Sample records for continuous trace algebras


    Daniel Tudor


    This paper analyzes two special cases of C* -algebras, the cases of universal crossed product and reduced crossed product of a group by a C* -algebra. In the hypothesis that the universal crossed product is a continuous trace C* -algebra or a type I C* -algebra, it is proved that the reduced crossed product is a continuous trace C* -algebra or, respectively, a type I C* -algebra. Moreover, these results can be extended in the case when the crossed products are obtained from a groupoid an...

  2. Tracing a planar algebraic curve

    Chen Falai; Kozak, J.


    In this paper, an algorithm that determines a real algebraic curve is outlined. Its basic step is to divide the plane into subdomains that include only simple branches of the algebraic curve without singular points. Each of the branches is then stably and efficiently traced in the particular subdomain. Except for the tracing, the algorithm requires only a couple of simple operations on polynomials that can be carried out exactly if the coefficients are rational, and the determination of zeros of several polynomials of one variable. (author). 5 refs, 4 figs

  3. Quartic trace identity for exceptional Lie algebras

    Okubo, S.


    Let X be a representation matrix of generic element x of a simple Lie algebra in generic irreducible representation ]lambda] of the Lie algebra. Then, for all exceptional Lie algebras as well as A 1 and A 2 , we can prove the validity of a quartic trace identity Tr(X 4 ) =K (lambda)[Tr(X 2 )] 2 , where the constant K (lambda) depends only upon the irreducible representation ]lambda], and its explicit form is calculated. Some applications of second and fourth order indices have also been discussed

  4. A trace formula for the Iwahori-Hecke algebra

    Opdam, E.M.


    The Iwahori-Hecke algebra has a canonicaltrace $\\tau$. The trace is the evaluation at the identity element in the usual interpretation of the Iwahori-Hecke algebra as a sub-algebra of the convolution algebra of a p-adic semi-simple group. The Iwahori-Hecke algebra contains an important commutative

  5. Commuting quantum traces: the case of reflection algebras

    Avan, Jean [Laboratory of Theoretical Physics and Modelization, University of Cergy, 5 mail Gay-Lussac, Neuville-sur-Oise, F-95031, Cergy-Pontoise Cedex (France); Doikou, Anastasia [Theoretical Physics Laboratory of Annecy-Le-Vieux, LAPTH, BP 110, Annecy-Le-Vieux, F-74941 (France)


    We formulate a systematic construction of commuting quantum traces for reflection algebras. This is achieved by introducing two dual sets of generalized reflection equations with associated consistent fusion procedures. Products of their respective solutions yield commuting quantum traces.

  6. Commuting quantum traces for quadratic algebras

    Nagy, Zoltan; Avan, Jean; Doikou, Anastasia; Rollet, Genevieve


    Consistent tensor products on auxiliary spaces, hereafter denoted 'fusion procedures', and commuting transfer matrices are defined for general quadratic algebras, nondynamical and dynamical, inspired by results on reflection algebras. Applications of these procedures then yield integer-indexed families of commuting Hamiltonians

  7. Markov trace on the Yokonuma-Hecke algebra

    Juyumaya, J.


    The objective of this note is to prove that there exists a Markov trace on the Yokonuma-Hecke algebra. A motivation to define a Markov trace is to get polynomial invariants for knots in the sense of Jones construction. (author)

  8. Renormalization group flows and continual Lie algebras

    Bakas, Ioannis


    We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by (d/dt;1), with anti-symmetric Cartan kernel K(t,t') = δ'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N vertical bar N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Baecklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Z n to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra (d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown. (author)

  9. Quasitraces on exact C*-algebras are traces

    Haagerup, Uffe


    It is shown that all 2-quasitraces on a unital exact C ∗   -algebra are traces. As consequences one gets: (1) Every stably finite exact unital C ∗   -algebra has a tracial state, and (2) if an AW ∗   -factor of type II 1   is generated (as an AW ∗   -algebra) by an exact C ∗   -subalgebra, then i......, then it is a von Neumann II 1   -factor. This is a partial solution to a well known problem of Kaplansky. The present result was used by Blackadar, Kumjian and Rørdam to prove that RR(A)=0  for every simple non-commutative torus of any dimension...

  10. Ultraweak Continuity of σ-derivations on von Neumann Algebras

    Mirzavaziri, Madjid; Moslehian, Mohammad Sal


    Let σ be a surjective ultraweakly continuous *-linear mapping and d be a σ-derivation on a von Neumann algebra. We show that there are a surjective ultraweakly continuous *-homomorphism and a Σ-derivation such that D is ultraweakly continuous if and only if so is d. We use this fact to show that the σ-derivation d is automatically ultraweakly continuous. We also prove the converse in the sense that if σ is a linear mapping and d is an ultraweakly continuous *-σ-derivation, then there is an ultraweakly continuous linear mapping such that d is a *-Σ-derivation

  11. Continual Lie algebras and noncommutative counterparts of exactly solvable models

    Zuevsky, A.


    Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.

  12. Rings of continuous functions, symmetric products, and Frobenius algebras

    Buchstaber, Viktor M; Rees, E G


    A constructive proof is given for the classical theorem of Gel'fand and Kolmogorov (1939) characterising the image of the evaluation map from a compact Hausdorff space X into the linear space C(X)* dual to the ring C(X) of continuous functions on X. Our approach to the proof enabled us to obtain a more general result characterising the image of the evaluation map from the symmetric products Sym n (X) into C(X)*. A similar result holds if X=C m and leads to explicit equations for symmetric products of affine algebraic varieties as algebraic subvarieties in the linear space dual to the polynomial ring. This leads to a better understanding of the algebra of multisymmetric polynomials. The proof of all these results is based on a formula used by Frobenius in 1896 in defining higher characters of finite groups. This formula had no further applications for a long time; however, it has appeared in several independent contexts during the last fifteen years. It was used by A. Wiles and R.L. Taylor in studying representations and by H.-J. Hoehnke and K.W. Johnson and later by J. McKay in studying finite groups. It plays an important role in our work concerning multivalued groups. Several properties of this remarkable formula are described. It is also used to prove a theorem on the structure constants of Frobenius algebras, which have recently attracted attention due to constructions taken from topological field theory and singularity theory. This theorem develops a result of Hoehnke published in 1958. As a corollary, a direct self-contained proof is obtained for the fact that the 1-, 2-, and 3-characters of the regular representation determine a finite group up to isomorphism. This result was first published by Hoehnke and Johnson in 1992

  13. Continuous analog of multiplicative algebraic reconstruction technique for computed tomography

    Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya


    We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.

  14. Algebra

    Tabak, John


    Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.

  15. Algebra

    Flanders, Harley


    Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a

  16. Algebra

    Sepanski, Mark R


    Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems

  17. Semi-direct sums of Lie algebras and continuous integrable couplings

    Ma Wenxiu; Xu Xixiang; Zhang Yufeng


    A relation between semi-direct sums of Lie algebras and integrable couplings of continuous soliton equations is presented, and correspondingly, a feasible way to construct integrable couplings is furnished. A direct application to the AKNS spectral problem leads to a novel hierarchy of integrable couplings of the AKNS hierarchy of soliton equations. It is also indicated that the study of integrable couplings using semi-direct sums of Lie algebras is an important step towards complete classification of integrable systems

  18. New Trace Bounds for the Product of Two Matrices and Their Applications in the Algebraic Riccati Equation

    Liu Jianzhou


    Full Text Available By using singular value decomposition and majorization inequalities, we propose new inequalities for the trace of the product of two arbitrary real square matrices. These bounds improve and extend the recent results. Further, we give their application in the algebraic Riccati equation. Finally, numerical examples have illustrated that our results are effective and superior.

  19. A new class of infinite-dimensional Lie algebras: an analytical continuation of the arbitrary finite-dimensional semisimple Lie algebra

    Fradkin, E.S.; Linetsky, V.Ya.


    With any semisimple Lie algebra g we associate an infinite-dimensional Lie algebra AC(g) which is an analytic continuation of g from its root system to its root lattice. The manifest expressions for the structure constants of analytic continuations of the symplectic Lie algebras sp2 n are obtained by Poisson-bracket realizations method and AC(g) for g=sl n and so n are discussed. The representations, central extension, supersymmetric and higher spin generalizations are considered. The Virasoro theory is a particular case when g=sp 2 . (author). 9 refs

  20. Investigation of continuous-time quantum walk via modules of Bose-Mesner and Terwilliger algebras

    Jafarizadeh, M A; Salimi, S


    The continuous-time quantum walk on the underlying graphs of association schemes has been studied, via the algebraic combinatorics structures of association schemes, namely semi-simple modules of their Bose-Mesner and Terwilliger algebras. It is shown that the Terwilliger algebra stratifies the graph into a (d + 1) disjoint union of strata which is different from the stratification based on distance, except for distance regular graphs. In underlying graphs of association schemes, the probability amplitudes and average probabilities are given in terms of dual eigenvalues of association schemes, such that the amplitudes of observing the continuous-time quantum walk on all sites belonging to a given stratum are the same, therefore there are at most (d + 1) different observing probabilities. The importance of association scheme in continuous-time quantum walk is shown by some worked out examples such as arbitrary finite group association schemes followed by symmetric S n , Dihedral D 2m and cyclic groups. At the end it is shown that the highest irreducible representations of Terwilliger algebras pave the way to use the spectral distributions method of Jafarizadeh and Salimi (2005 Preprint quant-ph/0510174) in studying quantum walk on some rather important graphs called distance regular graphs

  1. A Continuous Formulation for Logical Decisions in Differential Algebraic Systems using Mathematical Programs with Complementarity Constraints

    Kody M. Powell


    Full Text Available This work presents a methodology to represent logical decisions in differential algebraic equation simulation and constrained optimization problems using a set of continuous algebraic equations. The formulations may be used when state variables trigger a change in process dynamics, and introduces a pseudo-binary decision variable, which is continuous, but should only have valid solutions at values of either zero or one within a finite time horizon. This formulation enables dynamic optimization problems with logical disjunctions to be solved by simultaneous solution methods without using methods such as mixed integer programming. Several case studies are given to illustrate the value of this methodology including nonlinear model predictive control of a chemical reactor using a surge tank with overflow to buffer disturbances in feed flow rate. Although this work contains novel methodologies for solving dynamic algebraic equation (DAE constrained problems where the system may experience an abrupt change in dynamics that may otherwise require a conditional statement, there remain substantial limitations to this methodology, including a limited domain where problems may converge and the possibility for ill-conditioning. Although the problems presented use only continuous algebraic equations, the formulation has inherent non-smoothness. Hence, these problems must be solved with care and only in select circumstances, such as in simulation or situations when the solution is expected to be near the solver’s initial point.

  2. Absolute continuity for operator valued completely positive maps on C∗-algebras

    Gheondea, Aurelian; Kavruk, Ali Şamil


    Motivated by applicability to quantum operations, quantum information, and quantum probability, we investigate the notion of absolute continuity for operator valued completely positive maps on C∗-algebras, previously introduced by Parthasarathy [in Athens Conference on Applied Probability and Time Series Analysis I (Springer-Verlag, Berlin, 1996), pp. 34-54]. We obtain an intrinsic definition of absolute continuity, we show that the Lebesgue decomposition defined by Parthasarathy is the maximal one among all other Lebesgue-type decompositions and that this maximal Lebesgue decomposition does not depend on the jointly dominating completely positive map, we obtain more flexible formulas for calculating the maximal Lebesgue decomposition, and we point out the nonuniqueness of the Lebesgue decomposition as well as a sufficient condition for uniqueness. In addition, we consider Radon-Nikodym derivatives for absolutely continuous completely positive maps that, in general, are unbounded positive self-adjoint operators affiliated to a certain von Neumann algebra, and we obtain a spectral approximation by bounded Radon-Nikodym derivatives. An application to the existence of the infimum of two completely positive maps is indicated, and formulas in terms of Choi's matrices for the Lebesgue decomposition of completely positive maps in matrix algebras are obtained.

  3. Identifiability and Identification of Trace Continuous Pollutant Source

    Hongquan Qu


    Full Text Available Accidental pollution events often threaten people’s health and lives, and a pollutant source is very necessary so that prompt remedial actions can be taken. In this paper, a trace continuous pollutant source identification method is developed to identify a sudden continuous emission pollutant source in an enclosed space. The location probability model is set up firstly, and then the identification method is realized by searching a global optimal objective value of the location probability. In order to discuss the identifiability performance of the presented method, a conception of a synergy degree of velocity fields is presented in order to quantitatively analyze the impact of velocity field on the identification performance. Based on this conception, some simulation cases were conducted. The application conditions of this method are obtained according to the simulation studies. In order to verify the presented method, we designed an experiment and identified an unknown source appearing in the experimental space. The result showed that the method can identify a sudden trace continuous source when the studied situation satisfies the application conditions.

