WorldWideScience

Sample records for continuous weak measurement

  1. Completely continuous and weakly completely continuous abstract ...

    Indian Academy of Sciences (India)

    An algebra A is called right completely continuous (right weakly completely continuous) ... Moreover, some applications of these results in group algebras are .... A linear subspace S(G) of L1(G) is said to be a Segal algebra, if it satisfies the.

  2. Qubit models of weak continuous measurements: markovian conditional and open-system dynamics

    Science.gov (United States)

    Gross, Jonathan A.; Caves, Carlton M.; Milburn, Gerard J.; Combes, Joshua

    2018-04-01

    In this paper we approach the theory of continuous measurements and the associated unconditional and conditional (stochastic) master equations from the perspective of quantum information and quantum computing. We do so by showing how the continuous-time evolution of these master equations arises from discretizing in time the interaction between a system and a probe field and by formulating quantum-circuit diagrams for the discretized evolution. We then reformulate this interaction by replacing the probe field with a bath of qubits, one for each discretized time segment, reproducing all of the standard quantum-optical master equations. This provides an economical formulation of the theory, highlighting its fundamental underlying assumptions.

  3. Reconstructing weak values without weak measurements

    International Nuclear Information System (INIS)

    Johansen, Lars M.

    2007-01-01

    I propose a scheme for reconstructing the weak value of an observable without the need for weak measurements. The post-selection in weak measurements is replaced by an initial projector measurement. The observable can be measured using any form of interaction, including projective measurements. The reconstruction is effected by measuring the change in the expectation value of the observable due to the projector measurement. The weak value may take nonclassical values if the projector measurement disturbs the expectation value of the observable

  4. Measurement of weak radioactivity

    CERN Document Server

    Theodorsson , P

    1996-01-01

    This book is intended for scientists engaged in the measurement of weak alpha, beta, and gamma active samples; in health physics, environmental control, nuclear geophysics, tracer work, radiocarbon dating etc. It describes the underlying principles of radiation measurement and the detectors used. It also covers the sources of background, analyzes their effect on the detector and discusses economic ways to reduce the background. The most important types of low-level counting systems and the measurement of some of the more important radioisotopes are described here. In cases where more than one type can be used, the selection of the most suitable system is shown.

  5. A Continuation Method for Weakly Kannan Maps

    Directory of Open Access Journals (Sweden)

    Ariza-Ruiz David

    2010-01-01

    Full Text Available The first continuation method for contractive maps in the setting of a metric space was given by Granas. Later, Frigon extended Granas theorem to the class of weakly contractive maps, and recently Agarwal and O'Regan have given the corresponding result for a certain type of quasicontractions which includes maps of Kannan type. In this note we introduce the concept of weakly Kannan maps and give a fixed point theorem, and then a continuation method, for this class of maps.

  6. Sequential weak continuity of null Lagrangians at the boundary

    Czech Academy of Sciences Publication Activity Database

    Kalamajska, A.; Kraemer, S.; Kružík, Martin

    2014-01-01

    Roč. 49, 3/4 (2014), s. 1263-1278 ISSN 0944-2669 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:67985556 Keywords : null Lagrangians * nonhomogeneous nonlinear mappings * sequential weak/in measure continuity Subject RIV: BA - General Mathematics Impact factor: 1.518, year: 2014 http://library.utia.cas.cz/separaty/2013/MTR/kruzik-sequential weak continuity of null lagrangians at the boundary.pdf

  7. Weak Measurement and Quantum Correlation

    Indian Academy of Sciences (India)

    Arun Kumar Pati

    Entanglement: Two quantum systems can be in a strongly correlated state even if .... These are resources which can be used to design quantum computer, quantum ...... Weak measurements have found numerous applications starting from the ...

  8. Quantum discord with weak measurements

    International Nuclear Information System (INIS)

    Singh, Uttam; Pati, Arun Kumar

    2014-01-01

    Weak measurements cause small change to quantum states, thereby opening up the possibility of new ways of manipulating and controlling quantum systems. We ask, can weak measurements reveal more quantum correlation in a composite quantum state? We prove that the weak measurement induced quantum discord, called as the “super quantum discord”, is always larger than the quantum discord captured by the strong measurement. Moreover, we prove the monotonicity of the super quantum discord as a function of the measurement strength and in the limit of strong projective measurement the super quantum discord becomes the normal quantum discord. We find that unlike the normal discord, for pure entangled states, the super quantum discord can exceed the quantum entanglement. Our results provide new insights on the nature of quantum correlation and suggest that the notion of quantum correlation is not only observer dependent but also depends on how weakly one perturbs the composite system. We illustrate the key results for pure as well as mixed entangled states. -- Highlights: •Introduced the role of weak measurements in quantifying quantum correlation. •We have introduced the notion of the super quantum discord (SQD). •For pure entangled state, we show that the SQD exceeds the entanglement entropy. •This shows that quantum correlation depends not only on observer but also on measurement strength

  9. Weak measurements and quantum weak values for NOON states

    Science.gov (United States)

    Rosales-Zárate, L.; Opanchuk, B.; Reid, M. D.

    2018-03-01

    Quantum weak values arise when the mean outcome of a weak measurement made on certain preselected and postselected quantum systems goes beyond the eigenvalue range for a quantum observable. Here, we propose how to determine quantum weak values for superpositions of states with a macroscopically or mesoscopically distinct mode number, that might be realized as two-mode Bose-Einstein condensate or photonic NOON states. Specifically, we give a model for a weak measurement of the Schwinger spin of a two-mode NOON state, for arbitrary N . The weak measurement arises from a nondestructive measurement of the two-mode occupation number difference, which for atomic NOON states might be realized via phase contrast imaging and the ac Stark effect using an optical meter prepared in a coherent state. The meter-system coupling results in an entangled cat-state. By subsequently evolving the system under the action of a nonlinear Josephson Hamiltonian, we show how postselection leads to quantum weak values, for arbitrary N . Since the weak measurement can be shown to be minimally invasive, the weak values provide a useful strategy for a Leggett-Garg test of N -scopic realism.

  10. Measurements of weak conversion lines

    International Nuclear Information System (INIS)

    Feoktistov, A.I.; Frantsev, Yu.E.

    1979-01-01

    Described is a new methods for measuring weak conversion lines with the help of the β spectrometer of the π √ 2 type which permits to increase the reliability of the results obtained. According to this method the measurements were carried out by short series with the storage of the information obtained on the punched tape. The spectrometer magnetic field was stabilized during the measuring of the conversion spectra with the help of three nmr recorders. Instead of the dependence of the pulse calculation rate on the magnetic field value was measured the dependence of the calculation rate on the value of the voltage applied between the source and the spectrometer chamber. A short description of the automatic set-up for measuring conversion lines according to the method proposed is given. The main set-up elements are the voltage multiplexer timer, printer, scaler and the pulse analyzer. With the help of the above methods obtained is the K 1035, 8 keV 182 Ta line. It is obtained as a result of the composition of 96 measurement series. Each measurement time constitutes 640 s 12 points are taken on the line

  11. Hartman effect and weak measurements that are not really weak

    International Nuclear Information System (INIS)

    Sokolovski, D.; Akhmatskaya, E.

    2011-01-01

    We show that in wave packet tunneling, localization of the transmitted particle amounts to a quantum measurement of the delay it experiences in the barrier. With no external degree of freedom involved, the envelope of the wave packet plays the role of the initial pointer state. Under tunneling conditions such ''self-measurement'' is necessarily weak, and the Hartman effect just reflects the general tendency of weak values to diverge, as postselection in the final state becomes improbable. We also demonstrate that it is a good precision, or a 'not really weak' quantum measurement: no matter how wide the barrier d, it is possible to transmit a wave packet with a width σ small compared to the observed advancement. As is the case with all weak measurements, the probability of transmission rapidly decreases with the ratio σ/d.

  12. Weak differentiability of product measures

    NARCIS (Netherlands)

    Heidergott, B.F.; Leahu, H.

    2010-01-01

    In this paper, we study cost functions over a finite collection of random variables. For these types of models, a calculus of differentiation is developed that allows us to obtain a closed-form expression for derivatives where "differentiation" has to be understood in the weak sense. The technique

  13. Thermodynamics of Weakly Measured Quantum Systems.

    Science.gov (United States)

    Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro

    2016-02-26

    We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.

  14. Classical field approach to quantum weak measurements.

    Science.gov (United States)

    Dressel, Justin; Bliokh, Konstantin Y; Nori, Franco

    2014-03-21

    By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.

  15. Robust weak measurements on finite samples

    International Nuclear Information System (INIS)

    Tollaksen, Jeff

    2007-01-01

    A new weak measurement procedure is introduced for finite samples which yields accurate weak values that are outside the range of eigenvalues and which do not require an exponentially rare ensemble. This procedure provides a unique advantage in the amplification of small nonrandom signals by minimizing uncertainties in determining the weak value and by minimizing sample size. This procedure can also extend the strength of the coupling between the system and measuring device to a new regime

  16. Weak measurements with a qubit meter

    DEFF Research Database (Denmark)

    Wu, Shengjun; Mølmer, Klaus

    2009-01-01

    We derive schemes to measure the so-called weak values of quantum system observables by coupling of the system to a qubit meter system. We highlight, in particular, the meaning of the imaginary part of the weak values, and show how it can be measured directly on equal footing with the real part...

  17. Measures of weak noncompactness, nonlinear Leray-Schauder ...

    African Journals Online (AJOL)

    In this paper, we establish some new nonlinear Leray-Schauder alternatives for the sum and the product of weakly sequentially continuous operators in Banach algebras satisfying certain sequential condition (P). The main condition in our results is formulated in terms of axiomatic measures of weak noncompactness.

  18. Enhancing QKD security with weak measurements

    Science.gov (United States)

    Farinholt, Jacob M.; Troupe, James E.

    2016-10-01

    Publisher's Note: This paper, originally published on 10/24/2016, was replaced with a corrected/revised version on 11/8/2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. In the late 1980s, Aharonov and colleagues developed the notion of a weak measurement of a quantum observable that does not appreciably disturb the system.1, 2 The measurement results are conditioned on both the pre-selected and post-selected state of the quantum system. While any one measurement reveals very little information, by making the same measurement on a large ensemble of identically prepared pre- and post-selected (PPS) states and averaging the results, one may obtain what is known as the weak value of the observable with respect to that PPS ensemble. Recently, weak measurements have been proposed as a method of assessing the security of QKD in the well-known BB84 protocol.3 This weak value augmented QKD protocol (WV-QKD) works by additionally requiring the receiver, Bob, to make a weak measurement of a particular observable prior to his strong measurement. For the subset of measurement results in which Alice and Bob's measurement bases do not agree, the weak measurement results can be used to detect any attempt by an eavesdropper, Eve, to correlate her measurement results with Bob's. Furthermore, the well-known detector blinding attacks, which are known to perfectly correlate Eve's results with Bob's without being caught by conventional BB84 implementations, actually make the eavesdropper more visible in the new WV-QKD protocol. In this paper, we will introduce the WV-QKD protocol and discuss its generalization to the 6-state single qubit protocol. We will discuss the types of weak measurements that are optimal for this protocol, and compare the predicted performance of the 6- and 4-state WV-QKD protocols.

  19. Fast measure proceeding of weak currents

    International Nuclear Information System (INIS)

    Taieb, J.

    1953-01-01

    The process of fast measure of the weak currents that we are going to describe briefly apply worthy of the provided currents by the sources to elevated value internal resistance, as it is the case for the ionization chamber, the photocells, mass spectroscopic tubes. The problem to measure weak currents is essentially a problem of amplifier and of input circuit. We intended to achieve a whole amplifier and input circuit with advanced performances, meaning that for a measured celerity we wanted to have an signal/noise ratio the most important as in the classic systems and for a same report signal/noise a more quickly done measure. (M.B.) [fr

  20. Efficient quantum computing with weak measurements

    International Nuclear Information System (INIS)

    Lund, A P

    2011-01-01

    Projective measurements with high quantum efficiency are often assumed to be required for efficient circuit-based quantum computing. We argue that this is not the case and show that the fact that they are not required was actually known previously but was not deeply explored. We examine this issue by giving an example of how to perform the quantum-ordering-finding algorithm efficiently using non-local weak measurements considering that the measurements used are of bounded weakness and some fixed but arbitrary probability of success less than unity is required. We also show that it is possible to perform the same computation with only local weak measurements, but this must necessarily introduce an exponential overhead.

  1. Geometric phase topology in weak measurement

    Science.gov (United States)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2017-12-01

    The geometric phase visualization proposed by Bhandari (R Bhandari 1997 Phys. Rep. 281 1-64) in the ellipticity-ellipse orientation basis of the polarization ellipse of light is implemented to understand the geometric aspects of weak measurement. The weak interaction of a pre-selected state, acheived via spin-Hall effect of light (SHEL), results in a spread in the polarization ellipticity (η) or ellipse orientation (χ) depending on the resulting spatial or angular shift, respectively. The post-selection leads to the projection of the η spread in the complementary χ basis results in the appearance of a geometric phase with helical phase topology in the η - χ parameter space. By representing the weak measurement on the Poincaré sphere and using Jones calculus, the complex weak value and the geometric phase topology are obtained. This deeper understanding of the weak measurement process enabled us to explore the techniques’ capabilities maximally, as demonstrated via SHEL in two examples—external reflection at glass-air interface and transmission through a tilted half-wave plate.

  2. Weak mixing angle measurements at hadron colliders

    CERN Document Server

    Di Simone, Andrea; The ATLAS collaboration

    2015-01-01

    The Talk will cover weak mixing angle measurements at hadron colliders ATLAS and CMS in particular. ATLAS has measured the forward-backward asymmetry for the neutral current Drell Yan process in a wide mass range around the Z resonance region using dielectron and dimuon final states with $\\sqrt{s}$ =7 TeV data. For the dielectron channel, the measurement includes electrons detected in the forward calorimeter which extends the covered phase space. The result is then used to extract a measurement of the effective weak mixing angle. Uncertainties from the limited knowledge on the parton distribution functions in the proton constitute a significant part of the uncertainty and a dedicated study is performed to obtain a PDF set describing W and Z data measured previously by ATLAS. Similar studies from CMS will be reported.

  3. Strengthening Institutions to Legitimise Business Continuity in Weak Institutional Environments

    DEFF Research Database (Denmark)

    Taarup Esbensen, Jacob

    This paper investigates how weak institutional environments influence MNE decision making to be involved in creating public good facilities with the aim of reducing community risk, and to what extend these can be traced back to the MNE choose of a Head Quarter (HQ) or local embeddedness driven...... in their dealings with local communities. One strategy is based on rules provide by the HQ, which focuses on providing guidelines in compliance with normative global institutions, while another strategy focuses on embedding the subsidiary in the local institutional environment. Both of these strategies aim...... public good facilities in the absence or at best weak institutional environment. Secondly, serving as an effective risk mitigation tool that keeps aggressive actors from partnering with local communities against the company thereby presenting a risk to its continued operations....

  4. Joint weak value for all order coupling using continuous variable and qubit probe

    Science.gov (United States)

    Kumari, Asmita; Pan, Alok Kumar; Panigrahi, Prasanta K.

    2017-11-01

    The notion of weak measurement in quantum mechanics has gained a significant and wide interest in realizing apparently counterintuitive quantum effects. In recent times, several theoretical and experimental works have been reported for demonstrating the joint weak value of two observables where the coupling strength is restricted to the second order. In this paper, we extend such a formulation by providing a complete treatment of joint weak measurement scenario for all-order-coupling for the observable satisfying A 2 = 𝕀 and A 2 = A, which allows us to reveal several hitherto unexplored features. By considering the probe state to be discrete as well as continuous variable, we demonstrate how the joint weak value can be inferred for any given strength of the coupling. A particularly interesting result we pointed out that even if the initial pointer state is uncorrelated, the single pointer displacement can provide the information about the joint weak value, if at least third order of the coupling is taken into account. As an application of our scheme, we provide an all-order-coupling treatment of the well-known Hardy paradox by considering the continuous as well as discrete meter states and show how the negative joint weak probabilities emerge in the quantum paradoxes at the weak coupling limit.

  5. Weak Measurement and Quantum Smoothing of a Superconducting Qubit

    Science.gov (United States)

    Tan, Dian

    In quantum mechanics, the measurement outcome of an observable in a quantum system is intrinsically random, yielding a probability distribution. The state of the quantum system can be described by a density matrix rho(t), which depends on the information accumulated until time t, and represents our knowledge about the system. The density matrix rho(t) gives probabilities for the outcomes of measurements at time t. Further probing of the quantum system allows us to refine our prediction in hindsight. In this thesis, we experimentally examine a quantum smoothing theory in a superconducting qubit by introducing an auxiliary matrix E(t) which is conditioned on information obtained from time t to a final time T. With the complete information before and after time t, the pair of matrices [rho(t), E(t)] can be used to make smoothed predictions for the measurement outcome at time t. We apply the quantum smoothing theory in the case of continuous weak measurement unveiling the retrodicted quantum trajectories and weak values. In the case of strong projective measurement, while the density matrix rho(t) with only diagonal elements in a given basis |n〉 may be treated as a classical mixture, we demonstrate a failure of this classical mixture description in determining the smoothed probabilities for the measurement outcome at time t with both diagonal rho(t) and diagonal E(t). We study the correlations between quantum states and weak measurement signals and examine aspects of the time symmetry of continuous quantum measurement. We also extend our study of quantum smoothing theory to the case of resonance fluorescence of a superconducting qubit with homodyne measurement and observe some interesting effects such as the modification of the excited state probabilities, weak values, and evolution of the predicted and retrodicted trajectories.

  6. Measuring business continuity programmes in large organisations.

    Science.gov (United States)

    Green, Christopher

    2014-01-01

    In the field of business continuity management, organisations commit sums of money (often very large sums) to develop and maintain their continuity capability. Despite this, there is almost no measurement of whether this expense offers value for money, or whether it is targeted in the right areas. This paper will explain some methods of measuring components of a business continuity programme. The important outputs from this measurement activity are to demonstrate that an organisation's continuity capability is improving over time, and to identify areas of weakness that should be targeted during future work.

  7. Qubit state tomography in a superconducting circuit via weak measurements

    Science.gov (United States)

    Qin, Lupei; Xu, Luting; Feng, Wei; Li, Xin-Qi

    2017-03-01

    In this work we present a study on a new scheme for measuring the qubit state in a circuit quantum electrodynamics (QED) system, based on weak measurement and the concept of weak value. To be applicable under generic parameter conditions, our formulation and analysis are carried out for finite-strength weak measurement, and in particular beyond the bad-cavity and weak-response limits. The proposed study is accessible to present state-of-the-art circuit QED experiments.

  8. Weak-value measurements can outperform conventional measurements

    International Nuclear Information System (INIS)

    Magaña-Loaiza, Omar S; Boyd, Robert W; Harris, Jérémie; Lundeen, Jeff S

    2017-01-01

    In this paper we provide a simple, straightforward example of a specific situation in which weak-value amplification (WVA) clearly outperforms conventional measurement in determining the angular orientation of an optical component. We also offer a perspective reconciling the views of some theorists, who claim WVA to be inherently sub-optimal for parameter estimation, with the perspective of the many experimentalists and theorists who have used the procedure to successfully access otherwise elusive phenomena. (invited comment)

  9. On Hardy's paradox, weak measurements, and multitasking diagrams

    International Nuclear Information System (INIS)

    Meglicki, Zdzislaw

    2011-01-01

    We discuss Hardy's paradox and weak measurements by using multitasking diagrams, which are introduced to illustrate the progress of quantum probabilities through the double interferometer system. We explain how Hardy's paradox is avoided and elaborate on the outcome of weak measurements in this context. -- Highlights: → Hardy's paradox explained and eliminated. → Weak measurements: what is really measured? → Multitasking diagrams: introduced and used to discuss quantum mechanical processes.

  10. Weak measurement and its experimental realisation

    International Nuclear Information System (INIS)

    Flack, R; Hiley, B J

    2014-01-01

    The relationship between the real part of the weak value of the momentum operator at a post selected position is discussed and the meaning of the experimentally determined stream-lines in the Toronto experiment of Kocsis et al is re-examined. We argue against interpreting the energy flow lines as photon trajectories. The possibility of performing an analogous experiment using atoms is proposed in order that a direct comparison can be made with the trajectories calculated by Philippidis, Dewdney and Hiley using the Bohm approach.

  11. Nonperturbative theory of weak pre- and post-selected measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kofman, Abraham G., E-mail: kofmana@gmail.com; Ashhab, Sahel; Nori, Franco

    2012-11-01

    This paper starts with a brief review of the topic of strong and weak pre- and post-selected (PPS) quantum measurements, as well as weak values, and afterwards presents original work. In particular, we develop a nonperturbative theory of weak PPS measurements of an arbitrary system with an arbitrary meter, for arbitrary initial states of the system and the meter. New and simple analytical formulas are obtained for the average and the distribution of the meter pointer variable. These formulas hold to all orders in the weak value. In the case of a mixed preselected state, in addition to the standard weak value, an associated weak value is required to describe weak PPS measurements. In the linear regime, the theory provides the generalized Aharonov–Albert–Vaidman formula. Moreover, we reveal two new regimes of weak PPS measurements: the strongly-nonlinear regime and the inverted region (the regime with a very large weak value), where the system-dependent contribution to the pointer deflection decreases with increasing the measurement strength. The optimal conditions for weak PPS measurements are obtained in the strongly-nonlinear regime, where the magnitude of the average pointer deflection is equal or close to the maximum. This maximum is independent of the measurement strength, being typically of the order of the pointer uncertainty. In the optimal regime, the small parameter of the theory is comparable to the overlap of the pre- and post-selected states. We show that the amplification coefficient in the weak PPS measurements is generally a product of two qualitatively different factors. The effects of the free system and meter Hamiltonians are discussed. We also estimate the size of the ensemble required for a measurement and identify optimal and efficient meters for weak measurements. Exact solutions are obtained for a certain class of the measured observables. These solutions are used for numerical calculations, the results of which agree with the theory

  12. Nonperturbative theory of weak pre- and post-selected measurements

    International Nuclear Information System (INIS)

    Kofman, Abraham G.; Ashhab, Sahel; Nori, Franco

    2012-01-01

    This paper starts with a brief review of the topic of strong and weak pre- and post-selected (PPS) quantum measurements, as well as weak values, and afterwards presents original work. In particular, we develop a nonperturbative theory of weak PPS measurements of an arbitrary system with an arbitrary meter, for arbitrary initial states of the system and the meter. New and simple analytical formulas are obtained for the average and the distribution of the meter pointer variable. These formulas hold to all orders in the weak value. In the case of a mixed preselected state, in addition to the standard weak value, an associated weak value is required to describe weak PPS measurements. In the linear regime, the theory provides the generalized Aharonov–Albert–Vaidman formula. Moreover, we reveal two new regimes of weak PPS measurements: the strongly-nonlinear regime and the inverted region (the regime with a very large weak value), where the system-dependent contribution to the pointer deflection decreases with increasing the measurement strength. The optimal conditions for weak PPS measurements are obtained in the strongly-nonlinear regime, where the magnitude of the average pointer deflection is equal or close to the maximum. This maximum is independent of the measurement strength, being typically of the order of the pointer uncertainty. In the optimal regime, the small parameter of the theory is comparable to the overlap of the pre- and post-selected states. We show that the amplification coefficient in the weak PPS measurements is generally a product of two qualitatively different factors. The effects of the free system and meter Hamiltonians are discussed. We also estimate the size of the ensemble required for a measurement and identify optimal and efficient meters for weak measurements. Exact solutions are obtained for a certain class of the measured observables. These solutions are used for numerical calculations, the results of which agree with the theory

  13. Measuring Workload Weak Resilience Signals at a Rail Control Post

    NARCIS (Netherlands)

    Siegel, A.W.; Schraagen, J.M.C.

    2014-01-01

    OCCUPATIONAL APPLICATIONS This article describes an observational study at a rail control post to measure workload weak resilience signals. A weak resilience signal indicates a possible degradation of a system's resilience, which is defined as the ability of a complex socio-technical system to cope

  14. Tight Bell Inequalities and Nonlocality in Weak Measurement

    Science.gov (United States)

    Waegell, Mordecai

    A general class of Bell inequalities is derived based on strict adherence to probabilistic entanglement correlations observed in nature. This derivation gives significantly tighter bounds on local hidden variable theories for the well-known Clauser-Horne-Shimony-Holt (CHSH) inequality, and also leads to new proofs of the Greenberger-Horne-Zeilinger (GHZ) theorem. This method is applied to weak measurements and reveals nonlocal correlations between the weak value and the post-selection, which rules out various classical models of weak measurement. Implications of these results are discussed. Fetzer-Franklin Fund of the John E. Fetzer Memorial Trust.

  15. Advances in the measurement of weak magnetic fields

    International Nuclear Information System (INIS)

    Li Damin; Huang Minzhe.

    1992-01-01

    The state-of-art and general features of instruments for measuring weak magnetic fields (such as the non-directional magnetometer, induced coil magnetometer, proton magnetometer, optical pumping magnetometer, flux-gate magnetometer and superconducting quantum magnetometer) are briefly described. Emphasis is laid on the development of a novel technique used in the flux-gate magnetometer and the liquid nitrogen SQUID. Typical applications of the measuring techniques for weak magnetic fields are given

  16. Enhancing teleportation fidelity by means of weak measurements or reversal

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Liang, E-mail: lqiu@cumt.edu.cn [College of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Tang, Gang; Yang, Xianqing [College of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Wang, Anmin [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2014-11-15

    The enhancement of teleportation fidelity by weak measurement or quantum measurement reversal is investigated. One qubit of a maximally entangled state undergoes the amplitude damping, and the subsequent application of weak measurement or quantum measurement reversal could improve the teleportation fidelity beyond the classical region. The improvement could not be attributed to the increasing of entanglement, quantum discord, classical correlation or total correlation. We declare that it should be owed to the probabilistic nature of the method. - Highlights: • The method’s probabilistic nature should be responsible for the improvement. • Quantum or classical correlation cannot explain the improvement. • The receiver cannot apply weak measurements. • The sender’s quantum measurement reversal is only useful for |Ψ{sup ±}〉.

  17. Qweak: A Precision Measurement of the Proton's Weak Charge

    International Nuclear Information System (INIS)

    David Armstrong; Todd Averett; James Birchall; James Bowman; Roger Carlini; Swapan Chattopadhyay; Charles Davis; J. Doornbos; James Dunne; Rolf Ent; Jens Erler; Willie Falk; John Finn; Tony Forest; David Gaskell; Klaus Grimm; C. Hagner; F. Hersman; Maurik Holtrop; Kathleen Johnston; R.T. Jones; Kyungseon Joo; Cynthia Keppel; Elie Korkmaz; Stanley Kowalski; Lawrence Lee; Allison Lung; David Mack; Stanislaw Majewski; Gregory Mitchell; Hamlet Mkrtchyan; Norman Morgan; Allena Opper; Shelley Page; Seppo Penttila; Mark Pitt; Benard Poelker; Tracy Porcelli; William Ramsay; Michael Ramsey-musolf; Julie Roche; Neven Simicevic; Gregory Smith; Riad Suleiman; Simon Taylor; Willem Van Oers; Steven Wells; W.S. Wilburn; Stephen Wood; Carl Zorn

    2004-01-01

    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q 2 of a longitudinally polarized electron beam on a proton target. The experiment will measure the weak charge of the proton, and thus the weak mixing angle at low energy scale, providing a precision test of the Standard Model. Since the value of the weak mixing angle is approximately 1/4, the weak charge of the proton Q w p = 1-4 sin 2 θ w is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment is approved to run at JLab, and the construction plan calls for the hardware to be ready to install in Hall C in 2007. The theoretical context of the experiment and the status of its design are discussed

  18. Measurement of the Weak Dipole Moments of the $\\tau$ Lepton

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palit, S; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Vlachos, S; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1998-01-01

    Using the data collected by the L3 experiment at LEP from 1991 to 1995 at energies around the $\\Zo$ mass, a measurement of the weak anomalous magnetic dipole moment, $a^w_{\\tau}$,~ and of the weak electric dipole moment, $d^w_{\\tau}$, of the $\\tau$ lepton is performed. These quantities are obtained from angular distributions in $e^{+}e^{-}\\rightarrow\\tau^{+}\\tau^{-} \\rightarrow h^{+} \\bar{\

  19. Theory of “Weak Value" and Quantum Mechanical Measurements

    OpenAIRE

    Shikano, Yutaka

    2012-01-01

    Comment: to be published from "Measurements in Quantum Mechanics", edited by M. R. Pahlavani (InTech, 2012) Chapter 4 page 75. Yutaka Shikano (2012). ISBN: 978-953-51-0058-4 Available from: http://www.intechopen.com/articles/show/title/theory-of-weak-value-and-quantum-mechanical-measurement

  20. Method and apparatus for measuring weak magnetic fields

    DEFF Research Database (Denmark)

    1995-01-01

    When measuring weak magnetic fields, a container containing a medium, such as a solution containing a stable radical, is placed in a polarising magnetic field, which is essentially at right angles to the field to be measured. The polarising field is interrupted rapidly, the interruption being...

  1. Measurement of MOS current mismatch in the weak inversion region

    International Nuclear Information System (INIS)

    Forti, F.; Wright, M.E.

    1994-01-01

    The MOS transistor matching properties in the weak inversion region have not received, in the past, the attention that the mismatch in the strong inversion region has. The importance of weak inversion biased transistors in low power CMOS analog systems calls for more extensive data on the mismatch in this region of operation. The study presented in this paper was motivated by the need of controlling the threshold matching in a low power, low noise amplifier discriminator circuit used in a silicon radiation detector read-out, where both the transistor dimensions and the currents had to be kept to a minimum. The authors have measured the current matching properties of MOS transistors operated in the weak inversion region. They measured a total of about 1,400 PMOS and NMOS transistors produced in four different processes and report here the results in terms of mismatch dependence on current density, device dimensions, and substrate voltage, without using any specific model for the transistor

  2. Tunneling Time and Weak Measurement in Strong Field Ionization.

    Science.gov (United States)

    Zimmermann, Tomáš; Mishra, Siddhartha; Doran, Brent R; Gordon, Daniel F; Landsman, Alexandra S

    2016-06-10

    Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.

  3. Enhancing robustness of multiparty quantum correlations using weak measurement

    International Nuclear Information System (INIS)

    Singh, Uttam; Mishra, Utkarsh; Dhar, Himadri Shekhar

    2014-01-01

    Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol

  4. Enhancing robustness of multiparty quantum correlations using weak measurement

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Uttam, E-mail: uttamsingh@hri.res.in [Quantum Information and Computation Group, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Mishra, Utkarsh, E-mail: utkarsh@hri.res.in [Quantum Information and Computation Group, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Dhar, Himadri Shekhar, E-mail: dhar.himadri@gmail.com [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2014-11-15

    Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol.

  5. Continuous weakly cancellative triangular subnorms: I. Their web-geometric properties

    Czech Academy of Sciences Publication Activity Database

    Petrík, Milan; Sarkoci, Peter

    2018-01-01

    Roč. 332, 1 February (2018), s. 93-110 ISSN 0165-0114 R&D Projects: GA ČR GJ15-07724Y Institutional support: RVO:67985807 Keywords : associativity * conditionally cancellative * continuous triangular subnorm * contour * level set * Reidemeister closure condition * weakly cancellative * web geometry Subject RIV: BA - General Mathematics Impact factor: 2.718, year: 2016

  6. ISOLTRAP Mass Measurements for Weak-Interaction Studies

    International Nuclear Information System (INIS)

    Kellerbauer, A.; Delahaye, P.; Herlert, A.; Audi, G.; Guenaut, C.; Lunney, D.; Beck, D.; Herfurth, F.; Kluge, H.-J.; Mukherjee, M.; Rodriguez, D.; Weber, C.; Yazidjian, C.; Blaum, K.; Bollen, G.; Schwarz, S.; George, S.; Schweikhard, L.

    2006-01-01

    The conserved-vector-current (CVC) hypothesis of the weak interaction and the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix are two fundamental postulates of the Standard Model. While existing data on CVC supports vector current conservation, the unitarity test of the CKM matrix currently fails by more than two standard deviations. High-precision mass measurements performed with the ISOLTRAP experiment at ISOLDE/CERN provide crucial input for these fundamental studies by greatly improving our knowledge of the decay energy of super-allowed β decays. Recent results of mass measurements on the β emitters 18Ne, 22Mg, 34Ar, and 74Rb as pertaining to weak-interaction studies are presented

  7. Landau-Zener evolution under weak measurement: manifestation of the Zeno effect under diabatic and adiabatic measurement protocols

    Science.gov (United States)

    Novelli, Anna; Belzig, Wolfgang; Nitzan, Abraham

    2015-01-01

    The time evolution and the asymptotic outcome of a Landau-Zener-Stueckelberg-Majorana (LZ) process under continuous weak non-selective measurement is analyzed. We compare two measurement protocols in which the populations of either the adiabatic or the non-adiabatic levels are (continuously and weakly) monitored. The weak measurement formalism, described using a Gaussian Kraus operator, leads to a time evolution characterized by a Markovian dephasing process, which, in the non-adiabatic measurement protocol is similar to earlier studies of LZ dynamics in a dephasing environment. Casting the problem in the language of measurement theory makes it possible for us to compare diabatic and adiabatic measurement scenarios, to consider engineered dephasing as a control device and to examine the manifestation of the Zeno effect under the different measurement protocols. In particular, under measurement of the non-adiabatic populations, the Zeno effect is manifested not as a freezing of the measured system in its initial state, but rather as an approach to equal asymptotic populations of the two diabatic states. This behavior can be traced to the way by which the weak measurement formalism behaves in the strong measurement limit, with a built-in relationship between measurement time and strength.

  8. Landau–Zener evolution under weak measurement: manifestation of the Zeno effect under diabatic and adiabatic measurement protocols

    International Nuclear Information System (INIS)

    Novelli, Anna; Belzig, Wolfgang; Nitzan, Abraham

    2015-01-01

    The time evolution and the asymptotic outcome of a Landau–Zener–Stueckelberg–Majorana (LZ) process under continuous weak non-selective measurement is analyzed. We compare two measurement protocols in which the populations of either the adiabatic or the non-adiabatic levels are (continuously and weakly) monitored. The weak measurement formalism, described using a Gaussian Kraus operator, leads to a time evolution characterized by a Markovian dephasing process, which, in the non-adiabatic measurement protocol is similar to earlier studies of LZ dynamics in a dephasing environment. Casting the problem in the language of measurement theory makes it possible for us to compare diabatic and adiabatic measurement scenarios, to consider engineered dephasing as a control device and to examine the manifestation of the Zeno effect under the different measurement protocols. In particular, under measurement of the non-adiabatic populations, the Zeno effect is manifested not as a freezing of the measured system in its initial state, but rather as an approach to equal asymptotic populations of the two diabatic states. This behavior can be traced to the way by which the weak measurement formalism behaves in the strong measurement limit, with a built-in relationship between measurement time and strength. (paper)

  9. Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations

    Science.gov (United States)

    Jiang, Daijun; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro

    2017-05-01

    In this paper, we first establish a weak unique continuation property for time-fractional diffusion-advection equations. The proof is mainly based on the Laplace transform and the unique continuation properties for elliptic and parabolic equations. The result is weaker than its parabolic counterpart in the sense that we additionally impose the homogeneous boundary condition. As a direct application, we prove the uniqueness for an inverse problem on determining the spatial component in the source term by interior measurements. Numerically, we reformulate our inverse source problem as an optimization problem, and propose an iterative thresholding algorithm. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.

  10. Precision measurement of the weak charge of the proton.

    Science.gov (United States)

    2018-05-01

    Large experimental programmes in the fields of nuclear and particle physics search for evidence of physics beyond that explained by current theories. The observation of the Higgs boson completed the set of particles predicted by the standard model, which currently provides the best description of fundamental particles and forces. However, this theory's limitations include a failure to predict fundamental parameters, such as the mass of the Higgs boson, and the inability to account for dark matter and energy, gravity, and the matter-antimatter asymmetry in the Universe, among other phenomena. These limitations have inspired searches for physics beyond the standard model in the post-Higgs era through the direct production of additional particles at high-energy accelerators, which have so far been unsuccessful. Examples include searches for supersymmetric particles, which connect bosons (integer-spin particles) with fermions (half-integer-spin particles), and for leptoquarks, which mix the fundamental quarks with leptons. Alternatively, indirect searches using precise measurements of well predicted standard-model observables allow highly targeted alternative tests for physics beyond the standard model because they can reach mass and energy scales beyond those directly accessible by today's high-energy accelerators. Such an indirect search aims to determine the weak charge of the proton, which defines the strength of the proton's interaction with other particles via the well known neutral electroweak force. Because parity symmetry (invariance under the spatial inversion (x, y, z) → (-x, -y, -z)) is violated only in the weak interaction, it provides a tool with which to isolate the weak interaction and thus to measure the proton's weak charge 1 . Here we report the value 0.0719 ± 0.0045, where the uncertainty is one standard deviation, derived from our measured parity-violating asymmetry in the scattering of polarized electrons on protons, which is -226.5

  11. Photon trajectories, anomalous velocities and weak measurements: a classical interpretation

    International Nuclear Information System (INIS)

    Bliokh, Konstantin Y; Kofman, Abraham G; Nori, Franco; Bekshaev, Aleksandr Y

    2013-01-01

    Recently, Kocsis et al (2011 Science 332 1170) reported the observation of ‘average trajectories of single photons’ in a two-slit interference experiment. This was possible by using the quantum weak-measurement method, which implies averaging over many events, i.e. in fact, a multi-photon limit of classical linear optics. We give a classical-optics interpretation of this experiment and other related problems. It appears that weak measurements of the local momentum of photons made by Kocsis et al represent measurements of the Poynting vector in an optical field. We consider both the real and imaginary parts of the local momentum and show that their measurements have been realized in classical optics using small-probe particles. We also examine the appearance of ‘anomalous’ values of the local momentum: either negative (backflow) or exceeding the wavenumber (superluminal propagation). These features appear to be closely related to vortices and evanescent waves. Finally, we revisit a number of older works and find examples of photon trajectories and anomalous-momentum measurements in various optical experiments. (paper)

  12. Quantum to Classical Transitions via Weak Measurements and Post-Selection

    Science.gov (United States)

    Cohen, Eliahu; Aharonov, Yakir

    Alongside its immense empirical success, the quantum mechanical account of physical systems imposes a myriad of divergences from our thoroughly ingrained classical ways of thinking. These divergences, while striking, would have been acceptable if only a continuous transition to the classical domain was at hand. Strangely, this is not quite the case. The difficulties involved in reconciling the quantum with the classical have given rise to different interpretations, each with its own shortcomings. Traditionally, the two domains are sewed together by invoking an ad hoc theory of measurement, which has been incorporated in the axiomatic foundations of quantum theory. This work will incorporate a few related tools for addressing the above conceptual difficulties: deterministic operators, weak measurements, and post-selection. Weak Measurement, based on a very weak von Neumann coupling, is a unique kind of quantum measurement with numerous theoretical and practical applications. In contrast to other measurement techniques, it allows to gather a small amount of information regarding the quantum system, with only a negligible probability of collapsing it onto an eigenstate of the measured observable. A single weak measurement yieldsan almost random outcome, but when performed repeatedly over a large ensemble, the averaged outcome becomes increasingly robust and accurate. Importantly, a long sequence of weak measurements can be thought of as a single projective measurement. We claim in this work that classical variables appearing in the o-world, such as center of mass, moment of inertia, pressure, and average forces, result from a multitude of quantum weak measurements performed in the micro-world. Here again, the quantum outcomes are highly uncertain, but the law of large numbers obliges their convergence to the definite quantities we know from our everyday lives. By augmenting this description with a final boundary condition and employing the notion of "classical

  13. Identification of weak nonlinearities on damping and stiffness by the continuous wavelet transform

    Science.gov (United States)

    Ta, Minh-Nghi; Lardiès, Joseph

    2006-05-01

    We consider the free response of a nonlinear vibrating system. Using the ridges and skeletons of the continuous wavelet transform, we identify weak nonlinearities on damping and stiffness and estimate their physical parameters. The crucial choice of the son wavelet function is obtained using an optimization technique based on the entropy of the continuous wavelet transform. The method is applied to simulated single-degree-of-freedom systems and multi-degree-of-freedom systems with nonlinearities on damping and stiffness. Experimental validation of the nonlinear identification and parameter estimation method is presented. The experimental system is a clamped beam with nonlinearities on damping and stiffness and these nonlinearities are identified and quantified from a displacement sensor.

  14. Holder continuity of bounded weak solutions to generalized parabolic p-Laplacian equations II: singular case

    Directory of Open Access Journals (Sweden)

    Sukjung Hwang

    2015-11-01

    Full Text Available Here we generalize quasilinear parabolic p-Laplacian type equations to obtain the prototype equation $$ u_t - \\hbox{div} \\Big(\\frac{g(|Du|}{|Du|} Du\\Big = 0, $$ where g is a nonnegative, increasing, and continuous function trapped in between two power functions $|Du|^{g_0 -1}$ and $|Du|^{g_1 -1}$ with $1weak solution is locally Holder continuous with some degree of commonality between degenerate and singular types. By using geometric characters, our proof does not rely on any of alternatives which is based on the size of solutions.

  15. Anti-Weak Localization Measurements in the Ballistic Regime

    Science.gov (United States)

    Jayathilaka, Dilhani; Dedigama, Aruna; Murphy, Sheena; Edirisooriya, Madhavie; Goel, Niti; Mishima, Tetsuya; Santos, Michael; Mullen, Kieran

    2007-03-01

    Anti-weak localization dominates at low fields in systems in which spin-orbit coupling is strong. The experimental results are well described by theory [1] in low mobility systems in which the magnetic length (lB) is greater than the mean free path; however high mobility systems with strong spin-orbit interactions, such the InSb based two dimensional systems (2DESs) examined here, are not in this diffusive regime. A recently developed theory [2] addresses both the diffusive and ballistic regimes taking into account both the backscattered and non-backscattered contributions to the conductivity. We will discuss the agreement of the new theory to measurements of InSb 2DESs prepared with both strong Dresselhaus and Rashba effects. [1] S.V. Iordanskii, Yu B. Lyanda-Geller, and G.E. Pikus, JETP Lett. 60, 206 (1994). [2] L.E. Golub, Phys. Rev. B. 71, 235310 (2005).

  16. Outer measures and weak type estimates of Hardy-Littlewood maximal operators

    Directory of Open Access Journals (Sweden)

    Terasawa Yutaka

    2006-01-01

    Full Text Available We will introduce the times modified centered and uncentered Hardy-Littlewood maximal operators on nonhomogeneous spaces for . We will prove that the times modified centered Hardy-Littlewood maximal operator is weak type bounded with constant when if the Radon measure of the space has "continuity" in some sense. In the proof, we will use the outer measure associated with the Radon measure. We will also prove other results of Hardy-Littlewood maximal operators on homogeneous spaces and on the real line by using outer measures.

  17. Measurement of the Weak Mixing Angle in Moller Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Klejda, B.

    2005-01-28

    The weak mixing parameter, sin{sup 2} {theta}{sub w}, is one of the fundamental parameters of the Standard Model. Its tree-level value has been measured with high precision at energies near the Z{sup 0} pole; however, due to radiative corrections at the one-loop level, the value of sin{sup 2} {theta}{sub w} is expected to change with the interaction energy. As a result, a measurement of sin{sup 2} {theta}{sub w} at low energy (Q{sup 2} << m{sub Z}, where Q{sup 2} is the momentum transfer and m{sub Z} is the Z boson mass), provides a test of the Standard Model at the one-loop level, and a probe for new physics beyond the Standard Model. One way of obtaining sin{sup 2} {theta}{sub w} at low energy is from measuring the left-right, parity-violating asymmetry in electron-electron (Moeller) scattering: A{sub PV} = {sigma}{sub R}-{sigma}{sub L}/{sigma}{sub R}+{sigma}{sub L}, where {sigma}{sub R} and {sigma}{sub L} are the cross sections for right- and left-handed incident electrons, respectively. The parity violating asymmetry is proportional to the pseudo-scalar weak neutral current coupling in Moeller scattering, g{sub ee}. At tree level g{sub ee} = (1/4 -sin{sup 2} {theta}{sub w}). A precision measurement of the parity-violating asymmetry in Moeller scattering was performed by Experiment E158 at the Stanford Linear Accelerator Center (SLAC). During the experiment, {approx}50 GeV longitudinally polarized electrons scattered off unpolarized atomic electrons in a liquid hydrogen target, corresponding to an average momentum transfer Q{sup 2} {approx} 0.03 (GeV/c){sup 2}. The tree-level prediction for A{sub PV} at such energy is {approx}300 ppb. However one-loop radiative corrections reduce its value by {approx}40%. This document reports the E158 results from the 2002 data collection period. The parity-violating asymmetry was found to be A{sub PV} = -160 {+-} 21 (stat.) {+-} 17 (syst.) ppb, which represents the first observation of a parity-violating asymmetry in Moeller

  18. Weak lensing Study in VOICE Survey I: Shear Measurement

    Science.gov (United States)

    Fu, Liping; Liu, Dezi; Radovich, Mario; Liu, Xiangkun; Pan, Chuzhong; Fan, Zuhui; Covone, Giovanni; Vaccari, Mattia; Amaro, Valeria; Brescia, Massimo; Capaccioli, Massimo; De Cicco, Demetra; Grado, Aniello; Limatola, Luca; Miller, Lance; Napolitano, Nicola R.; Paolillo, Maurizio; Pignata, Giuliano

    2018-06-01

    The VST Optical Imaging of the CDFS and ES1 Fields (VOICE) Survey is a Guaranteed Time program carried out with the ESO/VST telescope to provide deep optical imaging over two 4 deg2 patches of the sky centred on the CDFS and ES1 pointings. We present the cosmic shear measurement over the 4 deg2 covering the CDFS region in the r-band using LensFit. Each of the four tiles of 1 deg2 has more than one hundred exposures, of which more than 50 exposures passed a series of image quality selection criteria for weak lensing study. The 5σ limiting magnitude in r- band is 26.1 for point sources, which is ≳1 mag deeper than other weak lensing survey in the literature (e.g. the Kilo Degree Survey, KiDS, at VST). The photometric redshifts are estimated using the VOICE u, g, r, i together with near-infrared VIDEO data Y, J, H, Ks. The mean redshift of the shear catalogue is 0.87, considering the shear weight. The effective galaxy number density is 16.35 gal/arcmin2, which is nearly twice the one of KiDS. The performance of LensFit on such a deep dataset was calibrated using VOICE-like mock image simulations. Furthermore, we have analyzed the reliability of the shear catalogue by calculating the star-galaxy cross-correlations, the tomographic shear correlations of two redshift bins and the contaminations of the blended galaxies. As a further sanity check, we have constrained cosmological parameters by exploring the parameter space with Population Monte Carlo sampling. For a flat ΛCDM model we have obtained Σ _8 = σ _8(Ω _m/0.3)^{0.5} = 0.68^{+0.11}_{-0.15}.

  19. IMPACT OF ATMOSPHERIC CHROMATIC EFFECTS ON WEAK LENSING MEASUREMENTS

    International Nuclear Information System (INIS)

    Meyers, Joshua E.; Burchat, Patricia R.

    2015-01-01

    Current and future imaging surveys will measure cosmic shear with statistical precision that demands a deeper understanding of potential systematic biases in galaxy shape measurements than has been achieved to date. We use analytic and computational techniques to study the impact on shape measurements of two atmospheric chromatic effects for ground-based surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope (LSST): (1) atmospheric differential chromatic refraction and (2) wavelength dependence of seeing. We investigate the effects of using the point-spread function (PSF) measured with stars to determine the shapes of galaxies that have different spectral energy distributions than the stars. We find that both chromatic effects lead to significant biases in galaxy shape measurements for current and future surveys, if not corrected. Using simulated galaxy images, we find a form of chromatic “model bias” that arises when fitting a galaxy image with a model that has been convolved with a stellar, instead of galactic, PSF. We show that both forms of atmospheric chromatic biases can be predicted (and corrected) with minimal model bias by applying an ordered set of perturbative PSF-level corrections based on machine-learning techniques applied to six-band photometry. Catalog-level corrections do not address the model bias. We conclude that achieving the ultimate precision for weak lensing from current and future ground-based imaging surveys requires a detailed understanding of the wavelength dependence of the PSF from the atmosphere, and from other sources such as optics and sensors. The source code for this analysis is available at https://github.com/DarkEnergyScienceCollaboration/chroma

  20. IMPACT OF ATMOSPHERIC CHROMATIC EFFECTS ON WEAK LENSING MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Joshua E.; Burchat, Patricia R., E-mail: jmeyers314@gmail.com [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2015-07-10

    Current and future imaging surveys will measure cosmic shear with statistical precision that demands a deeper understanding of potential systematic biases in galaxy shape measurements than has been achieved to date. We use analytic and computational techniques to study the impact on shape measurements of two atmospheric chromatic effects for ground-based surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope (LSST): (1) atmospheric differential chromatic refraction and (2) wavelength dependence of seeing. We investigate the effects of using the point-spread function (PSF) measured with stars to determine the shapes of galaxies that have different spectral energy distributions than the stars. We find that both chromatic effects lead to significant biases in galaxy shape measurements for current and future surveys, if not corrected. Using simulated galaxy images, we find a form of chromatic “model bias” that arises when fitting a galaxy image with a model that has been convolved with a stellar, instead of galactic, PSF. We show that both forms of atmospheric chromatic biases can be predicted (and corrected) with minimal model bias by applying an ordered set of perturbative PSF-level corrections based on machine-learning techniques applied to six-band photometry. Catalog-level corrections do not address the model bias. We conclude that achieving the ultimate precision for weak lensing from current and future ground-based imaging surveys requires a detailed understanding of the wavelength dependence of the PSF from the atmosphere, and from other sources such as optics and sensors. The source code for this analysis is available at https://github.com/DarkEnergyScienceCollaboration/chroma.

  1. Practical Weak-lensing Shear Measurement with Metacalibration

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, Erin S. [Brookhaven National Laboratory, Bldg. 510, Upton, NY 11973 (United States); Huff, Eric M. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States)

    2017-05-20

    Metacalibration is a recently introduced method to accurately measure weak gravitational lensing shear using only the available imaging data, without need for prior information about galaxy properties or calibration from simulations. The method involves distorting the image with a small known shear, and calculating the response of a shear estimator to that applied shear. The method was shown to be accurate in moderate-sized simulations with galaxy images that had relatively high signal-to-noise ratios, and without significant selection effects. In this work we introduce a formalism to correct for both shear response and selection biases. We also observe that for images with relatively low signal-to-noise ratios, the correlated noise that arises during the metacalibration process results in significant bias, for which we develop a simple empirical correction. To test this formalism, we created large image simulations based on both parametric models and real galaxy images, including tests with realistic point-spread functions. We varied the point-spread function ellipticity at the five-percent level. In each simulation we applied a small few-percent shear to the galaxy images. We introduced additional challenges that arise in real data, such as detection thresholds, stellar contamination, and missing data. We applied cuts on the measured galaxy properties to induce significant selection effects. Using our formalism, we recovered the input shear with an accuracy better than a part in a thousand in all cases.

  2. Implications of a wavelength dependent PSF for weak lensing measurements.

    Science.gov (United States)

    Eriksen, Martin; Hoekstra, Henk

    2018-05-01

    The convolution of galaxy images by the point-spread function (PSF) is the dominant source of bias for weak gravitational lensing studies, and an accurate estimate of the PSF is required to obtain unbiased shape measurements. The PSF estimate for a galaxy depends on its spectral energy distribution (SED), because the instrumental PSF is generally a function of the wavelength. In this paper we explore various approaches to determine the resulting `effective' PSF using broad-band data. Considering the Euclid mission as a reference, we find that standard SED template fitting methods result in biases that depend on source redshift, although this may be remedied if the algorithms can be optimised for this purpose. Using a machine-learning algorithm we show that, at least in principle, the required accuracy can be achieved with the current survey parameters. It is also possible to account for the correlations between photometric redshift and PSF estimates that arise from the use of the same photometry. We explore the impact of errors in photometric calibration, errors in the assumed wavelength dependence of the PSF model and limitations of the adopted template libraries. Our results indicate that the required accuracy for Euclid can be achieved using the data that are planned to determine photometric redshifts.

  3. Effect of weak measurement on entanglement distribution over noisy channels.

    Science.gov (United States)

    Wang, Xin-Wen; Yu, Sixia; Zhang, Deng-Yu; Oh, C H

    2016-03-03

    Being able to implement effective entanglement distribution in noisy environments is a key step towards practical quantum communication, and long-term efforts have been made on the development of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. This paper investigates remote distributions of bipartite and multipartite entangled states in the amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. However, we find that the NRWM would contribute to remote distributions of multipartite W states. We demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for quantifying the ability of a local filtering operation in protecting entanglement from decoherence.

  4. Fock-state view of weak-value measurements and implementation with photons and atomic ensembles

    International Nuclear Information System (INIS)

    Simon, Christoph; Polzik, Eugene S.

    2011-01-01

    Weak measurements in combination with postselection can give rise to a striking amplification effect (related to a large ''weak value''). We show that this effect can be understood by viewing the initial state of the pointer as the ground state of a fictional harmonic oscillator. This perspective clarifies the relationship between the weak-value regime and other measurement techniques and inspires a proposal to implement fully quantum weak-value measurements combining photons and atomic ensembles.

  5. On Hardy's paradox, weak measurements, and multitasking diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Meglicki, Zdzislaw, E-mail: gustav@indiana.edu [Indiana University, Office of the Vice President for Information Technology, 601 E. Kirkwood Ave., Room 116, Bloomington, IN 47405-1223 (United States)

    2011-07-04

    We discuss Hardy's paradox and weak measurements by using multitasking diagrams, which are introduced to illustrate the progress of quantum probabilities through the double interferometer system. We explain how Hardy's paradox is avoided and elaborate on the outcome of weak measurements in this context. -- Highlights: → Hardy's paradox explained and eliminated. → Weak measurements: what is really measured? → Multitasking diagrams: introduced and used to discuss quantum mechanical processes.

  6. Weak interaction and nucleus: the relationship keeps on; Interaction faible et noyau: l'histoire continue

    Energy Technology Data Exchange (ETDEWEB)

    Martino, J [Subatech, Ecole des Mines de Nantes, 44 - Nantes (France); Frere, J M; Naviliat-Cuncic, O; Volpe, C; Marteau, J; Lhuillier, D; Vignaud, D; Legac, R; Marteau, J; Legac, R

    2003-07-01

    This document gathers the lectures made at the Joliot-Curie international summer school in 2003 whose theme, that year, was the relationship between weak interaction and nucleus. There were 8 contributions whose titles are: 1) before the standard model: from beta decay to neutral currents; 2) the electro-weak theory and beyond; 3) testing of the standard model at low energies; 4) description of weak processes in nuclei; 5) 20.000 tonnes underground, an approach to the neutrino-nucleus interaction; 6) parity violation from atom to nucleon; 7) how neutrinos got their masses; and 8) CP symmetry.

  7. Pedagogical Review of Quantum Measurement Theory with an Emphasis on Weak Measurements

    Directory of Open Access Journals (Sweden)

    Bengt E. Y. Svensson

    2013-05-01

    Full Text Available The quantum theory of measurement has been with us since quantum mechanics was invented. It has recently been invigorated, partly due to the increasing interest in quantum information science. In this partly pedagogical review I attempt to give a self-contained overview of non-relativistic quantum theory of measurement expressed in density matrix formalism. I will not dwell on the applications in quantum information theory; it is well covered by several books in that field. The focus is instead on applications to the theory of weak measurement, as developed by Aharonov and collaborators. Their development of weak measurement combined with what they call post-selection - judiciously choosing not only the initial state of a system (pre-selection but also its final state - has received much attention recently. Not the least has it opened up new, fruitful experimental vistas, like novel approaches to amplification. But the approach has also attached to it some air of mystery. I will attempt to demystify it by showing that (almost all results can be derived in a straight-forward way from conventional quantum mechanics. Among other things, I develop the formalism not only to first order but also to second order in the weak interaction responsible for the measurement. I apply it to the so called Leggett-Garg inequalities, also known as Bell inequalities in time. I also give an outline, even if rough, of some of the ingenious experiments that the work by Aharonov and collaborators has inspired. As an application of weak measurement, not related to the approach by Aharonov and collaborators, the formalism also allows me to derive the master equation for the density matrix of an open system in interaction with an environment. An issue that remains in the weak measurement plus post-selection approach is the interpretation of the so called weak value of an observable. Is it a bona fide property of the system considered? I have no definite answer to this

  8. FAA computer security : concerns remain due to personnel and other continuing weaknesses

    Science.gov (United States)

    2000-08-01

    FAA has a history of computer security weaknesses in a number of areas, including its physical security management at facilities that house air traffic control (ATC) systems, systems security for both operational and future systems, management struct...

  9. Measurement of the weak nucleon-nucleon interaction by polarized cold neutron capture on protons

    Directory of Open Access Journals (Sweden)

    Alarcon R.

    2014-03-01

    Full Text Available The NPDGamma Experiment at the Spallation Neutron Source at Oak Ridge National Laboratory is measuring the parity-odd correlation between the neutron spin and the direction of the emitted photon in the capture of polarized cold neutrons on protons. A parity violating asymmetry from this process is directly related to the strength of the hadronic weak interaction between nucleons. The experiment was run first with heavier nuclear targets to check systematic effects, false asymmetries, and backgrounds. Since early 2012 the experiment has been collecting data with a 16-liter liquid parahydrogen target. Data taking will continue through 2013 until statistics for a 10−8 asymmetry measurement are expected. The experiment performance will be discussed as well as the status of the asymmetry measurements.

  10. Continuous measures of situation awareness and workload

    International Nuclear Information System (INIS)

    Droeivoldsmo, Asgeir; Skraaning, Gyrd jr.; Sverrbo, Mona; Dalen, Joergen; Grimstad, Tone; Andresen, Gisle

    1998-03-01

    This report presents methods for continuous measures for Situation Awareness and Workload. The objective has been to identify, develop and test the new measures, and compare them to instruments that require interruptions of scenarios. The new measures are: (1) the Visual Indicator of Situation Awareness (VISA); where Situation Awareness is scored from predefined areas of visual interest critical for solving scenarios. Visual monitoring of areas was recorded by eye-movement tracking. (2) Workload scores reflected by Extended Dwell Time (EDT) and the operator Activity Level. EDT was calculated from eye-movement data files, and the activity level was estimated from simulator logs. Using experimental data from the 1996 CASH NRC Alarm study and the 1997 Human Error Analysis Project/ Human-Centred Automation study, the new measurement techniques have been tested and evaluated on a preliminary basis. The results showed promising relationships between the new continuous measures of situation awareness and workload, and established instruments based upon scenario interruptions. (author)

  11. The action uncertainty principle for continuous measurements

    Science.gov (United States)

    Mensky, Michael B.

    1996-02-01

    The action uncertainty principle (AUP) for the specification of the most probable readouts of continuous quantum measurements is proved, formulated in different forms and analyzed (for nonlinear as well as linear systems). Continuous monitoring of an observable A(p,q,t) with resolution Δa( t) is considered. The influence of the measurement process on the evolution of the measured system (quantum measurement noise) is presented by an additional term δ F(t)A(p,q,t) in the Hamiltonian where the function δ F (generalized fictitious force) is restricted by the AUP ∫|δ F(t)| Δa( t) d t ≲ and arbitrary otherwise. Quantum-nondemolition (QND) measurements are analyzed with the help of the AUP. A simple uncertainty relation for continuous quantum measurements is derived. It states that the area of a certain band in the phase space should be of the order of. The width of the band depends on the measurement resolution while its length is determined by the deviation of the system, due to the measurement, from classical behavior.

  12. The action uncertainty principle for continuous measurements

    International Nuclear Information System (INIS)

    Mensky, M.B.

    1996-01-01

    The action uncertainty principle (AUP) for the specification of the most probable readouts of continuous quantum measurements is proved, formulated in different forms and analyzed (for nonlinear as well as linear systems). Continuous monitoring of an observable A(p,q,t) with resolution Δa(t) is considered. The influence of the measurement process on the evolution of the measured system (quantum measurement noise) is presented by an additional term δF(t) A(p,q,t) in the Hamiltonian where the function δF (generalized fictitious force) is restricted by the AUP ∫ vertical stroke δF(t) vertical stroke Δa(t)d t< or∼ℎ and arbitrary otherwise. Quantum-nondemolition (QND) measurements are analyzed with the help of the AUP. A simple uncertainty relation for continuous quantum measurements is derived. It states that the area of a certain band in the phase space should be of the order of ℎ. The width of the band depends on the measurement resolution while its length is determined by the deviation of the system, due to the measurement, from classical behavior. (orig.)

