Exchange (ETDEWEB)
Steefel, Carl
2014-01-06
The purpose of this contribution is to report on preliminary nano-continuum scale modeling of nuclear waste glass corrosion. The focus of the modeling is an experiment involving a French glass SON68 specimen leached for 25 years in a granitic environment. In this report, we focus on capturing the nano-scale concentration profiles. We use a high resolution continuum model with a constant grid spacing of 1 nanometer to investigate the glass corrosion mechanisms.
Non-classical solutions of a continuum model for rock descriptions
Directory of Open Access Journals (Sweden)
Mikhail A. Guzev
2014-06-01
Full Text Available The strain-gradient and non-Euclidean continuum theories are employed for construction of non-classical solutions of continuum models. The linear approximation of both models' results in identical structures in terms of their kinematic and stress characteristics. The solutions obtained in this study exhibit a critical behaviour with respect to the external loading parameter. The conclusions are obtained based on an investigation of the solution for the scalar curvature in the non-Euclidean continuum theory. The proposed analysis enables us to use different theoretical approaches for description of rock critical behaviour under different loading conditions.
3D continuum phonon model for group-IV 2D materials
Willatzen, Morten; Lew Yan Voon, Lok C; Gandi, Appala; Schwingenschlö gl, Udo
2017-01-01
A general three-dimensional continuum model of phonons in two-dimensional materials is developed. Our first-principles derivation includes full consideration of the lattice anisotropy and flexural modes perpendicular to the layers and can thus
Ji, Zhaojie; Guan, Zhidong; Li, Zengshan
2017-10-01
In this paper, a progressive damage model was established on the basis of ABAQUS software for predicting permanent indentation and impact damage in composite laminates. Intralaminar and interlaminar damage was modelled based on the continuum damage mechanics (CDM) in the finite element model. For the verification of the model, low-velocity impact tests of quasi-isotropic laminates with material system of T300/5228A were conducted. Permanent indentation and impact damage of the laminates were simulated and the numerical results agree well with the experiments. It can be concluded that an obvious knee point can be identified on the curve of the indentation depth versus impact energy. Matrix cracking and delamination develops rapidly with the increasing impact energy, while considerable amount of fiber breakage only occurs when the impact energy exceeds the energy corresponding to the knee point. Predicted indentation depth after the knee point is very sensitive to the parameter μ which is proposed in this paper, and the acceptable value of this parameter is in range from 0.9 to 1.0.
Use of a finite range nucleon-nucleon interaction in the continuum shell model
International Nuclear Information System (INIS)
Faes, Jean-Baptiste
2007-01-01
The unification of nuclear structure and nuclear reactions was always a great challenge of nuclear physics. The extreme complexity of finite quantum systems lead in the past to a separate development of the nuclear structure and the nuclear reactions. A unified description of structure and reactions is possible within the continuum shell model. All previous applications of this model used the zero-range residual interaction and the finite depth local potential to generate the single-particle basis. In the thesis, we have presented an extension of the continuum shell model for finite-range nucleon-nucleon interaction and an arbitrary number of nucleons in the scattering continuum. The great advantage of the present formulation is the same two-body interaction used both to generate the single-particle basis and to describe couplings to the continuum states. This formulation opens a possibility for an ab initio continuum shell model studies with the same nucleon-nucleon interaction generating the nuclear mean field, the configuration mixing and the coupling to the scattering continuum. First realistic applications of the above model has been shown for spectra of "1"7F and "1"7O, and elastic phase-shifts in the reaction "1"6O(p, p)"1"6O. (author)
A continuum model for pressure-flow relationship in human pulmonary circulation.
Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T
2011-06-01
A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.
Energy Technology Data Exchange (ETDEWEB)
Zapol, Peter (Argonne National Laboratory, Argonne, IL); Bourg, Ian (Lawrence Berkeley National Laboratories, Berkeley, CA); Criscenti, Louise Jacqueline; Steefel, Carl I. (Lawrence Berkeley National Laboratories, Berkeley, CA); Schultz, Peter Andrew
2011-10-01
This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers, classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.
Drift Scale Modeling: Study of Unsaturated Flow into a Drift Using a Stochastic Continuum Model
International Nuclear Information System (INIS)
Birkholzer, J.T.; Tsang, C.F.; Tsang, Y.W.; Wang, J.S
1996-01-01
Unsaturated flow in heterogeneous fractured porous rock was simulated using a stochastic continuum model (SCM). In this model, both the more conductive fractures and the less permeable matrix are generated within the framework of a single continuum stochastic approach, based on non-parametric indicator statistics. High-permeable fracture zones are distinguished from low-permeable matrix zones in that they have assigned a long range correlation structure in prescribed directions. The SCM was applied to study small-scale flow in the vicinity of an access tunnel, which is currently being drilled in the unsaturated fractured tuff formations at Yucca Mountain, Nevada. Extensive underground testing is underway in this tunnel to investigate the suitability of Yucca Mountain as an underground nuclear waste repository. Different flow scenarios were studied in the present paper, considering the flow conditions before and after the tunnel emplacement, and assuming steady-state net infiltration as well as episodic pulse infiltration. Although the capability of the stochastic continuum model has not yet been fully explored, it has been demonstrated that the SCM is a good alternative model feasible of describing heterogeneous flow processes in unsaturated fractured tuff at Yucca Mountain
Reproducing the nonlinear dynamic behavior of a structured beam with a generalized continuum model
Vila, J.; Fernández-Sáez, J.; Zaera, R.
2018-04-01
In this paper we study the coupled axial-transverse nonlinear vibrations of a kind of one dimensional structured solids by application of the so called Inertia Gradient Nonlinear continuum model. To show the accuracy of this axiomatic model, previously proposed by the authors, its predictions are compared with numeric results from a previously defined finite discrete chain of lumped masses and springs, for several number of particles. A continualization of the discrete model equations based on Taylor series allowed us to set equivalent values of the mechanical properties in both discrete and axiomatic continuum models. Contrary to the classical continuum model, the inertia gradient nonlinear continuum model used herein is able to capture scale effects, which arise for modes in which the wavelength is comparable to the characteristic distance of the structured solid. The main conclusion of the work is that the proposed generalized continuum model captures the scale effects in both linear and nonlinear regimes, reproducing the behavior of the 1D nonlinear discrete model adequately.
Damage Models for Soft Tissues: A Survey.
Li, Wenguang
Damage to soft tissues in the human body has been investigated for applications in healthcare, sports, and biomedical engineering. This paper reviews and classifies damage models for soft tissues to summarize achievements, identify new directions, and facilitate finite element analysis. The main ideas of damage modeling methods are illustrated and interpreted. A few key issues related to damage models, such as experimental data curve-fitting, computational effort, connection between damage and fractures/cracks, damage model applications, and fracture/crack extension simulation, are discussed. Several new challenges in the field are identified and outlined. This review can be useful for developing more advanced damage models and extending damage modeling methods to a variety of soft tissues.
Damage characterization and modeling of a 7075-T651 aluminum plate
International Nuclear Information System (INIS)
Jordon, J.B.; Horstemeyer, M.F.; Solanki, K.; Bernard, J.D.; Berry, J.T.; Williams, T.N.
2009-01-01
In this paper, the damage-induced anisotropy arising from material microstructure heterogeneities at two different length scales was characterized and modeled for a wrought aluminum alloy. Experiments were performed on a 7075-T651 aluminum alloy plate using sub-standard tensile specimens in three different orientations with respect to the rolling direction. Scanning electron microscopy was employed to characterize the stereology of the final damage state in terms of cracked and or debonded particles. A physically motivated internal state variable continuum model was used to predict fracture by incorporating material microstructural features. The continuum model showed good comparisons to the experimental data by capturing the damage-induced anisotropic material response. Estimations of the mechanical stress-strain response, material damage histories, and final failure were numerically calculated and experimentally validated thus demonstrating that the final failure state was strongly dependent on the constituent particle morphology.
DEFF Research Database (Denmark)
Mishnaevsky, Leon; Brøndsted, Povl
2009-01-01
A statistical computational model of strength and damage of unidirectional carbon fiber reinforced composites under compressive and cyclic compressive loading is presented in this paper. The model is developed on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics...... concept and the Monte-Carlo method. The effects of fiber misalignment variability, fiber clustering, load sharing rules on the damage in composite are studied numerically. It is demonstrated that the clustering of fibers has a negative effect of the damage resistance of a composite. Further, the static...
Realistic Gamow shell model for resonance and continuum in atomic nuclei
Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.
2018-02-01
The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.
Modelos contínuos do solvente: fundamentos Continuum solvation models: fundamentals
Directory of Open Access Journals (Sweden)
Josefredo R. Pliego Jr
2006-06-01
Full Text Available Continuum solvation models are nowadays widely used in the modeling of solvent effects and the range of applications goes from the calculation of partition coefficients to chemical reactions in solution. The present work presents a detailed explanation of the physical foundations of continuum models. We discuss the polarization of a dielectric and its representation through the volume and surface polarization charges. The Poisson equation for a dielectric was obtained and we have also derived and discuss the apparent surface charge method and its application for free energy of solvation calculations.
Moving contact lines: linking molecular dynamics and continuum-scale modelling.
Smith, Edward R; Theodorakis, Panagiotis E; Craster, Richard V; Matar, Omar K
2018-05-04
Despite decades of research, the modelling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily-life applications. On the one hand, molecular dynamics (MD) simulation has the ability to provide unique insight into the microscopic details that determine the dynamic behavior of the contact line, which is not possible with either continuum-scale simulations or experiments. On the other hand, continuum-based models provide the link to the macroscopic description of the system. In this Feature Article, we explore the complex range of physical factors, including the presence of surfactants, which govern the contact line motion through MD simulations. We also discuss links between continuum- and molecular-scale modelling, and highlight the opportunities for future developments in this area.
Stewart, Jeffrey; Batty, Aaron Olaf; Bovee, Nicholas
2012-01-01
Second language vocabulary acquisition has been modeled both as multidimensional in nature and as a continuum wherein the learner's knowledge of a word develops along a cline from recognition through production. In order to empirically examine and compare these models, the authors assess the degree to which the Vocabulary Knowledge Scale (VKS;…
Construction of quantized gauge fields: continuum limit of the Abelian Higgs model in two dimensions
International Nuclear Information System (INIS)
Seiler, E.
1981-01-01
The author proves the existence of the continuum limit of the two-dimensional Higgs model for two cases: External gauge fields that are Hoelder continuous and may be non-Abelian, and the fully quantized Abelian model. In the latter case all Wightman axioms are verified except clustering. Important ingredients are a universal diamagnetic bound and correlation inequalities. (Auth.)
A continuum-based structural modeling approach for cellulose nanocrystals (CNCs)
Mehdi Shishehbor; Fernando L. Dri; Robert J. Moon; Pablo D. Zavattieri
2018-01-01
We present a continuum-based structural model to study the mechanical behavior of cel- lulose nanocrystals (CNCs), and analyze the effect of bonded and non-bonded interactions on the mechanical properties under various loading conditions. In particular, this model assumes the uncoupling between the bonded and non-bonded interactions and their be- havior is obtained...
Directory of Open Access Journals (Sweden)
Zhi Yan
2017-01-01
Full Text Available Piezoelectric nanomaterials (PNs are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.
Yan, Zhi; Jiang, Liying
2017-01-26
Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.
Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.
Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick
2018-01-01
In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.
HYBRID CONTINUUM-DISCONTINUUM MODELLING OF ROCK FRACUTRE PROCESS IN BRAZILIAN TENSILE STRENGTH TEST
Directory of Open Access Journals (Sweden)
Huaming An
2017-10-01
Full Text Available A hybrid continuum-discontinuum method is introduced to model the rock failure process in Brazilian tensile strength (BTS test. The key component of the hybrid continuum-discontinuum method, i.e. transition from continuum to discontinuum through fracture and fragmentation, is introduced in detail. A laboratory test is conducted first to capture the rock fracture pattern in the BTS test while the tensile strength is calculated according to the peak value of the loading forces. Then the proposed method is used to model the rock behaviour during BTS test. The stress propagation is modelled and compared with those modelled by finite element method in literatures. In addition, the crack initiation and propagation are captured and compared with the facture patter in laboratory test. Moreover, the force-loading displacement curve is obtained which represents a typical brittle material failure process. Furthermore, the stress distributions along the vertical direction are compared with the theoretical solution. It is concluded that the hybrid continuum-discontinuum method can model the stress propagation process and the entire rock failure process in BTS test. The proposed method is a valuable numerical tool for studying the rock behaviour involving the fracture and fragmentation processes.
Continuum Navier-Stokes modelling of water ow past fullerene molecules
DEFF Research Database (Denmark)
Walther, J. H.; Popadic, A.; Koumoutsakos, P.
We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently...
Continuum Navier-Stokes modelling of water flow past fullerene molecules
DEFF Research Database (Denmark)
Walther, J. H.; Popadic, A.; Koumoutsakos, P.
We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently...
International Nuclear Information System (INIS)
Pourali, Meisam; Maghari, Ali; Meloni, Simone; Magaletti, Francesco; Casciola, Carlo Massimo; Ciccotti, Giovanni
2014-01-01
We compare dynamical nonequilibrium molecular dynamics and continuum simulations of the dynamics of relaxation of a fluid system characterized by a non-uniform density profile. Results match quite well as long as the lengthscale of density nonuniformities are greater than the molecular scale (∼10 times the molecular size). In presence of molecular scale features some of the continuum fields (e.g., density and momentum) are in good agreement with atomistic counterparts, but are smoother. On the contrary, other fields, such as the temperature field, present very large difference with respect to reference (atomistic) ones. This is due to the limited accuracy of some of the empirical relations used in continuum models, the equation of state of the fluid in the present example
International Nuclear Information System (INIS)
Kang, Rongjie; Zheng Tianjiang; Guglielmino, Emanuele; Caldwell, Darwin G; Branson, David T
2013-01-01
Biological tentacles, such as octopus arms, have entirely flexible structures and virtually infinite degrees of freedom (DOF) that allow for elongation, shortening and bending at any point along the arm length. The amazing dexterity of biological tentacles has driven the growing implementation of continuum manipulators in robotic systems. This paper presents a pneumatic manipulator inspired by biological continuum structures in some of their key features and functions, such as continuum morphology, intrinsic compliance and stereotyped motions with hyper redundant DOF. The kinematics and dynamics of the manipulator are formulated and identified, and a hierarchical controller taking inspiration from the structure of an octopus nervous system is used to relate desired stereotyped motions to individual actuator inputs. Simulations and experiments are carried out to validate the model and prototype where good agreement was found between the two. (paper)
Dynamical mass generation in the continuum Thirring model
International Nuclear Information System (INIS)
Girardello, L.; Immirzi, G.; Rossi, P.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge
1982-01-01
We study the renormalization of the Thirring model in the neighbourhood of μ = 0,g = -π/2, and find that on the trajectory which tends to this point when the scale goes to infinity the behaviour of the model reproduces what one obtains decomposing the N = 2 Gross-Neveu model. The existence of this trajectory is consistent with the dynamical mass generation found by McCoy and Wu in the discrete version of the massless model. (orig.)
Numerical modeling of large field-induced strains in ferroelastic bodies: a continuum approach
International Nuclear Information System (INIS)
Raikher, Yu L; Stolbov, O V
2008-01-01
A consistent continuum model of a soft magnetic elastomer (SME) is presented and developed for the case of finite strain. The numeric algorithm enabling one to find the field-induced shape changes of an SME body is described. The reliability of the method is illustrated by several examples revealing specifics of the magnetostriction effect in SME samples of various geometries
A New Conceptual Model for the Continuum of Land Rights | Whittal ...
African Journals Online (AJOL)
An aspect of this is land value and the degree of simplicity/complexity in land value is found to be well-aligned with the land rights types in the former continuum model. This is adopted as a suitable substitute for the former measure of informality/formality when locating land rights types on the horizontal axis. Legitimacy ...
A continuum based fem model for friction stir welding-model development
Energy Technology Data Exchange (ETDEWEB)
Buffa, G. [Ohio State University, Department of Industrial, Welding and Systems Engineering, 1971 Neil Avenue, 210 Baker Systems, Columbus, OH 43210 (United States) and Dipartimento di Tecnologia Meccanica, Produzione e Ingegneria Gestionale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)]. E-mail: g.buffa@dtpm.unipa.it; Hua, J. [Ohio State University, Department of Industrial, Welding and Systems Engineering, 1971 Neil Avenue, 210 Baker Systems, Columbus, OH 43210 (United States)]. E-mail: hua.14@osu.edu; Shivpuri, R. [Ohio State University, Department of Industrial, Welding and Systems Engineering, 1971 Neil Avenue, 210 Baker Systems, Columbus, OH 43210 (United States)]. E-mail: shivpuri.1@osu.edu; Fratini, L. [Dipartimento di Tecnologia Meccanica, Produzione e Ingegneria Gestionale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)]. E-mail: abaqus@dtpm.unipa.it
2006-03-15
Although friction stir welding (FSW) has been successfully used to join materials that are difficult-to-weld or unweldeable by fusion welding methods, it is still in its early development stage and, therefore, a scientific knowledge based predictive model is of significant help for thorough understanding of FSW process. In this paper, a continuum based FEM model for friction stir welding process is proposed, that is 3D Lagrangian implicit, coupled, rigid-viscoplastic. This model is calibrated by comparing with experimental results of force and temperature distribution, then is used to investigate the distribution of temperature and strain in heat affect zone and the weld nugget. The model correctly predicts the non-symmetric nature of FSW process, and the relationships between the tool forces and the variation in the process parameters. It is found that the effective strain distribution is non-symmetric about the weld line while the temperature profile is almost symmetric in the weld zone.
A continuum based fem model for friction stir welding-model development
International Nuclear Information System (INIS)
Buffa, G.; Hua, J.; Shivpuri, R.; Fratini, L.
2006-01-01
Although friction stir welding (FSW) has been successfully used to join materials that are difficult-to-weld or unweldeable by fusion welding methods, it is still in its early development stage and, therefore, a scientific knowledge based predictive model is of significant help for thorough understanding of FSW process. In this paper, a continuum based FEM model for friction stir welding process is proposed, that is 3D Lagrangian implicit, coupled, rigid-viscoplastic. This model is calibrated by comparing with experimental results of force and temperature distribution, then is used to investigate the distribution of temperature and strain in heat affect zone and the weld nugget. The model correctly predicts the non-symmetric nature of FSW process, and the relationships between the tool forces and the variation in the process parameters. It is found that the effective strain distribution is non-symmetric about the weld line while the temperature profile is almost symmetric in the weld zone
Continuum-time Hamiltonian for the Baxter's model
International Nuclear Information System (INIS)
Libero, V.L.
1983-01-01
The associated Hamiltonian for the symmetric eight-vertex model is obtained by taking the time-continuous limit in an equivalent Ashkin-Teller model. The result is a Heisenberg Hamiltonian with coefficients J sub(x), J sub(y) and J sub(z) identical to those found by Sutherland for choices of the parameters a, b, c and d that bring the model close to the transition. The change in the operators is accomplished explicitly, the relation between the crossover operator for the Ashkin-Teller model and the energy operator for the eight-vertex model being obtained in a transparent form. (Author) [pt
Stress transfer modeling in CNT reinforced composites using continuum mechanics
International Nuclear Information System (INIS)
Chaboki Khiabani, A.; Sadrnejad, S. A.; Yahyaeii, M.
2008-01-01
Because of the substantial difference in stiffness between matrix and nano tube in CNT composite, the stress transfer between them controls their mechanical properties. This paper investigates the said issue, analytically and numerically, in axial load using representative volume element. The analytical model was established based on the modified Cox's shear lag model with the use of some simplified assumptions. Some, in the developed shear lag model, the CNT assumes hollow fiber. Solving the governing differential equation. led the high shear stress, in interface especially in the CNT cap. In addition, some finite element models were performed with different aspect ratios and the shear stress pattern especially in interface was calculated numerically. Despite some simplified assumptions that were performed with these two models such as elastic behavior and full connectivity, and the comparison of their results with other numerical models show adequate agreement
Comparative Assessment of Nonlocal Continuum Solvent Models Exhibiting Overscreening
Directory of Open Access Journals (Sweden)
Ren Baihua
2017-01-01
Full Text Available Nonlocal continua have been proposed to offer a more realistic model for the electrostatic response of solutions such as the electrolyte solvents prominent in biology and electrochemistry. In this work, we review three nonlocal models based on the Landau-Ginzburg framework which have been proposed but not directly compared previously, due to different expressions of the nonlocal constitutive relationship. To understand the relationships between these models and the underlying physical insights from which they are derive, we situate these models into a single, unified Landau-Ginzburg framework. One of the models offers the capacity to interpret how temperature changes affect dielectric response, and we note that the variations with temperature are qualitatively reasonable even though predictions at ambient temperatures are not quantitatively in agreement with experiment. Two of these models correctly reproduce overscreening (oscillations between positive and negative polarization charge densities, and we observe small differences between them when we simulate the potential between parallel plates held at constant potential. These computations require reformulating the two models as coupled systems of local partial differential equations (PDEs, and we use spectral methods to discretize both problems. We propose further assessments to discriminate between the models, particularly in regards to establishing boundary conditions and comparing to explicit-solvent molecular dynamics simulations.
Morphodynamic modeling of the river pattern continuum (Invited)
Nicholas, A. P.
2013-12-01
Numerical models provide valuable tools for integrating understanding of fluvial processes and morphology. Moreover, they have considerable potential for use in investigating river responses to environmental change and catchment management, and for aiding the interpretation of alluvial deposits and landforms. For this potential to be realised fully, such models must be capable of representing diverse river styles and the spatial and temporal transitions between styles that are driven by changes in environmental forcing. However, while numerical modeling of rivers has advanced considerable over the past few decades, this has been accomplished largely by developing separate approaches to modeling single and multi-thread channels. Results are presented here from numerical simulations undertaken using a new model of river and floodplain co-evolution, applied to investigate the morphodynamics of large sand-bed rivers. This model solves the two-dimensional depth-averaged shallow water equations using a Godunov-type finite volume scheme, with a two-fraction representation of sediment transport, and includes the effects of secondary circulation, bank erosion and floodplain development due to the colonization of bar surfaces by vegetation. Simulation results demonstrate the feasibility of representing a wide range of fluvial styles (including braiding, meandering and anabranching channels) using relatively simple physics-based models, and provide insight into the controls on channel pattern diversity in large sand-bed rivers. Analysis of model sensitivity illustrates the important role of upstream boundary conditions as a control on channel dynamics. Moreover, this analysis highlights key uncertainties in model process representation and their implications for modelling river evolution in response to natural and anthropogenic-induced river disturbance.
Detailed analysis of the continuum limit of a supersymmetric lattice model in 1D
International Nuclear Information System (INIS)
Huijse, L
2011-01-01
We present a full identification of lattice model properties with their field theoretical counterparts in the continuum limit for a supersymmetric model for itinerant spinless fermions on a one-dimensional chain. The continuum limit of this model is described by an N=(2,2) superconformal field theory (SCFT) with central charge c = 1. We identify states and operators in the lattice model with fields in the SCFT and we relate boundary conditions on the lattice to sectors in the field theory. We use the dictionary we develop in this paper to give a pedagogical explanation of a powerful tool to study supersymmetric models based on spectral flow (Huijse 2008 Phys. Rev. Lett. 101 146406). Finally, we employ the developed machinery to explain numerically observed properties of the particle density on the open chain presented in Beccaria and De Angelis (2005 Phys. Rev. Lett. 94 100401)
Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation
Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip
2006-01-01
This document is a viewgraph presentation reporting on work in modeling the foam insulation of the Space Shuttle External Tank. An analytical understanding of foam mechanics is required to design against structural failure. The Space Shuttle External Tank is covered primarily with closed cell foam to: Prevent ice, Protect structure from ascent aerodynamic and engine plume heating, and Delay break-up during re-entry. It is important that the foam does not shed unacceptable debris during ascent environment. Therefore a modeling of the foam insulation was undertaken.
Continuum model for masonry: Parameter estimation and validation
Lourenço, P.B.; Rots, J.G.; Blaauwendraad, J.
1998-01-01
A novel yield criterion that includes different strengths along each material axis is presented. The criterion includes two different fracture energies in tension and two different fracture energies in compression. The ability of the model to represent the inelastic behavior of orthotropic materials
Continuum soil modeling in the static analysis of buried structures
International Nuclear Information System (INIS)
Julyk, L.J.; Marlow, R.S.; Moore, C.J.; Day, J.P.; Dyrness, A.D.
1993-10-01
Soil loading traditionally has been modeled as a hydrostatic pressure, a practice acceptable for many design applications. In the analyses of buried structure with predictive goals, soil compliance and load redistribution in the presence of soil plasticity are important factors to consider in determining the appropriate response of the structure. In the analysis of existing buried waste-storage tanks at the US Department of Energy's Hanford Site, three soil-tank interaction modeling considerations are addressed. First, the soil interacts with the tank as the tank expands and contracts during thermal cycles associated with changes in the heat generated by the waste material as a result of additions and subtractions of the waste. Second, the soil transfers loads from the surface to the tank and provides support by resisting radial displacement of the tank haunch. Third, conventional finite-element mesh development causes artificial stress concentrations in the soil associated with differential settlement
Continuum and discrete approach in modeling biofilm development and structure: a review.
Mattei, M R; Frunzo, L; D'Acunto, B; Pechaud, Y; Pirozzi, F; Esposito, G
2018-03-01
The scientific community has recognized that almost 99% of the microbial life on earth is represented by biofilms. Considering the impacts of their sessile lifestyle on both natural and human activities, extensive experimental activity has been carried out to understand how biofilms grow and interact with the environment. Many mathematical models have also been developed to simulate and elucidate the main processes characterizing the biofilm growth. Two main mathematical approaches for biomass representation can be distinguished: continuum and discrete. This review is aimed at exploring the main characteristics of each approach. Continuum models can simulate the biofilm processes in a quantitative and deterministic way. However, they require a multidimensional formulation to take into account the biofilm spatial heterogeneity, which makes the models quite complicated, requiring significant computational effort. Discrete models are more recent and can represent the typical multidimensional structural heterogeneity of biofilm reflecting the experimental expectations, but they generate computational results including elements of randomness and introduce stochastic effects into the solutions.
Continuum model of the two-component Becker-Döring equations
Directory of Open Access Journals (Sweden)
Ali Reza Soheili
2004-01-01
Full Text Available The process of collision between particles is a subject of interest in many fields of physics, astronomy, polymer physics, atmospheric physics, and colloid chemistry. If two types of particles are allowed to participate in the cluster coalescence, then the time evolution of the cluster distribution has been described by an infinite system of ordinary differential equations. In this paper, we describe the model with a second-order two-dimensional partial differential equation, as a continuum model.
Heterogeneous traffic flow modelling using second-order macroscopic continuum model
Mohan, Ranju; Ramadurai, Gitakrishnan
2017-01-01
Modelling heterogeneous traffic flow lacking in lane discipline is one of the emerging research areas in the past few years. The two main challenges in modelling are: capturing the effect of varying size of vehicles, and the lack in lane discipline, both of which together lead to the 'gap filling' behaviour of vehicles. The same section length of the road can be occupied by different types of vehicles at the same time, and the conventional measure of traffic concentration, density (vehicles per lane per unit length), is not a good measure for heterogeneous traffic modelling. First aim of this paper is to have a parsimonious model of heterogeneous traffic that can capture the unique phenomena of gap filling. Second aim is to emphasize the suitability of higher-order models for modelling heterogeneous traffic. Third, the paper aims to suggest area occupancy as concentration measure of heterogeneous traffic lacking in lane discipline. The above mentioned two main challenges of heterogeneous traffic flow are addressed by extending an existing second-order continuum model of traffic flow, using area occupancy for traffic concentration instead of density. The extended model is calibrated and validated with field data from an arterial road in Chennai city, and the results are compared with those from few existing generalized multi-class models.
Continuum modelling of silicon diffusion in indium gallium arsenide
Aldridge, Henry Lee, Jr.
A possible method to overcome the physical limitations experienced by continued transistor scaling and continue improvements in performance and power consumption is integration of III-V semiconductors as alternative channel materials for logic devices. Indium Gallium Arsenide (InGaAs) is such a material from the III-V semiconductor family, which exhibit superior electron mobilities and injection velocities than that of silicon. In order for InGaAs integration to be realized, contact resistances must be minimized through maximizing activation of dopants in this material. Additionally, redistribution of dopants during processing must be clearly understood and ultimately controlled at the nanometer-scale. In this work, the activation and diffusion behavior of silicon, a prominent n-type dopant in InGaAs, has been characterized and subsequently modelled using the Florida Object Oriented Process and Device Simulator (FLOOPS). In contrast to previous reports, silicon exhibits non-negligible diffusion in InGaAs, even for smaller thermal budget rapid thermal anneals (RTAs). Its diffusion is heavily concentration-dependent, with broadening "shoulder-like" profiles when doping levels exceed 1-3x1019cm -3, for both ion-implanted and Molecular Beam Epitaxy (MBE)-grown cases. Likewise a max net-activation value of ˜1.7x1019cm -3 is consistently reached with enough thermal processing, regardless of doping method. In line with experimental results and several ab-initio calculation results, rapid concentration-dependent diffusion of Si in InGaAs and the upper limits of its activation is believed to be governed by cation vacancies that serve as compensating defects in heavily n-type regions of InGaAs. These results are ultimately in line with an amphoteric defect model, where the activation limits of dopants are an intrinsic limitation of the material, rather than governed by individual dopant species or their methods of incorporation. As a result a Fermi level dependent point
Continuum mathematical modelling of pathological growth of blood vessels
Stadnik, N. E.; Dats, E. P.
2018-04-01
The present study is devoted to the mathematical modelling of a human blood vessel pathological growth. The vessels are simulated as the thin-walled circular tube. The boundary value problem of the surface growth of an elastic thin-walled cylinder is solved. The analytical solution is obtained in terms of velocities of stress strain state parameters. The condition of thinness allows us to study finite displacements of cylinder surfaces by means of infinitesimal deformations. The stress-strain state characteristics, which depend on the mechanical parameters of the biological processes, are numerically computed and graphically analysed.
Intelligent-based Structural Damage Detection Model
International Nuclear Information System (INIS)
Lee, Eric Wai Ming; Yu, K.F.
2010-01-01
This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.
Intelligent-based Structural Damage Detection Model
Lee, Eric Wai Ming; Yu, Kin Fung
2010-05-01
This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.
An extended continuum model considering optimal velocity change with memory and numerical tests
Qingtao, Zhai; Hongxia, Ge; Rongjun, Cheng
2018-01-01
In this paper, an extended continuum model of traffic flow is proposed with the consideration of optimal velocity changes with memory. The new model's stability condition and KdV-Burgers equation considering the optimal velocities change with memory are deduced through linear stability theory and nonlinear analysis, respectively. Numerical simulation is carried out to study the extended continuum model, which explores how optimal velocity changes with memory affected velocity, density and energy consumption. Numerical results show that when considering the effects of optimal velocity changes with memory, the traffic jams can be suppressed efficiently. Both the memory step and sensitivity parameters of optimal velocity changes with memory will enhance the stability of traffic flow efficiently. Furthermore, numerical results demonstrates that the effect of optimal velocity changes with memory can avoid the disadvantage of historical information, which increases the stability of traffic flow on road, and so it improve the traffic flow stability and minimize cars' energy consumptions.
A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm
International Nuclear Information System (INIS)
Renda, F; Cianchetti, M; Giorelli, M; Arienti, A; Laschi, C
2012-01-01
Control and modelling of continuum robots are challenging tasks for robotic researchers. Most works on modelling are limited to piecewise constant curvature. In many cases they neglect to model the actuators or avoid a continuum approach. In particular, in the latter case this leads to a complex model hardly implemented. In this work, a geometrically exact steady-state model of a tendon-driven manipulator inspired by the octopus arm is presented. It takes a continuum approach, fast enough to be implemented in the control law, and includes a model of the actuation system. The model was experimentally validated and the results are reported. In conclusion, the model presented can be used as a tool for mechanical design of continuum tendon-driven manipulators, for planning control strategies or as internal model in an embedded system. (paper)
Energy Technology Data Exchange (ETDEWEB)
Zimmerman, Jonathan A.; Jones, Reese E.; Templeton, Jeremy Alan; McDowell, David L.; Mayeur, Jason R.; Tucker, Garritt J.; Bammann, Douglas J.; Gao, Huajian
2008-09-01
Materials with characteristic structures at nanoscale sizes exhibit significantly different mechani-cal responses from those predicted by conventional, macroscopic continuum theory. For example,nanocrystalline metals display an inverse Hall-Petch effect whereby the strength of the materialdecreases with decreasing grain size. The origin of this effect is believed to be a change in defor-mation mechanisms from dislocation motion across grains and pileup at grain boundaries at mi-croscopic grain sizes to rotation of grains and deformation within grain boundary interface regionsfor nanostructured materials. These rotational defects are represented by the mathematical conceptof disclinations. The ability to capture these effects within continuum theory, thereby connectingnanoscale materials phenomena and macroscale behavior, has eluded the research community.The goal of our project was to develop a consistent theory to model both the evolution ofdisclinations and their kinetics. Additionally, we sought to develop approaches to extract contin-uum mechanical information from nanoscale structure to verify any developed continuum theorythat includes dislocation and disclination behavior. These approaches yield engineering-scale ex-pressions to quantify elastic and inelastic deformation in all varieties of materials, even those thatpossess highly directional bonding within their molecular structures such as liquid crystals, cova-lent ceramics, polymers and biological materials. This level of accuracy is critical for engineeringdesign and thermo-mechanical analysis is performed in micro- and nanosystems. The researchproposed here innovates on how these nanoscale deformation mechanisms should be incorporatedinto a continuum mechanical formulation, and provides the foundation upon which to develop ameans for predicting the performance of advanced engineering materials.4 AcknowledgmentThe authors acknowledge helpful discussions with Farid F. Abraham, Youping Chen, Terry J
Landau-Zener transitions and Dykhne formula in a simple continuum model
Dunham, Yujin; Garmon, Savannah
The Landau-Zener model describing the interaction between two linearly driven discrete levels is useful in describing many simple dynamical systems; however, no system is completely isolated from the surrounding environment. Here we examine a generalizations of the original Landau-Zener model to study simple environmental influences. We consider a model in which one of the discrete levels is replaced with a energy continuum, in which we find that the survival probability for the initially occupied diabatic level is unaffected by the presence of the continuum. This result can be predicted by assuming that each step in the evolution for the diabatic state evolves independently according to the Landau-Zener formula, even in the continuum limit. We also show that, at least for the simplest model, this result can also be predicted with the natural generalization of the Dykhne formula for open systems. We also observe dissipation as the non-escape probability from the discrete levels is no longer equal to one.
Prediction Of Formability In Sheet Metal Forming Processes Using A Local Damage Model
International Nuclear Information System (INIS)
Teixeira, P.; Santos, Abel; Cesar Sa, J.; Andrade Pires, F.; Barata da Rocha, A.
2007-01-01
The formability in sheet metal forming processes is mainly conditioned by ductile fracture resulting from geometric instabilities due to necking and strain localization. The macroscopic collapse associated with ductile failure is a result of internal degradation described throughout metallographic observations by the nucleation, growth and coalescence of voids and micro-cracks. Damage influences and is influenced by plastic deformation and therefore these two dissipative phenomena should be coupled at the constitutive level. In this contribution, Lemaitre's ductile damage model is coupled with Hill's orthotropic plasticity criterion. The coupling between damaging and material behavior is accounted for within the framework of Continuum Damage Mechanics (CDM). The resulting constitutive equations are implemented in the Abaqus/Explicit code, for the prediction of fracture onset in sheet metal forming processes. The damage evolution law takes into account the important effect of micro-crack closure, which dramatically decreases the rate of damage growth under compressive paths
Model of designating the critical damages
Directory of Open Access Journals (Sweden)
Zwolińska Bożena
2017-06-01
Full Text Available The article consists of two parts which make for an integral body. This article depicts the method of designating the critical damages in accordance with lean maintenance method. Author considered exemplary production system (serial-parallel in which in time Δt appeared a damage on three different objects. Article depicts the mathematical model which enables determination of an indicator called “prioritized digit of the device”. In the developed model there were considered some parameters: production abilities of devices, existence of potential vicarious devices, position of damage in the production stream based on the capacity of operational buffers, time needed to remove the damages and influence of damages to the finalization of customers’ orders – CEF indicator.
A software platform for continuum modeling of ion channels based on unstructured mesh
International Nuclear Information System (INIS)
Tu, B; Bai, S Y; Xie, Y; Zhang, L B; Lu, B Z; Chen, M X
2014-01-01
Most traditional continuum molecular modeling adopted finite difference or finite volume methods which were based on a structured mesh (grid). Unstructured meshes were only occasionally used, but an increased number of applications emerge in molecular simulations. To facilitate the continuum modeling of biomolecular systems based on unstructured meshes, we are developing a software platform with tools which are particularly beneficial to those approaches. This work describes the software system specifically for the simulation of a typical, complex molecular procedure: ion transport through a three-dimensional channel system that consists of a protein and a membrane. The platform contains three parts: a meshing tool chain for ion channel systems, a parallel finite element solver for the Poisson–Nernst–Planck equations describing the electrodiffusion process of ion transport, and a visualization program for continuum molecular modeling. The meshing tool chain in the platform, which consists of a set of mesh generation tools, is able to generate high-quality surface and volume meshes for ion channel systems. The parallel finite element solver in our platform is based on the parallel adaptive finite element package PHG which wass developed by one of the authors [1]. As a featured component of the platform, a new visualization program, VCMM, has specifically been developed for continuum molecular modeling with an emphasis on providing useful facilities for unstructured mesh-based methods and for their output analysis and visualization. VCMM provides a graphic user interface and consists of three modules: a molecular module, a meshing module and a numerical module. A demonstration of the platform is provided with a study of two real proteins, the connexin 26 and hemolysin ion channels. (paper)
A Model of Discrete-Continuum Time for a Simple Physical System
Directory of Open Access Journals (Sweden)
Karimov A. R.
2008-04-01
Full Text Available Proceeding from the assumption that the time flow of an individual object is a real physical value, in the framework of a physical kinetics approach we propose an analogy between time and temperature. The use of such an analogy makes it possible to work out a discrete-continuum model of time for a simple physical system. The possible physical properties of time for the single object and time for the whole system are discussed.
Continuum model of the two-component Becker-Döring equations
Soheili, Ali Reza
2004-01-01
The process of collision between particles is a subject of interest in many fields of physics, astronomy, polymer physics, atmospheric physics, and colloid chemistry. If two types of particles are allowed to participate in the cluster coalescence, then the time evolution of the cluster distribution has been described by an infinite system of ordinary differential equations. In this paper, we describe the model with a second-order two-dimensional partial differential equation, as a continuum m...
Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis
Giorgio, I.; Rizzi, N. L.; Turco, E.
2017-11-01
A nonlinear two-dimensional (2D) continuum with a latent internal structure is introduced as a coarse model of a plane network of beams which, in turn, is assumed as a model of a pantographic structure made up by two families of equispaced beams, superimposed and connected by pivots. The deformation measures of the beams of the network and that of the 2D body are introduced and the former are expressed in terms of the latter by making some kinematical assumptions. The expressions for the strain and kinetic energy densities of the network are then introduced and given in terms of the kinematic quantities of the 2D continuum. To account for the modelling abilities of the 2D continuum in the linear range, the eigenmode and eigenfrequencies of a given specimen are determined. The buckling and post-buckling behaviour of the same specimen, subjected to two different loading conditions are analysed as tests in the nonlinear range. The problems have been solved numerically by means of the COMSOL Multiphysics finite element software.
Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment
International Nuclear Information System (INIS)
Mitran, Sorin
2013-01-01
The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale
Continuum model for water movement in an unsaturated fractured rock mass
International Nuclear Information System (INIS)
Peters, R.R.; Klavetter, E.A.
1988-01-01
The movement of fluids in a fractured, porous medium has been the subject of considerable study. This paper presents a continuum model that may be used to evaluate the isothermal movement of water in an unsaturated, fractured, porous medium under slowly changing conditions. This continuum model was developed for use in evaluating the unsaturated zone at the Yucca Mountain site as a potential repository for high-level nuclear waste. Thus its development has been influenced by the conditions thought to be present at Yucca Mountain. A macroscopic approach and a microscopic approach are used to develop a continuum model to evaluate water movement in a fractured rock mass. Both approaches assume that the pressure head in the fractures and the matrix are identical in a plane perpendicular to flow. Both approaches lead to a single-flow equation for a fractured rock mass. The two approaches are used to calculate unsaturated hydrologic properties, i.e., relative permeability and saturation as a function of pressure head, for several types of tuff underlying Yucca Mountain, using the best available hydrologic data for the matrix and the fractures. Rock mass properties calculated by both approaches are similar
Chhabra, S; Badcock, J C; Maybery, M T
2013-07-01
Both clinical and non-clinical auditory hallucinations (AH) have been associated with source memory deficits, supporting a continuum of underlying cognitive mechanisms, though few studies have employed the same task in patient and nonpatient samples. Recent commentators have called for more debate on the continuum model of psychosis. Consequently, the current study investigated the continuity model of AH with reference to memory binding. We used an identical voice and word recognition memory task to assess binding in two separate studies of: (1) healthy hallucination-prone individuals and controls (30 high and 30 low scorers on the Launay-Slade Hallucination Scale-Revised) and (2) schizophrenia patient samples (32 with AH, 32 without AH) and 32 healthy controls. There was no evidence of impaired binding in high hallucination-prone, compared to low hallucination-prone individuals. In contrast, individuals with schizophrenia (both with and without AH) had difficulties binding (remembering "who said what"), alongside difficulties remembering individual words and voices. Binding ability and memory for voices were also negatively linked to the loudness of hallucinated voices reported by patients with AH. These findings suggest that different mechanisms may exist in clinical and non-clinical hallucinators, adding to the growing debate on the continuum model of psychotic symptoms.