  4. Online Continuous Trace Process Analytics Using Multiplexing Gas Chromatography.

    Wunsch, Marco R; Lehnig, Rudolf; Trapp, Oliver


    The analysis of impurities at a trace level in chemical products, nutrition additives, and drugs is highly important to guarantee safe products suitable for consumption. However, trace analysis in the presence of a dominating component can be a challenging task because of noncompatible linear detection ranges or strong signal overlap that suppresses the signal of interest. Here, we developed a technique for quantitative analysis using multiplexing gas chromatography (mpGC) for continuous and completely automated process trace analytics exemplified for the analysis of a CO 2 stream in a production plant for detection of benzene, toluene, ethylbenzene, and the three structural isomers of xylene (BTEX) in the concentration range of 0-10 ppb. Additional minor components are methane and methanol with concentrations up to 100 ppm. The sample is injected up to 512 times according to a pseudorandom binary sequence (PRBS) with a mean frequency of 0.1 Hz into a gas chromatograph equipped with a flame ionization detector (FID). A superimposed chromatogram is recorded which is deconvoluted into an averaged chromatogram with Hadamard transformation. Novel algorithms to maintain the data acquisition rate of the detector by application of Hadamard transformation and to suppress correlation noise induced by components with much higher concentrations than the target substances are shown. Compared to conventional GC-FID, the signal-to-noise ratio has been increased by a factor of 10 with mpGC-FID. Correspondingly, the detection limits for BTEX in CO 2 have been lowered from 10 to 1 ppb each. This has been achieved despite the presence of detectable components (methane and methanol) with a concentration about 1000 times higher than the target substances. The robustness and reliability of mpGC has been proven in a two-month field test in a chemical production plant.

  5. Tradition and Agency. Tracing cultural continuity and invention

    Tradition helps ensure continuity and stability in human affairs, signifying both the handing down of cultural heritage from one generation to the next, and the particular customs, beliefs and rituals being handed down. In the social sciences, tradition has been a central concept from the very st...... address the larger questions of cultural continuity, agency and the use of cultural resources. In the postscript, Terence Ranger offers a complementary perspective by tracing the effects of nationalism, imperialism and globalised exchange on tradition.......Tradition helps ensure continuity and stability in human affairs, signifying both the handing down of cultural heritage from one generation to the next, and the particular customs, beliefs and rituals being handed down. In the social sciences, tradition has been a central concept from the very...... revolutionize the understanding of tradition in anthropology, history and sociology, stimulating an enormous amount of research on invented and imagined traditions. However, most of this research has focussed on the cultural dynamics of specific local innovations and reactions to global developments...

  6. Generation and evaluation of business continuity processes using algebraic graph transformation and the mCRL2 process algebra

    Brandt, C.; Hermann, F.; Groote, J.F.


    Critical business processes can fail. Therefore, continuity processes are needed as back-up solutions. Today, those continuity processes are set up and maintained manually. They are mostly based on best practices that focus on specific continuity scenarios, Nevertheless, failures can occur in new

  7. On the continuous part of codimension 2 algebraic cycles on three-dimensional varieties

    Guletskii, Vladimir I


    Let X be a nonsingular projective threefold over an algebraically closed field and let A 2 (X) be the group of algebraically trivial codimension 2 algebraic cycles on X modulo rational equivalence with coefficients in Q. Assume that X is birationally equivalent to a threefold X' fibered over an integral curve C with generic fiber X η-bar satisfying the following three conditions: the motive M(X η-bar ') is finite-dimensional; H et 1 (X η-bar ,Q l (1)=0; H et 2 (X η-bar ,Q l (1)) is spanned by divisors on X η-bar . We prove that under these three assumptions the group A 2 (X) is weakly representable: there exist a curve Y and a correspondence z on YxX such that z induces an epimorphism A 1 (Y)→A 2 (X), where A 1 (Y) is isomorphic to Pic 0 (Y) tensored with Q. In particular, this result holds for threefolds birationally equivalent to three-dimensional del Pezzo fibrations over a curve. Bibliography: 12 titles.

  8. Algebraic partial Boolean algebras

    Smith, Derek


    Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A 5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E 8

  9. Constructing Meanings and Utilities within Algebraic Tasks

    Ainley, Janet; Bills, Liz; Wilson, Kirsty


    The Purposeful Algebraic Activity project aims to explore the potential of spreadsheets in the introduction to algebra and algebraic thinking. We discuss two sub-themes within the project: tracing the development of pupils' construction of meaning for variable from arithmetic-based activity, through use of spreadsheets, and into formal algebra,…

  10. On some methods of achieving a continuous and differentiated assessment in Linear Algebra and Analytic and Differential Geometry courses and seminars



    Full Text Available This paper aims at highlighting some aspects related to assessment as regards its use as a differentiated training strategy for Linear Algebra and Analytic and Differential Geometry courses and seminars. Thus, the following methods of continuous differentiated assessment are analyzed and exemplified: the portfolio, the role play, some interactive methods and practical examinations.

  11. Study of the continuous spectrum of 6Li and the reaction t(3He,d)α by the algebraic version of the RGM

    Filippov, G.F.; Lopez Trujillo, A.; Rybkin, I.Yu.


    Using the algebraic version of the resonating group method, the continuous spectrum of 6 Li states with zero isospin is studied. The decay channels t+ 3 He and α+α are taken into account. The astrophysical S-factor of the t( 3 He,d)α reaction is calculated. 20 refs.; 6 figs.; 2 tab. (author)

  12. Evaluation of a business continuity plan using process algebra and modal logic

    Boehmer, W.; Brandt, C.; Groote, J.F.


    Since (1996) Knight and Pretty published their study about the impact of catastrophes on shareholder value, the need for a business continuity management system (BCMS) became clear. Once a BCMS is in place, the corresponding risks can be insured against. The BS 25999 certificate can serve as proof

  13. Study on the relationship of continuous laser printing and the distance of trace on the OPC

    Xingzhou Han


    Full Text Available This thesis aims to seek the relationship between photosensitive drum cyclical trace distance of two pages (shorted for L' and continuity printing of laser printers. Characteristics quantification, statistics are chosen to evaluate the data and results. It is indicated that the regularity is existed between L' and continuity printing, and regular performance between different models of HP and Canon printers are consistent. According to the data, L' of continuous printing are summed up, the probability of replacing the front page and the middle page which can meet the continuity regularity are analyzed. The numerical interval is given of noncontinuous printing. The study can enhance the scientificity of printing document examination and have innovation and practical significance in civil disputes, criminal cases, and social community.

  14. The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor

    Dappiagi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik


    We discuss from scratch the classical structure of Dirac spinors on an arbitrary globally hyperbolic, Lorentzian spacetime, their formulation as a locally covariant quantum field theory, and the associated notion of a Hadamard state. Eventually, we develop the notion of Wick polynomials for spinor fields, and we employ the latter to construct a covariantly conserved stress-energy tensor suited for back-reaction computations. We explicitly calculate its trace anomaly in particular. (orig.)

  15. The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor

    Dappiagi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola


    We discuss from scratch the classical structure of Dirac spinors on an arbitrary globally hyperbolic, Lorentzian spacetime, their formulation as a locally covariant quantum field theory, and the associated notion of a Hadamard state. Eventually, we develop the notion of Wick polynomials for spinor fields, and we employ the latter to construct a covariantly conserved stress-energy tensor suited for back-reaction computations. We explicitly calculate its trace anomaly in particular. (orig.)

  16. Algebraic geometry

    Lefschetz, Solomon


    An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.

  17. Grassmann algebras

    Garcia, R.L.


    The Grassmann algebra is presented briefly. Exponential and logarithm of matrices functions, whose elements belong to this algebra, are studied with the help of the SCHOONSCHIP and REDUCE 2 algebraic manipulators. (Author) [pt

  18. Sampling trace organic compounds in water: a comparison of a continuous active sampler to continuous passive and discrete sampling methods.

    Coes, Alissa L; Paretti, Nicholas V; Foreman, William T; Iverson, Jana L; Alvarez, David A


    A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19-23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method. Published by Elsevier B.V.

  19. Sampling trace organic compounds in water: a comparison of a continuous active sampler to continuous passive and discrete sampling methods

    Coes, Alissa L.; Paretti, Nicholas V.; Foreman, William T.; Iverson, Jana L.; Alvarez, David A.


    A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19–23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method.

  20. Vertex algebras and algebraic curves

    Frenkel, Edward


    Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...

  1. Implicative Algebras


    In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra of Xu (1993) and further we prove that it is a regular Autometrized. Algebra. Further we remark that the binary operation → on lattice implicative algebra can never be associative. Key words: Implicative ...

  2. Monomial algebras

    Villarreal, Rafael


    The book stresses the interplay between several areas of pure and applied mathematics, emphasizing the central role of monomial algebras. It unifies the classical results of commutative algebra with central results and notions from graph theory, combinatorics, linear algebra, integer programming, and combinatorial optimization. The book introduces various methods to study monomial algebras and their presentation ideals, including Stanley-Reisner rings, subrings and blowup algebra-emphasizing square free quadratics, hypergraph clutters, and effective computational methods.

  3. Process Algebra and Markov Chains

    Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.

    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  4. Process algebra and Markov chains

    Brinksma, E.; Hermanns, H.; Brinksma, E.; Hermanns, H.; Katoen, J.P.


    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  5. Algebraic Methods to Design Signals


    to date on designing signals using algebraic and combinatorial methods. Mathematical tools from algebraic number theory, representation theory and... combinatorial objects in designing signals for communication purposes. Sequences and arrays with desirable autocorrelation properties have many...multiple access methods in mobile radio communication systems. We continue our mathematical framework based on group algebras, character theory

  6. On a certain class of operator algebras and their derivations

    Ayupov, S. A.; Abdullaev, R.Z.; Kudaybergenov, K.K.


    Given a von Neumann algebra M with a faithful normal finite trace, we introduce the so-called finite tracial algebra M f as the intersection of L p -spaces L p (M, μ) over all p ≥ and over all faithful normal finite traces μ on M. Basic algebraic and topological properties of finite tracial algebras are studied. We prove that all derivations on these algebras are inner. (author)

  7. Quadratic algebras

    Polishchuk, Alexander


    Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.

  8. Asymptotic aspect of derivations in Banach algebras

    Jaiok Roh


    Full Text Available Abstract We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.

  9. Located actions in process algebra with timing

    Bergstra, J.A.; Middelburg, C.A.


    We propose a process algebra obtained by adapting the process algebra with continuous relative timing from Baeten and Middelburg [Process Algebra with Timing, Springer, 2002, Chap. 4] to spatially located actions. This process algebra makes it possible to deal with the behaviour of systems with a

  10. Boolean algebra

    Goodstein, R L


    This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.

  11. Jordan algebras versus C*- algebras

    Stormer, E.


    The axiomatic formulation of quantum mechanics and the problem of whether the observables form self-adjoint operators on a Hilbert space, are discussed. The relation between C*- algebras and Jordan algebras is studied using spectral theory. (P.D.)

  12. Matrices and linear algebra

    Schneider, Hans


    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  13. Quantitative Algebraic Reasoning

    Mardare, Radu Iulian; Panangaden, Prakash; Plotkin, Gordon


    We develop a quantitative analogue of equational reasoning which we call quantitative algebra. We define an equality relation indexed by rationals: a =ε b which we think of as saying that “a is approximately equal to b up to an error of ε”. We have 4 interesting examples where we have a quantitative...... equational theory whose free algebras correspond to well known structures. In each case we have finitary and continuous versions. The four cases are: Hausdorff metrics from quantitive semilattices; pWasserstein metrics (hence also the Kantorovich metric) from barycentric algebras and also from pointed...

  14. On an extension of the Weil algebra

    Palev, Ch.

    An extension of the Weil algebra Wsub(n), generated by an appropriate topology is considered. The topology is introduced in such a way that algebraic operations in Wsub(n) to be continuous. The algebraic operations in Wsub(n) are extended by a natural way to a complement, which is noted as an extended Weil algebra. It turns out that the last algebra contains isomorphically the Heisenberg group. By the same way an arbitrary enveloping algebra of a Lie group may be extended. The extended algebra will contain the initial Lie group. (S.P.)

  15. Introduction to abstract algebra

    Nicholson, W Keith


    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  16. Separable algebras

    Ford, Timothy J


    This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.

  17. Linear Algebra and Smarandache Linear Algebra

    Vasantha, Kandasamy


    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...