  13. Ultra-small time-delay estimation via a weak measurement technique with post-selection

    International Nuclear Information System (INIS)

    Fang, Chen; Huang, Jing-Zheng; Yu, Yang; Li, Qinzheng; Zeng, Guihua

    2016-01-01

    Weak measurement is a novel technique for parameter estimation with higher precision. In this paper we develop a general theory for the parameter estimation based on a weak measurement technique with arbitrary post-selection. The weak-value amplification model and the joint weak measurement model are two special cases in our theory. Applying the developed theory, time-delay estimation is investigated in both theory and experiments. The experimental results show that when the time delay is ultra-small, the joint weak measurement scheme outperforms the weak-value amplification scheme, and is robust against not only misalignment errors but also the wavelength dependence of the optical components. These results are consistent with theoretical predictions that have not been previously verified by any experiment. (paper)

  14. Integral functionals that are continuous with respect to the weak topology on W-0(1,p)(Omega)

    Czech Academy of Sciences Publication Activity Database

    Černý, R.; Hencl, S.; Kolář, Jan

    2009-01-01

    Roč. 71, 7-8 (2009), s. 2753-2763 ISSN 0362-546X R&D Projects: GA ČR GA201/06/0018 Institutional research plan: CEZ:AV0Z10190503 Keywords : weak continuity * nonlinear integral functional * Sobolev spaces * linearity Subject RIV: BA - General Mathematics Impact factor: 1.487, year: 2009

  15. Continuous pneumothorax monitoring by remittance measurement

    NARCIS (Netherlands)

    Beek, J. F.; Sterenborg, H. J.; van Gemert, M. J.

    1993-01-01

    The feasibility of a noninvasive method, based on a remittance measurement, to monitor continuously for the occurrence of pneumothorax in neonates under ventilation, was investigated through animal experiments. Light from a He-Ne laser (632.8 nm) or a semiconductor laser (790 nm) was incident on the

  16. Direct quantum process tomography via measuring sequential weak values of incompatible observables.

    Science.gov (United States)

    Kim, Yosep; Kim, Yong-Su; Lee, Sang-Yun; Han, Sang-Wook; Moon, Sung; Kim, Yoon-Ho; Cho, Young-Wook

    2018-01-15

    The weak value concept has enabled fundamental studies of quantum measurement and, recently, found potential applications in quantum and classical metrology. However, most weak value experiments reported to date do not require quantum mechanical descriptions, as they only exploit the classical wave nature of the physical systems. In this work, we demonstrate measurement of the sequential weak value of two incompatible observables by making use of two-photon quantum interference so that the results can only be explained quantum physically. We then demonstrate that the sequential weak value measurement can be used to perform direct quantum process tomography of a qubit channel. Our work not only demonstrates the quantum nature of weak values but also presents potential new applications of weak values in analyzing quantum channels and operations.

  17. Bohmian mechanics, open quantum systems and continuous measurements

    CERN Document Server

    Nassar, Antonio B

    2017-01-01

    This book shows how Bohmian mechanics overcomes the need for a measurement postulate involving wave function collapse. The measuring process plays a very important role in quantum mechanics. It has been widely analyzed within the Copenhagen approach through the Born and von Neumann postulates, with later extension due to Lüders. In contrast, much less effort has been invested in the measurement theory within the Bohmian mechanics framework. The continuous measurement (sharp and fuzzy, or strong and weak) problem is considered here in this framework. The authors begin by generalizing the so-called Mensky approach, which is based on restricted path integral through quantum corridors. The measuring system is then considered to be an open quantum system following a stochastic Schrödinger equation. Quantum stochastic trajectories (in the Bohmian sense) and their role in basic quantum processes are discussed in detail. The decoherence process is thereby described in terms of classical trajectories issuing from th...

  18. Continuous measurement of an atomic current

    Science.gov (United States)

    Laflamme, C.; Yang, D.; Zoller, P.

    2017-04-01

    We are interested in dynamics of quantum many-body systems under continuous observation, and its physical realizations involving cold atoms in lattices. In the present work we focus on continuous measurement of atomic currents in lattice models, including the Hubbard model. We describe a Cavity QED setup, where measurement of a homodyne current provides a faithful representation of the atomic current as a function of time. We employ the quantum optical description in terms of a diffusive stochastic Schrödinger equation to follow the time evolution of the atomic system conditional to observing a given homodyne current trajectory, thus accounting for the competition between the Hamiltonian evolution and measurement back action. As an illustration, we discuss minimal models of atomic dynamics and continuous current measurement on rings with synthetic gauge fields, involving both real space and synthetic dimension lattices (represented by internal atomic states). Finally, by "not reading" the current measurements the time evolution of the atomic system is governed by a master equation, where—depending on the microscopic details of our CQED setups—we effectively engineer a current coupling of our system to a quantum reservoir. This provides interesting scenarios of dissipative dynamics generating "dark" pure quantum many-body states.

  19. PIV Measurements in Weakly Buoyant Gas Jet Flames

    Science.gov (United States)

    Sunderland, Peter B.; Greenbberg, Paul S.; Urban, David L.; Wernet, Mark P.; Yanis, William

    2001-01-01

    Despite numerous experimental investigations, the characterization of microgravity laminar jet diffusion flames remains incomplete. Measurements to date have included shapes, temperatures, soot properties, radiative emissions and compositions, but full-field quantitative measurements of velocity are lacking. Since the differences between normal-gravity and microgravity diffusion flames are fundamentally influenced by changes in velocities, it is imperative that the associated velocity fields be measured in microgravity flames. Velocity measurements in nonbuoyant flames will be helpful both in validating numerical models and in interpreting past microgravity combustion experiments. Pointwise velocity techniques are inadequate for full-field velocity measurements in microgravity facilities. In contrast, Particle Image Velocimetry (PIV) can capture the entire flow field in less than 1% of the time required with Laser Doppler Velocimetry (LDV). Although PIV is a mature diagnostic for normal-gravity flames , restrictions on size, power and data storage complicate these measurements in microgravity. Results from the application of PIV to gas jet flames in normal gravity are presented here. Ethane flames burning at 13, 25 and 50 kPa are considered. These results are presented in more detail in Wernet et al. (2000). The PIV system developed for these measurements recently has been adapted for on-rig use in the NASA Glenn 2.2-second drop tower.

  20. Weak convergence to isotropic complex [Formula: see text] random measure.

    Science.gov (United States)

    Wang, Jun; Li, Yunmeng; Sang, Liheng

    2017-01-01

    In this paper, we prove that an isotropic complex symmetric α -stable random measure ([Formula: see text]) can be approximated by a complex process constructed by integrals based on the Poisson process with random intensity.

  1. Continuous greenhouse gas measurements from ice cores

    DEFF Research Database (Denmark)

    Stowasser, Christopher

    Ice cores offer the unique possibility to study the history of past atmospheric greenhouse gases over the last 800,000 years, since past atmospheric air is trapped in bubbles in the ice. Since the 1950s, paleo-scientists have developed a variety of techniques to extract the trapped air from...... individual ice core samples, and to measure the mixing ratio of greenhouse gases such as carbon dioxide, methane and nitrous oxide in the extracted air. The discrete measurements have become highly accurate and reproducible, but require relatively large amounts of ice per measured species and are both time......-consuming and labor-intensive. This PhD thesis presents the development of a new method for measurements of greenhouse gas mixing ratios from ice cores based on a melting device of a continuous flow analysis (CFA) system. The coupling to a CFA melting device enables time-efficient measurements of high resolution...

  2. Weak Interaction Measurements with Optically Trapped Radioactive Atoms

    International Nuclear Information System (INIS)

    Vieira, D.J.; Crane, S.G.; Guckert, R.; Zhao, X.; Brice, S.J.; Goldschmidt, A.; Hime, A.; Tupa, D.

    1999-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project is to apply the latest in magneto-optical and pure magnetic trapping technology to concentrate, cool, confine, and polarize radioactive atoms for precise electroweak interaction measurements. In particular, the authors have concentrated their efforts on the trapping of 82 Rb for a parity-violating, beta-asymmetry measurement. Progress has been made in successfully trapping of up to 6 million 82 Rb(t 1/2 =75s) atoms in a magneto-optical trap coupled to a mass separator. This represents a two order of magnitude improvement in the number trapped radioactive atoms over all previous work. They have also measured the atomic hyperfine structure of 82 Rb and demonstrated the MOT-to-MOT transfer and accumulation of atoms in a second trap. Finally, they have constructed and tested a time-orbiting-potential magnetic trap that will serve as a rotating beacon of spin-polarized nuclei and a beta-telescope detection system. Prototype experiments are now underway with the initial goal of making a 1% measurements of the beta-asymmetry parameter A which would match the world's best measurements

  3. Measurements of weak localization of graphene in inhomogeneous magnetic fields

    DEFF Research Database (Denmark)

    Lindvall, N.; Shivayogimath, Abhay; Yurgens, A.

    2015-01-01

    attribute this to the inhomogeneous field caused by vortices in the superconductor. The deviation, which depends on the carrier concentration in graphene, can be tuned by the gate voltage. In addition, collective vortex motion, known as vortex avalanches, is observed through magnetoresistance measurements...

  4. Continuous measurements of outdoor radon concentrations

    International Nuclear Information System (INIS)

    Iida, T.; Ikebe, Y.; Suzuki, K.; Ueno, K.; Komura, K.; Kato, I.; Jin Yihe

    1993-01-01

    The authors studied and developed an electrostatic 222 Rn monitor and have measured continuously outdoor radon ( 222 Rn) concentrations at Nagoya University since 1985. Four 222 Rn monitors were newly constructed to measure outdoor 222 Rn concentrations at other locations. The 222 Rn concentrations at Nagoya and Kasugai show a clear diurnal variation in autumn, and a seasonal pattern of a spring-summer minimum and a autumn-winter maximum. The results at Toki are the same pattern as that at Nagoya except spring. The concentrations at Kanazawa show a slight seasonal variation. A clear diurnal variation is observed in summer. (4 figs.)

  5. An excess noise measurement system for weak responsivity avalanche photodiodes

    Science.gov (United States)

    Qiao, Liang; Dimler, Simon J.; Baharuddin, Aina N. A. P.; Green, James E.; David, John P. R.

    2018-06-01

    A system for measuring, with reduced photocurrent, the excess noise associated with the gain in avalanche photodiodes (APDs), using a transimpedance amplifier front-end and based on phase-sensitive detection is described. The system can reliably measure the excess noise power of devices, even when the un-multiplied photocurrent is low (~10 nA). This is more than one order of magnitude better than previously reported systems and represents a significantly better noise signal to noise ratio. This improvement in performance has been achieved by increasing the value of the feedback resistor and reducing the op-amp bandwidth. The ability to characterise APD performance with such low photocurrents enables the use of low power light sources such as light emitting diode rather than lasers to investigate the APD noise performance.

  6. Measuring coating thicknesses on continuously moving material

    International Nuclear Information System (INIS)

    Holler, J.H.; Stanton, W.B.; Spongr, J.J.; Joffe, B.B.; Raffelsberger, P.W.; Tiebor, J.E.

    1982-01-01

    A method and apparatus using radiation techniques for measuring coating thicknesses on continuously moving strip material without altering a predetermined path along which it travels. A shuttle carrying a measuring probe having a radioactive isotope source and a detection device is provided for reciprocation along a preselected segment of the path of the strip. The shuttle and the probe are releasably engaged with the strip and carried thereby for synchronous movement therewith in the forward direction during a measurement cycle, and are disengaged from the strip when no measurement is being made, the movement of the shuttle then being controlled by an independent drive mechanism, shown as a belt drive, which reciprocates the shuttle along the rails. A belt drives it forward more slowly than the strip, which then engages the shuttle to pull it at strip speed, allowed by a pulley clutch. (author)

  7. Improving the fidelity of teleportation through noisy channels using weak measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, T., E-mail: tanu.pram99@bose.res.in; Majumdar, A.S., E-mail: archan@bose.res.in

    2013-12-13

    We employ the technique of weak measurement in order to enable preservation of teleportation fidelity for two-qubit noisy channels. We consider one or both qubits of a maximally entangled state to undergo amplitude damping, and show that the application of weak measurement and a subsequent reverse operation could lead to a fidelity greater than 2/3 for any value of the decoherence parameter. The success probability of the protocol decreases with the strength of weak measurement, and is lower when both the qubits are affected by decoherence. Finally, our protocol is shown to work for the Werner state too.

  8. Bell inequalities for continuous-variable measurements

    International Nuclear Information System (INIS)

    He, Q. Y.; Reid, M. D.; Drummond, P. D.; Cavalcanti, E. G.

    2010-01-01

    Tests of local hidden-variable theories using measurements with continuous-variable (CV) outcomes are developed, and a comparison of different methods is presented. As examples, we focus on multipartite entangled Greenberger-Horne-Zeilinger and cluster states. We suggest a physical process that produces the states proposed here, and investigate experiments both with and without binning of the continuous variable. In the former case, the Mermin-Klyshko inequalities can be used directly. For unbinned outcomes, the moment-based Cavalcanti-Foster-Reid-Drummond inequalities are extended to functional inequalities by consideration of arbitrary functions of the measurements at each site. By optimizing these functions, we obtain more robust violations of local hidden-variable theories than with either binning or moments. Recent inequalities based on the algebra of quaternions and octonions are compared with these methods. Since the prime advantage of CV experiments is to provide a route to highly efficient detection via homodyne measurements, we analyze the effect of noise and detection losses in both binned and unbinned cases. The CV moment inequalities with an optimal function have greater robustness to both loss and noise. This could permit a loophole-free test of Bell inequalities.

  9. Problems in continuous dose rate measurement

    International Nuclear Information System (INIS)

    Yoshioka, Mitsuo

    1983-01-01

    The system of continuous dose rate measurement in Fukui Prefecture is described. A telemeter system was constructed in October, 1976, and it has been operated since 1977. Observation has been made at 11 observation stations in the Prefecture. In addition to the continuous measurement of dose rate by using NaI(T1)-DBM systems, the ionization chambers for high dose rate were installed, and also meteorological data have been collected. The detectors are covered with 1 mm thick aluminum designed so that the absorption of external radiation is kept as small as possible. To keep the environmental temperature of the detectors constant, constant temperature wind blow is made. With these consideration, the measurement of Xe-133 is possible, and the standard deviation of yearly dose is around 0.4 mR/Y. By measuring DBM transmission rate, the contribution of Xe-133, which comes from the exhaust pumps in power plants, can be detected. The problems of this system are as follows. First of all, the characteristics of the system must meet the purpose of dose monitoring. The system must detect the dose less than the target value to be achieved. The second is the selection of measuring systems to be set. The system is still not unified, and it is difficult to exchange data between different stations. Finally, the method of data analysis is not yet unified. Manuals or guide-books for this purpose are necessary for the mutual comparison of the data from the stations in different districts. (Kato, T.)

  10. Statistical methods for assessing agreement between continuous measurements

    DEFF Research Database (Denmark)

    Sokolowski, Ineta; Hansen, Rikke Pilegaard; Vedsted, Peter

    Background: Clinical research often involves study of agreement amongst observers. Agreement can be measured in different ways, and one can obtain quite different values depending on which method one uses. Objective: We review the approaches that have been discussed to assess the agreement between...... continuous measures and discuss their strengths and weaknesses. Different methods are illustrated using actual data from the `Delay in diagnosis of cancer in general practice´ project in Aarhus, Denmark. Subjects and Methods: We use weighted kappa-statistic, intraclass correlation coefficient (ICC......), concordance coefficient, Bland-Altman limits of agreement and percentage of agreement to assess the agreement between patient reported delay and doctor reported delay in diagnosis of cancer in general practice. Key messages: The correct statistical approach is not obvious. Many studies give the product...

  11. Continuous Mass Measurement on Conveyor Belt

    Science.gov (United States)

    Tomobe, Yuki; Tasaki, Ryosuke; Yamazaki, Takanori; Ohnishi, Hideo; Kobayashi, Masaaki; Kurosu, Shigeru

    The continuous mass measurement of packages on a conveyor belt will become greatly important. In the mass measurement, the sequence of products is generally random. An interesting possibility of raising throughput of the conveyor line without increasing the conveyor belt speed is offered by the use of two or three conveyor belt scales (called a multi-stage conveyor belt scale). The multi-stage conveyor belt scale can be created which will adjust the conveyor belt length to the product length. The conveyor belt scale usually has maximum capacities of less than 80kg and 140cm, and achieves measuring rates of more than 150 packages per minute and more. The output signals from the conveyor belt scale are always contaminated with noises due to vibrations of the conveyor and the product to be measured in motion. In this paper an employed digital filter is of Finite Impulse Response (FIR) type designed under the consideration on the dynamics of the conveyor system. The experimental results on the conveyor belt scale suggest that the filtering algorithms are effective enough to practical applications to some extent.

  12. Qweak: First Direct Measurement of the Proton’s Weak Charge

    Directory of Open Access Journals (Sweden)

    Androic D.

    2017-01-01

    Full Text Available The Qweak experiment, which took data at Jefferson Lab in the period 2010 - 2012, will precisely determine the weak charge of the proton by measuring the parity-violating asymmetry in elastic e-p scattering at 1.1 GeV using a longitudinally polarized electron beam and a liquid hydrogen target at a low momentum transfer of Q2 = 0.025 (GeV/c2. The weak charge of the proton is predicted by the Standard Model and any significant deviation would indicate physics beyond the Standard Model. The technical challenges and experimental apparatus for measuring the weak charge of the proton will be discussed, as well as the method of extracting the weak charge of the proton. The results from a small subset of the data, that has been published, will also be presented. Furthermore an update will be given of the current status of the data analysis.

  13. Continuous quantum measurements and the action uncertainty principle

    Science.gov (United States)

    Mensky, Michael B.

    1992-09-01

    The path-integral approach to quantum theory of continuous measurements has been developed in preceding works of the author. According to this approach the measurement amplitude determining probabilities of different outputs of the measurement can be evaluated in the form of a restricted path integral (a path integral “in finite limits”). With the help of the measurement amplitude, maximum deviation of measurement outputs from the classical one can be easily determined. The aim of the present paper is to express this variance in a simpler and transparent form of a specific uncertainty principle (called the action uncertainty principle, AUP). The most simple (but weak) form of AUP is δ S≳ℏ, where S is the action functional. It can be applied for simple derivation of the Bohr-Rosenfeld inequality for measurability of gravitational field. A stronger (and having wider application) form of AUP (for ideal measurements performed in the quantum regime) is |∫{/' t″ }(δ S[ q]/δ q( t))Δ q( t) dt|≃ℏ, where the paths [ q] and [Δ q] stand correspondingly for the measurement output and for the measurement error. It can also be presented in symbolic form as Δ(Equation) Δ(Path) ≃ ℏ. This means that deviation of the observed (measured) motion from that obeying the classical equation of motion is reciprocally proportional to the uncertainty in a path (the latter uncertainty resulting from the measurement error). The consequence of AUP is that improving the measurement precision beyond the threshold of the quantum regime leads to decreasing information resulting from the measurement.

  14. Weak measurement from the electron displacement current: new path for applications

    International Nuclear Information System (INIS)

    Marian, D; Colomés, E; Oriols, X; Zanghì, N

    2015-01-01

    The interest on weak measurements is rapidly growing during the last years as a unique tool to better understand and predict new quantum phenomena. Up to now many theoretical and experimental weak-measurement techniques deal with (relativistic) photons or cold atoms, but there is much less investigation on (non-relativistic) electrons in up-to-date electronics technologies. We propose a way to perform weak measurements in nanoelectronic devices through the measurement of the total current (particle plus displacement component) in such devices. We study the interaction between an electron in the active region of a electron device with a metal surface working as a sensing electrode by means of the (Bohmian) conditional wave function. We perform numerical (Monte Carlo) simulations to reconstruct the Bohmian trajectories in the iconic double slit experiment. This work opens new paths for understanding the quantum properties of an electronic system as well as for exploring new quantum engineering applications in solid state physics. (paper)

  15. A scheme of quantum state discrimination over specified states via weak-value measurement

    Science.gov (United States)

    Chen, Xi; Dai, Hong-Yi; Liu, Bo-Yang; Zhang, Ming

    2018-04-01

    The commonly adopted projective measurements are invalid in the specified task of quantum state discrimination when the discriminated states are superposition of planar-position basis states whose complex-number probability amplitudes have the same magnitude but different phases. Therefore we propose a corresponding scheme via weak-value measurement and examine the feasibility of this scheme. Furthermore, the role of the weak-value measurement in quantum state discrimination is analyzed and compared with one in quantum state tomography in this Letter.

  16. Decoherence suppression of tripartite entanglement in non-Markovian environments by using weak measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Zhi-yong [School of Physics & Material Science, Anhui University, Hefei 230039 (China); School of Physics & Electronic Engineering, Fuyang Normal University, Fuyang 236037 (China); He, Juan, E-mail: juanhe78@163.com [School of Physics & Electronic Engineering, Fuyang Normal University, Fuyang 236037 (China); Ye, Liu, E-mail: yeliu@ahu.edu.cn [School of Physics & Material Science, Anhui University, Hefei 230039 (China)

    2017-02-15

    A feasible scheme for protecting the Greenberger–Horne–Zeilinger (GHZ) entanglement state in non-Markovian environments is proposed. It consists of prior weak measurement on each qubit before the interaction with decoherence environments followed by post quantum measurement reversals. It is shown that both the fidelity and concurrence of the GHZ state can be effectively improved. Meanwhile, we also verified that our scenario can enhance tripartite nonlocality remarkably. In addition, the result indicates that the larger the weak measurement strength, the better the effectiveness of the scheme with the lower success probability.

  17. Measurement of weak low frequency pressure signal using stretchable polyurethane fiber sensor for application in wearables

    DEFF Research Database (Denmark)

    Kaysir, Md Rejvi; Stefani, Alessio; Lwin, Richard

    2017-01-01

    .e. a capillary) to measure a weak low frequency signal comparable to respiration/heart rate. We characterized the fiber and measured the sensitivity of a PU capillary using a speaker connected to a function generator. The frequency of the modulated signal was recovered using Fourier Transform (FT). This bodes...

  18. Storing Data from Qweak--A Precision Measurement of the Proton's Weak Charge

    Science.gov (United States)

    Pote, Timothy

    2008-10-01

    The Qweak experiment will perform a precision measurement of the proton's parity violating weak charge at low Q-squared. The experiment will do so by measuring the asymmetry in parity-violating electron scattering. The proton's weak charge is directly related to the value of the weak mixing angle--a fundamental quantity in the Standard Model. The Standard Model makes a firm prediction for the value of the weak mixing angle and thus Qweak may provide insight into shortcomings in the SM. The Qweak experiment will run at Thomas Jefferson National Accelerator Facility in Newport News, VA. A database was designed to hold data directly related to the measurement of the proton's weak charge such as detector and beam monitor yield, asymmetry, and error as well as control structures such as the voltage across photomultiplier tubes and the temperature of the liquid hydrogen target. In order to test the database for speed and stability, it was filled with fake data that mimicked the data that Qweak is expected to collect. I will give a brief overview of the Qweak experiment and database design, and present data collected during these tests.

  19. Continuous Faraday measurement of spin precession without light shifts

    Science.gov (United States)

    Jasperse, M.; Kewming, M. Â. J.; Fischer, S. Â. N.; Pakkiam, P.; Anderson, R. Â. P.; Turner, L. Â. D.

    2017-12-01

    We describe a dispersive Faraday optical probe of atomic spin which performs a weak measurement of spin projection of a quantum gas continuously for more than one second. To date, focusing bright far-off-resonance probes onto quantum gases has proved invasive due to strong scalar and vector light shifts exerting dipole and Stern-Gerlach forces. We show that tuning the probe near the magic-zero wavelength at 790 nm between the fine-structure doublet of 87Rb cancels the scalar light shift, and careful control of polarization eliminates the vector light shift. Faraday rotations due to each fine-structure line reinforce at this wavelength, enhancing the signal-to-noise ratio for a fixed rate of probe-induced decoherence. Using this minimally invasive spin probe, we perform microscale atomic magnetometry at high temporal resolution. Spectrogram analysis of the Larmor precession signal of a single spinor Bose-Einstein condensate measures a time-varying magnetic field strength with 1 μ G accuracy every 5 ms; or, equivalently, makes more than 200 successive measurements each at 10 pT /√{Hz } sensitivity.

  20. Measurement of the charged particle multiplicity of weakly decaying B hadrons

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Brown, R; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerruti, C; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Damgaard, G; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Duperrin, A; Durand, J D; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Ferrari, P; Ferrer, A; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Heising, S; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krstic, J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rakoczy, D; Rames, J; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Silvestre, R; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sopczak, André; Sosnowski, R; Souza-Santos, D; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wlodek, T; Wolf, G; Yi, J; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1998-01-01

    From the $Z$ decays recorded in 1994 and 1995 by the DELPHI detector at LEP, the charged particle multiplicity of weakly decaying $B$ hadrons was measured to be: \\begin{center} $4.97 \\pm 0.03 \\pm 0.06 \\, ,$ \\end{center} \

  1. Clean test of the electroweak theory by measuring weak boson masses

    International Nuclear Information System (INIS)

    Hioki, Zenro

    1985-01-01

    Role of the weak boson masses in the studies of electroweak higher order effects is surveyed. It is shown that precise measurements of these masses give us quite useful information for performing a clean test of the electroweak theory, and for a heavy fermion search. Effects of supersymmetric particles in these studies are also discussed. (author)

  2. Calibration with near-continuous spectral measurements

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Rasmussen, Michael; Madsen, Henrik

    2001-01-01

    In chemometrics traditional calibration in case of spectral measurements express a quantity of interest (e.g. a concentration) as a linear combination of the spectral measurements at a number of wavelengths. Often the spectral measurements are performed at a large number of wavelengths and in thi...... by an example in which the octane number of gasoline is related to near infrared spectral measurements. The performance is found to be much better that for the traditional calibration methods....

  3. Prospects of measuring gluon fusion and weak boson fusion cross sections at the LHC with CMS

    CERN Document Server

    Nicollerat, Anne-Sylvie

    2001-01-01

    The possibility to observe a Higgs boson having a mass between 300 and 600 GeV and to measure its couplings to vector bosons and top quark with CMS at the LHC is studied. Six different signatures are analyzed. The possibility to separate the Higgs events produced through weak boson fusion from the Higgs produced through gluon fusion using the forward going jets emitted in the weak boson fusion process is discussed for each of these different channels. The results are then used to determine the possible statistical errors on the ratio between the two Higgs decay branching fractions when it decays into Ws and into Zs and the possible statistical errors on the weak boson fusion and gluon fusion cross sections after one year of LHC running.

  4. Recovery of maximally entangled quantum states by weak-measurement reversal

    Science.gov (United States)

    Maleki, Yusef; Zheltikov, Aleksei M.

    2018-05-01

    Maximal quantum entanglement provided by N00N states is a unique resource in the quest for the ultimate precision in physical measurements. Such states, however, are fragile and prone to decoherence. Even in weak-measurement schemes, as we demonstrate in this work, the phase super-resolution provided by N00N states is achieved at a cost of an N-fold enhancement of amplitude damping. Still, as the analysis presented here shows, a partial collapse of N00N states induced by weak measurements can be reversed, despite the dramatic, N-fold enhancement of amplitude damping, through appropriate reversal operations on the post-measurement state, enabling a full restoration of the Heisenberg-limit phase super-resolution of N00N states.

  5. A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection

    Science.gov (United States)

    Li, Dongmei; Guan, Tian; He, Yonghong; He, Qinghua; Zhang, Yilong; Wang, Xiangnan; Shen, Zhiyuan; Yang, Yuxuan; Qiao, Zhen; Ji, Yanhong

    2017-12-01

    A differential weak measurement system was presented, exhibiting the self-referencing function for biomolecule real time detection as a label-free optical biosensor. We built a Sagnac interferometer, which limited horizontal (H) and vertical (V) polarization to propagating along the common path but in opposite directions to realize weak measurements with two measuring channels installed in two corners of this Sagnac interferometer. By introducing two half wave plates into the system alternately with the two channels to convert between H and V polarization, we obtained a differential measurement for phase delay, which could quantitatively characterize the refractive index change corresponding to the concentration of samples in the channels. With this system, a real time monitor of molecule concentration in the dialysis process was accomplished, demonstrating the function of self-referencing, which is important for optical label-free molecule detection in a complex biological sample solution.

  6. Continuous measurements on a modulating system

    International Nuclear Information System (INIS)

    Gariod, R.; Tournier, E.

    1963-01-01

    We have developed a number of measuring and testing instruments for which interesting characteristics have been obtained through modulation. In this paper, we would like to emphasize the interest of using the synchronous demodulation when a previous modulation has been used in the device. We give the fundamentals of some embodiments applied to nuclear and physical parameters measurements. (authors) [fr

  7. On the role of complex phases in the quantum statistics of weak measurements

    International Nuclear Information System (INIS)

    Hofmann, Holger F

    2011-01-01

    Weak measurements carried out between quantum state preparation and post-selection result in complex values for self-adjoint operators, corresponding to complex conditional probabilities for the projections on specific eigenstates. In this paper it is shown that the complex phases of these weak conditional probabilities describe the dynamic response of the system to unitary transformations. Quantum mechanics thus unifies the statistical overlap of different states with the dynamical structure of transformations between these states. Specifically, it is possible to identify the phase of weak conditional probabilities directly with the action of a unitary transform that maximizes the overlap of initial and final states. This action provides a quantitative measure of how much quantum correlations can diverge from the deterministic relations between physical properties expected from classical physics or hidden variable theories. In terms of quantum information, the phases of weak conditional probabilities thus represent the logical tension between sets of three quantum states that is at the heart of quantum paradoxes. (paper)

  8. Qweak: A Precision Measurement of the Proton's Weak Charge

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Todd Averett; James Birchall; James Bowman; Roger Carlini; Swapan Chattopadhyay; Charles Davis; J. Doornbos; James Dunne; Rolf Ent; Jens Erler; Willie Falk; John Finn; Tony Forest; David Gaskell; Klaus Grimm; C. Hagner; F. Hersman; Maurik Holtrop; Kathleen Johnston; R.T. Jones; Kyungseon Joo; Cynthia Keppel; Elie Korkmaz; Stanley Kowalski; Lawrence Lee; Allison Lung; David Mack; Stanislaw Majewski; Gregory Mitchell; Hamlet Mkrtchyan; Norman Morgan; Allena Opper; Shelley Page; Seppo Penttila; Mark Pitt; Benard Poelker; Tracy Porcelli; William Ramsay; Michael Ramsey-musolf; Julie Roche; Neven Simicevic; Gregory Smith; Riad Suleiman; Simon Taylor; Willem Van Oers; Steven Wells; W.S. Wilburn; Stephen Wood; Carl Zorn

    2004-02-05

    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q{sup 2} of a longitudinally polarized electron beam on a proton target. The experiment will measure the weak charge of the proton, and thus the weak mixing angle at low energy scale, providing a precision test of the Standard Model. Since the value of the weak mixing angle is approximately 1/4, the weak charge of the proton Q{sub w}{sup p} = 1-4 sin{sup 2} {theta}{sub w} is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment is approved to run at JLab, and the construction plan calls for the hardware to be ready to install in Hall C in 2007. The theoretical context of the experiment and the status of its design are discussed.

  9. Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Donald C. [Univ. of Virginia, Charlottesville, VA (United States)

    2015-10-01

    The Qweak experiment which ran in Hall C at Jefferson Lab in Newport News, VA, and completed data taking in May 2012, measured the weak charge of the proton QpW via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The helicity of the electron beam was flipped at approximately 1 kHz between left and right spin states. The Standard Model predicts a small parity-violating asymmetry of scattering rates between right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013 [1] with a measured parity-violating asymmetry of -279 ± 35(stat) ± 31 (syst) ppb. This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be pW = 0.064 ± 0.012, in good agreement with the Standard Model prediction of pW(SM) = 0.0708 ± 0.0003[2].

  10. Measuring techniques for continuous monitoring of bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlmann, W; Meyer, H D; Schuegerl, K

    1982-01-01

    Control apparatus for fermentation reactors is described. In the example of alcohol fermentation by Saccharomyces cerevisiae, mass spectrometry is used for measuring soluble volatile components (CO/sub 2/, EtOH, and H/sub 2/O) and low-molecular-weight soluble components are separated by cross flow membrane filtration for measurement: D glucose by polarimetry, phosphate by photometry, and NH/sup 4 +/ by potentiometry.

  11. Locking the local oscillator phase to the atomic phase via weak measurement

    International Nuclear Information System (INIS)

    Shiga, N; Takeuchi, M

    2012-01-01

    A new method is proposed to reduce the frequency noise of a local oscillator to the level of white phase noise by maintaining (not destroying by projective measurement) the coherence of the ensemble pseudo-spin of atoms over many measurement cycles. This method, which we call ‘atomic phase lock (APL)’, uses weak measurement to monitor the phase in the Ramsey method and repeat the cycle without initialization of the phase. APL will achieve white phase noise as long as the noise accumulated during dead time and the decoherence are smaller than the measurement noise. A numerical simulation confirmed that with APL, the Allan deviation is averaged down at a maximum rate that is proportional to the inverse of the total measurement time, τ -1 . In contrast, current atomic clocks that use projection measurement suppress the noise only to the white frequency noise level, in which case the Allan deviation scales as τ -1/2 . Faraday rotation is one way to achieve weak measurement for APL. The strength of Faraday rotation with 171 Yb + ions trapped in a linear rf-trap is evaluated, and the performance of APL is discussed. The main source of decoherence is a spontaneous emission, induced by the probe beam for Faraday rotation measurement. The Faraday rotation measurement can be repeated until the decoherence becomes comparable to the signal-to-noise ratio of the measurement. The number of cycles for a realistic experimental parameter is estimated to be ∼100. (paper)

  12. Qweak: First Direct Measurement of the Weak Charge of the Proton

    Directory of Open Access Journals (Sweden)

    Nuruzzaman

    2014-04-01

    Full Text Available The Qweak experiment at Hall C of Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton, QWp, through a precision measurement of the parity-violating asymmetry in elastic e-p scattering at low momentum transfer Q2= 0.025 (GeV/c2 with incident electron beam energy of 1.155 GeV. The Qweak experiment, along with earlier results of parity violating elastic scattering experiments, is expected to determine the most precise value of QWp which is suppressed in the Standard Model. If this result is further combined with the 133Cs atomic parity violation (APV measurement, significant constraints on the weak charge of the up quark, down quark, and neutron can be extracted. This data will also be used to determine the weak-mixing angle, sin2 θW, with a relative uncertainty of < 0.5% that will provide a competitive measurement of the running of sin2 θW to low Q2. An overview of the experiment and its results using the commissioning dataset, constituting approximately 4% of the data collected in the experiment, are reported here.

  13. Subaru Weak Lensing Measurements of Four Strong Lensing Clusters: Are Lensing Clusters Over-Concentrated?

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune; Hennawi, Joseph F.; Gladders, Michael D.; Dahle, Haakon; Natarajan, Priyamvada; Dalal, Neal; Koester, Benjamin P.; Sharon, Keren; Bayliss, Matthew

    2009-01-29

    We derive radial mass profiles of four strong lensing selected clusters which show prominent giant arcs (Abell 1703, SDSS J1446+3032, SDSS J1531+3414, and SDSS J2111-0115), by combining detailed strong lens modeling with weak lensing shear measured from deep Subaru Suprime-cam images. Weak lensing signals are detected at high significance for all four clusters, whose redshifts range from z = 0.28 to 0.64. We demonstrate that adding strong lensing information with known arc redshifts significantly improves constraints on the mass density profile, compared to those obtained from weak lensing alone. While the mass profiles are well fitted by the universal form predicted in N-body simulations of the {Lambda}-dominated cold dark matter model, all four clusters appear to be slightly more centrally concentrated (the concentration parameters c{sub vir} {approx} 8) than theoretical predictions, even after accounting for the bias toward higher concentrations inherent in lensing selected samples. Our results are consistent with previous studies which similarly detected a concentration excess, and increases the total number of clusters studied with the combined strong and weak lensing technique to ten. Combining our sample with previous work, we find that clusters with larger Einstein radii are more anomalously concentrated. We also present a detailed model of the lensing cluster Abell 1703 with constraints from multiple image families, and find the dark matter inner density profile to be cuspy with the slope consistent with -1, in agreement with expectations.

  14. Toward a measurement of weak magnetism in {sup 6}He decay

    Energy Technology Data Exchange (ETDEWEB)

    Huyan, X.; Naviliat-Cuncic, O., E-mail: naviliat@nscl.msu.edu; Bazin, D.; Gade, A.; Hughes, M.; Liddick, S.; Minamisono, K.; Noji, S.; Paulauskas, S. V.; Simon, A. [Michigan State University, National Superconducting Cyclotron Laboratory (United States); Voytas, P. [Wittenberg University, Department of Physics (United States); Weisshaar, D. [Michigan State University, National Superconducting Cyclotron Laboratory (United States)

    2016-12-15

    Sensitive searches for exotic scalar and tensor couplings in nuclear and neutron decays involve precision measurements of the shape of the β-energy spectrum. We have performed a high statistics measurement of the β-energy spectrum in the allowed Gamow-Teller decay of {sup 6}He with the aim to first find evidence of the contribution due to the weak magnetism form factor. We review here the motivation, describe the principle of the measurement, summarize the theoretical corrections to the allowed phase space, and anticipate the expected statistical precision.

  15. Enhanced quantum teleportation in the background of Schwarzschild spacetime by weak measurements

    OpenAIRE

    Xiao, Xing; Yao, Yao; Li, Yan-Ling; Xie, Ying-Mao

    2017-01-01

    It is commonly believed that the fidelity of quantum teleportation in the gravitational field would be degraded due to the heat up by the Hawking radiation. In this paper, we point out that the Hawking effect could be eliminated by the combined action of pre- and post-weak measurements, and thus the teleportation fidelity is almost completely protected. It is intriguing to notice that the enhancement of fidelity could not be attributed to the improvement of entanglement, but rather to the pro...

  16. Statistical Determination of Impact of Property Attributes for Weak Measurement Scales

    Directory of Open Access Journals (Sweden)

    Doszyń Mariusz

    2017-12-01

    Full Text Available Many of the property attributes are measured on weak scales (nominal and ordinal scale. For example, land allocation in the development plan is measured on a nominal scale and such categories as proximity, equipment, access to means of communication, location, and soil and water conditions, are measured on an ordinal scale. The use of statistical measures appropriate for interval or quotient scales is wrong in such cases. Therefore, the article presents statistical measures that allow specifying the impact of the attributes on real estate prices, which can be used for the weaker scales, mainly for the ordinal scale. In the empirical illustration the proposed measures will be calculated by using the actual database of transaction prices.

  17. Improved optical mass tracer for galaxy clusters calibrated using weak lensing measurements

    Science.gov (United States)

    Reyes, R.; Mandelbaum, R.; Hirata, C.; Bahcall, N.; Seljak, U.

    2008-11-01

    We develop an improved mass tracer for clusters of galaxies from optically observed parameters, and calibrate the mass relation using weak gravitational lensing measurements. We employ a sample of ~13000 optically selected clusters from the Sloan Digital Sky Survey (SDSS) maxBCG catalogue, with photometric redshifts in the range 0.1-0.3. The optical tracers we consider are cluster richness, cluster luminosity, luminosity of the brightest cluster galaxy (BCG) and combinations of these parameters. We measure the weak lensing signal around stacked clusters as a function of the various tracers, and use it to determine the tracer with the least amount of scatter. We further use the weak lensing data to calibrate the mass normalization. We find that the best mass estimator for massive clusters is a combination of cluster richness, N200, and the luminosity of the BCG, LBCG: , where is the observed mean BCG luminosity at a given richness. This improved mass tracer will enable the use of galaxy clusters as a more powerful tool for constraining cosmological parameters.

  18. MEASURING PRIMORDIAL NON-GAUSSIANITY THROUGH WEAK-LENSING PEAK COUNTS

    International Nuclear Information System (INIS)

    Marian, Laura; Hilbert, Stefan; Smith, Robert E.; Schneider, Peter; Desjacques, Vincent

    2011-01-01

    We explore the possibility of detecting primordial non-Gaussianity of the local type using weak-lensing peak counts. We measure the peak abundance in sets of simulated weak-lensing maps corresponding to three models f NL = 0, - 100, and 100. Using survey specifications similar to those of EUCLID and without assuming any knowledge of the lens and source redshifts, we find the peak functions of the non-Gaussian models with f NL = ±100 to differ by up to 15% from the Gaussian peak function at the high-mass end. For the assumed survey parameters, the probability of fitting an f NL = 0 peak function to the f NL = ±100 peak functions is less than 0.1%. Assuming the other cosmological parameters are known, f NL can be measured with an error Δf NL ∼ 13. It is therefore possible that future weak-lensing surveys like EUCLID and LSST may detect primordial non-Gaussianity from the abundance of peak counts, and provide information complementary to that obtained from the cosmic microwave background.

  19. Testing the Standard Model by precision measurement of the weak charges of quarks

    Energy Technology Data Exchange (ETDEWEB)

    Ross Young; Roger Carlini; Anthony Thomas; Julie Roche

    2007-05-01

    In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low-energy. The precision of this new result, combined with earlier atomic parity-violation measurements, limits the magnitude of possible contributions from physics beyond the Standard Model - setting a model-independent, lower-bound on the scale of new physics at ~1 TeV.

  20. Automatic continuous dew point measurement in combustion gases

    Energy Technology Data Exchange (ETDEWEB)

    Fehler, D.

    1986-08-01

    Low exhaust temperatures serve to minimize energy consumption in combustion systems. This requires accurate, continuous measurement of exhaust condensation. An automatic dew point meter for continuous operation is described. The principle of measurement, the design of the measuring system, and practical aspects of operation are discussed.

  1. A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances.

    Science.gov (United States)

    Li, Dongmei; Guan, Tian; He, Yonghong; Liu, Fang; Yang, Anping; He, Qinghua; Shen, Zhiyuan; Xin, Meiguo

    2018-07-01

    A new chiral sensor based on weak measurement to accurately measure the optical rotation (OR) has been developed for the estimation of a trace amount of chiral molecule. With the principle of optical weak measurement in frequency domain, the central wavelength shift of output spectra is quantitatively relative to the angle of preselected polarization. Hence, a chiral molecule (e.g., L-amino acid, or D-amino acid) can be enantioselectively determined by modifying the preselection angle with the OR, which will cause the rotation of a polarization plane. The concentration of the chiral sample, corresponding to its optical activity, is quantitatively analyzed with the central wavelength shift of output spectra, which can be collected in real time. Immune to the refractive index change, the proposed chiral sensor is valid in complicated measuring circumstance. The detections of Proline enantiomer concentration in different solvents were implemented. The results demonstrated that weak measurement acted as a reliable method to chiral recognition of Proline enantiomers in diverse circumstance with the merits of high precision and good robustness. In addition, this real-time monitoring approach plays a crucial part in asymmetric synthesis and biological systems. Copyright © 2018. Published by Elsevier B.V.

  2. A relativistic theory for continuous measurement of quantum fields

    International Nuclear Information System (INIS)

    Diosi, L.

    1990-04-01

    A formal theory for the continuous measurement of relativistic quantum fields is proposed. The corresponding scattering equations were derived. The proposed formalism reduces to known equations in the Markovian case. Two recent models for spontaneous quantum state reduction have been recovered in the framework of this theory. A possible example of the relativistic continuous measurement has been outlined in standard Quantum Electrodynamics. The continuous measurement theory possesses an alternative formulation in terms of interacting quantum and stochastic fields. (author) 23 refs

  3. Quantum Bayesian rule for weak measurements of qubits in superconducting circuit QED

    International Nuclear Information System (INIS)

    Wang, Peiyue; Qin, Lupei; Li, Xin-Qi

    2014-01-01

    Compared with the quantum trajectory equation (QTE), the quantum Bayesian approach has the advantage of being more efficient to infer a quantum state under monitoring, based on the integrated output of measurements. For weak measurement of qubits in circuit quantum electrodynamics (cQED), properly accounting for the measurement backaction effects within the Bayesian framework is an important problem of current interest. Elegant work towards this task was carried out by Korotkov in ‘bad-cavity’ and weak-response limits (Korotkov 2011 Quantum Bayesian approach to circuit QED measurement (arXiv:1111.4016)). In the present work, based on insights from the cavity-field states (dynamics) and the help of an effective QTE, we generalize the results of Korotkov to more general system parameters. The obtained Bayesian rule is in full agreement with Korotkov's result in limiting cases and as well holds satisfactory accuracy in non-limiting cases in comparison with the QTE simulations. We expect the proposed Bayesian rule to be useful for future cQED measurement and control experiments. (paper)

  4. Comparison of two continuous fungal bioreactors for posttreatment of anaerobically pretreated weak black liquor from kraft pulp mills.

    Science.gov (United States)

    Ortega-Clemente, Alfredo; Marín-Mezo, G; Ponce-Noyola, M T; Montes-Horcasitas, M C; Caffarel-Méndez, S; Barrera-Cortés, Josefina; Poggi-Varaldo, Héctor M

    2007-03-01

    The purpose of this work was to evaluate and compare two continuous systems of posttreatment of anaerobically pretreated weak black liquor (WBL). The first system consisted of a packed bed reactor (PBR) with Trametes versicolor (Tv) immobilized on wood cubes of holm oak (biocubes). The second system was a fluidized bed reactor (FBR) with Lentinus edodes (Le) immobilized on wood cubes of holm oak. The reactors operated for 65 days at a hydraulic retention time (HRT) of 5 days, at 28 degrees C, with continuous aeration. Response variables monitored were conventional and specific, unit, net removal efficiency (eta and eta(sun), respectively) of chemical oxygen demand (COD), color, and ligninoids, and enzymatic activities of manganese peroxidase (MnP), lignin peroxidase (LiP), laccase (Lac) and proteases. The PBR showed an average color eta superior to that of the FBR (52.42 +/- 21.78% and 25.34 +/- 14.38% for PBR and FBR, respectively); removals of COD and ligninoids presented a similar pattern to that of color. Lac activity was significantly larger in PBR than in FBR. Activity of MnP in PBR was higher than that of the FBR (0.004 and 0.002 U MnP/mL, respectively). This difference could be ascribed to the different fungi present in each bioreactor. LiP activity was very low in both reactors. Average value of proteases was almost double in the FBR as compared with PBR (0.472 and 0.209 U Proteases/mL, respectively). During the last 2 weeks of operation, biocubes in the FBR experienced a significant loss of the attached Le biomass, probably by attrition. This and higher protease activity in the FBR could explain the lower pollutant removals achieved in the FBR. Overall, PBR with immobilized Tv showed a better performance than the FBR with Le for the posttreatment of the recalcitrant anaerobic effluent. Extended and sustained pollutant removal (65 days) was achieved in the PBR, although more research is needed to evaluate bioreactor performance at shorter hydraulic

  5. A Precision Measurement of the Weak Mixing Angle in Moller Scattering at Low Q^2

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.

    2005-01-28

    The electroweak theory has been probed to a high level of precision at the mass scale of the Z{sup 0} through the joint contributions of LEP at CERN and the SLC at SLAC. The E158 experiment at SLAC complements these results by measuring the weak mixing angle at a Q{sup 2} of 0.026 (GeV/c){sup 2}, far below the weak scale. The experiment utilizes a 48 GeV longitudinally polarized electron beam on unpolarized atomic electrons in a target of liquid hydrogen to measure the parity-violating asymmetry A{sup PV} in Moeller scattering. The tree-level prediction for A{sup PV} is proportional to 1-4 sin{sup 2} {theta}{sub W}. Since sin{sup 2} {theta}{sub W} {approx} 0.25, the effect of radiative corrections is enhanced, allowing the E158 experiment to probe for physics effects beyond the Standard Model at the TeV scale. This work presents the results from the first two physics runs of the experiment, covering data collected in the year 2002. The parity-violating asymmetry A{sup PV} was measured to be A{sup PV} = -158 ppb {+-} 21 ppb (stat) {+-} 17 ppb (sys). The result represents the first demonstration of parity violation in Moeller scattering. The observed value of A{sup PV} corresponds to a measurement of the weak mixing angle of sin{sup 2} {theta}{sub W}{sup eff} = 0.2380 {+-} 0.0016(stat) {+-} 0.0013(sys), which is in good agreement with the theoretical prediction of sin{sup 2} {theta}{sub W}{sup eff} = 0.2385 {+-} 0.0006 (theory).

  6. Numerical investigation of micro-macro coupling in magneto-impedance sensors for weak field measurements

    Science.gov (United States)

    Eason, Kwaku

    There is strong interest in the use of small low-cost highly sensitive magnetic field sensors for applications (e.g. biomedical devices) requiring weak field measurements. Among weak-field sensors, the magneto-impedance (MI) sensor has demonstrated an absolute resolution of 10-11 T. The MI effect is a sensitive realignment of a periodic magnetization in response to an external field in small ferromagnets. However, design of MI sensors has relied primarily on trial and error experimental methods along with decoupled models describing the MI effect. To offer a basis for more cost-effective designs, this thesis research begins with a general formulation describing MI sensors, which relaxes assumptions commonly made for decoupling. The coupled set of nonlinear equations is solved numerically using an efficient meshless method in a point collocation formulation. For the problem considered, the chosen method is shown to offer advantages over alternative methods including the finite element method. Projection methods are used to stabilize the time discretization while quasi-Newton methods (nonlinear solver) are shown to be more computationally efficient, as well. Specifically, solutions for two MI sensor element geometries are presented, which were validated against published experimental data. While the examples illustrated here are for MI sensors, the approach presented can also be extended to other weak-field sensors like fluxgate and Hall effect sensors.

  7. Measurement of xylem translocation of weak electrolytes with the pressure chamber technique

    DEFF Research Database (Denmark)

    Ciucani, Giovannella; Trevisan, M.; Sacchi, G.A.

    2002-01-01

    and triasulfuron). The compounds covered a wide range of log K-OW and pK(a) values. Concentrations in external solution and in xylem sap were measured by HPLC at pH values in external solution of 4.5, 6.5 and 8.5. For weak bases, translocation was higher at low pH and the transpiration stream concentration factors...... (TSCF) were in the range 0.31-0.95. At pH 8.5, the concentrations in leaking xylem sap were very low for fenpropimorph, and steady-state was probably not reached. For weak acids, TSCF values derived with external pH from 4.5 to 8.5 were in the range 0.55-1.50 for primisulfuron-methyl, 0...... to regulate their xylem sap pH, which was almost identical to the pH in external solution. Without pH differences, the ion-trap process, which is responsible for accumulation or exclusion of weak acids and bases in the xylem of living plants, does not take place. Model simulations carried out for intact...

  8. The effect of weak neutral currents on the coincidence of e+ and e- particles and the combined theories of measures

    International Nuclear Information System (INIS)

    Lendvai, E.

    1978-01-01

    The electromagnetic and weak interactions as well as the spontaneously broken measures were reviewed. Some characteristic structures and models were described including the most favoured one proposed by Weinberg and Salem. The effect of weak neutral currents were investigated in the processes e + e - → Σ hadron, MantiM, FantiF; the asymmetries of these processes were calculated. The weak effects found were rather significant in the energy range q = 14-40 GeV reaching a maximum of 20%. It was suggested that the measurements of these effects provided useful information about the structure of weak neutral currents. (Z.P.)

  9. Weak interaction and nucleus: the relationship keeps on; Interaction faible et noyau: l'histoire continue

    Energy Technology Data Exchange (ETDEWEB)

    Martino, J. [Subatech, Ecole des Mines de Nantes, 44 - Nantes (France); Frere, J.M.; Naviliat-Cuncic, O.; Volpe, C.; Marteau, J.; Lhuillier, D.; Vignaud, D.; Legac, R.; Marteau, J.; Legac, R

    2003-07-01

    This document gathers the lectures made at the Joliot-Curie international summer school in 2003 whose theme, that year, was the relationship between weak interaction and nucleus. There were 8 contributions whose titles are: 1) before the standard model: from beta decay to neutral currents; 2) the electro-weak theory and beyond; 3) testing of the standard model at low energies; 4) description of weak processes in nuclei; 5) 20.000 tonnes underground, an approach to the neutrino-nucleus interaction; 6) parity violation from atom to nucleon; 7) how neutrinos got their masses; and 8) CP symmetry.

  10. Noise estimates for measurements of weak lensing from the Ly α forest

    Science.gov (United States)

    Metcalf, R. Benton; Croft, Rupert A. C.; Romeo, Alessandro

    2018-06-01

    Lensing changes the apparent separation between pixels in the Ly α forest of separate quasars or high-redshift objects by changing their observed positions on the sky. This changes the implied correlations in the absorption and in particular makes the Ly α forest correlation function, or power spectrum, locally anisotropic in the plane of the sky. We have proposed a method for measuring weak lensing using this effect. Here, we estimate the noise expected in weak lensing maps and power spectra for different sets of observational parameters. We find that surveys of the size and quality of the ones being done today and ones planned for the future will be able to measure the lensing power spectrum at a source redshift of z ≃ 2.5 with high precision and even be able to image the distribution of foreground matter with high fidelity on degree scales. For example, we predict that Ly α forest lensing measurements from the DESI and WEAVE surveys should yield the mass fluctuation amplitude with a statistical error of ˜3 per cent, eBOSS ˜6 per cent. and the proposed MSE survey less than 1 per cent. By dividing the redshift range into multiple bins, some tomographic lensing information should be accessible as well. This would allow for cosmological lensing measurements at higher redshift than are accessible with galaxy shear surveys and correspondingly better constraints on the evolution of dark energy at relatively early times.

  11. Fast measure proceeding of weak currents; Un procede de mesure rapide des courants faibles

    Energy Technology Data Exchange (ETDEWEB)

    Taieb, J [Commissariat a l' Energie Atomique, Siege (France). Centre d' Etudes Nucleaires

    1953-07-01

    The process of fast measure of the weak currents that we are going to describe briefly apply worthy of the provided currents by the sources to elevated value internal resistance, as it is the case for the ionization chamber, the photocells, mass spectroscopic tubes. The problem to measure weak currents is essentially a problem of amplifier and of input circuit. We intended to achieve a whole amplifier and input circuit with advanced performances, meaning that for a measured celerity we wanted to have an signal/noise ratio the most important as in the classic systems and for a same report signal/noise a more quickly done measure. (M.B.) [French] Le procede de mesure rapide des courants faibles que nous allons brievement decrire s'applique a la mesure des courants fournis par les sources a resistance interne de valeur elevee, comme c'est le cas pour les chambres d'ionisation, les photocellules, les tubes de spectrographe de masse. Le probleme de mesure de courants faibles est essentiellement un probleme d'amplificateur et de circuit d'entree. Nous nous sommes proposes de realiser un ensemble amplificateur et circuit d'entree a performances poussees, c'est a dire que pour une meme rapidite de mesure nous desirions avoir un rapport signal/bruit plus important que dans les systemes classiques et pour un meme rapport signal/bruit une mesure effectuee plus rapidement. (M.B.)

  12. A proposal for the measurement of the weak mixing angle at the HL-LHC

    CERN Document Server

    CMS Collaboration

    2017-01-01

    A proposal is presented for measuring the weak mixing angle using the forward-backward asymmetry of Drell-Yan dimuon events in pp collisions at $\\sqrt{s} = 14~\\mathrm{TeV}$ with the CMS detector at the high luminosity LHC (HL-LHC). In addition to the increased luminosity, the upgraded part of the muon system extends the pseudorapidity coverage of the CMS experiment to $|\\eta| < 2.8$ for muons. Since the measurement has higher sensitivity in this pseudorapidity region, both the statistical and systematic uncertainties will be significantly reduced. To estimate the increased potential for this measurement we use a Monte Carlo data sample of pp events corresponding to a luminosity of $3000~\\mathrm{fb}^{-1}$ and compare to the recent CMS measurements at $\\sqrt{s} = 8~\\mathrm{TeV}$.

  13. Weak disorder expansion of the invariant measure for the one-dimensional Anderson model

    International Nuclear Information System (INIS)

    Bovier, A.; Klein, A.

    1988-01-01

    We show that the formal perturbation expansion of the invariant measure for the Anderson model in one dimension has singularities at all energies E 0 = 2 cos π(p/q); we derive a modified expansion near these energies that we show to have finite coefficients to all orders. Moreover, we show that the first q - 3 of them coincide with those of the naive expansion, while there is an anomaly in the (q - 2)th term. This also gives a weak disorder expansion for the Liapunov exponent and for the density of states. This generalizes previous results of Kappus and Wegner and of Derrida and Gardner

  14. Simultaneous weak measurement of angular and spatial Goos-Hänchen and Imbert-Fedorov shifts

    Science.gov (United States)

    Prajapati, Chandravati; Viswanathan, Nirmal K.

    2017-10-01

    We propose and demonstrate the weak measurement scheme to simultaneously measure the amplified angular and spatial contributions to the Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts, due to transmission through a glass plate. We have studied two cases of post-selection using a polarizer in the first case and a quarter-wave plate (QWP)-polarizer combination in the second case. The two cases are analyzed theoretically using Jones calculus of polarization formalism and the results are verified experimentally. In the first case of post-selection, the projection of the polarizer at +/- {{Δ }} away from the crossed position amplifies the angular GH and IF shifts, while in the second case of post-selection, the projection of QWP at +/- {{Δ }} and polarizer kept fixed measures the polarization ellipticity in the beam and thus amplifies the spatial shift along with the angular shift simultaneously, for {{Δ }}\\ll 1.

  15. A quantum inspired model of radar range and range-rate measurements with applications to weak value measurements

    Science.gov (United States)

    Escalante, George

    2017-05-01

    Weak Value Measurements (WVMs) with pre- and post-selected quantum mechanical ensembles were proposed by Aharonov, Albert, and Vaidman in 1988 and have found numerous applications in both theoretical and applied physics. In the field of precision metrology, WVM techniques have been demonstrated and proven valuable as a means to shift, amplify, and detect signals and to make precise measurements of small effects in both quantum and classical systems, including: particle spin, the Spin-Hall effect of light, optical beam deflections, frequency shifts, field gradients, and many others. In principal, WVM amplification techniques are also possible in radar and could be a valuable tool for precision measurements. However, relatively limited research has been done in this area. This article presents a quantum-inspired model of radar range and range-rate measurements of arbitrary strength, including standard and pre- and post-selected measurements. The model is used to extend WVM amplification theory to radar, with the receive filter performing the post-selection role. It is shown that the description of range and range-rate measurements based on the quantum-mechanical measurement model and formalism produces the same results as the conventional approach used in radar based on signal processing and filtering of the reflected signal at the radar receiver. Numerical simulation results using simple point scatterrer configurations are presented, applying the quantum-inspired model of radar range and range-rate measurements that occur in the weak measurement regime. Potential applications and benefits of the quantum inspired approach to radar measurements are presented, including improved range and Doppler measurement resolution.

  16. Chaos weak signal detecting algorithm and its application in the ultrasonic Doppler bloodstream speed measuring

    International Nuclear Information System (INIS)

    Chen, H Y; Lv, J T; Zhang, S Q; Zhang, L G; Li, J

    2005-01-01

    At the present time, the ultrasonic Doppler measuring means has been extensively used in the human body's bloodstream speed measuring. The ultrasonic Doppler measuring means can achieve the measuring of liquid flux by detecting Doppler frequency shift of ultrasonic in the process of liquid spread. However, the detected sound wave is a weak signal that is flooded in the strong noise signal. The traditional measuring method depends on signal-to-noise ratio. Under the very low signal-to-noise ratio or the strong noise signal background, the signal frequency is not measured. This article studied on chaotic movement of Duffing oscillator and intermittent chaotic characteristic on chaotic oscillator of Duffing equation. In the light of the range of the bloodstream speed of human body and the principle of Doppler shift, the paper determines the frequency shift range. An oscillator array including many oscillators is designed according to it. The reflected ultrasonic frequency information can be ascertained accurately by the intermittent chaos quality of the oscillator. The signal-to-noise ratio of -26.5 dB is obtained by the result of the experiment. Compared with the tradition the frequency method compare, the dependence to signal-to-noise ratio is lowered consumedly. The measuring precision of the bloodstream speed is heightened

  17. P2-a new measurement of the weak charge of the proton

    Energy Technology Data Exchange (ETDEWEB)

    Becker, D., E-mail: beckerd@kph.uni-mainz.de; Baunack, S.; Maas, F. E. [Johannes Gutenberg University Mainz, Institute of Nuclear Physics (Germany)

    2013-03-15

    After ten years of experience with parity-violating electron-proton-scattering, the preparatory work on a new high precision parity-violation experiment in Mainz has begun. Project P2 is bound to measure the weak charge of the proton to a relative uncertainty of 1.9%, which corresponds to a relative uncertainty of 0.15 % for sin{sup 2}{theta}{sub W}. This can be achieved by measuring the parity-violating asymmetry in elastic electron-proton-scattering to a relative precision of 1.7 % at E{sub beam}{approx}200 MeV and Q{sup 2}{approx}0.005 GeV{sup 2}. In this proceeding, we will discuss the achievable precision within project P2 as well as the experimental concept and present first results of studies involving Monte Carlo methods.