Modeling laser damage to the retina
Clark, Clifton D.
This dissertation presents recent progress in several areas related to modeling laser damage to the retina. In Chapter 3, we consider the consequences of using the Arrhenius damage model to predict the damage thresholds of multiple pulse, or repetitive pulse, exposures. We have identified a few fundamental trends associated with the multiple pulse damage predictions made by the Arrhenius model. These trends differ from what would be expected by non-thermal mechanisms, and could prove useful in differentiating thermal and non-thermal damage. Chapter 4 presents a new rate equation damage model hypothesized to describe photochemical damage. The model adds a temperature dependent term to the simple rate equation implied by the principle of reciprocity that is characteristic of photochemical damage thresholds. A recent damage threshold study, conducted in-vitro, has revealed a very sharp transition between thermal and photochemical damage threshold trends. For the wavelength used in the experiment (413 nm), thermal damage thresholds were observed at exposure levels that were twice the expected photochemical damage threshold, based on the traditional understanding of photochemical damage. Our model accounts for this observed trend by introducing a temperature dependent quenching, or repair, rate to the photochemical damage rate. For long exposures that give a very small temperature rise, the model reduces to the principle of reciprocity. Near the transition region between thermal and photochemical damage, the model allows the damage threshold to be set by thermal mechanisms, even at exposure above the reciprocity exposure. In Chapter 5, we describe a retina damage model that includes thermal lensing in the eye by coupling beam propagation and heat transfer models together. Thermal lensing has recently been suggested as a contributing factor to the large increase in measured retinal damage thresholds in the near infrared. The transmission of the vitreous decreases
Continuum shell-model study of 16O and 40Ca
International Nuclear Information System (INIS)
Heil, V.; Stock, W.
1976-06-01
Continuum shell-model calculations of the E1 and E2 strengths in 16 O and 40 Ca are presented. A consistent microscopic description of both the giant resonances and isospin forbidden E1- transitions between bound states can be achieved through 1) a careful choice of the single-particle potential, 2) the use of a finite-range residual interaction (including the Coulomb particle-hole force), and 3) the removal of spurious states. The results obtained within the separation expansion approximation of Birkholz are in reasonable agreement with measured photonucleon angular distributions and formfactors for electroexcitation. The influence of the continuum on the isospin mixing in bound states is found to be very strong. (orig.) [de
Improving Flood Damage Assessment Models in Italy
Amadio, M.; Mysiak, J.; Carrera, L.; Koks, E.
2015-12-01
The use of Stage-Damage Curve (SDC) models is prevalent in ex-ante assessments of flood risk. To assess the potential damage of a flood event, SDCs describe a relation between water depth and the associated potential economic damage over land use. This relation is normally developed and calibrated through site-specific analysis based on ex-post damage observations. In some cases (e.g. Italy) SDCs are transferred from other countries, undermining the accuracy and reliability of simulation results. Against this background, we developed a refined SDC model for Northern Italy, underpinned by damage compensation records from a recent flood event. Our analysis considers both damage to physical assets and production losses from business interruptions. While the first is calculated based on land use information, production losses are measured through the spatial distribution of Gross Value Added (GVA). An additional component of the model assesses crop-specific agricultural losses as a function of flood seasonality. Our results show an overestimation of asset damage from non-calibrated SDC values up to a factor of 4.5 for tested land use categories. Furthermore, we estimate that production losses amount to around 6 per cent of the annual GVA. Also, maximum yield losses are less than a half of the amount predicted by the standard SDC methods.
Study on an equivalent continuum model at the Mizunami Underground Research Laboratory
International Nuclear Information System (INIS)
Tanno, Takeo; Sato, Toshinori; Matsui, Hiroya; Sanada, Hiroyuki; Kumasaka, Hiroo; Tada, Hiroyuki
2012-01-01
The Japan Atomic Energy Agency (JAEA) is conducting the MIzunami Underground research laboratory (MIU) Project in order to develop comprehensive geological investigation and engineering techniques for deep underground applications (e.g. geological disposal of HLW). This modelling study has a two-fold objective, to contribute to the evaluation of the mechanical stability of shaft and research drifts, and to plan the future studies. A crack tensor model, a method of an equivalent continuum model, has been studied at the MIU. In this study, the relationship between the estimated crack tensor parameters and the rock mass classification was revealed. (author)
A continuum membrane model for small deformations of a spider orb-web
Morassi, Antonino; Soler, Alejandro; Zaera, Ramón
2017-09-01
In this paper we propose a continuum membrane model for the infinitesimal deformation of a spider web. The model is derived in the simple context of axially-symmetric webs formed by radial threads connected with circumferential threads belonging to concentric circles. Under suitable assumption on the tensile pre-stress acting in the referential configuration, the out-of-plane static equilibrium and the free transverse and in-plane vibration of a supported circular orb-web are studied in detail. The accuracy of the model in describing a discrete spider web is numerically investigated.
Koharchik, Michael; Murphy, Lindsay; Parker, Paul
2012-01-01
An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.
Ionic Solution: What Goes Right and Wrong with Continuum Solvation Modeling.
Wang, Changhao; Ren, Pengyu; Luo, Ray
2017-12-14
Solvent-mediated electrostatic interactions were well recognized to be important in the structure and function of molecular systems. Ionic interaction is an important component in electrostatic interactions, especially in highly charged molecules, such as nucleic acids. Here, we focus on the quality of the widely used Poisson-Boltzmann surface area (PBSA) continuum models in modeling ionic interactions by comparing with both explicit solvent simulations and the experiment. In this work, the molality-dependent chemical potentials for sodium chloride (NaCl) electrolyte were first simulated in the SPC/E explicit solvent. Our high-quality simulation agrees well with both the previous study and the experiment. Given the free-energy simulations in SPC/E as the benchmark, we used the same sets of snapshots collected in the SPC/E solvent model for PBSA free-energy calculations in the hope to achieve the maximum consistency between the two solvent models. Our comparative analysis shows that the molality-dependent chemical potentials of NaCl were reproduced well with both linear PB and nonlinear PB methods, although nonlinear PB agrees better with SPC/E and the experiment. Our free-energy simulations also show that the presence of salt increases the hydrophobic effect in a nonlinear fashion, in qualitative agreement with previous theoretical studies of Onsager and Samaras. However, the lack of molality-dependency in the nonelectrostatics continuum models dramatically reduces the overall quality of PBSA methods in modeling salt-dependent energetics. These analyses point to further improvements needed for more robust modeling of solvent-mediated interactions by the continuum solvation frameworks.
Sendova, T.; Walton, J. R.
2010-01-01
In this paper we focus on the analysis of the partial differential equations arising from a new approach to modeling brittle fracture based on an extension of continuum mechanics to the nanoscale. It is shown that ascribing constant surface tension
Validation of the Continuum of Care Conceptual Model for Athletic Therapy
Directory of Open Access Journals (Sweden)
Mark R. Lafave
2015-01-01
Full Text Available Utilization of conceptual models in field-based emergency care currently borrows from existing standards of medical and paramedical professions. The purpose of this study was to develop and validate a comprehensive conceptual model that could account for injuries ranging from nonurgent to catastrophic events including events that do not follow traditional medical or prehospital care protocols. The conceptual model should represent the continuum of care from the time of initial injury spanning to an athlete’s return to participation in their sport. Finally, the conceptual model should accommodate both novices and experts in the AT profession. This paper chronicles the content validation steps of the Continuum of Care Conceptual Model for Athletic Therapy (CCCM-AT. The stages of model development were domain and item generation, content expert validation using a three-stage modified Ebel procedure, and pilot testing. Only the final stage of the modified Ebel procedure reached a priori 80% consensus on three domains of interest: (1 heading descriptors; (2 the order of the model; (3 the conceptual model as a whole. Future research is required to test the use of the CCCM-AT in order to understand its efficacy in teaching and practice within the AT discipline.
Shell model with several particles in the continuum: application to the two-proton decay
International Nuclear Information System (INIS)
Rotureau, J.
2005-02-01
The recent experimental results concerning nuclei at the limit of stability close to the drip-lines and in particular the two-proton emitters require a development of new methodologies to reliably calculate and understand properties of those exotic physical systems. In this work we have extended the Shell Model Embedded in the Continuum (SMEC) in order to describe the coupling with two particles in the scattering continuum. We have obtained a microscopic description of the two-proton emission that takes into account the antisymmetrization of the total wavefunction, the configuration mixing and the three-body asymptotics. We have studied the decay of the 1 2 - state in 18 Ne in two limiting cases: (i) a sequential emission of two protons through the correlated continuum of 17 F and (ii) emission of 2 He cluster that disintegrates because of the final state interaction (diproton emission). Independently of the choice of the effective interaction we have observed that the two-proton emission of the 1 2 - in 18 Ne is mainly a sequential process; the ratio between the widths of the diproton emission and the sequential decay does not exceed 8% in any case. (author)
Modelling of Damage During Hot Forging of Ingots
DEFF Research Database (Denmark)
Christiansen, Peter; Hattel, Jesper Henri; Bay, Niels
2013-01-01
Ductile damage modelling in the ingot forging process is discussed. Advantages and disadvantages of both coupled and uncoupled ductile damage models are presented. Some uncoupled damage models are examined in greater detail regarding their applicability to different processes, where hydrostatic...
Homogeneity of Continuum Model of an Unsteady State Fixed Bed Reactor for Lean CH4 Oxidation
Directory of Open Access Journals (Sweden)
Subagjo
2014-07-01
Full Text Available In this study, the homogeneity of the continuum model of a fixed bed reactor operated in steady state and unsteady state systems for lean CH4 oxidation is investigated. The steady-state fixed bed reactor system was operated under once-through direction, while the unsteady-state fixed bed reactor system was operated under flow reversal. The governing equations consisting of mass and energy balances were solved using the FlexPDE software package, version 6. The model selection is indispensable for an effective calculation since the simulation of a reverse flow reactor is time-consuming. The homogeneous and heterogeneous models for steady state operation gave similar conversions and temperature profiles, with a deviation of 0.12 to 0.14%. For reverse flow operation, the deviations of the continuum models of thepseudo-homogeneous and heterogeneous models were in the range of 25-65%. It is suggested that pseudo-homogeneous models can be applied to steady state systems, whereas heterogeneous models have to be applied to unsteady state systems.
Skinner, Brian
2016-09-01
Same-sex sexual behaviour is ubiquitous in the animal kingdom, but its adaptive origins remain a prominent puzzle. Here, I suggest the possibility that same-sex sexual behaviour arises as a consequence of the competition between an evolutionary drive for a wide diversity in traits, which improves the adaptability of a population, and a drive for sexual dichotomization of traits, which promotes opposite-sex attraction and increases the rate of reproduction. This trade-off is explored via a simple mathematical `toy model'. The model exhibits a number of interesting features and suggests a simple mathematical form for describing the sexual orientation continuum.
Analysis of Fatigue Life of PMMA at Different Frequencies Based on a New Damage Mechanics Model
Directory of Open Access Journals (Sweden)
Aifeng Huang
2014-01-01
Full Text Available Low-cycle fatigue tests at different frequencies and creep tests under different stress levels of Plexiglas Resist 45 were conducted. Correspondingly, the creep fracture time, S-N curves, cyclic creep, and hysteresis loop were obtained. These results showed that the fatigue life increases with frequency at low frequency domain. After analysis, it was found that fatigue life is dependent on the load rate and is affected by the creep damage. In addition, a new continuum damage mechanics (CDM model was established to analyze creep-fatigue life, where the damage increment nonlinear summation rule was proposed and the frequency modification was made on the fatigue damage evolution equation. Differential evolution (DE algorithm was employed to determine the parameters within the model. The proposed model described fatigue life under different frequencies, and the calculated results agreed well with the experimental results.
An extended continuum model accounting for the driver's timid and aggressive attributions
International Nuclear Information System (INIS)
Cheng, Rongjun; Ge, Hongxia; Wang, Jufeng
2017-01-01
Considering the driver's timid and aggressive behaviors simultaneously, a new continuum model is put forwarded in this paper. By applying the linear stability theory, we presented the analysis of new model's linear stability. Through nonlinear analysis, the KdV–Burgers equation is derived to describe density wave near the neutral stability line. Numerical results verify that aggressive driving is better than timid act because the aggressive driver will adjust his speed timely according to the leading car's speed. The key improvement of this new model is that the timid driving deteriorates traffic stability while the aggressive driving will enhance traffic stability. The relationship of energy consumption between the aggressive and timid driving is also studied. Numerical results show that aggressive driver behavior can not only suppress the traffic congestion but also reduce the energy consumption. - Highlights: • A new continuum model is developed with the consideration of the driver's timid and aggressive behaviors simultaneously. • Applying the linear stability theory, the new model's linear stability is obtained. • Through nonlinear analysis, the KdV–Burgers equation is derived. • The energy consumption for this model is studied.
An extended continuum model accounting for the driver's timid and aggressive attributions
Energy Technology Data Exchange (ETDEWEB)
Cheng, Rongjun; Ge, Hongxia [Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211 (China); Jiangsu Province Collaborative Innovation Center for Modern Urban Traffic Technologies, Nanjing 210096 (China); National Traffic Management Engineering and Technology Research Centre Ningbo University Sub-centre, Ningbo 315211 (China); Wang, Jufeng, E-mail: wjf@nit.zju.edu.cn [Ningbo Institute of Technology, Zhejiang University, Ningbo 315100 (China)
2017-04-18
Considering the driver's timid and aggressive behaviors simultaneously, a new continuum model is put forwarded in this paper. By applying the linear stability theory, we presented the analysis of new model's linear stability. Through nonlinear analysis, the KdV–Burgers equation is derived to describe density wave near the neutral stability line. Numerical results verify that aggressive driving is better than timid act because the aggressive driver will adjust his speed timely according to the leading car's speed. The key improvement of this new model is that the timid driving deteriorates traffic stability while the aggressive driving will enhance traffic stability. The relationship of energy consumption between the aggressive and timid driving is also studied. Numerical results show that aggressive driver behavior can not only suppress the traffic congestion but also reduce the energy consumption. - Highlights: • A new continuum model is developed with the consideration of the driver's timid and aggressive behaviors simultaneously. • Applying the linear stability theory, the new model's linear stability is obtained. • Through nonlinear analysis, the KdV–Burgers equation is derived. • The energy consumption for this model is studied.
Implementation of an anisotropic damage material model using general second order damage tensor
Niazi, Muhammad Sohail; Mori, K.; Wisselink, H.H.; Pietrzyk, M.; Kusiak, J.; Meinders, Vincent T.; ten Horn, Carel; Majta, J.; Hartley, P.; Lin, J.
2010-01-01
Damage in metals is mainly the process of the initiation and growth of voids. With the growing complexity in materials and forming proc-esses, it becomes inevitable to include anisotropy in damage (tensorial damage variable). Most of the anisotropic damage models define the damage tensor in the
Early models of DNA damage formation
International Nuclear Information System (INIS)
Śmiałek, Małgorzata A
2012-01-01
Quantification of DNA damage, induced by various types of incident radiation as well as chemical agents, has been the subject of many theoretical and experimental studies, supporting the development of modern cancer therapy. The primary observations showed that many factors can lead to damage of DNA molecules. It became clear that the development of experimental techniques for exploring this phenomenon is required. Another problem was simultaneously dealt with, anticipating on how the damage is distributed within the double helix of the DNA molecule and how the single strand break formation and accumulation can influence the lethal double strand break formation. In this work the most important probabilistic models for DNA strand breakage and damage propagation are summarized and compared.
Implementing a continuum of care model for older people - results from a Swedish case study
Directory of Open Access Journals (Sweden)
Anna Duner
2011-11-01
Full Text Available Introduction: There is a need for integrated care and smooth collaboration between care-providing organisations and professions to create a continuum of care for frail older people. However, collaboration between organisations and professions is often problematic. The aim of this study was to examine the process of implementing a new continuum of care model in a complex organisational context, and illuminate some of the challenges involved. The introduced model strived to connect three organisations responsible for delivering health and social care to older people: the regional hospital, primary health care and municipal eldercare.Methods: The actions of the actors involved in the process of implementing the model were understood to be shaped by the actors' understanding, commitment and ability. This article is based on 44 qualitative interviews performed on four occasions with 26 key actors at three organisational levels within these three organisations.Results and conclusions: The results point to the importance of paying regard to the different cultures of the organisations when implementing a new model. The role of upper management emerged as very important. Furthermore, to be accepted, the model has to be experienced as effectively dealing with real problems in the everyday practice of the actors in the organisations, from the bottom to the top.
Implementing a continuum of care model for older people - results from a Swedish case study
Directory of Open Access Journals (Sweden)
Anna Duner
2011-11-01
Full Text Available Introduction: There is a need for integrated care and smooth collaboration between care-providing organisations and professions to create a continuum of care for frail older people. However, collaboration between organisations and professions is often problematic. The aim of this study was to examine the process of implementing a new continuum of care model in a complex organisational context, and illuminate some of the challenges involved. The introduced model strived to connect three organisations responsible for delivering health and social care to older people: the regional hospital, primary health care and municipal eldercare. Methods: The actions of the actors involved in the process of implementing the model were understood to be shaped by the actors' understanding, commitment and ability. This article is based on 44 qualitative interviews performed on four occasions with 26 key actors at three organisational levels within these three organisations. Results and conclusions: The results point to the importance of paying regard to the different cultures of the organisations when implementing a new model. The role of upper management emerged as very important. Furthermore, to be accepted, the model has to be experienced as effectively dealing with real problems in the everyday practice of the actors in the organisations, from the bottom to the top.
Chaves, Eduardo W V
2013-01-01
This publication is aimed at students, teachers, and researchers of Continuum Mechanics and focused extensively on stating and developing Initial Boundary Value equations used to solve physical problems. With respect to notation, the tensorial, indicial and Voigt notations have been used indiscriminately. The book is divided into twelve chapters with the following topics: Tensors, Continuum Kinematics, Stress, The Objectivity of Tensors, The Fundamental Equations of Continuum Mechanics, An Introduction to Constitutive Equations, Linear Elasticity, Hyperelasticity, Plasticity (small and large deformations), Thermoelasticity (small and large deformations), Damage Mechanics (small and large deformations), and An Introduction to Fluids. Moreover, the text is supplemented with over 280 figures, over 100 solved problems, and 130 references.
Molecular models for DNA damaged by photoreaction
International Nuclear Information System (INIS)
Pearlman, D.A.; Holbrook, S.R.; Pirkle, D.H.; Kim, S.H.
1985-01-01
Structural models of a DNA molecule containing a radiation-induced psoralen cross-link and of a DNA containing a thymine photodimer were constructed by applying energy-minimization techniques and model-building procedures to data from x-ray crystallographic studies. The helical axes of the models show substantial kinking and unwinding at the sites of the damage, which may have long-range as well as local effects arising from the concomitant changes in the supercoiling and overall structure of the DNA. The damaged areas may also serve as recognition sites for repair enzymes. These results should help in understanding the biologic effects of radiation-induced damage on cells
Modeling flow in fractured medium. Uncertainty analysis with stochastic continuum approach
International Nuclear Information System (INIS)
Niemi, A.
1994-01-01
For modeling groundwater flow in formation-scale fractured media, no general method exists for scaling the highly heterogeneous hydraulic conductivity data to model parameters. The deterministic approach is limited in representing the heterogeneity of a medium and the application of fracture network models has both conceptual and practical limitations as far as site-scale studies are concerned. The study investigates the applicability of stochastic continuum modeling at the scale of data support. No scaling of the field data is involved, and the original variability is preserved throughout the modeling. Contributions of various aspects to the total uncertainty in the modeling prediction can also be determined with this approach. Data from five crystalline rock sites in Finland are analyzed. (107 refs., 63 figs., 7 tabs.)
Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue
International Nuclear Information System (INIS)
Desmorat, R.; Kane, A.; Seyedi, M.; Sermage, J.P.
2007-01-01
On the idea that fatigue damage is localized at the microscopic scale, a scale smaller than the mesoscopic one of the Representative Volume Element (RVE), a three-dimensional two scale damage model has been proposed for High Cycle Fatigue applications. It is extended here to aniso-thermal cases and then to thermo-mechanical fatigue. The modeling consists in the micro-mechanics analysis of a weak micro-inclusion subjected to plasticity and damage embedded in an elastic meso-element (the RVE of continuum mechanics). The consideration of plasticity coupled with damage equations at micro-scale, altogether with Eshelby-Kroner localization law, allows to compute the value of microscopic damage up to failure for any kind of loading, 1D or 3D, cyclic or random, isothermal or aniso-thermal, mechanical, thermal or thermo-mechanical. A robust numerical scheme is proposed in order to make the computations fast. A post-processor for damage and fatigue (DAMAGE-2005) has been developed. It applies to complex thermo-mechanical loadings. Examples of the representation by the two scale damage model of physical phenomena related to High Cycle Fatigue are given such as the mean stress effect, the non-linear accumulation of damage. Examples of thermal and thermo-mechanical fatigue as well as complex applications on real size testing structure subjected to thermo-mechanical fatigue are detailed. (authors)
The effect of diffusion in a new viscous continuum traffic model
International Nuclear Information System (INIS)
Yu Lei; Li Tong; Shi Zhongke
2010-01-01
In this Letter, we propose a new continuum traffic model with a viscous term. The linear stability condition for viscous shock waves is derived. We derive the Korteweg-de Vries (KdV) equation near the neutral stability line. Then we investigate the effect of the viscous term by numerical simulations. The results show that viscosity may induce oscillations and the amplitude of the oscillation increases as the viscosity coefficient increases. This agrees with the linear stability condition. The local clusters are compressed by increasing the viscosity coefficient in the cluster study.
The effect of diffusion in a new viscous continuum traffic model
Energy Technology Data Exchange (ETDEWEB)
Yu Lei, E-mail: yuleijk@126.co [College of Automation, Northwestern Polytechnical University, Xi' an, ShaanXi (China); Li Tong [Department of Mathematics, University of Iowa, Iowa City, IA (United States); Shi Zhongke [College of Automation, Northwestern Polytechnical University, Xi' an, ShaanXi (China)
2010-05-10
In this Letter, we propose a new continuum traffic model with a viscous term. The linear stability condition for viscous shock waves is derived. We derive the Korteweg-de Vries (KdV) equation near the neutral stability line. Then we investigate the effect of the viscous term by numerical simulations. The results show that viscosity may induce oscillations and the amplitude of the oscillation increases as the viscosity coefficient increases. This agrees with the linear stability condition. The local clusters are compressed by increasing the viscosity coefficient in the cluster study.
Elasticity of fractal materials using the continuum model with non-integer dimensional space
Tarasov, Vasily E.
2015-01-01
Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.
Kittell, D. E.; Yarrington, C. D.; Lechman, J. B.; Baer, M. R.
2018-05-01
A new paradigm is introduced for modeling reactive shock waves in heterogeneous solids at the continuum level. Inspired by the probability density function methods from turbulent reactive flows, it is hypothesized that the unreacted material microstructures lead to a distribution of heat release rates from chemical reaction. Fluctuations in heat release, rather than velocity, are coupled to the reactive Euler equations which are then solved via the Riemann problem. A numerically efficient, one-dimensional hydrocode is used to demonstrate this new approach, and simulation results of a representative impact calculation (inert flyer into explosive target) are discussed.
Kanematsu, Yusuke; Tachikawa, Masanori
2015-05-21
Multicomponent quantum mechanical (MC_QM) calculations with polarizable continuum model (PCM) have been tested against liquid (1)H NMR chemical shifts for a test set of 80 molecules. Improvement from conventional quantum mechanical calculations was achieved for MC_QM calculations. The advantage of the multicomponent scheme could be attributed to the geometrical change from the equilibrium geometry by the incorporation of the hydrogen nuclear quantum effect, while that of PCM can be attributed to the change of the electronic structure according to the polarization by solvent effects.
Shugar, Andrea
2017-04-01
Genetic counselors are trained health care professionals who effectively integrate both psychosocial counseling and information-giving into their practice. Preparing genetic counseling students for clinical practice is a challenging task, particularly when helping them develop effective and active counseling skills. Resistance to incorporating these skills may stem from decreased confidence, fear of causing harm or a lack of clarity of psycho-social goals. The author reflects on the personal challenges experienced in teaching genetic counselling students to work with psychological and social complexity, and proposes a Genetic Counseling Adaptation Continuum model and methodology to guide students in the use of advanced counseling skills.
Monsivais, Diane B
2011-06-01
This article reviews the culture of biomedicine and current practices in pain management education, which often merge to create a hostile environment for effective chronic pain care. Areas of cultural tensions in chronic pain frequently involve the struggle to achieve credibility regarding one's complaints of pain (or being believed that the pain is real) and complying with pain medication protocols. The clinically relevant continuum model is presented as a framework allowing providers to approach care from an evidence-based, culturally appropriate (patient centered) perspective that takes into account the highest level of evidence available, provider expertise, and patient preferences and values. Copyright © 2011 Elsevier Inc. All rights reserved.
An Overview of a Continuum Mechanic Approach to a Thermodynamic Model of Failure
National Research Council Canada - National Science Library
Palazotto, A
1998-01-01
.... An overview of the thermodynamic definitions, concepts, and principles will be presented. This overview of the thermodynamics is necessary to provided the background needed to understand the damage model, which is based on thermodynamic principles...
Damage Modeling Of Injection-Molded Short- And Long-Fiber Thermoplastics
International Nuclear Information System (INIS)
Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.; Phelps, Jay; Tucker, Charles L. III
2009-01-01
This article applies the recent anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.
Impact damages modeling in laminated composite structures
Directory of Open Access Journals (Sweden)
Kreculj Dragan D.
2014-01-01
Full Text Available Laminated composites have an important application in modern engineering structures. They are characterized by extraordinary properties, such as: high strength and stiffness and lightweight. Nevertheless, a serious obstacle to more widespread use of those materials is their sensitivity to the impact loads. Impacts cause initiation and development of certain types of damages. Failures that occur in laminated composite structures can be intralaminar and interlaminar. To date it was developed a lot of simulation models for impact damages analysis in laminates. Those models can replace real and expensive testing in laminated structures with a certain accuracy. By using specialized software the damage parameters and distributions can be determined (at certain conditions on laminate structures. With performing numerical simulation of impact on composite laminates there are corresponding results valid for the analysis of these structures.
Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai
2009-03-14
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
Energy Technology Data Exchange (ETDEWEB)
Bardhan, J. P.; Knepley, M. G.; Anitescu, M. (Biosciences Division); ( MCS); (Rush Univ.)
2009-03-01
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
Blanco, Celia; Ribó, Josep M; Hochberg, David
2015-02-01
We derive the class of population balance equations (PBE), recently applied to model the Viedma deracemization experiment, from an underlying microreversible kinetic reaction scheme. The continuum limit establishing the relationship between the micro- and macroscopic processes and the associated particle fluxes erases the microreversible nature of the molecular interactions in the population growth rate functions and limits the scope of such PBE models to strict kinetic control. The irreversible binary agglomeration processes modeled in those PBEs contribute an additional source of kinetic control. These limitations are crucial regarding the question of the origin of biological homochirality, where the interest in any model lies precisely in its ability for absolute asymmetric synthesis and the amplification of the tiny inherent statistical chiral fluctuations about the ideal racemic composition up to observable enantiometric excess levels.
Continuum-level modelling of cellular adhesion and matrix production in aggregates.
Geris, Liesbet; Ashbourn, Joanna M A; Clarke, Tim
2011-05-01
Key regulators in tissue-engineering processes such as cell culture and cellular organisation are the cell-cell and cell-matrix interactions. As mathematical models are increasingly applied to investigate biological phenomena in the biomedical field, it is important, for some applications, that these models incorporate an adequate description of cell adhesion. This study describes the development of a continuum model that represents a cell-in-gel culture system used in bone-tissue engineering, namely that of a cell aggregate embedded in a hydrogel. Cell adhesion is modelled through the use of non-local (integral) terms in the partial differential equations. The simulation results demonstrate that the effects of cell-cell and cell-matrix adhesion are particularly important for the survival and growth of the cell population and the production of extracellular matrix by the cells, concurring with experimental observations in the literature.
A continuum self organized critically model of turbulent heat transport in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Tangri, V; Das, A; Kaw, P; Singh, R [Institute for Plasma Research, Gandhinagar (India)
2003-09-01
Based on the now well known and experimentally observed critical gradient length (R/L{sub Te} = RT/{nabla}T) in tokamaks, we present a continuum one dimensional model for explaining self organized heat transport in tokamaks. Key parameters of this model include a novel hysteresis parameter which ensures that the switch of heat transport coefficient {chi} upwards and downwards takes place at two different values of R/L{sub Te}. Extensive numerical simulations of this model reproduce many features of present day tokamaks such as submarginal temperature profiles, intermittent transport events, 1/f scaling of the frequency spectra, propagating fronts, etc. This model utilises a minimal set of phenomenological parameters, which may be determined from experiments and/or simulations. Analytical and physical understanding of the observed features has also been attempted. (author)
Modelling of settlement induced building damage
Giardina, G.
2013-01-01
This thesis focuses on the modelling of settlement induced damage to masonry buildings. In densely populated areas, the need for new space is nowadays producing a rapid increment of underground excavations. Due to the construction of new metro lines, tunnelling activity in urban areas is growing.
Incorporating damage mechanics into explosion simulation models
International Nuclear Information System (INIS)
Sammis, C.G.
1993-01-01
The source region of an underground explosion is commonly modeled as a nested series of shells. In the innermost open-quotes hydrodynamic regimeclose quotes pressures and temperatures are sufficiently high that the rock deforms as a fluid and may be described using a PVT equation of state. Just beyond the hydrodynamic regime, is the open-quotes non-linear regimeclose quotes in which the rock has shear strength but the deformation is nonlinear. This regime extends out to the open-quotes elastic radiusclose quotes beyond which the deformation is linear. In this paper, we develop a model for the non-linear regime in crystalline source rock where the nonlinearity is mostly due to fractures. We divide the non-linear regime into a open-quotes damage regimeclose quotes in which the stresses are sufficiently high to nucleate new fractures from preexisting ones and a open-quotes crack-slidingclose quotes regime where motion on preexisting cracks produces amplitude dependent attenuation and other non-linear effects, but no new cracks are nucleated. The boundary between these two regimes is called the open-quotes damage radius.close quotes The micromechanical damage mechanics recently developed by Ashby and Sammis (1990) is used to write an analytic expression for the damage radius in terms of the initial fracture spectrum of the source rock, and to develop an algorithm which may be used to incorporate damage mechanics into computer source models for the damage regime. Effects of water saturation and loading rate are also discussed
Angle-correlated cross sections in the framework of the continuum shell model
International Nuclear Information System (INIS)
Moerschel, K.P.
1984-01-01
In the present thesis in the framework of the continuum shell modell a concept for the treatment of angle-correlated cross sections was developed by which coincidence experiments on electron scattering on nuclei are described. For this the existing Darmstadt continuum-shell-model code had to be extended to the calculation of the correlation coefficients in which nuclear dynamics enter and which determine completely the angle-correlated cross sections. Under inclusion of the kinematics a method for the integration over the scattered electron was presented and used for the comparison with corresponding experiments. As application correlation coefficients for the proton channel in 12 C with 1 - and 2 + excitations were studied. By means of these coefficients finally cross sections for the reaction 12 C (e,p) 11 B could be calculated and compared with the experiment whereby the developed methods were proved as suitable to predict correctly both the slope and the quantity of the experimental cross sections. (orig.) [de
Institute of Scientific and Technical Information of China (English)
Sarp Adali
2012-01-01
Equations governing the vibrations and buckling of multilayered orthotropic graphene sheets can be expressed as a system of n partial differential equations where n refers to the number of sheets.This description is based on the continuum model of the graphene sheets which can also take the small scale effects into account by employing a nonlocal theory.In the present article a variational principle is derived for the nonlocal elastic theory of rectangular graphene sheets embedded in an elastic medium and undergoing transverse vibrations.Moreover the graphene sheets are subject to biaxial compression.Rayleigh quotients are obtained for the frequencies of freely vibrating graphene sheets and for the buckling load. The influence of small scale effects on the frequencies and the buckling load can be observed qualiatively from the expressions of the Rayleigh quotients.Elastic medium is modeled as a combination of Winkler and Pasternak foundations acting on the top and bottom layers of the mutilayered nano-structure.Natural boundary conditions of the problem are derived using the variational principle formulated in the study.It is observed that free boundaries lead to coupled boundary conditions due to nonlocal theory used in the continuum formulation while the local (classical) elasticity theory leads to uncoupled boundary conditions.The mathematical methods used in the study involve calculus of variations and the semi-inverse method for deriving the variational integrals.
Kinematics Modelling of Tendon-Driven Continuum Manipulator with Crossed Notches
Yang, Z. X.; Yang, W. L.; Du, Z. J.
2018-03-01
Single port surgical robot (SPSR) is a giant leap in the development of minimally invasive surgical robot. An innovative manipulator with high control accuracy and good kinematic dexterity can reduce wound, expedite recovery, and improve the success rate. This paper presents a tendon-driven continuum manipulator with crossed notches. This manipulator has two degrees of freedom (DOF), which possesses good flexibility and high capacity. Then based on cantilever beam theory, a mechanics model is proposed, which connects external force and deformation of a single flexible ring (SFR). By calculating the deformation of each SFR, the manipulator is considered as a series robot whose joint numbers is equal to SFR numbers, and the kinematics model is established through Denavit-Hartenberg (D-H) procedure. In this paper, the total manipulator is described as a curve tube whose curvature is increased from tip to base. Experiments were conducted and the comparison between theoretical and actual results proved the rationality of the models.
Loss of mass and performance in skeletal muscle tissue: a continuum model
Directory of Open Access Journals (Sweden)
Giantesio Giulia
2018-02-01
Full Text Available We present a continuum hyperelastic model which describes the mechanical response of a skeletal muscle tissue when its strength and mass are reduced by aging. Such a reduction is typical of a geriatric syndrome called sarcopenia. The passive behavior of the material is described by a hyperelastic, polyconvex, transversely isotropic strain energy function, and the activation of the muscle is modeled by the so called active strain approach. The loss of ability of activating of an elder muscle is then obtained by lowering of some percentage the active part of the stress, while the loss of mass is modeled through a multiplicative decomposition of the deformation gradient. The obtained stress-strain relations are graphically represented and discussed in order to study some of the effects of sarcopenia.
3D continuum phonon model for group-IV 2D materials
Willatzen, Morten
2017-06-30
A general three-dimensional continuum model of phonons in two-dimensional materials is developed. Our first-principles derivation includes full consideration of the lattice anisotropy and flexural modes perpendicular to the layers and can thus be applied to any two-dimensional material. In this paper, we use the model to not only compare the phonon spectra among the group-IV materials but also to study whether these phonons differ from those of a compound material such as molybdenum disulfide. The origin of quadratic modes is clarified. Mode coupling for both graphene and silicene is obtained, contrary to previous works. Our model allows us to predict the existence of confined optical phonon modes for the group-IV materials but not for molybdenum disulfide. A comparison of the long-wavelength modes to density-functional results is included.
Coupled Hybrid Continuum-Discrete Model of Tumor Angiogenesis and Growth.
Directory of Open Access Journals (Sweden)
Jie Lyu
Full Text Available The processes governing tumor growth and angiogenesis are codependent. To study the relationship between them, we proposed a coupled hybrid continuum-discrete model. In this model, tumor cells, their microenvironment (extracellular matrixes, matrix-degrading enzymes, and tumor angiogenic factors, and their network of blood vessels, described by a series of discrete points, were considered. The results of numerical simulation reveal the process of tumor growth and the change in microenvironment from avascular to vascular stage, indicating that the network of blood vessels develops gradually as the tumor grows. Our findings also reveal that a tumor is divided into three regions: necrotic, semi-necrotic, and well-vascularized. The results agree well with the previous relevant studies and physiological facts, and this model represents a platform for further investigations of tumor therapy.
Continuum equivalent model for the fractured EDZ around underground galleries in clay-stone
International Nuclear Information System (INIS)
Pouya, A.; Bourgeois, E.; Larbi, B.; Poutrel, A.
2010-01-01
Document available in extended abstract form only. The Excavation Damaged Zone (EDZ) around the underground galleries excavated in clay-stone for the CMHM project, includes several zones showing different types of cracking and/or fracturing. In the vicinity of the wall, a fractured zone is observed that spreads out on a distance of about 1 m from the wall; at a larger distance from the wall one observes another zone with micro-cracks. The first zone, called 'fractured EDZ', includes different families of fractures with different geometries and origins. The main one consists of a family of shear fractures called 'chevron', that have approximately the shape of conical surfaces slightly flattened with respect to the horizontal plane. The 'chevrons' observed in the galleries at 490 m depth in LMSMH are regularly spaced of about 50 cm to 1 m along the gallery's axis, make an angle of about 45 deg. with this axis and extend to about 2 or 3 m beyond the wall depending of the size and orientation of the gallery. The fractures have a significant effect on the hydro-mechanical properties of the EDZ. The present work is focused on the effect of the 'chevron' fractures on the mechanical behaviour of the EDZ. Due to the large number of fractures, introducing them individually to the modelling leads to heavy and not easy to handle numerical models and to long calculations. One is led to find some Continuum Equivalent Material (CEM) for the EDZ including the fractures' effect. The EDZ is not very large compared to the fractures, so that it may not be fully justified to apply a homogenization approach; however, this is the approach we have used to define the behaviour of CEM. The geometry of the fractures is first simplified and assumed to correspond to conical surfaces with axial symmetry around the gallery's axis. The local behaviour of the CEM is deduced from the model of an infinite medium containing a family of planar
Microstructural modeling of Vienne granite damage
International Nuclear Information System (INIS)
Homand, F.; Hoxha, D.
2002-01-01
The microstructural approach in damage modeling, which is presented in this paper describes the evolution of micro-crack geometry as a function of history loading. If the crack geometry is known, the effective properties could then be calculated foe any cracked rock by the mean of a micro-mechanical model. The P L evolution law which is necessary in the describing of crack geometry evolution is hardly based on the crack microscope observation as well as on the theory of fabric tensors. This approach is applied in the modeling of mechanical behaviour of Vienne granite. The result of model simulations are compared with laboratory tests. (author)
Governing equations for a seriated continuum: an unequal velocity model for two-phase flow
International Nuclear Information System (INIS)
Solbrig, C.W.; Hughes, E.D.
1975-05-01
The description of the flow of two-phase fluids is important in many engineering devices. Unexpected transient conditions which occur in these devices cannot, in general, be treated with single-component momentum equations. Instead, the use of momentum equations for each phase is necessary in order to describe the varied transient situations which can occur. These transient conditions can include phases moving in the opposite directions, such as steam moving upward and liquid moving downward, as well as phases moving in the same direction. The derivation of continuity and momentum equations for each phase and an overall energy equation for the mixture are presented. Terms describing interphase forces are described. A seriated (series of) continuum is distinguished from an interpenetrating medium by the representation of interphase friction with velocity differences in the former and velocity gradients in the latter. The seriated continuum also considers imbedded stationary solid surfaces such as occur in nuclear reactor cores. These stationary surfaces are taken into account with source terms. Sufficient constitutive equations are presented to form a complete set of equations. Methods are presented to show that all these coefficients are determinable from microscopic models and well known experimental results. Comparison of the present deviation with previous work is also given. The equations derived here may also be employed in certain multiphase, multicomponent flow applications. (U.S.)
A 2D model of causal set quantum gravity: the emergence of the continuum
International Nuclear Information System (INIS)
Brightwell, Graham; Henson, Joe; Surya, Sumati
2008-01-01
Non-perturbative theories of quantum gravity inevitably include configurations that fail to resemble physically reasonable spacetimes at large scales. Often, these configurations are entropically dominant and pose an obstacle to obtaining the desired classical limit. We examine this 'entropy problem' in a model of causal set quantum gravity corresponding to a discretization of 2D spacetimes. Using results from the theory of partial orders we show that, in the large volume or continuum limit, its partition function is dominated by causal sets which approximate to a region of 2D Minkowski space. This model of causal set quantum gravity thus overcomes the entropy problem and predicts the emergence of a physically reasonable geometry
Investigation of surface boundary conditions for continuum modeling of RF plasmas
Wilson, A.; Shotorban, B.