  18. Boolean Operations with Prism Algebraic Patches

    Bajaj, Chandrajit; Paoluzzi, Alberto; Portuesi, Simone; Lei, Na; Zhao, Wenqi


    In this paper we discuss a symbolic-numeric algorithm for Boolean operations, closed in the algebra of curved polyhedra whose boundary is triangulated with algebraic patches (A-patches). This approach uses a linear polyhedron as a first approximation of both the arguments and the result. On each triangle of a boundary representation of such linear approximation, a piecewise cubic algebraic interpolant is built, using a C1-continuous prism algebraic patch (prism A-patch) that interpolates the three triangle vertices, with given normal vectors. The boundary representation only stores the vertices of the initial triangulation and their external vertex normals. In order to represent also flat and/or sharp local features, the corresponding normal-per-face and/or normal-per-edge may be also given, respectively. The topology is described by storing, for each curved triangle, the two triples of pointers to incident vertices and to adjacent triangles. For each triangle, a scaffolding prism is built, produced by its extreme vertices and normals, which provides a containment volume for the curved interpolating A-patch. When looking for the result of a regularized Boolean operation, the 0-set of a tri-variate polynomial within each such prism is generated, and intersected with the analogous 0-sets of the other curved polyhedron, when two prisms have non-empty intersection. The intersection curves of the boundaries are traced and used to decompose each boundary into the 3 standard classes of subpatches, denoted in, out and on. While tracing the intersection curves, the locally refined triangulation of intersecting patches is produced, and added to the boundary representation. PMID:21516262

  19. General distributions in process algebra

    Katoen, Joost P.; d' Argenio, P.R.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.


    This paper is an informal tutorial on stochastic process algebras, i.e., process calculi where action occurrences may be subject to a delay that is governed by a (mostly continuous) random variable. Whereas most stochastic process algebras consider delays determined by negative exponential

  20. Homological methods, representation theory, and cluster algebras

    Trepode, Sonia


    This text presents six mini-courses, all devoted to interactions between representation theory of algebras, homological algebra, and the new ever-expanding theory of cluster algebras. The interplay between the topics discussed in this text will continue to grow and this collection of courses stands as a partial testimony to this new development. The courses are useful for any mathematician who would like to learn more about this rapidly developing field; the primary aim is to engage graduate students and young researchers. Prerequisites include knowledge of some noncommutative algebra or homological algebra. Homological algebra has always been considered as one of the main tools in the study of finite-dimensional algebras. The strong relationship with cluster algebras is more recent and has quickly established itself as one of the important highlights of today’s mathematical landscape. This connection has been fruitful to both areas—representation theory provides a categorification of cluster algebras, wh...

  1. Color-charge algebras in Adler's chromodynamics

    Cvitanovic, P.; Gonsalves, R.J.; Neville, D.E.


    We show that the color-charge algebra in the three-quark sector generated by the matrices of the fundamental representation of U(n) does not have the trace properties required in Adler's extension of chromodynamics. We also discuss a diagrammatic representation of algebras generated by quark and antiquark charges in general, and an embedding of the N-quark algebra in the symmetric group S/sub N/+1

  2. Abstract algebra

    Garrett, Paul B


    Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal

  3. College algebra

    Kolman, Bernard


    College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c

  4. Highly Undecidable Questions for Process Algebras

    Srba, Jiri; Jancar, Petr


    We show Sigma^1_1-completeness of weak bisimilarity for PA (process algebra), and of wek simulation preorder/equivalence for PDA (pushdown automata), PA and PN (Petri nets). We also show Pi^1_1-hardness of weak omega-trace equivalence for the sub(classes) of BPA (basic process algebra) and BPP...

  5. Algebras of Random Operators Associated to Delone Dynamical Systems

    Lenz, Daniel; Stollmann, Peter


    We carry out a careful study of operator algebras associated with Delone dynamical systems. A von Neumann algebra is defined using noncommutative integration theory. Features of these algebras and the operators they contain are discussed. We restrict our attention to a certain C*-subalgebra to discuss a Shubin trace formula

  6. Algebraic entropy for algebraic maps

    Hone, A N W; Ragnisco, Orlando; Zullo, Federico


    We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)

  7. Comments on N=4 superconformal algebras

    Rasmussen, J.


    We present a new and asymmetric N=4 superconformal algebra for arbitrary central charge, thus completing our recent work on its classical analogue with vanishing central charge. Besides the Virasoro generator and 4 supercurrents, the algebra consists of an internal SU(2)xU(1) Kac-Moody algebra in addition to two spin 1/2 fermions and a bosonic scalar. The algebra is shown to be invariant under a linear twist of the generators, except for a unique value of the continuous twist parameter. At this value, the invariance is broken and the algebra collapses to the small N=4 superconformal algebra. The asymmetric N=4 superconformal algebra may be seen as induced by an affine SL(2 vertical bar 2) current superalgebra. Replacing SL(2 vertical bar 2) with the coset SL(2 vertical bar 2)/U(1), results directly in the small N=4 superconformal algebra

  8. Algebraic computing

    MacCallum, M.A.H.


    The implementation of a new computer algebra system is time consuming: designers of general purpose algebra systems usually say it takes about 50 man-years to create a mature and fully functional system. Hence the range of available systems and their capabilities changes little between one general relativity meeting and the next, despite which there have been significant changes in the period since the last report. The introductory remarks aim to give a brief survey of capabilities of the principal available systems and highlight one or two trends. The reference to the most recent full survey of computer algebra in relativity and brief descriptions of the Maple, REDUCE and SHEEP and other applications are given. (author)

  9. Linear algebra

    Liesen, Jörg


    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  10. Linear algebra

    Edwards, Harold M


    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  11. Linear algebra

    Stoll, R R


    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  12. Lie algebras

    Jacobson, Nathan


    Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its

  13. Basic algebra

    Jacobson, Nathan


    A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L

  14. Technology transfer and application of SERS continuous monitor for trace organic compounds

    Swindle, D.W. Jr.; Vo-Dinh, T.; Yalcintas, M.G.


    An in situ-enhanced Raman Scattering (SERS) continuous monitoring system was developed for exciting and collecting SERS signals generated on silver-coated microparticles deposited on a continuously rotating filter-paper support. SERS measurements were successfully conducted for several organic compounds. An in situ SERS fiber-optic system was also developed for exciting and collecting SERS signals generated from a sensing tip having silver-coated microparticles deposited on a glass-plate support. These devices will be very useful in remote identification of unknown chemicals from hazardous waste sites. This patented technology has been licensed from Oak Ridge National Laboratory to an analytical instrumentation firm which is in the process of completing development and marketing these detectors. Advantages to using this technology range from increased safety and sensitivity for detecting hazardous compounds to better statistics and reliable results. During this presentation, efforts of the Environmental Restoration Program to evaluate and support development of this technology will be described

  15. Completely continuous and weakly completely continuous abstract ...

    An algebra A is called right completely continuous (right weakly completely continuous) ... Moreover, some applications of these results in group algebras are .... A linear subspace S(G) of L1(G) is said to be a Segal algebra, if it satisfies the.


    tion - 6. How Architectural Features Affect. Building During Earthquakes? C VRMurty. 48 Turbulence and Dispersion. K 5 Gandhi. BOOK REVIEWS. 86 Algebraic Topology. Siddhartha Gadgil. Front Cover. - .. ..-.......... -. Back Cover. Two-dimensional vertical section through a turbulent plume. (Courtesy: G S Shat, CAOS, IISc.).

  17. Algebraic stacks

    Deligne, Mumford and Artin [DM, Ar2]) and consider algebraic stacks, then we can cons- truct the 'moduli ... the moduli scheme and the moduli stack of vector bundles. First I will give ... 1–31. © Printed in India. 1 ...... Cultura, Spain. References.

  18. Continuous process tracing and the Iowa Gambling Task: Extending response dynamics to multialternative choice

    Gregory J. Koop


    Full Text Available The history of judgment and decision making is defined by a trend toward increasingly nuanced explanations of the decision making process. Recently, process models have become incredibly sophisticated, yet the tools available to directly test these models have not kept pace. These increasingly complex process models require increasingly complex process data by which they can be adequately tested. We propose a new class of data collection that will facilitate evaluation of sophisticated process models. Tracking mouse paths during a continuous response provides an implicit measure of the growth of preference that produces a choice---rather than the current practice of recording just the button press that indicates that choice itself. Recent research in cognitive science (Spivey and Dale, 2006 has shown that cognitive processing can be revealed in these dynamic motor responses. Unlike current process methodologies, these response dynamics studies can demonstrate continuous competition between choice options and even online preference reversals. Here, in order to demonstrate the mechanics and utility of the methodology, we present an example response dynamics experiment utilizing a common multi-alternative decision task.

  19. The algebras of large N matrix mechanics

    Halpern, M.B.; Schwartz, C.


    Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.

  20. Invariants of generalized Lie algebras

    Agrawala, V.K.


    Invariants and invariant multilinear forms are defined for generalized Lie algebras with arbitrary grading and commutation factor. Explicit constructions of invariants and vector operators are given by contracting invariant forms with basic elements of the generalized Lie algebra. The use of the matrix of a linear map between graded vector spaces is emphasized. With the help of this matrix, the concept of graded trace of a linear operator is introduced, which is a rich source of multilinear forms of degree zero. To illustrate the use of invariants, a characteristic identity similar to that of Green is derived and a few Racah coefficients are evaluated in terms of invariants

  1. Classical algebraic chromodynamics

    Adler, S.L.


    I develop an extension of the usual equations of SU(n) chromodynamics which permits the consistent introduction of classical, noncommuting quark source charges. The extension involves adding a singlet gluon, giving a U(n) -based theory with outer product P/sup a/(u,v) = (1/2)(d/sup a/bc + if/sup a/bc)(u/sup b/v/sup c/ - v/sup b/u/sup c/) which obeys the Jacobi identity, inner product S (u,v) = (1/2)(u/sup a/v/sup a/ + v/sup a/u/sup a/), and with the n 2 gluon fields elevated to algebraic fields over the quark color charge C* algebra. I show that provided the color charge algebra satisfies the condition S (P (u,v),w) = S (u,P (v,w)) for all elements u,v,w of the algebra, all the standard derivations of Lagrangian chromodynamics continue to hold in the algebraic chromodynamics case. I analyze in detail the color charge algebra in the two-particle (qq, qq-bar, q-barq-bar) case and show that the above consistency condition is satisfied for the following unique (and, interestingly, asymmetric) choice of quark and antiquark charges: Q/sup a//sub q/ = xi/sup a/, Q/sup a//sub q/ = xi-bar/sup a/ + delta/sup a/0(n/2)/sup 3/2/1, with xi/sup a/xi/sup b/ = (1/2)(d/sup a/bc + if/sup a/bc) xi/sup c/, xi-bar/sup a/xi-bar/sup b/ = -(1/2)(d/sup a/bc - if/sup a/bc) xi-bar/sup c/. The algebraic structure of the two-particle U(n) force problem, when expressed on an appropriately diagonalized basis, leads for all n to a classical dynamics problem involving an ordinary SU(2) Yang-Mills field with uniquely specified classical source charges which are nonparallel in the color-singlet state. An explicit calculation shows that local algebraic U(n) gauge transformations lead only to a rigid global rotation of axes in the overlying classical SU(2) problem, which implies that the relative orientations of the classical source charges have physical significance

  2. P-commutative topological *-algebras

    Mohammad, N.; Thaheem, A.B.


    If P(A) denotes the set of all continuous positive functionals on a unital complete Imc *-algebra and S(A) the extreme points of P(A), and if the spectrum of an element χ Ε A coincides with the set {f(χ): f Ε S(A)}, then A is shown to be P-commutative. Moreover, if A is unital symmetric Frechet Q Imc *-algebra, then this spectral condition is, in fact, necessary. Also, an isomorphism theorem between symmetric Frechet P-commutative Imc *-algebras is established. (author). 12 refs

  3. The C*-algebra of a vector bundle and fields of Cuntz algebras

    Vasselli, Ezio


    We study the Pimsner algebra associated with the module of continuous sections of a Hilbert bundle, and prove that it is a continuous bundle of Cuntz algebras. We discuss the role of such Pimsner algebras w.r.t. the notion of inner endomorphism. Furthermore, we study bundles of Cuntz algebras carrying a global circle action, and assign to them a class in the representable KK-group of the zero-grade bundle. We compute such class for the Pimsner algebra of a vector bundle.

  4. Algebraic characterizations of measure algebras

    Jech, Thomas


    Roč. 136, č. 4 (2008), s. 1285-1294 ISSN 0002-9939 R&D Projects: GA AV ČR IAA100190509 Institutional research plan: CEZ:AV0Z10190503 Keywords : Von - Neumann * sequential topology * Boolean-algebras * Souslins problem * Submeasures Subject RIV: BA - General Mathematics Impact factor: 0.584, year: 2008

  5. Quantum W-algebras and elliptic algebras

    Feigin, B.; Kyoto Univ.; Frenkel, E.