  18. Radio weak lensing shear measurement in the visibility domain - II. Source extraction

    Science.gov (United States)

    Rivi, M.; Miller, L.

    2018-05-01

    This paper extends the method introduced in Rivi et al. (2016b) to measure galaxy ellipticities in the visibility domain for radio weak lensing surveys. In that paper, we focused on the development and testing of the method for the simple case of individual galaxies located at the phase centre, and proposed to extend it to the realistic case of many sources in the field of view by isolating visibilities of each source with a faceting technique. In this second paper, we present a detailed algorithm for source extraction in the visibility domain and show its effectiveness as a function of the source number density by running simulations of SKA1-MID observations in the band 950-1150 MHz and comparing original and measured values of galaxies' ellipticities. Shear measurements from a realistic population of 104 galaxies randomly located in a field of view of 1 \\deg ^2 (i.e. the source density expected for the current radio weak lensing survey proposal with SKA1) are also performed. At SNR ≥ 10, the multiplicative bias is only a factor 1.5 worse than what found when analysing individual sources, and is still comparable to the bias values reported for similar measurement methods at optical wavelengths. The additive bias is unchanged from the case of individual sources, but it is significantly larger than typically found in optical surveys. This bias depends on the shape of the uv coverage and we suggest that a uv-plane weighting scheme to produce a more isotropic shape could reduce and control additive bias.

  19. Measurement of the parity nonconserving neutral weak interaction in atomic thallium

    International Nuclear Information System (INIS)

    Bucksbaum, P.H.

    1980-11-01

    This thesis describes an experiment to measure parity nonconservation in atomic thallium. A frequency doubled, flashlamp pumped tunable dye laser is used to excite the 6P/sub 1/2/(F = 0) → 7P/sub 1/2/(F = 1) transition at 292.7 nm, with circularly polarized light. An electrostatic field E of 100 to 300 V/cm causes this transition to occur via Stark induced electric dipole. Two field free transitions may also occur: a highly forbidden magnetic dipole M, and a parity nonconserving electric dipole epsilon/sub P/. The latter is presumed to be due to the presence of a weak neutral current interaction between the 6p valence electron and the nucleus, as predicted by gauge theories which unite the electromagnetic and weak interactions. Both M and epsilon/sub P/ interfere with the Stark amplitude βE to produce a polarization of the 7P/sub 1/2/ state. This is measured with a circularly polarized infrared laser beam probe, tuned to the 7P/sub 1/2/ → 8S/sub 1/2/ transition. This selectively excites m/sub F/ = +1 or -1 components of the 7P/sub 1/2/ state, and the polarization is seen as an asymmetry in 8S → 6P/sub 3/2/ fluorescence when the probe helicity is reversed. The polarization due to M is Δ/sub M/ = -2M/(BETAE). It is used to calibrate the analyzing efficiency. The polarization due to epsilon/sub P/ is Δ/sub P/ = 2i epsilon/sub P//(βE), and can be distinguished from Δ/sub M/ by its properties under reversal of the 292.7 nm photon helicity and reversal of the laser direction. A preliminary measurement yielded a parity violation in agreement with the gauge theory of Weinberg and Salam

  20. Refractory thermowell for continuous high temperature measurement of molten metal

    International Nuclear Information System (INIS)

    Thiesen, T.J.

    1992-01-01

    This patent describes a vessel for handling molten metal having an interior refractory lining, apparatus for continuous high temperature measurement of the molten metal. It comprises a thermowell; the thermowell containing a multiplicity of thermocouples; leads being coupled to a means for continuously indicating the temperature of the molten metal in the vessel

  1. Virtual continuity of measurable functions and its applications

    Science.gov (United States)

    Vershik, A. M.; Zatitskii, P. B.; Petrov, F. V.

    2014-12-01

    A classical theorem of Luzin states that a measurable function of one real variable is `almost' continuous. For measurable functions of several variables the analogous statement (continuity on a product of sets having almost full measure) does not hold in general. The search for a correct analogue of Luzin's theorem leads to a notion of virtually continuous functions of several variables. This apparently new notion implicitly appears in the statements of embedding theorems and trace theorems for Sobolev spaces. In fact it reveals the nature of such theorems as statements about virtual continuity. The authors' results imply that under the conditions of Sobolev theorems there is a well-defined integration of a function with respect to a wide class of singular measures, including measures concentrated on submanifolds. The notion of virtual continuity is also used for the classification of measurable functions of several variables and in some questions on dynamical systems, the theory of polymorphisms, and bistochastic measures. In this paper the necessary definitions and properties of admissible metrics are recalled, several definitions of virtual continuity are given, and some applications are discussed. Bibliography: 24 titles.

  2. Bridge continuous deformation measurement technology based on fiber optic gyro

    Science.gov (United States)

    Gan, Weibing; Hu, Wenbin; Liu, Fang; Tang, Jianguang; Li, Sheng; Yang, Yan

    2016-03-01

    Bridge is an important part of modern transportation systems and deformation is a key index for bridge's safety evaluation. To achieve the long span bridge curve measurement rapidly and timely and accurately locate the bridge maximum deformation, the continuous deformation measurement system (CDMS) based on inertial platform is presented and validated in this paper. Firstly, based on various bridge deformation measurement methods, the method of deformation measurement based on the fiber optic gyro (FOG) is introduced. Secondly, the basic measurement principle based on FOG is presented and the continuous curve trajectory is derived by the formula. Then the measurement accuracy is analyzed in theory and the relevant factors are presented to ensure the measurement accuracy. Finally, the deformation measurement experiments are conducted on a bridge across the Yangtze River. Experimental results show that the presented deformation measurement method is feasible, practical, and reliable; the system can accurately and quickly locate the maximum deformation and has extensive and broad application prospects.

  3. Observation of Spin Hall Effect in Photon Tunneling via Weak Measurements

    Science.gov (United States)

    Zhou, Xinxing; Ling, Xiaohui; Zhang, Zhiyou; Luo, Hailu; Wen, Shuangchun

    2014-01-01

    Photonic spin Hall effect (SHE) manifesting itself as spin-dependent splitting escapes detection in previous photon tunneling experiments due to the fact that the induced beam centroid shift is restricted to a fraction of wavelength. In this work, we report on the first observation of this tiny effect in photon tunneling via weak measurements based on preselection and postselection technique on the spin states. We find that the spin-dependent splitting is even larger than the potential barrier thickness when spin-polarized photons tunneling through a potential barrier. This photonic SHE is attributed to spin-redirection Berry phase which can be described as a consequence of the spin-orbit coupling. These findings provide new insight into photon tunneling effect and thereby offer the possibility of developing spin-based nanophotonic applications. PMID:25487043

  4. Observation of spin Hall effect in photon tunneling via weak measurements.

    Science.gov (United States)

    Zhou, Xinxing; Ling, Xiaohui; Zhang, Zhiyou; Luo, Hailu; Wen, Shuangchun

    2014-12-09

    Photonic spin Hall effect (SHE) manifesting itself as spin-dependent splitting escapes detection in previous photon tunneling experiments due to the fact that the induced beam centroid shift is restricted to a fraction of wavelength. In this work, we report on the first observation of this tiny effect in photon tunneling via weak measurements based on preselection and postselection technique on the spin states. We find that the spin-dependent splitting is even larger than the potential barrier thickness when spin-polarized photons tunneling through a potential barrier. This photonic SHE is attributed to spin-redirection Berry phase which can be described as a consequence of the spin-orbit coupling. These findings provide new insight into photon tunneling effect and thereby offer the possibility of developing spin-based nanophotonic applications.

  5. A new method to measure galaxy bias by combining the density and weak lensing fields

    Energy Technology Data Exchange (ETDEWEB)

    Pujol, Arnau; Chang, Chihway; Gaztañaga, Enrique; Amara, Adam; Refregier, Alexandre; Bacon, David J.; Carretero, Jorge; Castander, Francisco J.; Crocce, Martin; Fosalba, Pablo; Manera, Marc; Vikram, Vinu

    2016-07-29

    We present a new method to measure redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on the work of Amara et al., who use the galaxy density field to construct a bias-weighted convergence field κg. The main difference between Amara et al.'s work and our new implementation is that here we present another way to measure galaxy bias, using tomography instead of bias parametrizations. The correlation between κg and the true lensing field κ allows us to measure galaxy bias using different zero-lag correlations, such as <κgκ>/<κκ> or <κgκg>/<κgκ>. Our method measures the linear bias factor on linear scales, under the assumption of no stochasticity between galaxies and matter. We use the Marenostrum Institut de Ciències de l'Espai (MICE) simulation to measure the linear galaxy bias for a flux-limited sample (i < 22.5) in tomographic redshift bins using this method. This article is the first that studies the accuracy and systematic uncertainties associated with the implementation of the method and the regime in which it is consistent with the linear galaxy bias defined by projected two-point correlation functions (2PCF). We find that our method is consistent with a linear bias at the per cent level for scales larger than 30 arcmin, while non-linearities appear at smaller scales. This measurement is a good complement to other measurements of bias, since it does not depend strongly on σ8 as do the 2PCF measurements. We will apply this method to the Dark Energy Survey Science Verification data in a follow-up article.

  6. Stability of continuous-time quantum filters with measurement imperfections

    Science.gov (United States)

    Amini, H.; Pellegrini, C.; Rouchon, P.

    2014-07-01

    The fidelity between the state of a continuously observed quantum system and the state of its associated quantum filter, is shown to be always a submartingale. The observed system is assumed to be governed by a continuous-time Stochastic Master Equation (SME), driven simultaneously by Wiener and Poisson processes and that takes into account incompleteness and errors in measurements. This stability result is the continuous-time counterpart of a similar stability result already established for discrete-time quantum systems and where the measurement imperfections are modelled by a left stochastic matrix.

  7. Residual stress measurement on propellant tank of 2219 aluminum alloy and study on its weak spot

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chaoqun; Li, Huan; Li, Jianxiong; Luo, Chuanguang; Ni, Yanbing [Tianjin University, Tianjin (China)

    2017-05-15

    This paper presented residual stress measurement on two circumferential Variable polarity plasma arc welding (VPPAW) joints and one circular closed Friction stir welding (FSW) joint on the propellant tank of 2219 aluminum alloy using the indentation strain-gauge method. Quite large tensile residual stresses were attached to the center and inner areas of the circular closed FSW joint. There were very large tensile stresses in some points of the two circumferential VPPAW joints, among these points, the maximum value was +253 MPa, which was about 63 % of the yield strength of 410 MPa measured in the base material. In addition, the peak of compressive residual stress was about -160 MPa. Above all, there were two typical peaks of residual stress in the circumferential VPPAW joints, one was located in the middle part while the other one was near the start/end position of the joints. Combining the result of residual stress measurement with the characteristics of the tank structure, it can be concluded that circular closed FSW joint around the flange was a weak spot on the propellant tank. And the most vulnerable point on the circular closed FSW joint has also been found.

  8. Precision Beam Parameter Monitoring in a Measurement of the Weak Mixing Angle in Moeller Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, M.S.

    2005-04-11

    A precision measurement of the parity nonconserving left-right asymmetry, A{sub LR}, in Moeller scattering (e{sup -}e{sup -} {yields} e{sup -}e{sup -}) is currently in progress at the Stanford Linear Accelerator Center (SLAC). This experiment, labeled SLAC-E158, scatters longitudinally polarized electrons off atomic electrons in an unpolarized hydrogen target at a Q{sup 2} of 0.03 (GeV/c){sup 2}. The asymmetry, which is the fractional difference in the scattering cross-sections, measures the effective pseudo-scalar weak neutral current coupling, g{sub ee}, governing Moeller scattering. This quantity is in turn proportional to (1/4 - sin{sup 2} {theta}{sub w}), where {theta}{sub w} is the electroweak mixing angle. The goal is to measure the asymmetry to a precision of 1 x 10{sup -8} which corresponds to {delta}(sin{sup 2} {theta}{sub w}) {approx} 0.0007. Since A{sub LR} is a function of the cross-sections, and the cross-sections depend on the beam parameters, the desired precision of A{sub LR} places stringent requirements on the beam parameters. This paper investigates the requirements on the beam parameters and discusses the means by which they are monitored and accounted for.

  9. Measurements of the weak bonding interfacial stiffness by using air-coupled ultrasound

    Directory of Open Access Journals (Sweden)

    Wen-Lin Wu

    2017-12-01

    Full Text Available An air-coupled ultrasonic method, focusing on the problem that weak bonding interface is difficult to accurately measure using conventional nondestructive testing technique, is proposed to evaluate the bond integrity. Based on the spring model and the potential function theory, a theoretical model is established to predict the through-transmission spectrum in double-layer adhesive structure. The result of a theoretical algorithm shows that all the resonant transmission peaks move towards higher frequency with the increase of the interfacial stiffness. The reason for these movements is related to either the normal stiffness (KN or the transverse stiffness (KT. A method to optimize the measurement parameters (i.e. the incident angle and testing frequency is put forward through analyzing the relationship between the resonant transmission peaks and the interfacial spring stiffness at the frequency below 1MHz. The air-coupled ultrasonic testing experiments at the normal and oblique incident angle respectively are carried out to verify the theoretical analysis and to accurately measure the interfacial stiffness of double-layer adhesive composite plate. The experimental results are good agreement with the results from the theoretical algorithm, and the relationship between bonding time and interfacial stiffness is presented at the end of this paper.

  10. Hypernuclear weak decay experiments at KEK: n-n and n-p coincidence measurement

    International Nuclear Information System (INIS)

    Outa, H.; Ajimura, S.; Aoki, K.; Banu, A.; Bhang, H.C.; Fukuda, T.; Hashimoto, O.; Hwang, J.I.; Kameoka, S.; Kang, B.H.; Kim, E.H.; Kim, J.H.; Kim, M.J.; Maruta, T.; Miura, Y.; Miyake, Y.; Nagae, T.; Nakamura, M.; Nakamura, S.N.; Noumi, H.; Okada, S.; Okayasu, Y.; Park, H.; Saha, P.K.; Sato, Y.; Sekimoto, M.; Takahashi, T.; Tamura, H.; Tanida, K.; Toyoda, A.; Tsukada, K.; Watanabe, T.; Yim, H.J.

    2005-01-01

    We performed a coincidence measurement of two nucleons emitted from the nonmesonic weak decay (NMWD) of 5 Λ He and 12 Λ C formed via the (π+,K+) reaction. In both of n+p and n+n pair coincidence spectra, we observed a clean back-to-back correlation coming from the two-body decay of Λp->np and Λn->nn, respectively. We obtained the ratio of the nucleon pair numbers, Nnn/Nnp ( 5 Λ He)=0.45-bar +/--bar 0.11-bar (stat)-bar +/--bar 0.03-bar (syst) in the kinematic region of cosθNN-0.8. Since each decay mode was exclusively detected, the measured ratio should be close to the ratio of Γ(Λp->nn)/Γ(Λn->np). The Γn/Γp ratio was measured also for the NMWD of 12 Λ C. It is also close to 0.5. Those ratios are consistent with recent theoretical calculations based on the heavy meson/direct quark exchange picture

  11. On Association Measures for Continuous Variables and Correction for Chance

    NARCIS (Netherlands)

    Warrens, Matthijs J.

    2015-01-01

    This paper studies correction for chance for association measures for continuous variables. The set of linear transformations of Pearson's product-moment correlation is used as the domain of the correction for chance function. Examples of measures in this set are Tucker's congruence coefficient,

  12. A Precision Low-Energy Measurement of the Weak Mixing Angle in Moller Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mastromarino, P.

    2005-01-26

    The E-158 experiment at the Stanford Linear Accelerator Center (SLAC) measures the parity-violating cross-section asymmetry in electron-electron (Moeller) scattering at low Q{sup 2}. This asymmetry, whose Standard Model prediction is roughly -150 parts per billion (ppb), is directly proportional to (1-4 sin{sup 2} {theta}{sub W}), where {theta}{sub W} is the weak mixing angle. Measuring this asymmetry to within 10% provides an important test of the Standard Model at the quantum loop level and probes for new physics at the TeV scale. The experiment employs the SLAC 50 GeV electron beam, scattering it off a liquid hydrogen target. A system of magnets and collimators is used to isolate and focus the Moeller scattering events into an integrating calorimeter. The electron beam is generated at the source using a strained, gradient-doped GaAs photocathode, which produces roughly 5 x 10{sup 11} electrons/pulse (at a beam rate of 120 Hz) with {approx} 80% longitudinal polarization. The helicity of the beam can be rapidly switched, eliminating problems associated with slow drifts. Helicity-correlations in the beam parameters (charge, position, angle and energy) are minimized at the source and corrected for using precision beam monitoring devices.

  13. Quantum trajectories and measurements in continuous time. The diffusive case

    International Nuclear Information System (INIS)

    Barchielli, Alberto; Gregoratti, Matteo

    2009-01-01

    This course-based monograph introduces the reader to the theory of continuous measurements in quantum mechanics and provides some benchmark applications. The approach chosen, quantum trajectory theory, is based on the stochastic Schroedinger and master equations, which determine the evolution of the a-posteriori state of a continuously observed quantum system and give the distribution of the measurement output. The present introduction is restricted to finite-dimensional quantum systems and diffusive outputs. Two appendices introduce the tools of probability theory and quantum measurement theory which are needed for the theoretical developments in the first part of the book. First, the basic equations of quantum trajectory theory are introduced, with all their mathematical properties, starting from the existence and uniqueness of their solutions. This makes the text also suitable for other applications of the same stochastic differential equations in different fields such as simulations of master equations or dynamical reduction theories. In the next step the equivalence between the stochastic approach and the theory of continuous measurements is demonstrated. To conclude the theoretical exposition, the properties of the output of the continuous measurement are analyzed in detail. This is a stochastic process with its own distribution, and the reader will learn how to compute physical quantities such as its moments and its spectrum. In particular this last concept is introduced with clear and explicit reference to the measurement process. The two-level atom is used as the basic prototype to illustrate the theory in a concrete application. Quantum phenomena appearing in the spectrum of the fluorescence light, such as Mollow's triplet structure, squeezing of the fluorescence light, and the linewidth narrowing, are presented. Last but not least, the theory of quantum continuous measurements is the natural starting point to develop a feedback control theory in

  14. Continuous methane measurements from a late Holocene Greenland ice core

    DEFF Research Database (Denmark)

    Rhodes, R.H.; Mitchell, L.E.; Brook, E.J.

    2013-01-01

    Ancient air trapped inside bubbles in ice cores can now be analysed for methane concentration utilising a laser spectrometer coupled to a continuous melter system. We present a new ultra-high resolution record of atmospheric methane variability over the last 1800yr obtained from continuous analysis...... of a shallow ice core from the North Greenland Eemian project (NEEM-2011-S1) during a 4-week laboratory-based measurement campaign. Our record faithfully replicates the form and amplitudes of multi-decadal oscillations previously observed in other ice cores and demonstrates the detailed depth resolution (5.3cm......), rapid acquisition time (30mday) and good long-term reproducibility (2.6%, 2s) of the continuous measurement technique.In addition, we report the detection of high frequency ice core methane signals of non-atmospheric origin. Firstly, measurements of air from the firn-ice transition region...

  15. Weakly clopen functions

    International Nuclear Information System (INIS)

    Son, Mi Jung; Park, Jin Han; Lim, Ki Moon

    2007-01-01

    We introduce a new class of functions called weakly clopen function which includes the class of almost clopen functions due to Ekici [Ekici E. Generalization of perfectly continuous, regular set-connected and clopen functions. Acta Math Hungar 2005;107:193-206] and is included in the class of weakly continuous functions due to Levine [Levine N. A decomposition of continuity in topological spaces. Am Math Mon 1961;68:44-6]. Some characterizations and several properties concerning weakly clopenness are obtained. Furthermore, relationships among weak clopenness, almost clopenness, clopenness and weak continuity are investigated

  16. Accurate weak lensing of standard candles. II. Measuring σ8 with supernovae

    Science.gov (United States)

    Quartin, Miguel; Marra, Valerio; Amendola, Luca

    2014-01-01

    Soon the number of type Ia supernova (SN) measurements should exceed 100 000. Understanding the effect of weak lensing by matter structures on the supernova brightness will then be more important than ever. Although SN lensing is usually seen as a source of systematic noise, we will show that it can be in fact turned into signal. More precisely, the non-Gaussianity introduced by lensing in the SN Hubble diagram dispersion depends rather sensitively on the amplitude σ8 of the matter power spectrum. By exploiting this relation, we are able to predict constraints on σ8 of 7% (3%) for a catalog of 100 000 (500 000) SNe of average magnitude error 0.12, without having to assume that such intrinsic dispersion and its redshift evolution are known a priori. The intrinsic dispersion has been assumed to be Gaussian; possible intrinsic non-Gaussianities in the data set (due to the SN themselves and/or to other transients) could be potentially dealt with by means of additional nuisance parameters describing higher moments of the intrinsic dispersion distribution function. This method is independent of and complementary to the standard methods based on cosmic microwave background, cosmic shear, or cluster abundance observables.

  17. Continuous measurements of nitrous oxide isotopomers during incubation experiments

    DEFF Research Database (Denmark)

    Winther, Malte Nordmann; Balslev-Harder, David; Christensen, Søren

    2016-01-01

    relevant for studies of atmospheric chemistry. We present results from continuous incubation experiments with denitrifying bacteria, Pseudomonas fluorescens (producing and reducing N2O) and P. chlororaphis (only producing N2O). The continuous position dependent measurements reveal the transient pattern....... fluorescens, the calculations results in SP values of −5.7 ‰ ± 5.6 during production of N2O and 2.3 ‰ ± 3.2 during reduction of N2O. In summary, we implemented continuous measurements of N2O isotopomers during incubation of denitrifying bacteria and believe that similar experiments will lead to a better...... understanding of denitrifying bacteria and N2O turnover in soils and sediments and ultimately hands-on knowledge on the biotic mechanisms behind greenhouse gas exchange of the Globe....

  18. Wavelength-Dependent PSFs and their Impact on Weak Lensing Measurements

    Science.gov (United States)

    Carlsten, S. G.; Strauss, Michael A.; Lupton, Robert H.; Meyers, Joshua E.; Miyazaki, Satoshi

    2018-06-01

    We measure and model the wavelength dependence of the point spread function (PSF) in the Hyper Suprime-Cam Subaru Strategic Program survey. We find that PSF chromaticity is present in that redder stars appear smaller than bluer stars in the g, r, and i-bands at the 1-2 per cent level and in the z and y-bands at the 0.1-0.2 per cent level. From the color dependence of the PSF, we fit a model between the monochromatic PSF size based on weighted second moments, R, and wavelength of the form R(λ)∝λ-b. We find values of b between 0.2 and 0.5, depending on the epoch and filter. This is consistent with the expectations of a turbulent atmosphere with an outer scale length of ˜10 - 100 m, indicating that the atmosphere is dominating the chromaticity. In the best seeing data, we find that the optical system and detector also contribute some wavelength dependence. Meyers & Burchat (2015b) showed that b must be measured to an accuracy of ˜0.02 not to dominate the systematic error budget of the Large Synoptic Survey Telescope (LSST) weak lensing (WL) survey. Using simple image simulations, we find that b can be inferred with this accuracy in the r and i-bands for all positions in the LSST focal plane, assuming a stellar density of 1 star arcmin-2 and that the optical component of the PSF can be accurately modeled. Therefore, it is possible to correct for most, if not all, of the bias that the wavelength-dependent PSF will introduce into an LSST-like WL survey.

  19. Quantum dissipative systems from theory of continuous measurements

    International Nuclear Information System (INIS)

    Mensky, Michael B.; Stenholm, Stig

    2003-01-01

    We apply the restricted-path-integral (RPI) theory of non-minimally disturbing continuous measurements for correct description of frictional Brownian motion. The resulting master equation is automatically of the Lindblad form, so that the difficulties typical of other approaches do not exist. In the special case of harmonic oscillator the known familiar master equation describing its frictionally driven Brownian motion is obtained. A thermal reservoir as a measuring environment is considered

  20. Determination of continuous variable entanglement by purity measurements.

    Science.gov (United States)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2004-02-27

    We classify the entanglement of two-mode Gaussian states according to their degree of total and partial mixedness. We derive exact bounds that determine maximally and minimally entangled states for fixed global and marginal purities. This characterization allows for an experimentally reliable estimate of continuous variable entanglement based on measurements of purity.

  1. Violation of Bell's Inequality Using Continuous Variable Measurements

    Science.gov (United States)

    Thearle, Oliver; Janousek, Jiri; Armstrong, Seiji; Hosseini, Sara; Schünemann Mraz, Melanie; Assad, Syed; Symul, Thomas; James, Matthew R.; Huntington, Elanor; Ralph, Timothy C.; Lam, Ping Koy

    2018-01-01

    A Bell inequality is a fundamental test to rule out local hidden variable model descriptions of correlations between two physically separated systems. There have been a number of experiments in which a Bell inequality has been violated using discrete-variable systems. We demonstrate a violation of Bell's inequality using continuous variable quadrature measurements. By creating a four-mode entangled state with homodyne detection, we recorded a clear violation with a Bell value of B =2.31 ±0.02 . This opens new possibilities for using continuous variable states for device independent quantum protocols.

  2. Measures of Quantum Synchronization in Continuous Variable Systems

    Science.gov (United States)

    Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R.

    2013-09-01

    We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.

  3. CROSS-CORRELATION WEAK LENSING OF SDSS GALAXY CLUSTERS. I. MEASUREMENTS

    International Nuclear Information System (INIS)

    Sheldon, Erin S.; Johnston, David E.; Scranton, Ryan; Koester, Benjamin P.; Oyaizu, Hiroaki; Cunha, Carlos; Lima, Marcos; Frieman, Joshua A.; McKay, Timothy A.; Lin Huan; Annis, James; Wechsler, Risa H.; Mandelbaum, Rachel; Bahcall, Neta A.; Fukugita, Masataka

    2009-01-01

    This is the first in a series of papers on the weak lensing effect caused by clusters of galaxies in Sloan Digital Sky Survey. The photometrically selected cluster sample, known as MaxBCG, includes ∼130,000 objects between redshift 0.1 and 0.3, ranging in size from small groups to massive clusters. We split the clusters into bins of richness and luminosity and stack the surface density contrast to produce mean radial profiles. The mean profiles are detected over a range of scales, from the inner halo (25 kpc h -1 ) well into the surrounding large-scale structure (30 Mpc h -1 ), with a significance of 15 to 20 in each bin. The signal over this large range of scales is best interpreted in terms of the cluster-mass cross-correlation function. We pay careful attention to sources of systematic error, correcting for them where possible. The resulting signals are calibrated to the ∼10% level, with the dominant remaining uncertainty being the redshift distribution of the background sources. We find that the profiles scale strongly with richness and luminosity. We find that the signal within a given richness bin depends upon luminosity, suggesting that luminosity is more closely correlated with mass than galaxy counts. We split the samples by redshift but detect no significant evolution. The profiles are not well described by power laws. In a subsequent series of papers, we invert the profiles to three-dimensional mass profiles, show that they are well fit by a halo model description, measure mass-to-light ratios, and provide a cosmological interpretation.

  4. Source selection for cluster weak lensing measurements in the Hyper Suprime-Cam survey

    Science.gov (United States)

    Medezinski, Elinor; Oguri, Masamune; Nishizawa, Atsushi J.; Speagle, Joshua S.; Miyatake, Hironao; Umetsu, Keiichi; Leauthaud, Alexie; Murata, Ryoma; Mandelbaum, Rachel; Sifón, Cristóbal; Strauss, Michael A.; Huang, Song; Simet, Melanie; Okabe, Nobuhiro; Tanaka, Masayuki; Komiyama, Yutaka

    2018-03-01

    We present optimized source galaxy selection schemes for measuring cluster weak lensing (WL) mass profiles unaffected by cluster member dilution from the Subaru Hyper Suprime-Cam Strategic Survey Program (HSC-SSP). The ongoing HSC-SSP survey will uncover thousands of galaxy clusters to z ≲ 1.5. In deriving cluster masses via WL, a critical source of systematics is contamination and dilution of the lensing signal by cluster members, and by foreground galaxies whose photometric redshifts are biased. Using the first-year CAMIRA catalog of ˜900 clusters with richness larger than 20 found in ˜140 deg2 of HSC-SSP data, we devise and compare several source selection methods, including selection in color-color space (CC-cut), and selection of robust photometric redshifts by applying constraints on their cumulative probability distribution function (P-cut). We examine the dependence of the contamination on the chosen limits adopted for each method. Using the proper limits, these methods give mass profiles with minimal dilution in agreement with one another. We find that not adopting either the CC-cut or P-cut methods results in an underestimation of the total cluster mass (13% ± 4%) and the concentration of the profile (24% ± 11%). The level of cluster contamination can reach as high as ˜10% at R ≈ 0.24 Mpc/h for low-z clusters without cuts, while employing either the P-cut or CC-cut results in cluster contamination consistent with zero to within the 0.5% uncertainties. Our robust methods yield a ˜60 σ detection of the stacked CAMIRA surface mass density profile, with a mean mass of M200c = [1.67 ± 0.05(stat)] × 1014 M⊙/h.

  5. Quantum continual measurements and a posteriori collapse on CCR

    International Nuclear Information System (INIS)

    Belavkin, V.P.

    1992-01-01

    A quantum stochastic model for the Markovian dynamics of an open system under the nondemolition unsharp observation which is continuous in time, is given. A stochastic equation for the posterior evolution of a quantum continuously observed system is derived and the spontaneous collapse (stochastically continuous reduction of the wave packet) is described. The quantum Langevin evolution equation is solved for the case of a quasi-free Hamiltonian in the initial CCR algebra with a linear output channel, and the posterior dynamics corresponding to an initial Gaussian state is found. It is shown for an example of the posterior dynamics of a quantum oscillator that any mixed state under a complete nondemolition measurement collapses exponentially to a pure Gaussian one. (orig.)

  6. Precision measurements in the weak interaction framework: development of realistic simulations for the LPCTrap device installed at GANIL

    International Nuclear Information System (INIS)

    Fabian, Xavier

    2015-01-01

    This work belongs to the effort presently deployed to measure the angular correlation parameter a_β_ν in three nuclear beta decays ("6He"+, "3"5Ar"+ and "1"9Ne"+). The V-A structure of the weak interaction implies that a_β_ν = +1 for a pure Fermi transition and a_β_ν = -1/3 for a pure Gamow-Teller transition. A thorough measurement of this parameter to check any deviation from these values may lead to the discovery of possible exotic currents. Furthermore, the measurement of a_β_ν in mirror transitions allows the extraction of V_u_d, the first element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The LPCTrap apparatus, installed at GANIL, is designed to ready a continuous ion beam for injection in a dedicated Paul trap. This latter device allows to have a quasi-punctual source from which the decay products are detected in coincidence. It is from the study of the recoil ion time-of-flight (TOF) distribution that a_β_ν is withdrawn and, since 2010, the associated Shake-Off (SO) probabilities. This study requires the complete simulation of the LPCTrap experiments. The major part of this work is dedicated to such simulations, especially to the modeling of the trapped ion cloud dynamic. The Clouda program, which takes advantage of graphics processing unit (GPU), was developed in this context and its full characterization is presented here. Three important aspects are addressed: the electromagnetic trapping field, the realistic collisions between the ions and the buffer gas atoms and the space charge effect. The present work shows the importance of these simulations to increase the control of the systematic errors on a_β_ν. (author) [fr

  7. ELLIPTICAL WEIGHTED HOLICs FOR WEAK LENSING SHEAR MEASUREMENT. III. THE EFFECT OF RANDOM COUNT NOISE ON IMAGE MOMENTS IN WEAK LENSING ANALYSIS

    International Nuclear Information System (INIS)

    Okura, Yuki; Futamase, Toshifumi

    2013-01-01

    This is the third paper on the improvement of systematic errors in weak lensing analysis using an elliptical weight function, referred to as E-HOLICs. In previous papers, we succeeded in avoiding errors that depend on the ellipticity of the background image. In this paper, we investigate the systematic error that depends on the signal-to-noise ratio of the background image. We find that the origin of this error is the random count noise that comes from the Poisson noise of sky counts. The random count noise makes additional moments and centroid shift error, and those first-order effects are canceled in averaging, but the second-order effects are not canceled. We derive the formulae that correct this systematic error due to the random count noise in measuring the moments and ellipticity of the background image. The correction formulae obtained are expressed as combinations of complex moments of the image, and thus can correct the systematic errors caused by each object. We test their validity using a simulated image and find that the systematic error becomes less than 1% in the measured ellipticity for objects with an IMCAT significance threshold of ν ∼ 11.7.

  8. Optical measurement of the weak non-linearity in the eardrum vibration response to auditory stimuli

    Science.gov (United States)

    Aerts, Johan

    The mammalian hearing organ consists of the external ear (auricle and ear canal) followed by the middle ear (eardrum and ossicles) and the inner ear (cochlea). Its function is to convert the incoming sound waves and convert them into nerve pulses which are processed in the final stage by the brain. The main task of the external and middle ear is to concentrate the incoming sound waves on a smaller surface to reduce the loss that would normally occur in transmission from air to inner ear fluid. In the past it has been shown that this is a linear process, thus without serious distortions, for sound waves going up to pressures of 130 dB SPL (˜90 Pa). However, at large pressure changes up to several kPa, the middle ear movement clearly shows non-linear behaviour. Thus, it is possible that some small non-linear distortions are also present in the middle ear vibration at lower sound pressures. In this thesis a sensitive measurement set-up is presented to detect this weak non-linear behaviour. Essentially, this set-up consists of a loud-speaker which excites the middle ear, and the resulting vibration is measured with an heterodyne vibrometer. The use of specially designed acoustic excitation signals (odd random phase multisines) enables the separation of the linear and non-linear response. The application of this technique on the middle ear demonstrates that there are already non-linear distortions present in the vibration of the middle ear at a sound pressure of 93 dB SPL. This non-linear component also grows strongly with increasing sound pressure. Knowledge of this non-linear component can contribute to the improvement of modern hearing aids, which operate at higher sound pressures where the non-linearities could distort the signal considerably. It is also important to know the contribution of middle ear non-linearity to otoacoustic emissions. This are non-linearities caused by the active feedback amplifier in the inner ear, and can be detected in the external and

  9. Measurement properties of continuous text reading performance tests.

    Science.gov (United States)

    Brussee, Tamara; van Nispen, Ruth M A; van Rens, Ger H M B

    2014-11-01

    Measurement properties of tests to assess reading acuity or reading performance have not been extensively evaluated. This study aims to provide an overview of the literature on available continuous text reading tests and their measurement properties. A literature search was performed in PubMed, Embase and PsycInfo. Subsequently, information on design and content of reading tests, study design and measurement properties were extracted using consensus-based standards for selection of health measurement instruments. Quality of studies, reading tests and measurement properties were systematically assessed using pre-specified criteria. From 2334 identified articles, 20 relevant articles were found on measurement properties of three reading tests in various languages: IReST, MNread Reading Test and Radner Reading Charts. All three reading tests scored high on content validity. Reproducibility studies (repeated measurements between different testing sessions) of the IReST and MNread of commercially available reading tests in different languages were missing. The IReST scored best on inter-language comparison, the MNread scored well in repeatability studies (repeated measurements under the same conditions) and the Radner showed good reproducibility in studies. Although in daily practice there are other continuous text reading tests available meeting the criteria of this review, measurement properties were described in scientific studies for only three of them. Of the few available studies, the quality and content of study design and methodology used varied. For testing existing reading tests and the development of new ones, for example in other languages, we make several recommendations, including careful description of patient characteristics, use of objective and subjective lighting levels, good control of working distance, documentation of the number of raters and their training, careful documentation of scoring rules and the use of Bland-Altman analyses or similar for

  10. Continuous measurements of in-bore projectile velocity

    International Nuclear Information System (INIS)

    Asay, J.R.; Konrad, C.H.; Hall, C.A.; Shahinpoor, M.

    1989-01-01

    The application of velocity interferometry to the continuous measurement of in-bore projectile velocity in a small-bore three-stage railgun is described. These measurements are useful for determining projectile acceleration and for evaluating gun performance. The launcher employed in these studies consists of a two-stage light gas gun used to inject projectiles into a railgun for additional acceleration. Results obtained for projectile velocities to 7.4 km/s with the two-stage injector are reported and potential improvements for railgun applications are discussed

  11. Weak Distributivity. A Problem of von Neumann and the Mystery of Measurability

    Czech Academy of Sciences Publication Activity Database

    Balcar, Bohuslav; Jech, Thomas

    2006-01-01

    Roč. 12, č. 2 (2006), s. 241-266 ISSN 1079-8986 R&D Projects: GA AV ČR(CZ) IAA100190509 Institutional research plan: CEZ:AV0Z10190503 Keywords : Boolean algebra * weak distributivity * submeasure Subject RIV: BA - General Mathematics Impact factor: 0.525, year: 2006

  12. Stacking fault energy measurements in WSe2 single crystals using weak-beam techniques

    International Nuclear Information System (INIS)

    Agarwal, M.K.; Patel, J.V.; Patel, N.G.

    1981-01-01

    The weak-beam method of electron microscopy is used to observe threefold dislocations in WSe 2 single crystals grown by direct vapour transport method. The widths of the three fold ribbons are used to determine the stacking fault energy in these crystals. Variation of the width of the ribbons with temperature are also studied and discussed. (author)

  13. ICT energy efficiency in higher education. Continuous measurement and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ter Hofte, H. [Novay, Enschede (Netherlands)

    2011-11-15

    Power consumption of information and communications technology (ICT) is rising rapidly worldwide. Reducing (the growth in) energy demand helps to achieve sustainability goals in the area of energy resource depletion, energy security, economy, and ecology. Various governments and industry consortia have set out policies and agreements to reduce the (growth in) demand for energy. In the MJA3 agreements in the Netherlands, various organizations, including all 14 universities and 39 universities of applied sciences pledged to achieve 30% increase in energy efficiency in 2020 compared to 2005. In this report, we argue that using the number of kilowatt-hours of final electricity used for ICT per enrolled student per day (kWh/st/d), should be used as the primary metric for ICT energy efficiency in higher education. For other uses of electricity than ICT in higher education, we express electricity use in kilowatthours per person per day (kWh/p/d). Applying continuous monitoring and management of ICT energy is one approach one could take to increase ICT energy efficiency in education. In households, providing direct (i.e. real-time) feedback about energy use typically results in 5-15% energy savings, whereas indirect feedback (provided some time after consumption occurs), results in less energy savings, typically 0-10%. Continuous measurement of ICT electricity use can be done in a variety of ways. In this report, we distinguish and describe four major measurement approaches: (1) In-line meters, which require breaking the electrical circuit to install the meter; (2) clamp-on-meters, which can be wrapped around a wire; (3) add-ons to existing energy meters, which use analog or digital ports of existing energy meters; (4) software-only measurement, which uses existing network interfaces, protocols and APIs. A measurement approach can be used at one or more aggregation levels: at building level (to measure all electrical energy used in a building, e.g. a datacenter); at

  14. Continuous detection of weak sensory signals in afferent spike trains: the role of anti-correlated interspike intervals in detection performance.

    Science.gov (United States)

    Goense, J B M; Ratnam, R

    2003-10-01

    An important problem in sensory processing is deciding whether fluctuating neural activity encodes a stimulus or is due to variability in baseline activity. Neurons that subserve detection must examine incoming spike trains continuously, and quickly and reliably differentiate signals from baseline activity. Here we demonstrate that a neural integrator can perform continuous signal detection, with performance exceeding that of trial-based procedures, where spike counts in signal- and baseline windows are compared. The procedure was applied to data from electrosensory afferents of weakly electric fish (Apteronotus leptorhynchus), where weak perturbations generated by small prey add approximately 1 spike to a baseline of approximately 300 spikes s(-1). The hypothetical postsynaptic neuron, modeling an electrosensory lateral line lobe cell, could detect an added spike within 10-15 ms, achieving near ideal detection performance (80-95%) at false alarm rates of 1-2 Hz, while trial-based testing resulted in only 30-35% correct detections at that false alarm rate. The performance improvement was due to anti-correlations in the afferent spike train, which reduced both the amplitude and duration of fluctuations in postsynaptic membrane activity, and so decreased the number of false alarms. Anti-correlations can be exploited to improve detection performance only if there is memory of prior decisions.

  15. A Measurement of the Parity-Violating Asymmetry in Aluminum and its Contribution to a Measurement of the Proton's Weak Charge

    Energy Technology Data Exchange (ETDEWEB)

    Magee, Joshua Allen [College of William and Mary, Williamsburg, VA (United States)

    2016-05-01

    The Q_weak experiment, which ran at the Thomas Jefferson National Accelerator Facility, made a precision measurement of the proton's weak charge, Q^p_W. The weak charge is extracted via a measurement of the parity-violating asymmetry in elastic electron-proton scattering from hydrogen at low momentum transfer (Q^2=0.025 GeV^2). This result is directly related to the electroweak mixing angle, sin^2(Theta_W), a fundamental parameter in the Standard Model of particle physics. This provides a precision test sensitive to new, as yet unknown, fundamental physics. This dissertation focuses on two central corrections to the Q_weak measurement: the target window contribution and sub-percent determination of the electron beam polarization. The aluminum target windows contribute approximately 30% of the measured asymmetry. Removal of this background requires precise measurements of both the elastic electron-aluminum scattering rate and its parity-violating asymmetry. The results reported here are the most precise measurement of the Q_weak target dilution and asymmetry to date. The parity-violating asymmetry for the aluminum alloy was found to be 1.6174 +/- 0.0704 (stat.) +/- 0.0113 (sys.) parts-per-million. The first sub-percent precision polarization measurements made from the Hall C Moller polarimeter are also reported, with systematic uncertainties of 0.84%.

  16. Precision measurement of electric organ discharge timing from freely moving weakly electric fish.

    Science.gov (United States)

    Jun, James J; Longtin, André; Maler, Leonard

    2012-04-01

    Physiological measurements from an unrestrained, untethered, and freely moving animal permit analyses of neural states correlated to naturalistic behaviors of interest. Precise and reliable remote measurements remain technically challenging due to animal movement, which perturbs the relative geometries between the animal and sensors. Pulse-type electric fish generate a train of discrete and stereotyped electric organ discharges (EOD) to sense their surroundings actively, and rapid modulation of the discharge rate occurs while free swimming in Gymnotus sp. The modulation of EOD rates is a useful indicator of the fish's central state such as resting, alertness, and learning associated with exploration. However, the EOD pulse waveforms remotely observed at a pair of dipole electrodes continuously vary as the fish swims relative to the electrodes, which biases the judgment of the actual pulse timing. To measure the EOD pulse timing more accurately, reliably, and noninvasively from a free-swimming fish, we propose a novel method based on the principles of waveform reshaping and spatial averaging. Our method is implemented using envelope extraction and multichannel summation, which is more precise and reliable compared with other widely used threshold- or peak-based methods according to the tests performed under various source-detector geometries. Using the same method, we constructed a real-time electronic pulse detector performing an additional online pulse discrimination routine to enhance further the detection reliability. Our stand-alone pulse detector performed with high temporal precision (<10 μs) and reliability (error <1 per 10(6) pulses) and permits longer recording duration by storing only event time stamps (4 bytes/pulse).

  17. Determination of the weak charge of the proton through parity violating asymmetry measurements in the elastic e+p scattering

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, Adesh [Mississippi State Univ., Mississippi State, MS (United States)

    2014-12-01

    The Qweak experiment has taken data to make a 2.5% measurement of parity violating elastic e+p asymmetry in the four momentum transfer region of 0.0250 (GeV/c)2. This asymmetry is proportional to the weak charge of the proton, which is related to the weak mixing angle, sin2(theta_W). The final Qweak measurement will provide the most precise measurement of the weak mixing angle below the Z0 pole to test the Standard Model prediction. A description of the experimental apparatus is provided in this dissertation. The experiment was carried out using a longitudinally polarized electron beam of up to 180 microampere on a 34.5 cm long unpolarized liquid hydrogen target. The Qweak target is not only the world's highest cryogenic target ever built for a parity experiment but also is the least noisy target. This dissertation provides a detailed description of this target and presents a thorough analysis of the target performance. Statistical analysis of Run 1 data, collected between Feb - May 2011, is done to extract a blinded parity violating asymmetry of size -299.7 ± 13.4 (stat.) ± 17.2 (syst.) ± 68 (blinding) parts-per-billion. This resulted in a preliminary proton's weak charge of value 0.0865 ± 0.0085, a 9% measurement. Based on this blinded asymmetry, the weak mixing angle was determined to be sin2(theta_W) = 0.23429 ± 0.00211.

  18. Transition to classical chaos in a coupled quantum system through continuous measurement

    International Nuclear Information System (INIS)

    Ghose, Shohini; Alsing, Paul; Deutsch, Ivan; Bhattacharya, Tanmoy; Habib, Salman

    2004-01-01

    Continuous observation of a quantum system yields a measurement record that faithfully reproduces the classically predicted trajectory provided that the measurement is sufficiently strong to localize the state in phase space but weak enough that quantum backaction noise is negligible. We investigate the conditions under which classical dynamics emerges, via a continuous position measurement, for a particle moving in a harmonic well with its position coupled to internal spin. As a consequence of this coupling, we find that classical dynamics emerges only when the position and spin actions are both large compared to (ℎ/2π). These conditions are quantified by placing bounds on the size of the covariance matrix which describes the delocalized quantum coherence over extended regions of phase space. From this result, it follows that a mixed quantum-classical regime (where one subsystem can be treated classically and the other not) does not exist for a continuously observed spin-(1/2) particle. When the conditions for classicality are satisfied (in the large-spin limit), the quantum trajectories reproduce both the classical periodic orbits as well as the classically chaotic phase space regions. As a quantitative test of this convergence, we compute the largest Lyapunov exponent directly from the measured quantum trajectories and show that it agrees with the classical value

  19. Continuous measurements of soil radon under regular field conditions

    International Nuclear Information System (INIS)

    Font, LL

    1999-01-01

    Continuous soil radon measurements were performed in the frame of an European Community-radon network using the Clipperton II detector. It has been found that in some periods, soil radon levels obtained with one Clipperton II probe are very different from those obtained with another probe placed at the same depth but a short distance apart. It has been also found that the response of the probes to a sudden change of radon concentration is controlled by the diffusion process along the bottom tube of the probe. Therefore, this study shows that the experimental data can be attributed to the natural behaviour of soil radon

  20. Continuous measurements of nitrous oxide isotopomers during incubation experiments

    Science.gov (United States)

    Winther, Malte; Balslev-Harder, David; Christensen, Søren; Priemé, Anders; Elberling, Bo; Crosson, Eric; Blunier, Thomas

    2018-02-01

    Nitrous oxide (N2O) is an important and strong greenhouse gas in the atmosphere. It is produced by microbes during nitrification and denitrification in terrestrial and aquatic ecosystems. The main sinks for N2O are turnover by denitrification and photolysis and photo-oxidation in the stratosphere. In the linear N = N = O molecule 15N substitution is possible in two distinct positions: central and terminal. The respective molecules, 14N15N16O and 15N14N16O, are called isotopomers. It has been demonstrated that N2O produced by nitrifying or denitrifying microbes exhibits a different relative abundance of the isotopomers. Therefore, measurements of the site preference (difference in the abundance of the two isotopomers) in N2O can be used to determine the source of N2O, i.e., nitrification or denitrification. Recent instrument development allows for continuous position-dependent δ15N measurements at N2O concentrations relevant for studies of atmospheric chemistry. We present results from continuous incubation experiments with denitrifying bacteria, Pseudomonas fluorescens (producing and reducing N2O) and Pseudomonas chlororaphis (only producing N2O). The continuous measurements of N2O isotopomers reveals the transient isotope exchange among KNO3, N2O, and N2. We find bulk isotopic fractionation of -5.01 ‰ ± 1.20 for P. chlororaphis, in line with previous results for production from denitrification. For P. fluorescens, the bulk isotopic fractionation during production of N2O is -52.21 ‰ ± 9.28 and 8.77 ‰ ± 4.49 during N2O reduction.The site preference (SP) isotopic fractionation for P. chlororaphis is -3.42 ‰ ± 1.69. For P. fluorescens, the calculations result in SP isotopic fractionation values of 5.73 ‰ ± 5.26 during production of N2O and 2.41 ‰ ± 3.04 during reduction of N2O. In summary, we implemented continuous measurements of N2O isotopomers during incubation of denitrifying bacteria and believe that similar experiments will lead to a better

  1. Continuous measurement of uranium concentrations with the laser spark

    International Nuclear Information System (INIS)

    Gutmacher, R.G.; Cremers, D.A.; Wachter, J.R.

    1987-01-01

    Laser-induced breakdown spectroscopy has been applied to the continuous determination of uranium concentrations between 0.1 and 300 g/L in flowing solutions. The technique is rapid, noninvasive, and unaffected by radioactivity. A concentration of 10 g/L was measured with 0.8% precision in 3 min. Substances that absorb at the laser wavelength, suspended materials, and variations in the acidity of the solution have little or no effect on the results. High concentrations of zirconium, cadmium, aluminum, or stainless steel in solution do not interfere

  2. RESONANT BPM FOR CONTINUOUS TUNE MEASUREMENT IN RHIC

    International Nuclear Information System (INIS)

    KESSELMAN, M.; CAMERON, P.; CUPOLO, J.

    2001-01-01

    A movable Beam Position Monitor (BPM) using shorted stripline Pick-Up Electrode (NE) elements has been resonated using matching stub techniques to achieve a relatively high Q resonance at about 230MHz. This PUE has been used in a feasibility study of phase-locked-loop tune measurement [1], using a lock-in amplifier and variable frequency generator to continuously track betatron tune in RHIC, as well as to observe Schottky signals of the Gold beam. The approach to providing a high Q PUE for difference mode signals, simulation studies, and the results of initial tests will be presented

  3. The Cucker-Smale Equation: Singular Communication Weight, Measure-Valued Solutions and Weak-Atomic Uniqueness

    Science.gov (United States)

    Mucha, Piotr B.; Peszek, Jan

    2018-01-01

    The Cucker-Smale flocking model belongs to a wide class of kinetic models that describe a collective motion of interacting particles that exhibit some specific tendency, e.g. to aggregate, flock or disperse. This paper examines the kinetic Cucker-Smale equation with a singular communication weight. Given a compactly supported measure as an initial datum we construct a global in time weak measure-valued solution in the space {C_{weak}(0,∞M)}. The solution is defined as a mean-field limit of the empirical distributions of particles, the dynamics of which is governed by the Cucker-Smale particle system. The studied communication weight is {ψ(s)=|s|^{-α}} with {α \\in (0,1/2)}. This range of singularity admits the sticking of characteristics/trajectories. The second result concerns the weak-atomic uniqueness property stating that a weak solution initiated by a finite sum of atoms, i.e. Dirac deltas in the form {m_i δ_{x_i} ⊗ δ_{v_i}}, preserves its atomic structure. Hence these coincide with unique solutions to the system of ODEs associated with the Cucker-Smale particle system.

  4. The Generalization Complexity Measure for Continuous Input Data

    Directory of Open Access Journals (Sweden)

    Iván Gómez

    2014-01-01

    defined in Boolean space, quantifies the complexity of data in relationship to the prediction accuracy that can be expected when using a supervised classifier like a neural network, SVM, and so forth. We first extend the original measure for its use with continuous functions to later on, using an approach based on the use of the set of Walsh functions, consider the case of having a finite number of data points (inputs/outputs pairs, that is, usually the practical case. Using a set of trigonometric functions a model that gives a relationship between the size of the hidden layer of a neural network and the complexity is constructed. Finally, we demonstrate the application of the introduced complexity measure, by using the generated model, to the problem of estimating an adequate neural network architecture for real-world data sets.

  5. Scintillating confusion: Evaluation of a technique for measuring compact structure in weak radio sources

    International Nuclear Information System (INIS)

    Spangler, S.R.; Cordes, J.M.; Meyers, K.A.

    1979-01-01

    An attractive scheme for investigating compact structure in weak radio sources is to study the scintillation properties of confusion in a large single-dish radio telescope. We have investigated the utility of this technique by observing the scintillations of 860-MHz confusion of the NRAO 300' (91 m) telescope. Analysis of these data indicated a reduction in the mean scintillation index with decreasing flux density which implied that weaker sources possessed less compact structure. More direct observations indicated that the weak sources of interest were not significantly deficient in compact structure, so the first result is probably due to properties of the IPS process in the strong scintillation regime. Our results may be due to overresolution (by the IPS process in the strong scintillation regime) of the ''hot spots'' responsible for scintillation in most strong sources at frequencies below 1000 MHz, or may indicate abnormally strong turbulence in the solar wind during August, 1977. Future applications of this method would be best conducted at lower frequencies with larger reflectors or short-spacing interferometers

  6. Ultra-Weak Fiber Bragg Grating Sensing Network Coated with Sensitive Material for Multi-Parameter Measurements

    OpenAIRE

    Bai, Wei; Yang, Minghong; Hu, Chenyuan; Dai, Jixiang; Zhong, Xuexiang; Huang, Shuai; Wang, Gaopeng

    2017-01-01

    A multi-parameter measurement system based on ultra-weak fiber Bragg grating (UFBG) array with sensitive material was proposed and experimentally demonstrated. The UFBG array interrogation principle is time division multiplex technology with two semiconductor optical amplifiers as timing units. Experimental results showed that the performance of the proposed UFBG system is almost equal to that of traditional FBG, while the UFBG array system has obvious superiority with potential multiplexing ...

  7. EVALUATION OF CONTINUOUS THERMODILUTION METHOD FOR CARDIAC OUTPUT MEASUREMENT

    Directory of Open Access Journals (Sweden)

    Roman Parežnik

    2001-12-01

    Full Text Available Background. Continuous monitoring of haemodynamic variables is often necessary for detection of rapid changes in critically ill patients. In our patients recently introduced continuous thermodilution technique (CTD for cardiac output measurement was compared to bolus thermodilution technique (BTD which is a »golden standard« method for cardiac output (CO measurement in intensive care medicine.Methods. Ten critically ill patients were included in a retrospective observational study. Using CTD method cardiac output was measured continuously. BTD measurements using the same equipment were performed intermittently. The data obtained by BTD were compared to those obtained by CTD just before the BTD (CTD-before and 2–3 minutes after the BTD (CTD-after. The CO values were divided into three groups: all CO values, CO > 4.5 L/min, CO < 4.5 L/min. The bias (mean difference between values obtained by two methods, standard deviation, 95% confidence limits and relative error were calculated and the linear regression analysis was performed. t-test for pared data was used to compare the biases for CTD-before and CTD-after for an individual group. The p value of less than 0.05 was considered statistically significant.Results. A total of 60 data triplets were obtained. CTD-before ranged from 1.9 L/min to 12.6 L/min, CTD-after from 2.0 to 13.2 L/min and BTD from 1.9 to 12.0 L/min. For all CO values the bias for CTD-before was 0.13 ± 0.52 L/min (95% confidence limits 1.17–0.91 L/min, relative error was 3.52 ± 15.20%, linear regression equation was CTD-before = 0.96 × BTD + 0.01 and Pearson’s correlation coefficient was 0.95. The values for CTD-after were 0.08 ± 0.46 L/min (1.0–0.84 L/min, 2.22 ± 9.05%, CTD-after = 0.98 × BTD + 0.01 and 0.98 respectively. For all CO values there was no statistically significant difference between biases for CTD-before and CTD-after (p = 0,51. There was no statistically significant difference between biases for CTD

  8. Measure to succeed: How to improve employee participation in continuous improvement

    Energy Technology Data Exchange (ETDEWEB)

    Jurburg, M.; Viles, E.; Tanco, M.; Mateo, R.; Lleó, A.

    2016-07-01

    Purpose: Achieving employee participation in continuous improvement (CI) systems is considered as one of the success factors for the sustainability of those systems. Yet, it is also very difficult to obtain because of the interaction of many critical factors that affect employee participation. Therefore, finding ways of measuring all these critical factors can help practitioners manage the employee participation process accordingly. Design/methodology/approach: Based upon the existing literature, this paper presents a 4-Phase (9 steps) diagnostic tool to measure the main determinants associated with the implementation of CI systems affecting employee participation in improvement activities. Findings: The tool showed its usefulness to detect the main weaknesses and improvement opportunities for improving employee participation in CI through the application in two different cases. Practical implications: This diagnostic tool could be particularly interesting for companies adopting CI and other excellence frameworks, which usually include a pillar related to people development inside the organization, but do not include tools to diagnose the state of this pillar. Originality/value: This diagnostic tool presents a user’s perspective approach, ensuring that the weaknesses and improvement opportunities detected during the diagnose come directly from the users of the CI system, which in this case are the employees themselves. Given that the final objective is to identify reasons and problems hindering employee participation, adopting this user’s perspective approach seem more relevant than adopting other more traditional approaches, based on gathering information from the CI system itself or from the CI managers.

  9. Measure to succeed: How to improve employee participation in continuous improvement

    International Nuclear Information System (INIS)

    Jurburg, M.; Viles, E.; Tanco, M.; Mateo, R.; Lleó, A.

    2016-01-01

    Purpose: Achieving employee participation in continuous improvement (CI) systems is considered as one of the success factors for the sustainability of those systems. Yet, it is also very difficult to obtain because of the interaction of many critical factors that affect employee participation. Therefore, finding ways of measuring all these critical factors can help practitioners manage the employee participation process accordingly. Design/methodology/approach: Based upon the existing literature, this paper presents a 4-Phase (9 steps) diagnostic tool to measure the main determinants associated with the implementation of CI systems affecting employee participation in improvement activities. Findings: The tool showed its usefulness to detect the main weaknesses and improvement opportunities for improving employee participation in CI through the application in two different cases. Practical implications: This diagnostic tool could be particularly interesting for companies adopting CI and other excellence frameworks, which usually include a pillar related to people development inside the organization, but do not include tools to diagnose the state of this pillar. Originality/value: This diagnostic tool presents a user’s perspective approach, ensuring that the weaknesses and improvement opportunities detected during the diagnose come directly from the users of the CI system, which in this case are the employees themselves. Given that the final objective is to identify reasons and problems hindering employee participation, adopting this user’s perspective approach seem more relevant than adopting other more traditional approaches, based on gathering information from the CI system itself or from the CI managers.

  10. A continuous monitor for the measurement of environmental radon

    International Nuclear Information System (INIS)

    Chittaporn, P.; Eisenbud, M.; Harley, N.H.

    1981-01-01

    Although inhaled short-lived 222 Rn daughters deliver the pertinent α dose for assessing human health effects, radon daughters do not of themselves exist in any atmosphere for more than 2-3 hr. Their long-lived parent (3.82 day) 222 Rn supports the daughter activity and it is the transport of 222 Rn which ultimately determines dose. Without an understanding of the long and short-term temporal patterns of indoor and outdoor 222 Rn it is impossible to understand the factors which are important in establishing any human health hazard from the daughters. This work describes a new continuous environmental radon monitor which measures radon alone without interference from radon daughters. The detector is a cylinder (13 cm diameter x 14 cm high), is lined with alpha scintillation phospor on a Mylar substrate and is portable and easily constructed from inexpensive and commercially available materials. (author)

  11. Method for continuous measurement of export from a leaf

    International Nuclear Information System (INIS)

    Geiger, D.R.; Fondy, B.R.

    1979-01-01

    Export of labeled material derived by continuous photosynthesis in 14 CO 2 was monitored with a Geiger-Mueller detector positioned next to an exporting leaf blade. Rate of export of labeled material was calculated from the difference between rates of retention and net photosynthesis of labeled carbon for the observed leaf. Given certain conditions, including nearly constant distribution of labeled material among minor veins and various types of cells, count rate data for the source leaf can be coverted to rate of export of carbon. Changes in counting efficiency resulting from changes in leaf water status can be corrected for with data from a transducer which measures leaf thickness. Export data agreed with data obtained by monitoring the arrival of 14 C in the sink region; isolated leaves gave values near zero for export of labeled carbon from a given leaf on an intact plant. The technique detects changes in export with a resolution of 10 to 20 minutes

  12. Continuous measurements of N2O emissions from arable fields

    Science.gov (United States)

    Wallman, Magdalena; Lammirato, Carlo; Rütting, Tobias; Delin, Sofia; Weslien, Per; Klemedtsson, Leif

    2017-04-01

    Agriculture represents 59 % of the anthropogenic nitrous oxide (N2O) emissions, according to the IPCC (Ciais et al. 2013). N2O emissions are typically irregular and vary widely in time and space, which makes it difficult to get a good representation of the emissions (Henault et al. 2012), particularly if measurements have low frequency and/or cover only a short time period. Manual measurements are, for practical reasons, often short-term and low-frequent, or restricted to periods where emissions are expected to be high, e.g. after fertilizing. However, the nature of N2O emissions, being largely unpredictable, calls for continuous or near-continuous measurements over long time periods. So far, rather few long-term, high resolution measurements of N2O emissions from arable fields are reported; among them are Flessa et al. (2002) and Senapati et al. (2016). In this study, we have a two-year data set (2015-2017) with hourly measurements from ten automatic chambers, covering unfertilized controls as well as different nitrogen fertilizer treatments. Grain was produced on the field, and effects of tillage, harvest and other cropping measures were covered. What we can see from the experiment is that (a) the unfertilized control plots seem to follow the same emission pattern as the fertilized plots, at a level similar to the standard mineral fertilized plots (120 kg N ha-1 yr-1) and (b) freeze/thaw emissions are comparable in size to emissions after fertilizing. These two findings imply that the importance of fertilizing to the overall N2O emissions from arable soils may be smaller than previously expected. References: Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell et al. 2013: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung et

  13. Influence of weak magnetic field and tartrate on the oxidation and sequestration of Sb(III) by zerovalent iron: Batch and semi-continuous flow study.