2018-05-01
This work was motivated by a lacking general consensus in the exact form of the boundary conditions (BCs) required on the solid surfaces for the continuum modeling of Radiofrequency (RF) plasmas. Various kinds of number and energy density BCs on solid surfaces were surveyed, and how they interacted with the electric potential BC to affect the plasma was examined in two fundamental RF plasma reactor configurations. A second-order local mean energy approximation with equations governing the electron and ion number densities and the electron energy density was used to model the plasmas. Zero densities and various combinations of drift, diffusion, and thermal fluxes were considered to set up BCs. It was shown that the choice of BC can have a significant impact on the sheath and bulk plasma. The thermal and diffusion fluxes to the surface were found to be important. A pure drift BC for dielectric walls failed to produce a sheath.
On modeling micro-structural evolution using a higher order strain gradient continuum theory
DEFF Research Database (Denmark)
El-Naaman, S. A.; Nielsen, K. L.; Niordson, C. F.
2016-01-01
is to improve the micro-structural response predicted using strain gradient crystal plasticity within a continuum mechanics framework. One approach to modeling the dislocation structures observed is through a back stress formulation, which can be related directly to the strain gradient energy. The present work...... the experimentally observed micro-structural behavior, within a framework based on continuous field quantities, poses obvious challenges, since the evolution of dislocation structures is inherently a discrete and discontinuous process. This challenge, in particular, motivates the present study, and the aim...... offers an investigation of constitutive equations for the back stress based on both considerations of the gradient energy, but also includes results obtained from a purely phenomenological starting point. The influence of model parameters is brought out in a parametric study, and it is demonstrated how...
A Micropillar Compression Methodology for Ductile Damage Quantification
Tasan, C.C.; Hoefnagels, J.P.M.; Geers, M.G.D.
2012-01-01
Microstructural damage evolution is reported to influence significantly the failures of new high-strength alloys. Its accurate quantification is, therefore, critical for (1) microstructure optimization and (2) continuum damage models to predict failures of these materials. As existing methodologies
A micropillar compression methodology for ductile damage quantification
Tasan, C.C.; Hoefnagels, J.P.M.; Geers, M.G.D.
2012-01-01
Microstructural damage evolution is reported to influence significantly the failures of new high-strength alloys. Its accurate quantification is, therefore, critical for (1) microstructure optimization and (2) continuum damage models to predict failures of these materials. As existing methodologies
Fatigue and damage tolerance scatter models
Raikher, Veniamin L.
1994-09-01
Effective Total Fatigue Life and Crack Growth Scatter Models are proposed. The first of them is based on the power form of the Wohler curve, fatigue scatter dependence on mean life value, cycle stress ratio influence on fatigue scatter, and validated description of the mean stress influence on the mean fatigue life. The second uses in addition are fracture mechanics approach, assumption of initial damage existence, and Paris equation. Simple formulas are derived for configurations of models. A preliminary identification of the parameters of the models is fulfilled on the basis of experimental data. Some new and important results for fatigue and crack growth scatter characteristics are obtained.
A continuum mechanics-based musculo-mechanical model for esophageal transport
Kou, Wenjun; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.
2017-11-01
In this work, we extend our previous esophageal transport model using an immersed boundary (IB) method with discrete fiber-based structural model, to one using a continuum mechanics-based model that is approximated based on finite elements (IB-FE). To deal with the leakage of flow when the Lagrangian mesh becomes coarser than the fluid mesh, we employ adaptive interaction quadrature points to deal with Lagrangian-Eulerian interaction equations based on a previous work (Griffith and Luo [1]). In particular, we introduce a new anisotropic adaptive interaction quadrature rule. The new rule permits us to vary the interaction quadrature points not only at each time-step and element but also at different orientations per element. This helps to avoid the leakage issue without sacrificing the computational efficiency and accuracy in dealing with the interaction equations. For the material model, we extend our previous fiber-based model to a continuum-based model. We present formulations for general fiber-reinforced material models in the IB-FE framework. The new material model can handle non-linear elasticity and fiber-matrix interactions, and thus permits us to consider more realistic material behavior of biological tissues. To validate our method, we first study a case in which a three-dimensional short tube is dilated. Results on the pressure-displacement relationship and the stress distribution matches very well with those obtained from the implicit FE method. We remark that in our IB-FE case, the three-dimensional tube undergoes a very large deformation and the Lagrangian mesh-size becomes about 6 times of Eulerian mesh-size in the circumferential orientation. To validate the performance of the method in handling fiber-matrix material models, we perform a second study on dilating a long fiber-reinforced tube. Errors are small when we compare numerical solutions with analytical solutions. The technique is then applied to the problem of esophageal transport. We use two
Microscopic theory of light exotic nuclei. Shell Models Embedded in the Continuum
International Nuclear Information System (INIS)
Bennaceur, K.
1999-01-01
The recent advances in experimental nuclear physics make it possible to study nuclear systems far from the beta stability line. The discovery of new phenomena, like halos or neutron skins, requires the development of new theoretical models which enable to study these systems. The first part of this work is devoted to the development and the applications of the Shell Model Embedded in the Continuum (SMEC). This new formalism allows to take into account the correlations between the bound and scattering states of loosely bound nuclei. SMEC is applied here to the study of the spectroscopy of the Mirror nuclei 8 B- 8 Li and 17 F- 17 O. It can also be used to calculate the cross sections of the elastic scattering, the Coulomb breakup processes and the radiative n,p capture processes. The results concerning the reactions of astrophysical interest: 18 O(p, γ) 17 F and 7 Be(p, γ) 8 B, are discussed in details. This last reaction is very important because the disintegration of 8 B is the main source of High energy neutrinos in the sun. The second part of this work is related to the analysis of pairing interaction for weakly bound nuclei. We have developed a new approach, based on the Hartree-Fock-Bogolyubov (HFB) theory, that allows to study the pairing correlations between bound and scattering states, both resonant and not resonant ones. The 'particle-hole' potential is replaced by a model potential for which the solutions are analytically known. This method allows to analyse the effect of pairing on bound and resonant states, independently of their energy position. We have clearly demonstrated that the non-resonant continuum plays a crucial role in the loosely bound nuclei and that solving the HFB equations in the coordinate space is the only method that permits to treat this problem correctly. (author)
A Coupled Plastic Damage Model for Concrete considering the Effect of Damage on Plastic Flow
Zhou, Feng; Cheng, Guangxu
2015-01-01
A coupled plastic damage model with two damage scalars is proposed to describe the nonlinear features of concrete. The constitutive formulations are developed by assuming that damage can be represented effectively in the material compliance tensor. Damage evolution law and plastic damage coupling are described using the framework of irreversible thermodynamics. The plasticity part is developed without using the effective stress concept. A plastic yield function based on the true stress is ado...
Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures
Energy Technology Data Exchange (ETDEWEB)
Rafii-Tabar, Hashem, E-mail: rafii-tabar@nano.ipm.ac.ir [Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Fazelzadeh, S. Ahmad [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of)
2016-06-06
Insight into the mechanical characteristics of nanoscopic structures is of fundamental interest and indeed poses a great challenge to the research communities around the world. These structures are ultra fine in size and consequently performing standard experiments to measure their various properties is an extremely difficult and expensive endeavor. Hence, to predict the mechanical characteristics of the nanoscopic structures, different theoretical models, numerical modeling techniques, and computer-based simulation methods have been developed. Among several proposed approaches, the nonlocal continuum-based modeling is of particular significance because the results obtained from this modeling for different nanoscopic structures are in very good agreement with the data obtained from both experimental and atomistic-based studies. A review of the essentials of this model together with its applications is presented here. Our paper is a self contained presentation of the nonlocal elasticity theory and contains the analysis of the recent works employing this model within the field of nanoscopic structures. In this review, the concepts from both the classical (local) and the nonlocal elasticity theories are presented and their applications to static and dynamic behavior of nanoscopic structures with various morphologies are discussed. We first introduce the various nanoscopic structures, both carbon-based and non carbon-based types, and then after a brief review of the definitions and concepts from classical elasticity theory, and the basic assumptions underlying size-dependent continuum theories, the mathematical details of the nonlocal elasticity theory are presented. A comprehensive discussion on the nonlocal version of the beam, the plate and the shell theories that are employed in modeling of the mechanical properties and behavior of nanoscopic structures is then provided. Next, an overview of the current literature discussing the application of the nonlocal models
Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures
International Nuclear Information System (INIS)
Rafii-Tabar, Hashem; Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad
2016-01-01
Insight into the mechanical characteristics of nanoscopic structures is of fundamental interest and indeed poses a great challenge to the research communities around the world. These structures are ultra fine in size and consequently performing standard experiments to measure their various properties is an extremely difficult and expensive endeavor. Hence, to predict the mechanical characteristics of the nanoscopic structures, different theoretical models, numerical modeling techniques, and computer-based simulation methods have been developed. Among several proposed approaches, the nonlocal continuum-based modeling is of particular significance because the results obtained from this modeling for different nanoscopic structures are in very good agreement with the data obtained from both experimental and atomistic-based studies. A review of the essentials of this model together with its applications is presented here. Our paper is a self contained presentation of the nonlocal elasticity theory and contains the analysis of the recent works employing this model within the field of nanoscopic structures. In this review, the concepts from both the classical (local) and the nonlocal elasticity theories are presented and their applications to static and dynamic behavior of nanoscopic structures with various morphologies are discussed. We first introduce the various nanoscopic structures, both carbon-based and non carbon-based types, and then after a brief review of the definitions and concepts from classical elasticity theory, and the basic assumptions underlying size-dependent continuum theories, the mathematical details of the nonlocal elasticity theory are presented. A comprehensive discussion on the nonlocal version of the beam, the plate and the shell theories that are employed in modeling of the mechanical properties and behavior of nanoscopic structures is then provided. Next, an overview of the current literature discussing the application of the nonlocal models
Tree-based flood damage modeling of companies: Damage processes and model performance
Sieg, Tobias; Vogel, Kristin; Merz, Bruno; Kreibich, Heidi
2017-07-01
Reliable flood risk analyses, including the estimation of damage, are an important prerequisite for efficient risk management. However, not much is known about flood damage processes affecting companies. Thus, we conduct a flood damage assessment of companies in Germany with regard to two aspects. First, we identify relevant damage-influencing variables. Second, we assess the prediction performance of the developed damage models with respect to the gain by using an increasing amount of training data and a sector-specific evaluation of the data. Random forests are trained with data from two postevent surveys after flood events occurring in the years 2002 and 2013. For a sector-specific consideration, the data set is split into four subsets corresponding to the manufacturing, commercial, financial, and service sectors. Further, separate models are derived for three different company assets: buildings, equipment, and goods and stock. Calculated variable importance values reveal different variable sets relevant for the damage estimation, indicating significant differences in the damage process for various company sectors and assets. With an increasing number of data used to build the models, prediction errors decrease. Yet the effect is rather small and seems to saturate for a data set size of several hundred observations. In contrast, the prediction improvement achieved by a sector-specific consideration is more distinct, especially for damage to equipment and goods and stock. Consequently, sector-specific data acquisition and a consideration of sector-specific company characteristics in future flood damage assessments is expected to improve the model performance more than a mere increase in data.
Adaptive unified continuum FEM modeling of a 3D FSI benchmark problem.
Jansson, Johan; Degirmenci, Niyazi Cem; Hoffman, Johan
2017-09-01
In this paper, we address a 3D fluid-structure interaction benchmark problem that represents important characteristics of biomedical modeling. We present a goal-oriented adaptive finite element methodology for incompressible fluid-structure interaction based on a streamline diffusion-type stabilization of the balance equations for mass and momentum for the entire continuum in the domain, which is implemented in the Unicorn/FEniCS software framework. A phase marker function and its corresponding transport equation are introduced to select the constitutive law, where the mesh tracks the discontinuous fluid-structure interface. This results in a unified simulation method for fluids and structures. We present detailed results for the benchmark problem compared with experiments, together with a mesh convergence study. Copyright © 2016 John Wiley & Sons, Ltd.
DEFF Research Database (Denmark)
Svendsen, Casper Steinmann; Blædel, Kristoffer L.; Christensen, Anders Steen
2013-01-01
An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules such as ubiq......An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules...
Research on borehole stability of shale based on seepage-stress-damage coupling model
Directory of Open Access Journals (Sweden)
Xiaofeng Ran
2014-01-01
Full Text Available In oil drilling, one of the most complicated problems is borehole stability of shale. Based on the theory of continuum damage mechanics, a modified Mohr-Coulomb failure criterion according to plastic damage evolution and the seepage-stress coupling is established. Meanwhile, the damage evolution equation which is based on equivalent plastic strain and the permeability evolution equation of shale are proposed in this paper. The physical model of borehole rock for a well in China western oilfield is set up to analyze the distribution of damage, permeability, stress, plastic strain and displacement. In the calculation process, the influence of rock damage to elastic modulus, cohesion and permeability is involved by writing a subroutine for ABAQUS. The results show that the rock damage evolution has a significant effect to the plastic strain and stress in plastic zone. Different drilling fluid density will produce different damage in its value, range and type. This study improves the theory of mechanical mechanism of borehole collapse and fracture, and provides a reference for the further research of seepage-stress-chemical-damage coupling of wall rock.
International Nuclear Information System (INIS)
Chason, E; Chan, W L
2009-01-01
Kinetic Monte Carlo simulations model the evolution of surfaces during low energy ion bombardment using atomic level mechanisms of defect formation, recombination and surface diffusion. Because the individual kinetic processes are completely determined, the resulting morphological evolution can be directly compared with continuum models based on the same mechanisms. We present results of simulations based on a curvature-dependent sputtering mechanism and diffusion of mobile surface defects. The results are compared with a continuum linear instability model based on the same physical processes. The model predictions are found to be in good agreement with the simulations for predicting the early-stage morphological evolution and the dependence on processing parameters such as the flux and temperature. This confirms that the continuum model provides a reasonable approximation of the surface evolution from multiple interacting surface defects using this model of sputtering. However, comparison with experiments indicates that there are many features of the surface evolution that do not agree with the continuum model or simulations, suggesting that additional mechanisms are required to explain the observed behavior.
The KdV—Burgers equation in a modified speed gradient continuum model
International Nuclear Information System (INIS)
Lai Ling-Ling; Ge Hong-Xia; Cheng Rong-Jun; Li Zhi-Peng
2013-01-01
Based on the full velocity difference model, Jiang et al. put forward the speed gradient model through the micro-macro linkage (Jiang R, Wu Q S and Zhu Z J 2001 Chin. Sci. Bull. 46 345 and Jiang R, Wu Q S and Zhu Z J 2002 Trans. Res. B 36 405). In this paper, the Taylor expansion is adopted to modify the model. The backward travel problem is overcome by our model, which exists in many higher-order continuum models. The neutral stability condition of the model is obtained through the linear stability analysis. Nonlinear analysis shows clearly that the density fluctuation in traffic flow leads to a variety of density waves. Moreover, the Korteweg-de Vries—Burgers (KdV—Burgers) equation is derived to describe the traffic flow near the neutral stability line and the corresponding solution for traffic density wave is derived. The numerical simulation is carried out to investigate the local cluster effects. The results are consistent with the realistic traffic flow and also further verify the results of nonlinear analysis
A continuum-based structural modeling approach for cellulose nanocrystals (CNCs)
Shishehbor, Mehdi; Dri, Fernando L.; Moon, Robert J.; Zavattieri, Pablo D.
2018-02-01
We present a continuum-based structural model to study the mechanical behavior of cellulose nanocrystals (CNCs), and analyze the effect of bonded and non-bonded interactions on the mechanical properties under various loading conditions. In particular, this model assumes the uncoupling between the bonded and non-bonded interactions and their behavior is obtained from atomistic simulations. Our results indicates that the major contribution to the tensile and bending stiffness is mainly due to the cellulose chain stiffness, and the shear behavior is mainly governed by Van der Waals (VdW) forces. In addition, we report a negligible torsional stiffness, which may explain the CNC tendency to easily twist under very small or nonexistent torques. In addition, the sensitivity of geometrical imperfection on the mechanical properties using an analytical model of the CNC structure was investigated. Our results indicate that the presence of imperfections have a small influence on the majority of the elastic properties. Finally, it is shown that a simple homogeneous and orthotropic representation of a CNC under bending underestimates the contribution of non-bonded interaction leading up to 60% error in the calculation of the bending stiffness of CNCs. On the other hand, the proposed model can lead to more accurate predictions of the elastic behavior of CNCs. This is the first step toward the development of a more efficient model that can be used to model the inelastic behavior of single and multiple CNCs.
Shock structure in continuum models of gas dynamics: stability and bifurcation analysis
International Nuclear Information System (INIS)
Simić, Srboljub S
2009-01-01
The problem of shock structure in gas dynamics is analysed through a comparative study of two continuum models: the parabolic Navier–Stokes–Fourier model and the hyperbolic system of 13 moments equations modeling viscous, heat-conducting monatomic gases within the context of extended thermodynamics. When dissipative phenomena are neglected these models both reduce to classical Euler's equations of gas dynamics. The shock profile solution, assumed in the form of a planar travelling wave, reduces the problem to a system of ordinary differential equations, and equilibrium states appear to be stationary points of the system. It is shown that in both models an upstream equilibrium state suffers an exchange of stability when the shock speed crosses the critical value which coincides with the highest characteristic speed of the Euler's system. At the same time a downstream equilibrium state could be seen as a steady bifurcating solution, while the shock profile represents a heteroclinic orbit connecting the two stationary points. Using centre manifold reduction it is demonstrated that both models, although mathematically different, obey the same transcritical bifurcation pattern in the neighbourhood of the bifurcation point corresponding to the critical value of shock speed, the speed of sound
Model of designating the critical damages
Directory of Open Access Journals (Sweden)
Zwolińska Bożena
2017-06-01
Full Text Available Managing company in the lean way presumes no breakdowns nor reserves in the whole delivery chain. However, achieving such low indicators is impossible. That is why in some production plants it is extremely important to focus on preventive actions which can limit damages. This article depicts the method of designating the critical damages in accordance with lean maintenance method. The article consists of two parts which make for an integral body. Part one depicts the characteristic of a realistic object, it also contains productions capabilities analysis of certain areas within the production structure. Part two depicts the probabilistic model of shaping maximal time loss basing on emptying and filling interoperational buffers.
Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers
Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.
2017-12-01
Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In
Modeling of Corrosion-induced Concrete Damage
DEFF Research Database (Denmark)
Thybo, Anna Emilie A.; Michel, Alexander; Stang, Henrik
2013-01-01
In the present paper a finite element model is introduced to simulate corrosion-induced damage in concrete. The model takes into account the penetration of corrosion products into the concrete as well as non-uniform formation of corrosion products around the reinforcement. To ac-count for the non...... of corrosion products affects both the time-to cover cracking and the crack width at the concrete surface.......In the present paper a finite element model is introduced to simulate corrosion-induced damage in concrete. The model takes into account the penetration of corrosion products into the concrete as well as non-uniform formation of corrosion products around the reinforcement. To ac-count for the non......-uniform formation of corrosion products at the concrete/reinforcement interface, a deterministic approach is used. The model gives good estimates of both deformations in the con-crete/reinforcement interface and crack width when compared to experimental data. Further, it is shown that non-uniform deposition...
Energy Technology Data Exchange (ETDEWEB)
Choi, Myungseok; Olshevskiy, Alexander; Kim, Chang-Wan [Konkuk University, Seoul (Korea, Republic of); Eom, Kilho [Sungkyunkwan University, Suwon (Korea, Republic of); Gwak, Kwanwoong [Sejong University, Seoul (Korea, Republic of); Dai, Mai Duc [Ho Chi Minh City University of Technology and Education, Ho Chi Minh (Viet Nam)
2017-05-15
Carbon nanotube (CNT) has recently received much attention due to its excellent electromechanical properties, indicating that CNT can be employed for development of Nanoelectromechanical system (NEMS) such as nanomechanical resonators. For effective design of CNT-based resonators, it is required to accurately predict the vibration behavior of CNT resonators as well as their frequency response to mass adsorption. In this work, we have studied the vibrational behavior of Multi-walled CNT (MWCNT) resonators by using a continuum mechanics modeling that was implemented in Finite element method (FEM). In particular, we consider a transversely isotropic hollow cylinder solid model with Finite element (FE) implementation for modeling the vibration behavior of Multi-walled CNT (MWCNT) resonators. It is shown that our continuum mechanics model provides the resonant frequencies of various MWCNTs being comparable to those obtained from experiments. Moreover, we have investigated the frequency response of MWCNT resonators to mass adsorption by using our continuum model with FE implementation. Our study sheds light on our continuum mechanics model that is useful in predicting not only the vibration behavior of MWCNT resonators but also their sensing performance for further effective design of MWCNT- based NEMS devices.
Xiao, Li; Luo, Ray
2017-12-07
We explored a multi-scale algorithm for the Poisson-Boltzmann continuum solvent model for more robust simulations of biomolecules. In this method, the continuum solvent/solute interface is explicitly simulated with a numerical fluid dynamics procedure, which is tightly coupled to the solute molecular dynamics simulation. There are multiple benefits to adopt such a strategy as presented below. At this stage of the development, only nonelectrostatic interactions, i.e., van der Waals and hydrophobic interactions, are included in the algorithm to assess the quality of the solvent-solute interface generated by the new method. Nevertheless, numerical challenges exist in accurately interpolating the highly nonlinear van der Waals term when solving the finite-difference fluid dynamics equations. We were able to bypass the challenge rigorously by merging the van der Waals potential and pressure together when solving the fluid dynamics equations and by considering its contribution in the free-boundary condition analytically. The multi-scale simulation method was first validated by reproducing the solute-solvent interface of a single atom with analytical solution. Next, we performed the relaxation simulation of a restrained symmetrical monomer and observed a symmetrical solvent interface at equilibrium with detailed surface features resembling those found on the solvent excluded surface. Four typical small molecular complexes were then tested, both volume and force balancing analyses showing that these simple complexes can reach equilibrium within the simulation time window. Finally, we studied the quality of the multi-scale solute-solvent interfaces for the four tested dimer complexes and found that they agree well with the boundaries as sampled in the explicit water simulations.
Perspectives on continuum flow models for force-driven nano-channel liquid flows
Beskok, Ali; Ghorbanian, Jafar; Celebi, Alper
2017-11-01
A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.
A Model of Icebergs and Sea Ice in a Joint Continuum Framework
VaÅková, Irena; Holland, David M.
2017-11-01
The ice mélange, a mixture of sea ice and icebergs, often present in front of outlet glaciers in Greenland or ice shelves in Antarctica, can have a profound effect on the dynamics of the ice-ocean system. The current inability to numerically model the ice mélange motivates a new modeling approach proposed here. A continuum sea-ice model is taken as a starting point and icebergs are represented as thick and compact pieces of sea ice held together by large tensile and shear strength, selectively introduced into the sea-ice rheology. In order to modify the rheology correctly, an iceberg tracking procedure is implemented within a semi-Lagrangian time-stepping scheme, designed to exactly preserve iceberg shape through time. With the proposed treatment, sea ice and icebergs are considered a single fluid with spatially varying rheological properties. Mutual interactions are thus automatically included without the need for further parametrization. An important advantage of the presented framework for an ice mélange model is its potential to be easily included within sea-ice components of existing climate models.
Damage Model of Reinforced Concrete Members under Cyclic Loading
Wei, Bo Chen; Zhang, Jing Shu; Zhang, Yin Hua; Zhou, Jia Lai
2018-06-01
Based on the Kumar damage model, a new damage model for reinforced concrete members is established in this paper. According to the damage characteristics of reinforced concrete members subjected to cyclic loading, four judgment conditions for determining the rationality of damage models are put forward. An ideal damage index (D) is supposed to vary within a scale of zero (no damage) to one (collapse). D should be a monotone increasing function which tends to increase in the case of the same displacement amplitude. As for members under large displacement amplitude loading, the growth rate of D should be greater than that of D under small amplitude displacement loading. Subsequently, the Park-Ang damage model, the Niu-Ren damage model, the Lu-Wang damage model and the proposed damage model are analyzed for 30 experimental reinforced concrete members, including slabs, walls, beams and columns. The results show that current damage models do not fully matches the reasonable judgment conditions, but the proposed damage model does. Therefore, a conclusion can be drawn that the proposed damage model can be used for evaluating and predicting damage performance of RC members under cyclic loading.
Directory of Open Access Journals (Sweden)
Sutikno Sutikno
2010-08-01
Full Text Available One of the climate models used to predict the climatic conditions is Global Circulation Models (GCM. GCM is a computer-based model that consists of different equations. It uses numerical and deterministic equation which follows the physics rules. GCM is a main tool to predict climate and weather, also it uses as primary information source to review the climate change effect. Statistical Downscaling (SD technique is used to bridge the large-scale GCM with a small scale (the study area. GCM data is spatial and temporal data most likely to occur where the spatial correlation between different data on the grid in a single domain. Multicollinearity problems require the need for pre-processing of variable data X. Continuum Regression (CR and pre-processing with Principal Component Analysis (PCA methods is an alternative to SD modelling. CR is one method which was developed by Stone and Brooks (1990. This method is a generalization from Ordinary Least Square (OLS, Principal Component Regression (PCR and Partial Least Square method (PLS methods, used to overcome multicollinearity problems. Data processing for the station in Ambon, Pontianak, Losarang, Indramayu and Yuntinyuat show that the RMSEP values and R2 predict in the domain 8x8 and 12x12 by uses CR method produces results better than by PCR and PLS.
International Nuclear Information System (INIS)
Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Hilton, Eric J.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Brown, Benjamin P.
2016-01-01
We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10 4 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100
Energy Technology Data Exchange (ETDEWEB)
Kowalski, Adam F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Mathioudakis, Mihalis [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Hawley, Suzanne L.; Hilton, Eric J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Wisniewski, John P. [HL Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks Street, Norman, OK 73019 (United States); Dhillon, Vik S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Marsh, Tom R. [Department of Physics, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL (United Kingdom); Brown, Benjamin P., E-mail: adam.f.kowalski@nasa.gov [Laboratory for Atmospheric and Space Physics and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80309 (United States)
2016-04-01
We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10{sup 4} K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100.
Radiative capture reaction {sup 7}Be(p,{gamma}){sup 8}B in the continuum shell model
Energy Technology Data Exchange (ETDEWEB)
Bennaceur, K; Ploszajczak, M [Grand Accelerateur National d` Ions Lourds (GANIL), Caen (France); Nowacki, F [Grand Accelerateur National d` Ions Lourds (GANIL), Caen (France); [Lab. de Physique Theorique Strasbourg, Strasbourg (France); Okolowicz, J [Grand Accelerateur National d` Ions Lourds (GANIL), Caen (France); [Inst. of Nuclear Physics, Krakow (Poland)
1998-06-01
We present here the first application of realistic shell model (SM) including coupling between many-particle (quasi-)bound states and the continuum of one-particle scattering states to the calculation of the total capture cross section and the astrophysical factor in the reaction {sup 7}Be(p,{gamma}){sup 8}B. (orig.)
Koppenol, D.C.; Vermolen, F.J.
2017-01-01
A continuum hypothesis-based model is developed for the simulation of the (long term) contraction of skin grafts that cover excised burns in order to obtain suggestions regarding the ideal length of splinting therapy and when to start with this therapy such that the therapy is effective
Continuum modeling of twinning, amorphization, and fracture: theory and numerical simulations
Clayton, J. D.; Knap, J.
2018-03-01
A continuum mechanical theory is used to model physical mechanisms of twinning, solid-solid phase transformations, and failure by cavitation and shear fracture. Such a sequence of mechanisms has been observed in atomic simulations and/or experiments on the ceramic boron carbide. In the present modeling approach, geometric quantities such as the metric tensor and connection coefficients can depend on one or more director vectors, also called internal state vectors. After development of the general nonlinear theory, a first problem class considers simple shear deformation of a single crystal of this material. For homogeneous fields or stress-free states, algebraic systems or ordinary differential equations are obtained that can be solved by numerical iteration. Results are in general agreement with atomic simulation, without introduction of fitted parameters. The second class of problems addresses the more complex mechanics of heterogeneous deformation and stress states involved in deformation and failure of polycrystals. Finite element calculations, in which individual grains in a three-dimensional polycrystal are fully resolved, invoke a partially linearized version of the theory. Results provide new insight into effects of crystal morphology, activity or inactivity of different inelasticity mechanisms, and imposed deformation histories on strength and failure of the aggregate under compression and shear. The importance of incorporation of inelastic shear deformation in realistic models of amorphization of boron carbide is noted, as is a greater reduction in overall strength of polycrystals containing one or a few dominant flaws rather than many diffusely distributed microcracks.
Turan, Başak; Selçuki, Cenk
2014-09-01
Amino acids are constituents of proteins and enzymes which take part almost in all metabolic reactions. Glutamic acid, with an ability to form a negatively charged side chain, plays a major role in intra and intermolecular interactions of proteins, peptides, and enzymes. An exhaustive conformational analysis has been performed for all eight possible forms at B3LYP/cc-pVTZ level. All possible neutral, zwitterionic, protonated, and deprotonated forms of glutamic acid structures have been investigated in solution by using polarizable continuum model mimicking water as the solvent. Nine families based on the dihedral angles have been classified for eight glutamic acid forms. The electrostatic effects included in the solvent model usually stabilize the charged forms more. However, the stability of the zwitterionic form has been underestimated due to the lack of hydrogen bonding between the solute and solvent; therefore, it is observed that compact neutral glutamic acid structures are more stable in solution than they are in vacuum. Our calculations have shown that among all eight possible forms, some are not stable in solution and are immediately converted to other more stable forms. Comparison of isoelectronic glutamic acid forms indicated that one of the structures among possible zwitterionic and anionic forms may dominate over the other possible forms. Additional investigations using explicit solvent models are necessary to determine the stability of charged forms of glutamic acid in solution as our results clearly indicate that hydrogen bonding and its type have a major role in the structure and energy of conformers.
A continuum model for the anisotropic creep of single crystal nickel-based superalloys
International Nuclear Information System (INIS)
Prasad, Sharat C.; Rajagopal, K.R.; Rao, I.J.
2006-01-01
In this paper, we extend the constitutive theory developed by Prasad et al. [Prasad SC, Rao IJ, Rajagopal KR. A continuum model for the creep of single crystal nickel-base superalloys. Acta Mater 2005;53(3):669-79], to describe the creep anisotropy associated with crystallographic orientation in single crystal nickel-based superalloys. The constitutive theory is cast within a general thermodynamic framework that has been developed to describe the response of materials capable of existing in multiple stress free configurations ('natural configurations'). Central to the theory is the prescription of the forms for the stored energy and rate of dissipation functions. The stored energy reflects the fact that the elastic response exhibits cubic symmetry. The model takes into account the fact that the symmetry of single crystals does not change with inelastic deformation. The rate of dissipation function is also chosen to be anisotropic, in that it reflects invariance to transformations that belong to the cubic symmetry group. The model is used to simulate uniaxial creep of single crystal nickel-based superalloy CMSX-4 for loading along the , and orientations. The predictions of the theory agree well with the experimental data
Energy Technology Data Exchange (ETDEWEB)
Elsworth, Derek [Pennsylvania State Univ., State College, PA (United States); Izadi, Ghazal [Pennsylvania State Univ., State College, PA (United States); Gan, Quan [Pennsylvania State Univ., State College, PA (United States); Fang, Yi [Pennsylvania State Univ., State College, PA (United States); Taron, Josh [US Geological Survey, Menlo Park, CA (United States); Sonnenthal, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2015-07-28
This work has investigated the roles of effective stress induced by changes in fluid pressure, temperature and chemistry in contributing to the evolution of permeability and induced seismicity in geothermal reservoirs. This work has developed continuum models [1] to represent the progress or seismicity during both stimulation [2] and production [3]. These methods have been used to resolve anomalous observations of induced seismicity at the Newberry Volcano demonstration project [4] through the application of modeling and experimentation. Later work then focuses on the occurrence of late stage seismicity induced by thermal stresses [5] including the codifying of the timing and severity of such responses [6]. Furthermore, mechanistic linkages between observed seismicity and the evolution of permeability have been developed using data from the Newberry project [7] and benchmarked against field injection experiments. Finally, discontinuum models [8] incorporating the roles of discrete fracture networks have been applied to represent stimulation and then thermal recovery for new arrangements of geothermal wells incorporating the development of flow manifolds [9] in order to increase thermal output and longevity in EGS systems.
Levrero-Florencio, Francesc; Pankaj, Pankaj
2018-01-01
Realistic macro-level finite element simulations of the mechanical behavior of trabecular bone, a cellular anisotropic material, require a suitable constitutive model; a model that incorporates the mechanical response of bone for complex loading scenarios and includes post-elastic phenomena, such as plasticity (permanent deformations) and damage (permanent stiffness reduction), which bone is likely to experience. Some such models have been developed by conducting homogenization-based multiscale finite element simulations on bone micro-structure. While homogenization has been fairly successful in the elastic regime and, to some extent, in modeling the macroscopic plastic response, it has remained a challenge with respect to modeling damage. This study uses a homogenization scheme to upscale the damage behavior from the tissue level (microscale) to the organ level (macroscale) and assesses the suitability of different damage constitutive laws. Ten cubic specimens were each subjected to 21 strain-controlled load cases for a small range of macroscopic post-elastic strains. Isotropic and anisotropic criteria were considered, density and fabric relationships were used in the formulation of the damage law, and a combined isotropic/anisotropic law with tension/compression asymmetry was formulated, based on the homogenized results, as a possible alternative to the currently used single scalar damage criterion. This computational study enhances the current knowledge on the macroscopic damage behavior of trabecular bone. By developing relationships of damage progression with bone's micro-architectural indices (density and fabric) the study also provides an aid for the creation of more precise macroscale continuum models, which are likely to improve clinical predictions.
International Nuclear Information System (INIS)
Board, M.
1989-08-01
This report examines the use of continuum and discontinuum numerical methods for analysis of the thermomechanical response of the rock mass at Yucca Mountain. Continuum numerical methods consider the rock to be a solid, unfractured body, whereas the discontinuum method is formulated specifically to account for the effects of discrete fractures. The fractures within the rock introduce overall non-linear material response due to slip and separation of rock blocks. Continuum models attempt to simulate this response through the use of non-linear constitutive laws. Discontinuum methods attempt to simulate the true response of the rock mass by correctly modeling the behavior of the joints as well as the deformability of the intact rock blocks. It is shown that, as the joint spacing, s, becomes small with respect to the size of the excavations, the behavior of the jointed rock approaches that of a solid with a form of elasto-plastic constitutive behavior. It is concluded that a continuum model with a form of ''ubiquitous'' or ''compliant joint'' plasticity law is probably sufficient for analysis of the thermomechanical response of excavations in welded tuff. However, one of the questions concerning Yucca Mountain which remains is the effect of fault structures on the stability performance of the repository, particularly under thermal and dynamic loads. Here, a true discontinuum approach seems necessary. 45 refs., 42 figs., 4 tabs
Assessment model validity document - HYDRASTAR. A stochastic continuum program for groundwater flow
Energy Technology Data Exchange (ETDEWEB)
Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden); Eriksson, Lars [Equa Simulation AB, Sundbyberg (Sweden)
2001-12-01
The prevailing document addresses validation of the stochastic continuum model HYDRASTAR designed for Monte Carlo simulations of groundwater flow in fractured rocks. Here, validation is defined as a process to demonstrate that a model concept is fit for its purpose. Preferably, the validation is carried out by comparison of model predictions with independent field observations and experimental measurements. In addition, other sources can also be used to confirm that the model concept gives acceptable results. One method is to compare results with the ones achieved using other model concepts for the same set of input data. Another method is to compare model results with analytical solutions. The model concept HYDRASTAR has been used in several studies including performance assessments of hypothetical repositories for spent nuclear fuel. In the performance assessments, the main tasks for HYDRASTAR have been to calculate groundwater travel time distributions, repository flux distributions, path lines and their exit locations. The results have then been used by other model concepts to calculate the near field release and far field transport. The aim and framework for the validation process includes describing the applicability of the model concept for its purpose in order to build confidence in the concept. Preferably, this is made by comparisons of simulation results with the corresponding field experiments or field measurements. Here, two comparisons with experimental results are reported. In both cases the agreement was reasonably fair. In the broader and more general context of the validation process, HYDRASTAR results have been compared with other models and analytical solutions. Commonly, the approximation calculations agree well with the medians of model ensemble results. Additional indications that HYDRASTAR is suitable for its purpose were obtained from the comparisons with results from other model concepts. Several verification studies have been made for
Structural equation modeling of the proximal–distal continuum of adherence drivers
Directory of Open Access Journals (Sweden)
McHorney CA
2012-11-01
Full Text Available Colleen A McHorney,1 Ning Jackie Zhang,2 Timothy Stump,3 Xiaoquan Zhao41US Outcomes Research, Merck, North Wales, PA, 2University of Central Florida, Orlando, 3Indiana University School of Medicine, Indianapolis, 4George Mason University, Fairfax, USAObjectives: Nonadherence to prescription medications has been shown to be significantly influenced by three key medication-specific beliefs: patients' perceived need for the prescribed medication, their concerns about the prescribed medication, and perceived medication affordability. Structural equation modeling was used to test the predictors of these three proximal determinants of medication adherence using the proximal–distal continuum of adherence drivers as the organizing conceptual framework.Methods: In Spring 2008, survey participants were selected from the Harris Interactive Chronic Illness Panel, an internet-based panel of hundreds of thousands of adults with chronic disease. Respondents were eligible for the survey if they were aged 40 years and older, resided in the US, and reported having at least one of six chronic diseases: asthma, diabetes, hyperlipidemia, hypertension, osteoporosis, or other cardiovascular disease. A final sample size of 1072 was achieved. The proximal medication beliefs were measured by three multi-item scales: perceived need for medications, perceived medication concerns, and perceived medication affordability. The intermediate sociomedical beliefs and skills included four multi-item scales: perceived disease severity, knowledge about the prescribed medication, perceived immunity to side effects, and perceived value of nutraceuticals. Generic health beliefs and skills consisted of patient engagement in their care, health information-seeking tendencies, internal health locus of control, a single-item measure of self-rated health, and general mental health. Structural equation modeling was used to model proximal–distal continuum of adherence drivers.Results: The
Modeling the damage of welded steel, using the GTN model
Directory of Open Access Journals (Sweden)
El-Ahmar Kadi
2014-11-01
Full Text Available The aim of our work is the modeling of the damage in the weld metal according to the finite element method and the concepts of fracture mechanics based on local approaches using the code ABAQUS calculates. The use of the Gurson-Tvergaard-Needleman model axisymmetric specimens AE type to three different zones (Base metal, molten metal and heat affected Zone with four levels of triaxiality (AE2, AE4, AE10 and AE80, we have used to model the behavior of damage to welded steel, which is described as being due to the growth and coalescence of cavities with high rates of triaxiality
A constitutive model of soft tissue: From nanoscale collagen to tissue continuum
Tang, Huang; Buehler, Markus J.; Moran, Brian
2009-01-01
dependence of the continuum response as a function of nanoscopic structural features, providing evidence for the notion that the molecular basis for protein materials is important in defining their larger-scale mechanical properties. © 2009 Biomedical
Components for Atomistic-to-Continuum Multiscale Modeling of Flow in Micro- and Nanofluidic Systems
Directory of Open Access Journals (Sweden)
Helgi Adalsteinsson
2008-01-01
Full Text Available Micro- and nanofluidics pose a series of significant challenges for science-based modeling. Key among those are the wide separation of length- and timescales between interface phenomena and bulk flow and the spatially heterogeneous solution properties near solid-liquid interfaces. It is not uncommon for characteristic scales in these systems to span nine orders of magnitude from the atomic motions in particle dynamics up to evolution of mass transport at the macroscale level, making explicit particle models intractable for all but the simplest systems. Recently, atomistic-to-continuum (A2C multiscale simulations have gained a lot of interest as an approach to rigorously handle particle-level dynamics while also tracking evolution of large-scale macroscale behavior. While these methods are clearly not applicable to all classes of simulations, they are finding traction in systems in which tight-binding, and physically important, dynamics at system interfaces have complex effects on the slower-evolving large-scale evolution of the surrounding medium. These conditions allow decomposition of the simulation into discrete domains, either spatially or temporally. In this paper, we describe how features of domain decomposed simulation systems can be harnessed to yield flexible and efficient software for multiscale simulations of electric field-driven micro- and nanofluidics.
Miehe, C; Teichtmeister, S; Aldakheel, F
2016-04-28
This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic-plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. © 2016 The Author(s).
Reactivity continuum modeling of leaf, root, and wood decomposition across biomes
Koehler, Birgit; Tranvik, Lars J.
2015-07-01
Large carbon dioxide amounts are released to the atmosphere during organic matter decomposition. Yet the large-scale and long-term regulation of this critical process in global carbon cycling by litter chemistry and climate remains poorly understood. We used reactivity continuum (RC) modeling to analyze the decadal data set of the "Long-term Intersite Decomposition Experiment," in which fine litter and wood decomposition was studied in eight biome types (224 time series). In 32 and 46% of all sites the litter content of the acid-unhydrolyzable residue (AUR, formerly referred to as lignin) and the AUR/nitrogen ratio, respectively, retarded initial decomposition rates. This initial rate-retarding effect generally disappeared within the first year of decomposition, and rate-stimulating effects of nutrients and a rate-retarding effect of the carbon/nitrogen ratio became more prevalent. For needles and leaves/grasses, the influence of climate on decomposition decreased over time. For fine roots, the climatic influence was initially smaller but increased toward later-stage decomposition. The climate decomposition index was the strongest climatic predictor of decomposition. The similar variability in initial decomposition rates across litter categories as across biome types suggested that future changes in decomposition may be dominated by warming-induced changes in plant community composition. In general, the RC model parameters successfully predicted independent decomposition data for the different litter-biome combinations (196 time series). We argue that parameterization of large-scale decomposition models with RC model parameters, as opposed to the currently common discrete multiexponential models, could significantly improve their mechanistic foundation and predictive accuracy across climate zones and litter categories.