    We define a quantum W-algebra associated to sl N as an associative algebra depending on two parameters. For special values of the parameters, this algebra becomes the ordinary W-algebra of sl N , or the q-deformed classical W-algebra of sl N . We construct free field realizations of the quantum W-algebras and the screening currents. We also point out some interesting elliptic structures arising in these algebras. In particular, we show that the screening currents satisfy elliptic analogues of the Drinfeld relations in U q (n). (orig.)

  6. On 2-Banach algebras

    Mohammad, N.; Siddiqui, A.H.


    The notion of a 2-Banach algebra is introduced and its structure is studied. After a short discussion of some fundamental properties of bivectors and tensor product, several classical results of Banach algebras are extended to the 2-Banach algebra case. A condition under which a 2-Banach algebra becomes a Banach algebra is obtained and the relation between algebra of bivectors and 2-normed algebra is discussed. 11 refs

  7. A one-parameter family of hamiltonian structures for the KP hierarchy and a continuous deformation of the nonlinear WKP algebra

    Figueroa-O'Farrill, J.M.; Mas, J.; Ramos, E.


    The KP hierarchy is hamiltonian relative to a one-parameter family of Poisson structures obtained from a generalized Adler map in the space of formal pseudodifferential symbols with noninteger powers. The resulting W-algebra is a one-parameter deformation of W KP admitting a central extension for generic values of the parameter, reducing naturally to W n for special values of the parameter, and contracting to the centrally extended W 1+∞ , W ∞ and further truncations. In the classical limit, all algebras in the one-parameter family are equivalent and isomorphic to W KP . The reduction induced by setting the spin-one field to zero yields a one-parameter deformation of W ∞ which contracts to a new nonlinear algebra of the W ∞ -type. (orig.)

  8. The algebraic collective model

    Rowe, D.J.; Turner, P.S.


    A recently proposed computationally tractable version of the Bohr collective model is developed to the extent that we are now justified in describing it as an algebraic collective model. The model has an SU(1,1)xSO(5) algebraic structure and a continuous set of exactly solvable limits. Moreover, it provides bases for mixed symmetry collective model calculations. However, unlike the standard realization of SU(1,1), used for computing beta wave functions and their matrix elements in a spherical basis, the algebraic collective model makes use of an SU(1,1) algebra that generates wave functions appropriate for deformed nuclei with intrinsic quadrupole moments ranging from zero to any large value. A previous paper focused on the SO(5) wave functions, as SO(5) (hyper-)spherical harmonics, and computation of their matrix elements. This paper gives analytical expressions for the beta matrix elements needed in applications of the model and illustrative results to show the remarkable gain in efficiency that is achieved by using such a basis in collective model calculations for deformed nuclei

  9. Color Algebras

    Mulligan, Jeffrey B.


    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  10. Algebra of pseudo-differential operators over C*-algebra

    Mohammad, N.


    Algebras of pseudo-differential operators over C*-algebras are studied for the special case when in Hormander class Ssub(rho,delta)sup(m)(Ω) Ω = Rsup(n); rho = 1, delta = 0, m any real number, and the C*-algebra is infinite dimensional non-commutative. The space B, i.e. the set of A-valued C*-functions in Rsup(n) (or Rsup(n) x Rsup(n)) whose derivatives are all bounded, plays an important role. A denotes C*-algebra. First the operator class Ssub(phi,0)sup(m) is defined, and through it, the class Lsub(1,0)sup(m) of pseudo-differential operators. Then the basic asymptotic expansion theorems concerning adjoint and product of operators of class Ssub(1,0)sup(m) are stated. Finally, proofs are given of L 2 -continuity theorem and the main theorem, which states that algebra of all pseudo-differential operators over C*-algebras is itself C*-algebra

  11. Current algebra

    Jacob, M.


    The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( ΔI = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [fr

  12. An Energy Conservative Ray-Tracing Method With a Time Interpolation of the Force Field

    Yao, Jin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    A new algorithm that constructs a continuous force field interpolated in time is proposed for resolving existing difficulties in numerical methods for ray-tracing. This new method has improved accuracy, but with the same degree of algebraic complexity compared to Kaisers method.

  13. Fibered F-Algebra

    Kleyn, Aleks


    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  14. A History of Algebraic and Differential Topology, 1900 - 1960

    Dieudonne, Jean


    Since the early part of the 20th century, topology has gradually spread to many other branches of mathematics, and this book demonstrates how the subject continues to play a central role in the field. Written by a world-renowned mathematician, this classic text traces the history of algebraic topology beginning with its creation in the early 1900s and describes in detail the important theories that were discovered before 1960. Through the work of Poincare, de Rham, Cartan, Hureqicz, and many others, this historical book also focuses on the emergence of new ideas and methods that have led 21st-

  15. Computational linear and commutative algebra

    Kreuzer, Martin


    This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to prese...

  16. Generalized symmetry algebras

    Dragon, N.


    The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)

  17. Hom-Novikov algebras

    Yau, Donald


    We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.

  18. Algebraic functions

    Bliss, Gilbert Ames


    This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t

  19. SATA II - Stochastic Algebraic Topology and Applications


    AFRL-AFOSR-UK-TR-2017-0018 SATA II - Stochastic Algebraic Topology and Applications 150032 Robert Adler TECHNION ISRAEL INSTITUTE OF TECHNOLOGY Final...REPORT TYPE Final 3. DATES COVERED (From - To) 15 Dec 2014 to 14 Dec 2016 4. TITLE AND SUBTITLE SATA II - Stochastic Algebraic Topology and Applications... Topology and Applications Continuation of, and associated with SATA: Stochastic Algebraic Topology and Applications FA8655-11-1-3039, 09/1/2011–08/31/2014

  20. A division algebra classification of generalized supersymmetries

    Toppan, Francesco


    Generalized supersymmetries admitting bosonic tensor central charges are classified in accordance with their division algebra properties. Division algebra consistent constraints lead (in the complex and quaternionic cases) to the classes of hermitian and holomorphic generalized supersymmetries. Applications to the analytic continuation of the M-algebra to the Euclidean and the systematic investigation of certain classes of models in generic space-times are briefly mentioned. (author)

  1. Iterated Leavitt Path Algebras

    Hazrat, R.


    Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)

  2. Universal algebra

    Grätzer, George


    Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...

  3. Yoneda algebras of almost Koszul algebras

    Abstract. Let k be an algebraically closed field, A a finite dimensional connected. (p,q)-Koszul self-injective algebra with p, q ≥ 2. In this paper, we prove that the. Yoneda algebra of A is isomorphic to a twisted polynomial algebra A![t; β] in one inde- terminate t of degree q +1 in which A! is the quadratic dual of A, β is an ...

  4. Open algebraic surfaces

    Miyanishi, Masayoshi


    Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...

  5. A continuous in vitro method for estimation of the bioavailability of minerals and trace elements in foods : application to breads varying in phytic acid content

    Wolters, M.G.E.; Schreuder, H.A.W.; Heuvel, G. van den; Lonkhuijsen, H.J. van; Hermus, R.J.J.; Voragen, A.G.J.


    A continuous in vitro method for the estimation of the bioavailability of minerals and trace elements is presented. This in vitro method is believed to be more representative of in vivo physiological conditions than in vitro methods based on equilibrium dialysis, because dialysable components are

  6. Computations in finite-dimensional Lie algebras

    A. M. Cohen


    Full Text Available This paper describes progress made in context with the construction of a general library of Lie algebra algorithms, called ELIAS (Eindhoven Lie Algebra System, within the computer algebra package GAP. A first sketch of the package can be found in Cohen and de Graaf[1]. Since then, in a collaborative effort with G. Ivanyos, the authors have continued to develop algorithms which were implemented in ELIAS by the second author. These activities are part of a bigger project, called ACELA and financed by STW, the Dutch Technology Foundation, which aims at an interactive book on Lie algebras (cf. Cohen and Meertens [2]. This paper gives a global description of the main ways in which to present Lie algebras on a computer. We focus on the transition from a Lie algebra abstractly given by an array of structure constants to a Lie algebra presented as a subalgebra of the Lie algebra of n×n matrices. We describe an algorithm typical of the structure analysis of a finite-dimensional Lie algebra: finding a Levi subalgebra of a Lie algebra.

  7. On character amenability of Banach algebras

    Kaniuth, E.; Lau, A. T.; Pym, J.


    We continue our work [E. Kaniuth, A.T. Lau, J. Pym, On [phi]-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008) 85-96] in the study of amenability of a Banach algebra A defined with respect to a character [phi] of A. Various necessary and sufficient conditions of a global and a pointwise nature are found for a Banach algebra to possess a [phi]-mean of norm 1. We also completely determine the size of the set of [phi]-means for a separable weakly sequentially complete Banach algebra A with no [phi]-mean in A itself. A number of illustrative examples are discussed.

  8. Linear algebra

    Said-Houari, Belkacem


    This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...

  9. Further linear algebra

    Blyth, T S


    Most of the introductory courses on linear algebra develop the basic theory of finite­ dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num­ ber of illustrative and worked examples, as well as many exercises that are strategi­ cally placed throughout the text. Solutions to the ex...

  10. The Yoneda algebra of a K2 algebra need not be another K2 algebra

    Cassidy, T.; Phan, C.; Shelton, B.


    The Yoneda algebra of a Koszul algebra or a D-Koszul algebra is Koszul. K2 algebras are a natural generalization of Koszul algebras, and one would hope that the Yoneda algebra of a K2 algebra would be another K2 algebra. We show that this is not necessarily the case by constructing a monomial K2 algebra for which the corresponding Yoneda algebra is not K2.

  11. Parsing with Regular Expressions & Extensions to Kleene Algebra

    Grathwohl, Niels Bjørn Bugge

    . In the second part of this thesis, we study two extensions to Kleene algebra. Chomsky algebra is an algebra with a structure similar to Kleene algebra, but with a generalized mu-operator for recursion instead of the Kleene star. We show that the axioms of idempotent semirings along with continuity of the mu......-operator completely axiomatize the equational theory of the context-free languages. KAT+B! is an extension to Kleene algebra with tests (KAT) that adds mutable state. We describe a test algebra B! for mutable tests and give a commutative coproduct between KATs. Combining the axioms of B! with those of KAT and some...

  12. Boundary Lax pairs from non-ultra-local Poisson algebras

    Avan, Jean; Doikou, Anastasia


    We consider non-ultra-local linear Poisson algebras on a continuous line. Suitable combinations of representations of these algebras yield representations of novel generalized linear Poisson algebras or 'boundary' extensions. They are parametrized by a boundary scalar matrix and depend, in addition, on the choice of an antiautomorphism. The new algebras are the classical-linear counterparts of the known quadratic quantum boundary algebras. For any choice of parameters, the non-ultra-local contribution of the original Poisson algebra disappears. We also systematically construct the associated classical Lax pair. The classical boundary principal chiral model is examined as a physical example.

  13. Novikov-Jordan algebras

    Dzhumadil'daev, A. S.


    Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.

  14. Introduction to relation algebras relation algebras

    Givant, Steven


    The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...

  15. Wavelets and quantum algebras

    Ludu, A.; Greiner, M.


    A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs

  16. Banach Synaptic Algebras

    Foulis, David J.; Pulmannov, Sylvia


    Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.

  17. Limit algebras of differential forms in non-commutative geometry

    The holomorphic functional calculus closure of Connes' non- commutative de Rham algebra. ∗. D. (p. 549 of [C]) leads to a couple of operator algebras which are briefly discussed in this section. In §5, which contains the main contributions of the paper, quantized integrals are constructed on ∞A by using Dixmier trace ...

  18. An inner product for a Banach-algebra

    Noor, M.; Verjovsky, A.


    An intrinsic inner product for a commutative Banach*-algebra is defined. Several conditions for its completeness are established. It is shown that any Banach*-algebra with proper and continuous involution has an auxiliary norm that turns it into an A*-algebra. (author). 7 refs

  19. Jordan's algebra of a facially homogeneous autopolar cone

    Bellissard, Jean; Iochum, Bruno


    It is shown that a Jordan-Banach algebra with predual may be canonically associated with a facially homogeneous autopolar cone. This construction generalizes the case where a trace vector exists in the cone [fr

  20. Quantum cluster algebras and quantum nilpotent algebras

    Goodearl, Kenneth R.; Yakimov, Milen T.


    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  1. Jordan and left derivations on locally C*-algebras

    Shahzad, Naseer


    We show that left derivations as well as Jordan derivations on locally G*-algebras are always continuous. We also obtain some noncommutative extensions of the classical Singer-Wermer theorem for locally C*-algebras: (1) Every left derivation D on a locally (7*-algebra A is identically zero. (2) Every Jordan derivation D on a locally C*-algebra A which satisfies [D(x), x]D(x]=0 for all x in A, is identically zero. (author)

  2. Leavitt path algebras

    Abrams, Gene; Siles Molina, Mercedes


    This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...