    Science.gov (United States)

    Fan, Peng; Sun, Yuankui; Qiao, Junlian; Lo, Irene M C; Guan, Xiaohong

    2018-02-05

    The influence of weak magnetic field (WMF) and tartrate on the oxidation and sequestration of Sb(III) by zerovalent iron (ZVI) was investigated with batch and semi-continuous reactors. The species analysis of antinomy in aqueous solution and solid precipitates implied that both Sb(III) adsorption preceding its conversion to Sb(V) in solid phase and Sb(III) oxidation to Sb(V) preceding its adsorption in aqueous phase occurred in the process of Sb(III) sequestration by ZVI. The application of WMF greatly increased the rate constants of Sb tot (total Sb) and Sb(III) disappearance during Sb(III)-tartrate and uncomplexed-Sb(III) sequestration by ZVI. The enhancing effect of WMF was primarily due to the accelerated ZVI corrosion in the presence of WMF, as evidenced by the influence of WMF on the change of solution and solid properties with reaction. However, tartrate greatly retarded Sb removal by ZVI. It was because tartrate inhibited ZVI corrosion, competed with Sb(III) and Sb(V) for the active surface sites, increased the negative surface charge of the generated iron (hydr)oxides due to its adsorption, and formed soluble complexes with Fe(III). The positive effect of WMF on Sb(III)-tartrate and uncomplexed-Sb(III) removal by ZVI was also verified with a magnetic semi-continuous reactor. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Measurement of the effective weak mixing angle by jet-charge asymmetry in hadronic decays of the Z boson

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Easo, S; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muanza, G S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sakar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F; Zilizi, G

    1998-01-01

    The coupling of the Z boson to quarks is studied in a sample of about 3.5 million hadronic Z decays collected by the L3 experiment at LEP from 1991 to 1995. The forward-backward quark charge asymmet ry is measured by means of a jet charge technique. From the measured asymmetries, the effective weak mixing angle is determined to be \\begin{center} $\\STE = 0.2327 \\pm 0.0012(\\mbox{\\emph{stat.}} ) \\pm 0.0013(\\mbox{\\emph{syst.}}).$

  15. On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress

    International Nuclear Information System (INIS)

    Bocko, M.F.; Onofrio, R.

    1996-01-01

    Several high-precision physics experiments are approaching a level of sensitivity at which the intrinsic quantum nature of the experimental apparatus is the dominant source of fluctuations limiting the sensitivity of the measurements. This quantum limit is embodied by the Heisenberg uncertainty principle, which prohibits arbitrarily precise simultaneous measurements of two conjugate observables of a system but allows one-time measurements of a single observable with any precision. The dynamical evolution of a system immediately following a measurement limits the class of observables that may be measured repeatedly with arbitrary precision, with the influence of the measurement apparatus on the system being confined strictly to the conjugate observables. Observables having this feature, and the corresponding measurements performed on them, have been named quantum nondemolition or back-action evasion observables. In a previous review (Caves et al., 1980, Rev. Mod. Phys. 52, 341) a quantum-mechanical analysis of quantum nondemolition measurements of a harmonic oscillator was presented. The present review summarizes the experimental progress on quantum nondemolition measurements and the classical models developed to describe and guide the development of practical implementations of quantum nondemolition measurements. The relationship between the classical and quantum theoretical models is also reviewed. The concept of quantum nondemolition and back-action evasion measurements originated in the context of measurements on a macroscopic mechanical harmonic oscillator, though these techniques may be useful in other experimental contexts as well, as is discussed in the last part of this review. copyright 1996 The American Physical Society

  16. Constraints on dike propagation from continuous GPS measurements

    Science.gov (United States)

    Segall, P.; Cervelli, Peter; Owen, S.; Lisowski, M.; Miklius, Asta

    2001-01-01

    The January 1997 East Rift Zone eruption on Kilauea volcano, Hawaii, occurred within a network of continuous Global Positioning System (GPS) receivers. The GPS measurements reveal the temporal history of deformation during dike intrusion, beginning ??? 8 hours prior to the onset of the eruption. The dike volume as a function of time, estimated from the GPS data using elastic Green's functions for a homogeneous half-space, shows that only two thirds of the final dike volume accumulated prior to the eruption and the rate of volume change decreased with time. These observations are inconsistent with simple models of dike propagation, which predict accelerating dike volume up to the time of the eruption and little or no change thereafter. Deflationary tilt changes at Kilauea summit mirror the inferred dike volume history, suggesting that the rate of dike propagation is limited by flow of magma into the dike. A simple, lumped parameter model of a coupled dike magma chamber system shows that the tendency for a dike to end in an eruption (rather than intrusion) is favored by high initial dike pressures, compressional stress states, large, compressible magma reservoirs, and highly conductive conduits linking the dike and source reservoirs. Comparison of model predictions to the observed dike volume history, the ratio of erupted to intruded magma, and the deflationary history of the summit magma chamber suggest that most of the magma supplied to the growing dike came from sources near to the eruption through highly conductive conduits. Interpretation is complicated by the presence of multiple source reservoirs, magma vesiculation and cooling, as well as spatial variations in dike-normal stress. Reinflation of the summit magma chamber following the eruption was measured by GPS and accompanied a rise in the level of the Pu'u O'o lava lake. For a spheroidal chamber these data imply a summit magma chamber volume of ??? 20 km3, consistent with recent estimates from seismic

  17. Measurement of weak electric currents in copper wire phantoms using MRI: influence of susceptibility enhancement.

    Science.gov (United States)

    Huang, Ruiwang; Posnansky, Oleg; Celik, Abdullah; Oros-Peusquens, Ana-Maria; Ermer, Veronika; Irkens, Marco; Wegener, H-Peter; Shah, N Jon

    2006-08-01

    The use of magnetic resonance imaging (MRI)-based methods for the direct detection of neuronal currents is a topic of intense investigation. Much experimental work has been carried out with the express aim of establishing detection thresholds and sensitivity to flowing currents. However, in most of these experiments, magnetic susceptibility enhancement was ignored. In this work, we present results that show the influence of a susceptibility artefact on the detection threshold and sensitivity. For this purpose, a novel phantom, consisting of a water-filled cylinder with two wires of different materials connected in series, was constructed. Magnitude MR images were acquired from a single slice using a gradient-echo echo planar imaging (EPI) sequence. The data show that the time course of the detected MR signal magnitude correlates very well with the waveform of the input current. The effect of the susceptibility artefacts arising from the two different wires was examined by comparing the magnitudes of the MR signals at different voxel locations. Our results indicate the following: (1) MR signal enhancement arising from the magnetic susceptibility effect influences the detection sensitivity of weak current; (2) the detection threshold and sensitivity are phantom-wire dependent; (3) sub-mu A electric current detection in a phantom is possible on a 1.5-T MR scanner in the presence of susceptibility enhancement.

  18. Combinatoric Models of Information Retrieval Ranking Methods and Performance Measures for Weakly-Ordered Document Collections

    Science.gov (United States)

    Church, Lewis

    2010-01-01

    This dissertation answers three research questions: (1) What are the characteristics of a combinatoric measure, based on the Average Search Length (ASL), that performs the same as a probabilistic version of the ASL?; (2) Does the combinatoric ASL measure produce the same performance result as the one that is obtained by ranking a collection of…

  19. Continuous measurements of methane from a tower network over Siberia

    International Nuclear Information System (INIS)

    Sasakawa, M.; Machida, T.; Saeki, T.; Koyama, Y.; Maksyutov, S.; Shimoyama, K.; Tsuda, N.; Suto, H.; Arshinov, M.; Davydov, D.; Fofonov, A.; Krasnov, O.

    2010-01-01

    We have been conducting continuous measurements of Methane (CH 4 ) concentration from an expanding network of towers (JR-STATION: Japan-Russia Siberian Tall Tower Inland Observation Network) located in taiga, steppe and wetland biomes of Siberia since 2004. High daytime means (>2000 ppb) observed simultaneously at several towers during winter, together with in situ weather data and NCEP/NCAR reanalysis data, indicate that high pressure systems caused CH 4 accumulation at subcontinental scale due to the widespread formation of an inversion layer. Daytime means sometimes exceeded 2000 ppb, particularly in the summer of 2007 when temperature and precipitation rates were anomalously high over West Siberia, which implies that CH 4 emission from wetlands were exceptionally high in 2007. Many hot spots detected by MODIS in the summer of 2007 illustrate that the contribution of biomass burning also cannot be neglected. Daytime mean CH 4 concentrations from the Siberian tower sites were generally higher than CH 4 values reported at NOAA coastal sites in the same latitudinal zone, and the difference in concentrations between two sets of sites was reproduced with a coupled Eulerian-Lagrangian transport model. Simulations of emissions from different CH 4 sources suggested that the major contributor to variation switched from wetlands during summer to fossil fuel during winter.

  20. Continuous measurements of methane from a tower network over Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Sasakawa, M.; Machida, T.; Saeki, T.; Koyama, Y.; Maksyutov, S. (Center for Global Environmental Research, National Inst. for Environmental Studies, Tsukuba, Ibaraki (Japan)); Shimoyama, K. (Inst. of Low Temperature Science, Hokkaido Univ., Hokkaido (Japan)); Tsuda, N. (Global Environmental Forum, Tokyo (Japan)); Suto, H. (Japan Aerospace Exploration Agency (Japan)); Arshinov, M.; Davydov, D.; Fofonov, A.; Krasnov, O. (Inst. of Atmospheric Optics, Russian Academy of Sciences, Siberian Branch (Russian Federation))

    2010-11-15

    We have been conducting continuous measurements of Methane (CH{sub 4}) concentration from an expanding network of towers (JR-STATION: Japan-Russia Siberian Tall Tower Inland Observation Network) located in taiga, steppe and wetland biomes of Siberia since 2004. High daytime means (>2000 ppb) observed simultaneously at several towers during winter, together with in situ weather data and NCEP/NCAR reanalysis data, indicate that high pressure systems caused CH{sub 4} accumulation at subcontinental scale due to the widespread formation of an inversion layer. Daytime means sometimes exceeded 2000 ppb, particularly in the summer of 2007 when temperature and precipitation rates were anomalously high over West Siberia, which implies that CH{sub 4} emission from wetlands were exceptionally high in 2007. Many hot spots detected by MODIS in the summer of 2007 illustrate that the contribution of biomass burning also cannot be neglected. Daytime mean CH{sub 4} concentrations from the Siberian tower sites were generally higher than CH{sub 4} values reported at NOAA coastal sites in the same latitudinal zone, and the difference in concentrations between two sets of sites was reproduced with a coupled Eulerian-Lagrangian transport model. Simulations of emissions from different CH{sub 4} sources suggested that the major contributor to variation switched from wetlands during summer to fossil fuel during winter.

  1. Measurement of weak magnetic field of corrosion current of isolated corrosion center

    Directory of Open Access Journals (Sweden)

    I. V. Bardin

    2015-01-01

    Full Text Available A very small magnetic field of corrosion current, of the order of 10−4 Oe, generated by isolated zinc inclusion in a copper platelet placed in electrolyte has been measured for the first time with a highly sensitive giant magneto-impedance magnetometer. The total corrosion current of the inclusion is estimated comparing the measured magnetic field distribution with corresponding theoretical calculation. The estimated value of the total corrosion current turns out to be in reasonable agreement with that one obtained in the standard gravimetric measurement.

  2. Measurement of acid dissociation constants of weak acids by cation exchange and conductometry

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, P.K.; Nara, Osamu (Texas Tech Univ., Lubbock (USA))

    1990-06-01

    A simple strategy is presented for the determination of acid dissociation constants based on the measurement of conductance of a known concentration of the acid and/or the conductance of a solution of its fully or partially neutralized alkali-metal salts. For an n-protic acid, 2n conductance measurements are minimally necessary. In the simplest case of a typical monoprotic acid, the conductance of its alkali salt solution is measured before and after passage through an H{sup +}-form exchanger. From these data both the pK{sub a} of the acid and the equivalent conductance of the anion can be computed. The underlying equations are rigorously solved for monoprotic acids and some diprotic acid systems. For other diprotic and multiprotic acid systems, initial estimates are obtained by making approximations; the complete data set is then subjected to multiparametric fitting. The method does not require pH measurements; conductance can generally be measured accurately at low enough ionic strengths to obviate the need for major activity correction. Several experimental measurements are presented and excellent agreement with literature pK{sub a} values is observed. The reliability of the equivalent conductance values computed in this fashion is limited, however.

  3. A decade of continuous NEE measurements at a Scottish peatland

    Science.gov (United States)

    Helfter, Carole; Campbell, Claire; Coyle, Mhairi; Anderson, Margaret; Drewer, Julia; Levy, Peter; Famulari, Daniela; Twigg, Marsailidh; Skiba, Ute; Billett, Michael; Dinsmore, Kerry; Nemitz, Eiko; Sutton, Mark

    2013-04-01

    Eddy-covariance measurements of carbon dioxide (CO2) fluxes have been running continuously at the Auchencorth Moss peatland site in Scotland (55o47'32N, 3o14'35W, 267 m a.s.l.) since the spring of 2002 which makes this study one of the longest ones to date on a peatland system. Auchencorth Moss is a low-lying, ombrotrophic peatland situated ca. 20 km south-west of Edinburgh. Peat depth ranges from 0.5 m and the site has a mean annual precipitation of 1155 mm. The open moorland site has an extensive uniform fetch of blanket bog to the south, west and north. The vegetation present within the flux measurement footprint comprises mixed grass species, heather and substantial areas of moss species (Sphagnum spp. and Polytrichum spp.). The eddy-covariance system consists of a Licor 7000 closed-path infrared gas analyser operating at 10 Hz for the simultaneous measurement of carbon dioxide and water vapour and of a Gill Windmaster Pro ultrasonic anemometer, operating at 20 Hz, and mounted atop a 3 m mast. The effective measurement height is 3.5 m with a vertical separation of 20 cm between the anemometer and the inlet of the sampling line. Air is sampled at 20 litres per minute through a 40 m long Dekabon line (internal diameter 4 mm). In addition to eddy-covariance measurements, the site is equipped with a weather station, soil temperature measurements, total solar radiation and photosynthetically active radiation (PAR) sensors, a tipping bucket for rainfall and, since April 2007, water table depth has been recorded at half-hourly interval. On an annual basis, the peatland at Auchencorth Moss has consistently been a net sink of CO2 in the study period 2002-2012 with a mean net ecosystem exchange (NEE) of - 69.1 ± 33.6 g C-CO2 m-2 yr-1. This value is at the high end of other recent studies as is the inter-annual range of NEE (-31.4 to -135.9 g C-CO2 m-2 yr-1). Inter-annual variations in NEE are significant and strongly correlated to the length of the growing seasons

  4. Weak value controversy

    Science.gov (United States)

    Vaidman, L.

    2017-10-01

    Recent controversy regarding the meaning and usefulness of weak values is reviewed. It is argued that in spite of recent statistical arguments by Ferrie and Combes, experiments with anomalous weak values provide useful amplification techniques for precision measurements of small effects in many realistic situations. The statistical nature of weak values is questioned. Although measuring weak values requires an ensemble, it is argued that the weak value, similarly to an eigenvalue, is a property of a single pre- and post-selected quantum system. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  5. The G0 experiment at Jefferson laboratory: Measurement of the weak neutral form factors of the nucleon

    International Nuclear Information System (INIS)

    Furget, C.

    2005-01-01

    The G0 experiment aims to measure parity-violating asymmetries in elastic electron-proton and quasi-elastic electron-deuteron scattering. This experimental program allows to perform the separation of the electric and magnetic weak neutral and axial form factors for three different momentum transfers 0.3, 0.5 and 0.8 (GeV/c)2. The first part of the experiment has been performed in Hall C of Jefferson Laboratory with a commissioned setup. A preliminary analysis of the data has provided a first estimate of the main systematic uncertainties. The analysis to determine the actual physics asymmetries is proceeding

  6. Transition from weak to strong measurements by nonlinear quantum feedback control

    International Nuclear Information System (INIS)

    Zhang Jing; Liu Yuxi; Wu Rebing; Li Chunwen; Tarn, Tzyh-Jong

    2010-01-01

    We find that feedback control may induce 'pseudo'-nonlinear dynamics in a damped harmonic oscillator, whose centroid trajectory in the phase space behaves like a classical nonlinear system. Thus, similar to nonlinear amplifiers (e.g., rf-driven Josephson junctions), feedback control on the harmonic oscillator can induce nonlinear bifurcation, which can be used to amplify small signals and further to measure quantum states of qubits. Using the cavity QED and the circuit QED systems as examples, we show how to apply our method to measuring the states of two-level atoms and superconducting charge qubits.

  7. Weak convergence to isotropic complex S α S $S\\alpha S$ random measure

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2017-09-01

    Full Text Available Abstract In this paper, we prove that an isotropic complex symmetric α-stable random measure ( 0 < α < 2 $0<\\alpha<2$ can be approximated by a complex process constructed by integrals based on the Poisson process with random intensity.

  8. Galaxy–Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wentao [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Yang, Xiaohu; Zhang, Jun; Tweed, Dylan [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Fu, Liping; Shu, Chenggang [Shanghai Key Lab for Astrophysics, Shanghai Normal University, 100 Guilin Road, 200234, Shanghai (China); Mo, H. J. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Bosch, Frank C. van den [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Li, Ran [Key Laboratory for Computational Astrophysics, Partner Group of the Max Planck Institute for Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Li, Nan [Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Liu, Xiangkun; Pan, Chuzhong [Department of Astronomy, Peking University, Beijing 100871 (China); Wang, Yiran [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801 (United States); Radovich, Mario, E-mail: walt@shao.ac.cn, E-mail: xyang@sjtu.edu.cn [INAF-Osservatorio Astronomico di Napoli, via Moiariello 16, I-80131 Napoli (Italy)

    2017-02-10

    We present our image processing pipeline that corrects the systematics introduced by the point-spread function (PSF). Using this pipeline, we processed Sloan Digital Sky Survey (SDSS) DR7 imaging data in r band and generated a galaxy catalog containing the shape information. Based on our shape measurements of the galaxy images from SDSS DR7, we extract the galaxy–galaxy (GG) lensing signals around foreground spectroscopic galaxies binned in different luminosities and stellar masses. We estimated the systematics, e.g., selection bias, PSF reconstruction bias, PSF dilution bias, shear responsivity bias, and noise rectification bias, which in total is between −9.1% and 20.8% at 2 σ levels. The overall GG lensing signals we measured are in good agreement with Mandelbaum et al. The reduced χ {sup 2} between the two measurements in different luminosity bins are from 0.43 to 0.83. Larger reduced χ {sup 2} from 0.60 to 1.87 are seen for different stellar mass bins, which is mainly caused by the different stellar mass estimator. The results in this paper with higher signal-to-noise ratio are due to the larger survey area than SDSS DR4, confirming that more luminous/massive galaxies bear stronger GG lensing signals. We divide the foreground galaxies into red/blue and star-forming/quenched subsamples and measure their GG lensing signals. We find that, at a specific stellar mass/luminosity, the red/quenched galaxies have stronger GG lensing signals than their counterparts, especially at large radii. These GG lensing signals can be used to probe the galaxy–halo mass relations and their environmental dependences in the halo occupation or conditional luminosity function framework.

  9. Measuring the Weak Charge of the Proton and the Hadronic Parity Violation of the N → Δ Transition

    Energy Technology Data Exchange (ETDEWEB)

    Leacock, John D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2012-10-16

    Qweak will determine the weak charge of the proton, Qp{sub W}, via an asymmetry measurement of parity-violating elastic electron-proton scattering at low four momentum transfer to a precision of 4%. QpW has a firm Standard Model prediction and is related to the weak mixing angle, sin2 ΦW, a well-defined Standard Model parameter. Qweak will probe a subset of new physics to the TeV mass scale and test the Standard Model. The details of how this measurement was performed and the analysis of the 25% elastic dataset will be presented in this thesis. Also, an analysis of an auxiliary measurement of the parity-violating asymmetry in the N → Δ transition is presented. It is used as a systematic inelastic background correction in the elastic analysis and to extract information about the hadronic parity violation through the low energy constant, dΔ. The elastic asymmetry at Q2 = 0.0252 ± 0.0007 GeV2 was measured to be Aep = -265 ± 40 ± 22 ± 68 ppb (stat., sys., and blinding). Extrapolated to Q2 = 0, the value of the proton's weak charge was measured to be QpW = 0.077 ± 0.019 (stat. and sys.) ± 0.026 (blinding). This is within 1 σ of the Standard Model prediction of QpW = 0.0705 ± 0.0008. The N → Δ inelastic asymmetry at Q2 = 0.02078 ± 0.0005 GeV2 and W = 1205 MeV was measured to be Ainel = -3.03 ± 0.65 ± 0.73 ± 0.07 ppm (stat., sys., and blinding). This result constrains the low energy constant to be dΔ = 5.8 ± 22gπ, and, if the result of the G0 experiment is included, dΔ = 5.8 ± 17gπ. This result rules out suggested large values of dΔ motivated by radiative hyperon decays. The elastic measurement is the first direct measurement of the weak charge of the proton while the inelastic measurement is only the second

  10. A new front-face optical cell for measuring weak fluorescent emissions with time resolution in the picosecond time scale.

    Science.gov (United States)

    Gryczynski, Z; Bucci, E

    1993-11-01

    Recent developments of ultrafast fluorimeters allow measuring time-resolved fluorescence on the picosecond time scale. This implies one is able to monitor lifetimes and anisotropy decays of highly quenched systems and of systems that contain fluorophores having lifetimes in the subnanosecond range; both systems that emit weak signals. The combination of weak signals and very short lifetimes makes the measurements prone to distortions which are negligible in standard fluorescence experiments. To cope with these difficulties, we have designed a new optical cell for front-face optics which offers to the excitation beam a horizontal free liquid surface in the absence of interactions with optical windows. The new cell has been tested with probes of known lifetimes and anisotropies. It proved very useful in detecting tryptophan fluorescence in hemoglobin. If only diluted samples are available, which cannot be used in front-face optics, regular square geometry can still be utilized by inserting light absorbers into a cuvette of 1 cm path length.

  11. Measured lifetimes of states in 197Au and a critical comparison with the weak-coupling core-excitation model

    International Nuclear Information System (INIS)

    Bolotin, H.H.; Kennedy, D.L.; Linard, B.J.; Stuchbery, A.E.

    1979-01-01

    The lifetimes of five excited states in 197 Au up to an excitation energy of 885 keV were measured by the recoil-distance method (RDM). These levels were populated by Coulomb excitation using both 90 MeV 20 Ne and 120 MeV 35 Cl ion beams. The experimentally determined spectroscopy of the low-lying levels 3/2 + (ground state) and 1/2 + , (3/2) + 2 , 5/2 + and 7/2 + at 77.3, 268.8, 278.9, and 547.5 keV excitation energy, respectively, has been critically compared with the detailed predictions of the de-Shalit weak-coupling core-excitation model. When the model is taken to represent the case of a dsub(3/2) proton hole coupled to a 198 Hg core, the model parameters obtained are in accord with the criteria implicit for weak core coupling and, at the same time, are in remarkably good agreement with virtually all measured E2 and M1 transition rates. (Auth.)

  12. Measurement of the $\\beta$-asymmetry parameter of $^{67}$Cu in search for tensor type currents in the weak interaction

    CERN Document Server

    Soti, G.; Breitenfeldt, M.; Finlay, P.; Herzog, P.; Knecht, A.; Köster, U.; Kraev, I.S.; Porobic, T.; Prashanth, P.N.; Towner, I.S.; Tramm, C.; Zákoucký, D.; Severijns, N.

    2014-01-01

    Precision measurements at low energy search for physics beyond the Standard Model in a way complementary to searches for new particles at colliders. In the weak sector the most general $\\beta$ decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear $\\beta$ decay are on the level of several percent. The goal of this paper is extracting new information on tensor coupling constants by measuring the $\\beta$-asymmetry parameter in the pure Gamow-Teller decay of $^{67}$Cu, thereby testing the V-A structure of the weak interaction. An iron sample foil into which the radioactive nuclei were implanted was cooled down to milliKelvin temperatures in a $^3$He-$^4$He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic $\\beta$ radiation was observed with planar high purity germanium d...

  13. Plasma flow measurement using directional Langmuir probe under weakly ion-magnetized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Kenichi; Okamoto, Atsushi [Graduate School of Science, Nagoya Univ., Nagoya (Japan); Yoshimura, Shinji; Tanaka, Masayoshi Y. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2000-07-01

    It is both experimentally and theoretically demonstrated that ion flow velocity at an arbitrary angle with respect to the magnetic field can be measured with a directional Langmuir probe. Based on the symmetry argument, we show that the effect of magnetic field on directional probe current is exactly canceled in determining the ion flow velocity, and obtain the generalized relation between flow velocity and directional probe currents valid for any flowing direction. The absolute value of the flow velocity is determined by an in situ calibration method of the probe. The applicability limit of the present method to a strongly ion-magnetized plasma is experimentally examined. (author)

  14. Ultra-Weak Fiber Bragg Grating Sensing Network Coated with Sensitive Material for Multi-Parameter Measurements

    Directory of Open Access Journals (Sweden)

    Wei Bai

    2017-06-01

    Full Text Available A multi-parameter measurement system based on ultra-weak fiber Bragg grating (UFBG array with sensitive material was proposed and experimentally demonstrated. The UFBG array interrogation principle is time division multiplex technology with two semiconductor optical amplifiers as timing units. Experimental results showed that the performance of the proposed UFBG system is almost equal to that of traditional FBG, while the UFBG array system has obvious superiority with potential multiplexing ability for multi-point and multi-parameter measurement. The system experimented on a 144 UFBG array with the reflectivity of UFBG ~0.04% for the four target parameters: hydrogen, humidity, temperature and salinity. Moreover, a uniform solution was customized to divide the cross-sensitivity between temperature and other target parameters. It is expected that this scheme will be capable of handling thousands of multi-parameter sensors in a single fiber.

  15. Ultra-Weak Fiber Bragg Grating Sensing Network Coated with Sensitive Material for Multi-Parameter Measurements.

    Science.gov (United States)

    Bai, Wei; Yang, Minghong; Hu, Chenyuan; Dai, Jixiang; Zhong, Xuexiang; Huang, Shuai; Wang, Gaopeng

    2017-06-26

    A multi-parameter measurement system based on ultra-weak fiber Bragg grating (UFBG) array with sensitive material was proposed and experimentally demonstrated. The UFBG array interrogation principle is time division multiplex technology with two semiconductor optical amplifiers as timing units. Experimental results showed that the performance of the proposed UFBG system is almost equal to that of traditional FBG, while the UFBG array system has obvious superiority with potential multiplexing ability for multi-point and multi-parameter measurement. The system experimented on a 144 UFBG array with the reflectivity of UFBG ~0.04% for the four target parameters: hydrogen, humidity, temperature and salinity. Moreover, a uniform solution was customized to divide the cross-sensitivity between temperature and other target parameters. It is expected that this scheme will be capable of handling thousands of multi-parameter sensors in a single fiber.

  16. Weak openness and almost openness

    Directory of Open Access Journals (Sweden)

    David A. Rose

    1984-01-01

    Full Text Available Weak openness and almost openness for arbitrary functions between topological spaces are defined as duals to the weak continuity of Levine and the almost continuity of Husain respectively. Independence of these two openness conditions is noted and comparison is made between these and the almost openness of Singal and Singal. Some results dual to those known for weak continuity and almost continuity are obtained. Nearly almost openness is defined and used to obtain an improved link from weak continuity to almost continuity.

  17. Chasing equilibrium: measuring the intrinsic solubility of weak acids and bases.

    Science.gov (United States)

    Stuart, Martin; Box, Karl

    2005-02-15

    A novel procedure is described for rapid (20-80 min) measurement of intrinsic solubility values of organic acids, bases, and ampholytes. In this procedure, a quantity of substance was first dissolved at a pH where it exists predominantly in its ionized form, and then a precipitate of the neutral (un-ionized) species was formed by changing the pH. Subsequently, the rate of change of pH due to precipitation or dissolution was monitored and strong acid and base titrant were added to adjust the pH to discover its equilibrium conditions, and the intrinsic solubility of the neutral form of the compound could then be determined. The procedure was applied to a variety of monoprotic and diprotic pharmaceutical compounds. The results were highly repeatable and had a good correlation to available published values. Data collected during the procedure provided good diagnostic information. Kinetic solubility data were also collected but provided a poor guide to the intrinsic solubility.

  18. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty

    Science.gov (United States)

    Pande, S.; Arkesteijn, L.; Savenije, H.; Bastidas, L. A.

    2015-04-01

    This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is analyzed in a step by step manner. This is done measuring differences between simulations of a model under different realizations of input forcings. Algorithms are then suggested to estimate model complexity. Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on resampled input data sets from basins that span across the continental US. The model complexities for SIXPAR are estimated for various parameter ranges. It is shown that complexity of SIXPAR increases with lower storage capacity and/or higher recession coefficients. Thus it is argued that a conceptually simple model structure, such as SIXPAR, can be more complex than an intuitively more complex model structure, such as SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of feasible model parameters influence the complexity of the model selection problem just as parameter dimensionality (number of parameters) does and that parameter dimensionality is an incomplete indicator of stability of hydrological model selection and prediction problems.

  19. Continuous measurement of heart rate variability following carbon ...

    African Journals Online (AJOL)

    Background: Previous studies of autonomic nervous system activity through analysis of heart rate variability (HRV) have demonstrated increased sympathetic activity during positive-pressure pneumoperitoneum. We employed an online, continuous method for rapid HRV analysis (MemCalc™, Tarawa, Suwa Trust, Tokyo, ...

  20. Performance of the Alice muon spectrometer. Weak boson production and measurement in heavy-ion collisions at LHC

    International Nuclear Information System (INIS)

    Conesa del valle, Z.

    2007-07-01

    Lattice QCD predicts a transition from a hadronic phase to a Quark Gluon Plasma phase, QGP, for temperatures above 10 13 K. Heavy-ion collisions are proposed to recreate it in laboratory. With such a purpose, the LHC (Large Hadron Collider) will provide Pb-Pb collisions at 5.5 TeV/u, and the ALICE experiment will permit to explore them. In particular, the ALICE muon spectrometer will permit to investigate the muon related probes (quarkonia, open beauty,...). The expected apparatus performances to measure muons and dimuons are discussed. A factorization technique is employed to unravel the different contributions to the global efficiency. Results indicate that the detector should be able to measure muons up to pT ∼ 100 GeV/c with a resolution of about 10 per cent. We show that weak bosons production could be measured for the first time in heavy-ion collisions. Single muon p T and dimuons invariant mass distributions will probe W and Z production. As mainly muons from b- and c-quarks decays will populate the intermediate-p T of 5 - 25 GeV/c, heavy quark in-medium energy loss calculations indicate that the single muon spectra would be suppressed by a factor 2-4 in the most central 0 - 10% Pb-Pb collisions at 5.5 TeV. However, for p T > 35 GeV/c the weak boson decays are predominant, and no suppression is expected. Estimations indicate that the b- and W-muons crossing point shifts down in transverse momenta by 5 to 7 GeV/c in the most central 0 - 10% Pb-Pb collisions at 5.5 TeV. (author)

  1. Weak currents

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1976-01-01

    A survey of the fundamental ideas on weak currents such as CVC and PCAC and a presentation of the Cabibbo current and the neutral weak currents according to the Salam-Weinberg model and the Glashow-Iliopoulos-Miami model are given [fr

  2. Bayesian galaxy shape measurement for weak lensing surveys - III. Application to the Canada-France-Hawaii Telescope Lensing Survey

    Science.gov (United States)

    Miller, L.; Heymans, C.; Kitching, T. D.; van Waerbeke, L.; Erben, T.; Hildebrandt, H.; Hoekstra, H.; Mellier, Y.; Rowe, B. T. P.; Coupon, J.; Dietrich, J. P.; Fu, L.; Harnois-Déraps, J.; Hudson, M. J.; Kilbinger, M.; Kuijken, K.; Schrabback, T.; Semboloni, E.; Vafaei, S.; Velander, M.

    2013-03-01

    A likelihood-based method for measuring weak gravitational lensing shear in deep galaxy surveys is described and applied to the Canada-France-Hawaii Telescope (CFHT) Lensing Survey (CFHTLenS). CFHTLenS comprises 154 deg2 of multi-colour optical data from the CFHT Legacy Survey, with lensing measurements being made in the i' band to a depth i'AB noise ratio νSN ≳ 10. The method is based on the lensfit algorithm described in earlier papers, but here we describe a full analysis pipeline that takes into account the properties of real surveys. The method creates pixel-based models of the varying point spread function (PSF) in individual image exposures. It fits PSF-convolved two-component (disc plus bulge) models to measure the ellipticity of each galaxy, with Bayesian marginalization over model nuisance parameters of galaxy position, size, brightness and bulge fraction. The method allows optimal joint measurement of multiple, dithered image exposures, taking into account imaging distortion and the alignment of the multiple measurements. We discuss the effects of noise bias on the likelihood distribution of galaxy ellipticity. Two sets of image simulations that mirror the observed properties of CFHTLenS have been created to establish the method's accuracy and to derive an empirical correction for the effects of noise bias.

  3. Design of automatic control and measurement software for radioactive aerosol continuity monitor

    International Nuclear Information System (INIS)

    Mao Yong; Li Aiwu

    1997-01-01

    The radioactive aerosol continuity measurement is very important for the development of nuclear industry, and it is the major method to measure and find out the leakage of radioactive material. Radioactive aerosol continuity monitor is the advanced method for the radioactive aerosol continuity measurement. With the development of nuclear industry and nuclear power station, it is necessary to design and automatic continuity measurement device. Because of this reason, the authors developed the first unit of radioactive aerosol continuity monitor and adopted the ministry appraisal. The design idea and method of automatic control and measurement for radioactive aerosol continuity monitor are discussed

  4. Gas loop - continuous measurement of thermal and fast neutron fluxes

    International Nuclear Information System (INIS)

    Droulers, Y.; Pleyber, G.; Sciers, P.; Maurin, G.

    1964-01-01

    The measurement method described in this report can be applied both to thermal and fast neutron fluxes. A description is given of two practical applications in each of these two domains. This method is particularly suitable for measurements carried out on 'loop' type equipment. The measurement of the relative flux variations are carried out with an accuracy of 5 per cent. The choice of the shape of the gas circuit leaves a considerable amount of liberty for the adaptation of the measurement circuit to the experimental conditions. (authors) [fr

  5. Weak decays

    International Nuclear Information System (INIS)

    Wojcicki, S.

    1978-11-01

    Lectures are given on weak decays from a phenomenological point of view, emphasizing new results and ideas and the relation of recent results to the new standard theoretical model. The general framework within which the weak decay is viewed and relevant fundamental questions, weak decays of noncharmed hadrons, decays of muons and the tau, and the decays of charmed particles are covered. Limitation is made to the discussion of those topics that either have received recent experimental attention or are relevant to the new physics. (JFP) 178 references

  6. Measuring and modelling occupancy time in NHS continuing healthcare

    Directory of Open Access Journals (Sweden)

    Millard Peter H

    2011-06-01

    Full Text Available Abstract Background Due to increasing demand and financial constraints, NHS continuing healthcare systems seek to find better ways of forecasting demand and budgeting for care. This paper investigates two areas of concern, namely, how long existing patients stay in service and the number of patients that are likely to be still in care after a period of time. Methods An anonymised dataset containing information for all funded admissions to placement and home care in the NHS continuing healthcare system was provided by 26 (out of 31 London primary care trusts. The data related to 11289 patients staying in placement and home care between 1 April 2005 and 31 May 2008 were first analysed. Using a methodology based on length of stay (LoS modelling, we captured the distribution of LoS of patients to estimate the probability of a patient staying in care over a period of time. Using the estimated probabilities we forecasted the number of patients that are likely to be still in care after a period of time (e.g. monthly. Results We noticed that within the NHS continuing healthcare system there are three main categories of patients. Some patients are discharged after a short stay (few days, some others staying for few months and the third category of patients staying for a long period of time (years. Some variations in proportions of discharge and transition between types of care as well as between care groups (e.g. palliative, functional mental health were observed. A close agreement of the observed and the expected numbers of patients suggests a good prediction model. Conclusions The model was tested for care groups within the NHS continuing healthcare system in London to support Primary Care Trusts in budget planning and improve their responsiveness to meet the increasing demand under limited availability of resources. Its applicability can be extended to other types of care, such as hospital care and re-ablement. Further work will be geared towards

  7. Weak interactions

    International Nuclear Information System (INIS)

    Ogava, S.; Savada, S.; Nakagava, M.

    1983-01-01

    The problem of the use of weak interaction laws to study models of elementary particles is discussed. The most typical examples of weak interaction is beta-decay of nucleons and muons. Beta-interaction is presented by quark currents in the form of universal interaction of the V-A type. Universality of weak interactions is well confirmed using as examples e- and μ-channels of pion decay. Hypothesis on partial preservation of axial current is applicable to the analysis of processes with pion participation. In the framework of the model with four flavours lepton decays of hadrons are considered. Weak interaction without lepton participation are also considered. Properties of neutral currents are described briefly

  8. Weak interactions

    International Nuclear Information System (INIS)

    Chanda, R.

    1981-01-01

    The theoretical and experimental evidences to form a basis for Lagrangian Quantum field theory for Weak Interactions are discussed. In this context, gauge invariance aspects of such interactions are showed. (L.C.) [pt

  9. Measurement of the weak mixing angle with the Drell-Yan process in proton-proton collisions at the LHC

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Trauner, Christine; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Benucci, Leonardo; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Raval, Amita; Thomas, Laurent; Vander Marcken, Gil; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Cimmino, Anna; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; Ceard, Ludivine; Cortina Gil, Eduardo; De Favereau De Jeneret, Jerome; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; Brito, Lucas; De Jesus Damiao, Dilson; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Darmenov, Nikolay; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Hektor, Andi; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Lomidze, David; Anagnostou, Georgios; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Dietz-Laursonn, Erik; Erdmann, Martin; Hebbeker, Thomas; Heidemann, Carsten; Hinzmann, Andreas; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Lingemann, Joschka; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Bontenackels, Michael; Cherepanov, Vladimir; Davids, Martina; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Rosin, Michele; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schröder, Matthias; Schum, Torben; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Bauer, Julia; Berger, Joram; Buege, Volker; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Katkov, Igor; Komaragiri, Jyothsna Rani; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Röcker, Steffen; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Petrakou, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Sikler, Ferenc; Veres, Gabor Istvan; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Choudhary, Brajesh C; Gupta, Pooja; Kumar, Ashok; Kumar, Arun; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mehta, Pourus; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Grandi, Claudio; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Santocchia, Attilio; Taroni, Silvia; Valdata, Marisa; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Jo, Hyun Yong; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Seo, Eunsung; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Polujanskas, Mindaugas; Sabonis, Tomas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Tam, Jason; Butler, Philip H; Doesburg, Robert; Silverwood, Hamish; Ahmad, Muhammad; Ahmed, Ijaz; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Brona, Grzegorz; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Nayak, Aruna; Pela, Joao; Ribeiro, Pedro Quinaz; Seixas, Joao; Varela, Joao; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Bona, Marcella; Breuker, Horst; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Georgiou, Georgios; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gouzevitch, Maxime; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Guiducci, Luigi; Hansen, Magnus; Hartl, Christian; Harvey, John; Hegeman, Jeroen; Hegner, Benedikt; Hoffmann, Hans Falk; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Lecoq, Paul; Lenzi, Piergiulio; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Maurisset, Aurelie; Mavromanolakis, Georgios; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stoye, Markus; Tsirou, Andromachi; Vichoudis, Paschalis; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Caminada, Lea; Casal, Bruno; Chanon, Nicolas; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Martinez Ruiz del Arbol, Pablo; Milenovic, Predrag; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Jaeger, Andreas; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Özbek, Melih; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Clement, Emyr; Cussans, David; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Camanzi, Barbara; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Teodorescu, Liliana; Hatakeyama, Kenichi; Liu, Hongxuan; Henderson, Conor; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Mall, Orpheus; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Rutherford, Britney; Salur, Sevil; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Duris, Joseph; Erhan, Samim; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Mullin, Sam Daniel; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Shin, Kyoungha; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Ryd, Anders; Salvati, Emmanuele; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cooper, William; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jensen, Hans; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Limon, Peter; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Pivarski, James; Pordes, Ruth; Prokofyev, Oleg; Schwarz, Thomas; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Goldberg, Sean; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Myeonghun, Park; Remington, Ronald; Rinkevicius, Aurelijus; Schmitt, Michael; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Grizzard, Kevin; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Jindal, Pratima; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Smith, Kenneth; Wan, Zongru; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Sakumoto, Willis; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Atramentov, Oleksiy; Barker, Anthony; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Richards, Alan; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Mane, Poonam; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Issah, Michael; Johns, Willard; Johnston, Cody; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goadhouse, Stephen; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Belknap, Donald; Bellinger, James Nugent; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Efron, Jonathan; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Parker, William; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua; Weinberg, Marc

    2011-01-01

    A multivariate likelihood method to measure electroweak couplings with the Drell-Yan process at the LHC is presented. The process is described by the dilepton rapidity, invariant mass, and decay angle distributions. The decay angle ambiguity due to the unknown assignment of the scattered constituent quark and antiquark to the two protons in a collision is resolved statistically using correlations between the observables. The method is applied to a sample of dimuon events from proton-proton collisions at sqrt(s) = 7 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 1.1 inverse femtobarns. From the dominant u-ubar, d-dbar to gamma*/Z to opposite sign dimuons process, the effective weak mixing angle parameter is measured to be sin^2(theta[eff]) = 0.2287 +/- 0.0020 (stat.) +/- 0.0025 (syst.). This result is consistent with measurements from other processes, as expected within the standard model.

  10. Test of Gravity on Large Scales with Weak Gravitational Lensing and Clustering Measurements of SDSS Luminous Red Galaxies

    Science.gov (United States)

    Reyes, Reinabelle; Mandelbaum, R.; Seljak, U.; Gunn, J.; Lombriser, L.

    2009-01-01

    We perform a test of gravity on large scales (5-50 Mpc/h) using 70,000 luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) DR7 with redshifts 0.16measurements of weak gravitational lensing, galaxy peculiar velocities, and galaxy clustering-- that can discriminate between different theories of gravity and is largely independent of galaxy bias and sigma_8. In particular, E_G is sensitive to the relation between the spatial and temporal scalar perturbations in the space-time metric. While these two potentials are equivalent in concordance cosmology (GR+LCDM) in the absence of anisotropic stress, they are not equivalent in alternative theories of gravity in general, so that different models make different predictions for E_G. We find E_G=0.37±0.05 averaged over scales 5measurements with preliminary predictions from modified gravity theories, including f(R), DGP, and TeVeS. This work serves as a proof of concept for the application of this test in future galaxy surveys such as LSST, for which a very high signal-to-noise measurement will be possible.

  11. The MOLLER Experiment: ``An Ultra-precise Measurement of the Weak Charge of the Electron using moller Scattering''

    Science.gov (United States)

    Beminiwattha, Rakitha; Moller Collaboration

    2017-09-01

    Parity Violating Electron Scattering (PVES) is an extremely successful precision frontier tool that has been used for testing the Standard Model (SM) and understanding nucleon structure. Several generations of highly successful PVES programs at SLAC, MIT-Bates, MAMI-Mainz, and Jefferson Lab have contributed to the understanding of nucleon structure and testing the SM. But missing phenomena like matter-antimatter asymmetry, neutrino flavor oscillations, and dark matter and energy suggest that the SM is only a `low energy' effective theory. The MOLLER experiment at Jefferson Lab will measure the weak charge of the electron, QWe = 1 - 4sin2θW , with a precision of 2.4 % by measuring the parity violating asymmetry in electron-electron () scattering and will be sensitive to subtle but measurable deviations from precisely calculable predictions from the SM. The MOLLER experiment will provide the best contact interaction search for leptons at low OR high energy makes it a probe of physics beyond the Standard Model with sensitivities to mass-scales of new PV physics up to 7.5 TeV. Overview of the experiment and recent pre-R&D progress will be reported.

  12. Measurement of the weak mixing angle with the Drell-Yan process in proton-proton collisions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, S. [Yerevan Physics Institute (Armenia); et al.,

    2011-12-01

    A multivariate likelihood method to measure electroweak couplings with the Drell-Yan process at the LHC is presented. The process is described by the dilepton rapidity, invariant mass, and decay angle distributions. The decay angle ambiguity due to the unknown assignment of the scattered constituent quark and antiquark to the two protons in a collision is resolved statistically using correlations between the observables. The method is applied to a sample of dimuon events from proton-proton collisions at sqrt(s) = 7 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 1.1 inverse femtobarns. From the dominant u-ubar, d-dbar to gamma*/Z to opposite sign dimuons process, the effective weak mixing angle parameter is measured to be sin^2(theta[eff]) = 0.2287 +/- 0.0020 (stat.) +/- 0.0025 (syst.). This result is consistent with measurements from other processes, as expected within the standard model.

  13. Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements.

    Science.gov (United States)

    Ferrari, Giorgio; Sampietro, Marco

    2007-09-01

    This article presents a wide bandwidth transimpedance amplifier based on the series of an integrator and a differentiator stage, having an additional feedback loop to discharge the standing current from the device under test (DUT) to ensure an unlimited measuring time opportunity when compared to switched discharge configurations while maintaining a large signal amplification over the full bandwidth. The amplifier shows a flat response from 0.6 Hz to 1.4 MHz, the capability to operate with leakage currents from the DUT as high as tens of nanoamperes, and rail-to-rail dynamic range for sinusoidal current signals independent of the DUT leakage current. Also available is a monitor output of the stationary current to track experimental slow drifts. The circuit is ideal for noise spectral and impedance measurements of nanodevices and biomolecules when in the presence of a physiological medium and in all cases where high sensitivity current measurements are requested such as in scanning probe microscopy systems.

  14. The Measurement of Multidimensional Gender Inequality: Continuing the Debate

    Science.gov (United States)

    Permanyer, Inaki

    2010-01-01

    The measurement of multidimensional gender inequality is an increasingly important topic that has very relevant policy applications and implications but which has not received much attention from the academic literature. In this paper I make a comprehensive and critical review of the indices proposed in recent years in order to systematise the…

  15. Continuous moisture measurement in metallurgical coke with automatic charge correction

    International Nuclear Information System (INIS)

    Watzke, H.; Mehlhose, D.

    1981-01-01

    A process control system has been developed for automatic batching of the coke amount necessary for metallurgical processes taking into account the moisture content. The measurement is performed with a neutron moisture gage consisting of an Am-Be neutron source and a BF 3 counter. The output information of the counter is used for computer-controlled batching

  16. Measurement system analysis for binary inspection: Continuous versus dichotomous measurands

    NARCIS (Netherlands)

    de Mast, J.; Erdmann, T.P.; van Wieringen, W.N.

    2011-01-01

    We review methods for assessing the reliability of binary measurements, such as accept/reject inspection in industry. Our framework introduces two factors that are highly relevant in deciding which method to use: (1) whether a reference value (gold standard) can be obtained and (2) whether the

  17. Tests of the electroweak standard model and measurement of the weak mixing angle with the ATLAS detector

    International Nuclear Information System (INIS)

    Goebel, M.

    2011-09-01

    In this thesis the global Standard Model (SM) fit to the electroweak precision observables is revisted with respect to newest experimental results. Various consistency checks are performed showing no significant deviation from the SM. The Higgs boson mass is estimated by the electroweak fit to be M H =94 -24 +30 GeV without any information from direct Higgs searches at LEP, Tevatron, and the LHC and the result is M H =125 -10 +8 GeV when including the direct Higgs mass constraints. The strong coupling constant is extracted at fourth perturbative order as α s (M Z 2 )=0.1194±0.0028(exp)±0.0001 (theo). From the fit including the direct Higgs constraints the effective weak mixing angle is determined indirectly to be sin 2 θ l eff =0.23147 -0.00010 +0.00012 . For the W mass the value of M W =80.360 -0.011 +0.012 GeV is obtained indirectly from the fit including the direct Higgs constraints. The electroweak precision data is also exploited to constrain new physics models by using the concept of oblique parameters. In this thesis the following models are investigated: models with a sequential fourth fermion generation, the inert-Higgs doublet model, the littlest Higgs model with T-parity conservation, and models with large extra dimensions. In contrast to the SM, in these models heavy Higgs bosons are in agreement with the electroweak precision data. The forward-backward asymmetry as a function of the invariant mass is measured for pp→ Z/γ * →e + e - events collected with the ATLAS detector at the LHC. The data taken in 2010 at a center-of-mass energy of √(s)=7 TeV corresponding to an integrated luminosity of 37.4 pb -1 is analyzed. The measured forward-backward asymmetry is in agreement with the SM expectation. From the measured forward-backward asymmetry the effective weak mixing angle is extracted as sin 2 θ l eff =0.2204±.0071(stat) -0.0044 +0.0039 (syst). The impact of unparticles and large extra dimensions on the forward-backward asymmetry at large

  18. Tests of the electroweak standard model and measurement of the weak mixing angle with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, M.

    2011-09-15

    In this thesis the global Standard Model (SM) fit to the electroweak precision observables is revisted with respect to newest experimental results. Various consistency checks are performed showing no significant deviation from the SM. The Higgs boson mass is estimated by the electroweak fit to be M{sub H}=94{sub -24}{sup +30} GeV without any information from direct Higgs searches at LEP, Tevatron, and the LHC and the result is M{sub H}=125{sub -10}{sup +8} GeV when including the direct Higgs mass constraints. The strong coupling constant is extracted at fourth perturbative order as {alpha}{sub s}(M{sub Z}{sup 2})=0.1194{+-}0.0028(exp){+-}0.0001 (theo). From the fit including the direct Higgs constraints the effective weak mixing angle is determined indirectly to be sin{sup 2} {theta}{sup l}{sub eff}=0.23147{sub -0.00010}{sup +0.00012}. For the W mass the value of M{sub W}=80.360{sub -0.011}{sup +0.012} GeV is obtained indirectly from the fit including the direct Higgs constraints. The electroweak precision data is also exploited to constrain new physics models by using the concept of oblique parameters. In this thesis the following models are investigated: models with a sequential fourth fermion generation, the inert-Higgs doublet model, the littlest Higgs model with T-parity conservation, and models with large extra dimensions. In contrast to the SM, in these models heavy Higgs bosons are in agreement with the electroweak precision data. The forward-backward asymmetry as a function of the invariant mass is measured for pp{yields} Z/{gamma}{sup *}{yields}e{sup +}e{sup -} events collected with the ATLAS detector at the LHC. The data taken in 2010 at a center-of-mass energy of {radical}(s)=7 TeV corresponding to an integrated luminosity of 37.4 pb{sup -1} is analyzed. The measured forward-backward asymmetry is in agreement with the SM expectation. From the measured forward-backward asymmetry the effective weak mixing angle is extracted as sin{sup 2} {theta}{sup l

  19. Applications of hybrid measurements with discrete and continuous variables

    DEFF Research Database (Denmark)

    Laghaout, Amine

    . This is what we do for two particular applications of quantum measurements: Bell tests and the amplication of Schrödinger cat states. This project also had an experimental component which was supposed to produce high-fidelity Schrödinger cat states. This goal turned out to be hampered by noise from the laser...... as well as a series of anomalous behavior of the nonlinear crystal whereby no classical de-amplification, and therefore no squeezing, could be observed....

  20. Continuous Holdup Measurements with Silicon P-I-N Photodiodes

    International Nuclear Information System (INIS)

    Bell, Z.W.; Oberer, R.B.; Williams, J.A.; Smith, D.E.; Paulus, M.J.

    2002-01-01

    We report on the behavior of silicon P-I-N photodiodes used to perform holdup measurements on plumbing. These detectors differ from traditional scintillation detectors in that no high-voltage is required, no scintillator is used (gamma and X rays are converted directly by the diode), and they are considerably more compact. Although the small size of the diodes means they are not nearly as efficient as scintillation detectors, the diodes' size does mean that a detector module, including one or more diodes, pulse shaping electronics, analog-to-digital converter, embedded microprocessor, and digital interface can be realized in a package (excluding shielding) the size of a pocket calculator. This small size, coupled with only low-voltage power requirement, completely solid-state realization, and internal control functions allows these detectors to be strategically deployed on a permanent basis, thereby reducing or eliminating the need for manual holdup measurements. In this paper, we report on the measurement of gamma and X rays from 235 U and 238 U contained in steel pipe. We describe the features of the spectra, the electronics of the device and show how a network of them may be used to improve estimates of inventory in holdup

  1. Objectively measured physical activity has a negative but weak association with academic performance in children and adolescents.

    Science.gov (United States)

    Esteban-Cornejo, Irene; Tejero-González, Carlos M; Martinez-Gomez, David; Cabanas-Sánchez, Verónica; Fernández-Santos, Jorge R; Conde-Caveda, Julio; Sallis, James F; Veiga, Oscar L

    2014-11-01

    There is an emerging body of evidence on the potential effects of regular physical activity on academic performance. The aim of this study was to add to the debate, by examining the association between objectively measured physical activity and academic performance in a relatively large sample of children and adolescents. The Spanish UP & DOWN study is a 3-year longitudinal study designed to assess the impact, overtime, of physical activity and sedentary behaviours on health indicators. This present analysis was conducted with 1778 children and adolescents aged 6-18 years. Physical activity was objectively measured by accelerometry. Academic performance was assessed using school grades. Physical activity was inversely associated with all academic performance indicators after adjustment for potential confounders, including neonatal variables, fatness and fitness (all p academic performance between the lowest and the second quartile of physical activity, compared to the highest quartile, with very small effect size (d academic performance during both childhood and adolescence, but this association was negative and very weak. Longitudinal and intervention studies are necessary to further our understanding. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  2. Solution Phase Measurement of Both Weak Sigma and C-H---X- Hydrogen Bonding Interactions in Synthetic Anion Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, Mr. Orion B. [University of Oregon; Sather, Mr. Aaron C [University of Oregon; Hay, Benjamin [ORNL; Meisner, Mr. Jeffrey S. [University of Oregon; Johnson, Prof. Darren W. [University of Oregon

    2008-01-01

    A series of tripodal receptors preorganize electron-deficient aromatic rings to bind halides in organic solvents using weak sigma anion-to-arene interactions or C-H---X- hydrogen bonds. 1H NMR spectroscopy proves to be a powerful technique for quantifying binding in solution, and determining the interaction motifs, even in cases of weak binding.

  3. Absolute continuity of autophage measures on finite-dimensional vector spaces

    Energy Technology Data Exchange (ETDEWEB)

    Raja, C R.E. [Stat-Math Unit, Indian Statistical Institute, Bangalore (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: creraja@isibang.ac.in

    2002-06-01

    We consider a class of measures called autophage which was introduced and studied by Szekely for measures on the real line. We show that the autophage measures on finite-dimensional vector spaces over real or Q{sub p} are infinitely divisible without idempotent factors and are absolutely continuous with bounded continuous density. We also show that certain semistable measures on such vector spaces are absolutely continuous. (author)

  4. Continuous quantum measurement and the quantum to classical transition

    International Nuclear Information System (INIS)

    Bhattacharya, Tanmoy; Habib, Salman; Jacobs, Kurt

    2003-01-01

    While ultimately they are described by quantum mechanics, macroscopic mechanical systems are nevertheless observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining macroscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a process referred to as the quantum to classical transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys. Rev. Lett. 85, 4852 (2000)], here we elucidate this transition in some detail, showing that once the measurement processes that affect all macroscopic systems are taken into account, quantum mechanics indeed predicts the emergence of classical motion. We derive inequalities that describe the parameter regime in which classical motion is obtained, and provide numerical examples. We also demonstrate two further important properties of the classical limit: first, that multiple observers all agree on the motion of an object, and second, that classical statistical inference may be used to correctly track the classical motion

  5. Weak interactions

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1978-01-01

    Weak interactions are studied from a phenomenological point of view, by using a minimal number of theoretical hypotheses. Charged-current phenomenology, and then neutral-current phenomenology are discussed. This all is described in terms of a global SU(2) symmetry plus an electromagnetic correction. The intermediate-boson hypothesis is introduced and lower bounds on the range of the weak force are inferred. This phenomenology does not yet reconstruct all the predictions of the conventional SU(2)xU(1) gauge theory. To do that requires an additional assumption of restoration of SU(2) symmetry at asymptotic energies

  6. Measurement of the dynamic response of low-gain solid-state photodetector under weak pulse illumination

    CERN Document Server

    Clément, D; Morel, Christian

    2000-01-01

    This paper presents the development of a Tunable Light Pulse Generator built to measure the quantum efficiency of photodetectors under continuous or pulsed (20 ns FWHM) illumination as a function of wavelength in the Visible-UV region. For this purpose, a miniature Hamamatsu R5600U-04 PMT with low cathode resistivity can be used as reference detector. Dedicated electronics was developed in order to measure simultaneously the cathode and anode currents. This should allow to determine precisely the gain as a function of the high voltage applied to the PMT. Preliminary measurements using the TLPG do not demonstrate significant differences between the dynamic (approx 10 000 photons) and DC responses of PIN photodiodes down to 300 nm.

  7. Growth in the measurement-while-drilling sector continues

    International Nuclear Information System (INIS)

    Hall, G.T.

    1991-01-01

    This book reports that the measurement while drilling (MWD) market is showing some of the most impressive growth in the oil field. Tremendous improvements in the reliability and capability of MWD tools have spurred the expansion of this market. During 1990, the worldwide MWD market expanded by 48%, rising from $250 million in 1989 to $370 million in 1990. The MWD market should expand 15-20% to exceed $430 million in 1991. Although an expansion of 15-20% is considered good, further growth will be impeded by the slowdown of drilling in the Gulf of Mexico. Total market growth should return to greater than 20% per year in 1992 and 1993. MWD technology is in the midst of a rapid adaptation phase, led by expansion of formation evaluation and other logs and by international expansion in long-reach directional and horizontal drilling. The formation evaluation-while- drilling market will have minimal impact on the size and growth of the wire line market. Customers will increasingly employ teams which include drilling and petrophysics personnel to make MWD purchase decisions. Integration of performance drilling systems including all bottom hole components will accelerate because of increases in automation and the need for cost reduction

  8. Precision measurements of the $^{60}$Co $\\beta$-asymmetry parameter in search for tensor currents in weak interactions

    CERN Document Server

    Wauters, F; Zákoucký, D; Beck, M; Breitenfeldt, M; De Leebeeck, V; Golovko, V V; Kozlov, V Yu; Phalet, T; Roccia, S; Soti, G; Tandecki, M; Towner, I S; Traykov, E; Van Gorp, S; Severijns, N

    2010-01-01

    The $\\beta$-asymmetry parameter $\\widetilde{A}$ for the Gamow-Teller decay of $^{60}$Co was measured by polarizing the radioactive nuclei with the brute force low-temperature nuclear-orientation method. The $^{60}$Co activity was cooled down to milliKelvin temperatures in a $^3$He-$^4$He dilution refrigerator in an external 13 T magnetic field. The $\\beta$ particles were observed by a 500 ${\\mu}m$ thick Si PIN diode operating at a temperature of about 10 K in a magnetic field of 0.6 T. Extensive GEANT4 Monte-Carlo simulations were performed to gain control over the systematic effects. Our result, $\\widetilde{A} = -1.014(12)_{stat}(16)_{syst}$, is in agreement with the Standard-Model value of $-0.987(9)$, which includes recoil-order corrections that were addressed for the first time for this isotope. Further, it enables limits to be placed on possible tensor-type charged weak currents as well as other physics beyond the Standard Model.

  9. Wireless transfer of measured data. Continuous measurement of natural gas consumption in a liberalized market

    International Nuclear Information System (INIS)

    De Buisonje, B.