Biomechanical models of damage and healing processes for voice health
DEFF Research Database (Denmark)
Granados Corsellas, Alba; Brunskog, Jonas; Jacobsen, Finn
2013-01-01
the vocal-fold plane are available. This data is used to improve existing continuum biomechanical models of the vocal-folds by analyzing the injury processes. The project is expected to result in methods that objectively demonstrate the impact of high voice-load on voice. A detailed description...
McDougall, S R; Watson, M G; Devlin, A H; Mitchell, C A; Chaplain, M A J
2012-10-01
Pathological angiogenesis has been extensively explored by the mathematical modelling community over the past few decades, specifically in the contexts of tumour-induced vascularisation and wound healing. However, there have been relatively few attempts to model angiogenesis associated with normal development, despite the availability of animal models with experimentally accessible and highly ordered vascular topologies: for example, growth and development of the vascular plexus layers in the murine retina. The current study aims to address this issue through the development of a hybrid discrete-continuum mathematical model of the developing retinal vasculature in neonatal mice that is closely coupled with an ongoing experimental programme. The model of the functional vasculature is informed by a range of morphological and molecular data obtained over a period of several days, from 6 days prior to birth to approximately 8 days after birth. The spatio-temporal formation of the superficial retinal vascular plexus (RVP) in wild-type mice occurs in a well-defined sequence. Prior to birth, astrocytes migrate from the optic nerve over the surface of the inner retina in response to a chemotactic gradient of PDGF-A, formed at an earlier stage by migrating retinal ganglion cells (RGCs). Astrocytes express a variety of chemotactic and haptotactic proteins, including VEGF and fibronectin (respectively), which subsequently induce endothelial cell sprouting and modulate growth of the RVP. The developing RVP is not an inert structure; however, the vascular bed adapts and remodels in response to a wide variety of metabolic and biomolecular stimuli. The main focus of this investigation is to understand how these interacting cellular, molecular, and metabolic cues regulate RVP growth and formation. In an earlier one-dimensional continuum model of astrocyte and endothelial migration, we showed that the measured frontal velocities of the two cell types could be accurately reproduced
Edmiston, John Kearney
This work explores the field of continuum plasticity from two fronts. On the theory side, we establish a complete specification of a phenomenological theory of plasticity for single crystals. The model serves as an alternative to the popular crystal plasticity formulation. Such a model has been previously proposed in the literature; the new contribution made here is the constitutive framework and resulting simulations. We calibrate the model to available data and use a simple numerical method to explore resulting predictions in plane strain boundary value problems. Results show promise for further investigation of the plasticity model. Conveniently, this theory comes with a corresponding experimental tool in X-ray diffraction. Recent advances in hardware technology at synchrotron sources have led to an increased use of the technique for studies of plasticity in the bulk of materials. The method has been successful in qualitative observations of material behavior, but its use in quantitative studies seeking to extract material properties is open for investigation. Therefore in the second component of the thesis several contributions are made to synchrotron X-ray diffraction experiments, in terms of method development as well as the quantitative reporting of constitutive parameters. In the area of method development, analytical tools are developed to determine the available precision of this type of experiment—a crucial aspect to determine if the method is to be used for quantitative studies. We also extract kinematic information relating to intragranular inhomogeneity which is not accessible with traditional methods of data analysis. In the area of constitutive parameter identification, we use the method to extract parameters corresponding to the proposed formulation of plasticity for a titanium alloy (HCP) which is continuously sampled by X-ray diffraction during uniaxial extension. These results and the lessons learned from the efforts constitute early reporting
High-Fidelity Dynamic Modeling of Spacecraft in the Continuum--Rarefied Transition Regime
Turansky, Craig P.
The state of the art of spacecraft rarefied aerodynamics seldom accounts for detailed rigid-body dynamics. In part because of computational constraints, simpler models based upon the ballistic and drag coefficients are employed. Of particular interest is the continuum-rarefied transition regime of Earth's thermosphere where gas dynamic simulation is difficult yet wherein many spacecraft operate. The feasibility of increasing the fidelity of modeling spacecraft dynamics is explored by coupling rarefied aerodynamics with rigid-body dynamics modeling similar to that traditionally used for aircraft in atmospheric flight. Presented is a framework of analysis and guiding principles which capitalize on the availability of increasing computational methods and resources. Aerodynamic force inputs for modeling spacecraft in two dimensions in a rarefied flow are provided by analytical equations in the free-molecular regime, and the direct simulation Monte Carlo method in the transition regime. The application of the direct simulation Monte Carlo method to this class of problems is examined in detail with a new code specifically designed for engineering-level rarefied aerodynamic analysis. Time-accurate simulations of two distinct geometries in low thermospheric flight and atmospheric entry are performed, demonstrating non-linear dynamics that cannot be predicted using simpler approaches. The results of this straightforward approach to the aero-orbital coupled-field problem highlight the possibilities for future improvements in drag prediction, control system design, and atmospheric science. Furthermore, a number of challenges for future work are identified in the hope of stimulating the development of a new subfield of spacecraft dynamics.
The cavity electromagnetic field within the polarizable continuum model of solvation
Energy Technology Data Exchange (ETDEWEB)
Pipolo, Silvio, E-mail: silvio.pipolo@nano.cnr.it [Center S3, CNR Institute of Nanoscience, Modena (Italy); Department of Physics, University of Modena and Reggio Emilia, Modena (Italy); Corni, Stefano, E-mail: stefano.corni@nano.cnr.it [Center S3, CNR Institute of Nanoscience, Modena (Italy); Cammi, Roberto, E-mail: roberto.cammi@unipr.it [Department of Chemistry, Università degli studi di Parma, Parma (Italy)
2014-04-28
Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles.
Solvation of actinide salts in water using a polarizable continuum model.
Kumar, Narendra; Seminario, Jorge M
2015-01-29
In order to determine how actinide atoms are dressed when solvated in water, density functional theory calculations have been carried out to study the equilibrium structure of uranium plutonium and thorium salts (UO2(2+), PuO2(2+), Pu(4+), and Th(4+)) both in vacuum as well as in solution represented by a conductor-like polarizable continuum model. This information is of paramount importance for the development of sensitive nanosensors. Both UO2(2+) and PuO2(2+) ions show coordination number of 4-5 with counterions replacing one or two water molecules from the first coordination shell. On the other hand, Pu(4+), has a coordination number of 8 both when completely solvated and also in the presence of chloride and nitrate ions with counterions replacing water molecules in the first shell. Nitrates were found to bind more strongly to Pu(IV) than chloride anions. In the case of the Th(IV) ion, the coordination number was found to be 9 or 10 in the presence of chlorides. Moreover, the Pu(IV) ion shows greater affinity for chlorides than the Th(IV) ion. Adding dispersion and ZPE corrections to the binding energy does not alter the trends in relative stability of several conformers because of error cancelations. All structures and energetics of these complexes are reported.
Continuum modeling of {10Ῑ2} twinning in a Mg-3%Al-1%Zn rolled sheet
Directory of Open Access Journals (Sweden)
Pérez-Prado, M. T.
2010-12-01
Full Text Available Acrystal plasticity continuum model with differentiated self- and cross- hardeningmechanisms for twin and slip systems has been utilized to predict the slip/twin activities and texture evolution in a rolled and annealed Mg-3%Al-1%Zn sheet compressed along the rolling direction (RD and tensile tested along the normal direction (ND. The contribution of twinning is significantly larger during tension along ND, leading to a significant texture change with strain. A good correlation is found between simulations and recent experimental results.
Un modelo continuo de plasticidad cristalina, que contempla los mecanismos de auto-endurecimiento y endurecimiento cruzado para los sistemas de maclado y deslizamiento, se ha utilizado para predecir las actividades de deslizamiento y del maclado, así como la evolución de la textura, de una chapa laminada y recocida de la aleación de magnesio Mg-3%Al-1%Zn ensayada en compresión, a lo largo de la dirección de laminación (DL y en tensión, a lo largo de la dirección normal (DN. Se encontró que la contribución del maclado es mucho más importante cuando la muestra se tensiona a lo lago de DN, lo que da lugar a un cambio fuerte de textura. Se observó una buena correspondencia entre las simulaciones y resultados experimentales recientes.
How to approach continuum physics in the lattice Weinberg-Salam model
International Nuclear Information System (INIS)
Zubkov, M. A.
2010-01-01
We investigate the lattice Weinberg-Salam model without fermions numerically for the realistic choice of coupling constants correspondent to the value of the Weinberg angle θ W ∼30 deg., and bare fine structure constant around α∼(1/150). We consider the values of the scalar self-coupling corresponding to Higgs mass M H ∼100, 150, 270 GeV. It has been found that nonperturbative effects become important while approaching continuum physics within the lattice model. When the ultraviolet cutoff Λ=(π/a) (where a is the lattice spacing) is increased and achieves the value around 1 TeV, one encounters the fluctuational region (on the phase diagram of the lattice model), where the fluctuations of the scalar field become strong. The classical Nambu monopole can be considered as an embryo of the unphysical symmetric phase within the physical phase. In the fluctuational region quantum Nambu monopoles are dense, and therefore, the use of the perturbation expansion around the trivial vacuum in this region is limited. Further increase of the cutoff is accompanied by a transition to the region of the phase diagram, where the scalar field is not condensed (this happens at the value of Λ around 1.4 TeV for the considered lattice sizes). Within this region further increase of the cutoff is possible, although we do not observe this in detail due to the strong fluctuations of the gauge boson correlator. Both above mentioned regions look unphysical. Therefore we come to the conclusion that the maximal value of the cutoff admitted within lattice electroweak theory cannot exceed the value of the order of 1 TeV.
Spencer, A J M
2004-01-01
The mechanics of fluids and the mechanics of solids represent the two major areas of physics and applied mathematics that meet in continuum mechanics, a field that forms the foundation of civil and mechanical engineering. This unified approach to the teaching of fluid and solid mechanics focuses on the general mechanical principles that apply to all materials. Students who have familiarized themselves with the basic principles can go on to specialize in any of the different branches of continuum mechanics. This text opens with introductory chapters on matrix algebra, vectors and Cartesian ten
DEFF Research Database (Denmark)
El-Naaman, Salim Abdallah
the macroscopic effects related to strain gradients, most predict smooth micro-structures. The evolution of dislocation micro-structures, during plastic straining of ductile crystalline materials, is highly complex and nonuniform. Published experimental measurements on deformed metal crystals show distinct......An extensive amount of research has been devoted to the development of micro-mechanics based gradient plasticity continuum theories, which are necessary for modeling micron-scale plasticity when large spatial gradients of plastic strain appear. While many models have proven successful in capturing...... strain. It is clear that many challenges are associated with modeling dislocation structures, within a framework based on continuum ﬁelds, however, since the strain gradient effects are attributed to the dislocation micro-structure, it is a natural step, in the further development of gradient theories...
Exploring the potential of multivariate depth-damage and rainfall-damage models
DEFF Research Database (Denmark)
van Ootegem, Luc; van Herck, K.; Creten, T.
2018-01-01
In Europe, floods are among the natural catastrophes that cause the largest economic damage. This article explores the potential of two distinct types of multivariate flood damage models: ‘depth-damage’ models and ‘rainfall-damage’ models. We use survey data of 346 Flemish households that were...... victim of pluvial floods complemented with rainfall data from both rain gauges and weather radars. In the econometrical analysis, a Tobit estimation technique is used to deal with the issue of zero damage observations. The results show that in the ‘depth-damage’ models flood depth has a significant...... impact on the damage. In the ‘rainfall-damage’ models there is a significant impact of rainfall accumulation on the damage when using the gauge rainfall data as predictor, but not when using the radar rainfall data. Finally, non-hazard indicators are found to be important for explaining pluvial flood...
Computational model for the assessment of oil spill damages
Energy Technology Data Exchange (ETDEWEB)
Seip, K L; Heiberg, A B; Brekke, K A
1985-06-01
A description is given of the method and the required data of a model for calculating oil spill damages. Eleven damage attributes are defined: shorelength contaminated, shore restitution time, birds dead, restitution time for three groups of birds, open sea damages-two types, damages to recreation, economy and fisheries. The model has been applied in several cases of oil pollution assessments: in an examination of alternative models for the organization of oil spill combat in Norway, in the assessment of the damages coused by a blowout at Tromsoeflaket and in assessing a possible increase in oil spill preparedness for Svalbard. 56 references.
Directory of Open Access Journals (Sweden)
Huang-bin Lin
2015-01-01
Full Text Available A new method of characterizing the damage of high strength concrete structures is presented, which is based on the deformation energy double parameters damage model and incorporates both of the main forms of damage by earthquakes: first time damage beyond destruction and energy consumption. Firstly, test data of high strength reinforced concrete (RC columns were evaluated. Then, the relationship between stiffness degradation, strength degradation, and ductility performance was obtained. And an expression for damage in terms of model parameters was determined, as well as the critical input data for the restoring force model to be used in analytical damage evaluation. Experimentally, the unloading stiffness was found to be related to the cycle number. Then, a correction for this changing was applied to better describe the unloading phenomenon and compensate for the shortcomings of structure elastic-plastic time history analysis. The above algorithm was embedded into an IDARC program. Finally, a case study of high strength RC multistory frames was presented. Under various seismic wave inputs, the structural damages were predicted. The damage model and correction algorithm of stiffness unloading were proved to be suitable and applicable in engineering design and damage evaluation of a high strength concrete structure.
A bimodal temom model for particle Brownian coagulation in the continuum-slip regime
Directory of Open Access Journals (Sweden)
He Qing
2016-01-01
Full Text Available In this paper, a bimodal Taylor-series expansion moment of method is proposed to deal with Brownian coagulation in the continuum-slip regime, where the non-linear terms in the Cunningham correction factor is approximated by Taylor-series expansion technology. The results show that both the number concentration and volume fraction decrease with time in the smaller mode due to the intra and inter coagulation, and the asymptotic behavior of the larger mode is as same as that in the continuum regime.
DEFF Research Database (Denmark)
Svendsen, Casper Steinmann; Blædel, Kristoffer; Christensen, Anders S
2013-01-01
An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules such as ubiq......An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules...... such as ubiquitin a reasonable speedup (up to a factor of six) is observed for up to 16 cores. The SCF convergence is greatly improved by PCM for proteins compared to the gas phase....
Towards continuum models of lateral rupture propagation in a segmented megathrust
Pranger, C. C.; van Dinther, Y.; Le Pourhiet, L.; May, D.; Gerya, T.
2015-12-01
At subduction megathrusts, propagation of large ruptures may be confined between the up-dip and down-dip limits of the seismogenic zone. This opens a primary role for lateral rupture dimensions to control the magnitude and severity of megathrust earthquakes. The goal of this study is to improve our understanding of the ways in which the inherent variability of the subduction interface may influence the degree of interseismic locking, and the propensity of a rupture to propagate over regions of variable slip potential. We focus in particular on the roughness of the incoming seafloor, which we expect to be of primary importance. The global absence of a historic record sufficiently long to base risk assessment on, makes us rely on numerical modelling as a way to extend our understanding of the spatio-temporal occurrence of earthquakes. However, the complex interaction of the subduction stress environment, the variability of the subduction interface, and the structure and deformation of the crustal wedge has made it very difficult to construct comprehensive numerical models of megathrust segmentation. We intend to develop and exploit the power of a plastic 3D continuum representation of the subduction megathrust, as well as off-megathrust faulting to model the long-term tectonic build-up of stresses, and their sudden seismic release. The sheer size of the 3D problem, and the time scales covering those of tectonics as well as seismology, force us to explore efficient and accurate physical and numerical techniques. So far, we have focused our efforts on developing a staggered grid finite difference code that makes use of the PETSc library for massively parallel computing. The code incorporates a newly developed automatic discretization algorithm, which enables it to handle a wide variety of equations with relative ease. What remains now is combining the physics that act on the different spatial and temporal scales. To this end we explore new constitutive models that
Towards three-dimensional continuum models of self-consistent along-strike megathrust segmentation
Pranger, Casper; van Dinther, Ylona; May, Dave; Le Pourhiet, Laetitia; Gerya, Taras
2016-04-01
At subduction megathrusts, propagation of large ruptures may be confined between the up-dip and down-dip limits of the seismogenic zone. This opens a primary role for lateral rupture dimensions to control the magnitude and severity of megathrust earthquakes. The goal of this study is to improve our understanding of the ways in which the inherent variability of the subduction interface may influence the degree of interseismic locking, and the propensity of a rupture to propagate over regions of variable slip potential. The global absence of a historic record sufficiently long to base risk assessment on, makes us rely on numerical modelling as a way to extend our understanding of the spatio-temporal occurrence of earthquakes. However, the complex interaction of the subduction stress environment, the variability of the subduction interface, and the structure and deformation of the crustal wedge has made it very difficult to construct comprehensive numerical models of megathrust segmentation. We develop and exploit the power of a plastic 3D continuum representation of the subduction megathrust, as well as off-megathrust faulting to model the long-term tectonic build-up of stresses, and their sudden seismic release. The sheer size of the 3D problem, and the time scales covering those of tectonics as well as seismology, force us to explore efficient and accurate physical and numerical techniques. We thus focused our efforts on developing a staggered grid finite difference code that makes use of the PETSc library for massively parallel computing. The code incorporates a newly developed automatic discretization algorithm, which enables it to handle a wide variety of equations with relative ease. The different physical and numerical ingredients - like attenuating visco-elasto-plastic materials, frictional weakening and inertially driven seismic release, and adaptive time marching schemes - most of which have been implemented and benchmarked individually - are now combined
Directory of Open Access Journals (Sweden)
Casper Steinmann
Full Text Available An interface between semi-empirical methods and the polarized continuum model (PCM of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41. The interface includes energy gradients and is parallelized. For large molecules such as ubiquitin a reasonable speedup (up to a factor of six is observed for up to 16 cores. The SCF convergence is greatly improved by PCM for proteins compared to the gas phase.
SUCCESS AND PITFALLS OF THE DIELECTRIC CONTINUUM MODEL IN QUANTUM-CHEMICAL CALCULATIONS
DEVRIES, AH; VANDUIJNEN, PT; JUFFER, AH
1993-01-01
Recently we presented an extension of the direct reaction field (DRF) method, in which a quantum system and a set of point charges and interacting polarizabilities are embedded in a continuum that is characterized by a dielectric constant epsilon and a finite ionic strength. The reaction field of
Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Hilton, Eric J.; Brown, Benjamin P.
2016-04-01
We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes
Micromechanical modeling of strength and damage of fiber reinforced composites
Energy Technology Data Exchange (ETDEWEB)
Mishnaevsky, L. Jr.; Broendsted, P.
2007-03-15
The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)
Schuecker, Clara; Davila, Carlos G.; Pettermann, Heinz E.
2008-01-01
The present work is concerned with modeling the non-linear response of fiber reinforced polymer laminates. Recent experimental data suggests that the non-linearity is not only caused by matrix cracking but also by matrix plasticity due to shear stresses. To capture the effects of those two mechanisms, a model combining a plasticity formulation with continuum damage has been developed to simulate the non-linear response of laminates under plane stress states. The model is used to compare the predicted behavior of various laminate lay-ups to experimental data from the literature by looking at the degradation of axial modulus and Poisson s ratio of the laminates. The influence of residual curing stresses and in-situ effect on the predicted response is also investigated. It is shown that predictions of the combined damage/plasticity model, in general, correlate well with the experimental data. The test data shows that there are two different mechanisms that can have opposite effects on the degradation of the laminate Poisson s ratio which is captured correctly by the damage/plasticity model. Residual curing stresses are found to have a minor influence on the predicted response for the cases considered here. Some open questions remain regarding the prediction of damage onset.
Memon, Shahbaz; Vallot, Dorothée; Zwinger, Thomas; Neukirchen, Helmut
2017-04-01
Scientific communities generate complex simulations through orchestration of semi-structured analysis pipelines which involves execution of large workflows on multiple, distributed and heterogeneous computing and data resources. Modeling ice dynamics of glaciers requires workflows consisting of many non-trivial, computationally expensive processing tasks which are coupled to each other. From this domain, we present an e-Science use case, a workflow, which requires the execution of a continuum ice flow model and a discrete element based calving model in an iterative manner. Apart from the execution, this workflow also contains data format conversion tasks that support the execution of ice flow and calving by means of transition through sequential, nested and iterative steps. Thus, the management and monitoring of all the processing tasks including data management and transfer of the workflow model becomes more complex. From the implementation perspective, this workflow model was initially developed on a set of scripts using static data input and output references. In the course of application usage when more scripts or modifications introduced as per user requirements, the debugging and validation of results were more cumbersome to achieve. To address these problems, we identified a need to have a high-level scientific workflow tool through which all the above mentioned processes can be achieved in an efficient and usable manner. We decided to make use of the e-Science middleware UNICORE (Uniform Interface to Computing Resources) that allows seamless and automated access to different heterogenous and distributed resources which is supported by a scientific workflow engine. Based on this, we developed a high-level scientific workflow model for coupling of massively parallel High-Performance Computing (HPC) jobs: a continuum ice sheet model (Elmer/Ice) and a discrete element calving and crevassing model (HiDEM). In our talk we present how the use of a high
Experimental Damage Identification of a Model Reticulated Shell
Directory of Open Access Journals (Sweden)
Jing Xu
2017-04-01
Full Text Available The damage identification of a reticulated shell is a challenging task, facing various difficulties, such as the large number of degrees of freedom (DOFs, the phenomenon of modal localization and transition, and low modeling accuracy. Based on structural vibration responses, the damage identification of a reticulated shell was studied. At first, the auto-regressive (AR time series model was established based on the acceleration responses of the reticulated shell. According to the changes in the coefficients of the AR model between the damaged conditions and the undamaged condition, the damage of the reticulated shell can be detected. In addition, the damage sensitive factors were determined based on the coefficients of the AR model. With the damage sensitive factors as the inputs and the damage positions as the outputs, back-propagation neural networks (BPNNs were then established and were trained using the Levenberg–Marquardt algorithm (L–M algorithm. The locations of the damages can be predicted by the back-propagation neural networks. At last, according to the experimental scheme of single-point excitation and multi-point responses, the impact experiments on a K6 shell model with a scale of 1/10 were conducted. The experimental results verified the efficiency of the proposed damage identification method based on the AR time series model and back-propagation neural networks. The proposed damage identification method can ensure the safety of the practical engineering to some extent.
Energy Technology Data Exchange (ETDEWEB)
Rotureau, J
2005-02-15
The recent experimental results concerning nuclei at the limit of stability close to the drip-lines and in particular the two-proton emitters require a development of new methodologies to reliably calculate and understand properties of those exotic physical systems. In this work we have extended the Shell Model Embedded in the Continuum (SMEC) in order to describe the coupling with two particles in the scattering continuum. We have obtained a microscopic description of the two-proton emission that takes into account the antisymmetrization of the total wavefunction, the configuration mixing and the three-body asymptotics. We have studied the decay of the 1{sub 2}{sup -} state in {sup 18}Ne in two limiting cases: (i) a sequential emission of two protons through the correlated continuum of {sup 17}F and (ii) emission of {sup 2}He cluster that disintegrates because of the final state interaction (diproton emission). Independently of the choice of the effective interaction we have observed that the two-proton emission of the 1{sub 2}{sup -} in {sup 18}Ne is mainly a sequential process; the ratio between the widths of the diproton emission and the sequential decay does not exceed 8% in any case. (author)
Damage in Creep Aging Process of an Al-Zn-Mg-Cu Alloy: Experiments and Modeling
Directory of Open Access Journals (Sweden)
Chao Lei
2018-04-01
Full Text Available In creep age forming (CAF, large integral panel components of high-strength aluminum alloy can be shaped and strengthened under external elastic loading at an elevated temperature through creep deformation and age hardening, simultaneously. However, the high ribbed structure on panel may induce stress concentration, inhomogeneous plastic deformation and even damage evolution on the bending rib, leading to the difficulty in controlling forming precision and material properties. Therefore, the generation and evolution of damage are necessary to be considered in the design of CAF. Taking 7050 aluminum alloy as the case material, the continuous and interrupted creep aging tests at 165 °C and three stress levels (300, 325, and 350 MPa were conducted, and the corresponding material properties, precipitate, and damage microstructures were studied by mechanical properties tests, transmission electron microscope (TEM and scanning electron microscope (SEM characterizations. With the increase of stress level, the creep deformation occurs easier, the precipitates grow up faster, the creep damage occurs earlier, the growth rate and the size of microvoids increase, the mechanical properties decrease more rapidly, and the dominant mechanism of creep fracture changes from shear to microvoid coalescence. To simulate creep aging behavior with damage, a continuum damage mechanics (CDM based model is calibrated and numerically implemented into ABAQUS solver via CREEP subroutine. The CAF of 7050 aluminum alloy panels with different height ribs were conducted by experiment and FE simulation. The forming process presents a typical stress relaxation phenomenon. The creep damage mainly occurs on the bending rib due to the severe stress concentration. With the increase of rib height, the creep strain and damage degree increase, but the springback decreases.
International Nuclear Information System (INIS)
Mayer, Alexander E.; Mayer, Polina N.
2015-01-01
A continuum model of the metal melt fracture is formulated on the basis of the continuum mechanics and theory of metastable liquid. A character of temperature and strain rate dependences of the tensile strength that is predicted by the continuum model is verified, and parameters of the model are fitted with the use of the results of the molecular dynamics simulations for ultra-high strain rates (≥1–10/ns). A comparison with experimental data from literature is also presented for Al and Ni melts. Using the continuum model, the dynamic tensile strength of initially uniform melts of Al, Cu, Ni, Fe, Ti, and Pb within a wide range of strain rates (from 1–10/ms to 100/ns) and temperatures (from melting temperature up to 70–80% of critical temperature) is calculated. The model is applied to numerical investigation of a problem of the high-current electron irradiation of Al, Cu, and Fe targets
Kerschbaum, M.; Hopmann, C.
2016-06-01
The computationally efficient simulation of the progressive damage behaviour of continuous fibre reinforced plastics is still a challenging task with currently available computer aided engineering methods. This paper presents an original approach for an energy based continuum damage model which accounts for stress-/strain nonlinearities, transverse and shear stress interaction phenomena, quasi-plastic shear strain components, strain rate effects, regularised damage evolution and consideration of load reversal effects. The physically based modelling approach enables experimental determination of all parameters on ply level to avoid expensive inverse analysis procedures. The modelling strategy, implementation and verification of this model using commercially available explicit finite element software are detailed. The model is then applied to simulate the impact and penetration of carbon fibre reinforced cross-ply specimens with variation of the impact speed. The simulation results show that the presented approach enables a good representation of the force-/displacement curves and especially well agreement with the experimentally observed fracture patterns. In addition, the mesh dependency of the results were assessed for one impact case showing only very little change of the simulation results which emphasises the general applicability of the presented method.
Voulgarelis, Dimitrios; Velayudhan, Ajoy; Smith, Frank
2017-01-01
Agent-based models provide a formidable tool for exploring complex and emergent behaviour of biological systems as well as accurate results but with the drawback of needing a lot of computational power and time for subsequent analysis. On the other hand, equation-based models can more easily be used for complex analysis in a much shorter timescale. This paper formulates an ordinary differential equations and stochastic differential equations model to capture the behaviour of an existing agent-based model of tumour cell reprogramming and applies it to optimization of possible treatment as well as dosage sensitivity analysis. For certain values of the parameter space a close match between the equation-based and agent-based models is achieved. The need for division of labour between the two approaches is explored. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Pahar, Gourabananda; Dhar, Anirban
2017-04-01
A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.
Whitmore, Stephen A.; Petersen, Brian J.; Scott, David D.
1996-01-01
This paper develops a dynamic model for pressure sensors in continuum and rarefied flows with longitudinal temperature gradients. The model was developed from the unsteady Navier-Stokes momentum, energy, and continuity equations and was linearized using small perturbations. The energy equation was decoupled from momentum and continuity assuming a polytropic flow process. Rarefied flow conditions were accounted for using a slip flow boundary condition at the tubing wall. The equations were radially averaged and solved assuming gas properties remain constant along a small tubing element. This fundamental solution was used as a building block for arbitrary geometries where fluid properties may also vary longitudinally in the tube. The problem was solved recursively starting at the transducer and working upstream in the tube. Dynamic frequency response tests were performed for continuum flow conditions in the presence of temperature gradients. These tests validated the recursive formulation of the model. Model steady-state behavior was analyzed using the final value theorem. Tests were performed for rarefied flow conditions and compared to the model steady-state response to evaluate the regime of applicability. Model comparisons were excellent for Knudsen numbers up to 0.6. Beyond this point, molecular affects caused model analyses to become inaccurate.
International Nuclear Information System (INIS)
Robinson, R.D.
1985-01-01
This paper reviews the metre-wave continuum radiation which is related to similar solar emissions observed in the decimetre and centimetre spectral regions. This type of emission, known as Flare Contiuum, is related to the radio bursts of types II and IV. After summarising the history of the phenomenon and reviewing the observational work, the author discusses the various possible radiation mechanisms and their relation to the solar corona, the interplanetary medium and related regions. The theoretical topics covered include the role of high-energy particles, the trapping of such particles, gyro-synchrotron radiation, polarization and plasma interactions. (U.K.)
Ali, Amjad; Shabbir Naz, G.; Saleem Shahzad, M.; Kouser, R.; Aman-ur-Rehman; Nasim, M. H.
2018-03-01
The energy states of the bound electrons in high energy density systems (HEDS) are significantly affected due to the electric field of the neighboring ions. Due to this effect bound electrons require less energy to get themselves free and move into the continuum. This phenomenon of reduction in potential is termed as ionization potential depression (IPD) or the continuum lowering (CL). The foremost parameter to depict this change is the average charge state, therefore accurate modeling for CL is imperative in modeling atomic data for computation of radiative and thermodynamic properties of HEDS. In this paper, we present an improved model of CL in the screened hydrogenic model with l-splitting (SHML) proposed by G. Faussurier and C. Blancard, P. Renaudin [High Energy Density Physics 4 (2008) 114] and its effect on average charge state. We propose the level charge dependent calculation of CL potential energy and inclusion of exchange and correlation energy in SHML. By doing this, we made our model more relevant to HEDS and free from CL empirical parameter to the plasma environment. We have implemented both original and modified model of SHML in our code named OPASH and benchmark our results with experiments and other state-of-the-art simulation codes. We compared our results of average charge state for Carbon, Beryllium, Aluminum, Iron and Germanium against published literature and found a very reasonable agreement between them.
The Finite Strain Johnson Cook Plasticity and Damage Constitutive Model in ALEGRA.
Energy Technology Data Exchange (ETDEWEB)
Sanchez, Jason James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2018-02-01
A finite strain formulation of the Johnson Cook plasticity and damage model and it's numerical implementation into the ALEGRA code is presented. The goal of this work is to improve the predictive material failure capability of the Johnson Cook model. The new implementation consists of a coupling of damage and the stored elastic energy as well as the minimum failure strain criteria for spall included in the original model development. This effort establishes the necessary foundation for a thermodynamically consistent and complete continuum solid material model, for which all intensive properties derive from a common energy. The motivation for developing such a model is to improve upon ALEGRA's present combined model framework. Several applications of the new Johnson Cook implementation are presented. Deformation driven loading paths demonstrate the basic features of the new model formulation. Use of the model produces good comparisons with experimental Taylor impact data. Localized deformation leading to fragmentation is produced for expanding ring and exploding cylinder applications.
Integrated geomechanical modelling for deep subsurface damage
Wees, J.D. van; Orlic, B.; Zijl, W.; Jongerius, P.; Schreppers, G.J.; Hendriks, M.
2001-01-01
Government, E&P and mining industry increasingly demand fundamental insight and accurate predictions on subsurface and surface deformation and damage due to exploitation of subsurface natural resources, and subsurface storage of energy residues (e.g. CO2). At this moment deformation is difficult to
Modelling low velocity impact induced damage in composite laminates
Shi, Yu; Soutis, Constantinos
2017-12-01
The paper presents recent progress on modelling low velocity impact induced damage in fibre reinforced composite laminates. It is important to understand the mechanisms of barely visible impact damage (BVID) and how it affects structural performance. To reduce labour intensive testing, the development of finite element (FE) techniques for simulating impact damage becomes essential and recent effort by the composites research community is reviewed in this work. The FE predicted damage initiation and propagation can be validated by Non Destructive Techniques (NDT) that gives confidence to the developed numerical damage models. A reliable damage simulation can assist the design process to optimise laminate configurations, reduce weight and improve performance of components and structures used in aircraft construction.
Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model
Energy Technology Data Exchange (ETDEWEB)
Fok, Alex
2013-10-30
The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the model to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.
Probabilistic flood damage modelling at the meso-scale
Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno
2014-05-01
Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.
Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem
2014-05-01
Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin-Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.
International Nuclear Information System (INIS)
Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem
2014-01-01
Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.
Energy Technology Data Exchange (ETDEWEB)
Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Fazelzadeh, S. Ahmad [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Rafii-Tabar, Hashem [Department of Medical Physics and Biomedical Engineering, Research Center for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of)
2014-05-01
Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.
Variational principles of continuum mechanics II applications
Berdichevsky, Victor L
2009-01-01
This concise and understandable book about variational principles of continuum mechanics presents the classical models. The book is accessible to applied mathematicians, physicists and engineers who have an interest in continuum mechanics.
Failure Predictions for DP Steel Cross-die Test Using Anisotropic Damage
Niazi, Muhammad Sohail; Wisselink, H.H.; Meinders, Vincent T.; Huetink, Han
2012-01-01
The Lemaitre's continuum damage model is well known in the field of damage mechanics. The anisotropic damage model given by Lemaitre is relatively simple, applicable to nonproportional loads and uses only four damage parameters. The hypothesis of strain equivalence is used to map the effective
Neurologic continuum of care: Evidence-based model of a post-hospital system of care.
Lewis, Frank D; Horn, Gordon J
2015-01-01
There is increasing need for a well-organized continuum of post-hospital rehabilitative care to reduce long term disability resulting from acquired brain injury. This study examined the effectiveness of four levels of post-hospital care (active neurorehabilitation, neurobehavioral intensive, day treatment, and supported living) and the functional variables most important to their success. Participants were 1276 adults with acquired brain injury who were being treated in one of the four program levels. A Repeated Measures MANOVA was used to evaluate change from admission to discharge on the Mayo Portland Adaptability Inventory-4 T-scores. Regression analyses were used to identify predictors of outcome. Statistical improvement on the MPAI-4 was observed at each program level. Self-care and Initiation were the strongest predictors of outcome. The results support the effectiveness of a continuum of care for acquired brain injury individuals beyond hospitalization and acute in-hospital rehabilitation. It is particularly noteworthy that reduction in disability was achieved for all levels of programming even with participants whose onset to admission exceeded 7 years post-injury.
Measuring damage in physical model tests of rubble mounds
Hofland, B.; Rosa-Santos, Paulo; Taveira-Pinto, Francisco; Lemos, Rute; Mendonça, A.; Juana Fortes, C
2017-01-01
This paper studies novel ways to evaluate armour damage in physical models of coastal structures. High-resolution damage data for reference rubble mound breakwaters obtained under the HYDRALAB+ joint-research project are analysed and discussed. These tests are used to analyse the way to describe
Use of heavy ions to model radiation damage of metals
International Nuclear Information System (INIS)
Shirokov, S.V.; Vyshemirskij, M.P.
2011-01-01
The methods for modeling radiation damage of metals using heavy ions are reviewed and the results obtained are analyzed. It is shown that irradiation of metals with heavy ion can simulate neutron exposure with the equivalent dose with adequate accuracy and permits a detailed analysis of radiation damage of metals
Track structure model of cell damage in space flight
Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Shinn, Judy L.; Ngo, Duc M.
1992-01-01
The phenomenological track-structure model of cell damage is discussed. A description of the application of the track-structure model with the NASA Langley transport code for laboratory and space radiation is given. Comparisons to experimental results for cell survival during exposure to monoenergetic, heavy-ion beams are made. The model is also applied to predict cell damage rates and relative biological effectiveness for deep-space exposures.
Hertel, Peter
2012-01-01
This small book on the properties of continuously distributed matter covers a huge field. It sets out the governing principles of continuum physics and illustrates them by carefully chosen examples. These examples comprise structural mechanics and elasticity, fluid media, electricity and optics, thermoelectricity, fluctuation phenomena and more, from Archimedes' principle via Brownian motion to white dwarfs. Metamaterials, pattern formation by reaction-diffusion and surface plasmon polaritons are dealt with as well as classical topics such as Stokes' formula, beam bending and buckling, crystal optics and electro- and magnetooptic effects, dielectric waveguides, Ohm's law, surface acoustic waves, to mention just some. The set of balance equations for content, flow and production of particles, mass, charge, momentum, energy and entropy is augmented by material, or constitutive equations. They describe entire classes of materials, such as viscid fluids and gases, elastic media, dielectrics or electrical con...
International Nuclear Information System (INIS)
You, Zhi-Qiang; Herbert, John M.; Mewes, Jan-Michael; Dreuw, Andreas
2015-01-01
The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium dielectric polarization response that accompanies instantaneous perturbation of a solute embedded in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accompanying polarization response, for a quantum-mechanical solute described within the framework of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast” versus “slow” polarization contributions, discretization of the PCM integral equations fails to preserve certain symmetries contained in these equations (except in the case of the conductor-like models or when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike the total equilibrium solvation energy, however, which can differ dramatically between different formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected to afford a large polarization response. Numerical results therefore support the interchangeability of the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges for interpretive value, as these charges differ greatly between the two partitions, especially in polar solvents
Energy Technology Data Exchange (ETDEWEB)
You, Zhi-Qiang; Herbert, John M., E-mail: herbert@chemistry.ohio-state.edu [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 (United States); Mewes, Jan-Michael; Dreuw, Andreas [Interdisciplinary Center for Scientific Computing, Ruprechts-Karls University, Im Neuenheimer Feld 368, 69120 Heidelberg (Germany)
2015-11-28
The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium dielectric polarization response that accompanies instantaneous perturbation of a solute embedded in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accompanying polarization response, for a quantum-mechanical solute described within the framework of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast” versus “slow” polarization contributions, discretization of the PCM integral equations fails to preserve certain symmetries contained in these equations (except in the case of the conductor-like models or when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike the total equilibrium solvation energy, however, which can differ dramatically between different formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected to afford a large polarization response. Numerical results therefore support the interchangeability of the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges for interpretive value, as these charges differ greatly between the two partitions, especially in polar solvents.
An Image-based Micro-continuum Pore-scale Model for Gas Transport in Organic-rich Shale
Guo, B.; Tchelepi, H.
2017-12-01
Gas production from unconventional source rocks, such as ultra-tight shales, has increased significantly over the past decade. However, due to the extremely small pores ( 1-100 nm) and the strong material heterogeneity, gas flow in shale is still not well understood and poses challenges for predictive field-scale simulations. In recent years, digital rock analysis has been applied to understand shale gas transport at the pore-scale. An issue with rock images (e.g. FIB-SEM, nano-/micro-CT images) is the so-called "cutoff length", i.e., pores and heterogeneities below the resolution cannot be resolved, which leads to two length scales (resolved features and unresolved sub-resolution features) that are challenging for flow simulations. Here we develop a micro-continuum model, modified from the classic Darcy-Brinkman-Stokes framework, that can naturally couple the resolved pores and the unresolved nano-porous regions. In the resolved pores, gas flow is modeled with Stokes equation. In the unresolved regions where the pore sizes are below the image resolution, we develop an apparent permeability model considering non-Darcy flow at the nanoscale including slip flow, Knudsen diffusion, adsorption/desorption, surface diffusion, and real gas effect. The end result is a micro-continuum pore-scale model that can simulate gas transport in 3D reconstructed shale images. The model has been implemented in the open-source simulation platform OpenFOAM. In this paper, we present case studies to demonstrate the applicability of the model, where we use 3D segmented FIB-SEM and nano-CT shale images that include four material constituents: organic matter, clay, granular mineral, and pore. In addition to the pore structure and the distribution of the material constituents, we populate the model with experimental measurements (e.g. size distribution of the sub-resolution pores from nitrogen adsorption) and parameters from the literature and identify the relative importance of different
A new micromechanical approach of micropolar continuum modeling for 2-D periodic cellular material
Institute of Scientific and Technical Information of China (English)
Bin Niu; Jun Yan
2016-01-01
In this paper, we present a new united approach to formulate the equivalent micropolar constitutive relation of two-dimensional (2-D) periodic cellular material to capture its non-local properties and to explain the size effects in its structural analysis. The new united approach takes both the displacement compatibility and the equilibrium of forces and moments into consideration, where Taylor series expansion of the displacement and rotation fields and the extended aver-aging procedure with an explicit enforcement of equilibrium are adopted in the micromechanical analysis of a unit cell. In numerical examples, the effective micropolar constants obtained in this paper and others derived in the literature are used for the equivalent micropolar continuum simulation of cellular solids. The solutions from the equivalent analysis are compared with the discrete simulation solutions of the cellu-lar solids. It is found that the micropolar constants developed in this paper give satisfying results of equivalent analysis for the periodic cellular material.