  3. Algebraic theory of numbers

    Samuel, Pierre


    Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal

  4. Lukasiewicz-Moisil algebras

    Boicescu, V; Georgescu, G; Rudeanu, S


    The Lukasiewicz-Moisil algebras were created by Moisil as an algebraic counterpart for the many-valued logics of Lukasiewicz. The theory of LM-algebras has developed to a considerable extent both as an algebraic theory of intrinsic interest and in view of its applications to logic and switching theory.This book gives an overview of the theory, comprising both classical results and recent contributions, including those of the authors. N-valued and &THgr;-valued algebras are presented, as well as &THgr;-algebras with negation.Mathematicians interested in lattice theory or symbolic logic, and computer scientists, will find in this monograph stimulating material for further research.

  5. Introduction to quantum algebras

    Kibler, M.R.


    The concept of a quantum algebra is made easy through the investigation of the prototype algebras u qp (2), su q (2) and u qp (1,1). The latter quantum algebras are introduced as deformations of the corresponding Lie algebras; this is achieved in a simple way by means of qp-bosons. The Hopf algebraic structure of u qp (2) is also discussed. The basic ingredients for the representation theory of u qp (2) are given. Finally, in connection with the quantum algebra u qp (2), the qp-analogues of the harmonic oscillator are discussed and of the (spherical and hyperbolical) angular momenta. (author) 50 refs

  6. Dynamical systems of algebraic origin

    Schmidt, Klaus


    Although much of classical ergodic theory is concerned with single transformations and one-parameter flows, the subject inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multidimensional symmetry groups. However, the wealth of concrete and natural examples which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. The purpose of this book is to help remedy this scarcity of explicit examples by introducing a class of continuous Zd-actions diverse enough to exhibit many of the new phenomena encountered in the transition from Z to Zd, but which nevertheless lends itself to systematic study: the Zd-actions by automorphisms of compact, abelian groups. One aspect of these actions, not surprising in itself but quite striking in its extent and depth nonetheless, is the connection with commutative algebra and arithmetical algebraic geometry. The algebraic framework resulting...

  7. A brief history of process algebra

    Baeten, J.C.M.


    This note addresses the history of process algebra as an area of research in concurrency theory, the theory of parallel and distributed systems in computer science. Origins are traced back to the early seventies of the twentieth century, and developments since that time are sketched. The author

  8. A brief history of process algebra

    Baeten, J.C.M.


    Abstract. This note addresses the history of process algebra as an area of research in concurrency theory, the theory of parallel and distributed systems in computer science. Origins are traced back to the early seventies of the twentieth century, and developments since that time are sketched. The

  9. Exponentiation and deformations of Lie-admissible algebras

    Myung, H.C.


    The exponential function is defined for a finite-dimensional real power-associative algebra with unit element. The application of the exponential function is focused on the power-associative (p,q)-mutation of a real or complex associative algebra. Explicit formulas are computed for the (p,q)-mutation of the real envelope of the spin 1 algebra and the Lie algebra so(3) of the rotation group, in light of earlier investigations of the spin 1/2. A slight variant of the mutated exponential is interpreted as a continuous function of the Lie algebra into some isotope of the corresponding linear Lie group. The second part of this paper is concerned with the representation and deformation of a Lie-admissible algebra. The second cohomology group of a Lie-admissible algebra is introduced as a generalization of those of associative and Lie algebras in the Hochschild and Chevalley-Eilenberg theory. Some elementary theory of algebraic deformation of Lie-admissible algebras is discussed in view of generalization of that of associative and Lie algebras. Lie-admissible deformations are also suggested by the representation of Lie-admissible algebras. Some explicit examples of Lie-admissible deformation are given in terms of the (p,q)-mutation of associative deformation of an associative algebra. Finally, we discuss Lie-admissible deformations of order one

  10. Generalized EMV-Effect Algebras

    Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.


    Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.

  11. Families talen en algebra

    Asveld, P.R.J.


    Operaties op formele talen geven aanleiding tot bijbehorende operatoren op families talen. Bepaalde onderwerpen uit de algebra (universele algebra, tralies, partieel geordende monoiden) kunnen behulpzaam zijn in de studie van verzamelingen van dergelijke operatoren.

  12. Rudiments of algebraic geometry

    Jenner, WE


    Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.

  13. Exact WKB analysis and cluster algebras

    Iwaki, Kohei; Nakanishi, Tomoki


    We develop the mutation theory in the exact WKB analysis using the framework of cluster algebras. Under a continuous deformation of the potential of the Schrödinger equation on a compact Riemann surface, the Stokes graph may change the topology. We call this phenomenon the mutation of Stokes graphs. Along the mutation of Stokes graphs, the Voros symbols, which are monodromy data of the equation, also mutate due to the Stokes phenomenon. We show that the Voros symbols mutate as variables of a cluster algebra with surface realization. As an application, we obtain the identities of Stokes automorphisms associated with periods of cluster algebras. The paper also includes an extensive introduction of the exact WKB analysis and the surface realization of cluster algebras for nonexperts. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

  14. Cylindric-like algebras and algebraic logic

    Ferenczi, Miklós; Németi, István


    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  15. Categories and Commutative Algebra

    Salmon, P


    L. Badescu: Sur certaines singularites des varietes algebriques.- D.A. Buchsbaum: Homological and commutative algebra.- S. Greco: Anelli Henseliani.- C. Lair: Morphismes et structures algebriques.- B.A. Mitchell: Introduction to category theory and homological algebra.- R. Rivet: Anneaux de series formelles et anneaux henseliens.- P. Salmon: Applicazioni della K-teoria all'algebra commutativa.- M. Tierney: Axiomatic sheaf theory: some constructions and applications.- C.B. Winters: An elementary lecture on algebraic spaces.

  16. Trace spaces

    Fajstrup, Lisbeth; Goubault, Eric; Haucourt, Emmanuel


    in the interleaving semantics of a concurrent program, but rather some equivalence classes. The purpose of this paper is to describe a new algorithm to compute such equivalence classes, and a representative per class, which is based on ideas originating in algebraic topology. We introduce a geometric semantics...... of concurrent languages, where programs are interpreted as directed topological spaces, and study its properties in order to devise an algorithm for computing dihomotopy classes of execution paths. In particular, our algorithm is able to compute a control-flow graph for concurrent programs, possibly containing...... loops, which is “as reduced as possible” in the sense that it generates traces modulo equivalence. A preliminary implementation was achieved, showing promising results towards efficient methods to analyze concurrent programs, with very promising results compared to partial-order reduction techniques....

  17. Abstract algebra for physicists

    Zeman, J.


    Certain recent models of composite hadrons involve concepts and theorems from abstract algebra which are unfamiliar to most theoretical physicists. The algebraic apparatus needed for an understanding of these models is summarized here. Particular emphasis is given to algebraic structures which are not assumed to be associative. (2 figures) (auth)

  18. Combinatorial commutative algebra

    Miller, Ezra


    Offers an introduction to combinatorial commutative algebra, focusing on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determined rings. The chapters in this work cover topics ranging from homological invariants of monomial ideals and their polyhedral resolutions, to tools for studying algebraic varieties.

  19. Algebra Sets, Symbols, and the Language of Thought (Revised Edition)

    Tabak, John


    Algebra, Revised Edition describes the history of both strands of algebraic thought. This updated resource describes some of the earliest progress in algebra as well as some of the mathematicians in Mesopotamia, Egypt, China, and Greece who contributed to this early period. It goes on to explore the many breakthroughs in algebraic techniques as well as how letters were used to represent numbers. New material has been added to the chapter on "modern" algebra, a type of mathematical research that continues to occupy the attention of many mathematicians today.

  20. Linearizing W-algebras

    Krivonos, S.O.; Sorin, A.S.


    We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs

  1. Algebraic topological entropy

    Hudetz, T.


    As a 'by-product' of the Connes-Narnhofer-Thirring theory of dynamical entropy for (originally non-Abelian) nuclear C * -algebras, the well-known variational principle for topological entropy is eqivalently reformulated in purly algebraically defined terms for (separable) Abelian C * -algebras. This 'algebraic variational principle' should not only nicely illustrate the 'feed-back' of methods developed for quantum dynamical systems to the classical theory, but it could also be proved directly by 'algebraic' methods and could thus further simplify the original proof of the variational principle (at least 'in principle'). 23 refs. (Author)

  2. Algorithms in Algebraic Geometry

    Dickenstein, Alicia; Sommese, Andrew J


    In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its

  3. Computer algebra and operators

    Fateman, Richard; Grossman, Robert


    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  4. Algebraic quantum field theory and noncommutative moment problems I

    Alcantara-Bode, J.; Yngvason, J.


    Let S denote Borcher's test function algebra and T c the locality ideal. It is shown that the quotient algebra S/T c admits a continuous C*-norm and thus has a faithful representation by bounded operators on Hilbert space. This representation can be chosen to be Poincare-covariant. Some further properties of the topology defined by the continuous C*-norms on this algebra are also established

  5. Lectures on algebraic statistics

    Drton, Mathias; Sullivant, Seth


    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  6. Extended conformal algebras

    Goddard, Peter


    The algebra of the group of conformal transformations in two dimensions consists of two commuting copies of the Virasoro algebra. In many mathematical and physical contexts, the representations of ν which are relevant satisfy two conditions: they are unitary and they have the ''positive energy'' property that L o is bounded below. In an irreducible unitary representation the central element c takes a fixed real value. In physical contexts, the value of c is a characteristic of a theory. If c < 1, it turns out that the conformal algebra is sufficient to ''solve'' the theory, in the sense of relating the calculation of the infinite set of physically interesting quantities to a finite subset which can be handled in principle. For c ≥ 1, this is no longer the case for the algebra alone and one needs some sort of extended conformal algebra, such as the superconformal algebra. It is these algebras that this paper aims at addressing. (author)

  7. Algebraic conformal field theory

    Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica


    Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs

  8. Wn(2) algebras

    Feigin, B.L.; Semikhatov, A.M.


    We construct W-algebra generalizations of the sl-circumflex(2) algebra-W algebras W n (2) generated by two currents E and F with the highest pole of order n in their OPE. The n=3 term in this series is the Bershadsky-Polyakov W 3 (2) algebra. We define these algebras as a centralizer (commutant) of the Uqs-bar (n vertical bar 1) quantum supergroup and explicitly find the generators in a factored, 'Miura-like' form. Another construction of the W n (2) algebras is in terms of the coset sl-circumflex(n vertical bar 1)/sl-circumflex(n). The relation between the two constructions involves the 'duality' (k+n-1)(k'+n-1)=1 between levels k and k' of two sl-circumflex(n) algebras

  9. Bicovariant quantum algebras and quantum Lie algebras

    Schupp, P.; Watts, P.; Zumino, B.


    A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)

  10. The Boolean algebra and central Galois algebras

    George Szeto


    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb   for all   x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.

  11. Circle Maps and C*-algebras

    Schmidt, Thomas Lundsgaard; Thomsen, Klaus


    We consider a construction of $C^*$-algebras from continuous piecewise monotone maps on the circle which generalizes the crossed product construction for homeomorphisms and more generally the construction of Renault, Deaconu and Anantharaman-Delaroche for local homeomorphisms. Assuming that the map...... is surjective and not locally injective we give necessary and sufficient conditions for the simplicity of the $C^*$-algebra and show that it is then a Kirchberg algebra. We provide tools for the calculation of the K-theory groups and turn them into an algorithmic method for Markov maps....

  12. Nonflexible Lie-admissible algebras

    Myung, H.C.


    We discuss the structure of Lie-admissible algebras which are defined by nonflexible identities. These algebras largely arise from the antiflexible algebras, 2-varieties and associator dependent algebras. The nonflexible Lie-admissible algebras in our discussion are in essence byproducts of the study of nonassociative algebras defined by identities of degree 3. The main purpose is to discuss the classification of simple Lie-admissible algebras of nonflexible type

  13. Recoupling Lie algebra and universal ω-algebra

    Joyce, William P.


    We formulate the algebraic version of recoupling theory suitable for commutation quantization over any gradation. This gives a generalization of graded Lie algebra. Underlying this is the new notion of an ω-algebra defined in this paper. ω-algebra is a generalization of algebra that goes beyond nonassociativity. We construct the universal enveloping ω-algebra of recoupling Lie algebras and prove a generalized Poincare-Birkhoff-Witt theorem. As an example we consider the algebras over an arbitrary recoupling of Z n graded Heisenberg Lie algebra. Finally we uncover the usual coalgebra structure of a universal envelope and substantiate its Hopf structure

  14. Hurwitz Algebras and the Octonion Algebra

    Burdik, Čestmir; Catto, Sultan


    We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.