    2000-01-01

    In a deregulated market it is very important to be able to measure gas consumption per hour, or even every 5 minutes, on site and reliably transfer the data measured to the trader. It is common practice in the gas industry to make forecasts for each customer taking off more than 10 million m 3 . This requires the preparation of load profiles based on gas consumption during five minutes. For both the consumer and the trader it is important to be informed (semi-)continuously of the actual gas consumption, which can then be directly compared with the expected load profile, after which adjustments can be made. One of the gas distribution companies in the Netherlands, Essent, transfers wireless data in the case of remote metering. Essent uses Ferranti Computer Systems and the Mobitex network of RAM Mobile Data. Consumers also have access to the data measured through the Internet. They can use the actual load profile for billing purposes. Moreover, they can immediately adjust their energy consumption to stick to the offtake forecast as long as possible and thus save costs

  10. Uncountably many maximizing measures for a dense subset of continuous functions

    Science.gov (United States)

    Shinoda, Mao

    2018-05-01

    Ergodic optimization aims to single out dynamically invariant Borel probability measures which maximize the integral of a given ‘performance’ function. For a continuous self-map of a compact metric space and a dense set of continuous functions, we show the existence of uncountably many ergodic maximizing measures. We also show that, for a topologically mixing subshift of finite type and a dense set of continuous functions there exist uncountably many ergodic maximizing measures with full support and positive entropy.

  11. Our Continuing Program of Optical Color Measurements of Centaurs and KBOs

    Science.gov (United States)

    Romanishin, W.; Tegler, S. C.; Consolmagno, G. J.

    2012-05-01

    We report on our continuing program of BVR color measurement of Centaurs and KBOs. Most of our measurements have been made with the Vatican Advanced Technology Telescope (VATT). We report of new colors obtained through October 2011.

  12. Weak mixing and CP-violation involving heavy quarks and possible measurements in e+e- experiments

    International Nuclear Information System (INIS)

    Ali, A.; Aydin, Z.Z.

    1978-09-01

    We evaluate weak mass mixing among the neutral heavy mesons with a bottom (Q = -1/3) or top (Q = +2/3) quark and CP-violation in the frame work of six quark (V - A) models. It is argued that bottom and top mesons may distinguish the Higgs exchange mechanism of CP-violation from a complex phase in the quark mass matrix, if bottom and top quark masses are sufficiently different. Estimates of weak mixing-and CP-violating effects for e + e - experiments at PETRA, PEP and CESR energies are presented. (orig.) [de

  13. Consequences of nonclassical measurement for the algorithmic description of continuous dynamical systems

    Science.gov (United States)

    Fields, Chris

    1989-01-01

    Continuous dynamical systems intuitively seem capable of more complex behavior than discrete systems. If analyzed in the framework of the traditional theory of computation, a continuous dynamical system with countablely many quasistable states has at least the computational power of a universal Turing machine. Such an analyses assumes, however, the classical notion of measurement. If measurement is viewed nonclassically, a continuous dynamical system cannot, even in principle, exhibit behavior that cannot be simulated by a universal Turing machine.

  14. Weak relativity

    CERN Document Server

    Selleri, Franco

    2015-01-01

    Weak Relativity is an equivalent theory to Special Relativity according to Reichenbach’s definition, where the parameter epsilon equals to 0. It formulates a Neo-Lorentzian approach by replacing the Lorentz transformations with a new set named “Inertial Transformations”, thus explaining the Sagnac effect, the twin paradox and the trip from the future to the past in an easy and elegant way. The cosmic microwave background is suggested as a possible privileged reference system. Most importantly, being a theory based on experimental proofs, rather than mutual consensus, it offers a physical description of reality independent of the human observation.

  15. Standard and Null Weak Values

    OpenAIRE

    Zilberberg, Oded; Romito, Alessandro; Gefen, Yuval

    2013-01-01

    Weak value (WV) is a quantum mechanical measurement protocol, proposed by Aharonov, Albert, and Vaidman. It consists of a weak measurement, which is weighed in, conditional on the outcome of a later, strong measurement. Here we define another two-step measurement protocol, null weak value (NVW), and point out its advantages as compared to WV. We present two alternative derivations of NWVs and compare them to the corresponding derivations of WVs.

  16. Measuring outcomes in adult spinal deformity surgery: a systematic review to identify current strengths, weaknesses and gaps in patient-reported outcome measures.

    Science.gov (United States)

    Faraj, Sayf S A; van Hooff, Miranda L; Holewijn, Roderick M; Polly, David W; Haanstra, Tsjitske M; de Kleuver, Marinus

    2017-08-01

    Adult spinal deformity (ASD) causes severe disability, reduces overall quality of life, and results in a substantial societal burden of disease. As healthcare is becoming more value based, and to facilitate global benchmarking, it is critical to identify and standardize patient-reported outcome measures (PROMs). This study aims to identify the current strengths, weaknesses, and gaps in PROMs used for ASD. Studies were included following a systematic search in multiple bibliographic databases between 2000 and 2015. PROMs were extracted and linked to the outcome domains of WHO's International Classification of Functioning and Health (ICF) framework. Subsequently, the clinimetric quality of identified PROMs was evaluated. The literature search identified 144 papers that met the inclusion criteria, and nine frequently used PROMs were identified. These covered 29 ICF outcome domains, which could be grouped into three of the four main ICF chapters: body function (n = 7), activity and participation (n = 19), environmental factors (n = 3), and body structure (n = 0). A low quantity (n = 3) of papers was identified that studied the clinimetric quality of PROMs. The Scoliosis Research Society (SRS)-22 has the highest level of clinimetric quality for ASD. Outcome domains related to mobility and pain were well represented. We identified a gap in current outcome measures regarding neurological and pulmonary function. In addition, no outcome domains were measured in the ICF chapter body structure. These results will serve as a foundation for the process of seeking international consensus on a standard set of outcome domains, accompanied PROMs and contributing factors to be used in future clinical trials and spine registries.

  17. Virtual continuity of the measurable functions of several variables, and Sobolev embedding theorems

    OpenAIRE

    Vershik, Anatoly; Zatitskiy, Pavel; Petrov, Fedor

    2013-01-01

    Classical Luzin's theorem states that the measurable function of one variable is "almost" continuous. This is not so anymore for functions of several variables. The search of right analogue of the Luzin theorem leads to a notion of virtually continuous functions of several variables. This probably new notion appears implicitly in the statements like embeddings theorems and traces theorems for Sobolev spaces. In fact, it reveals their nature as theorems about virtual continuity. This notion is...

  18. Measurement of the effective weak mixing angle in $p\\bar{p}\\rightarrow Z/\\gamma^{*}\\rightarrow e^{+}e^{-}$ events

    CERN Document Server

    Abazov, Victor Mukhamedovich; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Agnew, James P; Alexeev, Guennadi D; Alkhazov, Georgiy D; Alton, Andrew K; Askew, Andrew Warren; Atkins, Scott; Augsten, Kamil; Avila, Carlos A; Badaud, Frederique; Bagby, Linda F; Baldin, Boris; Bandurin, Dmitry V; Banerjee, Sunanda; Barberis, Emanuela; Baringer, Philip S; Bartlett, JFrederick; Bassler, Ursula Rita; Bazterra, Victor; Bean, Alice L; Begalli, Marcia; Bellantoni, Leo; Beri, Suman B; Bernardi, Gregorio; Bernhard, Ralf Patrick; Bertram, Iain A; Besancon, Marc; Beuselinck, Raymond; Bhat, Pushpalatha C; Bhatia, Sudeep; Bhatnagar, Vipin; Blazey, Gerald Charles; Blessing, Susan K; Bloom, Kenneth A; Boehnlein, Amber S; Boline, Daniel Dooley; Boos, Edward E; Borissov, Guennadi; Borysova, Maryna; Brandt, Andrew; Brandt, Oleg; Brock, Raymond L; Bross, Alan D; Brown, Duncan Paul; Bu, Xue-Bing; Buehler, Marc; Buescher, Volker; Bunichev, Viacheslav Yevgenyevich; Burdin, Sergey; Buszello, Claus Peter; Camacho-Perez, Enrique; Casey, Brendan Cameron Kieran; Castilla-Valdez, Heriberto; Caughron, Seth Aaron; Chakrabarti, Subhendu; Chan, Kwok Ming Leo; Chandra, Avdhesh; Chapon, Emilien; Chen, Guo; Cho, Sung-Woong; Choi, Suyong; Choudhary, Brajesh C; Cihangir, Selcuk; Claes, Daniel R; Clutter, Justace Randall; Cooke, Michael P; Cooper, William Edward; Corcoran, Marjorie D; Couderc, Fabrice; Cousinou, Marie-Claude; Cutts, David; Das, Amitabha; Davies, Gavin John; de Jong, Sijbrand Jan; De La Cruz-Burelo, Eduard; Deliot, Frederic; Demina, Regina; Denisov, Dmitri S; Denisov, Sergei P; Desai, Satish Vijay; Deterre, Cecile; DeVaughan, Kayle Otis; Diehl, HThomas; Diesburg, Michael; Ding, Pengfei; Dominguez, DAaron M; Dubey, Abhinav Kumar; Dudko, Lev V; Duperrin, Arnaud; Dutt, Suneel; Eads, Michael T; Edmunds, Daniel L; Ellison, John A; Elvira, VDaniel; Enari, Yuji; Evans, Harold G; Evdokimov, Valeri N; Faure, Alexandre; Feng, Lei; Ferbel, Thomas; Fiedler, Frank; Filthaut, Frank; Fisher, Wade Cameron; Fisk, HEugene; Fortner, Michael R; Fox, Harald; Fuess, Stuart C; Garbincius, Peter H; Garcia-Bellido, Aran; Garcia-Gonzalez, Jose Andres; Gavrilov, Vladimir B; Geng, Weigang; Gerber, Cecilia Elena; Gershtein, Yuri S; Ginther, George E; Gogota, Olga; Golovanov, Georgy Anatolievich; Grannis, Paul D; Greder, Sebastien; Greenlee, Herbert B; Grenier, Gerald Jean; Gris, Phillipe Luc; Grivaz, Jean-Francois; Grohsjean, Alexander; Gruenendahl, Stefan; Gruenewald, Martin Werner; Guillemin, Thibault; Gutierrez, Gaston R; Gutierrez, Phillip; Haley, Joseph Glenn Biddle; Han, Liang; Harder, Kristian; Harel, Amnon; Hauptman, John Michael; Hays, Jonathan M; Head, Tim; Hebbeker, Thomas; Hedin, David R; Hegab, Hatim; Heinson, Ann; Heintz, Ulrich; Hensel, Carsten; Heredia-De La Cruz, Ivan; Herner, Kenneth Richard; Hesketh, Gavin G; Hildreth, Michael D; Hirosky, Robert James; Hoang, Trang; Hobbs, John D; Hoeneisen, Bruce; Hogan, Julie; Hohlfeld, Mark; Holzbauer, Jenny Lyn; Howley, Ian James; Hubacek, Zdenek; Hynek, Vlastislav; Iashvili, Ia; Ilchenko, Yuriy; Illingworth, Robert A; Ito, Albert S; Jabeen, Shabnam; Jaffre, Michel J; Jayasinghe, Ayesh; Jeong, Min-Soo; Jesik, Richard L; Jiang, Peng; Johns, Kenneth Arthur; Johnson, Emily; Johnson, Marvin E; Jonckheere, Alan M; Jonsson, Per Martin; Joshi, Jyoti; Jung, Andreas Werner; Juste, Aurelio; Kajfasz, Eric; Karmanov, Dmitriy Y; Katsanos, Ioannis; Kaur, Manbir; Kehoe, Robert Leo Patrick; Kermiche, Smain; Khalatyan, Norayr; Khanov, Alexander; Kharchilava, Avto; Kharzheev, Yuri N; Kiselevich, Ivan Lvovich; Kohli, Jatinder M; Kozelov, Alexander V; Kraus, James Alexander; Kumar, Ashish; Kupco, Alexander; Kurca, Tibor; Kuzmin, Valentin Alexandrovich; Lammers, Sabine Wedam; Lebrun, Patrice; Lee, Hyeon-Seung; Lee, Seh-Wook; Lee, William M; Lei, Xiaowen; Lellouch, Jeremie; Li, Dikai; Li, Hengne; Li, Liang; Li, Qi-Zhong; Lim, Jeong Ku; Lincoln, Donald W; Linnemann, James Thomas; Lipaev, Vladimir V; Lipton, Ronald J; Liu, Huanzhao; Liu, Yanwen; Lobodenko, Alexandre; Lokajicek, Milos; Lopes de Sa, Rafael; Luna-Garcia, Rene; Lyon, Adam Leonard; Maciel, Arthur KA; Madar, Romain; Magana-Villalba, Ricardo; Malik, Sudhir; Malyshev, Vladimir L; Mansour, Jason; Martinez-Ortega, Jorge; McCarthy, Robert L; Mcgivern, Carrie Lynne; Meijer, Melvin M; Melnitchouk, Alexander S; Menezes, Diego D; Mercadante, Pedro Galli; Merkin, Mikhail M; Meyer, Arnd; Meyer, Jorg Manfred; Miconi, Florian; Mondal, Naba K; Mulhearn, Michael James; Nagy, Elemer; Narain, Meenakshi; Nayyar, Ruchika; Neal, Homer A; Negret, Juan Pablo; Neustroev, Petr V; Nguyen, Huong Thi; Nunnemann, Thomas P; Hernandez Orduna, Jose de Jesus; Osman, Nicolas Ahmed; Osta, Jyotsna; Pal, Arnab; Parashar, Neeti; Parihar, Vivek; Park, Sung Keun; Partridge, Richard A; Parua, Nirmalya; Patwa, Abid; Penning, Bjoern; Perfilov, Maxim Anatolyevich; Peters, Reinhild Yvonne Fatima; Petridis, Konstantinos; Petrillo, Gianluca; Petroff, Pierre; Pleier, Marc-Andre; Podstavkov, Vladimir M; Popov, Alexey V; Prewitt, Michelle; Price, Darren; Prokopenko, Nikolay N; Qian, Jianming; Quadt, Arnulf; Quinn, Breese; Ratoff, Peter N; Razumov, Ivan A; Ripp-Baudot, Isabelle; Rizatdinova, Flera; Rominsky, Mandy Kathleen; Ross, Anthony; Royon, Christophe; Rubinov, Paul Michael; Ruchti, Randal C; Sajot, Gerard; Sanchez-Hernandez, Alberto; Sanders, Michiel P; Santos, Angelo Souza; Savage, David G; Savitskyi, Mykola; Sawyer, HLee; Scanlon, Timothy P; Schamberger, RDean; Scheglov, Yury A; Schellman, Heidi M; Schwanenberger, Christian; Schwienhorst, Reinhard H; Sekaric, Jadranka; Severini, Horst; Shabalina, Elizaveta K; Shary, Viacheslav V; Shaw, Savanna; Shchukin, Andrey A; Simak, Vladislav J; Skubic, Patrick Louis; Slattery, Paul F; Smirnov, Dmitri V; Snow, Gregory R; Snow, Joel Mark; Snyder, Scott Stuart; Soldner-Rembold, Stefan; Sonnenschein, Lars; Soustruznik, Karel; Stark, Jan; Stoyanova, Dina A; Strauss, Michael G; Suter, Louise; Svoisky, Peter V; Titov, Maxim; Tokmenin, Valeriy V; Tsai, Yun-Tse; Tsybychev, Dmitri; Tuchming, Boris; Tully, Christopher George T; Uvarov, Lev; Uvarov, Sergey L; Uzunyan, Sergey A; Van Kooten, Richard J; van Leeuwen, Willem M; Varelas, Nikos; Varnes, Erich W; Vasilyev, Igor A; Verkheev, Alexander Yurievich; Vertogradov, Leonid S; Verzocchi, Marco; Vesterinen, Mika; Vilanova, Didier; Vokac, Petr; Wahl, Horst D; Wang, Michael HLS; Warchol, Jadwiga; Watts, Gordon Thomas; Wayne, Mitchell R; Weichert, Jonas; Welty-Rieger, Leah Christine; Williams, Mark Richard James; Wilson, Graham Wallace; Wobisch, Markus; Wood, Darien Robert; Wyatt, Terence R; Xie, Yunhe; Yamada, Ryuji; Yang, Siqi; Yasuda, Takahiro; Yatsunenko, Yuriy A; Ye, Wanyu; Ye, Zhenyu; Yin, Hang; Yip, Kin; Youn, Sungwoo; Yu, Jiaming; Zennamo, Joseph; Zhao, Tianqi Gilbert; Zhou, Bing; Zhu, Junjie; Zielinski, Marek; Zieminska, Daria; Zivkovic, Lidija

    2015-07-22

    We present a measurement of the fundamental parameter of the standard model, the weak mixing angle, in $p\\bar{p}\\rightarrow Z/\\gamma^{*}\\rightarrow e^{+}e^{-}$ events at a center of mass energy of 1.96 TeV, using data corresponding to 9.7 fb$^{-1}$ of integrated luminosity collected by the D0 detector at the Fermilab Tevatron. The effective weak mixing angle is extracted from the forward-backward charge asymmetry as a function of the invariant mass around the Z boson pole. The measured value of $\\sin^2\\theta_{\\text{eff}}^{\\text{$\\ell$}}=0.23146 \\pm 0.00047$ is the most precise measurement from light quark interactions to date, with a precision close to the best LEP and SLD results.

  19. A Search for weakly interacting dark matter particles with low temperature detectors capable of simultaneously measuring ionization and heat

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenschein, Andrew Harry [UC, Santa Barbara

    1999-01-01

    Lots of gravitating material that doesn't emit or absorb light seems to be required in all sensible accounts of the dynamics of large-scale structures in the universe. The nature and extent of this mysterious "dark matter" has been one of the central puzzles in cosmology over the last decade. This dissertation describes an experiment that tests one possibility, that the dark matter is in the form of undiscovered Weakly Interacting Massive Particles (WIMPs) produced as a thermal relic of the big bang. In this chapter, we will review the most important observations that suggest the dark matter must exist and discuss the forms it could take.

  20. A Measurement of the Weak Charge of the Proton through Parity Violating Electron Scattering using the Qweak Apparatus: A 21% Result

    Energy Technology Data Exchange (ETDEWEB)

    Beminiwattha, Rakitha [Ohio Univ., Athens, OH (United States)

    2013-08-01

    After a decade of preparations, the Qweak experiment at Jefferson Lab is making the first direct measurement of the weak charge of the proton, Q^p_W. This quantity is suppressed in the Standard Model making a good candidate for search for new physics beyond the SM at the TeV scale. Operationally, we measure a small (about -0.200 ppm) parity-violating asymmetry in elastic electron-proton scattering in integrating mode while flipping the helicity of the electrons 1000 times per second. Commissioning took place Fall 2010, and we finished taking data in early summer 2012. This dissertation is based on the data taken on an initial two weeks period (Wien0). It will provide an overview of the Qweak apparatus, description of the data acquisition and analysis software systems, and final analysis and results from the Wien0 data set. The result is a 16% measurement of the parity violating electron-proton scattering asymmetry, A = -0.2788 +/- 0.0348 (stat.) +/- 0.0290 (syst.) ppm at Q^2 = 0.0250 +/- 0.0006 (GeV)^2. From this a 21% measurement of the weak charge of the proton, Q_w^p(msr)= +0.0952 +/- 0.0155 (stat.) +/- 0.0131 (syst.) +/- 0.0015 (theory) is extracted. From this a 2% measurement of the weak mixing angle, sin^2theta_W(msr)= +0.2328 +/- 0.0039 (stat.) +/- 0.0033 (syst.) +/- 0.0004 (theory) and improved constraints on isoscalar/isovector effective coupling constants of the weak neutral hadronic currents are extracted. These results deviate from the Standard Model by one standard deviation. The Wien0 results are a proof of principle of the Qweak data analysis and a highlight of the road ahead for obtaining full results.

  1. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Mikkelsen, Torben; Mann, Jakob

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneou......The influence of spatial volume averaging of a focused 1.55 mu m continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra...

  2. Continuous glucose monitoring in newborn infants: how do errors in calibration measurements affect detected hypoglycemia?

    OpenAIRE

    Thomas, Felicity Louise; Signal, Mathew; Harris, Deborah L.; Weston, Philip J.; Harding, Jane E.; Shaw, Geoffrey M.; Chase, J. Geoffrey

    2014-01-01

    Neonatal hypoglycemia is common and can cause serious brain injury. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing blood glucose (BG) measurements. Calibration algorithms use BG measurements to convert sensor signals into CGM data. Thus, inaccuracies in calibration BG measurements directly affect CGM values and any metrics calculated from them. The aim was to quantify the effect of timing delays and calibration BG measurement errors on hypoglycemia me...

  3. Continuous Emission Spectrum Measurement for Electron Temperature Determination in Low-Temperature Collisional Plasmas

    International Nuclear Information System (INIS)

    Liu Qiuyan; Li Hong; Chen Zhipeng; Xie Jinlin; Liu Wandong

    2011-01-01

    Continuous emission spectrum measurement is applied for the inconvenient diagnostics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron temperature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method. (low temperature plasma)

  4. Measurement-Device Independency Analysis of Continuous-Variable Quantum Digital Signature

    Directory of Open Access Journals (Sweden)

    Tao Shang

    2018-04-01

    Full Text Available With the practical implementation of continuous-variable quantum cryptographic protocols, security problems resulting from measurement-device loopholes are being given increasing attention. At present, research on measurement-device independency analysis is limited in quantum key distribution protocols, while there exist different security problems for different protocols. Considering the importance of quantum digital signature in quantum cryptography, in this paper, we attempt to analyze the measurement-device independency of continuous-variable quantum digital signature, especially continuous-variable quantum homomorphic signature. Firstly, we calculate the upper bound of the error rate of a protocol. If it is negligible on condition that all measurement devices are untrusted, the protocol is deemed to be measurement-device-independent. Then, we simplify the calculation by using the characteristics of continuous variables and prove the measurement-device independency of the protocol according to the calculation result. In addition, the proposed analysis method can be extended to other quantum cryptographic protocols besides continuous-variable quantum homomorphic signature.

  5. Continuous Quantum Nondemolition Measurements of a Particle in Electromagnetic and Gravitational Fields

    International Nuclear Information System (INIS)

    Zhu Chunhua; Zha Chaozheng

    2005-01-01

    The detection of a particle in electromagnetic plus gravitational fields is investigated. We obtain a set of quantum nondemolition variables. The continuous measurements of these nondemolition parameters are analyzed in the framework of restricted path integral formalism. We manipulate the corresponding propagators, and deduce the probabilities associated with the possible measurement outputs.

  6. Definitional Elasticity in the Measurement of Intergenerational Continuity in Substance Use.

    Science.gov (United States)

    Loughran, Thomas A; Larroulet, Pilar; Thornberry, Terence P

    2017-06-22

    Increasingly, three generation studies have investigated intergenerational (IG) continuity and discontinuity in substance use and related problem behaviors. However, surprisingly little attention has been paid to the conceptual definition of continuity or to different types of discontinuity (resilience and escalation) or to measurement sensitivity, which affects not only the magnitudes of observed continuity but also factors that correlate with this linkage. This study uses longitudinal data on 427 parent-child dyads from the Rochester IG Study to study continuity and discontinuity in substance use over ages 14-18. Results suggest that the degree of IG continuity, resilience, and escalation in adolescent substance use, as well as correlates of each, depend heavily on how heterogeneity in the behavior is taken into account. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  7. Weak radiative hyperon decays

    International Nuclear Information System (INIS)

    Roberts, B.L.; Booth, E.C.; Gall, K.P.; McIntyre, E.K.; Miller, J.P.; Whitehouse, D.A.; Bassalleck, B.; Hall, J.R.; Larson, K.D.; Wolfe, D.M.; Fickinger, W.J.; Robinson, D.K.; Hallin, A.L.; Hasinoff, M.D.; Measday, D.F.; Noble, A.J.; Waltham, C.E.; Hessey, N.P.; Lowe, J.; Horvath, D.; Salomon, M.

    1990-01-01

    New measurements of the Σ + and Λ weak radiative decays are discussed. The hyperons were produced at rest by the reaction K - p → Yπ where Y = Σ + or Λ. The monoenergetic pion was used to tag the hyperon production, and the branching ratios were determined from the relative amplitudes of Σ + → pγ to Σ + → pπ 0 and Λ → nγ to Λ → nπ 0 . The photons from weak radiative decays and from π 0 decays were detected with modular NaI arrays. (orig.)

  8. Influence of Continuing Medical Education on Rheumatologists? Performance on National Quality Measures for Rheumatoid Arthritis

    OpenAIRE

    Sapir, Tamar; Rusie, Erica; Greene, Laurence; Yazdany, Jinoos; Robbins, Mark L.; Ruderman, Eric M.; Carter, Jeffrey D.; Patel, Barry; Moreo, Kathleen

    2015-01-01

    Introduction: In recent years researchers have reported deficits in the quality of care provided to patients with rheumatoid arthritis (RA), including low rates of performance on quality measures. We sought to determine the influence of a quality improvement (QI) continuing education program on rheumatologists’ performance on national quality measures for RA, along with other measures aligned with National Quality Strategy priorities. Performance was assessed through baseline and post-educati...

  9. A Non-destructive and Continuous Measurement of Gelatinization of Rice in Rice Cooking Process

    OpenAIRE

    Hagura, Yoshio; Suzuki, Kanichi

    2002-01-01

    A non-destructive and continuous method to measure gelatinization of rice samples in a rice-water system during rice cooking process was examined. An aluminum pot and a lid of a rice cooker were used as two electrode plates, and changes in dielectric properties (capacitance : C, and dielectric dissipation factor : tan δ) of the samples in the rice cooking process were measured by a capacitance meter. Differential scanning calorimetry (DSC) was used to measure gelatinization enthalpy and to de...

  10. Tests of the electroweak standard model and measurement of the weak mixing angle with the ATLAS detector

    CERN Document Server

    Goebel, Martin; Mnich, Joachim; Schleper, Peter

    In this thesis the global Standard Model (SM) fit to the electroweak precision observables is revisited with respect to newest experimental results. Various consistency checks are performed showing no significant deviation from the SM. The Higgs boson mass is estimated by the electroweak fit to be MH = 94+30−24 GeV without any information from direct Higgs searches at LEP, Tevatron, and the LHC and the result is MH = 125+8−10 GeV when including the direct Higgs mass constraints. The strong coupling constant is extracted at fourth perturbative order as αs(M2Z) = 0.1194 ± 0.0028 (exp) ± 0.0001 (theo). From the fit including the direct Higgs constraints the effective weak mixing angle is determined indirectly to be sin2 θleff = 0.23147+0.00012−0.00010. For the W mass the value of MW = 80.360+0.012−0.011 GeV is obtained indirectly from the fit including the direct Higgs constraints. The electroweak precision data is also exploited to constrain new physics models by using the concept of oblique paramet...

  11. Development of an automatic sampling device for the continuous measurement of atmospheric carbonyls compounds

    International Nuclear Information System (INIS)

    Perraud, V.

    2007-12-01

    Two sampling strategies were studied to develop an automatic instrument for the continuous measurement of atmospheric carbonyl compounds. Because of its specificity towards carbonyls compounds, sampling by using a transfer of gaseous phase in a liquid phase associated with a simultaneous chemical derivatization of the trapped compounds was first studied. However, this method do not allow a quantitative sampling of all studied carbonyl compounds, nor a continuous measurement in the field. To overcome the difficulties, a second strategy was investigated: the cryogenic adsorption onto solid adsorbent followed by thermodesorption and a direct analysis by GC/MS. Collection efficiency using different solid adsorbents was found greater than 95% for carbonyl compounds consisting of 1 to 7 carbons. This work is a successful first step towards the realization of the automatic sampling device for a continuous measurement of atmospheric carbonyls compounds. (author)

  12. Central limit theorem for the Banach-valued weakly dependent random variables

    International Nuclear Information System (INIS)

    Dmitrovskij, V.A.; Ermakov, S.V.; Ostrovskij, E.I.

    1983-01-01

    The central limit theorem (CLT) for the Banach-valued weakly dependent random variables is proved. In proving CLT convergence of finite-measured (i.e. cylindrical) distributions is established. A weak compactness of the family of measures generated by a certain sequence is confirmed. The continuity of the limiting field is checked

  13. Measurement of the β-asymmetry parameter of Cu67 in search for tensor-type currents in the weak interaction

    Science.gov (United States)

    Soti, G.; Wauters, F.; Breitenfeldt, M.; Finlay, P.; Herzog, P.; Knecht, A.; Köster, U.; Kraev, I. S.; Porobic, T.; Prashanth, P. N.; Towner, I. S.; Tramm, C.; Zákoucký, D.; Severijns, N.

    2014-09-01

    Background: Precision measurements at low energy search for physics beyond the standard model in a way complementary to searches for new particles at colliders. In the weak sector the most general β-decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor, and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear β decay are on the level of several percent. Purpose: Extracting new information on tensor coupling constants by measuring the β-asymmetry parameter in the pure Gamow-Teller decay of Cu67, thereby testing the V-A structure of the weak interaction. Method: An iron sample foil into which the radioactive nuclei were implanted was cooled down to mK temperatures in a 3He-4He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic β radiation was observed with planar high-purity germanium detectors operating at a temperature of about 10 K. An on-line measurement of the β asymmetry of Cu68 was performed as well for normalization purposes. Systematic effects were investigated using geant4 simulations. Results: The experimental value, Ã=0.587(14), is in agreement with the standard model value of 0.5991(2) and is interpreted in terms of physics beyond the standard model. The limits obtained on possible tensor-type charged currents in the weak interaction Hamiltonian are -0.045<(CT+CT')/CA<0.159 (90% C.L.). Conclusions: The obtained limits are comparable to limits from other correlation measurements in nuclear β decay and contribute to further constraining tensor coupling constants.

  14. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.

    Science.gov (United States)

    Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria

    2016-01-01

    The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system.

  15. A continuous time-resolved measure decoded from EEG oscillatory activity predicts working memory task performance.

    Science.gov (United States)

    Astrand, Elaine

    2018-06-01

    Working memory (WM), crucial for successful behavioral performance in most of our everyday activities, holds a central role in goal-directed behavior. As task demands increase, inducing higher WM load, maintaining successful behavioral performance requires the brain to work at the higher end of its capacity. Because it is depending on both external and internal factors, individual WM load likely varies in a continuous fashion. The feasibility to extract such a continuous measure in time that correlates to behavioral performance during a working memory task remains unsolved. Multivariate pattern decoding was used to test whether a decoder constructed from two discrete levels of WM load can generalize to produce a continuous measure that predicts task performance. Specifically, a linear regression with L2-regularization was chosen with input features from EEG oscillatory activity recorded from healthy participants while performing the n-back task, [Formula: see text]. The feasibility to extract a continuous time-resolved measure that correlates positively to trial-by-trial working memory task performance is demonstrated (r  =  0.47, p  performance before action (r  =  0.49, p  <  0.05). We show that the extracted continuous measure enables to study the temporal dynamics of the complex activation pattern of WM encoding during the n-back task. Specifically, temporally precise contributions of different spectral features are observed which extends previous findings of traditional univariate approaches. These results constitute an important contribution towards a wide range of applications in the field of cognitive brain-machine interfaces. Monitoring mental processes related to attention and WM load to reduce the risk of committing errors in high-risk environments could potentially prevent many devastating consequences or using the continuous measure as neurofeedback opens up new possibilities to develop novel rehabilitation techniques for

  16. Measurements of the Weak UV Absorptions of Isoprene and Acetone at 261–275 nm Using Cavity Ringdown Spectroscopy for Evaluation of a Potential Portable Ringdown Breath Analyzer

    Science.gov (United States)

    Sahay, Peeyush; Scherrer, Susan T.; Wang, Chuji

    2013-01-01

    The weak absorption spectra of isoprene and acetone have been measured in the wavelength range of 261–275 nm using cavity ringdown spectroscopy. The measured absorption cross-sections of isoprene in the wavelength region of 261–266 nm range from 3.65 × 10−21 cm2·molecule−1 at 261 nm to 1.42 × 10−21 cm2·molecule−1 at 266 nm; these numbers are in good agreement with the values reported in the literature. In the longer wavelength range of 270–275 nm, however, where attractive applications using a single wavelength compact diode laser operating at 274 nm is located, isoprene has been reported in the literature to have no absorption (too weak to be detected). Small absorption cross-sections of isoprene in this longer wavelength region are measured using cavity ringdown spectroscopy for the first time in this work, i.e., 6.20 × 10−23 cm2·molecule−1 at 275 nm. With the same experimental system, wavelength-dependent absorption cross-sections of acetone have also been measured. Theoretical detection limits of isoprene and comparisons of absorbance of isoprene, acetone, and healthy breath gas in this wavelength region are also discussed. PMID:23803787

  17. Continuity of care in mental health: understanding and measuring a complex phenomenon.

    Science.gov (United States)

    Burns, T; Catty, J; White, S; Clement, S; Ellis, G; Jones, I R; Lissouba, P; McLaren, S; Rose, D; Wykes, T

    2009-02-01

    Continuity of care is considered by patients and clinicians an essential feature of good quality care in long-term disorders, yet there is general agreement that it is a complex concept. Most policies emphasize it and encourage systems to promote it. Despite this, there is no accepted definition or measure against which to test policies or interventions designed to improve continuity. We aimed to operationalize a multi-axial model of continuity of care and to use factor analysis to determine its validity for severe mental illness. A multi-axial model of continuity of care comprising eight facets was operationalized for quantitative data collection from mental health service users using 32 variables. Of these variables, 22 were subsequently entered into a factor analysis as independent components, using data from a clinical population considered to require long-term consistent care. Factor analysis produced seven independent continuity factors accounting for 62.5% of the total variance. These factors, Experience and Relationship, Regularity, Meeting Needs, Consolidation, Managed Transitions, Care Coordination and Supported Living, were close but not identical to the original theoretical model. We confirmed that continuity of care is multi-factorial. Our seven factors are intuitively meaningful and appear to work in mental health. These factors should be used as a starting-point in research into the determinants and outcomes of continuity of care in long-term disorders.

  18. Measurement of the Effective Weak Mixing Angle in $p\\bar{p}\\rightarrow Z/\\gamma^* \\rightarrow \\ell^+\\ell^-$ Events

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, Victor Mukhamedovich; et al.

    2017-10-11

    We present a measurement of the effective weak mixing angle parameter $\\sin^2\\theta_\\text{eff}^{\\ell}$, in $p\\bar{p}\\rightarrow Z/\\gamma^* \\rightarrow \\mu^+\\mu^-$ events at a center of mass energy of 1.96 TeV, collected by the D0 detector at the Fermilab Tevatron Collider and corresponding to 8.6 fb$^{-1}$ of integrated luminosity. The measured value of $\\sin^2\\theta_\\text{eff}^{\\ell}[\\mu\\mu]=0.23016 \\pm 0.00064$ is further combined with the result from the D0 measurement in $p\\bar{p}\\rightarrow Z/\\gamma^{*}\\rightarrow e^{+} e^{-}$ events, resulting in $\\sin^2\\theta_\\text{eff}^{\\ell} [\\text{comb.}]=0.23095 \\pm 0.00040$. This combined result is the most precise measurement from a single experiment at a hadron collider and is the most precise determination using the coupling of the $Z/\\gamma^*$ to light quarks.

  19. Measurement of the transverse momentum spectra of weak vector bosons produced in proton-proton collisions at √s=8 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A. [Yerevan Physics Institute, Yerevan (Armenia); Adam, W. [Institut für Hochenergiephysik der OeAW, Wien (Austria); Collaboration: The CMS collaboration; and others

    2017-02-20

    The transverse momentum spectra of weak vector bosons are measured in the CMS experiment at the LHC. The measurement uses a sample of proton-proton collisions at √s=8 TeV, collected during a special low-luminosity running that corresponds to an integrated luminosity of 18.4±0.5 pb{sup −1}. The production of W bosons is studied in both electron and muon decay modes, while the production of Z bosons is studied using only the dimuon decay channel. The ratios of W{sup −} to W{sup +} and Z to W differential cross sections are also measured. The measured differential cross sections and ratios are compared with theoretical predictions up to next-to-next leading order in QCD.

  20. High-precision measurement of the 19Ne half-life and implications for right-handed weak currents.

    Science.gov (United States)

    Triambak, S; Finlay, P; Sumithrarachchi, C S; Hackman, G; Ball, G C; Garrett, P E; Svensson, C E; Cross, D S; Garnsworthy, A B; Kshetri, R; Orce, J N; Pearson, M R; Tardiff, E R; Al-Falou, H; Austin, R A E; Churchman, R; Djongolov, M K; D'Entremont, R; Kierans, C; Milovanovic, L; O'Hagan, S; Reeve, S; Sjue, S K L; Williams, S J

    2012-07-27

    We report a precise determination of the (19)Ne half-life to be T(1/2)=17.262±0.007 s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current standard model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.

  1. High-Precision Measurement of the Ne19 Half-Life and Implications for Right-Handed Weak Currents

    Science.gov (United States)

    Triambak, S.; Finlay, P.; Sumithrarachchi, C. S.; Hackman, G.; Ball, G. C.; Garrett, P. E.; Svensson, C. E.; Cross, D. S.; Garnsworthy, A. B.; Kshetri, R.; Orce, J. N.; Pearson, M. R.; Tardiff, E. R.; Al-Falou, H.; Austin, R. A. E.; Churchman, R.; Djongolov, M. K.; D'Entremont, R.; Kierans, C.; Milovanovic, L.; O'Hagan, S.; Reeve, S.; Sjue, S. K. L.; Williams, S. J.

    2012-07-01

    We report a precise determination of the Ne19 half-life to be T1/2=17.262±0.007s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current standard model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.

  2. Measurement of longitudinal spin asymmetries for weak boson production in polarized proton-proton collisions at RHIC.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Balewski, J; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-08-15

    We report measurements of single- and double-spin asymmetries for W^{±} and Z/γ^{*} boson production in longitudinally polarized p+p collisions at sqrt[s]=510  GeV by the STAR experiment at RHIC. The asymmetries for W^{±} were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05

  3. Measurement of Longitudinal Spin Asymmetries for Weak Boson Production in Polarized Proton-Proton Collisions at RHIC

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-08-01

    We report measurements of single- and double-spin asymmetries for W± and Z/γ* boson production in longitudinally polarized p+p collisions at √s =510 GeV by the STAR experiment at RHIC. The asymmetries for W± were measured as a function of the decay lepton pseudorapidity, which provides a theoretically clean probe of the proton's polarized quark distributions at the scale of the W mass. The results are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements, and show a preference for a sizable, positive up antiquark polarization in the range 0.05

  4. Headset Bluetooth and cell phone based continuous central body temperature measurement system.

    Science.gov (United States)

    Sanches, J Miguel; Pereira, Bruno; Paiva, Teresa

    2010-01-01

    The accurate measure of the central temperature is a very important physiologic indicator in several clinical applications, namely, in the characterization and diagnosis of sleep disorders. In this paper a simple system is described to continuously measure the body temperature at the ear. An electronic temperature sensor is coupled to the microphone of a common commercial auricular Bluetooth device that sends the temperature measurements to a mobile phone to which is paired. The measurements are stored at the mobile phone and periodically sent to a medical facility by email or SMS (short messaging service).

  5. Design of the device of auto-measuring radon continuously based on FPGA

    International Nuclear Information System (INIS)

    Wang Yan; Shen Zhengqin; Chen Qiong

    2004-01-01

    This paper introduces the design of the device of auto-measuring radon continuously. The core of the system is the design of controlling system by FPGA, which consists of preset module, electrical calendar module and driving module. The system can automatically measure the consistence of the radon and the separating out rate of it. The information data is displayed by LCD. The high speed micro printer is used to print the measuring result. It adopts FPGA to design the measuring system of the device, which can improve the precision and stability of the system. (authors)

  6. Secondary electrons monitor for continuous electron energy measurements in UHF linac

    International Nuclear Information System (INIS)

    Zimek, Zbigniew; Bulka, Sylwester; Mirkowski, Jacek; Roman, Karol

    2001-01-01

    Continuous energy measurements have now became obligatory in accelerator facilities devoted to radiation sterilization process. This is one of several accelerator parameters like dose rate, beam current, bean scan parameters, conveyer speed which must be recorded as it is a required condition of accelerator validation procedure. Electron energy measurements are rather simple in direct DC accelerator, where the applied DC voltage is directly related to electron energy. High frequency linacs are not offering such opportunity in electron energy measurements. The analyzing electromagnet is applied in some accelerators but that method can be used only in off line mode before or after irradiation process. The typical solution is to apply the non direct method related to control and measurements certain accelerator parameters like beam current and microwave energy pulse power. The continuous evaluation of electron energy can be performed on the base of calculation and result comparison with calibration curve

  7. Quantum cooling and squeezing of a levitating nanosphere via time-continuous measurements

    Science.gov (United States)

    Genoni, Marco G.; Zhang, Jinglei; Millen, James; Barker, Peter F.; Serafini, Alessio

    2015-07-01

    With the purpose of controlling the steady state of a dielectric nanosphere levitated within an optical cavity, we study its conditional dynamics under simultaneous sideband cooling and additional time-continuous measurement of either the output cavity mode or the nanosphere’s position. We find that the average phonon number, purity and quantum squeezing of the steady-states can all be made more non-classical through the addition of time-continuous measurement. We predict that the continuous monitoring of the system, together with Markovian feedback, allows one to stabilize the dynamics for any value of the laser frequency driving the cavity. By considering state of the art values of the experimental parameters, we prove that one can in principle obtain a non-classical (squeezed) steady-state with an average phonon number {n}{ph}≈ 0.5.

  8. Time series analysis of continuous-wave coherent Doppler Lidar wind measurements

    International Nuclear Information System (INIS)

    Sjoeholm, M; Mikkelsen, T; Mann, J; Enevoldsen, K; Courtney, M

    2008-01-01

    The influence of spatial volume averaging of a focused 1.55 μm continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneously obtained from a mast-mounted sonic anemometer at 78 meters height at the test station for large wind turbines at Hoevsoere in Western Jutland, Denmark is presented for the first time

  9. Measurement of peritoneal fluid handling in children on continuous ambulatory peritoneal dialysis using dextran 70

    NARCIS (Netherlands)

    Reddingius, R. E.; Schröder, C. H.; Willems, J. L.; Lelivelt, M.; Kohler, B. E.; Krediet, R. T.; Monnens, L. A.

    1995-01-01

    Fluid kinetics were studied in children treated with continuous ambulatory peritoneal dialysis (CAPD) aged between 2 and 15 years. Dextran 70 was used as a volume marker. A 4-h dwell was studied with a dwell volume of 40 mg/kg. Transcapillary ultrafiltration was measured as well as marker clearance,

  10. EMuJoy: software for continuous measurement of perceived emotions in music.

    Science.gov (United States)

    Nagel, Frederik; Kopiez, Reinhard; Grewe, Oliver; Altenmüller, Eckart

    2007-05-01

    An adequate study of emotions in music and film should be based on the real-time measurement of self-reported data using a continuous-response method. The recording system discussed in this article reflects two important aspects of such research: First, for a better comparison of results, experimental and technical standards for continuous measurement should be taken into account, and second, the recording system should be open to the inclusion of multimodal stimuli. In light of these two considerations, our article addresses four basic principles of the continuous measurement of emotions: (1) the dimensionality of the emotion space, (2) data acquisition (e.g., the synchronization of media and the self-reported data), (3) interface construction for emotional responses, and (4) the use of multiple stimulus modalities. Researcher-developed software (EMuJoy) is presented as a freeware solution for the continuous measurement of responses to different media, along with empirical data from the self-reports of 38 subjects listening to emotional music and viewing affective pictures.

  11. Fisher Information and the Quantum Cramér-Rao Sensitivity Limit of Continuous Measurements

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Mølmer, Klaus

    2014-01-01

    Precision measurements with quantum systems rely on our ability to trace the differences between experimental signals to variations in unknown physical parameters. In this Letter we derive the Fisher information and the ensuing Cramér-Rao sensitivity limit for parameter estimation by continuous...

  12. Ultrasonic instrument for continuous measurement of liquid levels in sodium systems

    International Nuclear Information System (INIS)

    Boehmer, L.S.

    1975-01-01

    An ultrasonic level measurement system which provides a continuous digital readout over a range of 3-180 inches, was tested in 500 0 F liquid sodium. The system proved to be accurate and reliable, required no initial warm-up period and experienced no long term drift. Modifications can extend the present operating temperatures to greater than 1200 0 F

  13. The Reliability and Validity of Discrete and Continuous Measures of Psychopathology: A Quantitative Review

    Science.gov (United States)

    Markon, Kristian E.; Chmielewski, Michael; Miller, Christopher J.

    2011-01-01

    In 2 meta-analyses involving 58 studies and 59,575 participants, we quantitatively summarized the relative reliability and validity of continuous (i.e., dimensional) and discrete (i.e., categorical) measures of psychopathology. Overall, results suggest an expected 15% increase in reliability and 37% increase in validity through adoption of a…

  14. Exploring Continuity of Care in Patients with Alcohol Use Disorders Using Time-Variant Measures

    NARCIS (Netherlands)

    S.C. de Vries (Sjoerd); A.I. Wierdsma (André)

    2008-01-01

    textabstractBackground/Aims: We used time-variant measures of continuity of care to study fluctuations in long-term treatment use by patients with alcohol-related disorders. Methods: Data on service use were extracted from the Psychiatric Case Register for the Rotterdam Region, The Netherlands.

  15. CONTINUOUS FORMALDEHYDE MEASUREMENT SYSTEM BASED ON MODIFIED FOURIER TRANSFORM INFRARED SPECTROSCOPY

    Science.gov (United States)

    EPA is developing advanced open-path and cell-based optical techniques for time-resolved measurement of priority hazardous air pollutants such as formaldehyde (HCHO). Due to its high National Air Toxics Assessment risk factor, there is increasing interest in continuous measuremen...

  16. Continuous measurements of discharge from a horizontal acoustic Doppler current profiler in a tidal river

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Buschman, F.A.; Vermeulen, B.

    2009-01-01

    Acoustic Doppler current profilers (ADCPs) can be mounted horizontally at a river bank, yielding single-depth horizontal array observations of velocity across the river. This paper presents a semideterministic, semistochastic method to obtain continuous measurements of discharge from horizontal ADCP

  17. Orthostatic circulatory control in the elderly evaluated by non-invasive continuous blood pressure measurement

    NARCIS (Netherlands)

    Imholz, B. P.; Dambrink, J. H.; Karemaker, J. M.; Wieling, W.

    1990-01-01

    1. Continuous orthostatic responses of blood pressure and heart rate were measured in 40 healthy and active elderly subjects over 70 years of age in order to assess the time course and rapidity of orthostatic cardiovascular adaptation in old age. 2. During the first 30 s (initial phase) the effects

  18. Using measures to guide the continuous improvement journey: a partnership between quality assurance and toxicology.

    Science.gov (United States)

    Gentry, P E; Sites, D L

    1994-03-01

    It has been said that you cannot improve what you cannot measure. At Eli Lilly and Company, measurement is one of the five pillars of Total Quality. Quality Assurance and Toxicology have partnered in the use of measures to drive improvements in both areas. Quality Assurance and Toxicology have embarked on a journey in Total Quality to achieve customer satisfaction and drive continuous improvement. Measurement in the research and development world has traditionally not been well received. Contrary to popular belief, we have found that many processes can be measured in the research and development environment. Measurement is critical to the continuous improvement of processes because improvements are made using data. In Quality Assurance and Toxicology, the initial measures were put in place to gather baseline data. As we learned from our measures, we customized them to align with all of our processes. This article describes the journey of measuring Quality Assurance and Toxicology, including highlights of implementation strategies and lessons learned along the way.

  19. Measurement of the beta-asymmetry parameter of Cu-67 in search for tensor-type currents in the weak interaction

    OpenAIRE

    Soti, Gergely; Breitenfeldt, Martin; Finlay, Paul; Herzog, P; Knecht, Andreas; Koester, U; Kraev, I. S; Porobic, Tomica; Prashanth, P. N; Towner, I. S; Tramm, C; Zakoucky, D; Severijns, Nathal; Wauters, F

    2014-01-01

    The experimental value, ˜A = 0.587(14), is in agreement with the standard model value of 0.5991(2) and is interpreted in terms of physics beyond the standard model. The limits obtained on possible tensor-type charged currents in the weak interaction Hamiltonian are −0.045 < (C_T + C'_T)/CA < 0.159 (90% C.L.). The obtained limits are comparable to limits from other correlation measurements in nuclear β decay and contribute to further constraining tensor coupling constants.

  20. Devise for measuring the nuclear quadrupole resonance weak signal relaxation at the ISSh-1-12 spectrometer with the SIGMA digital storage

    International Nuclear Information System (INIS)

    Chernyavskij, V.N.; Konstantinov, G.I.

    1984-01-01

    The device, consisting of an analog memory device and the Karr-Parsell pulse programming device (radio frequency pulse train is 90 deg - tau - 180 deg - 2 tau - 180 deg - 2 tau ..., where tau is the interval between 90 deg - and 180 deg - pulses), is described. The device is destined for measurement of the time T 2 of nuclear quadrupole resonance spin-spin relaxation weak signal with signal-to-noise ratio 0 - 10 4 ), pulse numbers in series are 2-1024, start output signal amplitude >= 22 V, duration is 1 μs. The device may be also used in pulsed nuclear magnetic and electron paramagnetic resonance spectroscopy

  1. Applicability of SWOT analysis for measuring quality of public oral health services as perceived by adult patients in Finland. Strengths, weaknesses, opportunities and threats.

    Science.gov (United States)

    Toivanen, T; Lahti, S; Leino-Kilpi, H

    1999-10-01

    To determine the applicability of SWOT analysis for measuring the quality of public oral health services from the adult client's perspective. Data were collected using a structured questionnaire developed in an earlier study. The study group consisted of all adult (over 18 years of age) clients (n = 256) using public municipal oral health services in Kirkkonummi, Finland, during 2 weeks in 1995. Before treatment, patients filled out a questionnaire that measured the importance of their expectations in different aspects of oral care. After the appointment, they filled out a similar questionnaire that measured the enactment of these expectations in the treatment situation. The response rate was 51%. The difference between subjective importance and enactment of expectations was tested by Wilcoxon's signed rank test. Results were interpreted using both a conventional analysis of "expectation enacted or not" and SWOT analysis, which is used in strategic planning to identify areas of strengths (S), weaknesses (W), opportunities (O) and threats (T) in an organisation. In 28 statements out of 35, the two analyses revealed similar interpretations. In most areas the patient-perceived quality of the services was good. Weaknesses were found in the following areas: communicating to patients the causes and risk of developing oral diseases, informing them about different treatment possibilities, and including patients in decision-making when choosing restorative materials. SWOT analysis provided more structured interpretation of the results, and can be more easily transferred to development of services.

  2. An Automated and Continuous Plant Weight Measurement System for Plant Factory.

    Science.gov (United States)

    Chen, Wei-Tai; Yeh, Yu-Hui F; Liu, Ting-Yu; Lin, Ta-Te

    2016-01-01

    In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analog electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications.

  3. An Automated and Continuous Plant Weight Measurement System for Plant Factory

    Directory of Open Access Journals (Sweden)

    Wei-Tai eChen

    2016-03-01

    Full Text Available In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analogue electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications.

  4. Structure, Dynamics, and Kinetics of Weak Protein-Protein Complexes from NMR Spin Relaxation Measurements of Titrated Solutions

    International Nuclear Information System (INIS)

    Salmon, L.; Licinio, A.; Jensen, M.R.; Blackledge, M.; Ortega Roldan, J.L.; Van Nuland, N.; Lescop, E.

    2011-01-01

    We have recently presented a titration approach for the determination of residual dipolar couplings (RDCs) from experimentally inaccessible complexes. Here, we extend this approach to the measurement of 15 N spin relaxation rates and demonstrate that this can provide long-range structural, dynamic, and kinetic information about these elusive systems. (authors)

  5. Pulse Oximeter Derived Blood Pressure Measurement in Patients With a Continuous Flow Left Ventricular Assist Device.

    Science.gov (United States)

    Hellman, Yaron; Malik, Adnan S; Lane, Kathleen A; Shen, Changyu; Wang, I-Wen; Wozniak, Thomas C; Hashmi, Zubair A; Munson, Sarah D; Pickrell, Jeanette; Caccamo, Marco A; Gradus-Pizlo, Irmina; Hadi, Azam

    2017-05-01

    Currently, blood pressure (BP) measurement is obtained noninvasively in patients with continuous flow left ventricular assist device (LVAD) by placing a Doppler probe over the brachial or radial artery with inflation and deflation of a manual BP cuff. We hypothesized that replacing the Doppler probe with a finger-based pulse oximeter can yield BP measurements similar to the Doppler derived mean arterial pressure (MAP). We conducted a prospective study consisting of patients with contemporary continuous flow LVADs. In a small pilot phase I inpatient study, we compared direct arterial line measurements with an automated blood pressure (ABP) cuff, Doppler and pulse oximeter derived MAP. Our main phase II study included LVAD outpatients with a comparison between Doppler, ABP, and pulse oximeter derived MAP. A total of five phase I and 36 phase II patients were recruited during February-June 2014. In phase I, the average MAP measured by pulse oximeter was closer to arterial line MAP rather than Doppler (P = 0.06) or ABP (P < 0.01). In phase II, pulse oximeter MAP (96.6 mm Hg) was significantly closer to Doppler MAP (96.5 mm Hg) when compared to ABP (82.1 mm Hg) (P = 0.0001). Pulse oximeter derived blood pressure measurement may be as reliable as Doppler in patients with continuous flow LVADs. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. Investigation of turbulence measurements with a continuous wave, conically scanning LiDAR

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Mikkelsen, Torben; Courtney, Michael

    averaging is done in two steps: 1) the weighted averaging of the wind speed in the probe volume of the laser beam; 2) the averaging of the wind speeds occurring on the circular path described by the conically scanning lidar. Therefore the standard deviation measured by a lidar resolves only the turbulence...... of a continuous wave, conically scanning Zephir lidar. First, the wind speed standard deviation measured by such a lidar gives on average 80% of the standard deviation measured by a cup anemometer. This difference is due to the spatial averaging inherently made by a cw conically scanning lidar. The spatial...

  7. Application of Allan Deviation to Assessing Uncertainties of Continuous-measurement Instruments, and Optimizing Calibration Schemes

    Science.gov (United States)

    Jacobson, Gloria; Rella, Chris; Farinas, Alejandro

    2014-05-01

    Technological advancement of instrumentation in atmospheric and other geoscience disciplines over the past decade has lead to a shift from discrete sample analysis to continuous, in-situ monitoring. Standard error analysis used for discrete measurements is not sufficient to assess and compare the error contribution of noise and drift from continuous-measurement instruments, and a different statistical analysis approach should be applied. The Allan standard deviation analysis technique developed for atomic clock stability assessment by David W. Allan [1] can be effectively and gainfully applied to continuous measurement instruments. As an example, P. Werle et al has applied these techniques to look at signal averaging for atmospheric monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS) [2]. This presentation will build on, and translate prior foundational publications to provide contextual definitions and guidelines for the practical application of this analysis technique to continuous scientific measurements. The specific example of a Picarro G2401 Cavity Ringdown Spectroscopy (CRDS) analyzer used for continuous, atmospheric monitoring of CO2, CH4 and CO will be used to define the basics features the Allan deviation, assess factors affecting the analysis, and explore the time-series to Allan deviation plot translation for different types of instrument noise (white noise, linear drift, and interpolated data). In addition, the useful application of using an Allan deviation to optimize and predict the performance of different calibration schemes will be presented. Even though this presentation will use the specific example of the Picarro G2401 CRDS Analyzer for atmospheric monitoring, the objective is to present the information such that it can be successfully applied to other instrument sets and disciplines. [1] D.W. Allan, "Statistics of Atomic Frequency Standards," Proc, IEEE, vol. 54, pp 221-230, Feb 1966 [2] P. Werle, R. Miicke, F. Slemr, "The Limits

  8. Entropic uncertainty for spin-1/2 XXX chains in the presence of inhomogeneous magnetic fields and its steering via weak measurement reversals

    Science.gov (United States)

    Wang, Dong; Ming, Fei; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2017-09-01

    The uncertainty principle configures a low bound to the measuring precision for a pair of non-commuting observables, and hence is considerably nontrivial to quantum precision measurement in the field of quantum information theory. In this letter, we consider the entropic uncertainty relation (EUR) in the context of quantum memory in a two-qubit isotropic Heisenberg spin chain. Specifically, we explore the dynamics of EUR in a practical scenario, where two associated nodes of a one-dimensional XXX-spin chain, under an inhomogeneous magnetic field, are connected to a thermal entanglement. We show that the temperature and magnetic field effect can lead to the inflation of the measuring uncertainty, stemming from the reduction of systematic quantum correlation. Notably, we reveal that, firstly, the uncertainty is not fully dependent on the observed quantum correlation of the system; secondly, the dynamical behaviors of the measuring uncertainty are relatively distinct with respect to ferromagnetism and antiferromagnetism chains. Meanwhile, we deduce that the measuring uncertainty is dramatically correlated with the mixedness of the system, implying that smaller mixedness tends to reduce the uncertainty. Furthermore, we propose an effective strategy to control the uncertainty of interest by means of quantum weak measurement reversal. Therefore, our work may shed light on the dynamics of the measuring uncertainty in the Heisenberg spin chain, and thus be important to quantum precision measurement in various solid-state systems.

  9. Measurement of the weak mixing angle with the forward-backward asymmetry of Drell-Yan events at 8 TeV

    CERN Document Server

    CMS Collaboration

    2017-01-01

    We present a measurement of the effective weak mixing angle using the forward-backward asymmetry of Drell-Yan ($ee$ and $\\mu\\mu$) events in pp collisions at $\\sqrt{s}=8~\\mathrm{TeV}$ at CMS. The data sample corresponds to an integrated luminosity of $18.8~\\mathrm{fb}^{-1}$ and $19.6~\\mathrm{fb}^{-1}$ for muon and electron channels, respectively. The sample consists of 8.2 million dimuon and 4.9 million dielectron events. With new analysis techniques and a larger dataset, the statistical and systematic uncertainties are significantly reduced compared to our previous measurement. The extracted value of the effective weak mixing angle from the combined $ee$ and $\\mu\\mu$ data samples is $ \\sin^2\\theta^{\\text{lept}}_{\\text{eff}}=0.23101\\pm 0.00036(\\text{stat})\\pm 0.00018(\\text{syst})\\pm 0.00016(\\text{theory})\\pm 0.00030(\\text{pdf})$ or $ \\sin^2\\theta^{\\text{lept}}_{\\text{eff}}=0.23101\\pm0.00052$.

  10. A continuous time-resolved measure decoded from EEG oscillatory activity predicts working memory task performance

    Science.gov (United States)

    Astrand, Elaine

    2018-06-01

    Objective. Working memory (WM), crucial for successful behavioral performance in most of our everyday activities, holds a central role in goal-directed behavior. As task demands increase, inducing higher WM load, maintaining successful behavioral performance requires the brain to work at the higher end of its capacity. Because it is depending on both external and internal factors, individual WM load likely varies in a continuous fashion. The feasibility to extract such a continuous measure in time that correlates to behavioral performance during a working memory task remains unsolved. Approach. Multivariate pattern decoding was used to test whether a decoder constructed from two discrete levels of WM load can generalize to produce a continuous measure that predicts task performance. Specifically, a linear regression with L2-regularization was chosen with input features from EEG oscillatory activity recorded from healthy participants while performing the n-back task, n\\in [1,2] . Main results. The feasibility to extract a continuous time-resolved measure that correlates positively to trial-by-trial working memory task performance is demonstrated (r  =  0.47, p  <  0.05). It is furthermore shown that this measure allows to predict task performance before action (r  =  0.49, p  <  0.05). We show that the extracted continuous measure enables to study the temporal dynamics of the complex activation pattern of WM encoding during the n-back task. Specifically, temporally precise contributions of different spectral features are observed which extends previous findings of traditional univariate approaches. Significance. These results constitute an important contribution towards a wide range of applications in the field of cognitive brain–machine interfaces. Monitoring mental processes related to attention and WM load to reduce the risk of committing errors in high-risk environments could potentially prevent many devastating consequences or

  11. Measuring a critical stress for continuous prevention of marine biofouling accumulation with aeration.

    Science.gov (United States)

    Menesses, Mark; Belden, Jesse; Dickenson, Natasha; Bird, James

    2017-10-01

    When cleaning the hull of a ship, significant shear stresses are needed to remove established biofouling organisms. Given that there exists a link between the amount of time that fouling accumulates and the stress required to remove it, it is not surprising that more frequent grooming requires less shear stress. Yet, it is unclear if there is a minimum stress needed to prevent the growth of macrofouling in the limit of continuous grooming. This manuscript shows that single bubble stream aeration provides continuous grooming and prevents biofouling accumulation in regions where the average wall stress exceeds ~0.01 Pa. This value was found by comparing observations of biofouling growth from field studies with complementary laboratory measurements that probe the associated flow fields. These results suggest that aeration and other continuous grooming systems must exceed a wall stress of 0.01 Pa to prevent macrofouling accumulation.