Effective elastic properties of damaged isotropic solids
International Nuclear Information System (INIS)
Lee, U Sik
1998-01-01
In continuum damage mechanics, damaged solids have been represented by the effective elastic stiffness into which local damage is smoothly smeared. Similarly, damaged solids may be represented in terms of effective elastic compliances. By virtue of the effective elastic compliance representation, it may become easier to derive the effective engineering constants of damaged solids from the effective elastic compliances, all in closed form. Thus, in this paper, by using a continuum modeling approach based on both the principle of strain energy equivalence and the equivalent elliptical micro-crack representation of local damage, the effective elastic compliance and effective engineering constants are derived in terms of the undamaged (virgin) elastic properties and a scalar damage variable for both damaged two-and three-dimensional isotropic solids
A plastic damage model with stress triaxiality-dependent hardening
International Nuclear Information System (INIS)
Shen Xinpu; Shen Guoxiao; Zhou Lin
2005-01-01
Emphases of this study were placed on the modelling of plastic damage behaviour of prestressed structural concrete, with special attention being paid to the stress-triaxiality dependent plastic hardening law and the corresponding damage evolution law. A definition of stress triaxiality was proposed and introduced in the model presented here. Drucker-Prager -type plasticity was adopted in the formulation of the plastic damage constitutive equations. Numerical validations were performed for the proposed plasticity-based damage model with a driver subroutine developed in this study. The predicted stress-strain behaviour seems reasonably accurate for the uniaxial tension and uniaxial compression compared with the experimental data reported in references. Numerical calculations of compressions under various hydrostatic stress confinements were carried out in order to validate the stress triaxiality dependent properties of the model. (authors)
A Plastic Damage Mechanics Model for Engineered Cementitious Composites
DEFF Research Database (Denmark)
Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe
2007-01-01
This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...
Numerical modelling of damage evolution in ingot forging
DEFF Research Database (Denmark)
Christiansen, Peter; Martins, Paulo A.F.; Bay, Niels Oluf
2015-01-01
The ingot forging process is numerically simulated applying both the Shima-Oyane porous plasticity model as a coupled damage model and the uncoupled normalized Cockcroft & Latham criterion. Four different cases including two different lower die angles (120º and 180º) and two different sizes of feed...... (400mm and 800mm) are analysed. Comparison of the simulation results with recommendations in literature on ingot forging, indicates the normalized Cockcroft & Latham damage criterion to be the most realistic of the two....
International Nuclear Information System (INIS)
Guo, Jianwen; Zhang, Guojun; Huang, Yu; Ming, Wuyi; Liu, Min; Huang, Hao
2014-01-01
Highlights: • An atomistic-continuum computational simulation model for single-discharge micro-EDM process of Cu cathode is constructed. • Cathode material is removed mainly in the form of single atoms or small clusters in micro-EDM. • Electric action leads to the formation of peaks on the surface of crater. • Removing process of cathode material under the hybrid action combining the thermal action and the electric action is studied, and the strength of either action needed for material to remove is much reduced. - Abstract: In micro-electrical discharge machining (micro-EDM), the discharge duration is ultra-short, and both the electric action and the thermal action by the discharge channel play important roles in the removing process of cathode material. However, in most researches on the machining mechanism of micro-EDM, only the thermal action is concerned. In this article, a combined atomistic-continuum modeling method in which the two-temperature model and the molecular dynamics simulation model are integrated is used to construct the simulation model for cathode in single-discharge micro-EDM process. With this simulation model, removing processes of Cu cathode material in micro-EDM under pure thermal action, pure electric action and the combination of them are investigated in a simulative way. By analyzing evolutions of temperature, stress and micro-structure of material as well as the dynamical behaviors of material in the removing process, mechanisms of the cathode material removal and crater formation are revealed. In addition, the removing process of cathode material under the combination of pure thermal action and pure electric action is compared with those under the two pure actions respectively to analyze the interactive effect between the thermal action and the electric action
Flood damage: a model for consistent, complete and multipurpose scenarios
Menoni, Scira; Molinari, Daniela; Ballio, Francesco; Minucci, Guido; Mejri, Ouejdane; Atun, Funda; Berni, Nicola; Pandolfo, Claudia
2016-12-01
Effective flood risk mitigation requires the impacts of flood events to be much better and more reliably known than is currently the case. Available post-flood damage assessments usually supply only a partial vision of the consequences of the floods as they typically respond to the specific needs of a particular stakeholder. Consequently, they generally focus (i) on particular items at risk, (ii) on a certain time window after the occurrence of the flood, (iii) on a specific scale of analysis or (iv) on the analysis of damage only, without an investigation of damage mechanisms and root causes. This paper responds to the necessity of a more integrated interpretation of flood events as the base to address the variety of needs arising after a disaster. In particular, a model is supplied to develop multipurpose complete event scenarios. The model organizes available information after the event according to five logical axes. This way post-flood damage assessments can be developed that (i) are multisectoral, (ii) consider physical as well as functional and systemic damage, (iii) address the spatial scales that are relevant for the event at stake depending on the type of damage that has to be analyzed, i.e., direct, functional and systemic, (iv) consider the temporal evolution of damage and finally (v) allow damage mechanisms and root causes to be understood. All the above features are key for the multi-usability of resulting flood scenarios. The model allows, on the one hand, the rationalization of efforts currently implemented in ex post damage assessments, also with the objective of better programming financial resources that will be needed for these types of events in the future. On the other hand, integrated interpretations of flood events are fundamental to adapting and optimizing flood mitigation strategies on the basis of thorough forensic investigation of each event, as corroborated by the implementation of the model in a case study.
Modelling of creep damage development in ferritic steels
Energy Technology Data Exchange (ETDEWEB)
Sandstroem, R. [Swedish Institute for Metals Research, Stockholm (Sweden)
1998-12-31
The physical creep damage, which is observed in fossil-fired power plants, is mainly due to the formation of cavities and their interaction. It has previously been demonstrated that both the nucleation and growth of creep cavities can be described by power functions in strain for low alloy and 12 % CrMoV creep resistant steels. It possible to show that the physical creep damage is proportional to the product of the number of cavities and their area. Hence, the physical creep damage can also be expressed in terms of the creep strain. In the presentation this physical creep damage is connected to the empirical creep damage classes (1-5). A creep strain-time function, which is known to be applicable to low alloy and 12 % CrMoV creep resistant steels, is used to describe tertiary creep. With this creep strain - time model the residual lifetime can be predicted from the observed damage. For a given damage class the remaining life is directly proportional to the service time. An expression for the time to the next inspection is proposed. This expression is a function of fraction of the total allowed damage, which is consumed till the next inspection. (orig.) 10 refs.
Modelling of creep damage development in ferritic steels
Energy Technology Data Exchange (ETDEWEB)
Sandstroem, R [Swedish Institute for Metals Research, Stockholm (Sweden)
1999-12-31
The physical creep damage, which is observed in fossil-fired power plants, is mainly due to the formation of cavities and their interaction. It has previously been demonstrated that both the nucleation and growth of creep cavities can be described by power functions in strain for low alloy and 12 % CrMoV creep resistant steels. It possible to show that the physical creep damage is proportional to the product of the number of cavities and their area. Hence, the physical creep damage can also be expressed in terms of the creep strain. In the presentation this physical creep damage is connected to the empirical creep damage classes (1-5). A creep strain-time function, which is known to be applicable to low alloy and 12 % CrMoV creep resistant steels, is used to describe tertiary creep. With this creep strain - time model the residual lifetime can be predicted from the observed damage. For a given damage class the remaining life is directly proportional to the service time. An expression for the time to the next inspection is proposed. This expression is a function of fraction of the total allowed damage, which is consumed till the next inspection. (orig.) 10 refs.
Towards a Universal Calving Law: Modeling Ice Shelves Using Damage Mechanics
Whitcomb, M.; Bassis, J. N.; Price, S. F.; Lipscomb, W. H.
2017-12-01
Modeling iceberg calving from ice shelves and ice tongues is a particularly difficult problem in glaciology because of the wide range of observed calving rates. Ice shelves naturally calve large tabular icebergs at infrequent intervals, but may instead calve smaller bergs regularly or disintegrate due to hydrofracturing in warmer conditions. Any complete theory of iceberg calving in ice shelves must be able to generate realistic calving rate values depending on the magnitudes of the external forcings. Here we show that a simple damage evolution law, which represents crevasse distributions as a continuum field, produces reasonable estimates of ice shelf calving rates when added to the Community Ice Sheet Model (CISM). Our damage formulation is based on a linear stability analysis and depends upon the bulk stress and strain rate in the ice shelf, as well as the surface and basal melt rates. The basal melt parameter in our model enhances crevasse growth near the ice shelf terminus, leading to an increased iceberg production rate. This implies that increasing ocean temperatures underneath ice shelves will drive ice shelf retreat, as has been observed in the Amundsen and Bellingshausen Seas. We show that our model predicts broadly correct calving rates for ice tongues ranging in length from 10 km (Erebus) to over 100 km (Drygalski), by matching the computed steady state lengths to observations. In addition, we apply the model to idealized Antarctic ice shelves and show that we can also predict realistic ice shelf extents. Our damage mechanics model provides a promising, computationally efficient way to compute calving fluxes and links ice shelf stability to climate forcing.
Energy Technology Data Exchange (ETDEWEB)
Macdonald, J Ross, E-mail: macd@email.unc.ed [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States)
2010-12-15
Consequences of the well-known Poisson-Nernst-Planck (PNP) continuum equations of charge motion in liquids or solids for ordinary or anomalous diffusion are investigated for an electrochemical cell with completely blocking electrodes. Previous work is summarized and much of it is shown to be independent of earlier published results and incomplete, with little comparison made between ordinary and anomalous diffusion. Such comparison is provided here and also includes variation of the mobility ratio of the mobilities of positive and negative charges from equality to charge of only one sign mobile. New generation-recombination effects are demonstrated for a range of mobility ratios, with particular attention given to those present for the case of charge of only one sign mobile. No previous analyses of experimental data with PNP models using complex-least-squares fitting have been published. Here such a model is found to fit frequency response data well for a hydrogel and to lead to estimates of physically meaningful parameters such as the diffusion constant and ionic concentration. PNP analysis of a synthetic data set derived from experimental results for liquid electrolytes refutes claims made in the original publication dealing with it, but verifies and extends an interesting analysis equation proposed there. PNP fitting of data for solids, including ones showing colossal low-frequency-limiting dielectric constants, suggests that they may often be well described as arising from simple diffuse-charge double-layer effects, and that continuum microscopic models such as the PNP, in series with a conducting Debye response model, may be sufficient for fitting well an appreciable amount of data involving ion hopping and trapping behavior.
International Nuclear Information System (INIS)
Macdonald, J Ross
2010-01-01
Consequences of the well-known Poisson-Nernst-Planck (PNP) continuum equations of charge motion in liquids or solids for ordinary or anomalous diffusion are investigated for an electrochemical cell with completely blocking electrodes. Previous work is summarized and much of it is shown to be independent of earlier published results and incomplete, with little comparison made between ordinary and anomalous diffusion. Such comparison is provided here and also includes variation of the mobility ratio of the mobilities of positive and negative charges from equality to charge of only one sign mobile. New generation-recombination effects are demonstrated for a range of mobility ratios, with particular attention given to those present for the case of charge of only one sign mobile. No previous analyses of experimental data with PNP models using complex-least-squares fitting have been published. Here such a model is found to fit frequency response data well for a hydrogel and to lead to estimates of physically meaningful parameters such as the diffusion constant and ionic concentration. PNP analysis of a synthetic data set derived from experimental results for liquid electrolytes refutes claims made in the original publication dealing with it, but verifies and extends an interesting analysis equation proposed there. PNP fitting of data for solids, including ones showing colossal low-frequency-limiting dielectric constants, suggests that they may often be well described as arising from simple diffuse-charge double-layer effects, and that continuum microscopic models such as the PNP, in series with a conducting Debye response model, may be sufficient for fitting well an appreciable amount of data involving ion hopping and trapping behavior.
International Nuclear Information System (INIS)
Zheng, L.; Samper, J.
2005-01-01
Full text of publication follows: Double porosity, double permeability and dual continuum models (DCM) are widely used for modeling preferential water flow and mass transport in unsaturated and fractured media. Here we present a DCM of fully coupled non-isothermal multiphase flow and reactive transport model for the FEBEX compacted bentonite, a material which exhibits a double porosity behavior.. FEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of a high level radioactive waste repository. Our DCM considers inter-aggregate macro-pores, and intra-aggregate and interlayer micro-pores. Two types of DCMs are tested: the dual continuum connected matrix (DCCM) and the dual continuum dis connected matrix (DCDM). Liquid flow in macro-pores is described with a mass conservation equation accounting for Darcian flow, chemical and thermal osmosis. In DCCM, water flux in micropores is calculated with a modified Darcy's law by adding a chemical osmosis term. A simple mass balance equation is used for DCDM which contains a storage and a water exchange term for water in micropores. A mixed type of water exchange term is adopted which includes a second order term accounting for water transfer due to the difference in liquid pressure and a first order term accounting for the gradient in chemical osmosis pressure. Equations of mass conservation for liquid, gas and heat in macro-pores and liquid mass conservation in micropores are solved by using a Newton-Raphson method. Two transport equations with a coupling interaction term are used to describe solute transport in macro- and micro-pores. The coupling term contains a first order diffusion term and a convection term (solute exchange due to water exchange). Transport equations as well as chemical reactions in the two domains are solved by means of a sequential iteration method. All these feature have been
Directory of Open Access Journals (Sweden)
Puig i Montellà Eduard
2017-01-01
Full Text Available We present analytical and numerical results on localized fluidization within a granular layer subjected to a local injection of fluid. As the injection rate increases the three different regimes previously reported in the literature are recovered: homogeneous expansion of the bed, fluidized cavity in which fluidization starts developing above the injection area, and finally the chimney of fluidized grains when the fluidization zone reaches the free surface. The analytical approach is at the continuum scale, based on Darcy’s law and Therzaghi’s effective stress principle. It provides a good description of the phenomenon as long as the porosity of the granular assembly remains relatively homogeneous. The numerical approach is at the particle scale based on the coupled DEM-PFV method. It tackles the more heterogeneous situations which occur at larger injection rates. A direct link is evidenced between the occurrence of the different regimes of fluidization and the injection aperture. Finally, the merging of chimneys in case of two injection points is investigated.
Fluid dynamics of air in a packed bed: velocity profiles and the continuum model assumption
Directory of Open Access Journals (Sweden)
NEGRINI A. L.
1999-01-01
Full Text Available Air flow through packed beds was analyzed experimentally under conditions ranging from those that reinforce the effect of the wall on the void fraction to those that minimize it. The packing was spherical particles, with a tube-to-particle diameter ratio (D/dp between 3 and 60. Air flow rates were maintained between 1.3 and 4.44 m3/min, and gas velocity was measured with a Pitot tube positioned above the bed exit. Measurements were made at various radial and angular coordinate values, allowing the distribution of air flow across the bed to be described in detail. Comparison of the experimentally observed radial profiles with those derived from published equations revealed that at high D/dp ratios the measured and calculated velocity profiles behaved similarly. At low ratios, oscillations in the velocity profiles agreed with those in the voidage profiles, signifying that treating the porous medium as a continuum medium is questionable in these cases.
International Nuclear Information System (INIS)
Cuerno, Rodolfo; Castro, Mario; Munoz-Garcia, Javier; Gago, Raul; Vazquez, Luis
2011-01-01
Although reports on surface nanostructuring of solid targets by low to medium energy ion irradiation date back to the 1960s, only with the advent of high resolution tools for surface/interface characterization has the high potential of this procedure been recognized as a method for efficient production of surface patterns. Such morphologies are made up of periodic arrangements of nanometric sized features, like ripples and dots, with interest for technological applications due to their electronic, magnetic, and optical properties. Thus, roughly for the last ten years large efforts have been directed towards harnessing this nanofabrication technique. However, and particularly in view of recent experimental developments, we can say that the basic mechanisms controlling these pattern formation processes remain poorly understood. The lack of nanostructuring at low angles of incidence on some pure monoelemental targets, the role of impurities in the surface dynamics and other recent observations are challenging the classic view on the phenomenon as the mere interplay between the curvature dependence of the sputtering yield and surface diffusion. We review the main attempts at a theoretical (continuum) description of these systems, with emphasis on recent developments. Strong hints already exist that the nature of the morphological instability has to be rethought as originating in the material flow that is induced by the ion beam.
Modeling of laser damage initiated by surface contamination
International Nuclear Information System (INIS)
Feit, M.D.; Rubenchik, A.M.; Faux, D.R.; Riddle, R.A.; Shapiro, A.; Eder, D.C.; Penetrante, B.M.; Milam, D.; Genin, F.Y.; Kozlowski, M.R.
1996-11-01
The authors are engaged in a comprehensive effort to understand and model the initiation and growth of laser damage initiated by surface contaminants. This includes, for example, the initial absorption by the contaminant, heating and plasma generation, pressure and thermal loading of the transparent substrate, and subsequent shockwave propagation, 'splashing' of molten material and possible spallation, optical propagation and scattering, and treatment of material fracture. The integration use of large radiation hydrodynamics codes, optical propagation codes and material strength codes enables a comprehensive view of the damage process The following picture of surface contaminant initiated laser damage is emerging from our simulations
Micromechanical Modeling of Grain Boundaries Damage in a Copper Alloy Under Creep
International Nuclear Information System (INIS)
Voese, Markus
2015-01-01
In order to include the processes on the scale of the grain structure into the description of the creep behaviour of polycrystalline materials, the damage development of a single grain boundary has been initially investigated in the present work. For this purpose, a special simulationmethod has been used, whose resolution procedure based on holomorphic functions. The mechanisms taken into account for the simulations include nucleation, growth by grain boundary diffusion, coalescence and shrinkage until complete sintering of grain boundary cavities. These studies have then been used to develop a simplified cavitation model, which describes the grain boundary damage by two state variables and the time-dependent development by a mechanism-oriented rate formulation. To include the influence of grain boundaries within continuum mechanical considerations of polycrystals, an interface model has been developed, that incorporates both damage according to the simplified cavitation model and grain boundary sliding in dependence of a phenomenological grain boundary viscosity. Furthermore a micromechanical model of a polycrystal has been developed that allows to include a material's grain structure into the simulation of the creep behaviour by means of finite element simulations. Thereby, the deformations of individual grains are expressed by a viscoplastic single crystal model and the grain boundaries are described by the proposed interface model. The grain structure is represented by a finite element model, in which the grain boundaries are modelled by cohesive elements. From the evaluation of experimental creep data, the micromechanical model of a polycrystal has been calibrated for a copper-antimony alloy at a temperature of 823 K. Thereby, the adjustment of the single crystal model has been carried out on the basis of creep rates of pure copper single crystal specimens. The experimental determination of grain boundary sliding and grain boundary porosity for coarse
Research on damage evolution and damage model of 316LN steel during forging
Energy Technology Data Exchange (ETDEWEB)
Duan, X.W., E-mail: dxwmike1998@sina.com; Liu, J.S.
2013-12-20
The tensile tests and unloading tensile experiments of 316LN steel were conducted. The damage evolution processes were investigated by optical microscope. The fracture was studied using a Scanning Electron Microscope (SEM) and optical microscope, of which, the chemical compositions were analyzed by Energy Dispersive Spectrometer (EDS). The results show that voids nucleate by decohesion of Al{sub 2}O{sub 3} inclusions–matrix interface and mainly along the grain boundary, especially, at triangular grain boundary junctions. The tensile processes were simulated by Deform2D under different deformation conditions. The critical damage values were obtained. The model between the critical damage value, temperature and strain rate was established by regression analysis. A combination of numerical simulation and upsetting experiments was applied for verifying the accuracy and reliability of critical damage value. These damage values can be used to predict the initiation of voids during 316LN steel hot forging. So, they have important instructional effects on designing forging technology of 316LN steel.
Damage modeling in Small Punch Test specimens
DEFF Research Database (Denmark)
Martínez Pañeda, Emilio; Cuesta, I.I.; Peñuelas, I.
2016-01-01
. Furthermore,Gurson-Tvergaard-Needleman model predictions from a top-down approach are employed to gain insightinto the mechanisms governing crack initiation and subsequent propagation in small punch experiments.An accurate assessment of micromechanical toughness parameters from the SPT...
Energy Technology Data Exchange (ETDEWEB)
Duchemin, Ivan, E-mail: ivan.duchemin@cea.fr [INAC, SP2M/L-Sim, CEA/UJF Cedex 09, 38054 Grenoble (France); Jacquemin, Denis [Laboratoire CEISAM - UMR CNR 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 (France); Institut Universitaire de France, 1 rue Descartes, 75005 Paris Cedex 5 (France); Blase, Xavier [CNRS, Inst. NÉEL, F-38000 Grenoble (France); Univ. Grenoble Alpes, Inst. NÉEL, F-38000 Grenoble (France)
2016-04-28
We have implemented the polarizable continuum model within the framework of the many-body Green’s function GW formalism for the calculation of electron addition and removal energies in solution. The present formalism includes both ground-state and non-equilibrium polarization effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by comparisons with ΔSCF calculations performed at both the density functional theory and coupled-cluster single and double levels for solvated nucleobases. The present study opens the way to GW and Bethe-Salpeter calculations in disordered condensed phases of interest in organic optoelectronics, wet chemistry, and biology.
Xu, Zexuan; Hu, Bill
2016-04-01
Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow
Sadeghi, F.; Ansari, R.; Darvizeh, M.
2016-02-01
Research concerning the fabrication of nano-oscillators with operating frequency in the gigahertz (GHz) range has become a focal point in recent years. In this paper, a new type of GHz oscillators is introduced based on a C60 fullerene inside a cyclic peptide nanotube (CPN). To study the dynamic behavior of such nano-oscillators, using the continuum approximation in conjunction with the 6-12 Lennard-Jones (LJ) potential function, analytical expressions are derived to determine the van der Waals (vdW) potential energy and interaction force between the two interacting molecules. Employing Newton's second law, the equation of motion is solved numerically to arrive at the telescopic oscillatory motion of a C60 fullerene inside CPNs. It is shown that the fullerene molecule exhibits different kinds of oscillation inside peptide nanotubes which are sensitive to the system parameters. Furthermore, for the precise evaluation of the oscillation frequency, a novel semi-analytical expression is proposed based on the conservation of the mechanical energy principle. Numerical results are presented to comprehensively study the effects of the number of peptide units and initial conditions (initial separation distance and velocity) on the oscillatory behavior of C60 -CPN oscillators. It is found out that for peptide nanotubes comprised of one unit, the maximum achievable frequency is obtained when the inner core oscillates with respect to its preferred positions located outside the tube, while for other numbers of peptide units, such frequency is obtained when the inner core oscillates with respect to the preferred positions situated in the space between the two first or the two last units. It is further found out that four peptide units are sufficient to obtain the optimal frequency.
Energy Technology Data Exchange (ETDEWEB)
Jiao, Wei-Hong [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Liu, Shi-Zhong [Department of Chemistry, Stony Brook University, Stony Brook, NY 11794 (United States); Zuo, Zhi-Jun, E-mail: zuozhijun@tyut.edu.cn [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Ren, Rui-Peng; Gao, Zhi-Hua [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Huang, Wei, E-mail: huangwei@tyut.edu.cn [Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China)
2016-11-30
Highlights: • The influence of liquid paraffin is studied using continuum and atomistic models. • Liquid paraffin does not alter the reaction pathways of CO hydrogenation and WGS. • Liquid paraffin alters the reaction pathways of CO{sub 2} hydrogenation. - Abstract: Methanol synthesis from CO/CO{sub 2} hydrogenation and water-gas shift (WGS) reaction on Cu(110) in liquid paraffin and vacuum have been systematically researched with density functional theory calculation (DFT). For methanol synthesis from CO hydrogenation, the reaction pathways in liquid paraffin and vacuum are CO + H → HCO → H{sub 2}CO → H{sub 3}CO → H{sub 3}COH; in the case of WGS, the reaction pathways in liquid paraffin and vacuum are CO + 2H{sub 2}O → CO + 2OH + 2H → CO + H{sub 2}O + O + H{sub 2} → CO{sub 2} + H{sub 2}O + H{sub 2}; the reaction pathways of methanol synthesis from CO{sub 2} hydrogenation in liquid paraffin and vacuum are CO{sub 2} + H → HCOO → H{sub 2}COO → H{sub 2}CO → H{sub 3}CO → H{sub 3}COH and CO{sub 2} + H → HCOO → HCOOH → H{sub 2}COOH → H{sub 3}CO → H{sub 3}COH, respectively. The result shows that liquid paraffin does not affect the reaction mechanisms of methanol synthesis from CO and WGS, but it changes the reaction mechanisms of methanol synthesis from CO{sub 2} hydrogenation. Hirshfeld charge and the d-band centers indicate that the catalytic activity of Cu(110) in liquid paraffin is smaller than that in vacuum. Our results also show that it is necessary to consider both continuum and atomistic models in the slurry bed.
Energy Technology Data Exchange (ETDEWEB)
Dunn, Martin L. [Univ. of Colorado, Boulder, CO (United States); Talmage, Mellisa J. [Univ. of Colorado, Boulder, CO (United States); McDowell, David L. [Georgia Inst. of Technology, Atlanta, GA (United States); West, Neil [Univ. of Colorado, Boulder, CO (United States); Gullett, Philip Michael [Mississippi State Univ., Mississippi State, MS (United States); Miller, David C. [Univ. of Colorado, Boulder, CO (United States); Spark, Kevin [Univ. of Colorado, Boulder, CO (United States); Diao, Jiankuai [Univ. of Colorado, Boulder, CO (United States); Horstemeyer, Mark F. [Mississippi State Univ., Mississippi State, MS (United States); Zimmerman, Jonathan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gall, K. [Georgia Inst. of Technology, Atlanta, GA (United States)
2006-10-01
Lightweight and miniaturized weapon systems are driving the use of new materials in design such as microscale materials and ultra low-density metallic materials. Reliable design of future weapon components and systems demands a thorough understanding of the deformation modes in these materials that comprise the components and a robust methodology to predict their performance during service or storage. Traditional continuum models of material deformation and failure are not easily extended to these new materials unless microstructural characteristics are included in the formulation. For example, in LIGA Ni and Al-Si thin films, the physical size is on the order of microns, a scale approaching key microstructural features. For a new potential structural material, cast Mg offers a high stiffness-to-weight ratio, but the microstructural heterogeneity at various scales requires a structure-property continuum model. Processes occurring at the nanoscale and microscale develop certain structures that drive material behavior. The objective of the work presented in this report was to understand material characteristics in relation to mechanical properties at the nanoscale and microscale in these promising new material systems. Research was conducted primarily at the University of Colorado at Boulder to employ tightly coupled experimentation and simulation to study damage at various material size scales under monotonic and cyclic loading conditions. Experimental characterization of nano/micro damage will be accomplished by novel techniques such as in-situ environmental scanning electron microscopy (ESEM), 1 MeV transmission electron microscopy (TEM), and atomic force microscopy (AFM). New simulations to support experimental efforts will include modified embedded atom method (MEAM) atomistic simulations at the nanoscale and single crystal micromechanical finite element simulations. This report summarizes the major research and development accomplishments for the LDRD project
Irreversible entropy model for damage diagnosis in resistors
Energy Technology Data Exchange (ETDEWEB)
Cuadras, Angel, E-mail: angel.cuadras@upc.edu; Crisóstomo, Javier; Ovejas, Victoria J.; Quilez, Marcos [Instrumentation, Sensor and Interfaces Group, Electronic Engineering Department, Escola d' Enginyeria de Telecomunicació i Aeronàutica de Castelldefels EETAC, Universitat Politècnica de Catalunya, Barcelona Tech (UPC), Castelldefels-Barcelona (Spain)
2015-10-28
We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropy was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance.
Irreversible entropy model for damage diagnosis in resistors
International Nuclear Information System (INIS)
Cuadras, Angel; Crisóstomo, Javier; Ovejas, Victoria J.; Quilez, Marcos
2015-01-01
We propose a method to characterize electrical resistor damage based on entropy measurements. Irreversible entropy and the rate at which it is generated are more convenient parameters than resistance for describing damage because they are essentially positive in virtue of the second law of thermodynamics, whereas resistance may increase or decrease depending on the degradation mechanism. Commercial resistors were tested in order to characterize the damage induced by power surges. Resistors were biased with constant and pulsed voltage signals, leading to power dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure. Entropy was inferred from the added power and temperature evolution. A model is proposed to understand the relationship among resistance, entropy, and damage. The power surge dissipates into heat (Joule effect) and damages the resistor. The results show a correlation between entropy generation rate and resistor failure. We conclude that damage can be conveniently assessed from irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems or machines that can be modeled based on their resistance
Formability prediction for AHSS materials using damage models
Amaral, R.; Santos, Abel D.; José, César de Sá; Miranda, Sara
2017-05-01
Advanced high strength steels (AHSS) are seeing an increased use, mostly due to lightweight design in automobile industry and strict regulations on safety and greenhouse gases emissions. However, the use of these materials, characterized by a high strength to weight ratio, stiffness and high work hardening at early stages of plastic deformation, have imposed many challenges in sheet metal industry, mainly their low formability and different behaviour, when compared to traditional steels, which may represent a defying task, both to obtain a successful component and also when using numerical simulation to predict material behaviour and its fracture limits. Although numerical prediction of critical strains in sheet metal forming processes is still very often based on the classic forming limit diagrams, alternative approaches can use damage models, which are based on stress states to predict failure during the forming process and they can be classified as empirical, physics based and phenomenological models. In the present paper a comparative analysis of different ductile damage models is carried out, in order numerically evaluate two isotropic coupled damage models proposed by Johnson-Cook and Gurson-Tvergaard-Needleman (GTN), each of them corresponding to the first two previous group classification. Finite element analysis is used considering these damage mechanics approaches and the obtained results are compared with experimental Nakajima tests, thus being possible to evaluate and validate the ability to predict damage and formability limits for previous defined approaches.
Formability prediction for AHSS materials using damage models
International Nuclear Information System (INIS)
Amaral, R.; Miranda, Sara; Santos, Abel D.; José, César de Sá
2017-01-01
Advanced high strength steels (AHSS) are seeing an increased use, mostly due to lightweight design in automobile industry and strict regulations on safety and greenhouse gases emissions. However, the use of these materials, characterized by a high strength to weight ratio, stiffness and high work hardening at early stages of plastic deformation, have imposed many challenges in sheet metal industry, mainly their low formability and different behaviour, when compared to traditional steels, which may represent a defying task, both to obtain a successful component and also when using numerical simulation to predict material behaviour and its fracture limits. Although numerical prediction of critical strains in sheet metal forming processes is still very often based on the classic forming limit diagrams, alternative approaches can use damage models, which are based on stress states to predict failure during the forming process and they can be classified as empirical, physics based and phenomenological models. In the present paper a comparative analysis of different ductile damage models is carried out, in order numerically evaluate two isotropic coupled damage models proposed by Johnson-Cook and Gurson-Tvergaard-Needleman (GTN), each of them corresponding to the first two previous group classification. Finite element analysis is used considering these damage mechanics approaches and the obtained results are compared with experimental Nakajima tests, thus being possible to evaluate and validate the ability to predict damage and formability limits for previous defined approaches. (paper)
A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations
Energy Technology Data Exchange (ETDEWEB)
Liu, Chang, E-mail: cliuaa@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Xu, Kun, E-mail: makxu@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Sun, Quanhua, E-mail: qsun@imech.ac.cn [State Key Laboratory of High-temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, No. 15 Beisihuan Xi Rd, Beijing 100190 (China); Cai, Qingdong, E-mail: caiqd@mech.pku.edu.cn [Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)
2016-06-01
Fluid dynamic equations are valid in their respective modeling scales, such as the particle mean free path scale of the Boltzmann equation and the hydrodynamic scale of the Navier–Stokes (NS) equations. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. Even though the Boltzmann equation is claimed to be valid in all scales, many Boltzmann solvers, including direct simulation Monte Carlo method, require the cell resolution to the order of particle mean free path scale. Therefore, they are still single scale methods. In order to study multiscale flow evolution efficiently, the dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. Even though the UGKS is very accurate and effective in the low transition and continuum flow regimes with the time step being much larger than the particle mean free time, it still has space to develop more accurate flow solver in the region, where the time step is comparable with the local particle mean free time. In such a scale, there is dynamic difference from the full Boltzmann collision term and the model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the region
Bayesian inference method for stochastic damage accumulation modeling
International Nuclear Information System (INIS)
Jiang, Xiaomo; Yuan, Yong; Liu, Xian
2013-01-01
Damage accumulation based reliability model plays an increasingly important role in successful realization of condition based maintenance for complicated engineering systems. This paper developed a Bayesian framework to establish stochastic damage accumulation model from historical inspection data, considering data uncertainty. Proportional hazards modeling technique is developed to model the nonlinear effect of multiple influencing factors on system reliability. Different from other hazard modeling techniques such as normal linear regression model, the approach does not require any distribution assumption for the hazard model, and can be applied for a wide variety of distribution models. A Bayesian network is created to represent the nonlinear proportional hazards models and to estimate model parameters by Bayesian inference with Markov Chain Monte Carlo simulation. Both qualitative and quantitative approaches are developed to assess the validity of the established damage accumulation model. Anderson–Darling goodness-of-fit test is employed to perform the normality test, and Box–Cox transformation approach is utilized to convert the non-normality data into normal distribution for hypothesis testing in quantitative model validation. The methodology is illustrated with the seepage data collected from real-world subway tunnels.
Symposium on Continuum Models and Discrete Systems (6th) Held in Dijon, France on June 26 - 29, 1989
1986-01-01
France), the Symposium is organized with the financial aid of. CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, (Odpartement des Sciences Physiques pour...University of :-oznaa, instituite of Building Structures, Iroznan, ioland Phenomenological models of the creep damage and creep rupture of solids are
Directory of Open Access Journals (Sweden)
Yangqing Dou
2017-01-01
Full Text Available A developed microstructure-based internal state variable (ISV plasticity damage model is for the first time used for simulating penetration mechanics of aluminum to find out its penetration properties. The ISV damage model tries to explain the interplay between physics at different length scales that governs the failure and damage mechanisms of materials by linking the macroscopic failure and damage behavior of the materials with their micromechanical performance, such as void nucleation, growth, and coalescence. Within the continuum modeling framework, microstructural features of materials are represented using a set of ISVs, and rate equations are employed to depict damage history and evolution of the materials. For experimental calibration of this damage model, compression, tension, and torsion straining conditions are considered to distinguish damage evolutions under different stress states. To demonstrate the reliability of the presented ISV model, that model is applied for studying penetration mechanics of aluminum and the numerical results are validated by comparing with simulation results yielded from the Johnson-Cook model as well as analytical results calculated from an existing theoretical model.
Duddu, Ravindra
2009-05-01
We present a two-dimensional biofilm growth model in a continuum framework using an Eulerian description. A computational technique based on the eXtended Finite Element Method (XFEM) and the level set method is used to simulate the growth of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions of the model and the governing equations of transport, biofilm kinetics and biofilm mechanics are presented. Our 2D biofilm growth results are in good agreement with those obtained by Picioreanu et al. (Biotechnol Bioeng 69(5):504-515, 2000). Detachment due to erosion is modeled using two continuous speed functions based on: (a) interfacial shear stress and (b) biofilm height. A relation between the two detachment models in the case of a 1D biofilm is established and simulated biofilm results with detachment in 2D are presented. The stress in the biofilm due to fluid flow is evaluated and higher stresses are observed close to the substratum where the biofilm is attached. © 2008 Wiley Periodicals, Inc.
Pottschmidt, Katja; Hemphill, Paul B.; Wolff, Michael T.; Cheatham, Diana M.; Iwakiri, Wataru; Gottlieb, Amy M.; Falkner, Sebastian; Ballhausen, Ralf; Fuerst, Felix; Kuehnel, Matthias; Ferrigno, Carlo; Becker, Peter A.; Wood, Kent S.; Wilms, Joern
2018-01-01
A new window for better understanding the accretion onto strongly magnetized neutron stars in X-ray binaries is opening. In these systems the accreted material follows the magnetic field lines as it approaches the neutron star, forming accretion columns above the magnetic poles. The plasma falls toward the neutron star surface at near-relativistic speeds, losing energy by emitting X-rays. The X-ray spectral continua are commonly described using phenomenological models, i.e., power laws with different types of curved cut-offs at higher energies. Here we consider high luminosity pulsars. In these systems the mass transfer rate is high enough that the accreting plasma is thought to be decelerated in a radiation-dominated radiative shock in the accretion columns. While the theory of the emission from such shocks had already been developed by 2007, a model for direct comparison with X-ray continuum spectra in xspec or isis has only recently become available. Characteristic parameters of this model are the accretion column radius and the plasma temperature, among others. Here we analyze the broadband X-ray spectra of the accreting pulsars Centaurus X-3 and 4U 1626-67 obtained with NuSTAR. We present results from traditional empirical modeling as well as successfully apply the radiation-dominated radiative shock model. We also take the opportunity to compare to similar recent analyses of both sources using these and other observations.
Spangenberger, H.; Beck, F.; Richter, A.
The usual continuum shell model is extended so as to include a statistical treatment of multi-doorway processes. The total configuration space of the nuclear reaction problem is subdivided into the primary doorway states which are coupled by the initial excitation to the nuclear ground state and the secondary doorway states which represent the complicated nature of multi-step reactions. The latter are evaluated within the exciton model which gives the coupling widths between the various finestructure subspaces. This coupling is determined by a statistical factor related to the exciton model and a dynamical factor given by the interaction matrix elements of the interacting excitons. The whole structure defines the multi-doorway continuum shell model. In this work it is applied to the highly fragmented magnetic dipole strength in 58Ni observed in high resolution electron scattering.Translated AbstractAnwendung des Multi-Doorway-Kontinuum-Schalenmodells auf die Verteilung der magnetischen Dipolstärke von 58NiDas Kontinuum-Schalenmodell wurde so erweitert, daß auch statistische Multi-Doorway-Prozesse berücksichtigt werden können. Hierzu wird der Konfigurationsraum unterteilt in den Raum der primären Doorway-Zustände, die direkt aus dem Grundzustand angeregt werden, und den der sekundären Doorway-Zustände, die die komplizierte Struktur der Multi-Step-Reaktionen repräsentieren. Während die primären Doorway-Zustände inclusive ihrer Anregungen mittels üblicher Schalenmodellmethoden beschrieben werden können, werden die sekundären Doorway-Zustände sowie ihre verschiedenen Kopplungen im Rahmen des Exciton-Modells behandelt. Diese Kopplungen sind durch einen aus dem Exciton-Modell resultierenden Faktor sowie durch einen dynamischen Faktor bestimmt, der sich aus dem Matrixelement der wechselwirkenden Excitonen berechnet. Die Struktur der Kopplungen definiert das Multi-Doorway-Kontinuum-Schalenmodell, das hier auf die Beschreibung der stark fragmentierten
Progressive Damage Modeling of Durable Bonded Joint Technology
Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.
2013-01-01
The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.
Simakov, Nikolay A.
2010-01-01
A soft repulsion (SR) model of short range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced: the first is parameterized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard – Jones potential. We have further designed an energy based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interaction were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzman and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM. PMID:21028776
Sendova, T.
2010-02-15
In this paper we focus on the analysis of the partial differential equations arising from a new approach to modeling brittle fracture based on an extension of continuum mechanics to the nanoscale. It is shown that ascribing constant surface tension to the fracture surfaces and using the appropriate crack surface boundary condition given by the jump momentum balance leads to a sharp crack opening profile at the crack tip but predicts logarithmically singular crack tip stress. However, a modified model, where the surface excess property is responsive to the curvature of the fracture surfaces, yields bounded stresses and a cusp-like opening profile at the crack tip. Further, two possible fracture criteria in the context of the new theory are discussed. The first is an energy-based crack growth condition, while the second employs the finite crack tip stress the model predicts. The classical notion of energy release rate is based upon the singular solution, whereas for the modeling approach adopted here, a notion analogous to the energy release rate arises through a different mechanism associated with the rate of working of the surface excess properties at the crack tip. © The Author(s), 2010.
A Modified Fatigue Damage Model for High-Cycle Fatigue Life Prediction
Directory of Open Access Journals (Sweden)
Meng Wang
2016-01-01
Full Text Available Based on the assumption of quasibrittle failure under high-cycle fatigue for the metal material, the damage constitutive equation and the modified damage evolution equation are obtained with continuum damage mechanics. Then, finite element method (FEM is used to describe the failure process of metal material. The increment of specimen’s life and damage state can be researched using damage mechanics-FEM. Finally, the lifetime of the specimen is got at the given stress level. The damage mechanics-FEM is inserted into ABAQUS with subroutine USDFLD and the Python language is used to simulate the fatigue process of titanium alloy specimens. The simulation results have a good agreement with the testing results under constant amplitude loading, which proves the accuracy of the method.