  15. Algebra and topology for applications to physics

    Rozhkov, S. S.


    The principal concepts of algebra and topology are examined with emphasis on applications to physics. In particular, attention is given to sets and mapping; topological spaces and continuous mapping; manifolds; and topological groups and Lie groups. The discussion also covers the tangential spaces of the differential manifolds, including Lie algebras, vector fields, and differential forms, properties of differential forms, mapping of tangential spaces, and integration of differential forms.

  16. Introduction to abstract algebra, solutions manual

    Nicholson, W Keith


    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  17. On Algebraic Approach for MSD Parametric Estimation

    Oueslati , Marouene; Thiery , Stéphane; Gibaru , Olivier; Béarée , Richard; Moraru , George


    This article address the identification problem of the natural frequency and the damping ratio of a second order continuous system where the input is a sinusoidal signal. An algebra based approach for identifying parameters of a Mass Spring Damper (MSD) system is proposed and compared to the Kalman-Bucy filter. The proposed estimator uses the algebraic parametric method in the frequency domain yielding exact formula, when placed in the time domain to identify the unknown parameters. We focus ...

  18. Extended Virasoro algebra and algebra of area preserving diffeomorphisms

    Arakelyan, T.A.


    The algebra of area preserving diffeomorphism plays an important role in the theory of relativistic membranes. It is pointed out that the relation between this algebra and the extended Virasoro algebra associated with the generalized Kac-Moody algebras G(T 2 ). The highest weight representation of these infinite-dimensional algebras as well as of their subalgebras is studied. 5 refs

  19. Linear algebra meets Lie algebra: the Kostant-Wallach theory

    Shomron, Noam; Parlett, Beresford N.


    In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.

  20. Introduction to W-algebras

    Takao, Masaru


    We review W-algebras which are generated by stress tensor and primary fields. Associativity plays an important role in determining the extended algebra and further implies the algebras to exist for special values of central charges. Explicitly constructing the algebras including primary fields of spin less than 4, we investigate the closure structure of the Jacobi identity of the extended algebras. (author)

  1. Representations of quantum bicrossproduct algebras

    Arratia, Oscar; Olmo, Mariano A del


    We present a method to construct induced representations of quantum algebras which have a bicrossproduct structure. We apply this procedure to some quantum kinematical algebras in (1+1) dimensions with this kind of structure: null-plane quantum Poincare algebra, non-standard quantum Galilei algebra and quantum κ-Galilei algebra

  2. On hyper BCC-algebras

    Borzooei, R. A.; Dudek, W. A.; Koohestani, N.


    We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  3. On hyper BCC-algebras

    R. A. Borzooei


    Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.

  4. Simple relation algebras

    Givant, Steven


    This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...

  5. Lie algebras and applications

    Iachello, Francesco


    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  6. Twisted classical Poincare algebras

    Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.


    We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)

  7. Cohomology of Effect Algebras

    Frank Roumen


    Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.

  8. Basic notions of algebra

    Shafarevich, Igor Rostislavovich


    This book is wholeheartedly recommended to every student or user of mathematics. Although the author modestly describes his book as 'merely an attempt to talk about' algebra, he succeeds in writing an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields, commutative rings and groups studied in every university math course, through Lie groups and algebras to cohomology and category theory, the author shows how the origins of each algebraic concept can be related to attempts to model phenomena in physics or in other branches

  9. Boolean algebra essentials

    Solomon, Alan D


    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean

  10. Quiver W-algebras

    Kimura, Taro; Pestun, Vasily


    For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.

  11. Rapid and sensitive trace gas detection with continuous wave Optical Parametric Oscillator-based Wavelength Modulation Spectroscopy

    Arslanov, D.D.; Spunei, M.; Ngai, A.K.Y.; Cristescu, S.M.; Lindsay, I.D.; Lindsay, I.D.; Boller, Klaus J.; Persijn, S.T.; Harren, F.J.M.


    A fiber-amplified Distributed Bragg Reflector diode laser is used to pump a continuous wave, singly resonant Optical Parametric Oscillator (OPO). The output radiation covers the 3–4 μm with ability of rapid (100 THz/s) and broad mode-hop-free tuning (5 cm−1). Wavelength Modulation Spectroscopy is

  12. From Rota-Baxter algebras to pre-Lie algebras

    An Huihui; Ba, Chengming


    Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras

  13. Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra

    van den Hijligenberg, N.W.; van den Hijligenberg, N.W.; Martini, Ruud


    We discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra structure of

  14. Differential Hopf algebra structures on the universal enveloping algebra ofa Lie algebra

    N.W. van den Hijligenberg; R. Martini


    textabstractWe discuss a method to construct a De Rham complex (differential algebra) of Poincar'e-Birkhoff-Witt-type on the universal enveloping algebra of a Lie algebra $g$. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebra

  15. International conference on Algebraic and Complex Geometry

    Kloosterman, Remke; Schütt, Matthias


    Several important aspects of moduli spaces and irreducible holomorphic symplectic manifolds were highlighted at the conference “Algebraic and Complex Geometry” held September 2012 in Hannover, Germany. These two subjects of recent ongoing progress belong to the most spectacular developments in Algebraic and Complex Geometry. Irreducible symplectic manifolds are of interest to algebraic and differential geometers alike, behaving similar to K3 surfaces and abelian varieties in certain ways, but being by far less well-understood. Moduli spaces, on the other hand, have been a rich source of open questions and discoveries for decades and still continue to be a hot topic in itself as well as with its interplay with neighbouring fields such as arithmetic geometry and string theory. Beyond the above focal topics this volume reflects the broad diversity of lectures at the conference and comprises 11 papers on current research from different areas of algebraic and complex geometry sorted in alphabetic order by the ...

  16. Algebraic monoids, group embeddings, and algebraic combinatorics

    Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang


    This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids.   Topics presented include:   v  structure and representation theory of reductive algebraic monoids v  monoid schemes and applications of monoids v  monoids related to Lie theory v  equivariant embeddings of algebraic groups v  constructions and properties of monoids from algebraic combinatorics v  endomorphism monoids induced from vector bundles v  Hodge–Newton decompositions of reductive monoids   A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular.   Graduate students as well a...

  17. Radial multipliers on reduced free products of operator algebras

    Haagerup, Uffe; Møller, Søren


    Let AiAi be a family of unital C¿C¿-algebras, respectively, of von Neumann algebras and ¿:N0¿C¿:N0¿C. We show that if a Hankel matrix related to ¿ is trace-class, then there exists a unique completely bounded map M¿M¿ on the reduced free product of the AiAi, which acts as a radial multiplier...

  18. The kinematic algebras from the scattering equations

    Monteiro, Ricardo; O’Connell, Donal


    We study kinematic algebras associated to the recently proposed scattering equations, which arise in the description of the scattering of massless particles. In particular, we describe the role that these algebras play in the BCJ duality between colour and kinematics in gauge theory, and its relation to gravity. We find that the scattering equations are a consistency condition for a self-dual-type vertex which is associated to each solution of those equations. We also identify an extension of the anti-self-dual vertex, such that the two vertices are not conjugate in general. Both vertices correspond to the structure constants of Lie algebras. We give a prescription for the use of the generators of these Lie algebras in trivalent graphs that leads to a natural set of BCJ numerators. In particular, we write BCJ numerators for each contribution to the amplitude associated to a solution of the scattering equations. This leads to a decomposition of the determinant of a certain kinematic matrix, which appears naturally in the amplitudes, in terms of trivalent graphs. We also present the kinematic analogues of colour traces, according to these algebras, and the associated decomposition of that determinant

  19. On MV-algebras of non-linear functions

    Antonio Di Nola


    Full Text Available In this paper, the main results are:a study of the finitely generated MV-algebras of continuous functions from the n-th power of the unit real interval I to I;a study of Hopfian MV-algebras; anda category-theoretic study of the map sending an MV-algebra as above to the range of its generators (up to a suitable form of homeomorphism.

  20. On MV-algebras of non-linear functions

    Antonio Di Nola


    Full Text Available In this paper, the main results are: a study of the finitely generated MV-algebras of continuous functions from the n-th power of the unit real interval I to I; a study of Hopfian MV-algebras; and a category-theoretic study of the map sending an MV-algebra as above to the range of its generators (up to a suitable form of homeomorphism.

  1. (Quasi-)Poisson enveloping algebras

    Yang, Yan-Hong; Yao, Yuan; Ye, Yu


    We introduce the quasi-Poisson enveloping algebra and Poisson enveloping algebra for a non-commutative Poisson algebra. We prove that for a non-commutative Poisson algebra, the category of quasi-Poisson modules is equivalent to the category of left modules over its quasi-Poisson enveloping algebra, and the category of Poisson modules is equivalent to the category of left modules over its Poisson enveloping algebra.

  2. A brief history of process algebra

    Baeten, J.C.M.


    This note addresses the history of process algebra as an area of research in concurrency theory, the theory of parallel and distributed systems in computer science. Origins are traced back to the early seventies of the twentieth century, and developments since that time are sketched. The author gives his personal views on these matters. He also considers the present situation, and states some challenges for the future.

  3. A brief history of process algebra

    Baeten, J.C.M.


    Abstract. This note addresses the history of process algebra as an area of research in concurrency theory, the theory of parallel and distributed systems in computer science. Origins are traced back to the early seventies of the twentieth century, and developments since that time are sketched. The author gives his personal views on these matters. He also considers the present situation, and states some challenges for the future.

  4. Quantum mechanics in coherent algebras on phase space

    Lesche, B.; Seligman, T.H.


    Quantum mechanics is formulated on a quantum mechanical phase space. The algebra of observables and states is represented by an algebra of functions on phase space that fulfills a certain coherence condition, expressing the quantum mechanical superposition principle. The trace operation is an integration over phase space. In the case where the canonical variables independently run from -infinity to +infinity the formalism reduces to the representation of quantum mechanics by Wigner distributions. However, the notion of coherent algebras allows to apply the formalism to spaces for which the Wigner mapping is not known. Quantum mechanics of a particle in a plane in polar coordinates is discussed as an example. (author)

  5. Ready, Set, Algebra?

    Levy, Alissa Beth


    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this dissertation,…

  6. Learning Activity Package, Algebra.

    Evans, Diane

    A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…

  7. Who Takes College Algebra?

    Herriott, Scott R.; Dunbar, Steven R.


    The common understanding within the mathematics community is that the role of the college algebra course is to prepare students for calculus. Though exceptions are emerging, the curriculum of most college algebra courses and the content of most textbooks on the market both reflect that assumption. This article calls that assumption into question…

  8. Analytic real algebras.

    Seo, Young Joo; Kim, Young Hee


    In this paper we construct some real algebras by using elementary functions, and discuss some relations between several axioms and its related conditions for such functions. We obtain some conditions for real-valued functions to be a (edge) d -algebra.

  9. Pre-Algebra Lexicon.

    Hayden, Dunstan; Cuevas, Gilberto

    The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…

  10. Computer algebra applications

    Calmet, J.


    A survey of applications based either on fundamental algorithms in computer algebra or on the use of a computer algebra system is presented. Recent work in biology, chemistry, physics, mathematics and computer science is discussed. In particular, applications in high energy physics (quantum electrodynamics), celestial mechanics and general relativity are reviewed. (Auth.)

  11. Algebraic Description of Motion

    Davidon, William C.


    An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)

  12. Linear-Algebra Programs

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.


    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  13. Elements of mathematics algebra

    Bourbaki, Nicolas


    This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...

  14. Cluster algebras bases on vertex operator algebras

    Zuevsky, Alexander


    Roč. 30, 28-29 (2016), č. článku 1640030. ISSN 0217-9792 Institutional support: RVO:67985840 Keywords : cluster alegbras * vertex operator algebras * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.736, year: 2016

  15. Algebraic K-theory and algebraic topology

    Berrick, A J [Department of Mathematics, National University of Singapore (Singapore)


    This contribution treats the various topological constructions of Algebraic K-theory together with the underlying homotopy theory. Topics covered include the plus construction together with its various ramifications and applications, Topological Hochschild and Cyclic Homology as well as K-theory of the ring of integers.

  16. An introduction to algebraic geometry and algebraic groups

    Geck, Meinolf


    An accessible text introducing algebraic geometries and algebraic groups at advanced undergraduate and early graduate level, this book develops the language of algebraic geometry from scratch and uses it to set up the theory of affine algebraic groups from first principles.Building on the background material from algebraic geometry and algebraic groups, the text provides an introduction to more advanced and specialised material. An example is the representation theory of finite groups of Lie type.The text covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups

  17. 3rd International Algebra Conference

    Fong, Yuen; Zelmanov, Efim


    This volume contains one invited lecture which was presented by the 1994 Fields Medal­ ist Professor E. Zelmanov and twelve other papers which were presented at the Third International Conference on Algebra and Their Related Topics at Chang Jung Christian University, Tainan, Republic of China, during the period June 26-July 1, 200l. All papers in this volume have been refereed by an international referee board and we would like to express our deepest thanks to all the referees who were so helpful and punctual in submitting their reports. Thanks are also due to the Promotion and Research Center of National Science Council of Republic of China and the Chang Jung Christian University for their generous financial support of this conference. The spirit of this conference is a continuation of the last two International Tainan­ Moscow Algebra Workshop on Algebras and Their Related Topics which were held in the mid-90's of the last century. The purpose of this very conference was to give a clear picture of the rece...