  12. Stages of Change – Continuous Measure (URICA-E2): psychometrics of a Norwegian version

    Science.gov (United States)

    Lerdal, Anners; Moe, Britt; Digre, Elin; Harding, Thomas; Kristensen, Frode; Grov, Ellen K; Bakken, Linda N; Eklund, Marthe L; Ruud, Ireen; Rossi, Joseph S

    2009-01-01

    Title Stages of Change – Continuous Measure (URICA-E2): psychometrics of a Norwegian version. Aim This paper is a report of research to translate the English version of the Stages of Change continuous measure questionnaire (URICA-E2) into Norwegian and to test the validity of the questionnaire and its usefulness in predicting behavioural change. Background While the psychometric properties of the Stages of Change categorical measure have been tested extensively, evaluation of the psychometric properties of the continuous questionnaire has not been described elsewhere in the literature. Method Cross-sectional data were collected with a convenience sample of 198 undergraduate nursing students in 2005 and 2006. The English version of URICA-E2 was translated into Norwegian according to standardized procedures. Findings Principal components analysis clearly confirmed five of the dimensions of readiness to change (Precontemplation Non-Believers, Precontemplation Believers, Contemplation, Preparation and Maintenance), while the sixth dimension, Action, showed the lowest Eigenvalue (0·93). Findings from the cluster analysis indicate distinct profiles among the respondents in terms of readiness to change their exercise behaviour. Conclusion The URICA-E2 was for the most part replicated from Reed’s original work. The result of the cluster analysis of the items associated with the factor ‘Action’ suggests that these do not adequately measure the factor. PMID:19032513

  13. Dual-modality arterial pulse monitoring system for continuous blood pressure measurement.

    Science.gov (United States)

    Wen-Xuan Dai; Yuan-Ting Zhang; Jing Liu; Xiao-Rong Ding; Ni Zhao

    2016-08-01

    Accurate and ambulatory measurement of blood pressure (BP) is essential for efficient diagnosis, management and prevention of cardiovascular diseases (CVDs). However, traditional cuff-based BP measurement methods provide only intermittent BP readings and can cause discomfort with the occlusive cuff. Although pulse transit time (PTT) method is promising for cuffless and continuous BP measurement, its pervasive use is restricted by its limited accuracy and requirement of placing sensors on multiple body sites. To tackle these issues, we propose a novel dual-modality arterial pulse monitoring system for continuous blood pressure measurement, which simultaneously records the pressure and photoplethysmography (PPG) signals of radial artery. The obtained signals can be used to generate a pressure-volume curve, from which the elasticity index (EI) and viscosity index (VI) can be extracted. Experiments were carried out among 7 healthy subjects with their PPG, ECG, arterial pressure wave and reference BP collected to examine the effectiveness of the proposed indexes. The results of this study demonstrate that a linear regression model combining EI and VI has significantly higher BP tracking correlation coefficient as compared to the PTT method. This suggests that the proposed system and method can potentially be used for convenient and continuous blood pressure estimation with higher accuracy.

  14. Portable bioimpedance monitor evaluation for continuous impedance measurements. Towards wearable plethysmography applications.

    Science.gov (United States)

    Ferreira, J; Seoane, F; Lindecrantz, K

    2013-01-01

    Personalised Health Systems (PHS) that could benefit the life quality of the patients as well as decreasing the health care costs for society among other factors are arisen. The purpose of this paper is to study the capabilities of the System-on-Chip Impedance Network Analyser AD5933 performing high speed single frequency continuous bioimpedance measurements. From a theoretical analysis, the minimum continuous impedance estimation time was determined, and the AD5933 with a custom 4-Electrode Analog Front-End (AFE) was used to experimentally determine the maximum continuous impedance estimation frequency as well as the system impedance estimation error when measuring a 2R1C electrical circuit model. Transthoracic Electrical Bioimpedance (TEB) measurements in a healthy subject were obtained using 3M gel electrodes in a tetrapolar lateral spot electrode configuration. The obtained TEB raw signal was filtered in MATLAB to obtain the respiration and cardiogenic signals, and from the cardiogenic signal the impedance derivative signal (dZ/dt) was also calculated. The results have shown that the maximum continuous impedance estimation rate was approximately 550 measurements per second with a magnitude estimation error below 1% on 2R1C-parallel bridge measurements. The displayed respiration and cardiac signals exhibited good performance, and they could be used to obtain valuable information in some plethysmography monitoring applications. The obtained results suggest that the AD5933-based monitor could be used for the implementation of a portable and wearable Bioimpedance plethysmograph that could be used in applications such as Impedance Cardiography. These results combined with the research done in functional garments and textile electrodes might enable the implementation of PHS applications in a relatively short time from now.

  15. Measurement of particle emission in automobil exhaust - application of continuous radiometric aerosol measurement to the emission of diesel engines

    International Nuclear Information System (INIS)

    Krasenbrink, A.; Georgi, B.

    1989-01-01

    The well-known method of measuring continuously dust by β-absorption is transferred to the problem of particle emission in automobile exhaust. With two similar dust-monitors FH62 having different sampling air flow rates and two low-pressure impactors the reliability of radiometric mass determination was verified. First static experiments with diesel soot showed the necessity of a dilution system, a new mass calibration with regard to the changed β-absorptivity and a quicker calculation of concentration for realtime measurements. (orig.) [de

  16. Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry.

    Science.gov (United States)

    Cassar, Nicolas; Barnett, Bruce A; Bender, Michael L; Kaiser, Jan; Hamme, Roberta C; Tilbrook, Bronte

    2009-03-01

    The oxygen (O(2)) concentration in the surface ocean is influenced by biological and physical processes. With concurrent measurements of argon (Ar), which has similar solubility properties as oxygen, we can remove the physical contribution to O(2) supersaturation and determine the biological oxygen supersaturation. Biological O(2) supersaturation in the surface ocean reflects the net metabolic balance between photosynthesis and respiration, i.e., the net community productivity (NCP). We present a new method for continuous shipboard measurements of O(2)/Ar by equilibrator inlet mass spectrometry (EIMS). From these measurements and an appropriate gas exchange parametrization, NCP can be estimated at high spatial and temporal resolution. In the EIMS configuration, seawater from the ship's continuous intake flows through a cartridge enclosing a gas-permeable microporous membrane contactor. Gases in the headspace of the cartridge equilibrate with dissolved gases in the flowing seawater. A fused-silica capillary continuously samples headspace gases, and the O(2)/Ar ratio is measured by mass spectrometry. The ion current measurements on the mass spectrometer reflect the partial pressures of dissolved gases in the water flowing through the equilibrator. Calibration of the O(2)/Ar ion current ratio (32/40) is performed automatically every 2 h by sampling ambient air through a second capillary. A conceptual model demonstrates that the ratio of gases reaching the mass spectrometer is dependent on several parameters, such as the differences in molecular diffusivities and solubilities of the gases. Laboratory experiments and field observations performed by EIMS are discussed. We also present preliminary evidence that other gas measurements, such as N(2)/Ar and pCO(2) measurements, may potentially be performed with EIMS. Finally, we compare the characteristics of the EIMS with the previously described membrane inlet mass spectrometry (MIMS) approach.

  17. Planning of continuity of service: The nuisance index, a measurement of the impact of interruptions

    International Nuclear Information System (INIS)

    Naggar, R.

    1992-01-01

    An improved approach has been developed by Hydro-Quebec to integrate its customers' needs into the planning for service continuity. A nuisance index has been developed to measure the impact of service interruptions and is currently being tested with a pilot project in the Richelieu service area. The analytic framework used differentiates three categories of customers for which a normative cost of interrptions is calculated. The classification of networks according to load density and use characteristics allows the utility to define appropriate service continuity objectives. Service continuity is measured using an indicator which is directly deduced from the cost of interruptions. The index takes into account the circumstances surrounding each interruption and an individual nuisance index is calculated for each customer. Then an average individual nuisance index is computed for customers within each category. Finally, an aggregated nuisance index is calculated for all categories as a whole. The cost of interruptions may then be derived through multiplying the nuisance indexes by the energy consumption of the corresponding set of customers and by a constant. It is possible to check whether a customer is receiving acceptable service continuity. An indicator determines the share of energy consumption for which a tolerance threshold has been exceeded. Once integrated into the planning process, these concepts enable optimal distribution network design and operation. Adjustments of network classes that match both the evolution of customers and load contribute to the permanent improvement of networks and their operation. 4 figs

  18. Measurement of the weak mixing angle and the spin of the gluon from angular distributions in the reaction pp→ Z/γ*+X→μ+μ-+X with ATLAS

    International Nuclear Information System (INIS)

    Schmieden, Kristof

    2013-04-01

    The measurement of the effective weak mixing angle with the ATLAS experiment at the LHC is presented. It is extracted from the forward-backward asymmetry in the polar angle distribution of the muons originating from Z boson decays in the reaction pp→Z/γ * +X→ μ + μ - +X. In total 4.7 fb -1 of proton-proton collisions at √(s)=7 TeV are analysed. In addition, the full polar and azimuthal angular distributions are measured as a function of the transverse momentum of the Z/γ * system and are compared to several simulations as well as recent results obtained in p anti p collisions. Finally, the angular distributions are used to confirm the spin of the gluon using the Lam-Tung relation.

  19. The Importance of and the Complexities Associated With Measuring Continuity of Care During Resident Training: Possible Solutions Do Exist.

    Science.gov (United States)

    Carney, Patricia A; Conry, Colleen M; Mitchell, Karen B; Ericson, Annie; Dickinson, W Perry; Martin, James C; Carek, Peter J; Douglass, Alan B; Eiff, M Patrice

    2016-04-01

    Evolutions in care delivery toward the patient-centered medical home have influenced important aspects of care continuity. Primary responsibility for a panel of continuity patients is a foundational requirement in family medicine residencies. In this paper we characterize challenges in measuring continuity of care in residency training in this new era of primary care. We synthesized the literature and analyzed information from key informant interviews and group discussions with residency faculty and staff to identify the challenges and possible solutions for measuring continuity of care during family medicine training. We specifically focused on measuring interpersonal continuity at the patient level, resident level, and health care team level. Challenges identified in accurately measuring interpersonal continuity of care during residency training include: (1) variability in empanelment approaches for all patients, (2) scheduling complexity in different types of visits, (3) variability in ability to attain continuity counts at the level of the resident, and (4) shifting make-up of health care teams, especially in residency training. Possible solutions for each challenge are presented. Philosophical issues related to continuity are discussed, including whether true continuity can be achieved during residency training and whether qualitative rather than quantitative measures of continuity are better suited to residencies. Measuring continuity of care in residency training is challenging but possible, though improvements in precision and assessment of the comprehensive nature of the relationships are needed. Definitions of continuity during training and the role continuity measurement plays in residency need further study.

  20. Evolution of an open system as a continuous measurement of this system by its environment

    International Nuclear Information System (INIS)

    Mensky, Michael B.

    2003-01-01

    The restricted-path-integral (RPI) description of a continuous quantum measurement is rederived starting from the description of an open system by the Feynman-Vernon influence functional. For this end the total evolution operator of the compound system consisting of the open system and its environment is decomposed into the sum of partial evolution operators. Accordingly, the influence functional of the open system is decomposed into the integral of partial influence functionals (PIF). If the partial evolution operators or PIF are chosen in such a way that they decohere (do not interfere with each other), then the formalism of RPI effectively arises. The evolution of the open system may then be interpreted as a continuous measurement of this system by its environment. This is possible if the environment is macroscopic or mesoscopic

  1. Measurement of complete and continuous Wigner functions for discrete atomic systems

    Science.gov (United States)

    Tian, Yali; Wang, Zhihui; Zhang, Pengfei; Li, Gang; Li, Jie; Zhang, Tiancai

    2018-01-01

    We measure complete and continuous Wigner functions of a two-level cesium atom in both a nearly pure state and highly mixed states. We apply the method [T. Tilma et al., Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401] of strictly constructing continuous Wigner functions for qubit or spin systems. We find that the Wigner function of all pure states of a qubit has negative regions and the negativity completely vanishes when the purity of an arbitrary mixed state is less than 2/3 . We experimentally demonstrate these findings using a single cesium atom confined in an optical dipole trap, which undergoes a nearly pure dephasing process. Our method can be applied straightforwardly to multi-atom systems for measuring the Wigner function of their collective spin state.

  2. Radio-oxidation of an EPDM elastomer under weak or strong ionising radiations: measurement and modelling of dioxygen consumption

    International Nuclear Information System (INIS)

    Dely, N.

    2005-10-01

    Usually, the irradiation of polymers under ionising radiations occurs in air that is in the presence of oxygen. This leads to a radio oxidation process and to oxygen consumption. Our material is an EPDM elastomer (ethylene propylene 1,4 hexadiene) used as insulator in control-command cables in nuclear plants (Pressurised Water Reactor). A specific device has been conceived and built up during this PhD work for measuring very small oxygen consumptions with an accuracy of around 10%. Ionising radiations used are electrons at 1 MeV and carbon ions at 11 MeV per nucleon. Under both electron and ion irradiations, the influence of oxygen pressure on oxygen consumption has been studied in a very large range: between 1 and 200 mbar. In both cases, the yield of oxygen consumption is constant in-between 200 and 5 mbar. Then, at lower pressures, it decreases appreciably. On the other hand, the oxygen consumption during ion irradiation is four times smaller than during electron irradiation. This emphasizes the role of the heterogeneity of the energy deposition at a nano-metric scale. The adjustment of the experimental results obtained during electron irradiation with the general homogeneous steady-state kinetic model has allowed extracting all the values of the kinetic parameters for the chosen mechanism of radio oxidation. The knowledge of these numbers will allow us to face our results obtained during ion irradiation with a heterogeneous kinetic model under development. (author)

  3. Measuring patient-centered medical home access and continuity in clinics with part-time clinicians.

    Science.gov (United States)

    Rosland, Ann-Marie; Krein, Sarah L; Kim, Hyunglin Myra; Greenstone, Clinton L; Tremblay, Adam; Ratz, David; Saffar, Darcy; Kerr, Eve A

    2015-05-01

    Common patient-centered medical home (PCMH) performance measures value access to a single primary care provider (PCP), which may have unintended consequences for clinics that rely on part-time PCPs and team-based care. Retrospective analysis of 110,454 primary care visits from 2 Veterans Health Administration clinics from 2010 to 2012. Multi-level models examined associations between PCP availability in clinic, and performance on access and continuity measures. Patient experiences with access and continuity were compared using 2012 patient survey data (N = 2881). Patients of PCPs with fewer half-day clinic sessions per week were significantly less likely to get a requested same-day appointment with their usual PCP (predicted probability 17% for PCPs with 2 sessions/week, 20% for 5 sessions/week, and 26% for 10 sessions/week). Among requests that did not result in a same-day appointment with the usual PCP, there were no significant differences in same-day access to a different PCP, or access within 2 to 7 days with patients' usual PCP. Overall, patients had >92% continuity with their usual PCP at the hospital-based site regardless of PCP sessions/week. Patients of full-time PCPs reported timely appointments for urgent needs more often than patients of part-time PCPs (82% vs 71%; P Part-time PCP performance appeared worse when using measures focused on same-day access to patients' usual PCP. However, clinic-level same-day access, same-week access to the usual PCP, and overall continuity were similar for patients of part-time and full-time PCPs. Measures of in-person access to a usual PCP do not capture alternate access approaches encouraged by PCMH, and often used by part-time providers, such as team-based or non-face-to-face care.

  4. Apparatus and process for continuous measurement of moisture in moving coal by neutron thermalization

    International Nuclear Information System (INIS)

    Stewart, R.F.

    1967-01-01

    The invention relates to an apparatus and process for the measurement of moisture contents in solid materials. More particularly, the invention makes available a continuous moisture analysis of a moving mass of material, such as coal, by penetrating such material with neutrons emitted from a source of fast neutrons and detecting, counting, and recording slowed or thermalized neutrons reflected from the internal structure of the material. (U.S.)

  5. Period, epoch, and prediction errors of ephemerides from continuous sets of timing measurements

    Science.gov (United States)

    Deeg, H. J.

    2015-06-01

    Space missions such as Kepler and CoRoT have led to large numbers of eclipse or transit measurements in nearly continuous time series. This paper shows how to obtain the period error in such measurements from a basic linear least-squares fit, and how to correctly derive the timing error in the prediction of future transit or eclipse events. Assuming strict periodicity, a formula for the period error of these time series is derived, σP = σT (12 / (N3-N))1 / 2, where σP is the period error, σT the timing error of a single measurement, and N the number of measurements. Compared to the iterative method for period error estimation by Mighell & Plavchan (2013), this much simpler formula leads to smaller period errors, whose correctness has been verified through simulations. For the prediction of times of future periodic events, usual linear ephemeris were epoch errors are quoted for the first time measurement, are prone to an overestimation of the error of that prediction. This may be avoided by a correction for the duration of the time series. An alternative is the derivation of ephemerides whose reference epoch and epoch error are given for the centre of the time series. For long continuous or near-continuous time series whose acquisition is completed, such central epochs should be the preferred way for the quotation of linear ephemerides. While this work was motivated from the analysis of eclipse timing measures in space-based light curves, it should be applicable to any other problem with an uninterrupted sequence of discrete timings for which the determination of a zero point, of a constant period and of the associated errors is needed.

  6. A fast continuous magnetic field measurement system based on digital signal processors

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Carcagno, R.; DiMarco, J.; Kotelnikov, S.; Lamm, M.; Makulski, A.; /Fermilab; Maroussov, V.; /Purdue U.; Nehring, R.; Nogiec, J.; Orris, D.; /Fermilab; Poukhov,; Prakoshyn, F.; /Dubna, JINR; Schlabach, P.; Tompkins, J.C.; /Fermilab

    2005-09-01

    In order to study dynamic effects in accelerator magnets, such as the decay of the magnetic field during the dwell at injection and the rapid so-called ''snapback'' during the first few seconds of the resumption of the energy ramp, a fast continuous harmonics measurement system was required. A new magnetic field measurement system, based on the use of digital signal processors (DSP) and Analog to Digital (A/D) converters, was developed and prototyped at Fermilab. This system uses Pentek 6102 16 bit A/D converters and the Pentek 4288 DSP board with the SHARC ADSP-2106 family digital signal processor. It was designed to acquire multiple channels of data with a wide dynamic range of input signals, which are typically generated by a rotating coil probe. Data acquisition is performed under a RTOS, whereas processing and visualization are performed under a host computer. Firmware code was developed for the DSP to perform fast continuous readout of the A/D FIFO memory and integration over specified intervals, synchronized to the probe's rotation in the magnetic field. C, C++ and Java code was written to control the data acquisition devices and to process a continuous stream of data. The paper summarizes the characteristics of the system and presents the results of initial tests and measurements.

  7. A fast continuous magnetic field measurement system based on digital signal processors

    International Nuclear Information System (INIS)

    Velev, G.V.; Carcagno, R.; DiMarco, J.; Kotelnikov, S.; Lamm, M.; Makulski, A.; Maroussov, V.; Nehring, R.; Nogiec, J.; Orris, D.; Poukhov, O.; Prakoshyn, F.; Schlabach, P.; Tompkins, J.C.

    2005-01-01

    In order to study dynamic effects in accelerator magnets, such as the decay of the magnetic field during the dwell at injection and the rapid so-called ''snapback'' during the first few seconds of the resumption of the energy ramp, a fast continuous harmonics measurement system was required. A new magnetic field measurement system, based on the use of digital signal processors (DSP) and Analog to Digital (A/D) converters, was developed and prototyped at Fermilab. This system uses Pentek 6102 16 bit A/D converters and the Pentek 4288 DSP board with the SHARC ADSP-2106 family digital signal processor. It was designed to acquire multiple channels of data with a wide dynamic range of input signals, which are typically generated by a rotating coil probe. Data acquisition is performed under a RTOS, whereas processing and visualization are performed under a host computer. Firmware code was developed for the DSP to perform fast continuous readout of the A/D FIFO memory and integration over specified intervals, synchronized to the probe's rotation in the magnetic field. C, C++ and Java code was written to control the data acquisition devices and to process a continuous stream of data. The paper summarizes the characteristics of the system and presents the results of initial tests and measurements

  8. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states.

    Science.gov (United States)

    Menicucci, Nicolas C

    2014-03-28

    A long-standing open question about Gaussian continuous-variable cluster states is whether they enable fault-tolerant measurement-based quantum computation. The answer is yes. Initial squeezing in the cluster above a threshold value of 20.5 dB ensures that errors from finite squeezing acting on encoded qubits are below the fault-tolerance threshold of known qubit-based error-correcting codes. By concatenating with one of these codes and using ancilla-based error correction, fault-tolerant measurement-based quantum computation of theoretically indefinite length is possible with finitely squeezed cluster states.

  9. Adapting cultural mixture modeling for continuous measures of knowledge and memory fluency.

    Science.gov (United States)

    Tan, Yin-Yin Sarah; Mueller, Shane T

    2016-09-01

    Previous research (e.g., cultural consensus theory (Romney, Weller, & Batchelder, American Anthropologist, 88, 313-338, 1986); cultural mixture modeling (Mueller & Veinott, 2008)) has used overt response patterns (i.e., responses to questionnaires and surveys) to identify whether a group shares a single coherent attitude or belief set. Yet many domains in social science have focused on implicit attitudes that are not apparent in overt responses but still may be detected via response time patterns. We propose a method for modeling response times as a mixture of Gaussians, adapting the strong-consensus model of cultural mixture modeling to model this implicit measure of knowledge strength. We report the results of two behavioral experiments and one simulation experiment that establish the usefulness of the approach, as well as some of the boundary conditions under which distinct groups of shared agreement might be recovered, even when the group identity is not known. The results reveal that the ability to recover and identify shared-belief groups depends on (1) the level of noise in the measurement, (2) the differential signals for strong versus weak attitudes, and (3) the similarity between group attitudes. Consequently, the method shows promise for identifying latent groups among a population whose overt attitudes do not differ, but whose implicit or covert attitudes or knowledge may differ.

  10. Measuring Post-transfusion Recovery and Survival of Red Blood Cells: Strengths and Weaknesses of Chromium-51 Labeling and Alternative Methods

    Directory of Open Access Journals (Sweden)

    Camille Roussel

    2018-05-01

    Full Text Available The proportion of transfused red blood cells (RBCs that remain in circulation is an important surrogate marker of transfusion efficacy and contributes to predict the potential benefit of a transfusion process. Over the last 50 years, most of the transfusion recovery data were generated by chromium-51 (51Cr-labeling studies and were predominantly performed to validate new storage systems and new processes to prepare RBC concentrates. As a consequence, our understanding of transfusion efficacy is strongly dependent on the strengths and weaknesses of 51Cr labeling in particular. Other methods such as antigen mismatch or biotin-based labeling can bring relevant information, for example, on the long-term survival of transfused RBC. These radioactivity-free methods can be used in patients including from vulnerable groups. We provide an overview of the methods used to measure transfusion recovery in humans, compare their strengths and weaknesses, and discuss their potential limitations. Also, based on our understanding of the spleen-specific filtration of damaged RBC and historical transfusion recovery data, we propose that RBC deformability and morphology are storage lesion markers that could become useful predictors of transfusion recovery. Transfusion recovery can and should be accurately explored by more than one method. Technical optimization and clarification of concepts is still needed in this important field of transfusion and physiology.

  11. Review of modern methods for continuous friction measurement on airfield pavements

    Science.gov (United States)

    Iwanowski, Paweł; Blacha, Krzysztof; Wesołowski, Mariusz

    2018-05-01

    The safety of traffic, including both road and air traffic on a ground manoeuvre area, depends on many factors. These mainly include the anti-slip properties of a road or airfield pavement on which the traffic takes place. The basic pavement parameter that determines its characteristics in terms of anti-slip properties is the skid resistance, which constitutes the ratio of the wheel downforce and the friction on the contact surface. There are currently many devices for continuous measurement of the skid resistance (Continuous Friction-Measuring Equipment - CFME) around the world. Most of them, in principle, do not vary much from one another. Most of the devices measure the measuring wheel’s downforce on the pavement and the friction on the wheel-pavement contact surface. The skid resistance is the result of this measurement. The devices vary in many aspects, such as the type and size of the used measuring tyre, pavement-wheel slip or tyre pressure. This does not mean that the results obtained from various devices mbe directly compared. On the other hand, each device allows determining the pavement’s anti-slip conditions in terms of the requirements specified for the given type of devices, thereby enabling pavement classification in these terms. The classification allows for comparing the results obtained from various measuring devices. The paper presents an overview of equipment used in Poland and around the world to measure the skid resistance on airfield pavements. The authors draw attention to the requirements for pavements in terms of their roughness, with division into road and airfield pavements.

  12. SU-G-BRB-04: Automated Output Factor Measurements Using Continuous Data Logging for Linac Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X; Li, S; Zheng, D; Wang, S; Lei, Y; Zhang, M; Ma, R; Fan, Q; Wang, X; Li, X; Verma, V; Enke, C; Zhou, S [University of Nebraska Medical Center, Omaha, NE (United States)

    2016-06-15

    Purpose: Linac commissioning is a time consuming and labor intensive process, the streamline of which is highly desirable. In particular, manual measurement of output factors for a variety of field sizes and energy greatly hinders the commissioning efficiency. In this study, automated measurement of output factors was demonstrated as ‘one-click’ using data logging of an electrometer. Methods: Beams to be measured were created in the recording and verifying (R&V) system and configured for continuous delivery. An electrometer with an automatic data logging feature enabled continuous data collection for all fields without human intervention. The electrometer saved data into a spreadsheet every 0.5 seconds. A Matlab program was developed to analyze the excel data to monitor and check the data quality. Results: For each photon energy, output factors were measured for five configurations, including open field and four wedges. Each configuration includes 72 fields sizes, ranging from 4×4 to 20×30 cm{sup 2}. Using automation, it took 50 minutes to complete the measurement of 72 field sizes, in contrast to 80 minutes when using the manual approach. The automation avoided the necessity of redundant Linac status checks between fields as in the manual approach. In fact, the only limiting factor in such automation is Linac overheating. The data collection beams in the R&V system are reusable, and the simplified process is less error-prone. In addition, our Matlab program extracted the output factors faithfully from data logging, and the discrepancy between the automatic and manual measurement is within ±0.3%. For two separate automated measurements 30 days apart, consistency check shows a discrepancy within ±1% for 6MV photon with a 60 degree wedge. Conclusion: Automated output factor measurements can save time by 40% when compared with conventional manual approach. This work laid ground for further improvement for the automation of Linac commissioning.

  13. SU-G-BRB-04: Automated Output Factor Measurements Using Continuous Data Logging for Linac Commissioning

    International Nuclear Information System (INIS)

    Zhu, X; Li, S; Zheng, D; Wang, S; Lei, Y; Zhang, M; Ma, R; Fan, Q; Wang, X; Li, X; Verma, V; Enke, C; Zhou, S

    2016-01-01

    Purpose: Linac commissioning is a time consuming and labor intensive process, the streamline of which is highly desirable. In particular, manual measurement of output factors for a variety of field sizes and energy greatly hinders the commissioning efficiency. In this study, automated measurement of output factors was demonstrated as ‘one-click’ using data logging of an electrometer. Methods: Beams to be measured were created in the recording and verifying (R&V) system and configured for continuous delivery. An electrometer with an automatic data logging feature enabled continuous data collection for all fields without human intervention. The electrometer saved data into a spreadsheet every 0.5 seconds. A Matlab program was developed to analyze the excel data to monitor and check the data quality. Results: For each photon energy, output factors were measured for five configurations, including open field and four wedges. Each configuration includes 72 fields sizes, ranging from 4×4 to 20×30 cm"2. Using automation, it took 50 minutes to complete the measurement of 72 field sizes, in contrast to 80 minutes when using the manual approach. The automation avoided the necessity of redundant Linac status checks between fields as in the manual approach. In fact, the only limiting factor in such automation is Linac overheating. The data collection beams in the R&V system are reusable, and the simplified process is less error-prone. In addition, our Matlab program extracted the output factors faithfully from data logging, and the discrepancy between the automatic and manual measurement is within ±0.3%. For two separate automated measurements 30 days apart, consistency check shows a discrepancy within ±1% for 6MV photon with a 60 degree wedge. Conclusion: Automated output factor measurements can save time by 40% when compared with conventional manual approach. This work laid ground for further improvement for the automation of Linac commissioning.

  14. Towards continuous global measurements and optimal emission estimates of NF3

    Science.gov (United States)

    Arnold, T.; Muhle, J.; Salameh, P.; Harth, C.; Ivy, D. J.; Weiss, R. F.

    2011-12-01

    We present an analytical method for the continuous in situ measurement of nitrogen trifluoride (NF3) - an anthropogenic gas with a global warming potential of ~16800 over a 100 year time horizon. NF3 is not included in national reporting emissions inventories under the United Nations Framework Convention on Climate Change (UNFCCC). However, it is a rapidly emerging greenhouse gas due to emission from a growing number of manufacturing facilities with increasing output and modern end-use applications, namely in microcircuit etching, and in production of flat panel displays and thin-film photovoltaic cells. Despite success in measuring the most volatile long lived halogenated species such as CF4, the Medusa preconcentration GC/MS system of Miller et al. (2008) is unable to detect NF3 under remote operation. Using altered techniques of gas separation and chromatography after initial preconcentration, we are now able to make continuous atmospheric measurements of NF3 with average precisions NF3 produced. Emission factors are shown to have reduced over the last decade; however, rising production and end-use have caused the average global atmospheric concentration to double between 2005 and 2011 i.e. half the atmospheric NF3 present today originates from emissions after 2005. Finally we show the first continuous in situ measurements from La Jolla, California, illustrating how global deployment of our technique could improve the temporal and spatial scale of NF3 'top-down' emission estimates over the coming years. These measurements will be important for independent verification of emissions should NF3 be regulated under a new climate treaty.

  15. Theory and Measurement of Signal-to-Noise Ratio in Continuous-Wave Noise Radar.

    Science.gov (United States)

    Stec, Bronisław; Susek, Waldemar

    2018-05-06

    Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.

  16. Odds Ratio Product of Sleep EEG as a Continuous Measure of Sleep State

    Science.gov (United States)

    Younes, Magdy; Ostrowski, Michele; Soiferman, Marc; Younes, Henry; Younes, Mark; Raneri, Jill; Hanly, Patrick

    2015-01-01

    Study Objectives: To develop and validate an algorithm that provides a continuous estimate of sleep depth from the electroencephalogram (EEG). Design: Retrospective analysis of polysomnograms. Setting: Research laboratory. Participants: 114 patients who underwent clinical polysomnography in sleep centers at the University of Manitoba (n = 58) and the University of Calgary (n = 56). Interventions: None. Measurements and Results: Power spectrum of EEG was determined in 3-second epochs and divided into delta, theta, alpha-sigma, and beta frequency bands. The range of powers in each band was divided into 10 aliquots. EEG patterns were assigned a 4-digit number that reflects the relative power in the 4 frequency ranges (10,000 possible patterns). Probability of each pattern occurring in 30-s epochs staged awake was determined, resulting in a continuous probability value from 0% to 100%. This was divided by 40 (% of epochs staged awake) producing the odds ratio product (ORP), with a range of 0–2.5. In validation testing, average ORP decreased progressively as EEG progressed from wakefulness (2.19 ± 0.29) to stage N3 (0.13 ± 0.05). ORP sleep and ORP > 2.0 predicted wakefulness in > 95% of 30-s epochs. Epochs with intermediate ORP occurred in unstable sleep with a high arousal index (> 70/h) and were subject to much interrater scoring variability. There was an excellent correlation (r2 = 0.98) between ORP in current 30-s epochs and the likelihood of arousal or awakening occurring in the next 30-s epoch. Conclusions: Our results support the use of the odds ratio product (ORP) as a continuous measure of sleep depth. Citation: Younes M, Ostrowski M, Soiferman M, Younes H, Younes M, Raneri J, Hanly P. Odds ratio product of sleep EEG as a continuous measure of sleep state. SLEEP 2015;38(4):641–654. PMID:25348125

  17. Elastic anisotropy of core samples from the Taiwan Chelungpu Fault Drilling Project (TCDP): direct 3-D measurements and weak anisotropy approximations

    Science.gov (United States)

    Louis, Laurent; David, Christian; Špaček, Petr; Wong, Teng-Fong; Fortin, Jérôme; Song, Sheng Rong

    2012-01-01

    The study of seismic anisotropy has become a powerful tool to decipher rock physics attributes in reservoirs or in complex tectonic settings. We compare direct 3-D measurements of P-wave velocity in 132 different directions on spherical rock samples to the prediction of the approximate model proposed by Louis et al. based on a tensorial approach. The data set includes measurements on dry spheres under confining pressure ranging from 5 to 200 MPa for three sandstones retrieved at a depth of 850, 1365 and 1394 metres in TCDP hole A (Taiwan Chelungpu Fault Drilling Project). As long as the P-wave velocity anisotropy is weak, we show that the predictions of the approximate model are in good agreement with the measurements. As the tensorial method is designed to work with cylindrical samples cored in three orthogonal directions, a significant gain both in the number of measurements involved and in sample preparation is achieved compared to measurements on spheres. We analysed the pressure dependence of the velocity field and show that as the confining pressure is raised the velocity increases, the anisotropy decreases but remains significant even at high pressure, and the shape of the ellipsoid representing the velocity (or elastic) fabric evolves from elongated to planar. These observations can be accounted for by considering the existence of both isotropic and anisotropic crack distributions and their evolution with applied pressure.

  18. AULA virtual reality test as an attention measure: convergent validity with Conners' Continuous Performance Test.

    Science.gov (United States)

    Díaz-Orueta, Unai; Garcia-López, Cristina; Crespo-Eguílaz, Nerea; Sánchez-Carpintero, Rocío; Climent, Gema; Narbona, Juan

    2014-01-01

    The majority of neuropsychological tests used to evaluate attention processes in children lack ecological validity. The AULA Nesplora (AULA) is a continuous performance test, developed in a virtual setting, very similar to a school classroom. The aim of the present study is to analyze the convergent validity between the AULA and the Continuous Performance Test (CPT) of Conners. The AULA and CPT were administered correlatively to 57 children, aged 6-16 years (26.3% female) with average cognitive ability (IQ mean = 100.56, SD = 10.38) who had a diagnosis of attention deficit/hyperactivity disorder (ADHD) according to DSM-IV-TR criteria. Spearman correlations analyses were conducted among the different variables. Significant correlations were observed between both tests in all the analyzed variables (omissions, commissions, reaction time, and variability of reaction time), including for those measures of the AULA based on different sensorial modalities, presentation of distractors, and task paradigms. Hence, convergent validity between both tests was confirmed. Moreover, the AULA showed differences by gender and correlation to Perceptual Reasoning and Working Memory indexes of the WISC-IV, supporting the relevance of IQ measures in the understanding of cognitive performance in ADHD. In addition, the AULA (but not Conners' CPT) was able to differentiate between ADHD children with and without pharmacological treatment for a wide range of measures related to inattention, impulsivity, processing speed, motor activity, and quality of attention focus. Additional measures and advantages of the AULA versus Conners' CPT are discussed.

  19. On the continuous measurement of the cosmic-ray intensity, 2

    International Nuclear Information System (INIS)

    Ishida, Yoshio; Kanno, Tsunekichi

    1974-01-01

    Since November 1971, the cosmic ray neutron intensity has been measured continuously with 3NM-64 neutron monitor at Fukushima University (140 0 29'E geographic longitude, 37 0 45'N geographic latitude, 27.6 0 N geomagnetic latitude and 10.55 GV cut-off rigidity). After the neutron monitor had been operated during the period of fourteen months at the ground floor of 3-storied ferro-reinforced concrete building, it was removed to the prefabricated house near the old position of the monitor at January 1973. As a result of the removement of the monitor, the expected values for the counting rate and barometric coefficient of our neutron monitor were obtained, 7.5x10 4 cph and -0.64% mb respectively. The monitor was moved out into a new place, the statistical accuracy of counting rate is altered from 0.44% (hourly counting rate) to 0.36%. It can be considered that there is no effect of concrete building near the monitor, for reason that the zenith angle is opened more than 60 0 over the monitor. The difference between the new and the old measurement - measurement environments, intensities, barometric coefficient and others - were discussed. The continuous measurement of the cosmic ray neutron intensity at Fukushima will be kept on beaten track, and the obtained data of the cosmic ray neutron intensity (uncorrected, corrected intensity and barometric pressure) will be sent to WDC-C2 in form of monthly tables. (author)

  20. A bivariate measurement error model for semicontinuous and continuous variables: Application to nutritional epidemiology.

    Science.gov (United States)

    Kipnis, Victor; Freedman, Laurence S; Carroll, Raymond J; Midthune, Douglas

    2016-03-01

    Semicontinuous data in the form of a mixture of a large portion of zero values and continuously distributed positive values frequently arise in many areas of biostatistics. This article is motivated by the analysis of relationships between disease outcomes and intakes of episodically consumed dietary components. An important aspect of studies in nutritional epidemiology is that true diet is unobservable and commonly evaluated by food frequency questionnaires with substantial measurement error. Following the regression calibration approach for measurement error correction, unknown individual intakes in the risk model are replaced by their conditional expectations given mismeasured intakes and other model covariates. Those regression calibration predictors are estimated using short-term unbiased reference measurements in a calibration substudy. Since dietary intakes are often "energy-adjusted," e.g., by using ratios of the intake of interest to total energy intake, the correct estimation of the regression calibration predictor for each energy-adjusted episodically consumed dietary component requires modeling short-term reference measurements of the component (a semicontinuous variable), and energy (a continuous variable) simultaneously in a bivariate model. In this article, we develop such a bivariate model, together with its application to regression calibration. We illustrate the new methodology using data from the NIH-AARP Diet and Health Study (Schatzkin et al., 2001, American Journal of Epidemiology 154, 1119-1125), and also evaluate its performance in a simulation study. © 2015, The International Biometric Society.

  1. Process measures or patient reported experience measures (PREMs) for comparing performance across providers? A study of measures related to access and continuity in Swedish primary care.

    Science.gov (United States)

    Glenngård, Anna H; Anell, Anders

    2018-01-01

    Aim To study (a) the covariation between patient reported experience measures (PREMs) and registered process measures of access and continuity when ranking providers in a primary care setting, and (b) whether registered process measures or PREMs provided more or less information about potential linkages between levels of access and continuity and explaining variables. Access and continuity are important objectives in primary care. They can be measured through registered process measures or PREMs. These measures do not necessarily converge in terms of outcomes. Patient views are affected by factors not necessarily reflecting quality of services. Results from surveys are often uncertain due to low response rates, particularly in vulnerable groups. The quality of process measures, on the other hand, may be influenced by registration practices and are often more easy to manipulate. With increased transparency and use of quality measures for management and governance purposes, knowledge about the pros and cons of using different measures to assess the performance across providers are important. Four regression models were developed with registered process measures and PREMs of access and continuity as dependent variables. Independent variables were characteristics of providers as well as geographical location and degree of competition facing providers. Data were taken from two large Swedish county councils. Findings Although ranking of providers is sensitive to the measure used, the results suggest that providers performing well with respect to one measure also tended to perform well with respect to the other. As process measures are easier and quicker to collect they may be looked upon as the preferred option. PREMs were better than process measures when exploring factors that contributed to variation in performance across providers in our study; however, if the purpose of comparison is continuous learning and development of services, a combination of PREMs and

  2. Continuous tissue glucose monitoring correlates with measurement of intermittent capillary glucose in patients with distributive shock.

    Science.gov (United States)

    Ballesteros, D; Martínez, Ó; Blancas Gómez-Casero, R; Martín Parra, C; López Matamala, B; Estébanez, B; Chana, M

    2015-10-01

    Intermittent glycemic measurements in patients admitted to the intensive care unit (ICU) can result in episodes of severe hypoglycemia or in a poor control of glycemia range. We designed a study to assess accuracy and reliability of continuous monitoring of tissue glucose for patients with distributive shock. Consecutive patients admitted to the ICU with a diagnosis of distributive shock and the need of insulin infusion for glycemic control were included in the study. These patients were implanted a Continuous Glucose Control Monitoring System (CGMS) with the sensor inserted subcutaneously into the abdominal wall. CGMS values were recorded every 5min. Capillary glucose (CG) was monitored for adjusting insulin perfusion according to the ICU protocol. Correlation between both methods was assessed. A total of 11,673 CGMS and 348 CG values were recorded. In five patients, CGMS failed to detect tissue glucose. A glucose value <3.33mmol/l (<60mg/dl) was observed in 3.6% of CGMS and in 0.29% CG values. 295 pairs of measurements were included in the statistical analysis for correlation assessment. The intraclass correlation coefficient was 0.706. The Pearson correlation coefficient was 0.71 (p<0.0001, 95% CI 0.65-0.76). The mean of differences between both measurement methods was 0.22mmol/l (3.98mg/dl) (95% CI 0.66-7.31). When the Continuous Glucose Control Monitoring System (CGMS) is able to obtain data (75% of the patients), there is correlation between the values obtained by this method and capillary blood glucose in patients with distributive shock. CGMS can detect more episodes of glycemic excursions outside the normal range than intermittent capillary glucose monitoring. Variables that may impair glucose metabolism and peripheral soft tissues perfusion could impair CGMS measurements. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  3. Tundish Cover Flux Thickness Measurement Method and Instrumentation Based on Computer Vision in Continuous Casting Tundish

    Directory of Open Access Journals (Sweden)

    Meng Lu

    2013-01-01

    Full Text Available Thickness of tundish cover flux (TCF plays an important role in continuous casting (CC steelmaking process. Traditional measurement method of TCF thickness is single/double wire methods, which have several problems such as personal security, easily affected by operators, and poor repeatability. To solve all these problems, in this paper, we specifically designed and built an instrumentation and presented a novel method to measure the TCF thickness. The instrumentation was composed of a measurement bar, a mechanical device, a high-definition industrial camera, a Siemens S7-200 programmable logic controller (PLC, and a computer. Our measurement method was based on the computer vision algorithms, including image denoising method, monocular range measurement method, scale invariant feature transform (SIFT, and image gray gradient detection method. Using the present instrumentation and method, images in the CC tundish can be collected by camera and transferred to computer to do imaging processing. Experiments showed that our instrumentation and method worked well at scene of steel plants, can accurately measure the thickness of TCF, and overcome the disadvantages of traditional measurement methods, or even replace the traditional ones.

  4. A dynamic method for continuously measuring magnetic field profiles in planar micropole undulators with submillimeter gaps

    International Nuclear Information System (INIS)

    Tatchyn, R.; Oregon Univ., Eugene

    1989-01-01

    Conventional techniques for measuring magnetic field profiles in ordinary undulators rely predominantly on Hall probes for making point-by-point static measurements. As undulators with submillimeter periods and gaps become available, such techniques will start becoming untenable, due to the relative largeness of conventional Hall probe heads and the rapidly increasing number of periods in devices of fixed length. In this paper a method is presented which can rapidly map out field profiles in undulators with periods and gaps extending down to the 100 μm range and beyond. The method, which samples the magnetic field continuously, has been used successfully in profiling a recently constructed 726 μm period undulator, and seems to offer some potential advantages over conventional Hall probe techniques in measuring large-scale undulator fields as well. (orig.)

  5. A continuous measurement system for yarn structures by an optical method

    International Nuclear Information System (INIS)

    Guo, Y; Tao, X M; Xu, B G; Choi, K F; Hua, T; Wang, S Y

    2010-01-01

    This paper presents a continuous observation and measurement system to acquire spatial distributions of multiple yarn structural parameters and a three-dimensional configuration of fibres in yarns. The system comprises an automatic yarn transmission unit, an optical observation device, image acquisition, analysis and display units. Spatial orientation of fibre, distribution of yarn twist and diameters, fibre radial position and other migration characteristics are, for the first time, determined in a simultaneous fashion. Extensive experiments were carried out to evaluate the system. In addition to the studies on different yarn types, further investigations were made on two types of yarns including the twist in short yarn segments, fibre orientation angle, radial position, migration frequency and amplitude as well the three-dimensional configurations of fibres. The experimental results indicate that the present system has good reliability and repeatability. The measured values are in good agreement with those obtained by other conventional techniques for single-parameter measurements

  6. Weak values in collision theory

    Science.gov (United States)

    de Castro, Leonardo Andreta; Brasil, Carlos Alexandre; Napolitano, Reginaldo de Jesus

    2018-05-01

    Weak measurements have an increasing number of applications in contemporary quantum mechanics. They were originally described as a weak interaction that slightly entangled the translational degrees of freedom of a particle to its spin, yielding surprising results after post-selection. That description often ignores the kinetic energy of the particle and its movement in three dimensions. Here, we include these elements and re-obtain the weak values within the context of collision theory by two different approaches, and prove that the results are compatible with each other and with the results from the traditional approach. To provide a more complete description, we generalize weak values into weak tensors and use them to provide a more realistic description of the Stern-Gerlach apparatus.

  7. Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction

    Science.gov (United States)

    Zhao, Yijia; Zhang, Yichen; Xu, Bingjie; Yu, Song; Guo, Hong

    2018-04-01

    The method of improving the performance of continuous-variable quantum key distribution protocols by postselection has been recently proposed and verified. In continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocols, the measurement results are obtained from untrusted third party Charlie. There is still not an effective method of improving CV-MDI QKD by the postselection with untrusted measurement. We propose a method to improve the performance of coherent-state CV-MDI QKD protocol by virtual photon subtraction via non-Gaussian postselection. The non-Gaussian postselection of transmitted data is equivalent to an ideal photon subtraction on the two-mode squeezed vacuum state, which is favorable to enhance the performance of CV-MDI QKD. In CV-MDI QKD protocol with non-Gaussian postselection, two users select their own data independently. We demonstrate that the optimal performance of the renovated CV-MDI QKD protocol is obtained with the transmitted data only selected by Alice. By setting appropriate parameters of the virtual photon subtraction, the secret key rate and tolerable excess noise are both improved at long transmission distance. The method provides an effective optimization scheme for the application of CV-MDI QKD protocols.

  8. Continuing Medical Education Improves Gastroenterologists' Compliance with Inflammatory Bowel Disease Quality Measures.

    Science.gov (United States)

    Sapir, Tamar; Moreo, Kathleen; Carter, Jeffrey D; Greene, Laurence; Patel, Barry; Higgins, Peter D R

    2016-07-01

    Low rates of compliance with quality measures for inflammatory bowel disease (IBD) have been reported for US gastroenterologists. We assessed the influence of quality improvement (QI) education on compliance with physician quality reporting system (PQRS) measures for IBD and measures related to National Quality Strategy (NQS) priorities. Forty community-based gastroenterologists participated in the QI study; 20 were assigned to educational intervention and control groups, respectively. At baseline, randomly selected charts of patients with moderate-to-severe ulcerative colitis were retrospectively reviewed for the gastroenterologists' performance of 8 PQRS IBD measures and 4 NQS-related measures. The intervention group participated in a series of accredited continuing medical education (CME) activities focusing on QI. Follow-up chart reviews were conducted 6 months after the CME activities. Independent t tests were conducted to compare between-group differences in baseline-to-follow-up rates of documented compliance with each measure. The analysis included 299 baseline charts and 300 follow-up charts. The intervention group had significantly greater magnitudes of improvement than the control group for the following measures: assessment of IBD type, location, and activity (+14 %, p = 0.009); influenza vaccination (+13 %, p = 0.025); pneumococcal vaccination (+20 %, p = 0.003); testing for latent tuberculosis before anti-TNF-α therapy (+10 %, p = 0.028); assessment of hepatitis B virus status before anti-TNF-α therapy (+9 %, p = 0.010); assessment of side effects (+17 %, p = 0.048), and counseling patients about cancer risks (+13 %, p = 0.013). QI-focused CME improves community-based gastroenterologists' compliance with IBD quality measures and measures aligned with NQS priorities.

  9. Use of continuous glucose monitoring as an outcome measure in clinical trials.

    Science.gov (United States)

    Beck, Roy W; Calhoun, Peter; Kollman, Craig

    2012-10-01

    Although developed to be a management tool for individuals with diabetes, continuous glucose monitoring (CGM) also has potential value for the assessment of outcomes in clinical studies. We evaluated using CGM as such an outcome measure. Data were analyzed from six previously completed inpatient studies in which both CGM (Freestyle Navigator™ [Abbott Diabetes Care, Alameda, CA] or Guardian(®) [Medtronic, Northridge, CA]) and reference glucose measurements were available. The analyses included 97 days of data from 93 participants with type 1 diabetes (age range, 5-57 years; mean, 18 ± 12 years). Mean glucose levels per day were similar for the CGM and reference measurements (median, 148 mg/dL vs. 143 mg/dL, respectively; P = 0.92), and the correlation of the two was high (r = 0.89). Similarly, most glycemia metrics showed no significant differences comparing CGM and reference values, except that the nadir glucose tended to be slightly lower and peak glucose slightly higher with reference measurements than CGM measurements (respective median, 59 mg/dL vs. 66 mg/dL [P = 0.05] and 262 mg/dL vs. 257 mg/dL [P = 0.003]) and glucose variability as measured with the coefficient of variation was slightly lower with CGM than reference measurements (respective median, 31% vs. 35%; Pblood glucose measurements. CGM inaccuracy and underestimation of the extremes of hyperglycemia and hypoglycemia can be accounted for in a clinical trial's study design. Thus, in appropriate settings, CGM can be a very meaningful and feasible outcome measure for clinical trials.

  10. Robust shot-noise measurement for continuous-variable quantum key distribution

    Science.gov (United States)

    Kunz-Jacques, Sébastien; Jouguet, Paul

    2015-02-01

    We study a practical method to measure the shot noise in real time in continuous-variable quantum key distribution systems. The amount of secret key that can be extracted from the raw statistics depends strongly on this quantity since it affects in particular the computation of the excess noise (i.e., noise in excess of the shot noise) added by an eavesdropper on the quantum channel. Some powerful quantum hacking attacks relying on faking the estimated value of the shot noise to hide an intercept and resend strategy were proposed. Here, we provide experimental evidence that our method can defeat the saturation attack and the wavelength attack.

  11. Online soft sensor for hybrid systems with mixed continuous and discrete measurements

    Czech Academy of Sciences Publication Activity Database

    Suzdaleva, Evgenia; Nagy, Ivan

    2012-01-01

    Roč. 36, č. 10 (2012), s. 294-300 ISSN 0098-1354 R&D Projects: GA MŠk 1M0572; GA TA ČR TA01030123 Grant - others:Skoda Auto, a.s.(CZ) ENS/2009/UTIA Institutional research plan: CEZ:AV0Z10750506 Keywords : online state prediction * hybrid filter * state-space model * mixed data Subject RIV: BC - Control Systems Theory Impact factor: 2.091, year: 2012 http://library.utia.cas.cz/separaty/2011/AS/suzdaleva-online soft sensor for hybrid systems with mixed continuous and discrete measurements.pdf

  12. Continuous acid dew point measurement in coal-fired power plants; Kontinuierliche Saeuretaupunktmessung in Braunkohlekraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Foedisch, Holger; Schulz, Joerg; Schengber, Petra; Dietrich, Gabriele [Dr. Foedisch Umweltmesstechnik AG, Markranstaedt (Germany)

    2009-07-01

    The reduction of flue gas losses is one option to increase power plant efficiency. The target is the optimised low waste gas temperature. When applying lignite and other high-sulphur fuels the temperature of the flue gas is mainly determined by the acid dew point. Temperature of the flue gas system is to amount some 10 to 20 K above the assumed acid dew point. The acid dew point measuring system AMD 08 is able to detect the real acid dew point in a quasi-continuous way. Thus, it is possible to deliberately decrease waste gas temperature. (orig.)

  13. Working level measurement of radon daughters and thoron daughters by personal dosimetry and continuous monitoring

    International Nuclear Information System (INIS)

    Phillips, C.R.; Leung, H.

    1981-01-01

    The performance of personal alpha dosimeters in mixed radon daughter and thoron daughter atmospheres in Ontario uranium mines is described together with monitoring developments which enable the radon daughter working level to be determined separately. The theoretical bases for continuous and integrated working level measurements based on individual and gross counts are presented in terms of the weighting factor for combining the thoron daughter working level with the radon daughter working level, and in terms of the in-growth time of the air. Implications for the determination of working level in the presence of thoron daughters are discussed

  14. Using continuous underway isotope measurements to map water residence time in hydrodynamically complex tidal environments

    Science.gov (United States)

    Downing, Bryan D.; Bergamaschi, Brian; Kendall, Carol; Kraus, Tamara; Dennis, Kate J.; Carter, Jeffery A.; von Dessonneck, Travis

    2016-01-01

    Stable isotopes present in water (δ2H, δ18O) have been used extensively to evaluate hydrological processes on the basis of parameters such as evaporation, precipitation, mixing, and residence time. In estuarine aquatic habitats, residence time (τ) is a major driver of biogeochemical processes, affecting trophic subsidies and conditions in fish-spawning habitats. But τ is highly variable in estuaries, owing to constant changes in river inflows, tides, wind, and water height, all of which combine to affect τ in unpredictable ways. It recently became feasible to measure δ2H and δ18O continuously, at a high sampling frequency (1 Hz), using diffusion sample introduction into a cavity ring-down spectrometer. To better understand the relationship of τ to biogeochemical processes in a dynamic estuarine system, we continuously measured δ2H and δ18O, nitrate and water quality parameters, on board a small, high-speed boat (5 to >10 m s–1) fitted with a hull-mounted underwater intake. We then calculated τ as is classically done using the isotopic signals of evaporation. The result was high-resolution (∼10 m) maps of residence time, nitrate, and other parameters that showed strong spatial gradients corresponding to geomorphic attributes of the different channels in the area. The mean measured value of τ was 30.5 d, with a range of 0–50 d. We used the measured spatial gradients in both τ and nitrate to calculate whole-ecosystem uptake rates, and the values ranged from 0.006 to 0.039 d–1. The capability to measure residence time over single tidal cycles in estuaries will be useful for evaluating and further understanding drivers of phytoplankton abundance, resolving differences attributable to mixing and water sources, explicitly calculating biogeochemical rates, and exploring the complex linkages among time-dependent biogeochemical processes in hydrodynamically complex environments such as estuaries.

  15. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) during BARCA

    Science.gov (United States)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2009-12-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR) analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  16. Plane waves with weak singularities

    International Nuclear Information System (INIS)

    David, Justin R.

    2003-03-01

    We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which does not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity. (author)

  17. Measurement of the ratio of liquid to solid phases in a continuous ingot

    International Nuclear Information System (INIS)

    Deryabina, G.N.; Ripp, A.G.