An approach to modelling radiation damage by fast ionizing particles
International Nuclear Information System (INIS)
Thomas, G.E.
1987-01-01
The paper presents a statistical approach to modelling radiation damage in small biological structures such as enzymes, viruses, and some cells. Irreparable damage is assumed to be caused by the occurrence of ionizations within sensitive regions. For structures containing double-stranded DNA, one or more ionizations occurring within each strand of the DNA will cause inactivation; for simpler structures without double-stranded DNA a single ionization within the structure will be sufficient for inactivation. Damaging ionizations occur along tracks of primary irradiating particles or along tracks of secondary particles released at primary ionizations. An inactivation probability is derived for each damage mechanism, expressed in integral form in terms of the radius of the biological structure (assumed spherical), rate of ionization along primary tracks, and maximum energy for secondary particles. The performance of each model is assessed by comparing results from the model with those derived from data from various experimental studies extracted from the literature. For structures where a single ionization is sufficient for inactivation, the model gives qualitatively promising results; for larger more complex structures containing double-stranded DNA, the model requires further refinements. (author)
Campargue, Alain; Kassi, Samir; Mondelain, Didier; Romanini, Daniele; Lechevallier, Loïc; Vasilchenko, Semyon
2017-06-01
The semi empirical MT_CKD model of the absorption continuum of water vapor is widely used in atmospheric radiative transfer codes of the atmosphere of Earth and exoplanets but lacks of experimental validation in the atmospheric windows. Recent laboratory measurements by Fourier transform Spectroscopy have led to self-continuum cross-sections much larger than the MT_CKD values in the near infrared transparency windows. In the present work, we report on accurate water vapor absorption continuum measurements by Cavity Ring Down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Laser Spectroscopy (OF-CEAS) at selected spectral points of the transparency windows centered around 4.0, 2.1 and 1.25 μm. The temperature dependence of the absorption continuum at 4.38 μm and 3.32 μm is measured in the 23-39 °C range. The self-continuum water vapor absorption is derived either from the baseline variation of spectra recorded for a series of pressure values over a small spectral interval or from baseline monitoring at fixed laser frequency, during pressure ramps. In order to avoid possible bias approaching the water saturation pressure, the maximum pressure value was limited to about 16 Torr, corresponding to a 75% humidity rate. After subtraction of the local water monomer lines contribution, self-continuum cross-sections, C_{S}, were determined with a few % accuracy from the pressure squared dependence of the spectra base line level. Together with our previous CRDS and OF-CEAS measurements in the 2.1 and 1.6 μm windows, the derived water vapor self-continuum provides a unique set of water vapor self-continuum cross-sections for a test of the MT_CKD model in four transparency windows. Although showing some important deviations of the absolute values (up to a factor of 4 at the center of the 2.1 μm window), our accurate measurements validate the overall frequency dependence of the MT_CKD2.8 model.
Continuum modeling of three-dimensional truss-like space structures
Nayfeh, A. H.; Hefzy, M. S.
1978-01-01
A mathematical and computational analysis capability has been developed for calculating the effective mechanical properties of three-dimensional periodic truss-like structures. Two models are studied in detail. The first, called the octetruss model, is a three-dimensional extension of a two-dimensional model, and the second is a cubic model. Symmetry considerations are employed as a first step to show that the specific octetruss model has four independent constants and that the cubic model has two. The actual values of these constants are determined by averaging the contributions of each rod element to the overall structure stiffness. The individual rod member contribution to the overall stiffness is obtained by a three-dimensional coordinate transformation. The analysis shows that the effective three-dimensional elastic properties of both models are relatively close to each other.
Multiscale Modeling of Dewetting Damage in Highly Filled Particulate Composites
Geubelle, P. H.; Inglis, H. M.; Kramer, J. D.; Patel, J. J.; Kumar, N. C.; Tan, H.
2008-02-01
Particle debonding or dewetting constitutes one of the key damage processes in highly filled particulate composites such as solid propellant and other energetic materials. To analyze this failure process, we have developed a multiscale finite element framework that combines, at the microscale, a nonlinear description of the binder response with a cohesive model of the damage process taking place in a representative periodic unit cell (PUC). To relate micro-scale damage to the macroscopic constitutive response of the material, we employ the mathematical theory of homogenization (MTH). After a description of the numerical scheme, we present the results of the damage response of a highly filled particulate composite subjected to a uniaxial macroscopic strain, and show the direct correlation between the complex damage processes taking place in the PUC and the nonlinear macroscopic constitutive response. We also present a detailed study of the PUC size and a comparison between the finite element MTH-based study and a micromechanics model of the dewetting process.
Coarse-graining to the meso and continuum scales with molecular-dynamics-like models
Plimpton, Steve
Many engineering-scale problems that industry or the national labs try to address with particle-based simulations occur at length and time scales well beyond the most optimistic hopes of traditional coarse-graining methods for molecular dynamics (MD), which typically start at the atomic scale and build upward. However classical MD can be viewed as an engine for simulating particles at literally any length or time scale, depending on the models used for individual particles and their interactions. To illustrate I'll highlight several coarse-grained (CG) materials models, some of which are likely familiar to molecular-scale modelers, but others probably not. These include models for water droplet freezing on surfaces, dissipative particle dynamics (DPD) models of explosives where particles have internal state, CG models of nano or colloidal particles in solution, models for aspherical particles, Peridynamics models for fracture, and models of granular materials at the scale of industrial processing. All of these can be implemented as MD-style models for either soft or hard materials; in fact they are all part of our LAMMPS MD package, added either by our group or contributed by collaborators. Unlike most all-atom MD simulations, CG simulations at these scales often involve highly non-uniform particle densities. So I'll also discuss a load-balancing method we've implemented for these kinds of models, which can improve parallel efficiencies. From the physics point-of-view, these models may be viewed as non-traditional or ad hoc. But because they are MD-style simulations, there's an opportunity for physicists to add statistical mechanics rigor to individual models. Or, in keeping with a theme of this session, to devise methods that more accurately bridge models from one scale to the next.
A Long-Range Electric Field Solver for Molecular Dynamics Based on Atomistic-to-Continuum Modeling.
Templeton, Jeremy A; Jones, Reese E; Lee, Jonathan W; Zimmerman, Jonathan A; Wong, Bryan M
2011-06-14
Understanding charge transport processes at a molecular level is currently hindered by a lack of appropriate models for incorporating nonperiodic, anisotropic electric fields in molecular dynamics (MD) simulations. In this work, we develop a model for including electric fields in MD using an atomistic-to-continuum framework. This framework provides the mathematical and the algorithmic infrastructure to couple finite element (FE) representations of continuous data with atomic data. Our model represents the electric potential on a FE mesh satisfying a Poisson equation with source terms determined by the distribution of the atomic charges. Boundary conditions can be imposed naturally using the FE description of the potential, which then propagate to each atom through modified forces. The method is verified using simulations where analytical solutions are known or comparisons can be made to existing techniques. In addition, a calculation of a salt water solution in a silicon nanochannel is performed to demonstrate the method in a target scientific application in which ions are attracted to charged surfaces in the presence of electric fields and interfering media.
Schwarz, F.; Goldstein, M.; Dorda, A.; Arrigoni, E.; Weichselbaum, A.; von Delft, J.
2016-10-01
The description of interacting quantum impurity models in steady-state nonequilibrium is an open challenge for computational many-particle methods: the numerical requirement of using a finite number of lead levels and the physical requirement of describing a truly open quantum system are seemingly incompatible. One possibility to bridge this gap is the use of Lindblad-driven discretized leads (LDDL): one couples auxiliary continuous reservoirs to the discretized lead levels and represents these additional reservoirs by Lindblad terms in the Liouville equation. For quadratic models governed by Lindbladian dynamics, we present an elementary approach for obtaining correlation functions analytically. In a second part, we use this approach to explicitly discuss the conditions under which the continuum limit of the LDDL approach recovers the correct representation of thermal reservoirs. As an analytically solvable example, the nonequilibrium resonant level model is studied in greater detail. Lastly, we present ideas towards a numerical evaluation of the suggested Lindblad equation for interacting impurities based on matrix product states. In particular, we present a reformulation of the Lindblad equation, which has the useful property that the leads can be mapped onto a chain where both the Hamiltonian dynamics and the Lindblad driving are local at the same time. Moreover, we discuss the possibility to combine the Lindblad approach with a logarithmic discretization needed for the exploration of exponentially small energy scales.
Caricato, Marco
2018-04-01
We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.
Revisiting Temporal Markov Chains for Continuum modeling of Transport in Porous Media
Delgoshaie, A. H.; Jenny, P.; Tchelepi, H.
2017-12-01
The transport of fluids in porous media is dominated by flow-field heterogeneity resulting from the underlying permeability field. Due to the high uncertainty in the permeability field, many realizations of the reference geological model are used to describe the statistics of the transport phenomena in a Monte Carlo (MC) framework. There has been strong interest in working with stochastic formulations of the transport that are different from the standard MC approach. Several stochastic models based on a velocity process for tracer particle trajectories have been proposed. Previous studies have shown that for high variances of the log-conductivity, the stochastic models need to account for correlations between consecutive velocity transitions to predict dispersion accurately. The correlated velocity models proposed in the literature can be divided into two general classes of temporal and spatial Markov models. Temporal Markov models have been applied successfully to tracer transport in both the longitudinal and transverse directions. These temporal models are Stochastic Differential Equations (SDEs) with very specific drift and diffusion terms tailored for a specific permeability correlation structure. The drift and diffusion functions devised for a certain setup would not necessarily be suitable for a different scenario, (e.g., a different permeability correlation structure). The spatial Markov models are simple discrete Markov chains that do not require case specific assumptions. However, transverse spreading of contaminant plumes has not been successfully modeled with the available correlated spatial models. Here, we propose a temporal discrete Markov chain to model both the longitudinal and transverse dispersion in a two-dimensional domain. We demonstrate that these temporal Markov models are valid for different correlation structures without modification. Similar to the temporal SDEs, the proposed model respects the limited asymptotic transverse spreading of
Continuum Modeling of Inductor Hysteresis and Eddy Current Loss Effects in Resonant Circuits
Energy Technology Data Exchange (ETDEWEB)
Pries, Jason L. [ORNL; Tang, Lixin [ORNL; Burress, Timothy A. [ORNL
2017-10-01
This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and core losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. Eddy currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequency and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.
Verification of flood damage modelling using insurance data
DEFF Research Database (Denmark)
Zhou, Qianqian; Petersen, Toke E. P.; Thorsen, Bo J.
2012-01-01
This paper presents the results of an analysis using insurance data for damage description and risk model verification, based on data from a Danish case. The results show that simple, local statistics of rainfall are not able to describe the variation in individual cost per claim, but are, howeve...
Verification of flood damage modelling using insurance data
DEFF Research Database (Denmark)
Zhou, Qianqian; Panduro, T. E.; Thorsen, B. J.
2013-01-01
This paper presents the results of an analysis using insurance data for damage description and risk model verification, based on data from a Danish case. The results show that simple, local statistics of rainfall are not able to describe the variation in individual cost per claim, but are, howeve...
Experimental data available for radiation damage modelling in reactor materials
International Nuclear Information System (INIS)
Wollenberger, H.
Radiation damage modelling requires rate constants for production, annihilation and trapping of defects. The literature is reviewed with respect to experimental determination of such constants. Useful quantitative information exists only for Cu and Al. Special emphasis is given to the temperature dependence of the rate constants
Continuum-Scale Modeling of Liquid Redistribution in a Stack of Thin Hydrophilic Fibrous Layers
Tavangarrad, A.H.; Mohebbi, Behzad; Hassanizadeh, S.M.|info:eu-repo/dai/nl/074974424; Rosati, Rodrigo; Claussen, Jan; Blümich, Bernhard
Macroscale three-dimensional modeling of fluid flow in a thin porous layer under unsaturated conditions is a challenging task. One major issue is that such layers do not satisfy the representative elementary volume length-scale requirement. Recently, a new approach, called reduced continua model
Freni, G; La Loggia, G; Notaro, V
2010-01-01
Due to the increased occurrence of flooding events in urban areas, many procedures for flood damage quantification have been defined in recent decades. The lack of large databases in most cases is overcome by combining the output of urban drainage models and damage curves linking flooding to expected damage. The application of advanced hydraulic models as diagnostic, design and decision-making support tools has become a standard practice in hydraulic research and application. Flooding damage functions are usually evaluated by a priori estimation of potential damage (based on the value of exposed goods) or by interpolating real damage data (recorded during historical flooding events). Hydraulic models have undergone continuous advancements, pushed forward by increasing computer capacity. The details of the flooding propagation process on the surface and the details of the interconnections between underground and surface drainage systems have been studied extensively in recent years, resulting in progressively more reliable models. The same level of was advancement has not been reached with regard to damage curves, for which improvements are highly connected to data availability; this remains the main bottleneck in the expected flooding damage estimation. Such functions are usually affected by significant uncertainty intrinsically related to the collected data and to the simplified structure of the adopted functional relationships. The present paper aimed to evaluate this uncertainty by comparing the intrinsic uncertainty connected to the construction of the damage-depth function to the hydraulic model uncertainty. In this way, the paper sought to evaluate the role of hydraulic model detail level in the wider context of flood damage estimation. This paper demonstrated that the use of detailed hydraulic models might not be justified because of the higher computational cost and the significant uncertainty in damage estimation curves. This uncertainty occurs mainly
Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum Manipulator.
Moses, Matthew S; Murphy, Ryan J; Kutzer, Michael D M; Armand, Mehran
2015-12-01
This paper presents several mechanical models of a high-strength cable-driven dexterous manipulator designed for surgical procedures. A stiffness model is presented that distinguishes between contributions from the cables and the backbone. A physics-based model incorporating cable friction is developed and its predictions are compared with experimental data. The data show that under high tension and high curvature, the shape of the manipulator deviates significantly from a circular arc. However, simple parametric models can fit the shape with good accuracy. The motivating application for this study is to develop a model so that shape can be predicted using easily measured quantities such as tension, so that real-time navigation may be performed, especially in minimally-invasive surgical procedures, while reducing the need for hazardous imaging methods such as fluoroscopy.
A gradient enhanced plasticity-damage microplane model for concrete
Zreid, Imadeddin; Kaliske, Michael
2018-03-01
Computational modeling of concrete poses two main types of challenges. The first is the mathematical description of local response for such a heterogeneous material under all stress states, and the second is the stability and efficiency of the numerical implementation in finite element codes. The paper at hand presents a comprehensive approach addressing both issues. Adopting the microplane theory, a combined plasticity-damage model is formulated and regularized by an implicit gradient enhancement. The plasticity part introduces a new microplane smooth 3-surface cap yield function, which provides a stable numerical solution within an implicit finite element algorithm. The damage part utilizes a split, which can describe the transition of loading between tension and compression. Regularization of the model by the implicit gradient approach eliminates the mesh sensitivity and numerical instabilities. Identification methods for model parameters are proposed and several numerical examples of plain and reinforced concrete are carried out for illustration.
Continuum Models for Irregular Phase Boundary Motion in Shape-Memory Tensile Bars
National Research Council Canada - National Science Library
Rosakis, Phoebus
1997-01-01
... observed experimentally. We show that when the model involves a kinetic relation that is 'unstable' in a definite sense, 'stick-slip' motion of the interface between phases and serration of the accompanying stress-elongation...
Navigating the flow: individual and continuum models for homing in flowing environments.
Painter, Kevin J; Hillen, Thomas
2015-11-06
Navigation for aquatic and airborne species often takes place in the face of complicated flows, from persistent currents to highly unpredictable storms. Hydrodynamic models are capable of simulating flow dynamics and provide the impetus for much individual-based modelling, in which particle-sized individuals are immersed into a flowing medium. These models yield insights on the impact of currents on population distributions from fish eggs to large organisms, yet their computational demands and intractability reduce their capacity to generate the broader, less parameter-specific, insights allowed by traditional continuous approaches. In this paper, we formulate an individual-based model for navigation within a flowing field and apply scaling to derive its corresponding macroscopic and continuous model. We apply it to various movement classes, from drifters that simply go with the flow to navigators that respond to environmental orienteering cues. The utility of the model is demonstrated via its application to 'homing' problems and, in particular, the navigation of the marine green turtle Chelonia mydas to Ascension Island. © 2015 The Author(s).
Asinari, Pietro
2009-11-01
A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.
Nguyen Van Do, Vuong
2018-04-01
In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.
International Nuclear Information System (INIS)
Tonks, Michael R.; Millett, Paul C.; Nerikar, Pankaj; Du, Shiyu; Andersson, David; Stanek, Christopher R.; Gaston, Derek; Andrs, David; Williamson, Richard
2013-01-01
Fission gas production and evolution significantly impact the fuel performance, causing swelling, a reduction in the thermal conductivity and fission gas release. However, typical empirical models of fuel properties treat each of these effects separately and uncoupled. Here, we couple a fission gas release model to a model of the impact of fission gas on the fuel thermal conductivity. To quantify the specific impact of grain boundary (GB) bubbles on the thermal conductivity, we use atomistic and mesoscale simulations. Atomistic molecular dynamic simulations were employed to determine the GB thermal resistance. These values were then used in mesoscale heat conduction simulations to develop a mechanistic expression for the effective GB thermal resistance of a GB containing gas bubbles, as a function of the percentage of the GB covered by fission gas. The coupled fission gas release and thermal conductivity model was implemented in Idaho National Laboratory’s BISON fuel performance code to model the behavior of a 10-pellet LWR fuel rodlet, showing how the fission gas impacts the UO 2 thermal conductivity. Furthermore, additional BISON simulations were conducted to demonstrate the impact of average grain size on both the fuel thermal conductivity and the fission gas release
Wu, Jie; Yu, Sheng-Tao; Jiang, Bo-nan
1996-01-01
In this paper a numerical procedure for simulating two-fluid flows is presented. This procedure is based on the Volume of Fluid (VOF) method proposed by Hirt and Nichols and the continuum surface force (CSF) model developed by Brackbill, et al. In the VOF method fluids of different properties are identified through the use of a continuous field variable (color function). The color function assigns a unique constant (color) to each fluid. The interfaces between different fluids are distinct due to sharp gradients of the color function. The evolution of the interfaces is captured by solving the convective equation of the color function. The CSF model is used as a means to treat surface tension effect at the interfaces. Here a modified version of the CSF model, proposed by Jacqmin, is used to calculate the tension force. In the modified version, the force term is obtained by calculating the divergence of a stress tensor defined by the gradient of the color function. In its analytical form, this stress formulation is equivalent to the original CSF model. Numerically, however, the use of the stress formulation has some advantages over the original CSF model, as it bypasses the difficulty in approximating the curvatures of the interfaces. The least-squares finite element method (LSFEM) is used to discretize the governing equation systems. The LSFEM has proven to be effective in solving incompressible Navier-Stokes equations and pure convection equations, making it an ideal candidate for the present applications. The LSFEM handles all the equations in a unified manner without any additional special treatment such as upwinding or artificial dissipation. Various bench mark tests have been carried out for both two dimensional planar and axisymmetric flows, including a dam breaking, oscillating and stationary bubbles and a conical liquid sheet in a pressure swirl atomizer.
3D continuum phonon model for group-IV 2D materials
DEFF Research Database (Denmark)
Willatzen, Morten; Lew Yan Voon, Lok C.; Gandi, Appala Naidu
2017-01-01
. In this paper, we use the model to not only compare the phonon spectra among the group-IV materials but also to study whether these phonons differ from those of a compound material such as molybdenum disulfide. The origin of quadratic modes is clarified. Mode coupling for both graphene and silicene is obtained......, contrary to previous works. Our model allows us to predict the existence of confined optical phonon modes for the group-IV materials but not for molybdenum disulfide. A comparison of the long-wavelength modes to density-functional results is included....
A population-based model for priority setting across the care continuum and across modalities
Directory of Open Access Journals (Sweden)
Mortimer Duncan
2006-03-01
Full Text Available Abstract Background The Health-sector Wide (HsW priority setting model is designed to shift the focus of priority setting away from 'program budgets' – that are typically defined by modality or disease-stage – and towards well-defined target populations with a particular disease/health problem. Methods The key features of the HsW model are i a disease/health problem framework, ii a sequential approach to covering the entire health sector, iii comprehensiveness of scope in identifying intervention options and iv the use of objective evidence. The HsW model redefines the unit of analysis over which priorities are set to include all mutually exclusive and complementary interventions for the prevention and treatment of each disease/health problem under consideration. The HsW model is therefore incompatible with the fragmented approach to priority setting across multiple program budgets that currently characterises allocation in many health systems. The HsW model employs standard cost-utility analyses and decision-rules with the aim of maximising QALYs contingent upon the global budget constraint for the set of diseases/health problems under consideration. It is recognised that the objective function may include non-health arguments that would imply a departure from simple QALY maximisation and that political constraints frequently limit degrees of freedom. In addressing these broader considerations, the HsW model can be modified to maximise value-weighted QALYs contingent upon the global budget constraint and any political constraints bearing upon allocation decisions. Results The HsW model has been applied in several contexts, recently to osteoarthritis, that has demonstrated both its practical application and its capacity to derive clear evidenced-based policy recommendations. Conclusion Comparisons with other approaches to priority setting, such as Programme Budgeting and Marginal Analysis (PBMA and modality-based cost
Compacton solutions and multiple compacton solutions for a continuum Toda lattice model
International Nuclear Information System (INIS)
Fan Xinghua; Tian Lixin
2006-01-01
Some special solutions of the Toda lattice model with a transversal degree of freedom are obtained. With the aid of Mathematica and Wu elimination method, more explicit solitary wave solutions, including compacton solutions, multiple compacton solutions, peakon solutions, as well as periodic solutions are found in this paper
Continuum Gyrokinetic Simulations of Turbulence in a Helical Model SOL with NSTX-type parameters
Hammett, G. W.; Shi, E. L.; Hakim, A.; Stoltzfus-Dueck, T.
2017-10-01
We have developed the Gkeyll code to carry out 3D2V full- F gyrokinetic simulations of electrostatic plasma turbulence in open-field-line geometries, using special versions of discontinuous-Galerkin algorithms to help with the computational challenges of the edge region. (Higher-order algorithms can also be helpful for exascale computing as they reduce the ratio of communications to computations.) Our first simulations with straight field lines were done for LAPD-type cases. Here we extend this to a helical model of an SOL plasma and show results for NSTX-type parameters. These simulations include the basic elements of a scrape-off layer: bad-curvature/interchange drive of instabilities, narrow sources to model plasma leaking from the core, and parallel losses with model sheath boundary conditions (our model allows currents to flow in and out of the walls). The formation of blobs is observed. By reducing the strength of the poloidal magnetic field, the heat flux at the divertor plate is observed to broaden. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.
Control of Early Age Cracking in Concrete. Phase 4 and 5: Material Modelling, Continuum Approach
DEFF Research Database (Denmark)
Hauggaard-Nielsen, Anders Boe; Damkilde, Lars; Hansen, Per Freiesleben
1997-01-01
This report deals with numerical modelling of early age concrete. The hydration process giving the strength and stiffness development after casting is discussed. Several factors influence the progress of hydration such as the temperature level and the moisture activity. The factors are coupled an...
Smeared crack modelling approach for corrosion-induced concrete damage
DEFF Research Database (Denmark)
Thybo, Anna Emilie Anusha; Michel, Alexander; Stang, Henrik
2017-01-01
In this paper a smeared crack modelling approach is used to simulate corrosion-induced damage in reinforced concrete. The presented modelling approach utilizes a thermal analogy to mimic the expansive nature of solid corrosion products, while taking into account the penetration of corrosion...... products into the surrounding concrete, non-uniform precipitation of corrosion products, and creep. To demonstrate the applicability of the presented modelling approach, numerical predictions in terms of corrosion-induced deformations as well as formation and propagation of micro- and macrocracks were......-induced damage phenomena in reinforced concrete. Moreover, good agreements were also found between experimental and numerical data for corrosion-induced deformations along the circumference of the reinforcement....
Statistical 3D damage accumulation model for ion implant simulators
Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M
2003-01-01
A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.
Statistical 3D damage accumulation model for ion implant simulators
International Nuclear Information System (INIS)
Hernandez-Mangas, J.M.; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M.
2003-01-01
A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided
Bread dough rheology: Computing with a damage function model
Tanner, Roger I.; Qi, Fuzhong; Dai, Shaocong
2015-01-01
We describe an improved damage function model for bread dough rheology. The model has relatively few parameters, all of which can easily be found from simple experiments. Small deformations in the linear region are described by a gel-like power-law memory function. A set of large non-reversing deformations - stress relaxation after a step of shear, steady shearing and elongation beginning from rest, and biaxial stretching, is used to test the model. With the introduction of a revised strain measure which includes a Mooney-Rivlin term, all of these motions can be well described by the damage function described in previous papers. For reversing step strains, larger amplitude oscillatory shearing and recoil reasonable predictions have been found. The numerical methods used are discussed and we give some examples.
Water sorption kinetics of damaged beans: GAB model
Directory of Open Access Journals (Sweden)
Fernanda M. Baptestini
Full Text Available ABSTRACT The objective of this study was to model the water sorption kinetics of damaged beans. Grains with initial moisture content of 53.85%, dry basis (d.b., were used. One portion of the grains was used to obtain desorption isotherms, while the other was subjected to drying until the moisture content of 5.26% (d.b., so that it was subjected to the adsorption. For the induction of damage, a Stein Breakage Tester was used. To obtain the equilibrium moisture content, grains were placed in a climatic chamber at 20, 30, 40 and 50 ± 1 °C combined with relative humidity of 30, 40, 50, 70 and 90 ± 3%. The GAB model fitted well to the equilibrium moisture experimental data of damaged grains and control. With increasing temperature, the monolayer moisture contents decreased in adsorption and desorption processes, ranging from 9.84 to 5.10% d.b. The lower moisture content in the monolayer in damaged grains indicates that lower moisture content is necessary to ensure their conservation.
Modelling of Damage Evolution in Braided Composites: Recent Developments
Wang, Chen; Roy, Anish; Silberschmidt, Vadim V.; Chen, Zhong
2017-12-01
Composites reinforced with woven or braided textiles exhibit high structural stability and excellent damage tolerance thanks to yarn interlacing. With their high stiffness-to-weight and strength-to-weight ratios, braided composites are attractive for aerospace and automotive components as well as sports protective equipment. In these potential applications, components are typically subjected to multi-directional static, impact and fatigue loadings. To enhance material analysis and design for such applications, understanding mechanical behaviour of braided composites and development of predictive capabilities becomes crucial. Significant progress has been made in recent years in development of new modelling techniques allowing elucidation of static and dynamic responses of braided composites. However, because of their unique interlacing geometric structure and complicated failure modes, prediction of damage initiation and its evolution in components is still a challenge. Therefore, a comprehensive literature analysis is presented in this work focused on a review of the state-of-the-art progressive damage analysis of braided composites with finite-element simulations. Recently models employed in the studies on mechanical behaviour, impact response and fatigue analyses of braided composites are presented systematically. This review highlights the importance, advantages and limitations of as-applied failure criteria and damage evolution laws for yarns and composite unit cells. In addition, this work provides a good reference for future research on FE simulations of braided composites.
2013-01-01
Background Medication errors are a common type of preventable errors in health care causing unnecessary patient harm, hospitalization, and even fatality. Improving communication between providers and between providers and patients is a key aspect of decreasing medication errors and improving patient safety. Medication management requires extensive collaboration and communication across roles and care settings, which can reduce (or contribute to) medication-related errors. Medication management involves key recurrent activities (determine need, prescribe, dispense, administer, and monitor/evaluate) with information communicated within and between each. Despite its importance, there is a lack of conceptual models that explore medication communication specifically across roles and settings. This research seeks to address that gap. Methods The Circle of Care Modeling (CCM) approach was used to build a model of medication communication activities across the circle of care. CCM positions the patient in the centre of his or her own healthcare system; providers and other roles are then modeled around the patient as a web of relationships. Recurrent medication communication activities were mapped to the medication management framework. The research occurred in three iterations, to test and revise the model: Iteration 1 consisted of a literature review and internal team discussion, Iteration 2 consisted of interviews, observation, and a discussion group at a Community Health Centre, and Iteration 3 consisted of interviews and a discussion group in the larger community. Results Each iteration provided further detail to the Circle of Care medication communication model. Specific medication communication activities were mapped along each communication pathway between roles and to the medication management framework. We could not map all medication communication activities to the medication management framework; we added Coordinate as a separate and distinct recurrent activity
Kitson, Nicole A; Price, Morgan; Lau, Francis Y; Showler, Grey
2013-10-17
Medication errors are a common type of preventable errors in health care causing unnecessary patient harm, hospitalization, and even fatality. Improving communication between providers and between providers and patients is a key aspect of decreasing medication errors and improving patient safety. Medication management requires extensive collaboration and communication across roles and care settings, which can reduce (or contribute to) medication-related errors. Medication management involves key recurrent activities (determine need, prescribe, dispense, administer, and monitor/evaluate) with information communicated within and between each. Despite its importance, there is a lack of conceptual models that explore medication communication specifically across roles and settings. This research seeks to address that gap. The Circle of Care Modeling (CCM) approach was used to build a model of medication communication activities across the circle of care. CCM positions the patient in the centre of his or her own healthcare system; providers and other roles are then modeled around the patient as a web of relationships. Recurrent medication communication activities were mapped to the medication management framework. The research occurred in three iterations, to test and revise the model: Iteration 1 consisted of a literature review and internal team discussion, Iteration 2 consisted of interviews, observation, and a discussion group at a Community Health Centre, and Iteration 3 consisted of interviews and a discussion group in the larger community. Each iteration provided further detail to the Circle of Care medication communication model. Specific medication communication activities were mapped along each communication pathway between roles and to the medication management framework. We could not map all medication communication activities to the medication management framework; we added Coordinate as a separate and distinct recurrent activity. We saw many examples of
Stegers-Jager, Karen M; Cohen-Schotanus, Janke; Themmen, Axel P N
2017-11-01
Not all students cope successfully with the demands of medical school, and students' struggles may result in study delay or dropout. To prevent these outcomes, medical schools need to identify students who are experiencing academic difficul ties and provide them with timely interventions through access to support programs. Although the importance of early identification and intervention is well recognized, less is known about successful strategies for identifying and supporting struggling students.Building on the literature and their own empirical findings, the authors propose an integrated, school-wide model for medical student success comprising a continuum of academic and behavioral support. This Four-Tier Continuum of Academic and Behavioral Support (4T-CABS) model focuses on improving both academic and behavioral outcomes by offering support for students at four levels, which range from adequate instruction for all, to targeted small-group interventions, to individualized support, and also include exit support for students who might be better off in another degree program. Additionally, medical schools should provide both academic and behavioral support; set high, yet realistic expectations and clearly communicate these to students; and intervene early, which requires timely identification of at-risk students who would benefit from the different types and tiers of support. Finally, interventions should be evidence based and fit the needs of the identified groups of students. The authors argue that adopting the core principles of the 4T-CABS model will enable medical schools to maximize academic engagement and performance for all students.
Theory of a spherical electrostatic probe in a continuum plasma: Analytical models
International Nuclear Information System (INIS)
Brailsford, A.D.
1977-01-01
A simple physical model of the charge distribution surrounding a biased spherical probe in a quiescent plasma, suggested by the theory of Su and Lam, is used to rederive the probe current-voltage characteristic. The result is compared with that of a slightly different version due to Kiel and with the exact numerical results of Baum and Chapkis. It is shown that if the ratio of the probe radius to the Debye length of the plasma is greater than or of the order of unity, the model calculation is in excellent agreement with the exact results when the dimensionless probe voltage phi/sup asterisk//sub p/,=vertical-barephi/sub p//kTvertical-bar in standard notation, is greater than 10, for both thick and thin sheaths. The comparison also provides an assessment of the importance of various additional validity criteria encountered in analytical treatments of the problem
Ray, Nadja; Rupp, Andreas; Prechtel, Alexander
2017-09-01
Upscaling transport in porous media including both biomass development and simultaneous structural changes in the solid matrix is extremely challenging. This is because both affect the medium's porosity as well as mass transport parameters and flow paths. We address this challenge by means of a multiscale model. At the pore scale, the local discontinuous Galerkin (LDG) method is used to solve differential equations describing particularly the bacteria's and the nutrient's development. Likewise, a sticky agent tightening together solid or bio cells is considered. This is combined with a cellular automaton method (CAM) capturing structural changes of the underlying computational domain stemming from biomass development and solid restructuring. Findings from standard homogenization theory are applied to determine the medium's characteristic time- and space-dependent properties. Investigating these results enhances our understanding of the strong interplay between a medium's functional properties and its geometric structure. Finally, integrating such properties as model parameters into models defined on a larger scale enables reflecting the impact of pore scale processes on the larger scale.
Continuum Kinetic Plasma Modeling Using a Conservative 4th-Order Method with AMR
Vogman, Genia; Colella, Phillip
2012-10-01
When the number of particles in a Debye sphere is large, a plasma can be accurately represented by a distribution function, which can be treated as a continuous incompressible fluid in phase space. In the most general case the evolution of such a distribution function is described by the 6D Boltzmann-Maxwell partial differential equation system. To address the challenges associated with solving a 6D hyperbolic governing equation, a simpler 3D Vlasov-Poisson system is considered. A 4th-order accurate Vlasov-Poisson model has been developed in one spatial and two velocity dimensions. The governing equation is cast in conservation law form and is solved with a finite volume representation. Adaptive mesh refinement (AMR) is used to allow for efficient use of computational resources while maintaining desired levels of resolution. The model employs a flux limiter to remedy non-physical effects such as numerical dispersion. The model is tested on the two-stream, beam-plasma, and Dory-Guest-Harris instabilities. All results are compared with linear theory.
Farajpour, M. R.; Shahidi, A. R.; Farajpour, A.
2018-03-01
In this study, the buckling behavior of a three-layered composite nanoplate reinforced with shape memory alloy (SMA) nanowires is examined. Whereas the upper and lower layers are reinforced with typical nanowires, SMA nanoscale wires are used to strengthen the middle layer of the system. The composite nanoplate is assumed to be under the action of biaxial compressive loading. A scale-dependent mathematical model is presented with the consideration of size effects within the context of the Eringen’s nonlocal continuum mechanics. Using the one-dimensional Brinson’s theory and the Kirchhoff theory of plates, the governing partial differential equations of SMA nanowire-reinforced hybrid nanoplates are derived. Both lateral and longitudinal deflections are taken into consideration in the theoretical formulation and method of solution. In order to reduce the governing differential equations to their corresponding algebraic equations, a discretization approach based on the differential quadrature method is employed. The critical buckling loads of the hybrid nanosystem with various boundary conditions are obtained with the use of a standard eigenvalue solver. It is found that the stability response of SMA composite nanoplates is strongly sensitive to the small scale effect.
Continuum model of non-equilibrium solvation and solvent effect on ultra-fast processes
International Nuclear Information System (INIS)
Li Xiangyuan; Fu Kexiang; Zhu Quan
2006-01-01
In the past 50 years, non-equilibrium solvation theory for ultra-fast processes such as electron transfer and light absorption/emission has attracted particular interest. A great deal of research efforts was made in this area and various models which give reasonable qualitative descriptions for such as solvent reorganization energy in electron transfer and spectral shift in solution, were developed within the framework of continuous medium theory. In a series of publications by the authors, we clarified that the expression of the non-equilibrium electrostatic free energy that is at the dominant position of non-equilibrium solvation and serves as the basis of various models, however, was incorrectly formulated. In this work, the authors argue that reversible charging work integration was inappropriately applied in the past to an irreversible path linking the equilibrium or the non-equilibrium state. Because the step from the equilibrium state to the nonequilibrium state is factually thermodynamically irreversible, the conventional expression for non-equilibrium free energy that was deduced in different ways is unreasonable. Here the authors derive the non-equilibrium free energy to a quite different form according to Jackson integral formula. Such a difference throws doubts to the models including the famous Marcus two-sphere model for solvent reorganization energy of electron transfer and the Lippert-Mataga equation for spectral shift. By introducing the concept of 'spring energy' arising from medium polarizations, the energy constitution of the non-equilibrium state is highlighted. For a solute-solvent system, the authors separate the total electrostatic energy into different components: the self-energies of solute charge and polarized charge, the interaction energy between them and the 'spring energy' of the solvent polarization. With detailed reasoning and derivation, our formula for non-equilibrium free energy can be reached through different ways. Based on the
Search-based model identification of smart-structure damage
Glass, B. J.; Macalou, A.
1991-01-01
This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.
DEFF Research Database (Denmark)
Sedaghatizadeh, N.; Atefi, G.; Fardad, A. A.
2011-01-01
In this investigation, semiempirical and numerical studies of blood flow in a viscoelastic artery were performed using the Cosserat continuum model. The large-amplitude oscillatory shear deformation model was used to quantify the nonlinear viscoelastic response of blood flow. The finite differenc...... method was used to solve the governing equations, and the particle swarm optimization algorithm was utilized to identify the non-Newtonian coefficients (kυ and γυ). The numerical results agreed well with previous experimental results....
Smoothed particle hydrodynamics modelling in continuum mechanics: fluid-structure interaction
Directory of Open Access Journals (Sweden)
Groenenboom P. H. L.
2009-06-01
Full Text Available Within this study, the implementation of the smoothed particle hydrodynamics (SPH method solving the complex problem of interaction between a quasi-incompressible fluid involving a free surface and an elastic structure is outlined. A brief description of the SPH model for both the quasi-incompressible fluid and the isotropic elastic solid is presented. The interaction between the fluid and the elastic structure is realised through the contact algorithm. The results of numerical computations are confronted with the experimental as well as computational data published in the literature.
International Nuclear Information System (INIS)
Dreimann, Karsten; Linz, Stefan J.
2010-01-01
Graphical abstract: Deterministic surface pattern (left) and its stochastic counterpart (right) arising in a stochastic damped Kuramoto-Sivashinsky equation that serves as a model equation for ion-beam eroded surfaces and is systematically investigated. - Abstract: Using a recently proposed field equation for the surface evolution of ion-beam eroded semiconductor target materials under normal incidence, we systematically explore the impact of additive stochastic fluctuations that are permanently present during the erosion process. Specifically, we investigate the dependence of the surface roughness, the underlying pattern forming properties and the bifurcation behavior on the strength of the fluctuations.
Kibey, Sandeep A.
We present a hierarchical approach that spans multiple length scales to describe defect formation---in particular, formation of stacking faults (SFs) and deformation twins---in fcc crystals. We link the energy pathways (calculated here via ab initio density functional theory, DFT) associated with formation of stacking faults and twins to corresponding heterogeneous defect nucleation models (described through mesoscale dislocation mechanics). Through the generalized Peieirls-Nabarro model, we first correlate the width of intrinsic SFs in fcc alloy systems to their nucleation pathways called generalized stacking fault energies (GSFE). We then establish a qualitative dependence of twinning tendency in fee metals and alloys---specifically, in pure Cu and dilute Cu-xAl (x= 5.0 and 8.3 at.%)---on their twin-energy pathways called the generalized planar fault energies (GPFE). We also link the twinning behavior of Cu-Al alloys to their electronic structure by determining the effect of solute Al on the valence charge density redistribution at the SF through ab initio DFT. Further, while several efforts have been undertaken to incorporate twinning for predicting stress-strain response of fcc materials, a fundamental law for critical twinning stress has not yet emerged. We resolve this long-standing issue by linking quantitatively the twin-energy pathways (GPFE) obtained via ab initio DFT to heterogeneous, dislocation-based twin nucleation models. We establish an analytical expression that quantitatively predicts the critical twinning stress in fcc metals in agreement with experiments without requiring any empiricism at any length scale. Our theory connects twinning stress to twin-energy pathways and predicts a monotonic relation between stress and unstable twin stacking fault energy revealing the physics of twinning. We further demonstrate that the theory holds for fcc alloys as well. Our theory inherently accounts for directional nature of twinning which available
Transform methods for precision continuum and control models of flexible space structures
Lupi, Victor D.; Turner, James D.; Chun, Hon M.
1991-01-01
An open loop optimal control algorithm is developed for general flexible structures, based on Laplace transform methods. A distributed parameter model of the structure is first presented, followed by a derivation of the optimal control algorithm. The control inputs are expressed in terms of their Fourier series expansions, so that a numerical solution can be easily obtained. The algorithm deals directly with the transcendental transfer functions from control inputs to outputs of interest, and structural deformation penalties, as well as penalties on control effort, are included in the formulation. The algorithm is applied to several structures of increasing complexity to show its generality.
Towards Industrial Application of Damage Models for Sheet Metal Forming
Doig, M.; Roll, K.
2011-05-01
Due to global warming and financial situation the demand to reduce the CO2-emission and the production costs leads to the permanent development of new materials. In the automotive industry the occupant safety is an additional condition. Bringing these arguments together the preferable approach for lightweight design of car components, especially for body-in-white, is the use of modern steels. Such steel grades, also called advanced high strength steels (AHSS), exhibit a high strength as well as a high formability. Not only their material behavior but also the damage behavior of AHSS is different compared to the performances of standard steels. Conventional methods for the damage prediction in the industry like the forming limit curve (FLC) are not reliable for AHSS. Physically based damage models are often used in crash and bulk forming simulations. The still open question is the industrial application of these models for sheet metal forming. This paper evaluates the Gurson-Tvergaard-Needleman (GTN) model and the model of Lemaitre within commercial codes with a goal of industrial application.
Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension
International Nuclear Information System (INIS)
Lu, Qiang; Gao, Wei; Huang, Rui
2011-01-01
Atomistic simulations are performed to study the nonlinear mechanical behavior of graphene nanoribbons under quasistatic uniaxial tension, emphasizing the effects of edge structures (armchair and zigzag, without and with hydrogen passivation) on elastic modulus and fracture strength. The numerical results are analyzed within a theoretical model of thermodynamics, which enables determination of the bulk strain energy density, the edge energy density and the hydrogen adsorption energy density as nonlinear functions of the applied strain based on static molecular mechanics simulations. These functions can be used to describe mechanical behavior of graphene nanoribbons from the initial linear elasticity to fracture. It is found that the initial Young's modulus of a graphene nanoribbon depends on the ribbon width and the edge chirality. Furthermore, it is found that the nominal strain to fracture is considerably lower for graphene nanoribbons with armchair edges than for ribbons with zigzag edges. Molecular dynamics simulations reveal two distinct fracture nucleation mechanisms: homogeneous nucleation for the zigzag-edged graphene nanoribbons and edge-controlled heterogeneous nucleation for the armchair-edged ribbons. The modeling and simulations in this study highlight the atomistic mechanisms for the nonlinear mechanical behavior of graphene nanoribbons with the edge effects, which is potentially important for developing integrated graphene-based devices
3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model
Directory of Open Access Journals (Sweden)
Jeannette H. Spühler
2018-04-01
Full Text Available Due to advances in medical imaging, computational fluid dynamics algorithms and high performance computing, computer simulation is developing into an important tool for understanding the relationship between cardiovascular diseases and intraventricular blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary. We apply a computational framework for automated solutions of partial differential equations using Finite Element Methods where any mathematical description directly can be translated to code. This allows us to develop a cardiac model where specific properties of the heart such as fluid-structure interaction of the aortic valve can be added in a modular way without extensive efforts. In previous work, we simulated the blood flow in the left ventricle of the heart. In this paper, we extend this model by placing prototypes of both a native and a mechanical aortic valve in the outflow region of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis (narrowing of the valve opening or regurgitation (leaking and to optimize the design of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction and contact problem are formulated in a unified continuum model using the conservation laws for mass and momentum and a phase function. The discretization is based on an Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion stabilization, and it is implemented in the open source software Unicorn which shows near optimal scaling up to thousands of cores. Computational results are presented to demonstrate the capability of our framework.
3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model.
Spühler, Jeannette H; Jansson, Johan; Jansson, Niclas; Hoffman, Johan
2018-01-01
Due to advances in medical imaging, computational fluid dynamics algorithms and high performance computing, computer simulation is developing into an important tool for understanding the relationship between cardiovascular diseases and intraventricular blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary. We apply a computational framework for automated solutions of partial differential equations using Finite Element Methods where any mathematical description directly can be translated to code. This allows us to develop a cardiac model where specific properties of the heart such as fluid-structure interaction of the aortic valve can be added in a modular way without extensive efforts. In previous work, we simulated the blood flow in the left ventricle of the heart. In this paper, we extend this model by placing prototypes of both a native and a mechanical aortic valve in the outflow region of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis (narrowing of the valve opening) or regurgitation (leaking) and to optimize the design of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction and contact problem are formulated in a unified continuum model using the conservation laws for mass and momentum and a phase function. The discretization is based on an Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion stabilization, and it is implemented in the open source software Unicorn which shows near optimal scaling up to thousands of cores. Computational results are presented to demonstrate the capability of our framework.
International Nuclear Information System (INIS)
Mizuno, M; Nishikata, T; Okayasu, M
2013-01-01
We have carried out static compression tests in the poling direction for PZT ceramics and evaluated the material properties by measuring the resonance and anti-resonance frequencies and electrostatic capacity at regular intervals. Then the variation in the material properties up to fracture was clarified. Also, the development of internal damage was also clarified quantitatively by evaluating a damage variable on the basis of the continuum damage mechanics. The damage variable was calculated from the ratio of the elastic coefficient to its initial value. In the present paper, the development of internal damage was formulated as an evolution equation of the damage variable. In the formulation, a threshold stress leading to the onset of damage was considered. Moreover, the variation in material properties was related to the damage variable and formulated as material functions of the damage variable. The development of internal damage and the variation in material properties were simulated by the equations proposed in the present paper and the validity of the equations was verified by comparing the predictions with experimental results. (paper)
How Models Simulate the Radiative Effect in the Transition Zone of the Aerosol-Cloud Continuum
Calbo Angrill, J.; González, J. A.; Long, C. N.; McComiskey, A. C.
2017-12-01
Several studies have pointed towards dealing with clouds and aerosols as two manifestations of what is essentially the same physical phenomenon: a suspension of tiny particles in the air. Although the two extreme cases (i.e., pure aerosol and well-defined cloud) are easily distinguished, and obviously produce different radiative effects, there are many situations in the transition (or "twilight") zone. In a recent paper [Calbó et al., Atmos. Res. 2017, j.atmosres.2017.06.010], the authors of the current communication estimated that about 10% of time there might be a suspension of particles in the air that is difficult to distinguish as either cloud or aerosol. Radiative transfer models, however, simulate the effect of clouds and aerosols with different modules, routines, or parameterizations. In this study, we apply a sensitivity analysis approach to assess the ability of two radiative transfer models (SBDART and RRTM) in simulating the radiative effect of a suspension of particles with characteristics in the boundary between cloud and aerosol. We simulate this kind of suspension either in "cloud mode" or in "aerosol mode" and setting different values of optical depth, droplet size, water path, aerosol type, cloud height, etc. Irradiances both for solar and infrared bands are studied, both at ground level and at the top of the atmosphere, and all analyses are repeated for different solar zenith angles. We obtain that (a) water clouds and ice clouds have similar radiative effects if they have the same optical depth; (b) the spread of effects regarding different aerosol type/aerosol characteristics is remarkable; (c) radiative effects of an aerosol layer and of a cloud layer are different, even if they have similar optical depth; (d) for a given effect on the diffuse component, the effect on the direct component is usually greater (more extinction of direct beam) by aerosols than by clouds; (e) radiative transfer models are somewhat limited when simulating the
Continuum topology optimization considering uncertainties in load locations based on the cloud model
Liu, Jie; Wen, Guilin
2018-06-01
Few researchers have paid attention to designing structures in consideration of uncertainties in the loading locations, which may significantly influence the structural performance. In this work, cloud models are employed to depict the uncertainties in the loading locations. A robust algorithm is developed in the context of minimizing the expectation of the structural compliance, while conforming to a material volume constraint. To guarantee optimal solutions, sufficient cloud drops are used, which in turn leads to low efficiency. An innovative strategy is then implemented to enormously improve the computational efficiency. A modified soft-kill bi-directional evolutionary structural optimization method using derived sensitivity numbers is used to output the robust novel configurations. Several numerical examples are presented to demonstrate the effectiveness and efficiency of the proposed algorithm.
Bosonization of the two-dimensional t-J model in the continuum limit
International Nuclear Information System (INIS)
Schmeltzer, D.; Bishop, A.R.
1996-01-01
The t-J model in two dimensions is bosonized using a set of N, coupled two-dimensional Fermi-surface patches. Ignoring tunneling between the patches, the coherent tunneling of holes and the superfluid phase are suppressed. Within this scheme the system remains in the normal phase when temperature T→0. The main feature of this construction is the absence of screening of the dissipative transversal gauge field generated by the spinons. This dissipative gauge field is responsible for the non-Fermi-liquid behavior, which is manifested in the free energy and single-particle Green function. The deviation from Fermi-liquid behavior is due to the U(1) gauge field, and at long distances a new exponent due to the holes is identified. Experimental consequences are discussed. copyright 1996 The American Physical Society
Damage modelling in concrete subject to sulfate attack
Directory of Open Access Journals (Sweden)
N. Cefis
2014-07-01
Full Text Available In this paper, we consider the mechanical effect of the sulfate attack on concrete. The durability analysis of concrete structures in contact to external sulfate solutions requires the definition of a proper diffusion-reaction model, for the computation of the varying sulfate concentration and of the consequent ettringite formation, coupled to a mechanical model for the prediction of swelling and material degradation. In this work, we make use of a two-ions formulation of the reactive-diffusion problem and we propose a bi-phase chemo-elastic damage model aimed to simulate the mechanical response of concrete and apt to be used in structural analyses.
DENSE MULTIPHASE FLOW SIMULATION: CONTINUUM MODEL FOR POLY-DISPERSED SYSTEMS USING KINETIC THEORY
Energy Technology Data Exchange (ETDEWEB)
Moses Bogere
2011-08-31
The overall objective of the project was to verify the applicability of the FCMOM approach to the kinetic equations describing the particle flow dynamics. For monodispersed systems the fundamental equation governing the particle flow dynamics is the Boltzmann equation. During the project, the FCMOM was successfully applied to several homogeneous and in-homogeneous problems in different flow regimes, demonstrating that the FCMOM has the potential to be used to solve efficiently the Boltzmann equation. However, some relevant issues still need to be resolved, i.e. the homogeneous cooling problem (inelastic particles cases) and the transition between different regimes. In this report, the results obtained in homogeneous conditions are discussed first. Then a discussion of the validation results for in-homogeneous conditions is provided. And finally, a discussion will be provided about the transition between different regimes. Alongside the work on development of FCMOM approach studies were undertaken in order to provide insights into anisotropy or particles kinetics in riser hydrodynamics. This report includes results of studies of multiphase flow with unequal granular temperatures and analysis of momentum re-distribution in risers due to particle-particle and fluid-particle interactions. The study of multiphase flow with unequal granular temperatures entailed both simulation and experimental studies of two particles sizes in a riser and, a brief discussion of what was accomplished will be provided. And finally, a discussion of the analysis done on momentum re-distribution of gas-particles flow in risers will be provided. In particular a discussion of the remaining work needed in order to improve accuracy and predictability of riser hydrodynamics based on two-fluid models and how they can be used to model segregation in risers.
Directory of Open Access Journals (Sweden)
D. A. Eliseev
2015-01-01
Full Text Available The solution stability of an initial boundary problem for a linear hybrid system of differential equations, which models the rotation of a rigid body with two elastic rods located in the same plane is studied in the paper. To an axis passing through the mass center of the rigid body perpendicularly to the rods location plane is applied the stabilizing moment proportional to the angle of the system rotation, derivative of the angle, integral of the angle. The external moment provides a feedback. A method of studying the behavior of solutions of the initial boundary problem is proposed. This method allows to exclude from the hybrid system of differential equations partial differential equations, which describe the dynamics of distributed elements of a mechanical system. It allows us to build one equation for an angle of the system rotation. Its characteristic equation defines the stability of solutions of all the system. In the space of feedback-coefficients the areas that provide the asymptotic stability of solutions of the initial boundary problem are built up.
Short intergranular cracks in the piecewise anisotropic continuum model of the microstructure
International Nuclear Information System (INIS)
Cizelj, L.; Kovse, I.
2001-01-01
Computational algorithms aiming at modeling and visualization of the initiation and growth of intergranular stress corrosion cracks (e.g., in the steam generator tubes) on the grain-size scale have already been proposed [6]. The main focus of the paper is given to the influence of randomly oriented neighboring grains on the microscopic stress fields at crack tips. The incompatibility strains, which develop along the boundaries of randomly oriented anisotropic grains, are shown to influence the local stress fields at crack tips significantly. Special attention has been paid to the implementation and comparison of different numerical methods estimating the local stress fields at crack tips, aiming at optimizing the computational time and the numerical accuracy of the results. The limited number of calculations indicate that the anisotropic arrangement of grains with local incompatibility strains causes on average about 10% (plane strain) and 26% (plane stress) higher J-integral values at the crack tips than expected from the calculations in the isotropic case.(author)
Local stem cell depletion model for normal tissue damage
International Nuclear Information System (INIS)
Yaes, R.J.; Keland, A.
1987-01-01
The hypothesis that radiation causes normal tissue damage by completely depleting local regions of tissue of viable stem cells leads to a simple mathematical model for such damage. In organs like skin and spinal cord where destruction of a small volume of tissue leads to a clinically apparent complication, the complication probability is expressed as a function of dose, volume and stem cell number by a simple triple negative exponential function analogous to the double exponential function of Munro and Gilbert for tumor control. The steep dose response curves for radiation myelitis that are obtained with our model are compared with the experimental data for radiation myelitis in laboratory rats. The model can be generalized to include other types or organs, high LET radiation, fractionated courses of radiation, and cases where an organ with a heterogeneous stem cell population receives an inhomogeneous dose of radiation. In principle it would thus be possible to determine the probability of tumor control and of damage to any organ within the radiation field if the dose distribution in three dimensional space within a patient is known
International Nuclear Information System (INIS)
Fossum, A.F.; Brodsky, N.S.; Chan, K.S.; Munson, D.E.
1992-01-01
Recent concern over the potential for creep induced development of a damaged rock zone adjacent to shafts and rooms at the Waste Isolation Pilot Plant (WIPP) has motivated the formulation of a coupled constitutive description of continuum salt creep and damage. This constitutive model gives time-dependent inelastic flow and pressure-sensitive damage in crystalline solids. Initially the constitutive model was successfully used to simulate multiaxial, i.e. true triaxial, experiments obtained at relatively high, 2.5 to 20 MPa, confining pressures. Predictions of the complete creep curve, including the heretofore unmodeled tertiary creep, were also demonstrated. However, comparisons of model predictions with data were hampered because the bulk of the creep data existing on WIPP salt was intentionally obtained under confining pressures typically greater than 15 MPa, in an attempt to match the underground in situ lithostatic pressure level. It was realized that the high confining pressures suppressed tertiary creep and resulted in better defined steady state creep responses. To address the tertiary creep process directly, a number of creep tests were conducted at lower confining pressures for the explicit purpose of creating dilatant behavior
Epigenetic Regulators Modulate Muscle Damage in Duchenne Muscular Dystrophy Model.
Bajanca, Fernanda; Vandel, Laurence
2017-12-21
Histone acetyl transferases (HATs) and histone deacetylases (HDAC) control transcription during myogenesis. HDACs promote chromatin condensation, inhibiting gene transcription in muscle progenitor cells until myoblast differentiation is triggered and HDACs are released. HATs, namely CBP/p300, activate myogenic regulatory and elongation factors promoting myogenesis. HDAC inhibitors are known to improve regeneration in dystrophic muscles through follistatin upregulation. However, the potential of directly modulating HATs remains unexplored. We tested this possibility in a well-known zebrafish model of Duchenne muscular dystrophy. Interestingly, CBP/p300 transcripts were found downregulated in the absence of Dystrophin. While investigating CBP rescuing potential we observed that dystrophin-null embryos overexpressing CBP actually never show significant muscle damage, even before a first regeneration cycle could occur. We found that the pan-HDAC inhibitor trichostatin A (TSA) also prevents early muscle damage, however the single HAT CBP is as efficient even in low doses. The HAT domain of CBP is required for its full rescuing ability. Importantly, both CBP and TSA prevent early muscle damage without restoring endogenous CBP/p300 neither increasing follistatin transcripts. This suggests a new mechanism of action of epigenetic regulators protecting dystrophin-null muscle fibres from detaching, independent from the known improvement of regeneration upon damage of HDACs inhibitors. This study builds supporting evidence that epigenetic modulators may play a role in determining the severity of muscle dystrophy, controlling the ability to resist muscle damage. Determining the mode of action leading to muscle protection can potentially lead to new treatment options for muscular dystrophies in the future.
Micromechanics Based Inelastic and Damage Modeling of Composites
Directory of Open Access Journals (Sweden)
P. P. Procházka
2004-01-01
Full Text Available Micromechanics based models are considered for application to viscoelasticity and damage in metal matrix composites. The method proposes a continuation and development of Dvooák’s transformation field analysis, considering the piecewise uniform eigenstrains in each material phase. Standard applications of the method to a two-phase are considered in this study model, i.e., only one sub-volume per phase is considered. A continuous model is used, employing transformation field analysis with softening in order to prevent the tensile stress overstepping the tensile strength. At the same time shear cracking occurs in the tangential direction of the possible crack. This is considered in the principal shear stresses and they make disconnections in displacements. In this case, discontinuous models are more promising. Because discrete models, that can describe the situation more realistically have not been worked out in detail, we retain a continuous model and substitute the slip caused by overstepping the damage law by introducing eigenparameters from TFA. The various aspects of the proposed methods are systematically checked by comparing with finite element unit cell analyses, made through periodic homogenization assumptions, for SiC/Ti unidirectional lay-ups.
Modeling of damage evaluation in thin composite plate loaded by pressure loading
Directory of Open Access Journals (Sweden)
Dudinský M.
2012-12-01
Full Text Available This article presents the results of numerical analysis of elastic damage of thin laminated long fiber-reinforced composite plate consisting of unidirectional layers which is loaded by uniformly distributed pressure. The analysis has been performed by means of the finite element method (FEM. The numerical implementation uses layered plate finite elements based on the Kirchhoff plate theory. System of nonlinear equations has been solved by means of the Newton- Raphson procedure. Evolution of damage has been solved using the return-mapping algorithm based on the continuum damage mechanics (CDM. The analysis was performed using own program created in MATLAB. Problem of laminated fiber-reinforced composite plate fixed on edges for two different materials and three different laminate stacking sequences (LSS was simulated. Evolution of stresses vs. strains and also evolution of damage variables in critical points of the structure are shown.
Kiminori Matsuyama
1999-01-01
This paper develops a Ricardian model with a continuum of goods when consumers have nonhomothetic preferences. Goods are indexed in terms of priority, and the households add higher-indexed goods to their consumption baskets, as they become richer. South (North) has comparative advantage in a lower (higher) spectrum of goods, hence specializing in goods with lower (higher) income elasticities of demand. Due to the income elasticity difference, a variety of exogenous changes have asymmetric eff...
A transportable system of models for natural resource damage assessment
International Nuclear Information System (INIS)
Reed, M.; French, D.
1992-01-01
A system of computer models has been developed for assessment of natural resource economic damages resulting from spills of oil and hazardous materials in marine and fresh water environments. Under USA federal legislation, the results of the model system are presumed correct in damage litigation proceedings. The model can address a wide range of spatial and temporal scales. The equations describing the motion of both pollutants and biota are solved in three dimensions. The model can simulate continuous releases of a contaminant, with representation of complex coastal boundaries, variable bathymetry, multiple shoreline types, and spatially variable ecosystem habitats. A graphic user interface provides easy control of the system in addition to the ability to display elements of the underlying geographical information system data base. The model is implemented on a personal computer and on a UNIX workstation. The structure of the system is such that transport to new geographic regions can be accomplished relatively easily, requiring only the development of the appropriate physical, toxicological, biological, and economic data sets. Applications are currently in progress for USA inland and coastal waters, the Adriatic Sea, the Strait of Sicily, the Gulf of Suez, and the Baltic Sea. 4 refs., 2 figs
Research on spatial Model and analysis algorithm for nuclear weapons' damage effects
International Nuclear Information System (INIS)
Liu Xiaohong; Meng Tao; Du Maohua; Wang Weili; Ji Wanfeng
2011-01-01
In order to realize the three dimension visualization of nuclear weapons' damage effects. Aiming at the characteristics of the damage effects data, a new model-MRPCT model is proposed, and this model can carry out the modeling of the three dimension spatial data of the nuclear weapons' damage effects. For the sake of saving on the memory, linear coding method is used to store the MRPCT model. On the basis of Morton code, spatial analysis of the damage effects is completed. (authors)
Modeling the viscoplastic and damage behavior in deep argillaceous rocks
International Nuclear Information System (INIS)
Souley, M.; Armand, G.; Su, K.; Ghoreychi, M.
2011-01-01
In order to demonstrate the feasibility of a radioactive waste repository in the Callovo-Oxfordian clay-stone formation, the French national radioactive waste management agency (ANDRA) started in 2000 to build an underground research laboratory at Bure (East of France). One of the key issues is to understand long term behavior of the drifts. More than 400 m horizontal galleries at the main level of -490 m have been instrumented since April 2005. The continuous measurements of convergence of the galleries are available, allowing a better understanding of the time-dependent response of the clay-stone at natural scale. Results indicate that the viscoplastic strain rates observed in the undamaged area far from the gallery walls are of the same order of magnitude as those obtained on rock samples, whereas those recorded in the damaged or fractured zone near the gallery walls are one to two orders of magnitude higher, indicating the significant influence of damage or/and macro-fractures on the viscoplastic strains. Based on these observations, a macroscopic viscoplastic model which aims to improve the viscoplastic strain prediction in the EDZ is proposed and implemented in FLAC 3Dc . Both the instantaneous and the time-dependent behavior are considered in the model. The short term response is assumed to be elastoplastic with strain hardening/softening whereas the time-dependent behavior is based on the concepts of visco-plasticity (Lemaitre's model). Finally, the damage-induced viscoplastic strains changes is examined through the plastic deformation (assumed to approach the damage rate).In order to verify both constitutive equations and their implementations, several simulations are performed: (a) triaxial tests at different confining pressures; (b) single- and multi-stage creep tests; (c) relaxation tests with different total axial strain levels, etc. Finally, an example of a blind prediction of the excavation of a drift parallel to the horizontal minor stress,
Transgenic Mouse Model for Reducing Oxidative Damage in Bone
Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.
2016-01-01
Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the
Modelling Of Anticipated Damage Ratio On Breakwaters Using Fuzzy Logic
Mercan, D. E.; Yagci, O.; Kabdasli, S.
2003-04-01
In breakwater design the determination of armour unit weight is especially important in terms of the structure's life. In a typical experimental breakwater stability study, different wave series composed of different wave heights; wave period and wave steepness characteristics are applied in order to investigate performance the structure. Using a classical approach, a regression equation is generated for damage ratio as a function of characteristic wave height. The parameters wave period and wave steepness are not considered. In this study, differing from the classical approach using a fuzzy logic, a relationship between damage ratio as a function of mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s) was further generated. The system's inputs were mean wave period (T_m), wave steepness (H_s/L_m) and significant wave height (H_s). For fuzzification all input variables were divided into three fuzzy subsets, their membership functions were defined using method developed by Mandani (Mandani, 1974) and the rules were written. While for defuzzification the centroid method was used. In order to calibrate and test the generated models an experimental study was conducted. The experiments were performed in a wave flume (24 m long, 1.0 m wide and 1.0 m high) using 20 different irregular wave series (P-M spectrum). Throughout the study, the water depth was 0.6 m and the breakwater cross-sectional slope was 1V/2H. In the armour layer, a type of artificial armour unit known as antifer cubes were used. The results of the established fuzzy logic model and regression equation model was compared with experimental data and it was determined that the established fuzzy logic model gave a more accurate prediction of the damage ratio on this type of breakwater. References Mandani, E.H., "Application of Fuzzy Algorithms for Control of Simple Dynamic Plant", Proc. IEE, vol. 121, no. 12, December 1974.
Stochastic models for predicting pitting corrosion damage of HLRW containers
International Nuclear Information System (INIS)
Henshall, G.A.
1991-10-01
Stochastic models for predicting aqueous pitting corrosion damage of high-level radioactive-waste containers are described. These models could be used to predict the time required for the first pit to penetrate a container and the increase in the number of breaches at later times, both of which would be useful in the repository system performance analysis. Monte Carlo implementations of the stochastic models are described, and predictions of induction time, survival probability and pit depth distributions are presented. These results suggest that the pit nucleation probability decreases with exposure time and that pit growth may be a stochastic process. The advantages and disadvantages of the stochastic approach, methods for modeling the effects of environment, and plans for future work are discussed
Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.
Energy Technology Data Exchange (ETDEWEB)
Neilsen, Michael K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hinnerichs, Terry D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lo, Chi S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-06-01
Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.
Micromechanical modeling and inverse identification of damage using cohesive approaches
International Nuclear Information System (INIS)
Blal, Nawfal
2013-01-01
In this study a micromechanical model is proposed for a collection of cohesive zone models embedded between two each elements of a standard cohesive-volumetric finite element method. An equivalent 'matrix-inclusions' composite is proposed as a representation of the cohesive-volumetric discretization. The overall behaviour is obtained using homogenization approaches (Hashin Shtrikman scheme and the P. Ponte Castaneda approach). The derived model deals with elastic, brittle and ductile materials. It is available whatever the triaxiality loading rate and the shape of the cohesive law, and leads to direct relationships between the overall material properties and the local cohesive parameters and the mesh density. First, rigorous bounds on the normal and tangential cohesive stiffnesses are obtained leading to a suitable control of the inherent artificial elastic loss induced by intrinsic cohesive models. Second, theoretical criteria on damageable and ductile cohesive parameters are established (cohesive peak stress, critical separation, cohesive failure energy,... ). These criteria allow a practical calibration of the cohesive zone parameters as function of the overall material properties and the mesh length. The main interest of such calibration is its promising capacity to lead to a mesh-insensitive overall response in surface damage. (author) [fr
ITER transient consequences for material damage: modelling versus experiments
International Nuclear Information System (INIS)
Bazylev, B; Janeschitz, G; Landman, I; Pestchanyi, S; Loarte, A; Federici, G; Merola, M; Linke, J; Zhitlukhin, A; Podkovyrov, V; Klimov, N; Safronov, V
2007-01-01
Carbon-fibre composite (CFC) and tungsten macrobrush armours are foreseen as PFC for the ITER divertor. In ITER the main mechanisms of metallic armour damage remain surface melting and melt motion erosion. In the case of CFC armour, due to rather different heat conductivities of CFC fibres a noticeable erosion of the PAN bundles may occur at rather small heat loads. Experiments carried out in the plasma gun facilities QSPA-T for the ITER like edge localized mode (ELM) heat load also demonstrated significant erosion of the frontal and lateral brush edges. Numerical simulations of the CFC and tungsten (W) macrobrush target damage accounting for the heat loads at the face and lateral brush edges were carried out for QSPA-T conditions using the three-dimensional (3D) code PHEMOBRID. The modelling results of CFC damage are in a good qualitative and quantitative agreement with the experiments. Estimation of the droplet splashing caused by the Kelvin-Helmholtz (KH) instability was performed
Passing waves from atomistic to continuum
Chen, Xiang; Diaz, Adrian; Xiong, Liming; McDowell, David L.; Chen, Youping
2018-02-01
Progress in the development of coupled atomistic-continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic-continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic-continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic-continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic-continuum interfaces. This work is the first step towards developing a concurrent atomistic-continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.
The Estimation Modelling of Damaged Areas by Harmful Animals
Jang, R.; Sung, M.; Hwang, J.; Jeon, S. W.
2017-12-01
The Republic of Korea has undergone rapid development and urban development without sufficient consideration of the environment. This type of growth is accompanied by a reduction in forest area and wildlife habitat. It is a phenomenon that affects the habitat of large mammals more than small. Especially in Korea, the damage caused by wild boar(Sus scrofa) is harsher than other large mammalian species like water deer(Hydropotes inermis), which also means that the number of these reported cases of this species is higher than ones of other mammals. Wild boar has three to eight cubs per year and it is possible to breed every year, which makes it more populous comparing with the fragmented habitats. It could be regarded as one of the top predators in Korea, which it is inevitable for humans to intervene this creature in population control. In addition, some individuals have been forced to be retreated from other habitats in major habitats, or to invade human activity areas for food activity, thereby destroying crops. Ultimately, this mammal species has been treated as farm pest animals through committing road kills and urban emergences. In this study, we has estimated possible farm pest animal present points from the damage district using 2,505 hazardous wildlife damage areas with four types of geological informations, four kinds of forest information, land cover, and distribution of farmland occurred in Gyeongnam province in Korea. In the estimating model, utilizing MAXENT, information of background point was set to 10,000, 70% of the damaged sites were used to construct the model, 30% was used for verification, and 10 times of crossvalidate were proceeded - verified by AUC of ROC. As a result of analyses, AUC was 0.847, and the percent contribution of the forest information was the distance toward inner-forest areas, 36.1%, the land cover, 16.5%, the distance from the field, 14.9%. Furthermore, the permutation importance was 24.9% of the cover, 12.3% of the height
Computational stress and damage modelling for rolling contact fatigue
DEFF Research Database (Denmark)
Cerullo, Michele
Rolling contact fatigue in radial roller bearings is studied by means of a 2D plane strain nite element program. The Dang Van multiaxial fatigue criterion is firstly used, in a macroscopic study modeling the bearing raceway, to investigate the region where fatigue cracks are more likely to nucleate...... and of compressive residual stresses are also analyzed. The stress history of a material point at the depth where the maximum Dang Van damage factor is reached is then recorded and used in a subsequent micro-mechanical analysis. The stress history is applied as periodic boundary conditions in a representative volume...
le Graverend, J.-B.
2018-05-01
A lattice-misfit-dependent damage density function is developed to predict the non-linear accumulation of damage when a thermal jump from 1050 °C to 1200 °C is introduced somewhere in the creep life. Furthermore, a phenomenological model aimed at describing the evolution of the constrained lattice misfit during monotonous creep load is also formulated. The response of the lattice-misfit-dependent plasticity-coupled damage model is compared with the experimental results obtained at 140 and 160 MPa on the first generation Ni-based single crystal superalloy MC2. The comparison reveals that the damage model is well suited at 160 MPa and less at 140 MPa because the transfer of stress to the γ' phase occurs for stresses above 150 MPa which leads to larger variations and, therefore, larger effects of the constrained lattice misfit on the lifetime during thermo-mechanical loading.
Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials
Muñoz, Raúl; Delgado, Sofía; González, Carlos; López-Romano, Bernardo; Wang, De-Yi; LLorca, Javier
2014-02-01
Carbon fiber-reinforced polymers, used in primary structures for aircraft due to an excellent strength-to-weight ratio when compared with conventional aluminium alloy counterparts, may nowadays be considered as mature structural materials. Their use has been extended in recent decades, with several aircraft manufacturers delivering fuselages entirely manufactured with carbon composites and using advanced processing technologies. However, one of the main drawbacks of using such composites entails their poor electrical conductivity when compared with aluminium alloy competitors that leads to lightning strikes being considered a significant threat during the service life of the aircraft. Traditionally, this problem was overcome with the use of a protective copper/bronze mesh that added additional weight and reduced the effectiveness of use of the material. Moreover, this traditional sizing method is based on vast experimental campaigns carried out by subjecting composite panels to simulated lightning strike events. While this method has proven its validity, and is necessary for certification of the structure, it may be optimized with the aid provided by physically based numerical models. This paper presents a model based on the finite element method that includes the sources of damage observed in a lightning strike, such as thermal damage caused by Joule overheating and electromagnetic/acoustic pressures induced by the arc around the attachment points. The results of the model are compared with lightning strike experiments carried out in a carbon woven composite.
Energy Technology Data Exchange (ETDEWEB)
Kamerlin, Shina C. L.; Haranczyk, Maciej; Warshel, Arieh
2009-05-01
Phosphate hydrolysis is ubiquitous in biology. However, despite intensive research on this class of reactions, the precise nature of the reaction mechanism remains controversial. In this work, we have examined the hydrolysis of three homologous phosphate diesters. The solvation free energy was simulated by means of either an implicit solvation model (COSMO), hybrid quantum mechanical / molecular mechanical free energy perturbation (QM/MM-FEP) or a mixed solvation model in which N water molecules were explicitly included in the ab initio description of the reacting system (where N=1-3), with the remainder of the solvent being implicitly modelled as a continuum. Here, both COSMO and QM/MM-FEP reproduce Delta Gobs within an error of about 2kcal/mol. However, we demonstrate that in order to obtain any form of reliable results from a mixed model, it is essential to carefully select the explicit water molecules from short QM/MM runs that act as a model for the true infinite system. Additionally, the mixed models tend to be increasingly inaccurate the more explicit water molecules are placed into the system. Thus, our analysis indicates that this approach provides an unreliable way for modelling phosphate hydrolysis in solution.
Elementary Continuum Mechanics for Everyone - and Some More
DEFF Research Database (Denmark)
Byskov, Esben
Quite trivially, Continuum mechanics per se deals with the description of deformations of three-dimensional continua i.e. models whose properties are independent of scale in that the continuum does not possess a structure. Thus, continuum mechanics does not try to model the atomic structure...
Elementary Continuum Mechanics for Everyone - And Some More
DEFF Research Database (Denmark)
Byskov, Esben
Quite trivially, Continuum mechanics per se deals with the description of deformations of three-dimensional continua i.e. models whose properties are independent of scale in that the continuum does not possess a structure. Thus, continuum mechanics does not try to model the atomic structure...
Two-scale modelling for hydro-mechanical damage
International Nuclear Information System (INIS)
Frey, J.; Chambon, R.; Dascalu, C.
2010-01-01
Document available in extended abstract form only. Excavation works for underground storage create a damage zone for the rock nearby and affect its hydraulics properties. This degradation, already observed by laboratory tests, can create a leading path for fluids. The micro fracture phenomenon, which occur at a smaller scale and affect the rock permeability, must be fully understood to minimize the transfer process. Many methods can be used in order to take into account the microstructure of heterogeneous materials. Among them a method has been developed recently. Instead of using a constitutive equation obtained by phenomenological considerations or by some homogenization techniques, the representative elementary volume (R.E.V.) is modelled as a structure and the links between a prescribed kinematics and the corresponding dual forces are deduced numerically. This yields the so called Finite Element square method (FE2). In a numerical point of view, a finite element model is used at the macroscopic level, and for each Gauss point, computations on the microstructure gives the usual results of a constitutive law. This numerical approach is now classical in order to properly model some materials such as composites and the efficiency of such numerical homogenization process has been shown, and allows numerical modelling of deformation processes associated with various micro-structural changes. The aim of this work is to describe trough such a method, damage of the rock with a two scale hydro-mechanical model. The rock damage at the macroscopic scale is directly link with an analysis on the microstructure. At the macroscopic scale a two phase's problem is studied. A solid skeleton is filled up by a filtrating fluid. It is necessary to enforce two balance equation and two mass conservation equations. A classical way to deal with such a problem is to work with the balance equation of the whole mixture, and the mass fluid conservation written in a weak form, the mass
Negara, Ardiansyah
2015-05-01
Anisotropy of hydraulic properties of the subsurface geologic formations is an essential feature that has been established as a consequence of the different geologic processes that undergo during the longer geologic time scale. With respect to subsurface reservoirs, in many cases, anisotropy plays significant role in dictating the direction of flow that becomes no longer dependent only on driving forces like the pressure gradient and gravity but also on the principal directions of anisotropy. Therefore, there has been a great deal of motivation to consider anisotropy into the subsurface flow and transport models. In this dissertation, we present subsurface flow modeling in single and dual continuum anisotropic porous media, which include the single-phase groundwater flow coupled with the solute transport in anisotropic porous media, the two-phase flow with gravity effect in anisotropic porous media, and the natural gas flow in anisotropic shale reservoirs. We have employed the multipoint flux approximation (MPFA) method to handle anisotropy in the flow model. The MPFA method is designed to provide correct discretization of the flow equations for general orientation of the principal directions of the permeability tensor. The implementation of MPFA method is combined with the experimenting pressure field approach, a newly developed technique that enables the solution of the global problem breaks down into the solution of multitude of local problems. The numerical results of the study demonstrate the significant effects of anisotropy of the subsurface formations. For the single-phase groundwater flow coupled with the solute transport modeling in anisotropic porous media, the results shows the strong impact of anisotropy on the pressure field and the migration of the solute concentration. For the two-phase flow modeling with gravity effect in anisotropic porous media, it is observed that the buoyancy-driven flow, which emerges due to the density differences between the
Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector
Ducourthial, Audrey; The ATLAS collaboration
2017-01-01
Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15} n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside...
Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector
Rossini, Lorenzo; The ATLAS collaboration
2018-01-01
Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm^2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for b...
Modeling radiation damage to pixel sensors in the ATLAS detector
Ducourthial, Audrey; The ATLAS collaboration
2017-01-01
Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of $10^{15}n_{eq}/cm^2$ and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside ...
Modeling radiation damage to pixel sensors in the ATLAS detector
Ducourthial, A.
2018-03-01
Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC) . As the closest detector component to the interaction point, these detectors will be subject to a significant amount of radiation over their lifetime: prior to the High-Luminosity LHC (HL-LHC) [1], the innermost layers will receive a fluence in excess of 1015 neq/cm2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is essential in order to make accurate predictions for current and future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects on the ATLAS pixel sensors for the first time. In addition to thoroughly describing the setup, we present first predictions for basic pixel cluster properties alongside early studies with LHC Run 2 proton-proton collision data.
Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector
Rossini, Lorenzo; The ATLAS collaboration
2018-01-01
Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High- Luminosity LHC (HL-LHC), the innermost layers will receive a fluence in excess of 10^15 neq/cm2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the Higgs boson. We present a digitization model that includes radiation damage effects to the ATLAS pixel sensors for the first time and considers both planar and 3D sensor designs. In addition to thoroughly describing the setup, we compare predictions for basic...
Modeling of reflood of severely damaged reactor core
International Nuclear Information System (INIS)
Bachrata, A.
2012-01-01
The TMI-2 accident and recently Fukushima accident demonstrated that the nuclear safety philosophy has to cover accident sequences involving massive core melt in order to develop reliable mitigation strategies for both, existing and advanced reactors. Although severe accidents are low likelihood and might be caused only by multiple failures, accident management is implemented for controlling their course and mitigating their consequences. In case of severe accident, the fuel rods may be severely damaged and oxidized. Finally, they collapse and form a debris bed on core support plate. Removal of decay heat from a damaged core is a challenging issue because of the difficulty for water to penetrate inside a porous medium. The reflooding (injection of water into core) may be applied only if the availability of safety injection is recovered during accident. If the injection becomes available only in the late phase of accident, water will enter a core configuration that will differ from original rod bundle geometry and will resemble to the severe damaged core observed in TMI-2. The higher temperatures and smaller hydraulic diameters in a porous medium make the coolability more difficult than for intact fuel rods under typical loss of coolant accident conditions. The modeling of this kind of hydraulic and heat transfer is a one of key objectives of this. At IRSN, part of the studies is realized using an European thermo-hydraulic computer code for severe accident analysis ICARE-CATHARE. The objective of this thesis is to develop a 3D reflood model (implemented into ICARE-CATHARE) that is able to treat different configurations of degraded core in a case of severe accident. The proposed model is characterized by treating of non-equilibrium thermal between the solid, liquid and gas phase. It includes also two momentum balance equations. The model is based on a previously developed model but is improved in order to take into account intense boiling regimes (in particular
The Virtuality Continuum Revisited
Nijholt, Antinus; Traum, D.; Zhai, Sh.; Kellogg, W.
2005-01-01
We survey the themes and the aims of a workshop devoted to the state-of-the-art virtuality continuum. In this continuum, ranging from fully virtual to real physical environments, allowing for mixed, augmented and desktop virtual reality, several perspectives can be taken. Originally, the emphasis
Hu, M.; Rutqvist, J.
2017-12-01
The disposal of heat-generating nuclear waste in salt host rock establishes a thermal gradient around the waste package that may cause brine inclusions in the salt grains to migrate toward the waste package. In this study, a dual-continuum model is developed to analyze such a phenomenon. This model is based on the Finite Volume Method (FVM), and it is fully thermal-hydro-mechanical (THM) coupled. For fluid flow, the dual-continuum model considers flow in the interconnected pore space and also in the salt grains. The mass balance of salt and water in these two continua is separately established, and their coupling is represented by flux associated with brine migration. Together with energy balance, such a system produces a coupled TH model with strongly nonlinear features. For mechanical analysis, a new formulation is developed based on the Voronoi tessellated mesh. By relating each cell to several connected triangles, first-order approximation is constructed. The coupling between thermal and mechanical fields is only considered in terms of thermal expansion. And the coupling between the hydraulic and mechanical fields in terms of pore-volume effects is consistent with Biot's theory. Therefore, a fully coupled THM model is developed. Several demonstration examples are provided to verify the model. Last the new model is applied to analyze coupled THM behavior and the results are compared with experimental data.
International Nuclear Information System (INIS)
Chijimatsu, Masakazu; Koyama, Tomofumi; Shimizu, Hiroyuki; Nakama, Shigeo; Fujita, Tomoo
2013-01-01
DECOVALEX-2011 is an international cooperation project for enhancing the numerical models of radioactive waste repositories. In DECOVALEX-2011 project, the failure mechanism during excavation and heating processes observed in the Aespoe pillar stability experiment, which was carried out at the Aespoe Hard Rock Laboratory by the Swedish Nuclear Fuel and Waste Management Company, were simulated using Finite Element Method. When the calibrated parameters were used, simulation results agree qualitatively well with the experimental results. Therefore, it can be said that the spalling phenomenon is expressible even by the application with the continuum model by the use of the suitable parameters. (author)
Plasticity-induced damage in metals : nonlocal modelling at finite strains
Engelen, R.A.B.