  18. Twisted vertex algebras, bicharacter construction and boson-fermion correspondences

    Anguelova, Iana I.


    The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras

  19. Linear algebraic groups

    Springer, T A


    "[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...

  20. Linear algebra a first course with applications to differential equations

    Apostol, Tom M


    Developed from the author's successful two-volume Calculus text this book presents Linear Algebra without emphasis on abstraction or formalization. To accommodate a variety of backgrounds, the text begins with a review of prerequisites divided into precalculus and calculus prerequisites. It continues to cover vector algebra, analytic geometry, linear spaces, determinants, linear differential equations and more.

  1. Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia

    Raudina, Tatiana V.; Loiko, Sergey V.; Lim, Artyom G.; Krickov, Ivan V.; Shirokova, Liudmila S.; Istigechev, Georgy I.; Kuzmina, Daria M.; Kulizhsky, Sergey P.; Vorobyev, Sergey N.; Pokrovsky, Oleg S.


    Mobilization of dissolved organic carbon (DOC) and related trace elements (TEs) from the frozen peat to surface waters in the permafrost zone is expected to enhance under ongoing permafrost thaw and active layer thickness (ALT) deepening in high-latitude regions. The interstitial soil solutions are efficient tracers of ongoing bio-geochemical processes in the critical zone and can help to decipher the intensity of carbon and metals migration from the soil to the rivers and further to the ocean. To this end, we collected, across a 640 km latitudinal transect of the sporadic to continuous permafrost zone of western Siberia peatlands, soil porewaters from 30 cm depth using suction cups and we analyzed DOC, dissolved inorganic carbon (DIC), and 40 major elements and TEs in 0.45 µm filtered fraction of 80 soil porewaters. Despite an expected decrease in the intensity of DOC and TE mobilization from the soil and vegetation litter to the interstitial fluids with the increase in the permafrost coverage and a decrease in the annual temperature and ALT, the DOC and many major and trace elements did not exhibit any distinct decrease in concentration along the latitudinal transect from 62.2 to 67.4° N. The DOC demonstrated a maximum of concentration at 66° N, on the border of the discontinuous/continuous permafrost zone, whereas the DOC concentration in peat soil solutions from the continuous permafrost zone was equal to or higher than that in the sporadic/discontinuous permafrost zone. Moreover, a number of major (Ca, Mg) and trace (Al, Ti, Sr, Ga, rare earth elements (REEs), Zr, Hf, Th) elements exhibited an increasing, not decreasing, northward concentration trend. We hypothesize that the effects of temperature and thickness of the ALT are of secondary importance relative to the leaching capacity of peat, which is in turn controlled by the water saturation of the peat core. The water residence time in peat pores also plays a role in enriching the fluids in some elements

  2. Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia

    T. V. Raudina


    Full Text Available Mobilization of dissolved organic carbon (DOC and related trace elements (TEs from the frozen peat to surface waters in the permafrost zone is expected to enhance under ongoing permafrost thaw and active layer thickness (ALT deepening in high-latitude regions. The interstitial soil solutions are efficient tracers of ongoing bio-geochemical processes in the critical zone and can help to decipher the intensity of carbon and metals migration from the soil to the rivers and further to the ocean. To this end, we collected, across a 640 km latitudinal transect of the sporadic to continuous permafrost zone of western Siberia peatlands, soil porewaters from 30 cm depth using suction cups and we analyzed DOC, dissolved inorganic carbon (DIC, and 40 major elements and TEs in 0.45 µm filtered fraction of 80 soil porewaters. Despite an expected decrease in the intensity of DOC and TE mobilization from the soil and vegetation litter to the interstitial fluids with the increase in the permafrost coverage and a decrease in the annual temperature and ALT, the DOC and many major and trace elements did not exhibit any distinct decrease in concentration along the latitudinal transect from 62.2 to 67.4° N. The DOC demonstrated a maximum of concentration at 66° N, on the border of the discontinuous/continuous permafrost zone, whereas the DOC concentration in peat soil solutions from the continuous permafrost zone was equal to or higher than that in the sporadic/discontinuous permafrost zone. Moreover, a number of major (Ca, Mg and trace (Al, Ti, Sr, Ga, rare earth elements (REEs, Zr, Hf, Th elements exhibited an increasing, not decreasing, northward concentration trend. We hypothesize that the effects of temperature and thickness of the ALT are of secondary importance relative to the leaching capacity of peat, which is in turn controlled by the water saturation of the peat core. The water residence time in peat pores also plays a role in enriching the

  3. Properties of an associative algebra of tensor fields. Duality and Dirac identities

    Salingaros, N.; Dresden, M.


    An algebra of forms in Minkowski space has been constructed. A multiplication between forms is defined as an extension of the quaternionic multiplications. The algebra obtained is associative with respect to this multiplication of order 16. Duality is expressed as (new) multiplication by a basis element. Vector identities in the algebra lead to a number of new trace identities. A new derivative operator expresses the four Maxwell equations in an especially transparent form

  4. Topology general & algebraic

    Chatterjee, D


    About the Book: This book provides exposition of the subject both in its general and algebraic aspects. It deals with the notions of topological spaces, compactness, connectedness, completeness including metrizability and compactification, algebraic aspects of topological spaces through homotopy groups and homology groups. It begins with the basic notions of topological spaces but soon going beyond them reaches the domain of algebra through the notions of homotopy, homology and cohomology. How these approaches work in harmony is the subject matter of this book. The book finally arrives at the

  5. Adaptive algebraic reconstruction technique

    Lu Wenkai; Yin Fangfang


    Algebraic reconstruction techniques (ART) are iterative procedures for reconstructing objects from their projections. It is proven that ART can be computationally efficient by carefully arranging the order in which the collected data are accessed during the reconstruction procedure and adaptively adjusting the relaxation parameters. In this paper, an adaptive algebraic reconstruction technique (AART), which adopts the same projection access scheme in multilevel scheme algebraic reconstruction technique (MLS-ART), is proposed. By introducing adaptive adjustment of the relaxation parameters during the reconstruction procedure, one-iteration AART can produce reconstructions with better quality, in comparison with one-iteration MLS-ART. Furthermore, AART outperforms MLS-ART with improved computational efficiency

  6. Brauer algebras of type B

    Cohen, A.M.; Liu, S.


    For each n>0, we define an algebra having many properties that one might expect to hold for a Brauer algebra of type Bn. It is defined by means of a presentation by generators and relations. We show that this algebra is a subalgebra of the Brauer algebra of type Dn+1 and point out a cellular

  7. Profinite algebras and affine boundedness

    Schneider, Friedrich Martin; Zumbrägel, Jens


    We prove a characterization of profinite algebras, i.e., topological algebras that are isomorphic to a projective limit of finite discrete algebras. In general profiniteness concerns both the topological and algebraic characteristics of a topological algebra, whereas for topological groups, rings, semigroups, and distributive lattices, profiniteness turns out to be a purely topological property as it is is equivalent to the underlying topological space being a Stone space. Condensing the core...

  8. Pseudo-Riemannian Novikov algebras

    Chen Zhiqi; Zhu Fuhai [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)], E-mail:, E-mail:


    Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.

  9. On the PR-algebras

    Lebedenko, V.M.


    The PR-algebras, i.e. the Lie algebras with commutation relations of [Hsub(i),Hsub(j)]=rsub(ij)Hsub(i)(i< j) type are investigated. On the basis of former results a criterion for the membership of 2-solvable Lie algebras to the PR-algebra class is given. The conditions imposed by the criterion are formulated in the linear algebra language

  10. Algebraic geometry in India

    algebraic geometry but also in related fields like number theory. ... every vector bundle on the affine space is trivial. (equivalently ... les on a compact Riemann surface to unitary rep- ... tial geometry and topology and was generalised in.

  11. Linear algebra done right

    Axler, Sheldon


    This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...

  12. Algebraic Semantics for Narrative

    Kahn, E.


    This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)

  13. Groebner Finite Path Algebras

    Leamer, Micah J.


    Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS

  14. Lattice and algebra homomorphisms on C (X) in Zermelo-Fraenkel ...

    Let C (X) denote the lattice-ordered algebra of all real-valued continuous functions on a topological space X. This paper discusses in Zermelo-Fraenkel Set Theory the equivalence on C (X) between algebra homomorphisms, lattice homo- morphisms, and point evaluations. Keywords: Algebra homomorphism, lattice ...

  15. Differential Hopf algebra structures on the Universal Enveloping Algebra of a Lie Algebra

    van den Hijligenberg, N.W.; van den Hijligenberg, N.; Martini, Ruud


    We discuss a method to construct a De Rham complex (differential algebra) of Poincaré–Birkhoff–Witt type on the universal enveloping algebra of a Lie algebra g. We determine the cases in which this gives rise to a differential Hopf algebra that naturally extends the Hopf algebrastructure of U(g).

  16. Gauging the octonion algebra

    Waldron, A.K.; Joshi, G.C.


    By considering representation theory for non-associative algebras the fundamental adjoint representations of the octonion algebra is constructed. It is then shown how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. It was found that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. 13 refs

  17. Summing Boolean Algebras

    Antonio AIZPURU; Antonio GUTI(E)RREZ-D(A)VILA


    In this paper we will study some families and subalgebras ( ) of ( )(N) that let us characterize the unconditional convergence of series through the weak convergence of subseries ∑i∈A xi, A ∈ ( ).As a consequence, we obtain a new version of the Orlicz-Pettis theorem, for Banach spaces. We also study some relationships between algebraic properties of Boolean algebras and topological properties of the corresponding Stone spaces.

  18. Polynomials in algebraic analysis

    Multarzyński, Piotr


    The concept of polynomials in the sense of algebraic analysis, for a single right invertible linear operator, was introduced and studied originally by D. Przeworska-Rolewicz \\cite{DPR}. One of the elegant results corresponding with that notion is a purely algebraic version of the Taylor formula, being a generalization of its usual counterpart, well known for functions of one variable. In quantum calculus there are some specific discrete derivations analyzed, which are right invertible linear ...

  19. Intermediate algebra & analytic geometry

    Gondin, William R


    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  20. Currents on Grassmann algebras

    Coquereaux, R.; Ragoucy, E.


    Currents are defined on a Grassmann algebra Gr(N) with N generators as distributions on its exterior algebra (using the symmetric wedge product). The currents are interpreted in terms of Z 2 -graded Hochschild cohomology and closed currents in terms of cyclic cocycles (they are particular multilinear forms on Gr(N)). An explicit construction of the vector space of closed currents of degree p on Gr(N) is given by using Berezin integration. (authors). 10 refs

  1. The Boolean algebra of Galois algebras

    Lianyong Xue


    Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B|bx=g(xb for all x∈B} for each g∈G, and BJg=Beg for a central idempotent eg, Ba the Boolean algebra generated by {0,eg|g∈G}, e a nonzero element in Ba, and He={g∈G|eeg=e}. Then, a monomial e is characterized, and the Galois extension Be, generated by e with Galois group He, is investigated.

  2. Real division algebras and other algebras motivated by physics

    Benkart, G.; Osborn, J.M.


    In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations

  3. Special set linear algebra and special set fuzzy linear algebra

    Kandasamy, W. B. Vasantha; Smarandache, Florentin; Ilanthenral, K.


    The authors in this book introduce the notion of special set linear algebra and special set fuzzy Linear algebra, which is an extension of the notion set linear algebra and set fuzzy linear algebra. These concepts are best suited in the application of multi expert models and cryptology. This book has five chapters. In chapter one the basic concepts about set linear algebra is given in order to make this book a self contained one. The notion of special set linear algebra and their fuzzy analog...

  4. Hecke algebras with unequal parameters

    Lusztig, G


    Hecke algebras arise in representation theory as endomorphism algebras of induced representations. One of the most important classes of Hecke algebras is related to representations of reductive algebraic groups over p-adic or finite fields. In 1979, in the simplest (equal parameter) case of such Hecke algebras, Kazhdan and Lusztig discovered a particular basis (the KL-basis) in a Hecke algebra, which is very important in studying relations between representation theory and geometry of the corresponding flag varieties. It turned out that the elements of the KL-basis also possess very interesting combinatorial properties. In the present book, the author extends the theory of the KL-basis to a more general class of Hecke algebras, the so-called algebras with unequal parameters. In particular, he formulates conjectures describing the properties of Hecke algebras with unequal parameters and presents examples verifying these conjectures in particular cases. Written in the author's precise style, the book gives rese...