    1980-01-01

    A radiometric method of measuring the ratio of liquid and solid phases (crust thickness) in a continuous ingot for automation of the continuous steel casting process, has been proposed. The essence of the method is, that radiation flux, bearing information on the object tested, is transformed in a succession of electric pulses, which is processed afterwords for obtaining necessary information. In this case either the flux of non-scattered radiation, passed through the object, or the flux of single-scattered radiation reflected from the object is registered. Block-diagram and specifications of a radiometric device with the Co source of 50 gxequiv. Ra activity developed for this purpose are presented. The technique for calibration ob the device and the results of its tests, are described. It is shown, that introduction of such devices for the control crust thickness at the installations of continuous steel casting of metallurgical works would permit to exercise casting in the optimum regime, to exclude metal leakage, to increase its quality and yield of the useful metal

  18. Measurement of the weak mixing angle using the forward-backward asymmetry of Drell-Yan events in pp collisions at 8 TeV

    CERN Document Server

    Sirunyan, Albert M; CMS Collaboration; Adam, Wolfgang; Ambrogi, Federico; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Escalante Del Valle, Alberto; Flechl, Martin; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hrubec, Josef; Jeitler, Manfred; Krammer, Natascha; Krätschmer, Ilse; Liko, Dietrich; Madlener, Thomas; Mikulec, Ivan; Rad, Navid; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Spanring, Markus; Spitzbart, Daniel; Taurok, Anton; Waltenberger, Wolfgang; Wittmann, Johannes; Wulz, Claudia-Elisabeth; Zarucki, Mateusz; Chekhovsky, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; De Wolf, Eddi A; Di Croce, Davide; Janssen, Xavier; Lauwers, Jasper; Pieters, Maxim; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; De Bruyn, Isabelle; De Clercq, Jarne; Deroover, Kevin; Flouris, Giannis; Lontkovskyi, Denys; Lowette, Steven; Marchesini, Ivan; Moortgat, Seth; Moreels, Lieselotte; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Beghin, Diego; Bilin, Bugra; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dorney, Brian; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Kalsi, Amandeep Kaur; Lenzi, Thomas; Luetic, Jelena; Postiau, Nicolas; Starling, Elizabeth; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Wang, Qun; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Roskas, Christos; Trocino, Daniele; Tytgat, Michael; Verbeke, Willem; Vermassen, Basile; Vit, Martina; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caputo, Claudio; David, Pieter; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Saggio, Alessia; Vidal Marono, Miguel; Wertz, Sébastien; Zobec, Joze; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correia Silva, Gilson; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Coelho, Eduardo; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Melo De Almeida, Miqueias; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Sanchez Rosas, Luis Junior; Santoro, Alberto; Sznajder, Andre; Thiel, Mauricio; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Calligaris, Luigi; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Misheva, Milena; Rodozov, Mircho; Shopova, Mariana; Sultanov, Georgi; Dimitrov, Anton; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Yuan, Li; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Jiang, Chun-Hua; Leggat, Duncan; Liao, Hongbo; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Jing; Li, Qiang; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Wang, Yi; Avila, Carlos; Cabrera, Andrés; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; González Hernández, Carlos Felipe; Segura Delgado, Manuel Alejandro; Courbon, Benoit; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Starodumov, Andrei; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Ayala, Edy; Carrera Jarrin, Edgar; Ellithi Kamel, Ali; Mohamed, Amr; Salama, Elsayed; Bhowmik, Sandeep; Carvalho Antunes De Oliveira, Alexandra; Dewanjee, Ram Krishna; Ehataht, Karl; Kadastik, Mario; Raidal, Martti; Veelken, Christian; Eerola, Paula; Kirschenmann, Henning; Pekkanen, Juska; Voutilainen, Mikko; Havukainen, Joona; Heikkilä, Jaana Kristiina; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Laurila, Santeri; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Siikonen, Hannu; Tuominen, Eija; Tuominiemi, Jorma; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Leloup, Clément; Locci, Elizabeth; Malcles, Julie; Negro, Giulia; Rander, John; Rosowsky, André; Sahin, Mehmet Özgür; Titov, Maksym; Abdulsalam, Abdulla; Amendola, Chiara; Antropov, Iurii; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Granier de Cassagnac, Raphael; Kucher, Inna; Lisniak, Stanislav; Lobanov, Artur; Martin Blanco, Javier; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Pigard, Philipp; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Stahl Leiton, Andre Govinda; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Cherepanov, Vladimir; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Jansová, Markéta; Le Bihan, Anne-Catherine; Tonon, Nicolas; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Chanon, Nicolas; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lattaud, Hugues; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Viret, Sébastien; Zhang, Sijing; Toriashvili, Tengizi; Lomidze, David; Autermann, Christian; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max Philip; Schomakers, Christian; Schulz, Johannes; Teroerde, Marius; Wittmer, Bruno; Zhukov, Valery; Albert, Andreas; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Ghosh, Saranya; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Keller, Henning; Knutzen, Simon; Mastrolorenzo, Luca; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Schmidt, Alexander; Teyssier, Daniel; Thüer, Sebastian; Flügge, Günter; Hlushchenko, Olena; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Sert, Hale; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Babounikau, Illia; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bermúdez Martínez, Armando; Bertsche, David; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Botta, Valeria; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Danilov, Vladyslav; De Wit, Adinda; Defranchis, Matteo Maria; Diez Pardos, Carmen; Domínguez Damiani, Daniela; Eckerlin, Guenter; Eichhorn, Thomas; Elwood, Adam; Eren, Engin; Gallo, Elisabetta; Geiser, Achim; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Guthoff, Moritz; Harb, Ali; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Knolle, Joscha; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Meyer, Mareike; Missiroli, Marino; Mittag, Gregor; Mnich, Joachim; Myronenko, Volodymyr; Pflitsch, Svenja Karen; Pitzl, Daniel; Raspereza, Alexei; Savitskyi, Mykola; Saxena, Pooja; Schütze, Paul; Schwanenberger, Christian; Shevchenko, Rostyslav; Singh, Akshansh; Stefaniuk, Nazar; Tholen, Heiner; Vagnerini, Antonio; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wen, Yiwen; Wichmann, Katarzyna; Wissing, Christoph; Zenaiev, Oleksandr; Aggleton, Robin; Bein, Samuel; Benecke, Anna; Blobel, Volker; Centis Vignali, Matteo; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hinzmann, Andreas; Hoffmann, Malte; Karavdina, Anastasia; Kasieczka, Gregor; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Kutzner, Viktor; Lange, Johannes; Marconi, Daniele; Multhaup, Jens; Niedziela, Marek; Nowatschin, Dominik; Perieanu, Adrian; Reimers, Arne; Rieger, Oliver; Scharf, Christian; Schleper, Peter; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Troendle, Daniel; Usai, Emanuele; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baselga, Marta; Baur, Sebastian; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Faltermann, Nils; Freund, Benedikt; Giffels, Manuel; Harrendorf, Marco Alexander; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Katkov, Igor; Kudella, Simon; Mildner, Hannes; Mitra, Soureek; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kyriakis, Aristotelis; Loukas, Demetrios; Paspalaki, Garyfallia; Topsis-Giotis, Iasonas; Karathanasis, George; Kesisoglou, Stilianos; Kontaxakis, Pantelis; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Vellidis, Konstantinos; Kousouris, Konstantinos; Papakrivopoulos, Ioannis; Tsipolitis, Georgios; Evangelou, Ioannis; Foudas, Costas; Gianneios, Paraskevas; Katsoulis, Panagiotis; Kokkas, Panagiotis; Mallios, Stavros; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Triantis, Frixos A; Tsitsonis, Dimitrios; Csanad, Mate; Filipovic, Nicolas; Major, Péter; Nagy, Marton Imre; Pasztor, Gabriella; Surányi, Olivér; Veres, Gabor Istvan; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Hunyadi, Ádám; Sikler, Ferenc; Vámi, Tamás Álmos; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chauhan, Sushil; Chawla, Ridhi; Dhingra, Nitish; Gupta, Rajat; Kaur, Anterpreet; Kaur, Amandeep; Kaur, Manjit; Kaur, Sandeep; Kumar, Ramandeep; Kumari, Priyanka; Lohan, Manisha; Mehta, Ankita; Sharma, Sandeep; Singh, Jasbir; Walia, Genius; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Gola, Mohit; Keshri, Sumit; Kumar, Ashok; Malhotra, Shivali; Naimuddin, Md; Priyanka, Priyanka; Ranjan, Kirti; Shah, Aashaq; Sharma, Ramkrishna; Bhardwaj, Rishika; Bharti, Monika; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Bhawandeep, Bhawandeep; Bhowmik, Debabrata; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Mondal, Kuntal; Nandan, Saswati; Purohit, Arnab; Rout, Prasant Kumar; Roy, Ashim; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Singh, Bipen; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Bhat, Muzamil Ahmad; Dugad, Shashikant; Mahakud, Bibhuprasad; Mohanty, Gagan Bihari; Sur, Nairit; Sutar, Bajrang; Ravindra Kumar Verma, Ravindra; Banerjee, Sudeshna; Bhattacharya, Soham; Chatterjee, Suman; Das, Pallabi; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sahoo, Niladribihari; Sarkar, Tanmay; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Di Florio, Adriano; Errico, Filippo; Fiore, Luigi; Gelmi, Andrea; Iaselli, Giuseppe; Lezki, Samet; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Borgonovi, Lisa; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Di Mattia, Alessandro; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Chatterjee, Kalyanmoy; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Latino, Giuseppe; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Ferro, Fabrizio; Ravera, Fabio; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Beschi, Andrea; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Di Guida, Salvatore; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Crescenzo, Antonia; Fabozzi, Francesco; Fienga, Francesco; Galati, Giuliana; Iorio, Alberto Orso Maria; Khan, Wajid Ali; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Voevodina, Elena; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Bragagnolo, Alberto; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Lujan, Paul; Margoni, Martino; Meneguzzo, Anna Teresa; Pozzobon, Nicola; Ronchese, Paolo; Rossin, Roberto; Simonetto, Franco; Tiko, Andres; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Cecchi, Claudia; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Manoni, Elisa; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Rossi, Alessandro; Santocchia, Attilio; Spiga, Daniele; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bianchini, Lorenzo; Boccali, Tommaso; Borrello, Laura; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Giannini, Leonardo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Manca, Elisabetta; Mandorli, Giulio; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Daci, Nadir; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Vazzoler, Federico; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Moon, Chang-Seong; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Kim, Hyunchul; Moon, Dong Ho; Oh, Geonhee; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Kim, Hyunsoo; Almond, John; Kim, Junho; Kim, Jae Sung; Lee, Haneol; Lee, Kyeongpil; Nam, Kyungwook; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Duran-Osuna, Cecilia; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Ramirez-Sanchez, Gabriel; Heredia-De La Cruz, Ivan; Rabadán-Trejo, Raúl Iraq; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Reyes-Almanza, Rogelio; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Eysermans, Jan; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Bheesette, Srinidhi; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Asghar, Muhammad Irfan; Hassan, Qamar; Hoorani, Hafeez R; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Szleper, Michal; Traczyk, Piotr; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Galinhas, Bruno; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Strong, Giles; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Gavrilenko, Mikhail; Golunov, Alexander; Golutvin, Igor; Gorbounov, Nikolai; Gorbunov, Ilya; Kamenev, Alexey; Karjavine, Vladimir; Korenkov, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sosnov, Dmitry; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Stepennov, Anton; Stolin, Viatcheslav; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Bylinkin, Alexander; Chadeeva, Marina; Parygin, Pavel; Philippov, Dmitry; Polikarpov, Sergey; Popova, Elena; Rusinov, Vladimir; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Savrin, Viktor; Snigirev, Alexander; Blinov, Vladimir; Dimova, Tatyana; Kardapoltsev, Leonid; Shtol, Dmitry; Skovpen, Yuri; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Godizov, Anton; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Mandrik, Petr; Petrov, Vladimir; Ryutin, Roman; Slabospitskii, Sergei; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Babaev, Anton; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Alcaraz Maestre, Juan; Álvarez Fernández, Adrian; Bachiller, Irene; Barrio Luna, Mar; Brochero Cifuentes, Javier Andres; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Moran, Dermot; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Triossi, Andrea; Albajar, Carmen; de Trocóniz, Jorge F; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Rodríguez Bouza, Víctor; Sanchez Cruz, Sergio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chazin Quero, Barbara; Duarte Campderros, Jordi; Fernandez, Marcos; Fernández Manteca, Pedro José; García Alonso, Andrea; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Piedra Gomez, Jonatan; Prieels, Cédric; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Akgun, Bora; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Bianco, Michele; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Cepeda, Maria; Cerminara, Gianluca; Chapon, Emilien; Chen, Yi; Cucciati, Giacomo; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Roeck, Albert; Deelen, Nikkie; Dobson, Marc; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Fallavollita, Francesco; Fasanella, Daniele; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gilbert, Andrew; Gill, Karl; Glege, Frank; Gulhan, Doga; Hegeman, Jeroen; Innocente, Vincenzo; Jafari, Abideh; Janot, Patrick; Karacheban, Olena; Kieseler, Jan; Knünz, Valentin; Kornmayer, Andreas; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Mulders, Martijn; Neugebauer, Hannes; Ngadiuba, Jennifer; Orfanelli, Styliani; Orsini, Luciano; Pantaleo, Felice; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pitters, Florian Michael; Rabady, Dinyar; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Stakia, Anna; Steggemann, Jan; Tosi, Mia; Treille, Daniel; Tsirou, Andromachi; Veckalns, Viesturs; Verweij, Marta; Zeuner, Wolfram Dietrich; Bertl, Willi; Caminada, Lea; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Backhaus, Malte; Bäni, Lukas; Berger, Pirmin; Chernyavskaya, Nadezda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dorfer, Christian; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Klijnsma, Thomas; Lustermann, Werner; Marionneau, Matthieu; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Pigazzini, Simone; Quittnat, Milena; Reichmann, Michael; Ruini, Daniele; Sanz Becerra, Diego Alejandro; Schönenberger, Myriam; Shchutska, Lesya; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Vesterbacka Olsson, Minna Leonora; Wallny, Rainer; Zhu, De Hua; Aarrestad, Thea Klaeboe; Amsler, Claude; Brzhechko, Danyyl; Canelli, Maria Florencia; De Cosa, Annapaola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Kilminster, Benjamin; Neutelings, Izaak; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Zucchetta, Alberto; Chang, Yu-Hsiang; Cheng, Kai-yu; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Chang, Paoti; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Hou, George Wei-Shu; Kumar, Arun; Li, You-ying; Lu, Rong-Shyang; Paganis, Efstathios; Psallidas, Andreas; Steen, Arnaud; Tsai, Jui-fa; Asavapibhop, Burin; Srimanobhas, Norraphat; Suwonjandee, Narumon; Bat, Ayse; Boran, Fatma; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Sunar Cerci, Deniz; Tali, Bayram; Tok, Ufuk Guney; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Atakisi, Ismail Okan; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Tekten, Sevgi; Yetkin, Elif Asli; Agaras, Merve Nazlim; Atay, Serhat; Cakir, Altan; Cankocak, Kerem; Komurcu, Yildiray; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Titterton, Alexander; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Davignon, Olivier; Flacher, Henning; Goldstein, Joel; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Newbold, Dave M; Paramesvaran, Sudarshan; Penning, Bjoern; Sakuma, Tai; Smith, Dominic; Smith, Vincent J; Taylor, Joseph; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Linacre, Jacob; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Auzinger, Georg; Bainbridge, Robert; Bloch, Philippe; Borg, Johan; Breeze, Shane; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Di Maria, Riccardo; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Komm, Matthias; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Martelli, Arabella; Nash, Jordan; Nikitenko, Alexander; Palladino, Vito; Pesaresi, Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Shtipliyski, Antoni; Singh, Gurpreet; Stoye, Markus; Strebler, Thomas; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Virdee, Tejinder; Wardle, Nicholas; Winterbottom, Daniel; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Mackay, Catherine Kirsty; Morton, Alexander; Reid, Ivan; Teodorescu, Liliana; Zahid, Sema; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Madrid, Christopher; Mcmaster, Brooks; Pastika, Nathaniel; Smith, Caleb; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Coubez, Xavier; Cutts, David; Hadley, Mary; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Lee, Jangbae; Mao, Zaixing; Narain, Meenakshi; Pazzini, Jacopo; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Yu, David; Band, Reyer; Brainerd, Christopher; Breedon, Richard; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Ko, Winston; Kukral, Ota; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Stolp, Dustin; Taylor, Devin; Tos, Kyle; Tripathi, Mani; Wang, Zhangqier; Zhang, Fengwangdong; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Regnard, Simon; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Bouvier, Elvire; Burt, Kira; Clare, Robert; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Karapostoli, Georgia; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Si, Weinan; Wang, Long; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Gilbert, Dylan; Hashemi, Bobak; Holzner, André; Klein, Daniel; Kole, Gouranga; Krutelyov, Vyacheslav; Letts, James; Masciovecchio, Mario; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Citron, Matthew; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; Gouskos, Loukas; Heller, Ryan; Incandela, Joe; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Wang, Sicheng; Yoo, Jaehyeok; Anderson, Dustin; Bornheim, Adolf; Bunn, Julian; Lawhorn, Jay Mathew; Newman, Harvey B; Nguyen, Thong; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhang, Zhicai; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Mudholkar, Tanmay; Paulini, Manfred; Sun, Menglei; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; MacDonald, Emily; Mulholland, Troy; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Cheng, Yangyang; Chu, Jennifer; Datta, Abhisek; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Quach, Dan; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Abdullin, Salavat; Albrow, Michael; Alyari, Maral; Apollinari, Giorgio; Apresyan, Artur; Apyan, Aram; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Canepa, Anadi; Cerati, Giuseppe Benedetto; Cheung, Harry; Chlebana, Frank; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Freeman, Jim; Gecse, Zoltan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kortelainen, Matti J; Kreis, Benjamin; Lammel, Stephan; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Pena, Cristian; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Savoy-Navarro, Aurore; Schneider, Basil; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Cadamuro, Luca; Carnes, Andrew; Carver, Matthew; Curry, David; Field, Richard D; Gleyzer, Sergei V; Joshi, Bhargav Madhusudan; Konigsberg, Jacobo; Korytov, Andrey; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Shi, Kun; Sperka, David; Wang, Jian; Wang, Sean-Jiun; Joshi, Yagya Raj; Linn, Stephan; Ackert, Andrew; Adams, Todd; Askew, Andrew; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Martinez, German; Perry, Thomas; Prosper, Harrison; Saha, Anirban; Santra, Arka; Sharma, Varun; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Rahmani, Mehdi; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Dittmer, Susan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Mills, Corrinne; Sandoval Gonzalez, Irving Daniel; Tonjes, Marguerite; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zhang, Jingyu; Alhusseini, Mohammad; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Hung, Wai Ting; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Rogan, Christopher; Sanders, Stephen; Schmitz, Erich; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Kim, Doyeong; Maravin, Yurii; Mendis, Dalath Rachitha; Mitchell, Tyler; Modak, Atanu; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Baron, Owen; Belloni, Alberto; Eno, Sarah Catherine; Feng, Yongbin; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonwar, Suresh C; Wong, Kak; Abercrombie, Daniel; Allen, Brandon; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bauer, Gerry; Bi, Ran; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Harris, Philip; Hsu, Dylan; Hu, Miao; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Zhaozhong, Shi; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Turkewitz, Jared; Wadud, Mohammad Abrar; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Golf, Frank; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kharchilava, Avto; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Freer, Chad; Hortiangtham, Apichart; Morse, David Michael; Orimoto, Toyoko; Teixeira De Lima, Rafael; Wamorkar, Tanvi; Wang, Bingran; Wisecarver, Andrew; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Bucci, Rachael; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Li, Wenzhao; Loukas, Nikitas; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Siddireddy, Prasanna; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wightman, Andrew; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Ling, Ta-Yung; Luo, Wuming; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Higginbotham, Samuel; Kalogeropoulos, Alexis; Lange, David; Luo, Jingyu; Marlow, Daniel; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Salfeld-Nebgen, Jakob; Stickland, David; Tully, Christopher; Malik, Sudhir; Norberg, Scarlet; Barker, Anthony; Barnes, Virgil E; Das, Souvik; Gutay, Laszlo; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Peng, Cheng-Chieh; Qiu, Hao; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xiao, Rui; Xie, Wei; Cheng, Tongguang; Dolen, James; Parashar, Neeti; Chen, Zhenyu; Ecklund, Karl Matthew; Freed, Sarah; Geurts, Frank JM; Guilbaud, Maxime; Kilpatrick, Matthew; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Shi, Wei; Tu, Zhoudunming; Zabel, James; Zhang, Aobo; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Dulemba, Joseph Lynn; Fallon, Colin; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Taus, Rhys; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Luo, Sifu; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dudero, Phillip Russell; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Mengke, Tielige; Muthumuni, Samila; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Padeken, Klaas; Ruiz Alvarez, José David; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Joyce, Matthew; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Harr, Robert; Karchin, Paul Edmund; Poudyal, Nabin; Sturdy, Jared; Thapa, Prakash; Zaleski, Shawn; Brodski, Michael; Buchanan, James; Caillol, Cécile; Carlsmith, Duncan; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Woods, Nathaniel

    2018-01-01

    A measurement is presented of the effective leptonic weak mixing angle (${\\sin^2\\theta^{\\ell}_{\\text{eff}}} $) using the forward-backward asymmetry of Drell-Yan lepton pairs ($\\mu\\mu$ and ee) produced in proton-proton collisions at $\\sqrt{s} = $ 8 TeV at the CMS experiment of the LHC. The data correspond to integrated luminosities of 18.8 and 19.6 fb$^{-1}$ in the dimuon and dielectron channels, respectively, containing 8.2 million dimuon and 4.9 million dielectron events. With more events and new analysis techniques, including constraints obtained on the parton distribution functions from the measured forward-backward asymmetry, the statistical and systematic uncertainties are significantly reduced relative to previous CMS measurements. The extracted value of ${\\sin^2\\theta^{\\ell}_{\\text{eff}}} $ from the combined dilepton data is ${\\sin^2\\theta^{\\ell}_{\\text{eff}}} = $ 0.23101 $\\pm$ 0.00036 (stat) $\\pm$ 0.00018 (syst) $\\pm$ 0.00016 (theo) $\\pm$ 0.00031 (parton distributions in proton) $ = $ 0.23101 $\\pm$ 0....

  19. Continuous glucose monitoring in newborn infants: how do errors in calibration measurements affect detected hypoglycemia?

    Science.gov (United States)

    Thomas, Felicity; Signal, Mathew; Harris, Deborah L; Weston, Philip J; Harding, Jane E; Shaw, Geoffrey M; Chase, J Geoffrey

    2014-05-01

    Neonatal hypoglycemia is common and can cause serious brain injury. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing blood glucose (BG) measurements. Calibration algorithms use BG measurements to convert sensor signals into CGM data. Thus, inaccuracies in calibration BG measurements directly affect CGM values and any metrics calculated from them. The aim was to quantify the effect of timing delays and calibration BG measurement errors on hypoglycemia metrics in newborn infants. Data from 155 babies were used. Two timing and 3 BG meter error models (Abbott Optium Xceed, Roche Accu-Chek Inform II, Nova Statstrip) were created using empirical data. Monte-Carlo methods were employed, and each simulation was run 1000 times. Each set of patient data in each simulation had randomly selected timing and/or measurement error added to BG measurements before CGM data were calibrated. The number of hypoglycemic events, duration of hypoglycemia, and hypoglycemic index were then calculated using the CGM data and compared to baseline values. Timing error alone had little effect on hypoglycemia metrics, but measurement error caused substantial variation. Abbott results underreported the number of hypoglycemic events by up to 8 and Roche overreported by up to 4 where the original number reported was 2. Nova results were closest to baseline. Similar trends were observed in the other hypoglycemia metrics. Errors in blood glucose concentration measurements used for calibration of CGM devices can have a clinically important impact on detection of hypoglycemia. If CGM devices are going to be used for assessing hypoglycemia it is important to understand of the impact of these errors on CGM data. © 2014 Diabetes Technology Society.

  20. Continuous optical measurement system of hemolysis during a photosensitization reaction using absorption spectrum

    Science.gov (United States)

    Hamada, R.; Ogawa, E.; Arai, T.

    2018-02-01

    To investigate hemolysis phenomena during a photosensitization reaction with the reaction condition continuously and simultaneously for a safety assessment of hemolysis side effect, we constructed an optical system to measure blood sample absorption spectrum during the reaction. Hemolysis degree might be under estimated in general evaluation methods because there is a constant oxygen pressure assumption in spite of oxygen depression take place. By investigating hemoglobin oxidation and oxygen desorption dynamics obtained from the contribution of the visible absorption spectrum and multiple regression analysis, both the hemolysis phenomena and its oxygen environment might be obtained with time. A 664 nm wavelength laser beam for the reaction excitation and 475-650 nm light beam for measuring the absorbance spectrum were arranged perpendicularly crossing. A quartz glass cuvette with 1×10 mm in dimensions for the spectrum measurement was located at this crossing point. A red blood cells suspension medium was arranged with low hematocrit containing 30 μg/ml talaporfin sodium. This medium was irradiated up to 40 J/cm2 . The met-hemoglobin, oxygenatedhemoglobin, and deoxygenated-hemoglobin concentrations were calculated by a multiple regression analysis from the measured spectra. We confirmed the met-hemoglobin concentration increased and oxygen saturation decreased with the irradiation time, which seems to indicate the hemolysis progression and oxygen consumption, respectively. By using our measuring system, the hemolysis progression seems to be obtained with oxygen environment information.

  1. Autonomous Sensors for Measuring Continuously the Moisture and Salinity of a Porous Medium

    Science.gov (United States)

    Chavanne, Xavier; Frangi, Jean-Pierre

    2017-01-01

    The article describes a new field sensor to monitor continuously in situ moisture and salinity of a porous medium via measurements of its dielectric permittivity, conductivity and temperature. It intends to overcome difficulties and biases encountered with sensors based on the same sensitivity principle. Permittivity and conductivity are determined simultaneously by a self-balanced bridge, which measures directly the admittance of sensor electrodes in medium. All electric biases are reduced and their residuals taken into account by a physical model of the instrument, calibrated against reference fluids. Geometry electrode is optimized to obtain a well representative sample of the medium. The sensor also permits acquiring a large amount of data at high frequency (six points every hour, and even more) and to access it rapidly, even in real time, owing to autonomy capabilities and wireless communication. Ongoing developments intend to simplify and standardize present sensors. Results of field trials of prototypes in different environments are presented. PMID:28492471

  2. Mercury Emission Measurement in Coal-Fired Boilers by Continuous Mercury Monitor and Ontario Hydro Method

    Science.gov (United States)

    Zhu, Yanqun; Zhou, Jinsong; He, Sheng; Cai, Xiaoshu; Hu, Changxin; Zheng, Jianming; Zhang, Le; Luo, Zhongyang; Cen, Kefa

    2007-06-01

    The mercury emission control approach attaches more importance. The accurate measurement of mercury speciation is a first step. Because OH method (accepted method) can't provide the real-time data and 2-week time for results attained, it's high time to seek on line mercury continuous emission monitors(Hg-CEM). Firstly, the gaseous elemental and oxidized mercury were conducted to measure using OH and CEM method under normal operation conditions of PC boiler after ESP, the results between two methods show good consistency. Secondly, through ESP, gaseous oxidized mercury decrease a little and particulate mercury reduce a little bit, but the elemental mercury is just the opposite. Besides, the WFGD system achieved to gaseous oxidized mercury removal of 53.4%, gaseous overall mercury and elemental mercury are 37.1% and 22.1%, respectively.

  3. Violation of Continuous-Variable Einstein-Podolsky-Rosen Steering with Discrete Measurements

    Science.gov (United States)

    Schneeloch, James; Dixon, P. Ben; Howland, Gregory A.; Broadbent, Curtis J.; Howell, John C.

    2013-03-01

    In this Letter, we derive an entropic Einstein-Podolsky-Rosen (EPR) steering inequality for continuous-variable systems using only experimentally measured discrete probability distributions and details of the measurement apparatus. We use this inequality to witness EPR steering between the positions and momenta of photon pairs generated in spontaneous parametric down-conversion. We examine the asymmetry between parties in this inequality, and show that this asymmetry can be used to reduce the technical requirements of experimental setups intended to demonstrate the EPR paradox. Furthermore, we develop a more stringent steering inequality that is symmetric between parties, and use it to show that the down-converted photon pairs also exhibit symmetric EPR steering.

  4. Design and application of a continuous, digital-output, environmental radon measuring instrument

    International Nuclear Information System (INIS)

    Spitz, H.; Wrenn, M.E.

    1977-01-01

    A radon measuring instrument has been developed which can continuously measure environmental concentrations of radon in the atmosphere without employing any air movers or pumps. The unit is entirely passive in design and relies upon the diffusion of radon for sample collection. Since radon is an inert noble gas it will follow the classical theory of motion and diffuse in a direction dependent upon the concentration gradient existing between the atmosphere and the sensitive portion of the detector. A porous foam filter allows radon, but not its daughters, to enter the detector where an electrostatic field is maintained to facilitate collection of the decay products of radon, i.e., initially the positive ions of RaA (Po-218). Alpha particles from RaA and RaC' (Po-214) within the sensitive volume are detected using a ZnS scintillator and photomultiplier tube with the usual complement of electronics

  5. Automated and continuously operating acid dew point measuring instrument for flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Reckmann, D.; Naundorf, G.

    1986-06-01

    Design and operation is explained for a sulfuric acid dew point indicator for continuous flue gas temperature control. The indicator operated successfully in trial tests over several years with brown coal, gas and oil combustion in a measurement range of 60 to 180 C. The design is regarded as uncomplicated and easy to manufacture. Its operating principle is based on electric conductivity measurement on a surface on which sulfuric acid vapor has condensed. A ring electrode and a PtRh/Pt thermal element as central electrode are employed. A scheme of the equipment design is provided. Accuracy of the indicator was compared to manual dew point sondes manufactured by Degussa and showed a maximum deviation of 5 C. Manual cleaning after a number of weeks of operation is required. Fly ash with a high lime content increases dust buildup and requires more frequent cleaning cycles.

  6. Autonomous Sensors for Measuring Continuously the Moisture and Salinity of a Porous Medium.

    Science.gov (United States)

    Chavanne, Xavier; Frangi, Jean-Pierre

    2017-05-11

    The article describes a new field sensor to monitor continuously in situ moisture and salinity of a porous medium via measurements of its dielectric permittivity, conductivity and temperature. It intends to overcome difficulties and biases encountered with sensors based on the same sensitivity principle. Permittivity and conductivity are determined simultaneously by a self-balanced bridge, which measures directly the admittance of sensor electrodes in medium. All electric biases are reduced and their residuals taken into account by a physical model of the instrument, calibrated against reference fluids. Geometry electrode is optimized to obtain a well representative sample of the medium. The sensor also permits acquiring a large amount of data at high frequency (six points every hour, and even more) and to access it rapidly, even in real time, owing to autonomy capabilities and wireless communication. Ongoing developments intend to simplify and standardize present sensors. Results of field trials of prototypes in different environments are presented.

  7. A novel wearable device for continuous, non-invasion blood pressure measurement.

    Science.gov (United States)

    Xin, Qin; Wu, Jianping

    2017-08-01

    In this paper, we have developed a wearable cuffless device for daily blood pressure (BP) measurement. We incorporated the light based sensor and other hard wares in a small volume for BP detection. With optimized algorithm, the real-time BP reading could be achieved, the data could be presented in the screen and be transmitted by internet of things (IoT) for history data comparison and multi-terminal viewing. Thus, further analysis provides the probability for diet or sports suggestion and alarm. We have measured BP from more than 60 subjects, compare to traditional mercury blood pressure meter, no obvious error in both systolic blood pressure (SBP) and diastolic blood pressure (DBP) are detected. Such device can be used for continues non-invasion BP detection, and further data docking and health analysis could be achieved. Copyright © 2017. Published by Elsevier Ltd.

  8. Climate-driven vertical acceleration of Icelandic crust measured by continuous GPS geodesy

    KAUST Repository

    Compton, Kathleen; Bennett, Richard A.; Hreinsdó ttir, Sigrú n

    2015-01-01

    © 2015 The Authors. Earth's present-day response to enhanced glacial melting resulting from climate change can be measured using Global Positioning System (GPS) technology. We present data from 62 continuously operating GPS instruments in Iceland. Statistically significant upward velocity and accelerations are recorded at 27 GPS stations, predominantly located in the Central Highlands region of Iceland, where present-day thinning of the Iceland ice caps results in velocities of more than 30mm/yr and uplift accelerations of 1-2mm/yr2. We use our acceleration estimates to back calculate to a time of zero velocity, which coincides with the initiation of ice loss in Iceland from ice mass balance calculations and Arctic warming trends. We show, through a simple inversion, a direct relationship between ice mass balance measurements and vertical position and show that accelerated unloading is required to reproduce uplift observations for a simple elastic layer over viscoelastic half-space model.

  9. A multichannel automated chamber system for continuous measurement of forest soil CO2 efflux

    International Nuclear Information System (INIS)

    Liang, N.; Inoue, G.; Fujinuma, Y.

    2003-01-01

    Development of a fast-response multi-chamber system for measuring soil-surface carbon dioxide efflux is described. The sixteen-chamber automated system continuously monitors surface carbon dioxide efflux at different locations within a forest ecosystem using a single infrared gas analyzer that successively measures gas samples from each of the sixteen chambers. The chambers have lids that open and close automatically, and are connected in parallel to the single carbon dioxide analyzer which is equipped with a sixteen-channel gas sampler. Air is withdrawn continuously from the inlets and outlets of each chamber and fed sequentially to the gas analyzer. Using this instrument, surface carbon dioxide efflux was measured in a 40-year old pine forest during a three-month period (February to May) in 2001. Results showed a steady increase in mean carbon dioxide efflux during the period. A statistically significant correlation between soil-surface carbon dioxide efflux and surface temperature was also established. Spatial variation of carbon dioxide efflux was found to be higher in the non-growing season than in the growing season. It was concluded that the multi-channel automated chamber system can provide large amounts of high quality data on soil carbon dioxide efflux over a large surface area and simultaneously evaluate both spatial and temporal variation. The system uses a relatively small amount of power (70 W maximum) which can be further reduced (to 15 W) by minimizing the pressure difference between inside and outside the chamber. The system requires no maintenance other than the calibration of the gas analyzer and measurement of the flow rate through the chambers. 34 refs., 8 figs

  10. Modeling and Measurements of Multiphase Flow and Bubble Entrapment in Steel Continuous Casting

    Science.gov (United States)

    Jin, Kai; Thomas, Brian G.; Ruan, Xiaoming

    2016-02-01

    In steel continuous casting, argon gas is usually injected to prevent clogging, but the bubbles also affect the flow pattern, and may become entrapped to form defects in the final product. To investigate this behavior, plant measurements were conducted, and a computational model was applied to simulate turbulent flow of the molten steel and the transport and capture of argon gas bubbles into the solidifying shell in a continuous slab caster. First, the flow field was solved with an Eulerian k- ɛ model of the steel, which was two-way coupled with a Lagrangian model of the large bubbles using a discrete random walk method to simulate their turbulent dispersion. The flow predicted on the top surface agreed well with nailboard measurements and indicated strong cross flow caused by biased flow of Ar gas due to the slide-gate orientation. Then, the trajectories and capture of over two million bubbles (25 μm to 5 mm diameter range) were simulated using two different capture criteria (simple and advanced). Results with the advanced capture criterion agreed well with measurements of the number, locations, and sizes of captured bubbles, especially for larger bubbles. The relative capture fraction of 0.3 pct was close to the measured 0.4 pct for 1 mm bubbles and occurred mainly near the top surface. About 85 pct of smaller bubbles were captured, mostly deeper down in the caster. Due to the biased flow, more bubbles were captured on the inner radius, especially near the nozzle. On the outer radius, more bubbles were captured near to narrow face. The model presented here is an efficient tool to study the capture of bubbles and inclusion particles in solidification processes.

  11. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    Science.gov (United States)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  12. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system

    Directory of Open Access Journals (Sweden)

    Jonas Rydfjord

    2013-10-01

    Full Text Available In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe, thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  13. Continuous measurement of the radon concentration in water using electret ion chamber method

    International Nuclear Information System (INIS)

    Dua, S.K.; Hopke, P.K.

    1992-10-01

    A radon concentration of 300 pCi/L has been proposed by the US Environmental Protection Agency as a limit for radon dissolved in municipal drinking water supplies. There is therefore a need for a continuous monitor to insure that the daily average concentration does not exceed this limit. In order to calibrate the system, varying concentrations of radon in water have been generated by bubbling radon laden air through a dynamic flowthrough water system. The value of steady state concentration of radon in water from this system depends on the concentration of radon in air, the air bubbling rate, and the water flow rate. The measurement system has been designed and tested using a 1 L volume electret ion chamber to determine the radon in water. In this dynamic method, water flows directly through the electret ion chamber. Radon is released to the air and measured with the electret. A flow of air is maintained through the chamber to prevent the build-up of high radon concentrations and too rapid discharge of the electret. It was found that the system worked well when the air flow was induced by the application of suction. The concentration in the water was calculated from the measured concentration in air and water and air flow rates. Preliminary results suggest that the method has sufficient sensitivity to measure concentrations of radon in water with acceptable accuracy and precision

  14. Continuous Real-time Measurements of Vertical Distribution of Magnetic Susceptibility In Soils

    Science.gov (United States)

    Petrovsky, E.; Hulka, Z.; Kapicka, A.; Magprox Team

    Measurements of top-soil magnetic susceptibility are used in approximative outlining polluted areas. However, one of the serious limitations of the method is discrimina- tion between top-soil layers enhanced by atmospherically deposited anthropogenic particles from those dominated by natural particles migrating from magnetically-rich basement rocks. For this purpose, measurements of vertical distribution of magnetic susceptibility along soil profiles is one of the most effective ways in estimating the effect of lithogenic contribution. Up to now, in most cases soil cores have to be mea- sured in laboratory. This method is quite time consuming and does not allow flexible decision about the suitability of the measured site for surface magnetic mapping. In our contribution we will present a new device enabling continuous real-time measure- ments of vertical distribution of magnetic susceptibility directly in field, performed in holes after soil coring. The method is fast, yielding smooth curves (6 data points per 1 mm dept), at least as sensitive as laboratory methods available until now, and at- tached notebook enables direct, on-line control of the lithogenic versus anthropogenic contributions.

  15. H0LiCOW VIII. A weak lensing measurement of the external convergence in the field of the lensed quasar HE 0435-1223

    Science.gov (United States)

    Tihhonova, O.; Courbin, F.; Harvey, D.; Hilbert, S.; Rusu, C. E.; Fassnacht, C. D.; Bonvin, V.; Marshall, P. J.; Meylan, G.; Sluse, D.; Suyu, S. H.; Treu, T.; Wong, K. C.

    2018-04-01

    We present a weak gravitational lensing measurement of the external convergence along the line of sight to the quadruply lensed quasar HE 0435-1223. Using deep r-band images from Subaru-Suprime-Cam we observe galaxies down to a 3σ limiting magnitude of ˜26 mags resulting in a source galaxy density of 14 galaxies / arcmin2 after redshift-based cuts. Using an inpainting technique and Multi-Scale Entropy filtering algorithm, we find that the region in close proximity to the lens has an estimated external convergence of κ =-0.012^{+0.020}_{-0.013} and is hence marginally under-dense. We also rule out the presence of any halo with a mass greater than Mvir = 1.6 × 1014h-1M⊙ (68% confidence limit). Our results, consistent with previous studies of this lens, confirm that the intervening mass along the line of sight to HE 0435-1223 does not affect significantly the cosmological results inferred from the time delay measurements of that specific object.

  16. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.

    2016-12-01

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  17. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements

    International Nuclear Information System (INIS)

    Burnett, William C.; Dulaiova, Henrieta

    2003-01-01

    Submarine groundwater discharge (SGD) into the coastal zone has received increased attention in the last few years as it is now recognized that this process represents an important pathway for material transport. Assessing these material fluxes is difficult, as there is no simple means to gauge the water flux. To meet this challenge, we have explored the use of a continuous radon monitor to measure radon concentrations in coastal zone waters over time periods from hours to days. Changes in the radon inventories over time can be converted to fluxes after one makes allowances for tidal effects, losses to the atmosphere, and mixing with offshore waters. If one assumes that advective flow of radon-enriched groundwater (pore waters) represent the main input of 222 Rn in the coastal zone, the calculated radon fluxes may be converted to water fluxes by dividing by the estimated or measured 222 Rn pore water activity. We have also used short-lived radium isotopes ( 223 Ra and 224 Ra) to assess mixing between near-shore and offshore waters in the manner pioneered by . During an experiment in the coastal Gulf of Mexico, we showed that the mixing loss derived from the 223 Ra gradient agreed very favorably to the estimated range based on the calculated radon fluxes. This allowed an independent constraint on the mixing loss of radon--an important parameter in the mass balance approach. Groundwater discharge was also estimated independently by the radium isotopic approach and was within a factor of two of that determined by the continuous radon measurements and an automated seepage meter deployed at the same site

  18. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  19. Influence of Continuing Medical Education on Rheumatologists' Performance on National Quality Measures for Rheumatoid Arthritis.

    Science.gov (United States)

    Sapir, Tamar; Rusie, Erica; Greene, Laurence; Yazdany, Jinoos; Robbins, Mark L; Ruderman, Eric M; Carter, Jeffrey D; Patel, Barry; Moreo, Kathleen

    2015-12-01

    In recent years researchers have reported deficits in the quality of care provided to patients with rheumatoid arthritis (RA), including low rates of performance on quality measures. We sought to determine the influence of a quality improvement (QI) continuing education program on rheumatologists' performance on national quality measures for RA, along with other measures aligned with National Quality Strategy priorities. Performance was assessed through baseline and post-education chart audits. Twenty community-based rheumatologists across the United States were recruited to participate in the QI education program and chart audits. Charts were retrospectively audited before (n = 160 charts) and after (n = 160 charts) the rheumatologists participated in a series of accredited QI-focused educational activities that included private audit feedback, small-group webinars, and online- and mobile-accessible print and video activities. The charts were audited for patient demographics and the rheumatologists' documented performance on the 6 quality measures for RA included in the Physician Quality Reporting System (PQRS). In addition, charts were abstracted for documentation of patient counseling about medication benefits/risks and adherence, lifestyle modifications, and quality of life; assessment of RA medication side effects; and assessment of RA medication adherence. Mean rates of documented performance on 4 of the 6 PQRS measures for RA were significantly higher in the post-education versus baseline charts (absolute increases ranged from 9 to 24% of patient charts). In addition, after the intervention, significantly higher mean rates were observed for patient counseling about medications and quality of life, and for assessments of medication side effects and adherence (absolute increases ranged from 9 to 40% of patient charts). This pragmatic study provides preliminary evidence for the positive influence of QI-focused education in helping rheumatologists improve

  20. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  1. Precision Measurement of the proton neutral weak form factors at Q2 ~ 0.1 GeV2

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, Lisa J. [Univ. of Massachusetts, Amherst, MA (United States)

    2007-02-01

    This thesis reports the HAPPEX measurement of the parity-violating asymmetry for longitudinally polarized electrons elastically scattered from protons in a liquid hydrogen target. The measurement was carried out in Hall A at Thomas Jefferson National Accelerator Facility using a beam energy E = 3 GeV and scattering angle <θ{sub lab}> = 6°. The asymmetry is sensitive to the weak neutral form factors from which we extract the strange quark electric and magnetic form factors (G$s\\atop{E}$ and G$s\\atop{M}$) of the proton. The measurement was conducted during two data-taking periods in 2004 and 2005. This thesis describes the methods for controlling the helicity-correlated beam asymmetries and the analysis of the raw asymmetry. The parity-violating asymmetry has been measured to be APV = -1.14± 0.24 (stat)±0.06 (syst) ppm at 2> = 0.099 GeV2 (2004), and APV = -1.58±0.12 (stat)±0.04 (syst) ppm at 2> = 0.109 GeV2 (2005). The strange quark form factors extracted from the asymmetry are G$s\\atop{E}$ + 0.080G$s\\atop{M}$ = 0.030 ± 0.025 (stat) ± 0.006 (syst) ± 0.012 (FF) (2004) and G$s\\atop{E}$ +0.088G$s\\atop{M}$ = 0.007±0.011 (stat)±0.004 (syst)±0.005 (FF) (2005). These results place the most precise constraints on the strange quark form factors and indicate little strange dynamics in the proton.

  2. Hypernuclear weak decay puzzle

    International Nuclear Information System (INIS)

    Barbero, C.; Horvat, D.; Narancic, Z.; Krmpotic, F.; Kuo, T.T.S.; Tadic, D.

    2002-01-01

    A general shell model formalism for the nonmesonic weak decay of the hypernuclei has been developed. It involves a partial wave expansion of the emitted nucleon waves, preserves naturally the antisymmetrization between the escaping particles and the residual core, and contains as a particular case the weak Λ-core coupling formalism. The extreme particle-hole model and the quasiparticle Tamm-Dancoff approximation are explicitly worked out. It is shown that the nuclear structure manifests itself basically through the Pauli principle, and a very simple expression is derived for the neutron- and proton-induced decays rates Γ n and Γ p , which does not involve the spectroscopic factors. We use the standard strangeness-changing weak ΛN→NN transition potential which comprises the exchange of the complete pseudoscalar and vector meson octets (π,η,K,ρ,ω,K * ), taking into account some important parity-violating transition operators that are systematically omitted in the literature. The interplay between different mesons in the decay of Λ 12 C is carefully analyzed. With the commonly used parametrization in the one-meson-exchange model (OMEM), the calculated rate Γ NM =Γ n +Γ p is of the order of the free Λ decay rate Γ 0 (Γ NM th congruent with Γ 0 ) and is consistent with experiments. Yet the measurements of Γ n/p =Γ n /Γ p and of Γ p are not well accounted for by the theory (Γ n/p th p th > or approx. 0.60Γ 0 ). It is suggested that, unless additional degrees of freedom are incorporated, the OMEM parameters should be radically modified

  3. A simple technique for continuous measurement of time-variable gas transfer in surface waters

    Science.gov (United States)

    Tobias, Craig R.; Bohlke, John Karl; Harvey, Judson W.; Busenberg, Eurybiades

    2009-01-01

    Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.

  4. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors

    Institute of Scientific and Technical Information of China (English)

    Yan YOU; Can Niu; Jian Zhou; Yating Liu; Zhipeng Bai; Jiefeng Zhang; Fei He; Nan Zhang

    2012-01-01

    A new air exchange rate (AER) monitoring method using continuous CO2 sensors was developed and validated through both laboratory experiments and field studies.Controlled laboratory simulation tests were conducted in a 1-m3 environmental chamber at different AERs (0.1-10.0 hr-1).AERs were determined using the decay method based on box model assumptions.Field tests were conducted in classrooms,dormitories,meeting rooms and apartments during 2-5 weekdays using CO2 sensors coupled with data loggers.Indoor temperature,relative humidity (RH),and CO2 concentrations were continuously monitored while outdoor parameters combined with on-site climate conditions were recorded.Statistical results indicated that good laboratory performance was achieved:duplicate precision was within 10%,and the measured AERs were 90%-120% of the real AERs.Average AERs were 1.22,1.37,1.10,1.91 and 0.73 hr-1 in dormitories,air-conditioned classrooms,classrooms with an air circulation cooling system,reading rooms,and meeting rooms,respectively.In an elderly particulate matter exposure study,all the homes had AER values ranging from 0.29 to 3.46 hr-1 in fall,and 0.12 to 1.39 hr-1 in winter with a median AER of 1.15.

  5. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors.

    Science.gov (United States)

    You, Yan; Niu, Can; Zhou, Jian; Liu, Yating; Bai, Zhipeng; Zhang, Jiefeng; He, Fei; Zhang, Nan

    2012-01-01

    A new air exchange rate (AER) monitoring method using continuous CO2 sensors was developed and validated through both laboratory experiments and field studies. Controlled laboratory simulation tests were conducted in a 1-m3 environmental chamber at different AERs (0.1-10.0 hr(-1)). AERs were determined using the decay method based on box model assumptions. Field tests were conducted in classrooms, dormitories, meeting rooms and apartments during 2-5 weekdays using CO2 sensors coupled with data loggers. Indoor temperature, relative humidity (RH), and CO2 concentrations were continuously monitored while outdoor parameters combined with on-site climate conditions were recorded. Statistical results indicated that good laboratory performance was achieved: duplicate precision was within 10%, and the measured AERs were 90%-120% of the real AERs. Average AERs were 1.22, 1.37, 1.10, 1.91 and 0.73 hr(-1) in dormitories, air-conditioned classrooms, classrooms with an air circulation cooling system, reading rooms, and meeting rooms, respectively. In an elderly particulate matter exposure study, all the homes had AER values ranging from 0.29 to 3.46 hr(-1) in fall, and 0.12 to 1.39 hr(-1) in winter with a median AER of 1.15.

  6. POWER SCALING IN CONTINUOUS-WAVE YB:YAG MICROCHIP LASER FOR MEASURING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A. M. Ivashko

    2017-01-01

    Full Text Available Characteristics optimization of lasers used in different measuring systems is of great interest up to now. Diode-pumped microchip lasers is one of the most perspective ways for development of solid-state light sources with minimal size and weight together with low energy power consumption. Increasing of output power with good beam quality is rather difficult task for such type of lasers due to thermal effects in the gain crystal under high pump power.The investigation results of continuous-wave longitudinally diode-pumped Yb:YAG microchip laser are presented. In the presented laser radiation from multiple pump laser diodes were focused into the separate zone in one gain crystal that provides simultaneous generation of multiple laser beams. The energy and spatial laser beam characteristics were investigated.Influence of neighboring pumped regions on energy and spatial laser beams parameters both for separate and for sum laser output was observed. The dependences of laser output power from distance between neighboring pumped regions and their number were determined. Decreasing of laser output power was demonstrated with corresponding distance shortening between pumped regions and increasing their quantity with simultaneous improvement of laser beam quality.Demonstrated mutual influence of neighboring pumped regions in the longitudinally diode pumped Yb:YAG microchip laser allow as to generate diffraction limited Gaussian beam with 2W of continuous-wave output power that 30 % higher than in case of one pumped zone. 

  7. 205 nm continuous-wave laser: application to the measurement of the Lamb shift in hydrogen

    International Nuclear Information System (INIS)

    Bourzeix, S.

    1995-01-01

    The subject of this thesis is the construction of an experimental set-up, and in particular of a tunable continuous-wave laser at 205 nm, for the measurement of the ground state Lamb shift in atomic hydrogen. Chapter 1 deals with the Lamb shift from a historical point of view, and with the interest of its measurement, for metrology and test of quantum electrodynamics. Chapter 2 is devoted to the theory of the hydrogen atom. The principle of the experiment is based on the comparison of two frequencies which are in a ratio of 4: those of the two-photon transitions of 2S-6S or 2S-6D and 1S-3S. Chapter 3 describes the experimental set-up used to measure the 2S-6D transition which is excited by a titanium-sapphire laser at 820 nm. The 205 nm light required to excite the 1S-3S transition is generated by two frequency-doubling of the titanium-sapphire laser, made in non-linear crystals placed in enhancement cavities. Chapter 4 is entirely devoted to the frequency-doubling. After a recall of non-linear optics, the enhancement cavities are described in detail, as well as the results we achieved. At last chapter 5 describes the research for a signal on the 1S-3S transition: the construction of a ground state atomic beam, and the development of the detection system. This work has led to a preliminary measurement of the ground state Lamb shift in atomic hydrogen: L(1S) = 8172.850 (174) MHz whose result is in very good agreement with both the previous measurements and the most recent theoretical results. (author)

  8. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau

    Directory of Open Access Journals (Sweden)

    M. Casado

    2016-07-01

    Full Text Available Water stable isotopes in central Antarctic ice cores are critical to quantify past temperature changes. Accurate temperature reconstructions require one to understand the processes controlling surface snow isotopic composition. Isotopic fractionation processes occurring in the atmosphere and controlling snowfall isotopic composition are well understood theoretically and implemented in atmospheric models. However, post-deposition processes are poorly documented and understood. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum between surface water vapour, precipitation, surface snow and buried snow. Here, we target the isotopic composition of water vapour at Concordia Station, where the oldest EPICA Dome C ice cores have been retrieved. While snowfall and surface snow sampling is routinely performed, accurate measurements of surface water vapour are challenging in such cold and dry conditions. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces. Two infrared spectrometers have been deployed at Concordia, allowing continuous, in situ measurements for 1 month in December 2014–January 2015. Comparison of the results from infrared spectroscopy with laboratory measurements of discrete samples trapped using cryogenic sampling validates the relevance of the method to measure isotopic composition in dry conditions. We observe very large diurnal cycles in isotopic composition well correlated with temperature diurnal cycles. Identification of different behaviours of isotopic composition in the water vapour associated with turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction. Even if the vapour isotopic composition seems to be, at least part of the time, at equilibrium with the local snow, the slope of δD against δ18O prevents us from identifying

  9. Intensity Modulation Techniques for Continuous-Wave Lidar for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Kooi, S. A.; Fan, T. F.; Meadows, B.; Browell, E. V.; Erxleben, W. H.; McGregor, D.; Dobler, J. T.; Pal, S.; O'Dell, C.

    2017-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) and Linear Swept Frequency modulations to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that take advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. We compare BPSK to linear swept frequency and introduce a new technique to eliminate sidelobes in situations from linear swept frequency where the SNR is high with results that rival BPSK. We also investigate the effects of non-linear modulators, which can in some circumstances degrade the orthogonality of the waveforms, and show how to avoid this. These techniques are used in a new data processing architecture written in

  10. Magnetic induction pneumography: a planar coil system for continuous monitoring of lung function via contactless measurements

    Directory of Open Access Journals (Sweden)

    Doga Gursoy

    2010-11-01

    Full Text Available Continuous monitoring of lung function is of particular interest to the mechanically ventilated patients during critical care. Recent studies have shown that magnetic induction measurements with single coils provide signals which are correlated with the lung dynamics and this idea is extended here by using a 5 by 5 planar coil matrix for data acquisition in order to image the regional thoracic conductivity changes. The coil matrix can easily be mounted onto the patient bed, and thus, the problems faced in methods that use contacting sensors can readily be eliminated and the patient comfort can be improved. In the proposed technique, the data are acquired by successively exciting each coil in order to induce an eddy-current density within the dorsal tissues and measuring the corresponding response magnetic field strength by the remaining coils. The recorded set of data is then used to reconstruct the internal conductivity distribution by means of algorithms that minimize the residual norm between the estimated and measured data. To investigate the feasibility of the technique, the sensitivity maps and the point spread functions at different locations and depths were studied. To simulate a realistic scenario, a chest model was generated by segmenting the tissue boundaries from NMR images. The reconstructions of the ventilation distribution and the development of an edematous lung injury were presented. The imaging artifacts caused by either the incorrect positioning of the patient or the expansion of the chest wall due to breathing were illustrated by simulations.

  11. Continuous monitoring systems for indoor radon measurement: construction and results of their testing

    International Nuclear Information System (INIS)

    Muellerova, M.; Holy, K.; Bujnova, A.; Polaskova, A.; Hola, O.

    2007-01-01

    Two continuous radon monitoring systems were built on the basis of the scintillation chambers. The first system used the large volume scintillation chamber with the volume of 4.5 liters and the second one the commercial scintillation chamber with the volume of 1 liter as the detectors for radon concentration measurement. Both systems were calibrated by Ward-Borak method. The detection limits of monitoring systems are 2.9 Bq · m -3 and 5.1 Bq · m -3 respectively, at -2 hour counting period and 30 % statistical uncertainty. The radon monitoring systems and the professional radon monitor AlphaGUARD were tested in real conditions of working room. The testing showed that long-tenn courses of radon activity concentrations obtained by all three monitors are highly correlated (R 2 ∼0.95). Also the average values of radon activity concentrations calculated on the basis of measured data are identical in the scope of counting errors already at the measurement of the radon activity concentrations in the range of (10-120) Bq · m -3 . (authors)

  12. Continuous Sound Velocity Measurements along the Shock Hugoniot Curve of Quartz

    Science.gov (United States)

    Li, Mu; Zhang, Shuai; Zhang, Hongping; Zhang, Gongmu; Wang, Feng; Zhao, Jianheng; Sun, Chengwei; Jeanloz, Raymond

    2018-05-01

    We report continuous measurements of the sound velocity along the principal Hugoniot curve of α quartz between 0.25 and 1.45 TPa, as determined from lateral release waves intersecting the shock front as a function of time in decaying-shock experiments. The measured sound velocities are lower than predicted by prior models, based on the properties of stishovite at densities below ˜7 g /cm3 , but agree with density functional theory molecular dynamics calculations and an empirical wide-regime equation of state presented here. The Grüneisen parameter calculated from the sound velocity decreases from γ ˜1 .3 at 0.25 TPa to 0.66 at 1.45 TPa. In combination with evidence for increased (configurational) specific heat and decreased bulk modulus, the values of γ suggest a high thermal expansion coefficient at ˜0. 25 - 0 .65 TPa , where SiO2 is thought to be a bonded liquid. From our measurements, dissociation of the molecular bonds persists to ˜0. 65 - 1 .0 TPa , consistent with estimates by other methods. At higher densities, the sound velocity is close to predictions from previous models, and the Grüneisen parameter approaches the ideal gas value.

  13. Doppler limited rotational transitions of OH and SH radicals measured by continuous-wave terahertz photomixing

    Science.gov (United States)

    Eliet, Sophie; Martin-Drumel, Marie-Aline; Guinet, Mickaël; Hindle, Francis; Mouret, Gaël; Bocquet, Robin; Cuisset, Arnaud

    2011-12-01

    A continuous-wave terahertz (CW-THz) source generated by photomixing has been employed to detect and quantify radicals produced in a cold plasma probing their spin-rotation transitions. Due to their dual interest for both atmospherists and astrophysicists, the hydroxyl OH and the mercapto SH radicals have been chosen. The photomixing technique which can access the largest range of THz frequencies of any known coherent source, allowed to resolve the Doppler-limited hyperfine transitions of OH in the 2.5 THz frequency region. Line profile analysis of the hyperfine components demonstrated that OH radicals have been detected in this region at a ppm level at a temperature close to 490 K. The hyperfine structure of SH has been resolved for the first time above 1 THz. Ten new frequency transitions have been measured in the 1.3-2.6 THz frequency range using the CW-THz synthesizer based on a frequency comb. With relative uncertainties better than 10 -7, the CW-THz frequencies measured in this study are now competitive with those measured by other instruments such as frequency multiplication chains or FT-FIR spectrometers and are now capable to improve the predictions of the complete high-resolution spectra of these radicals collected in the atmospheric and astrophysical spectroscopic databases. versioncorrigeeAC 2011-07-18 17:32 2011 Arnaud Cuisset.

  14. Measurement of Nonribosomal Peptide Synthetase Adenylation Domain Activity Using a Continuous Hydroxylamine Release Assay.

    Science.gov (United States)

    Duckworth, Benjamin P; Wilson, Daniel J; Aldrich, Courtney C

    2016-01-01

    Adenylation is a crucial enzymatic process in the biosynthesis of nonribosomal peptide synthetase (NRPS) derived natural products. Adenylation domains are considered the gatekeepers of NRPSs since they select, activate, and load the carboxylic acid substrate onto a downstream peptidyl carrier protein (PCP) domain of the NRPS. We describe a coupled continuous kinetic assay for NRPS adenylation domains that substitutes the PCP domain with hydroxylamine as the acceptor molecule. The pyrophosphate released from the first-half reaction is then measured using a two-enzyme coupling system, which detects conversion of the chromogenic substrate 7-methylthioguanosine (MesG) to 7-methylthioguanine. From profiling substrate specificity of unknown or engineered adenylation domains to studying chemical inhibition of adenylating enzymes, this robust assay will be of widespread utility in the broad field NRPS enzymology.

  15. Continuous-variable measurement-device-independent quantum key distribution with photon subtraction

    Science.gov (United States)

    Ma, Hong-Xin; Huang, Peng; Bai, Dong-Yun; Wang, Shi-Yu; Bao, Wan-Su; Zeng, Gui-Hua

    2018-04-01

    It has been found that non-Gaussian operations can be applied to increase and distill entanglement between Gaussian entangled states. We show the successful use of the non-Gaussian operation, in particular, photon subtraction operation, on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) protocol. The proposed method can be implemented based on existing technologies. Security analysis shows that the photon subtraction operation can remarkably increase the maximal transmission distance of the CV-MDI-QKD protocol, which precisely make up for the shortcoming of the original CV-MDI-QKD protocol, and one-photon subtraction operation has the best performance. Moreover, the proposed protocol provides a feasible method for the experimental implementation of the CV-MDI-QKD protocol.

  16. Self-referenced continuous-variable measurement-device-independent quantum key distribution

    Science.gov (United States)

    Wang, Yijun; Wang, Xudong; Li, Jiawei; Huang, Duan; Zhang, Ling; Guo, Ying

    2018-05-01

    We propose a scheme to remove the demand of transmitting a high-brightness local oscillator (LO) in continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, which we call as the self-referenced (SR) CV-MDI QKD. We show that our scheme is immune to the side-channel attacks, such as the calibration attacks, the wavelength attacks and the LO fluctuation attacks, which are all exploiting the security loopholes introduced by transmitting the LO. Besides, the proposed scheme waives the necessity of complex multiplexer and demultiplexer, which can greatly simplify the QKD processes and improve the transmission efficiency. The numerical simulations under collective attacks show that all the improvements brought about by our scheme are only at the expense of slight transmission distance shortening. This scheme shows an available method to mend the security loopholes incurred by transmitting LO in CV-MDI QKD.

  17. Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution

    Science.gov (United States)

    Zhang, Xueying; Zhang, Yichen; Zhao, Yijia; Wang, Xiangyu; Yu, Song; Guo, Hong

    2017-10-01

    We study the impact of the finite-size effect on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, mainly considering the finite-size effect on the parameter estimation procedure. The central-limit theorem and maximum likelihood estimation theorem are used to estimate the parameters. We also analyze the relationship between the number of exchanged signals and the optimal modulation variance in the protocol. It is proved that when Charlie's position is close to Bob, the CV-MDI QKD protocol has the farthest transmission distance in the finite-size scenario. Finally, we discuss the impact of finite-size effects related to the practical detection in the CV-MDI QKD protocol. The overall results indicate that the finite-size effect has a great influence on the secret-key rate of the CV-MDI QKD protocol and should not be ignored.

  18. Continuous estimates of dynamic cerebral autoregulation: influence of non-invasive arterial blood pressure measurements

    International Nuclear Information System (INIS)

    Panerai, R B; Smith, S M; Rathbone, W E; Samani, N J; Sammons, E L; Bentley, S; Potter, J F

    2008-01-01

    Temporal variability of parameters which describe dynamic cerebral autoregulation (CA), usually quantified by the short-term relationship between arterial blood pressure (BP) and cerebral blood flow velocity (CBFV), could result from continuous adjustments in physiological regulatory mechanisms or could be the result of artefacts in methods of measurement, such as the use of non-invasive measurements of BP in the finger. In 27 subjects (61 ± 11 years old) undergoing coronary artery angioplasty, BP was continuously recorded at rest with the Finapres device and in the ascending aorta (Millar catheter, BP AO ), together with bilateral transcranial Doppler ultrasound in the middle cerebral artery, surface ECG and transcutaneous CO 2 . Dynamic CA was expressed by the autoregulation index (ARI), ranging from 0 (absence of CA) to 9 (best CA). Time-varying, continuous estimates of ARI (ARI(t)) were obtained with an autoregressive moving-average (ARMA) model applied to a 60 s sliding data window. No significant differences were observed in the accuracy and precision of ARI(t) between estimates derived from the Finapres and BP AO . Highly significant correlations were obtained between ARI(t) estimates from the right and left middle cerebral artery (MCA) (Finapres r = 0.60 ± 0.20; BP AO r = 0.56 ± 0.22) and also between the ARI(t) estimates from the Finapres and BP AO (right MCA r = 0.70 ± 0.22; left MCA r = 0.74 ± 0.22). Surrogate data showed that ARI(t) was highly sensitive to the presence of noise in the CBFV signal, with both the bias and dispersion of estimates increasing for lower values of ARI(t). This effect could explain the sudden drops of ARI(t) to zero as reported previously. Simulated sudden changes in ARI(t) can be detected by the Finapres, but the bias and variability of estimates also increase for lower values of ARI. In summary, the Finapres does not distort time-varying estimates of dynamic CA obtained with a sliding window combined with an ARMA model

  19. Simultaneous estimation of a binary mixture of a weak acid and a strong acid by volumetric titration and pH measurement

    International Nuclear Information System (INIS)

    Karmakar, Sanat; Mallika, C.; Kamachi Mudali, U.

    2012-01-01

    High level liquid waste (HLLW) generated in the aqueous reprocessing of spent nuclear fuels for the separation of uranium and plutonium by PUREX process, comprises the fission and corrosion products in 4 M nitric acid. Reduction in waste volume is accomplished by destroying the acidity of the waste solution from 4 to less than 2 M by treating it with formaldehyde and subsequent concentration by evaporation. In the denitration by HCHO, nitric acid in the waste solution is reduced to NOx and water via nitrous acid as the intermediate product: whereas formaldehyde is oxidized to formic acid which is converted to CO 2 and H 2 O subsequently. The reaction is highly exothermic and the release of all gaseous products may lead to uncontrollable process conditions. Hence, for the safe operation, it is desirable to estimate the concentration of residual formic acid as well as nitric acid in the product stream as a function of time. The acidity in the feed solution is 4 M and the concentration of HNO 3 in the product solution is in the range 1- 4 M. Since the formic acid generated during the reaction will be consumed immediately, the concentration of residual acid will be in the range 0.05-0.5 M. A simultaneous titration method based on pH measurement and volumetric analysis has been developed in the present work for the quantitative determination of the weak acid (HCOOH)with known pKa value and the strong acid (HNO 3 ) in the binary mixture

  20. The measurement of thoron (220Rn) concentration in indoor air continuously using pylon model WLx

    International Nuclear Information System (INIS)

    Hasnel Sofyan

    2011-01-01

    The concentration of thoron ( 220 Rn) in particular location can be higher than radon ( 220 Rn), however, its presence is always neglected. This might be due to the difficulties in calibration and discrimination between radon and thoron. From biokinetic and dosimetric model, it has been known that the dominant contribution of thoron to the effective dose is in the lungs. UNSCEAR estimates the doses contribution of thoron and its progenies is between 5-10% of the annual dose received by the general public and the risk level is 4.4 times greater than radon and progenies. Therefore, it is necessary to study the thoron concentration in indoor air and workplaces. Radon-thoron concentration in indoor air can be determined by direct methods using Pylon Model WLx device and passive methods using Solid State Nuclear Track Detector (SSNTDs). In this research the measurement of thoron was carried out continuously using Pylon Model WLx equipment that is sensitive to radon for 24, 65, 72, 116 and 154 hours in different rooms. The measurement result showed that the mean value of thoron working level (WL) concentration obtained in room-1 was 2.53 ± 0.67 Bq/m 3 with maximum and minimum of thoron concentrations were 3.37 and 2.22 Bq/m 3 respectively. From the measurement in different locations, it was obtained that the largest and smallest average concentrations of thoron progenies were 0.83 ± 0.23 Bq/m 3 and 0.29 ± 0.64 Bq/m 3 , while the maximum and minimum concentration values were 7.80 Bq/m 3 and 0.01 Bq/m 3 respectively. Pylon Model WLx device is not enables to be used for longer and large scale survey area concurrently, so the SSNTDs which is sensitive to the emission of alpha particles and can measure cumulative thoron concentrations is required. (author)

  1. On the Evaluation of Outlier Detection: Measures, Datasets, and an Empirical Study Continued

    DEFF Research Database (Denmark)

    Campos, G. O.; Zimek, A.; Sander, J.