2005-01-01
The plasticity models that are generally adopted to predict the response of e.g. a deforming piece of metal assume that the material behaves like a true local continuum. This implies that the evolution of a state variable in a single material point only depends on the material state of that
Radiation damage of DNA. Model for direct ionization of DNA
International Nuclear Information System (INIS)
Kobayashi, Kazuo; Tagawa, Seiichi
2004-01-01
Current aspects of radiation damage of DNA, particularly induced by the direct effect of radiation, and author's method of pulse radiolysis are described in relation to behavior of ions formed by radiation and active principles to induce the strand break. In irradiation of DNA solution in water, the direct effect of radiation is derived from ionization of DNA itself and indirect one, from the reaction between DNA and radicals generated from water molecules and the former direct one has been scarcely investigated due to difficulty of experimental approach. Radicals generated in sugar moiety of DNA are shown important in the strand break by recent studies on crystalline DNA irradiated by X-ray, DNA solution by electron and photon beams, hydrated DNA by γ-ray and by high linear energy transfer (LET) ion. Author's pulse radiolysis studies have revealed behaviors of guanine and adenine radical cations in dynamics of DNA oxidation. Since reactions described are the model, the experimental approach is thought necessary for elucidation of the actually occurring DNA damage in living cells. (N.I.)
Fatigue damage modeling in solder interconnects using a cohesive zone approach
Abdul-Baqi, A.J.J.; Schreurs, P.J.G.; Geers, M.G.D.
2005-01-01
The objective of this work is to model the fatigue damage process in a solder bump subjected to cyclic loading conditions. Fatigue damage is simulated using the cohesive zone methodology. Damage is assumed to occur at interfaces modeled through cohesive zones in the material, while the bulk material
International Nuclear Information System (INIS)
Arson, Chloe; Gatmiri, Behrouz
2010-01-01
Document available in extended abstract form only. The design of deep nuclear waste repositories requires the modelling of the effects of thermal loadings in the Excavation Damaged Zone (EDZ). The containers are to be stored in bentonite buffers surrounded by a geological massif. These two barriers are multi-phase porous media, in which coupled mechanical, capillary and thermal phenomena occur. The aim of this study is to develop a new damage model dedicated to non-isothermal unsaturated porous media, the 'THHMD' model. Contrary to almost all of the existing damage models dedicated to non dry media, it is formulated in independent stress state variables (net stress, suction and thermal stress). The damage variable is a second-order tensor, which gives a good approximation for the representation of anisotropic cracking in three dimensions. The behaviour laws stem from the combination of phenomenological and micromechanical principles. The total strain tensor is split into three components, each of which being conjugated to a stress state variable. The Helmholtz free energy is written as the sum of damaged elastic energies and residual-strain-potentials. The concept of effective stress, frequently used in Continuum Damaged Mechanics, is extended to the three stress state variables, by using the operator of Cordebois and Sidoroff. The damaged rigidities are computed by application of the Principle of Equivalent Elastic Energy (PEEE). The non-elastic strain components depend on the increment of damage, which is determined by an associative flow rule. Fracturing is also modelled in the transfer equations. The Representative Elementary Volume (REV) is assumed to be damaged by a microcrack network, among which liquid water and vapour flows are homogenized. A damaged intrinsic conductivity, which plays the role of an internal length parameter, is introduced. The influence of damage on air and heat flows is taken into account by means of porosity, which is also
Testicular Damage following Testicular Sperm Retrieval: A Ram Model Study
Directory of Open Access Journals (Sweden)
Jens Fedder
2017-01-01
Full Text Available The aim of this study was to evaluate the possible development of histological abnormalities such as fibrosis and microcalcifications after sperm retrieval in a ram model. Fourteen testicles in nine rams were exposed to open biopsy, multiple TESAs, or TESE, and the remaining four testicles were left unoperated on as controls. Three months after sperm retrieval, the testicles were removed, fixed, and cut into 1/2 cm thick slices and systematically put onto a glass plate exposing macroscopic abnormalities. Tissue from abnormal areas was cut into 3 μm sections and stained for histological evaluation. Pathological abnormalities were observed in testicles exposed to sperm retrieval (≥11 of 14 compared to 0 of 4 control testicles. Testicular damage was found independently of the kind of intervention used. Therefore, cryopreservation of excess sperm should be considered while retrieving sperm.
Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector
Nachman, Benjamin Philip; The ATLAS collaboration
2017-01-01
Silicon Pixel detectors are at the core of the current and planned upgrade of the ATLAS detector. As the detector in closest proximity to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the HL-LHC, the innermost layers will receive a fluence in excess of $10^{15}$ 1 MeV $n_\\mathrm{eq}/\\mathrm{cm}^2$ and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This talk presents a digitization model that includes radiation damage effects to the ATLAS Pixel sensors for the first time. After a thorough description of the setup, predictions for basic Pixel cluster properties are presented alongside first validation studies with Run 2 collision data.
Pines, Jesse M
2006-05-01
Emergency Medicine plays a vital role in the health care continuum in the United States. Michael Porters' five forces model of industry analysis provides an insight into the economics of emergency care by showing how the forces of supplier power, buyer power, threat of substitution, barriers to entry, and internal rivalry affect Emergency Medicine. Illustrating these relationships provides a view into the complexities of the emergency care industry and offers opportunities for Emergency Departments, groups of physicians, and the individual emergency physician to maximize the relationship with other market players.
Marianski, Mateusz; Dannenberg, J. J.
2012-01-01
We present density functional theory (DFT) calculations at the X3LYP/D95(d,p) level on the solvation of polyalanine α-helices in water. The study includes the effects of discrete water molecules and the CPCM and AMSOL SM5.2 solvent continuum model both separately and in combination. We find that individual water molecules cooperatively hydrogen-bond to both the C- and N-termini of the helix, which results in increases in the dipole moment of the helix/water complex to more than the vector sum...
Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2014-11-25
A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.
Energy Technology Data Exchange (ETDEWEB)
Ge, Hong-Xia [Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211 (China); Lai, Ling-Ling [Faculty of Science, Ningbo University, Ningbo 315211 (China); Zheng, Peng-Jun [Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211 (China); Cheng, Rong-Jun, E-mail: chengrongjun76@126.com [Ningbo Institute of Technology, Zhejiang University, Ningbo 315100 (China)
2013-12-13
A new continuum traffic flow model is proposed based on an improved car-following model, which takes the driver's forecast effect into consideration. The backward travel problem is overcome by our model and the neutral stability condition of the new model is obtained through the linear stability analysis. Nonlinear analysis shows clearly that the density fluctuation in traffic flow leads to a variety of density waves and the Korteweg–de Vries–Burgers (KdV–Burgers) equation is derived to describe the traffic flow near the neutral stability line. The corresponding solution for traffic density wave is also derived. Finally, the numerical results show that our model can not only reproduce the evolution of small perturbation, but also improve the stability of traffic flow.
Continuum emission from classical nova winds
International Nuclear Information System (INIS)
Harkness, R.P.
1983-01-01
The emergent continuum of a slow classical nova during outburst is considered in the quasi-steady optically thick, transonic wind model. Models are presented for various steady mass loss rates and are related to the evolution of slow novae during decline and early post-maximum. The continuum emission is found to depart radically from a blackbody spectrum and to exhibit features common to highly extended stellar atmospheres. (author)
Computational Continuum Mechanics
Shabana, Ahmed A
2011-01-01
This text presents the theory of continuum mechanics using computational methods. Ideal for students and researchers, the second edition features a new chapter on computational geometry and finite element analysis.
A Kriging Model Based Finite Element Model Updating Method for Damage Detection
Directory of Open Access Journals (Sweden)
Xiuming Yang
2017-10-01
Full Text Available Model updating is an effective means of damage identification and surrogate modeling has attracted considerable attention for saving computational cost in finite element (FE model updating, especially for large-scale structures. In this context, a surrogate model of frequency is normally constructed for damage identification, while the frequency response function (FRF is rarely used as it usually changes dramatically with updating parameters. This paper presents a new surrogate model based model updating method taking advantage of the measured FRFs. The Frequency Domain Assurance Criterion (FDAC is used to build the objective function, whose nonlinear response surface is constructed by the Kriging model. Then, the efficient global optimization (EGO algorithm is introduced to get the model updating results. The proposed method has good accuracy and robustness, which have been verified by a numerical simulation of a cantilever and experimental test data of a laboratory three-story structure.
Hydromechanical modeling of clay rock including fracture damage
Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.
2012-12-01
Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi
A hybrid model of primary radiation damage in crystals
International Nuclear Information System (INIS)
Samarin, S.I.; Dremov, V.V.
2009-01-01
The paper offers a hybrid model which combines molecular dynamics and Monte Carlo (MD+MC) methods to describe primary radiation damage in crystals, caused by particles whose energies are no higher than several tens of keV. The particles are tracked in accord with equations of motion with account for pair interaction. The model also considers particle interaction with the mean-field potential (MFP) of the crystal. Only particles involved in cascading are tracked. Equations of motion for these particles include dissipative forces which describe energy exchange between cascade particles and electrons. New particles - the atoms of the crystal in the cascade region - have stochastic parameters (phase coordinates); they are sampled by the Monte Carlo method from the distribution that describes the classic canonical ensemble of non-interacting particles subjected to the external MFP. The introduction of particle interaction with the MFP helps avoid difficulties related to crystal stability and the choice of an adequate interparticle interaction potential in the traditional MD methods. Our technique is many times as fast as the traditional MD methods because we consider only particles which are involved in cascading and apply special methods to speedup the calculation of forces by accounting for the short-range pair potential used
Huo, Y; Lin, J; Bai, Q; Wang, B; Tang, X; Ji, H
2016-01-01
Microstructure and ductile damage have a significant influence on the deformation behavior of high-speed railway axles during hot cross wedge rolling (CWR) and its final performance. In this study, based on the continuum damage mechanics, a multiaxial constitutive model coupling microstructure and ductile damage was established to predict the evolution of microstructure and ductile damage of 25CrMo4 during hot CWR processes. Material constants within the multiaxial constitutive model were det...
Marianski, Mateusz; Dannenberg, J J
2012-02-02
We present density functional theory (DFT) calculations at the X3LYP/D95(d,p) level on the solvation of polyalanine α-helices in water. The study includes the effects of discrete water molecules and the CPCM and AMSOL SM5.2 solvent continuum model both separately and in combination. We find that individual water molecules cooperatively hydrogen-bond to both the C- and N-termini of the helix, which results in increases in the dipole moment of the helix/water complex to more than the vector sum of their individual dipole moments. These waters are found to be more stable than in bulk solvent. On the other hand, individual water molecules that interact with the backbone lower the dipole moment of the helix/water complex to below that of the helix itself. Small clusters of waters at the termini increase the dipole moments of the helix/water aggregates, but the effect diminishes as more waters are added. We discuss the somewhat complex behavior of the helix with the discrete waters in the continuum models.
Ductile failure analysis of high strength steel in hot forming based on micromechanical damage model
Ying Liang; Liu Wenquan; Wang Dantong; Hu Ping
2016-01-01
The damage evolution of high strength steel at elevated temperature is investigated by using the Gurson-Tvergaard-Needleman (GTN) model. A hybrid method integrated thermal tensile test and numerical technique is employed to identify the damage parameters. The analysis results show that the damage parameters are different at different temperature as the variation of tested material microstructure. Furthermore, the calibrated damage parameters are implemented to simulate a bugling forming at el...
Directory of Open Access Journals (Sweden)
Isa Kolo
2016-01-01
Full Text Available A coupled elastic-plasticity-damage constitutive model, AK Model, is applied to predict fracture propagation in rocks. The quasi-brittle material model captures anisotropic effects and the distinct behavior of rocks in tension and compression. Calibration of the constitutive model is realized using experimental data for Carrara marble. Through the Weibull distribution function, heterogeneity effect is captured by spatially varying the elastic properties of the rock. Favorable comparison between model predictions and experiments for single-flawed specimens reveal that the AK Model is reliable and accurate for modelling fracture propagation in rocks.
Reed, H; Leckey, Cara A C; Dick, A; Harvey, G; Dobson, J
2018-01-01
Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined. Copyright © 2017 Elsevier B.V. All rights reserved.
Ductile failure analysis of high strength steel in hot forming based on micromechanical damage model
Directory of Open Access Journals (Sweden)
Ying Liang
2016-01-01
Full Text Available The damage evolution of high strength steel at elevated temperature is investigated by using the Gurson-Tvergaard-Needleman (GTN model. A hybrid method integrated thermal tensile test and numerical technique is employed to identify the damage parameters. The analysis results show that the damage parameters are different at different temperature as the variation of tested material microstructure. Furthermore, the calibrated damage parameters are implemented to simulate a bugling forming at elevated temperature. The experimental results show the availability of GTN damage model in analyzing sheet formability in hot forming.
Automated 3D Damaged Cavity Model Builder for Lower Surface Acreage Tile on Orbiter
Belknap, Shannon; Zhang, Michael
2013-01-01
The 3D Automated Thermal Tool for Damaged Acreage Tile Math Model builder was developed to perform quickly and accurately 3D thermal analyses on damaged lower surface acreage tiles and structures beneath the damaged locations on a Space Shuttle Orbiter. The 3D model builder created both TRASYS geometric math models (GMMs) and SINDA thermal math models (TMMs) to simulate an idealized damaged cavity in the damaged tile(s). The GMMs are processed in TRASYS to generate radiation conductors between the surfaces in the cavity. The radiation conductors are inserted into the TMMs, which are processed in SINDA to generate temperature histories for all of the nodes on each layer of the TMM. The invention allows a thermal analyst to create quickly and accurately a 3D model of a damaged lower surface tile on the orbiter. The 3D model builder can generate a GMM and the correspond ing TMM in one or two minutes, with the damaged cavity included in the tile material. A separate program creates a configuration file, which would take a couple of minutes to edit. This configuration file is read by the model builder program to determine the location of the damage, the correct tile type, tile thickness, structure thickness, and SIP thickness of the damage, so that the model builder program can build an accurate model at the specified location. Once the models are built, they are processed by the TRASYS and SINDA.
Valentin, J; Sprenger, M; Pflüger, D; Röhrle, O
2018-05-01
Investigating the interplay between muscular activity and motion is the basis to improve our understanding of healthy or diseased musculoskeletal systems. To be able to analyze the musculoskeletal systems, computational models are used. Albeit some severe modeling assumptions, almost all existing musculoskeletal system simulations appeal to multibody simulation frameworks. Although continuum-mechanical musculoskeletal system models can compensate for some of these limitations, they are essentially not considered because of their computational complexity and cost. The proposed framework is the first activation-driven musculoskeletal system model, in which the exerted skeletal muscle forces are computed using 3-dimensional, continuum-mechanical skeletal muscle models and in which muscle activations are determined based on a constraint optimization problem. Numerical feasibility is achieved by computing sparse grid surrogates with hierarchical B-splines, and adaptive sparse grid refinement further reduces the computational effort. The choice of B-splines allows the use of all existing gradient-based optimization techniques without further numerical approximation. This paper demonstrates that the resulting surrogates have low relative errors (less than 0.76%) and can be used within forward simulations that are subject to constraint optimization. To demonstrate this, we set up several different test scenarios in which an upper limb model consisting of the elbow joint, the biceps and triceps brachii, and an external load is subjected to different optimization criteria. Even though this novel method has only been demonstrated for a 2-muscle system, it can easily be extended to musculoskeletal systems with 3 or more muscles. Copyright © 2018 John Wiley & Sons, Ltd.
Bowker, M.A.; Belnap, J.; Davidson, D.W.; Goldstein, H.
2006-01-01
1. Desertification negatively impacts a large proportion of the global human population and > 30% of the terrestrial land surface. Better methods are needed to detect areas that are at risk of desertification and to ameliorate desertified areas. Biological soil crusts are an important soil lichen-moss-microbial community that can be used toward these goals, as (i) bioindicators of desertification damage and (ii) promoters of soil stability and fertility. 2. We identified environmental factors that correlate with soil crust occurrence on the landscape and might be manipulated to assist recovery of soil crusts in degraded areas. We conducted three studies on the Colorado Plateau, USA, to investigate the hypotheses that soil fertility [particularly phosphorus (P), manganese (Mn) and zinc (Zn)] and/or moisture limit soil crust lichens and mosses at four spatial scales. 3. In support of the soil fertility hypothesis, we found that lichen-moss crusts were positively correlated with several nutrients [Mn, Zn, potassium (K) and magnesium (Mg) were most consistent] at three of four spatial scales ranging from 3.5 cm2 in area to c. 800 km2. In contrast, P was negatively correlated with lichen-moss crusts at three scales. 4. Community composition varied with micro-aspect on ridges in the soil crust. Three micro-aspects [north-north-west (NNW), east-north-east (ENE) and TOP] supported greater lichen and moss cover than the warmer, windward and more xeric micro-aspects [west-south-west (WSW) and south-south-east (SSE)]. This pattern was poorly related to soil fertility; rather, it was consistent with the moisture limitation hypothesis. 5. Synthesis and application. Use of crusts as desertification bioindicators requires knowledge of a site's potential for crust cover in the absence of desertification. We present a multi-scale model of crust potential as a function of site properties. Future quantitative studies can use this model to guide sampling efforts. Also, our results
Geometric continuum regularization of quantum field theory
International Nuclear Information System (INIS)
Halpern, M.B.
1989-01-01
An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs
Mittal, Chikul; Lee, Hsien Chieh Daniel; Goh, Kiat Sern; Lau, Cheng Kiang Adrian; Tay, Leeanna; Siau, Chuin; Loh, Yik Hin; Goh, Teck Kheng Edward; Sandi, Chit Lwin; Lee, Chien Earn
2018-05-30
To test a population health program which could, through the application of process redesign, implement multiple evidence-based practices across the continuum of care in a functionally integrated health delivery system and deliver highly reliable and consistent evidence-based surgical care for patients with fragility hip fractures in an acute tertiary general hospital. The ValuedCare (VC) program was developed in three distinct phases as an ongoing collaboration between the Geisinger Health System (GHS), USA, and Changi General Hospital (CGH), Singapore, modelled after the GHS ProvenCare® Fragile Hip Fracture Program. Clinical outcome data on consecutive hip fracture patients seen in 12 months pre-intervention were then compared with the post-intervention group. Both pre- and post-intervention groups were followed up across the continuum of care for a period of 12 months. VC patients showed significant improvement in median time to surgery (97 to 50.5 h), as well as proportion of patients operated within 48 h from hospital admission (48% from 18.8%) as compared to baseline pre-intervention data. These patients also had significant reduction (p value based care for hip fracture patients at Changi General Hospital. This has also reflected successful change management and interdisciplinary collaboration within the organization through the program. There is potential for testing this methodology as a quality improvement framework replicable to other disease groups in a functionally integrated healthcare system.
International Nuclear Information System (INIS)
Stein, W.A.
1991-01-01
Models for producing the large ultraviolet bump, low-energy X-rays and the hypothesized F(nu) varies as the inverse of nu IR to X-ray continua of QSOs are investigated. Thermal Comptonization in a hot corona of an accretion disk appears to offer the best potential. However, under the energy input conditions in QSOs a corona will reach T above 100 million K. It must be optically thin, so as to not Comptonize the accretion disk ultraviolet emission to an unacceptable extent. However, it then cannot Comptonize a low-frequency source to an F(nu) varies as the inverse of nu continuum extending from the infrared to X-rays. An inner corona, possibly optically thick because of n varies as the sq rt of r density increase, is required for the F(nu) varies as the inverse of nu continuum, but it cannot therefore cover the UV-emitting accretion disk. However, then a Wien peak associated with this inner volume may be implied at 10 keV, contrary to observations. 42 refs
Han, Fei
2016-05-17
The objective (mesh-independent) simulation of evolving discontinuities, such as cracks, remains a challenge. Current techniques are highly complex or involve intractable computational costs, making simulations up to complete failure difficult. We propose a framework as a new route toward solving this problem that adaptively couples local-continuum damage mechanics with peridynamics to objectively simulate all the steps that lead to material failure: damage nucleation, crack formation and propagation. Local-continuum damage mechanics successfully describes the degradation related to dispersed microdefects before the formation of a macrocrack. However, when damage localizes, it suffers spurious mesh dependency, making the simulation of macrocracks challenging. On the other hand, the peridynamic theory is promising for the simulation of fractures, as it naturally allows discontinuities in the displacement field. Here, we present a hybrid local-continuum damage/peridynamic model. Local-continuum damage mechanics is used to describe “volume” damage before localization. Once localization is detected at a point, the remaining part of the energy is dissipated through an adaptive peridynamic model capable of the transition to a “surface” degradation, typically a crack. We believe that this framework, which actually mimics the real physical process of crack formation, is the first bridge between continuum damage theories and peridynamics. Two-dimensional numerical examples are used to illustrate that an objective simulation of material failure can be achieved by this method.
Han, Fei; Lubineau, Gilles; Azdoud, Yan
2016-01-01
The objective (mesh-independent) simulation of evolving discontinuities, such as cracks, remains a challenge. Current techniques are highly complex or involve intractable computational costs, making simulations up to complete failure difficult. We propose a framework as a new route toward solving this problem that adaptively couples local-continuum damage mechanics with peridynamics to objectively simulate all the steps that lead to material failure: damage nucleation, crack formation and propagation. Local-continuum damage mechanics successfully describes the degradation related to dispersed microdefects before the formation of a macrocrack. However, when damage localizes, it suffers spurious mesh dependency, making the simulation of macrocracks challenging. On the other hand, the peridynamic theory is promising for the simulation of fractures, as it naturally allows discontinuities in the displacement field. Here, we present a hybrid local-continuum damage/peridynamic model. Local-continuum damage mechanics is used to describe “volume” damage before localization. Once localization is detected at a point, the remaining part of the energy is dissipated through an adaptive peridynamic model capable of the transition to a “surface” degradation, typically a crack. We believe that this framework, which actually mimics the real physical process of crack formation, is the first bridge between continuum damage theories and peridynamics. Two-dimensional numerical examples are used to illustrate that an objective simulation of material failure can be achieved by this method.
A Bayesian Decision Model for Battle Damage Assessment
National Research Council Canada - National Science Library
Franzen, Daniel
1999-01-01
Battle damage assessment (BDA) is critical to success in any air campaign. However, Desert Storm highlighted numerous deficiencies in the BDA process, and operations since Desert Storm continue to point out weaknesses...
International Nuclear Information System (INIS)
Li Maozhi; Han, Yong; Thiel, P A; Evans, J W
2009-01-01
An atomistic lattice-gas model is developed which successfully describes all key features of the complex mounded morphologies which develop during deposition of Ag films on Ag(111) surfaces. We focus on this homoepitaxial thin film growth process below 200 K. The unstable multilayer growth mode derives from the presence of a large Ehrlich-Schwoebel step-edge barrier, for which we characterize both the step-orientation dependence and the magnitude. Step-dynamics modeling is applied to further characterize and elucidate the evolution of the vertical profiles of these wedding-cake-like mounds. Suitable coarse-graining of these step-dynamics equations leads to instructive continuum formulations for mound evolution.
Introduction to continuum mechanics
Lai, W Michael; Rubin, David
1996-01-01
Introduction to Continuum Mechanics is a recently updated and revised text which is perfect for either introductory courses in an undergraduate engineering curriculum or for a beginning graduate course.Continuum Mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation, and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, a
Fundamentals of continuum mechanics
Rudnicki, John W
2014-01-01
A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally. This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energ
Directory of Open Access Journals (Sweden)
S. Zengah
2013-06-01
Full Text Available Fatigue damage increases with applied load cycles in a cumulative manner. Fatigue damage models play a key role in life prediction of components and structures subjected to random loading. The aim of this paper is the examination of the performance of the “Damaged Stress Model”, proposed and validated, against other fatigue models under random loading before and after reconstruction of the load histories. To achieve this objective, some linear and nonlinear models proposed for fatigue life estimation and a batch of specimens made of 6082T6 aluminum alloy is subjected to random loading. The damage was cumulated by Miner’s rule, Damaged Stress Model (DSM, Henry model and Unified Theory (UT and random cycles were counted with a rain-flow algorithm. Experimental data on high-cycle fatigue by complex loading histories with different mean and amplitude stress values are analyzed for life calculation and model predictions are compared.
Basic Modelling principles and Validation of Software for Prediction of Collision Damage
DEFF Research Database (Denmark)
Simonsen, Bo Cerup
2000-01-01
This report describes basic modelling principles, the theoretical background and validation examples for the collision damage prediction module in the ISESO stand-alone software.......This report describes basic modelling principles, the theoretical background and validation examples for the collision damage prediction module in the ISESO stand-alone software....
Flood vulnerability assessment of residential buildings by explicit damage process modelling
DEFF Research Database (Denmark)
Custer, Rocco; Nishijima, Kazuyoshi
2015-01-01
The present paper introduces a vulnerability modelling approach for residential buildings in flood. The modelling approach explicitly considers relevant damage processes, i.e. water infiltration into the building, mechanical failure of components in the building envelope and damage from water...
Sun, Haitao
2016-05-16
We propose a new methodology for the first-principles description of the electronic properties relevant for charge transport in organic molecular crystals. This methodology, which is based on the combination of a non-empirical, optimally tuned range-separated hybrid functional with the polarizable continuum model, is applied to a series of eight representative molecular semiconductor crystals. We show that it provides ionization energies, electron affinities, and transport gaps in very good agreement with experimental values as well as with the results of many-body perturbation theory within the GW approximation at a fraction of the computational costs. Hence, this approach represents an easily applicable and computationally efficient tool to estimate the gas-to-crystal-phase shifts of the frontier-orbital quasiparticle energies in organic electronic materials.
Başar, Erol; Düzgün, Aysel
2016-05-01
The aim of this study is threefold: (1) we propose a new framework describing the neurophysiologic functioning and cognitive processing of neural populations, and we extend the neuron doctrine to the physiology of neural assemblies. (2) The extension from neurons to neural populations implies that the brain, with its connectivity, should be considered a working syncytium, which extends Brodmann mapping to the CLAIR model, which includes oscillatory components and their connectivity. (3) In such a working syncytium, a new description of "memory" is needed in the broad time-space continuum, which embraces all memory states. This will be called "hypermemory." Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Fukuda, Ryoichi; Ehara, Masahiro
2015-01-01
The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculations show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents
Numerical modelling of ductile damage mechanics coupled with an unconventional plasticity model
Directory of Open Access Journals (Sweden)
R. Fincato
2016-10-01
Full Text Available Ductility in metals includes the material’s capability to tolerate plastic deformations before partial or total degradation of its mechanical properties. Modelling this parameter is important in structure and component design because it can be used to estimate material failure under a generic multi-axial stress state. Previous work has attempted to provide accurate descriptions of the mechanical property degradation resulting from the formation, growth, and coalescence of microvoids in the medium. Experimentally, ductile damage is inherently linked with the accumulation of plastic strain; therefore, coupling damage and elastoplasticity is necessary for describing this phenomenon accurately. In this paper, we combine the approach proposed by Lemaitre with the features of an unconventional plasticity model, the extended subloading surface model, to predict material fatigue even for loading conditions below the yield stress
Liu, Richard T; Burke, Taylor A; Abramson, Lyn Y; Alloy, Lauren B
2017-11-04
Behavioral Approach System (BAS) sensitivity has been implicated in the development of a variety of different psychiatric disorders. Prominent among these in the empirical literature are bipolar spectrum disorders (BSDs). Given that adolescence represents a critical developmental stage of risk for the onset of BSDs, it is important to clarify the latent structure of BAS sensitivity in this period of development. A statistical approach especially well-suited for delineating the latent structure of BAS sensitivity is taxometric analysis, which is designed to evaluate whether the latent structure of a construct is taxonic (i.e., categorical) or dimensional (i.e., continuous) in nature. The current study applied three mathematically non-redundant taxometric procedures (i.e., MAMBAC, MAXEIG, and L-Mode) to a large community sample of adolescents (n = 12,494) who completed two separate measures of BAS sensitivity: the BIS/BAS Scales Carver and White (Journal of Personality and Social Psychology, 67, 319-333. 1994) and the Sensitivity to Reward and Sensitivity to Punishment Questionnaire (Torrubia et al. Personality and Individual Differences, 31, 837-862. 2001). Given the significant developmental changes in reward sensitivity that occur across adolescence, the current investigation aimed to provide a fine-grained evaluation of the data by performing taxometric analyses at an age-by-age level (14-19 years; n for each age ≥ 883). Results derived from taxometric procedures, across all ages tested, were highly consistent, providing strong evidence that BAS sensitivity is best conceptualized as dimensional in nature. Thus, the findings suggest that BAS-related vulnerability to BSDs exists along a continuum of severity, with no natural cut-point qualitatively differentiating high- and low-risk adolescents. Clinical and research implications for the assessment of BSD-related vulnerability are discussed.
Comparison of Two Models for Damage Accumulation in Simulations of System Performance
Energy Technology Data Exchange (ETDEWEB)
Youngblood, R. [Idaho National Laboratory, Idaho Falls, ID (United States); Mandelli, D. [Idaho National Laboratory, Idaho Falls, ID (United States)
2015-11-01
A comprehensive simulation study of system performance needs to address variations in component behavior, variations in phenomenology, and the coupling between phenomenology and component failure. This paper discusses two models of this: 1. damage accumulation is modeled as a random walk process in each time history, with component failure occurring when damage accumulation reaches a specified threshold; or 2. damage accumulation is modeled mechanistically within each time history, but failure occurs when damage reaches a time-history-specific threshold, sampled at time zero from each component’s distribution of damage tolerance. A limiting case of the latter is classical discrete-event simulation, with component failure times sampled a priori from failure time distributions; but in such models, the failure times are not typically adjusted for operating conditions varying within a time history. Nowadays, as discussed below, it is practical to account for this. The paper compares the interpretations and computational aspects of the two models mentioned above.
Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature
Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu
2017-10-01
A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.
Modification of Concrete Damaged Plasticity model. Part II: Formulation and numerical tests
Directory of Open Access Journals (Sweden)
Kamińska Inez
2017-01-01
Full Text Available A refined model for elastoplastic damaged material is formulated based on the plastic potential introduced in Part I [1]. Considered model is an extension of Concrete Damaged Plasticity material implemented in Abaqus [2]. In the paper the stiffness tensor for elastoplastic damaged behaviour is derived. In order to validate the model, computations for the uniaxial tests are performed. Response of the model for various cases of parameter’s choice is shown and compared to the response of the CDP model.
Statistical Damage Detection of Civil Engineering Structures using ARMAV Models
DEFF Research Database (Denmark)
Andersen, P.; Kirkegaard, Poul Henning
In this paper a statistically based damage detection of a lattice steel mast is performed. By estimation of the modal parameters and their uncertainties it is possible to detect whether some of the modal parameters have changed with a statistical significance. The estimation of the uncertainties ...
A diagnostic ontological model for damages to historical constructions
Czech Academy of Sciences Publication Activity Database
Cacciotti, Riccardo; Blaško, M.; Valach, Jaroslav
2015-01-01
Roč. 16, č. 1 (2015), s. 40-48 ISSN 1296-2074 R&D Projects: GA MK(CZ) DF11P01OVV002 Keywords : historical constructions * conservation * ontologies * damage Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.533, year: 2015 http://www.sciencedirect.com/science/article/pii/S1296207414000259
Transgenic Mouse Model for Reducing Oxidative Damage in Bone
Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.
2014-01-01
Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these
Account of the effect of nuclear collision cascades in model of radiation damage of RPV steels
International Nuclear Information System (INIS)
Kevorkyan, Yu.R.; Nikolaev, Yu.A.
1997-01-01
A kinetic model is proposed for describing the effect of collision cascades in model of radiation damage of reactor pressure vessel steels. This is a closed system of equations which can be solved only by numerical methods in general case
Zhang, Jiu-Chang
2018-02-01
Triaxial compression tests are conducted on a quasi-brittle rock, limestone. The analyses show that elastoplastic deformation is coupled with damage. Based on the experimental investigation, a coupled elastoplastic damage model is developed within the framework of irreversible thermodynamics. The coupling effects between the plastic and damage dissipations are described by introducing an isotropic damage variable into the elastic stiffness and yield criterion. The novelty of the model is in the description of the thermodynamic force associated with damage, which is formulated as a state function of both elastic and plastic strain energies. The latter gives a full consideration on the comprehensive effects of plastic strain and stress changing processes in rock material on the development of damage. The damage criterion and potential are constructed to determine the onset and evolution of damage variable. The return mapping algorithms of the coupled model are deduced for three different inelastic corrections. Comparisons between test data and numerical simulations show that the coupled elastoplastic damage model is capable of describing the main mechanical behaviours of the quasi-brittle rock.
Reitz, Meredith; Stark, Colin; Hung, Chi-Yao; Smith, Breannan; Grinspin, Eitan; Capart, Herve; Li, Liming; Crone, Timothy; Hsu, Leslie; Ling, Hoe
2014-05-01
characterize both the convergence of these grain-scale parameters toward the empirical coefficients of the macroscopic descriptions, and the deviations from continuum model predictions caused by nonlocal granular effects for quantities such as erosion rate. We will also summarize the context and implications of our work for both granular physics theory and granular flow hazard risk assessment.
Multi-physics modeling of multifunctional composite materials for damage detection
Sujidkul, Thanyawalai
This study presents a modeling of multifunction composite materials for damage detection with its verification and validation to mechanical behavior predictions of Carbon Fibre Reinforced Polymer composites (CFRPs), CFRPs laminated composites, and woven SiC/SiC matrix composites that are subjected to fracture damage. Advantages of those materials are low cost, low density, high strength-to-weight ratio, and comparable specific tensile properties, the special of SiC/SiC is good environmental stability at high temperature. Resulting in, the composite has been used for many important structures such as helicopter rotors, aerojet engines, gas turbines, hot control surfaces, sporting goods, and windmill blades. Damage or material defect detection in a mechanical component can provide vital information for the prediction of remaining useful life, which will result in the prevention of catastrophic failures. Thus the understanding of the mechanical behavior have been challenge to the prevent damage and failure of composites in different scales. The damage detection methods in composites have been investigated widely in recent years. Non-destructive techniques are the traditional methods to detect the damage such as X-ray, acoustic emission and thermography. However, due to the invisible damage in composite can be occurred, to prevent the failure in composites. The developments of damage detection methods have been considered. Due to carbon fibers are conductive materials, in resulting CFRPs can be self-sensing to detect damage. As is well known, the electrical resistance has been shown to be a sensitive measure of internal damage, and also this work study in thermal resistance can detect damage in composites. However, there is a few number of different micromechanical modeling schemes has been proposed in the published literature for various types of composites. This works will provide with a numerical, analytical, and theoretical failure models in different damages to
An elastic-visco-plastic damage model: from theory to application
International Nuclear Information System (INIS)
Wang, X.C.; Habraken, A.M.
1996-01-01
An energy-based two-variable damage theory is applied to Bodner's model. It gives an elastic-viscoplastic damage model. Some theoretical details are described in this paper. The parameters identification procedure is discussed and a complete set of parameters for an aluminium is presented. Numerical modelling of the laboratory tests are used to validate the model. An industrial aeronautic rod fabrication process is simulated and some numerical results are presented in this paper. (orig.)
Directory of Open Access Journals (Sweden)
André Damien
2017-01-01
Full Text Available At the macroscopic scale, such media as rocks or ceramics can be seen as homogeneous continuum. However, at the microscopic scale these materials involve sophisticated micro-structures that mix several phases. Generally, these micro-structures are composed by a large amount of inclusions embedded in a brittle matrix that ensures the cohesion of the structure. These materials generally exhibit complex non linear mechanical behaviors that result from the interactions between the different phases. This paper proposes to study the impact of the diffuse damages that result from the thermal expansion mismatch between the phases in presence. The Discrete Element Method (DEM that naturally take into account discontinuities is proposed to study these phenomena.
Continuum theory for nanotube piezoelectricity.
Michalski, P J; Sai, Na; Mele, E J
2005-09-09
We develop and solve a continuum theory for the piezoelectric response of one-dimensional nanotubes and nanowires, and apply the theory to study electromechanical effects in boron-nitride nanotubes. We find that the polarization of a nanotube depends on its aspect ratio, and a dimensionless constant specifying the ratio of the strengths of the elastic and electrostatic interactions. The solutions of the model as these two parameters are varied are discussed. The theory is applied to estimate the electric potential induced along the length of a boron-nitride nanotube in response to a uniaxial stress.
Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo
2015-01-01
Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.
Modelling of damage development and ductile failure in welded joints
DEFF Research Database (Denmark)
Nielsen, Kim Lau
, a study of the damage development in Resistance SpotWelded joints, when subject to the commonly used static shear-lab or cross-tension testing techniques, has been carried out ([P3]-[P6]). The focus in thesis is on the Advanced High Strength Steels, Dual-Phase 600, which is used in for example......This thesis focuses on numerical analysis of damage development and ductile failure in welded joints. Two types of welds are investigated here. First, a study of the localization of plastic flow and failure in aluminum sheets, welded by the relatively new Friction Stir (FS) Welding method, has been...... conducted ([P1], [P2], [P7]-[P9]). The focus in the thesis is on FS-welded 2xxx and 6xxx series of aluminum alloys, which are attractive, for example, to the aerospace industry, since the 2024 aluminum in particular, is typically classified as un-weldable by conventional fusion welding techniques. Secondly...
Moisture damage susceptibility of asphalt mixtures: Experimental characterization and modelling
Varveri, A.
2017-01-01
A well-functioning, long-lasting and safe highway infrastructure network ensures the mobility of people and facilitates the transport of goods, promoting thus environmental, economic, and social sustainability. The development of sustainable highway infrastructure requires, among other activities, the construction of pavement systems with enhanced durability. Moisture damage in asphalt pavements is associated with inferior performance, unexpected failures and reduced service life. All of thes...
Thermomechanics of damageable materials under diffusion: modelling and analysis
Czech Academy of Sciences Publication Activity Database
Roubíček, Tomáš; Tomassetti, G.
2015-01-01
Roč. 66, č. 6 (2015), s. 3535-3572 ISSN 0044-2275 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : visco-elastic porous solids * incomplete damage * diffusion driven by chemical-potential gradient Subject RIV: BA - General Mathematics Impact factor: 1.560, year: 2015 http://link.springer.com/article/10.1007/s00033-015-0566-2
Modelling of Size Effect with Regularised Continua
Directory of Open Access Journals (Sweden)
H. Askes
2004-01-01
Full Text Available A nonlocal damage continuum and a viscoplastic damage continuum are used to model size effects. Three-point bending specimens are analysed, whereby a distinction is made between unnotched specimens, specimens with a constant notch and specimens with a proportionally scaled notch. Numerical finite element simulations have been performed for specimen sizes in a range of 1:64. Size effects are established in terms of nominal strength and compared to existing size effect models from the literature.
Nonlocal continuum field theories
2002-01-01
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...
Continuum mechanics for engineers
Mase, G Thomas; Mase, George E
2009-01-01
Continuum TheoryContinuum MechanicsStarting OverNotationEssential MathematicsScalars, Vectors and Cartesian TensorsTensor Algebra in Symbolic Notation - Summation ConventionIndicial NotationMatrices and DeterminantsTransformations of Cartesian TensorsPrincipal Values and Principal DirectionsTensor Fields, Tensor CalculusIntegral Theorems of Gauss and StokesStress PrinciplesBody and Surface Forces, Mass DensityCauchy Stress PrincipleThe Stress TensorForce and Moment Equilibrium; Stress Tensor SymmetryStress Transformation LawsPrincipal Stresses; Principal Stress DirectionsMaximum and Minimum Stress ValuesMohr's Circles For Stress Plane StressDeviator and Spherical Stress StatesOctahedral Shear StressKinematics of Deformation and MotionParticles, Configurations, Deformations and MotionMaterial and Spatial CoordinatesLangrangian and Eulerian DescriptionsThe Displacement FieldThe Material DerivativeDeformation Gradients, Finite Strain TensorsInfinitesimal Deformation TheoryCompatibility EquationsStretch RatiosRot...
Assessment of compressive failure process of cortical bone materials using damage-based model.
Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R
2017-02-01
The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Non-local modelling of cyclic thermal shock damage including parameter estimation
Damhof, F.; Brekelmans, W.A.M.; Geers, M.G.D.
2011-01-01
In this paper, rate dependent evolution laws are identified and characterized to model the mechanical (elasticity-based) and thermal damage occurring in coarse grain refractory material subject to cyclic thermal shock. The interacting mechanisms for elastic deformation driven damage induced by
Reich, Felix Alexander
2017-01-01
In the literature, many models of electromagnetic momentum are proposed. Each model implies a form of the electromagnetic force density, which acts as a source in the mechanical momentum balance. The debate as to which model of the electromagnetic force is "correct" for arbitrary materials and processes is ongoing. Most authors argue in favor or against specific models by virtue of thought experiments, e.g, with light waves. The topic of this work is to show that experiments conducted on a ma...
Identification Damage Model for Thermomechanical Degradation of Ductile Heterogeneous Materials
Amri, A. El; Yakhloufi, M. H. El; Khamlichi, A.
2017-05-01
The failure of ductile materials subject to high thermal and mechanical loading rates is notably affected by material inertia. The mechanisms of fatigue-crack propagation are examined with particular emphasis on the similarities and differences between cyclic crack growth in ductile materials, such as metals, and corresponding behavior in brittle materials, such as intermetallic and ceramics. Numerical simulations of crack propagation in a cylindrical specimen demonstrate that the proposed method provides an effective means to simulate ductile fracture in large scale cylindrical structures with engineering accuracy. The influence of damage on the intensity of the destruction of materials is studied as well.