    2016-01-01

    The evaluation of unsupervised outlier detection algorithms is a constant challenge in data mining research. Little is known regarding the strengths and weaknesses of different standard outlier detection models, and the impact of parameter choices for these algorithms. The scarcity of appropriate...... are available online in the repository at: http://www.dbs.ifi.lmu.de/research/outlier-evaluation/...

  2. First density profile measurements using frequency modulation of the continuous wave reflectometry on JETa)

    Science.gov (United States)

    Meneses, L.; Cupido, L.; Sirinelli, A.; Manso, M. E.; Jet-Efds Contributors

    2008-10-01

    We present the main design options and implementation of an X-mode reflectometer developed and successfully installed at JET using an innovative approach. It aims to prove the viability of measuring density profiles with high spatial and temporal resolution using broadband reflectometry operating in long and complex transmission lines. It probes the plasma with magnetic fields between 2.4 and 3.0 T using the V band [~(0-1.4)×1019 m-3]. The first experimental results show the high sensitivity of the diagnostic when measuring changes in the plasma density profile occurring ITER relevant regimes, such as ELMy H-modes. The successful demonstration of this concept motivated the upgrade of the JET frequency modulation of the continuous wave (FMCW) reflectometry diagnostic, to probe both the edge and core. This new system is essential to prove the viability of using the FMCW reflectometry technique to probe the plasma in next step devices, such as ITER, since they share the same waveguide complexity.

  3. Climate-driven vertical acceleration of Icelandic crust measured by continuous GPS geodesy

    KAUST Repository

    Compton, Kathleen

    2015-02-06

    © 2015 The Authors. Earth\\'s present-day response to enhanced glacial melting resulting from climate change can be measured using Global Positioning System (GPS) technology. We present data from 62 continuously operating GPS instruments in Iceland. Statistically significant upward velocity and accelerations are recorded at 27 GPS stations, predominantly located in the Central Highlands region of Iceland, where present-day thinning of the Iceland ice caps results in velocities of more than 30mm/yr and uplift accelerations of 1-2mm/yr2. We use our acceleration estimates to back calculate to a time of zero velocity, which coincides with the initiation of ice loss in Iceland from ice mass balance calculations and Arctic warming trends. We show, through a simple inversion, a direct relationship between ice mass balance measurements and vertical position and show that accelerated unloading is required to reproduce uplift observations for a simple elastic layer over viscoelastic half-space model.

  4. An ROC-type measure of diagnostic accuracy when the gold standard is continuous-scale.

    Science.gov (United States)

    Obuchowski, Nancy A

    2006-02-15

    ROC curves and summary measures of accuracy derived from them, such as the area under the ROC curve, have become the standard for describing and comparing the accuracy of diagnostic tests. Methods for estimating ROC curves rely on the existence of a gold standard which dichotomizes patients into disease present or absent. There are, however, many examples of diagnostic tests whose gold standards are not binary-scale, but rather continuous-scale. Unnatural dichotomization of these gold standards leads to bias and inconsistency in estimates of diagnostic accuracy. In this paper, we propose a non-parametric estimator of diagnostic test accuracy which does not require dichotomization of the gold standard. This estimator has an interpretation analogous to the area under the ROC curve. We propose a confidence interval for test accuracy and a statistical test for comparing accuracies of tests from paired designs. We compare the performance (i.e. CI coverage, type I error rate, power) of the proposed methods with several alternatives. An example is presented where the accuracies of two quick blood tests for measuring serum iron concentrations are estimated and compared.

  5. Wearable motion sensors to continuously measure real-world physical activities.

    Science.gov (United States)

    Dobkin, Bruce H

    2013-12-01

    Rehabilitation for sensorimotor impairments aims to improve daily activities, walking, exercise, and motor skills. Monitoring of practice and measuring outcomes, however, is usually restricted to laboratory-based procedures and self-reports. Mobile health devices may reverse these confounders of daily care and research trials. Wearable, wireless motion sensor data, analyzed by activity pattern-recognition algorithms, can describe the type, quantity, and quality of mobility-related activities in the community. Data transmission from the sensors to a cell phone and the Internet enable continuous monitoring. Remote access to laboratory quality data about walking speed, duration and distance, gait asymmetry and smoothness of movements, as well as cycling, exercise, and skills practice, opens new opportunities to engage patients in progressive, personalized therapies with feedback about the performance. Clinical trial designs will be able to include remote verification of the integrity of complex physical interventions and compliance with practice, as well as capture repeated, ecologically sound, ratio scale outcome measures. Given the progressively falling cost of miniaturized wearable gyroscopes, accelerometers, and other physiologic sensors, as well as inexpensive data transmission, sensing systems may become as ubiquitous as cell phones for healthcare. Neurorehabilitation can develop these mobile health platforms for daily care and clinical trials to improve exercise and fitness, skills learning, and physical functioning.

  6. Continuous performance task in ADHD: Is reaction time variability a key measure?

    Science.gov (United States)

    Levy, Florence; Pipingas, Andrew; Harris, Elizabeth V; Farrow, Maree; Silberstein, Richard B

    2018-01-01

    To compare the use of the Continuous Performance Task (CPT) reaction time variability (intraindividual variability or standard deviation of reaction time), as a measure of vigilance in attention-deficit hyperactivity disorder (ADHD), and stimulant medication response, utilizing a simple CPT X-task vs an A-X-task. Comparative analyses of two separate X-task vs A-X-task data sets, and subgroup analyses of performance on and off medication were conducted. The CPT X-task reaction time variability had a direct relationship to ADHD clinician severity ratings, unlike the CPT A-X-task. Variability in X-task performance was reduced by medication compared with the children's unmedicated performance, but this effect did not reach significance. When the coefficient of variation was applied, severity measures and medication response were significant for the X-task, but not for the A-X-task. The CPT-X-task is a useful clinical screening test for ADHD and medication response. In particular, reaction time variability is related to default mode interference. The A-X-task is less useful in this regard.

  7. Equipment for the continuous measurement and identification of gamma radioactivity on aerosols

    Energy Technology Data Exchange (ETDEWEB)

    De Blas, Alfredo; Tapia, Carlos; Riego, Albert; Garcia, Roger; Dies, Javier; Diaz, Pedro [Nuclear Engineering Research Group, Departament of Physics and Nuclear Engineering, Technical University of Catalonia, Barcelona (Spain); Toral, Juan [Raditel Serveis. Tarragona (Spain); Batalla, Enric [Radiological Activities Corrdination Service - SCAR, Generalitat de Catalunya, Barcelona (Spain)

    2015-07-01

    Presentation the Equipment for the Continuous Measurement and Identification of Gamma Radioactivity on Aerosols developed by the Nuclear Engineering Research Group (NERG) from the Technical University of Catalonia (UPC) and the Raditel Company. The device is based on a fixed filter of glass fiber (100% borosilicate), this allows determine the concentration of activity of gamma emitters on aerosols in air. A specifically developed Spectrometry Analysis System has been developed. The analysis of the spectra allows the identification of the emitters and determine the concentration of activity. Nowadays four Stations with this equipment are operating on the Environmental Radiological Surveillance Network of the Catalonian Generalitat (Spain): two near the Asco and Vandellos Nuclear Power Plants in the province of Tarragona and one in the city of Barcelona. Soon a fourth monitor will be incorporated at Roses (province of Girona) and a fifth in Puigcerda (province of Barcelona). We present measurements and analysis of the evolution of the emitters identified on different stations of the Network. (authors)

  8. Continuous backfitting measures for the FRG-1 and FRG-2 research reactors

    International Nuclear Information System (INIS)

    Blom, K.H.; Falck, K.; Krull, W.

    1990-01-01

    The GKSS-Research Centre Geesthacht GmbH has been operating the research reactors FRG-1 and FRG-2 with power levels of 5 MW and 15 MW for 31 and 26 years respectively. Safe operation at full power levels over so many years with an average utilization between 180 d to 250 d per year is possible only with great efforts in modernization and upgrading of the research reactors. Emphasis has been placed on backfitting since around 1975. At that time within the Federal Republic of Germany many new guidelines, rules, ordinances, and standards in the field of (power) reactor safety were published. Much work has been done on the modernization of the FRG-1 and FRG-2 research reactors therefore within the last ten years. Work done within the last two years and presently underway includes: measures against water leakage through the concrete and along the beam tubes; repair of both cooling towers; modernization of the ventilation system; measures for fire protection; activities in water chemistry and water quality; installation of a double tubing for parts of the primary piping of the FRG-1; replacement of instrumentation, process control systems (operation and monitoring system) and alarm system; renewal of the emergency power supply; installation of internal lightning protection; installation of a cold neutron source; enrichment reduction for FRG-1. These efforts will continue to allow safe operation of our research reactors over their whole operational life

  9. Continuous Evaluation of Fast Processes in Climate Models Using ARM Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijin [Univ. of California, Los Angeles, CA (United States); Sha, Feng [Univ. of California, Los Angeles, CA (United States); Liu, Yangang [Brookhaven National Lab. (BNL), Upton, NY (United States); Lin, Wuyin [Brookhaven National Lab. (BNL), Upton, NY (United States); Toto, Tami [Brookhaven National Lab. (BNL), Upton, NY (United States); Vogelmann, Andrew [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-02

    This five-year award supports the project “Continuous Evaluation of Fast Processes in Climate Models Using ARM Measurements (FASTER)”. The goal of this project is to produce accurate, consistent and comprehensive data sets for initializing both single column models (SCMs) and cloud resolving models (CRMs) using data assimilation. A multi-scale three-dimensional variational data assimilation scheme (MS-3DVAR) has been implemented. This MS-3DVAR system is built on top of WRF/GSI. The Community Gridpoint Statistical Interpolation (GSI) system is an operational data assimilation system at the National Centers for Environmental Prediction (NCEP) and has been implemented in the Weather Research and Forecast (WRF) model. This MS-3DVAR is further enhanced by the incorporation of a land surface 3DVAR scheme and a comprehensive aerosol 3DVAR scheme. The data assimilation implementation focuses in the ARM SGP region. ARM measurements are assimilated along with other available satellite and radar data. Reanalyses are then generated for a few selected period of time. This comprehensive data assimilation system has also been employed for other ARM-related applications.

  10. Continuous 222Rn measurements in water to perform a hydrograph separation

    International Nuclear Information System (INIS)

    Hofmann, H.; Kies, A.; Tosheva, Z.

    2004-01-01

    To get information about the different components of runoff before, during and after heavy rain events, micro catchments were selected to perform hydrograph separations using the radioactive noble gas 222 Rn and the stable isotope 18 O as natural occurring, conservative tracers. These tracers help to separate 'pre event', 'event', and 'post event' water in the total runoff. The selected micro basins are situated in the western part of Luxembourg and belong to the Attert River catchment area. Our investigations are a part of the project 'Cycleau' which is studying risk assessments in the Attert River area. By combining the databases great opportunities for comparison were realized. So far the catchment areas have been studied for two years. Continuous monitoring radon detectors were installed at selected measuring points, which were important for the different flow regimes. Along with the detectors precision thermometers, conductivity instruments, CO 2 -detectors, flow meter, v-notches, and automatic sampler for chemical analysis were set up. Besides the continuous measurements for 222 Rn, point samples were taken for liquid scintillation analysis (LCS). Single rain events will have been sampled and measured intensively for 222 Rn (LCS) and 18 O in two to three days field campaigns, for a comparison of the continuous method with the 18 O results and to strengthen our data by the end of march 2004. During the first year of this study instrument testing and evaluation was performed. Different radon monitor units were examined to find instruments that work best under field conditions. Additionally, separate units had to be constructed for a degassing of the solved gases out of the water, because the instruments for radon measuring were constructed for radon in air not for radon in water. A 'bubbler' had be developed that performs the degassing process. The techniques will be presented. Through stable results from our instrument developments, we observed different radon

  11. Fixed points of occasionally weakly biased mappings

    OpenAIRE

    Y. Mahendra Singh, M. R. Singh

    2012-01-01

    Common fixed point results due to Pant et al. [Pant et al., Weak reciprocal continuity and fixed point theorems, Ann Univ Ferrara, 57(1), 181-190 (2011)] are extended to a class of non commuting operators called occasionally weakly biased pair[ N. Hussain, M. A. Khamsi A. Latif, Commonfixed points for JH-operators and occasionally weakly biased pairs under relaxed conditions, Nonlinear Analysis, 74, 2133-2140 (2011)]. We also provideillustrative examples to justify the improvements. Abstract....

  12. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  13. Accreditation of Medical Education Programs: Moving From Student Outcomes to Continuous Quality Improvement Measures.

    Science.gov (United States)

    Blouin, Danielle; Tekian, Ara

    2018-03-01

    Accreditation of undergraduate medical education programs aims to ensure the quality of medical education and promote quality improvement, with the ultimate goal of providing optimal patient care. Direct linkages between accreditation and education quality are, however, difficult to establish. The literature examining the impact of accreditation predominantly focuses on student outcomes, such as performances on national examinations. However, student outcomes present challenges with regard to data availability, comparability, and contamination.The true impact of accreditation may well rest in its ability to promote continuous quality improvement (CQI) within medical education programs. The conceptual model grounding this paper suggests accreditation leads medical schools to commit resources to and engage in self-assessment activities that represent best practices of CQI, leading to the development within schools of a culture of CQI. In line with this model, measures of the impact of accreditation on medical schools need to include CQI-related markers. The CQI orientation of organizations can be measured using validated instruments from the business and management fields. Repeated determinations of medical schools' CQI orientation at various points throughout their accreditation cycles could provide additional evidence of the impact of accreditation on medical education. Strong CQI orientation should lead to high-quality medical education and would serve as a proxy marker for the quality of graduates and possibly for the quality of care they provide.It is time to move away from a focus on student outcomes as measures of the impact of accreditation and embrace additional markers, such as indicators of organizational CQI orientation.

  14. Instrumental systematics and weak gravitational lensing

    International Nuclear Information System (INIS)

    Mandelbaum, R.

    2015-01-01

    We present a pedagogical review of the weak gravitational lensing measurement process and its connection to major scientific questions such as dark matter and dark energy. Then we describe common ways of parametrizing systematic errors and understanding how they affect weak lensing measurements. Finally, we discuss several instrumental systematics and how they fit into this context, and conclude with some future perspective on how progress can be made in understanding the impact of instrumental systematics on weak lensing measurements

  15. Integrating the pulse of the riverscape and landscape: modelling stream metabolism using continuous dissolved oxygen measurements

    Science.gov (United States)

    Soulsby, C.; Birkel, C.; Malcolm, I.; Tetzlaff, D.

    2013-12-01

    Stream metabolism is a fundamental pulse of the watershed which reflects both the in-stream environment and its connectivity with the wider landscape. We used high quality, continuous (15 minute), long-term (>3 years) measurement of stream dissolved oxygen (DO) concentrations to estimate photosynthetic productivity (P) and system respiration (R) in forest and moorland reaches of an upland stream with peaty soils. We calibrated a simple five parameter numerical oxygen mass balance model driven by radiation, stream and air temperature, stream depth and re-aeration capacity. This used continuous 24-hour periods for the whole time series to identify behavioural simulations where DO simulations were re-produced sufficiently well to be considered reasonable representations of ecosystem functioning. Results were evaluated using a seasonal Regional Sensitivity Analysis and a co-linearity index for parameter sensitivity. This showed that >95 % of the behavioural models for the moorland and forest sites were identifiable and able to infer in-stream processes from the DO time series for almost half of all measured days at both sites. Days when the model failed to simulate DO levels successfully provided invaluable insight into time periods when other factors are likely to disrupt in-stream metabolic processes; these include (a) flood events when scour reduces the biomass of benthic primary producers, (b) periods of high water colour in higher summer/autumn flows and (c) low flow periods when hyporheic respiration is evident. Monthly P/R ratios <1 indicate a heterotrophic system with both sites exhibiting similar temporal patterns; with a maximum in February and a second peak during summer months. However, the estimated net ecosystem productivity (NPP) suggests that the moorland reach without riparian tree cover is likely to be a much larger source of carbon to the atmosphere (122 mmol C m-2 d-1) compared to the forested reach (64 mmol C m-2 d-1). The study indicates the value

  16. Prosthetists' perceptions and use of outcome measures in clinical practice: Long-term effects of focused continuing education.

    Science.gov (United States)

    Hafner, Brian J; Spaulding, Susan E; Salem, Rana; Morgan, Sara J; Gaunaurd, Ignacio; Gailey, Robert

    2017-06-01

    Continuing education is intended to facilitate clinicians' skills and knowledge in areas of practice, such as administration and interpretation of outcome measures. To evaluate the long-term effect of continuing education on prosthetists' confidence in administering outcome measures and their perceptions of outcomes measurement in clinical practice. Pretest-posttest survey methods. A total of 66 prosthetists were surveyed before, immediately after, and 2 years after outcomes measurement education and training. Prosthetists were grouped as routine or non-routine outcome measures users, based on experience reported prior to training. On average, prosthetists were just as confident administering measures 1-2 years after continuing education as they were immediately after continuing education. In all, 20% of prosthetists, initially classified as non-routine users, were subsequently classified as routine users at follow-up. Routine and non-routine users' opinions differed on whether outcome measures contributed to efficient patient evaluations (79.3% and 32.4%, respectively). Both routine and non-routine users reported challenges integrating outcome measures into normal clinical routines (20.7% and 45.9%, respectively). Continuing education had a long-term impact on prosthetists' confidence in administering outcome measures and may influence their clinical practices. However, remaining barriers to using standardized measures need to be addressed to keep practitioners current with evolving practice expectations. Clinical relevance Continuing education (CE) had a significant long-term impact on prosthetists' confidence in administering outcome measures and influenced their clinical practices. In all, approximately 20% of prosthetists, who previously were non-routine outcome measure users, became routine users after CE. There remains a need to develop strategies to integrate outcome measurement into routine clinical practice.

  17. Calibrating a ground-based backscatter lidar for continuous measurements of PM2.5

    Science.gov (United States)

    Pesch, Markus; Oderbolz, Daniel

    2007-10-01

    One of the main issues of atmospheric research and air quality control is the reduction of harmful particulate matter (PM) in the atmosphere. Small particles can enter the human airways and cause serious health problems such as COPD (Chronic Obstructive Pulmonary Disease), asthma or even lung cancer. Recently, interest has shifted from PM10 to finer fractions of particulate matter, e.g. PM2.5, because the health impact of finer particles is considered to be more severe. Up to now measurements of particulate matter were carried out mainly at ground level. However important atmospheric processes, i.e. particle formation, transport and vertical mixing processes, take place predominantly at higher altitudes in the planetary boundary layer. Lidar in principle provides the ability to observe these processes where they occur. The new method outlined in this paper demonstrates the use of a small sized and quite inexpensive lidar in stand-alone operation to investigate transport processes of particulate matter, and PM2.5 in particular. Continuous measurements of PM2.5 as a reference are gained with a conventional in-situ monitor, installed on a tower at an altitude of 325 m in the North of Berlin (Frohnauer Turm). These PM2.5 measurements will be compared with backscatter Lidar data (1064 nm) taken from approx. 60 m over ground up to an altitude of 15 km with a spatial resolution of 15 m. The vertical backscatter profiles at 325 m will be correlated to the concentrations obtained by the PM2,5 monitor on the tower. Both measurements have a time resolution of 180 s to observe also processes that take place at short time scales. The objective is to gain correlation functions for estimating PM2.5 concentrations from backscatter Lidar data. Such a calibrated Lidar system is a valuable instrument for environmental agencies and atmospheric research groups to observe and investigate causes of high level PM concentrations. First results show a reasonably good linear correlation

  18. Development of a low-maintenance measurement approach to continuously estimate methane emissions: A case study.

    Science.gov (United States)

    Riddick, S N; Hancock, B R; Robinson, A D; Connors, S; Davies, S; Allen, G; Pitt, J; Harris, N R P

    2018-03-01

    The chemical breakdown of organic matter in landfills represents a significant source of methane gas (CH 4 ). Current estimates suggest that landfills are responsible for between 3% and 19% of global anthropogenic emissions. The net CH 4 emissions resulting from biogeochemical processes and their modulation by microbes in landfills are poorly constrained by imprecise knowledge of environmental constraints. The uncertainty in absolute CH 4 emissions from landfills is therefore considerable. This study investigates a new method to estimate the temporal variability of CH 4 emissions using meteorological and CH 4 concentration measurements downwind of a landfill site in Suffolk, UK from July to September 2014, taking advantage of the statistics that such a measurement approach offers versus shorter-term, but more complex and instantaneously accurate, flux snapshots. Methane emissions were calculated from CH 4 concentrations measured 700m from the perimeter of the landfill with observed concentrations ranging from background to 46.4ppm. Using an atmospheric dispersion model, we estimate a mean emission flux of 709μgm -2 s -1 over this period, with a maximum value of 6.21mgm -2 s -1 , reflecting the wide natural variability in biogeochemical and other environmental controls on net site emission. The emissions calculated suggest that meteorological conditions have an influence on the magnitude of CH 4 emissions. We also investigate the factors responsible for the large variability observed in the estimated CH 4 emissions, and suggest that the largest component arises from uncertainty in the spatial distribution of CH 4 emissions within the landfill area. The results determined using the low-maintenance approach discussed in this paper suggest that a network of cheaper, less precise CH 4 sensors could be used to measure a continuous CH 4 emission time series from a landfill site, something that is not practical using far-field approaches such as tracer release methods

  19. Continuous measurements of suspended sediment loads using dual frequency acoustic Doppler profile signals

    Science.gov (United States)

    Antonini, Alessandro; Guerrero, Massimo; Rüther, Nils; Stokseth, Siri

    2016-04-01

    A huge thread to Hydropower plants (HPP) is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head as well as the volume and reduce consequently the lifetime of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of in-coming sediments in suspension and the consequent planning of efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Surrogate-indirect methods using acoustic and optic devices have bee developed since the last decades that may be efficiently applied for the continuous monitoring of suspended sediment loads. The presented study proposes therefore to establish a research station at a cross section of a river which is the main tributary to a reservoir of a HPP and equip this station with surrogate as well as with common method of measuring suspended load concentrations and related flow discharge and level. The logger at the research station delivers data automatically to a server. Therefore it is ensured that also large flood events are covered. Data during flood are of high interest to the HPP planners since they carried the most part of the sediment load in a hydrological year. Theses peaks can hardly be measured with common measurement methods. Preliminary results of the wet season 2015/2016 are presented. The data gives insight in the applicable range, in terms of scattering particles concentration-average size and corresponding flow discharge and level, eventually enabling the study of suspended sediment load-water flow correlations during peak events. This work is carried out as part of a larger research project on sustainable hydro power plants exposed to high sediment yield, SediPASS. SediPASS is funded by the

  20. Prospect of Continuous VLBI Measurement of Earth Rotation in Monitoring Geophysical Fluids

    Science.gov (United States)

    Chao, Benjamin F.; Ma, Chopo; Clark, Thomas

    1998-01-01

    Large-scale mass transports in the geophysical fluids of the Earth system excite Earth's rotational variations in both length-of-day and polar motion. The excitation process is via the conservation of angular momentum. Therefore Earth rotation observations contain information about the integrated angular momentum (consisting of both the mass term and the motion term) of the geophysical fluids, which include atmosphere, hydrosphere, mantle, and the outer and inner cores. Such global information is often important and otherwise unattainable depending on the nature of the mass transport, its magnitude and time scale. The last few years have seen great advances in VLBI measurement of Earth rotation in precision and temporal resolution. These advances have opened new. areas in geophysical fluid studies, such as oceanic tidal angular momentum, atmospheric tides, Earth librations, and rapid atmospheric angular momentum fluctuations. Precision of 10 microseconds in UTI and 200 microarcseconds in polar motion can now be achieved on hourly basis. Building upon this heritage, the multi-network geodetic VLBI project, Continuous Observation of the Rotation of the Earth (CORE), promises to further these studies and to make possible studies on elusive but tell-tale geophysical processes such as oscillatory modes in the core and in the atmosphere. Currently the early phase of CORE is underway. Within a few years into the new mellinnium, the upcoming space gravity missions (such as GRACE) will measure the temporal variations in Earth's gravitational field, thus providing complementary information to that from Earth rotation study for a better understanding of global geophysical fluid processes.

  1. Assessment of annual pollutant loads in combined sewers from continuous turbidity measurements: sensitivity to calibration data.

    Science.gov (United States)

    Lacour, C; Joannis, C; Chebbo, G

    2009-05-01

    This article presents a methodology for assessing annual wet weather Suspended Solids (SS) and Chemical Oxygen Demand (COD) loads in combined sewers, along with the associated uncertainties from continuous turbidity measurements. The proposed method is applied to data from various urban catchments in the cities of Paris and Nantes. The focus here concerns the impact of the number of rain events sampled for calibration (i.e. through establishing linear SS/turbidity or COD/turbidity relationships) on the uncertainty of annual pollutant load assessments. Two calculation methods are investigated, both of which rely on Monte Carlo simulations: random assignment of event-specific calibration relationships to each individual rain event, and the use of an overall relationship built from the entire available data set. Since results indicate a fairly low inter-event variability for calibration relationship parameters, an accurate assessment of pollutant loads can be derived, even when fewer than 10 events are sampled for calibration purposes. For operational applications, these results suggest that turbidity could provide a more precise evaluation of pollutant loads at lower cost than typical sampling methods.

  2. Status of Siemens steam generator design and measures to assure continuous long-term reliable operation

    International Nuclear Information System (INIS)

    Hoch, G.

    1999-01-01

    Operating pressurized water reactors with U-tube steam generators have encountered difficulties with either one or a combination of inadequate material selection, poor design or manufacturing and an insufficient water chemistry control which resulted in excessive tube degradation. In contrast to the above mentioned problems, steam generators from Siemens/KWU are proving by operating experience that all measures undertaken at the design stage as well as during the operating and maintenance phase were effective enough to counteract any tube corrosion phenomena or other steam generator related problem. An Integrated Service Concept has been developed, applied and wherever necessary improved in order to ensure reliable steam generator operation. The performance of the steam generators is updated continuously, evaluated and implemented in lifetime databases. The main indicator for steam generator integrity are the results of the eddy current testing of the steam generator tubes. Tubes with indications are rated with lifetime threshold values and if necessary plugged, based on individual assessment criteria.(author)

  3. Continuous in-situ measurements of fission fragment irradiation induced void swelling in Ni

    International Nuclear Information System (INIS)

    Lefakis, H.

    1980-01-01

    A novel simulation technique has been developed to study the early stages of irradiation induced void formation in metals. The technique makes use of fission fragment irradiation produced by doping with 235 U and irradiating in a thermal neutron flux under highly controlled irradiation-environmental conditions. Employment of a computer and a high temperature radiation resistant LVDT resulted in a high volumetric sensitivity and the production of continuous, in-situ void swelling data for bulk specimens. Results for Ni, used as a test-metal served to corroborate the technique in a number of ways including comparisons with (a) reactor data, (b) direct post-irradiation specimen length measurements and (c) TEM examinations of irradiated samples. The technique has several unique advantages and, in conjunction with other conventional methods, it offers the possibility of detailed evaluation of void nucleation and growth theories. In view of the present results no definitive answer may be given on the issue of the incubation period while checks with two theoretical models have yielded an order-of-magnitude agreement

  4. Improving Continuous-Variable Measurement-Device-Independent Multipartite Quantum Communication with Optical Amplifiers*

    Science.gov (United States)

    Guo, Ying; Zhao, Wei; Li, Fei; Huang, Duan; Liao, Qin; Xie, Cai-Lang

    2017-08-01

    The developing tendency of continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is to cope with the practical issue of implementing scalable quantum networks. Up to now, most theoretical and experimental researches on CV-MDI QKD are focused on two-party protocols. However, we suggest a CV-MDI multipartite quantum secret sharing (QSS) protocol use the EPR states coupled with optical amplifiers. More remarkable, QSS is the real application in multipartite CV-MDI QKD, in other words, is the concrete implementation method of multipartite CV-MDI QKD. It can implement a practical quantum network scheme, under which the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Even if there is a possibility that the relay may be completely tampered, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Additionally, we illustrate that the use of optical amplifiers can compensate the partial inherent imperfections of detectors and increase the transmission distance of the CV-MDI quantum system.

  5. Continuous-variable Measurement-device-independent Quantum Relay Network with Phase-sensitive Amplifiers

    Science.gov (United States)

    Li, Fei; Zhao, Wei; Guo, Ying

    2018-01-01

    Continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is now heading towards solving the practical problem of implementing scalable quantum networks. In this paper, we show that a solution can come from deploying an optical amplifier in the CV-MDI system, aiming to establish a high-rate quantum network. We suggest an improved CV-MDI protocol using the EPR states coupled with optical amplifiers. It can implement a practical quantum network scheme, where the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Despite the possibility that the relay could be completely tampered with and imperfect links are subject to the powerful attacks, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Furthermore, we show that the use of optical amplifiers can compensate the inherent imperfections and improve the secret key rate of the CV-MDI system.

  6. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements.

    Science.gov (United States)

    Votava, Ondrej; Mašát, Milan; Parker, Alexander E; Jain, Chaithania; Fittschen, Christa

    2012-04-01

    We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment. © 2012 American Institute of Physics

  7. Comparison of the intracoronary continuous infusion method using a microcatheter and the intravenous continuous adenosine infusion method for inducing maximal hyperemia for fractional flow reserve measurement.

    Science.gov (United States)

    Yoon, Myeong-Ho; Tahk, Seung-Jea; Yang, Hyoung-Mo; Park, Jin-Sun; Zheng, Mingri; Lim, Hong-Seok; Choi, Byoung-Joo; Choi, So-Yeon; Choi, Un-Jung; Hwang, Joung-Won; Kang, Soo-Jin; Hwang, Gyo-Seung; Shin, Joon-Han

    2009-06-01

    Inducing stable maximal coronary hyperemia is essential for measurement of fractional flow reserve (FFR). We evaluated the efficacy of the intracoronary (IC) continuous adenosine infusion method via a microcatheter for inducing maximal coronary hyperemia. In 43 patients with 44 intermediate coronary lesions, FFR was measured consecutively by IC bolus adenosine injection (48-80 microg in left coronary artery, 36-60 microg in the right coronary artery) and a standard intravenous (IV) adenosine infusion (140 microg x min(-1) x kg(-1)). After completion of the IV infusion method, the tip of an IC microcatheter (Progreat Microcatheter System, Terumo, Japan) was positioned at the coronary ostium, and FFR was measured with increasing IC continuous adenosine infusion rates from 60 to 360 microg/min via the microcatheter. Fractional flow reserve decreased with increasing IC adenosine infusion rates, and no further decrease was observed after 300 microg/min. All patients were well tolerated during the procedures. Fractional flow reserves measured by IC adenosine infusion with 180, 240, 300, and 360 microg/min were significantly lower than those by IV infusion (P < .05). Intracoronary infusion at 180, 240, 300, and 360 microg/min was able to shorten the times to induction of optimal and steady-stable hyperemia compared to IV infusion (P < .05). Functional significances were changed in 5 lesions by IC infusion at 240 to 360 microg/min but not by IV infusion. The results of this study suggest that an IC adenosine continuous infusion method via a microcatheter is safe and effective in inducing steady-state hyperemia and more potent and quicker in inducing optimal hyperemia than the standard IV infusion method.

  8. Twelve years of continuous measurements of atmospheric electrical activity in Mexico's Tropical highland

    Energy Technology Data Exchange (ETDEWEB)

    Troncoso Lozada, O. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D.F. (Mexico)

    2004-04-01

    Atmospheric electric activity measurements have been recorded continuously by a punctual lightning system at a tropical highland observatory from 1988 onwards, and were analyzed to obtain lightning statistical confident results for thunderstorms occurrence on the leeward side of the southern mountain ridge of Mexico's Valley. Shown, as examples, are individual profiles of the atmospheric electrical activity, associated with severe storms. The results make clear that the fastest possible sequence of electrical measurements is required to obtain significant and applications oriented data in connection with a whole series of thunderstorms taking into account the mean time variation of the atmospheric electricity measurements at an altitude of 2270 m a.s.l. The seasonal variation indicates that the lightning flash peak currents were found to be larger in summer with less than 10% occurring in the autumn and winter. With rainfall data from a network of 66 stations, we obtained a significant correlation with the lightning frequency. Special attention was undertaken concerning the question of the atmospheric electrical activity and climate at Valley of Mexico. [Spanish] Se midieron ininterrumpidamente las variaciones de la actividad electrica en la atmosfera, de enero de 1988 a diciembre de 1999, en un observatorio de altura (2,250 m s.n.m.), y se analizaron para obtener resultados estadisticos confiables con relacion a la ocurrencia de tormentas en la region sur del Valle de Mexico. Como ejemplos, se muestran los perfiles individuales de la actividad electrica atmosferica asociada con tormentas severas. Los resultados dejan claro que se requiere de la secuencia de medidas electricas lo mas rapida posible para obtener datos significativos y aplicables en relacion con una serie completa de tormentas, considerando la media del tiempo de variacion de las mediciones de la actividad electrica atmosferica a una altitud de 2,270 m s.n.m. La validacion estacional indica que

  9. Measurements of b → u amplitude and CKM weak phase γ using B0 → D0K*0 decays reconstructed with the BABAR detector

    International Nuclear Information System (INIS)

    Sordini, V.

    2008-06-01

    In this thesis we present CP violation studies in the B mesons system, and in particular measurements of the angle γ of the Unitarity Triangle, using data collected by the BABAR experiment. The angle γ is the relative weak phase between the V ub and V cb elements of the CKM matrix. A crucial parameter, which drives the sensitivity to γ, is the ratio r between b → u and b → c transition amplitudes. In the first part of the thesis, general issues on γ studies and the status of the present measurements are introduced. The experimental work is then detailed. It is composed of two different analyses of B 0 → D 0 (D-bar 0 )K *0 . In the first analysis, these decays are studied through the ADS method, where the neutral D mesons are reconstructed into K ± π ± , K ± π ± π 0 and K ± π ± π ± π ± final states. This analysis allows us to determine, for the first time, the ratio r for B 0 → D 0 (D-bar 0 )K *0 , which is found to be r equals (0.260 +0.077 -0.088). The large value for the parameter r makes the use of this channel interesting for present and future facilities, for the determination of γ. In the second analysis, the channel B 0 → D 0 (D-bar 0 )K *0 is studied with a Dalitz method and the neutral D mesons are reconstructed into K S π + π - final states. The determination of γ from this analysis is γ equals (162 ± 56) degrees, with a 180 degrees ambiguity. The result for r from the combination of the two analyses is: r equals (0.259 +0.073 -0.079). These results represent the first constraints on γ and r obtained from neutral B decays. Finally, data driven simulation studies are discussed, which show that the study of the B 0 → D 0 (D-bar 0 )K *0 is competitive, for the determination of γ, with the other analysis aiming to extract γ from charged B decays. (author)

  10. Weak mixing and CP violation involving heavy quarks and possible measurements in e/sup +/e/sup -/ experiments. [Higgs exchange mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A; Aydin, Z Z [Hamburg Univ. (Germany, F.R.). 2. Inst. fuer Theoretische Physik

    1979-01-01

    The authors evaluate weak mass mixing among the neutral heavy mesons with a bottom (Q=-1/3) or top (Q=+2/3) quark and CP violation in this framework of six quark V-A models. It is argued that bottom and top mesons may distinguish the Higgs exchange mechanism of CP violation from a complex phase in the quark mass matrix, if bottom and top quark masses are sufficiently different. Estimates of weak mixing and CP violating effects for e/sup +/e/sup -/ experiments at PETRA, PEP and CESR energies are presented.

  11. Comparing Measures of Voice Quality from Sustained Phonation and Continuous Speech

    Science.gov (United States)

    Gerratt, Bruce R.; Kreiman, Jody; Garellek, Marc

    2016-01-01

    Purpose: The question of what type of utterance--a sustained vowel or continuous speech--is best for voice quality analysis has been extensively studied but with equivocal results. This study examines whether previously reported differences derive from the articulatory and prosodic factors occurring in continuous speech versus sustained phonation.…

  12. Continuous versus step-by-step scanning mode of a novel 3D scanner for CyberKnife measurements

    International Nuclear Information System (INIS)

    Al Kafi, M Abdullah; Mwidu, Umar; Moftah, Belal

    2015-01-01

    The purpose of the study is to investigate the continuous versus step-by-step scanning mode of a commercial circular 3D scanner for commissioning measurements of a robotic stereotactic radiosurgery system. The 3D scanner was used for profile measurements in step-by-step and continuous modes with the intent of comparing the two scanning modes for consistency. The profile measurements of in-plane, cross-plane, 15 degree, and 105 degree were performed for both fixed cones and Iris collimators at depth of maximum dose and at 10 cm depth. For CyberKnife field size, penumbra, flatness and symmetry analysis, it was observed that the measurements with continuous mode, which can be up to 6 times faster than step-by-step mode, are comparable and produce scans nearly identical to step-by-step mode. When compared with centered step-by-step mode data, a fully processed continuous mode data gives rise to maximum of 0.50% and 0.60% symmetry and flatness difference respectfully for all the fixed cones and Iris collimators studied. - Highlights: • D scanner for CyberKnife beam data measurements. • Beam data analysis for continuous and step-by-step scan modes. • Faster continuous scanning data are comparable to step-by-step mode scan data.

  13. Breaking continuous flash suppression: A new measure of unconscious processing during interocular suppression?

    Directory of Open Access Journals (Sweden)

    Timo eStein

    2011-12-01

    Full Text Available Until recently, it has been thought that under interocular suppression high-level visual processing is strongly inhibited if not abolished. With the development of continuous flash suppression (CFS, a variant of binocular rivalry, this notion has now been challenged by a number of reports showing that even high-level aspects of visual stimuli, such as familiarity, affect the time stimuli need to overcome CFS and emerge into awareness. In this breaking CFS (b-CFS paradigm, differential unconscious processing during suppression is inferred when (a speeded detection responses to initially invisible stimuli differ, and (b no comparable differences are found in non-rivalrous control conditions supposed to measure general threshold differences between stimuli. To critically evaluate these assumptions was the aim of the present study. In six experiments we compared the time upright and inverted faces needed to be detected. We found that not only under CFS, but also in control conditions upright faces were detected faster and more accurately than inverted faces, although the effect was larger during CFS. However, reaction time (RT distributions indicated critical differences between the CFS and the control condition. When RT distributions were matched, similar effect sizes were obtained in both conditions. Moreover, subjective ratings revealed that CFS and control conditions are not perceptually comparable. These findings cast doubt on the usefulness of non-rivalrous control conditions to rule out mere detection threshold differences as a cause of shorter detection latencies during CFS. In conclusion, we acknowledge that the b-CFS paradigm can be fruitfully applied as a highly sensitive device to probe differences between stimuli in their potency to gain access to awareness. However, our current findings suggest that such differences can not unequivocally be attributed to differential unconscious processing under interocular suppression.

  14. Continuous measurements of ammonia, nitrous oxide and methane from air scrubbers at pig housing facilities.

    Science.gov (United States)

    Van der Heyden, C; Brusselman, E; Volcke, E I P; Demeyer, P

    2016-10-01

    Ammonia, largely emitted by agriculture, involves a great risk for eutrophication and acidification leading to biodiversity loss. Air scrubbers are widely applied to reduce ammonia emission from pig and poultry housing facilities, but it is not always clear whether their performance meets the requirements. Besides, there is a growing international concern for the livestock related greenhouse gases methane and nitrous oxide but hardly any data concerning their fate in air scrubbers are available. This contribution presents the results from measurement campaigns conducted at a chemical, a biological and a two-stage biological air scrubber installed at pig housing facilities in Flanders. Ammonia, nitrous oxide and methane at the inlet and outlet of the air scrubbers were monitored on-line during one week using a photoacoustic gas monitor, which allowed to investigate diurnal fluctuations in the removal performance of air scrubbers. Additionally, the homogeneity of the air scrubbers, normally checked by gas detection tubes, was investigated in more detail using the continuous data. The biological air scrubber with extra nitrification tank performed well in terms of ammonia removal (86 ± 6%), while the two-stage air scrubber suffered from nitrifying bacteria inhibition. In the chemical air scrubber the pH was not kept constant, lowering the ammonia removal efficiency. A lower ammonia removal efficiency was found during the day, when the ventilation rate was the highest. Nitrous oxide was produced inside the biological and two-stage scrubber, resulting in an increased outlet concentration of more than 200%. Methane could not be removed in the different air scrubbers because of its low water solubility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Construct validity of 2 measures to assess reasons for antipsychotic discontinuation and continuation from patients’ and clinicians’ perspectives in a clinical trial

    Directory of Open Access Journals (Sweden)

    Faries Douglas

    2012-09-01

    Full Text Available Abstract Background Little is known about the specific reasons for antipsychotic discontinuation or continuation from patients’ or clinicians’ perspectives. This study aimed to assess the construct validity of 2 new measures of the Reasons for Antipsychotic Discontinuation/Continuation (RAD: RAD-I (a structured interview assessing the patient’s perspective and RAD-Q (a questionnaire assessing the clinician’s perspective. Methods Data were used from a 12-week antipsychotic trial of schizophrenia patients in which the RAD was administered at study entry and at study completion (or discontinuation. Construct validity was assessed through comparisons of RAD responses, clinicians’ responses to a standard patient disposition form identifying reasons for patient’s study discontinuation, and several standard psychiatric measures. Percent agreement quantified the correspondence between patient and clinician scores. Results Patients indicating lack of improvement/worsening of positive symptoms as a ‘somewhat’ to ‘primary’ reason for medication discontinuation had statistically significantly less improvement in Positive and Negative Syndrome Scale positive score than patients not reporting these as a reason (concurrent validity. Similar results were observed for the RAD negative symptom, functional, social support, and adherence items, whereas the mood and cognitive items were not significantly associated with change scores on standard psychiatric measures. Responses to the RAD were also weakly associated with variables that theoretically should not be related to them (divergent validity. Level of agreement between the clinician- and patient-rated RAD scores was high (60%-100%. Conclusions Initial validation of the RAD suggests that the instruments are valid tools for gathering detailed information regarding reasons for antipsychotic discontinuation and continuation from patients’ and clinicians’ perspectives.

  16. Harvesting the weak angular reflections from the fundus of the human eye : on measuring and analyzing the light wasted by the retina

    NARCIS (Netherlands)

    Kraats, J. van der

    2007-01-01

    Summary of the thesis “Harvesting the weak angular reflections from the fundus of the human eye” by Jan van de Kraats University Medical Centre Utrecht. Defended October 16, 2007. This thesis is on the modeling of the optical reflection of the human fovea, and on the three instruments build for

  17. Second class weak currents

    International Nuclear Information System (INIS)

    Delorme, J.

    1978-01-01

    The definition and general properties of weak second class currents are recalled and various detection possibilities briefly reviewed. It is shown that the existing data on nuclear beta decay can be consistently analysed in terms of a phenomenological model. Their implication on the fundamental structure of weak interactions is discussed [fr

  18. Weak C* Hopf Symmetry

    OpenAIRE

    Rehren, K. -H.

    1996-01-01

    Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field theories, when braid group statistics prevents group symmetries. Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory of local observables are discussed.

  19. Bagging Weak Predictors

    DEFF Research Database (Denmark)

    Lukas, Manuel; Hillebrand, Eric

    Relations between economic variables can often not be exploited for forecasting, suggesting that predictors are weak in the sense that estimation uncertainty is larger than bias from ignoring the relation. In this paper, we propose a novel bagging predictor designed for such weak predictor variab...

  20. Continuous-Scan Phased Array Measurement Methods for Turbofan Engine Acoustic Testing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To allow aviation growth to continue in the face of increasingly stringent noise pollution standards, new aircraft engines must be designed with noise performance as...

  1. Continuous measurements of H2 and CO deposition onto soil: a laboratory soil chamber experiment

    Science.gov (United States)

    Ghosh, P.; Eiler, J.; Smith, N. V.; Thrift-Viveros, D. L.

    2004-12-01

    Hydrogen uptake in soil is the largest single component of the global budget of atmospheric H2, and is the most important parameter for predicting changes in atmospheric concentration with future changing sources (anthropogenic and otherwise). The rate of hydrogen uptake rate by soil is highly uncertain [1]. As a component of the global budget, it is simply estimated as the difference among estimates for other recognized sources and sinks, assuming the atmosphere is presently in steady state. Previous field chamber experiments [2] show that H2 deposition velocity varies complexly with soil moisture level, and possibly with soil organic content and temperature. We present here results of controlled soil chamber experiments on 3 different soil blocks (each ~20 x ~20 x ~21 cm) with a controlled range of moisture contents. All three soils are arid to semi arid, fine grained, and have organic contents of 10-15%. A positive air pressure (slightly higher than atmospheric pressure) and constant temperature and relative humidity was maintained inside the 10.7 liter, leak-tight plexiglass chamber, and a stream of synthetic air with known H2 concentration was continuously bled into the chamber through a needle valve and mass flow meter. H2, CO and CO2 concentrations were continuously analyzed in the stream of gas exiting the chamber, using a TA 3000 automated Hg-HgO reduced gas analyzer and a LI-820 CO2 gas analyzer. Our experimental protocol involved waiting until concentrations of analyte gases in the exiting gas stream reached a steady state, and documenting how that steady state varied with various soil properties and the rate at which gases were delivered to the chamber. The rate constants for H2 and CO consumption in the chamber were measured at several soil moisture contents. The calculated deposition velocities of H2 and CO into the soil are positively correlated with steady-state concentrations, with slopes and curvatures that vary with soil type and moisture level

  2. On the need for new continues measurement techniques at combustion plants; Anlaeggningars behov av ny kontinuerlig maetteknik

    Energy Technology Data Exchange (ETDEWEB)

    Eskilsson, David; Samuelsson, Jessica [Swedish National Testing and Research Inst., Boraas (Sweden)

    2006-11-15

    The purpose of this study is to make an inventory regarding the need for new continuous measurement techniques at combustion plants in Sweden. In total 15 interviews at 15 different combustion plants were made. The interviewed plants are of different sizes and use different combustion techniques, fuels, and cleaning equipments. They thereby well reflect the combustion plants present in Sweden today. Among many interesting interview results, we chose to highlight: Continuous measurement of the moisture content of the fuel, which can be used to decide the value of a fuel delivery, or for monitoring or to controlling the combustion (e.g. the speed of the grate); Continuous measurement of the heating value of the fuel, which can be used to decide the value of a fuel delivery, or for monitoring or to controlling the combustion. There is a need for temperature sensors which better withstand the environment in the furnace. Moreover, there is also a need for 3-dimensional measurements of the temperature in the furnace, especially for fluidized beds. This information can be used to control the combustion in different ways, e.g. preventing the bed from sintering. At some plants there was a need to measure the rate of corrosion and the growth of deposits. The measurements can be used to control the fuel mix at an early stage and to thereby avoid problems caused by corrosion and deposits. The measurement results can also be used to control the soot cleaning equipment, fuel mixture and adding of additive. At some of the interviewed plants there was a need to continuously measure the amount of unburned fuel in the ash. The continuous measurement results can be used for automatic control or monitoring of the combustion process. Several plants had problems with their dust instruments. Suitable topics for future work include investigating how the measurement techniques mentioned above may be developed/improved and implemented at the plants.

  3. A weak magnetic field inhibits hippocampal neurogenesis in SD rats

    Science.gov (United States)

    Zhang, B.; Tian, L.; Cai, Y.; Pan, Y.

    2017-12-01

    Geomagnetic field is an important barrier that protects life forms on Earth from solar wind and radiation. Paleomagnetic data have well demonstrated that the strength of ancient geomagnetic field was dramatically weakened during a polarity transition. Accumulating evidence has shown that weak magnetic field exposures has serious adverse effects on the metabolism and behaviors in organisms. Hippocampal neurogenesis occurs throughout life in mammals' brains which plays a key role in brain function, and can be influenced by animals' age as well as environmental factors, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we have investigated the weak magnetic field effects on hippocampal neurogenesis of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, a weak magnetic field (≤1.3 μT) and the geomagnetic fields (51 μT).The latter is treated as a control condition. SD rats were exposure to the weak magnetic field up to 6 weeks. We measured the changes of newborn nerve cells' proliferation and survival, immature neurons, neurons and apoptosis in the dentate gyrus (DG) of hippocampus in SD rats. Results showed that, the weak magnetic field (≤1.3 μT) inhibited their neural stem cells proliferation and significantly reduced the survival of newborn nerve cells, immature neurons and neurons after 2 or 4 weeks continuous treatment (i.e. exposure to weak magnetic field). Moreover, apoptosis tests indicated the weak magnetic field can promote apoptosis of nerve cells in the hippocampus after 4 weeks treatment. Together, our new data indicate that weak magnetic field decrease adult hippocampal neurogenesis through inhibiting neural stem cells proliferation and promoting apoptosis, which provides useful experimental constraints on better understanding the mechanism of linkage between life and geomagnetic field.

  4. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers

    Science.gov (United States)

    Mathupala, Saroj P.; Kiousis, Sam; Szerlip, Nicholas J.

    2016-01-01

    Background Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup. Methodology With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135) consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions. Results/Conclusions We show the kit’s utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available

  5. Present kinematics of the Tjornes Fracture Zone, North Iceland, from campaign and continuous GPS measurements

    KAUST Repository

    Metzger, S.

    2012-11-19

    The Tjörnes Fracture Zone (TFZ), North Iceland, is a 120 km transform offset of the Mid-Atlantic-Ridge that accommodates 18 mm yr−1 plate motion on two parallel transform structures and connects the offshore Kolbeinsey Ridge in the north to the on-shore Northern Volcanic Zone (NVZ) in the south. This transform zone is offshore except for a part of the right-lateral strike-slip Húsavík-Flatey fault (HFF) system that lies close to the coastal town of Húsavík, inducing a significant seismic risk to its inhabitants. In our previous work we constrained the locking depth and slip-rate of the HFF using 4 yr of continuous GPS measurements and found that the accumulated slip-deficit on the fault is equivalent to a Mw6.8 ± 0.1 earthquake, assuming a complete stress release in the last major earthquakes in 1872 and a steady accumulation since then. In this paper we improve our previous analysis by adding 44 campaign GPS (EGPS) data points, which have been regularly observed since 1997. We extract the steady-state interseismic velocities within the TFZ by correcting the GPS data for volcanic inflation of Theistareykir—the westernmost volcano of the NVZ—using a model with a magma volume increase of 25 × 106 m3, constrained by InSAR time-series analysis results. The improved velocity field based on 58 GPS stations confirms the robustness of our previous model and allows to better constrain the free model parameters. For the HFF we find a slightly shallower locking depth of ∼6.2 km and a slightly higher slip-rate of ∼6.8 mm yr−1 that again result in the same seismic potential equivalent to a Mw6.8 earthquake. The much larger number of GPS velocities improves the statistically estimated model parameter uncertainties by a factor of two, when compared to our previous study, a result that we validate using Bayesian estimation.

  6. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers.

    Directory of Open Access Journals (Sweden)

    Saroj P Mathupala

    Full Text Available Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup.With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135 consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions.We show the kit's utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available only to labs with access to

  7. A Lab Assembled Microcontroller-Based Sensor Module for Continuous Oxygen Measurement in Portable Hypoxia Chambers.

    Science.gov (United States)

    Mathupala, Saroj P; Kiousis, Sam; Szerlip, Nicholas J

    2016-01-01

    Hypoxia-based cell culture experiments are routine and essential components of in vitro cancer research. Most laboratories use low-cost portable modular chambers to achieve hypoxic conditions for cell cultures, where the sealed chambers are purged with a gas mixture of preset O2 concentration. Studies are conducted under the assumption that hypoxia remains unaltered throughout the 48 to 72 hour duration of such experiments. Since these chambers lack any sensor or detection system to monitor gas-phase O2, the cell-based data tend to be non-uniform due to the ad hoc nature of the experimental setup. With the availability of low-cost open-source microcontroller-based electronic project kits, it is now possible for researchers to program these with easy-to-use software, link them to sensors, and place them in basic scientific apparatus to monitor and record experimental parameters. We report here the design and construction of a small-footprint kit for continuous measurement and recording of O2 concentration in modular hypoxia chambers. The low-cost assembly (US$135) consists of an Arduino-based microcontroller, data-logging freeware, and a factory pre-calibrated miniature O2 sensor. A small, intuitive software program was written by the authors to control the data input and output. The basic nature of the kit will enable any student in biology with minimal experience in hobby-electronics to assemble the system and edit the program parameters to suit individual experimental conditions. We show the kit's utility and stability of data output via a series of hypoxia experiments. The studies also demonstrated the critical need to monitor and adjust gas-phase O2 concentration during hypoxia-based experiments to prevent experimental errors or failure due to partial loss of hypoxia. Thus, incorporating the sensor-microcontroller module to a portable hypoxia chamber provides a researcher a capability that was previously available only to labs with access to sophisticated (and

  8. Electro-weak theory

    International Nuclear Information System (INIS)

    Deshpande, N.G.

    1980-01-01

    By electro-weak theory is meant the unified field theory that describes both weak and electro-magnetic interactions. The development of a unified electro-weak theory is certainly the most dramatic achievement in theoretical physics to occur in the second half of this century. It puts weak interactions on the same sound theoretical footing as quantum elecrodynamics. Many theorists have contributed to this development, which culminated in the works of Glashow, Weinberg and Salam, who were jointly awarded the 1979 Nobel Prize in physics. Some of the important ideas that contributed to this development are the theory of beta decay formulated by Fermi, Parity violation suggested by Lee and Yang, and incorporated into immensely successful V-A theory of weak interactions by Sudarshan and Marshak. At the same time ideas of gauge invariance were applied to weak interaction by Schwinger, Bludman and Glashow. Weinberg and Salam then went one step further and wrote a theory that is renormalizable, i.e., all higher order corrections are finite, no mean feat for a quantum field theory. The theory had to await the development of the quark model of hadrons for its completion. A description of the electro-weak theory is given

  9. Weak interactions with nuclei

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1983-01-01

    Nuclei provide systems where the strong, electomagnetic, and weak interactions are all present. The current picture of the strong interactions is based on quarks and quantum chromodynamics (QCD). The symmetry structure of this theory is SU(3)/sub C/ x SU(2)/sub W/ x U(1)/sub W/. The electroweak interactions in nuclei can be used to probe this structure. Semileptonic weak interactions are considered. The processes under consideration include beta decay, neutrino scattering and weak neutral-current interactions. The starting point in the analysis is the effective Lagrangian of the Standard Model

  10. Intercomparison of active, passive and continuous instruments for radon and radon progeny measurements in the EML chamber and test facility

    International Nuclear Information System (INIS)

    George, A.C.; Knutson, E.O.; Tu, K.W.; Fisenne, I.M.

    1995-12-01

    The results from the May 1995 Intercomparison of Active, Passive and Continuous Instruments for Radon and Radon Progeny Measurement conducted in the EML radon exposure and test facility are presented. Represented were 13 participants that measure radon with open faced and diffusion barrier activated carbon collectors, 10 with nuclear alpha track detectors, 9 with short-term and long-term electret/ionization chambers, and 13 with active and passive commercial electronic continuous monitors. For radon progeny, there were four participants that came in person to take part in the grab sampling methodology for measuring individual radon progeny and the potential alpha energy concentration (PAEC). There were 11 participants with continuous and integrating commercial electronic instruments that are used for measuring the PAEC. The results indicate that all the tested instruments that measure radon fulfill their intended purpose. All instruments and methods used for grab sampling for radon progeny did very well. However, most of the continuous and integrating electronic instruments used for measuring the PAEC or working level appear to underestimate the potential risk from radon progeny when the concentration of particles onto which the radon progeny are attached is -3

  11. Continuous Markovian Logics

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Cardelli, Luca; Larsen, Kim Guldstrand

    2012-01-01

    Continuous Markovian Logic (CML) is a multimodal logic that expresses quantitative and qualitative properties of continuous-time labelled Markov processes with arbitrary (analytic) state-spaces, henceforth called continuous Markov processes (CMPs). The modalities of CML evaluate the rates...... of the exponentially distributed random variables that characterize the duration of the labeled transitions of a CMP. In this paper we present weak and strong complete axiomatizations for CML and prove a series of metaproperties, including the finite model property and the construction of canonical models. CML...... characterizes stochastic bisimilarity and it supports the definition of a quantified extension of the satisfiability relation that measures the "compatibility" between a model and a property. In this context, the metaproperties allows us to prove two robustness theorems for the logic stating that one can...

  12. History of Weak Interactions

    Science.gov (United States)

    Lee, T. D.

    1970-07-01

    While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.

  13. Hunting the weak bosons

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The possibility of the production of weak bosons in the proton-antiproton colliding beam facilities which are currently being developed, is discussed. The production, decay and predicted properties of these particles are described. (W.D.L.).

  14. Indirect measurement of lymphatic absorption with inulin in continuous ambulatory peritoneal dialysis (CAPD) patients

    NARCIS (Netherlands)

    Struijk, D. G.; Krediet, R. T.; Koomen, G. C.; Boeschoten, E. W.; vd Reijden, H. J.; Arisz, L.

    1990-01-01

    To elucidate the importance of possible trapping of macromolecules in peritoneal tissue on the calculation of peritoneal lymphatic drainage, we compared the transport of inulin administered i.v. and i.p. in nine continuous ambulatory peritoneal dialysis (CAPD) patients on two separate days. In the

  15. Direct Measurement and Evaluation for Mechanical Engineering Programme Outcomes: Impact on Continuous Improvement

    Science.gov (United States)

    Tahir, Mohd Faizal Mat; Khamis, Nor Kamaliana; Wahid, Zaliha; Ihsan, Ahmad Kamal Ariffin Mohd; Ghani, Jaharah Ab; Sabri, Mohd Anas Mohd; Sajuri, Zainuddin; Abdullah, Shahrum; Sulong, Abu Bakar

    2013-01-01

    Universiti Kebangsaan Malaysia (UKM) is a research university that continuously undergoes an audit and accreditation process for the management of its courses. The Faculty of Engineering and the Built Environment (FKAB) is subjected to such processes, one of them is the auditing conducted by the Engineering Accreditation Council (EAC), which gives…

  16. Measurement of average continuous-time structure of a bond and ...

    African Journals Online (AJOL)

    The expected continuous-time structure of a bond and bond's interest rate risk in an investment settings was studied. We determined the expected number of years an investor or manager will wait until the stock comes to maturity. The expected principal amount to be paid back per stock at time 't' was determined, while ...

  17. Charged weak currents

    International Nuclear Information System (INIS)

    Turlay, R.

    1979-01-01

    In this review of charged weak currents I shall concentrate on inclusive high energy neutrino physics. There are surely still things to learn from the low energy weak interaction but I will not discuss it here. Furthermore B. Tallini will discuss the hadronic final state of neutrino interactions. Since the Tokyo conference a few experimental results have appeared on charged current interaction, I will present them and will also comment on important topics which have been published during the last past year. (orig.)

  18. Weakly oval electron lense

    International Nuclear Information System (INIS)

    Daumenov, T.D.; Alizarovskaya, I.M.; Khizirova, M.A.

    2001-01-01

    The method of the weakly oval electrical field getting generated by the axially-symmetrical field is shown. Such system may be designed with help of the cylindric form coaxial electrodes with the built-in quadrupole duplet. The singularity of the indicated weakly oval lense consists of that it provides the conducting both mechanical and electronic adjustment. Such lense can be useful for elimination of the near-axis astigmatism in the electron-optical system

  19. Measurement of gas adsorption with Jäntti's method using continuously increasing pressure

    NARCIS (Netherlands)

    Poulis, J.A.; Massen, C.H.; Robens, E.

    2002-01-01

    Jäntti et al. published a method to reduce the time necessary for adsorption measurements. They proposed to extrapolate the equilibrium in the stepwise isobaric measurement of adsorption isotherms by measuring at each step three points of the kinetic curve. For that purpose they approximated the

  20. Measurement of the Effective Weak Mixing Angle in $p\\bar{p} \\to Z/\\gamma^* \\to e^+e^-$ events at $\\sqrt{s} = 1.96$ TeV

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Siqi [Hefei, CUST

    2016-01-01

    We present a measurement of the fundamental parameter of the standard model, the weak mixing angle, in pp¯→Z/γ∗→e+e− events at a center of mass energy of 1.96 TeV, using data corresponding to 9.7 fb−1 of integrated luminosity collected by the D0 detector at the Fermilab Tevatron. The effective weak mixing angle is extracted from the forward-backward charge asymmetry as a function of the invariant mass around the Z boson pole. The measured value of sin2θℓeff=0.23147±0.00047 is the most precise measurement from light quark interactions to date, with a precision close to the best LEP and SLD results.