  5. Axis Problem of Rough 3-Valued Algebras

    Jianhua Dai; Weidong Chen; Yunhe Pan


    The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.

  6. KMS states on Nica-Toeplitz algebras of product systems

    Hong, Jeong Hee; Larsen, Nadia S.; Szymanski, Wojciech


    We investigate KMS states of Fowler's Nica-Toeplitz algebra NT(X) associated to a compactly aligned product system X over a semigroup P of Hilbert bimodules. This analysis relies on restrictions of these states to the core algebra which satisfy appropriate scaling conditions. The concept of product...... system of finite type is introduced. If (G, P) is a lattice ordered group and X is a product system of finite type over P satisfying certain coherence properties, we construct KMS_beta states of NT(X) associated to a scalar dynamics from traces on the coefficient algebra of the product system. Our...... results were motivated by, and generalize some of the results of Laca and Raeburn obtained for the Toeplitz algebra of the affine semigroup over the natural numbers....

  7. Ideals in algebras of unbounded operators

    Timmermann, W.


    The paper presents a continuation of investigations on ideals in algebras of unbounded operators. A general procedure is given to get ideals in L + (D) starting with ideals in B(H). A definition of the two types of ideals is given: one contains only bounded operators, the other involves both bounded and unbounded operators. Some algebraic properties of ideals Ssub(phi)(D) derived from the well-known symmetrically normed ideals Ssub(phi) are investigated. Topologies in such ideals are introduced, and some results connected with topological properties of these ideals are given

  8. Direct atmospheric pressure chemical ionization-tandem mass spectrometry for the continuous real-time trace analysis of benzene, toluene, ethylbenzene, and xylenes in ambient air.

    Badjagbo, Koffi; Picard, Pierre; Moore, Serge; Sauvé, Sébastien


    Real-time monitoring of benzene, toluene, ethylbenzene, and xylenes (BTEX) in ambient air is essential for the early warning detection associated with the release of these hazardous chemicals and in estimating the potential exposure risks to humans and the environment. We have developed a tandem mass spectrometry (MS/MS) method for continuous real-time determination of ambient trace levels of BTEX. The technique is based on the sampling of air via an atmospheric pressure inlet directly into the atmospheric pressure chemical ionization (APCI) source. The method is linear over four orders of magnitude, with correlation coefficients greater than 0.996. Low limits of detection in the range 1-2 microg/m(3) are achieved for BTEX. The reliability of the method was confirmed through the evaluation of quality parameters such as repeatability and reproducibility (relative standard deviation below 8% and 10%, respectively) and accuracy (over 95%). The applicability of this method to real-world samples was evaluated through measurements of BTEX levels in real ambient air samples and results were compared with a reference GC-FID method. This direct APCI-MS/MS method is suitable for real-time analysis of BTEX in ambient air during regulation surveys as well as for the monitoring of industrial processes or emergency situations.

  9. C*-algebras by example

    Davidson, Kenneth R


    The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty yea

  10. Algebra II workbook for dummies

    Sterling, Mary Jane


    To succeed in Algebra II, start practicing now Algebra II builds on your Algebra I skills to prepare you for trigonometry, calculus, and a of myriad STEM topics. Working through practice problems helps students better ingest and retain lesson content, creating a solid foundation to build on for future success. Algebra II Workbook For Dummies, 2nd Edition helps you learn Algebra II by doing Algebra II. Author and math professor Mary Jane Sterling walks you through the entire course, showing you how to approach and solve the problems you encounter in class. You'll begin by refreshing your Algebr

  11. Algebraic K-theory

    Srinivas, V


    Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application ...

  12. Turbulence, orbit equivalence, and the classification of nuclear C-algebras

    Farah, Ilijas; Toms, Andrew; Törnquist, Asger Dag


    Choquet simplexes. As a by-product we recover a result of Kechris and Solecki, namely, that homeomorphism of compacta in the Hilbert cube is Borel reducible to a Polish group action. These results depend intimately on the classification theory of nuclear simple C*-algebras by K-theory and traces. Both...... of necessity and in order to lay the groundwork for further study on the Borel complexity of C*-algebras, we prove that many standard C*-algebra constructions and relations are Borel, and we prove Borel versions of Kirchberg's O2-stability and embedding theorems. We also find a C*-algebraic witness for a Kσ...

  13. Regularity of C*-algebras and central sequence algebras

    Christensen, Martin S.

    The main topic of this thesis is regularity properties of C*-algebras and how these regularity properties are re ected in their associated central sequence algebras. The thesis consists of an introduction followed by four papers [A], [B], [C], [D]. In [A], we show that for the class of simple...... Villadsen algebra of either the rst type with seed space a nite dimensional CW complex, or the second type, tensorial absorption of the Jiang-Su algebra is characterized by the absence of characters on the central sequence algebra. Additionally, in a joint appendix with Joan Bosa, we show that the Villadsen...... algebra of the second type with innite stable rank fails the corona factorization property. In [B], we consider the class of separable C*-algebras which do not admit characters on their central sequence algebra, and show that it has nice permanence properties. We also introduce a new divisibility property...

  14. Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra

    Pitsch, Wolfgang; Zarzuela, Santiago


    This book includes 33 expanded abstracts of selected talks given at the two workshops "Homological Bonds Between Commutative Algebra and Representation Theory" and "Brave New Algebra: Opening Perspectives," and the conference "Opening Perspectives in Algebra, Representations, and Topology," held at the Centre de Recerca Matemàtica (CRM) in Barcelona between January and June 2015. These activities were part of the one-semester intensive research program "Interactions Between Representation Theory, Algebraic Topology and Commutative Algebra (IRTATCA)." Most of the abstracts present preliminary versions of not-yet published results and cover a large number of topics (including commutative and non commutative algebra, algebraic topology, singularity theory, triangulated categories, representation theory) overlapping with homological methods. This comprehensive book is a valuable resource for the community of researchers interested in homological algebra in a broad sense, and those curious to learn the latest dev...

  15. Quantum cluster algebra structures on quantum nilpotent algebras

    Goodearl, K R


    All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.

  16. Identities and derivations for Jacobian algebras

    Dzhumadil'daev, A.S.


    Constructions of n-Lie algebras by strong n-Lie-Poisson algebras are given. First cohomology groups of adjoint module of Jacobian algebras are calculated. Minimal identities of 3-Jacobian algebra are found. (author)

  17. Algebraic quantum field theory

    Foroutan, A.


    The basic assumption that the complete information relevant for a relativistic, local quantum theory is contained in the net structure of the local observables of this theory results first of all in a concise formulation of the algebraic structure of the superselection theory and an intrinsic formulation of charge composition, charge conjugation and the statistics of an algebraic quantum field theory. In a next step, the locality of massive particles together with their spectral properties are wed for the formulation of a selection criterion which opens the access to the massive, non-abelian quantum gauge theories. The role of the electric charge as a superselection rule results in the introduction of charge classes which in term lead to a set of quantum states with optimum localization properties. Finally, the asymptotic observables of quantum electrodynamics are investigated within the framework of algebraic quantum field theory. (author)

  18. Complex algebraic geometry

    Kollár, János


    This volume contains the lectures presented at the third Regional Geometry Institute at Park City in 1993. The lectures provide an introduction to the subject, complex algebraic geometry, making the book suitable as a text for second- and third-year graduate students. The book deals with topics in algebraic geometry where one can reach the level of current research while starting with the basics. Topics covered include the theory of surfaces from the viewpoint of recent higher-dimensional developments, providing an excellent introduction to more advanced topics such as the minimal model program. Also included is an introduction to Hodge theory and intersection homology based on the simple topological ideas of Lefschetz and an overview of the recent interactions between algebraic geometry and theoretical physics, which involve mirror symmetry and string theory.

  19. Algebraic design theory

    Launey, Warwick De


    Combinatorial design theory is a source of simply stated, concrete, yet difficult discrete problems, with the Hadamard conjecture being a prime example. It has become clear that many of these problems are essentially algebraic in nature. This book provides a unified vision of the algebraic themes which have developed so far in design theory. These include the applications in design theory of matrix algebra, the automorphism group and its regular subgroups, the composition of smaller designs to make larger designs, and the connection between designs with regular group actions and solutions to group ring equations. Everything is explained at an elementary level in terms of orthogonality sets and pairwise combinatorial designs--new and simple combinatorial notions which cover many of the commonly studied designs. Particular attention is paid to how the main themes apply in the important new context of cocyclic development. Indeed, this book contains a comprehensive account of cocyclic Hadamard matrices. The book...

  20. Complex Algebraic Varieties

    Peternell, Thomas; Schneider, Michael; Schreyer, Frank-Olaf


    The Bayreuth meeting on "Complex Algebraic Varieties" focussed on the classification of algebraic varieties and topics such as vector bundles, Hodge theory and hermitian differential geometry. Most of the articles in this volume are closely related to talks given at the conference: all are original, fully refereed research articles. CONTENTS: A. Beauville: Annulation du H(1) pour les fibres en droites plats.- M. Beltrametti, A.J. Sommese, J.A. Wisniewski: Results on varieties with many lines and their applications to adjunction theory.- G. Bohnhorst, H. Spindler: The stability of certain vector bundles on P(n) .- F. Catanese, F. Tovena: Vector bundles, linear systems and extensions of (1).- O. Debarre: Vers uns stratification de l'espace des modules des varietes abeliennes principalement polarisees.- J.P. Demailly: Singular hermitian metrics on positive line bundles.- T. Fujita: On adjoint bundles of ample vector bundles.- Y. Kawamata: Moderate degenerations of algebraic surfaces.- U. Persson: Genus two fibra...

  1. Problems in abstract algebra

    Wadsworth, A R


    This is a book of problems in abstract algebra for strong undergraduates or beginning graduate students. It can be used as a supplement to a course or for self-study. The book provides more variety and more challenging problems than are found in most algebra textbooks. It is intended for students wanting to enrich their learning of mathematics by tackling problems that take some thought and effort to solve. The book contains problems on groups (including the Sylow Theorems, solvable groups, presentation of groups by generators and relations, and structure and duality for finite abelian groups); rings (including basic ideal theory and factorization in integral domains and Gauss's Theorem); linear algebra (emphasizing linear transformations, including canonical forms); and fields (including Galois theory). Hints to many problems are also included.

  2. Higher regulators, algebraic

    Bloch, Spencer J


    This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.

  3. Applied linear algebra

    Olver, Peter J


    This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the un...

  4. Basic linear algebra

    Blyth, T S


    Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

  5. Algebraic topology a primer

    Deo, Satya


    This book presents the first concepts of the topics in algebraic topology such as the general simplicial complexes, simplicial homology theory, fundamental groups, covering spaces and singular homology theory in greater detail. Originally published in 2003, this book has become one of the seminal books. Now, in the completely revised and enlarged edition, the book discusses the rapidly developing field of algebraic topology. Targeted to undergraduate and graduate students of mathematics, the prerequisite for this book is minimal knowledge of linear algebra, group theory and topological spaces. The book discusses about the relevant concepts and ideas in a very lucid manner, providing suitable motivations and illustrations. All relevant topics are covered, including the classical theorems like the Brouwer’s fixed point theorem, Lefschetz fixed point theorem, Borsuk-Ulam theorem, Brouwer’s separation theorem and the theorem on invariance of the domain. Most of the exercises are elementary, but sometimes chal...

  6. The relation between quantum W algebras and Lie algebras

    Boer, J. de; Tjin, T.


    By quantizing the generalized Drinfeld-Sokolov reduction scheme for arbitrary sl 2 embeddings we show that a large set W of quantum W algebras can be viewed as (BRST) cohomologies of affine Lie algebras. The set W contains many known W algebras such as W N and W 3 (2) . Our formalism yields a completely algorithmic method for calculating the W algebra generators and their operator product expansions, replacing the cumbersome construction of W algebras as commutants of screening operators. By generalizing and quantizing the Miura transformation we show that any W algebra in W can be embedded into the universal enveloping algebra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a subalgebra of the original affine algebra. Therefore any realization of this semisimple affine Lie algebra leads to a realization of the W algebra. In particular, one obtains in this way a general and explicit method for constructing the free field realizations and Fock resolutions for all algebras in W. Some examples are explicitly worked out. (orig.)

  7. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    Wasserman, Nicholas H.


    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  8. Converting nested algebra expressions into flat algebra expressions

    Paredaens, J.; Van Gucht, D.


    Nested relations generalize ordinary flat relations by allowing tuple values to be either atomic or set valued. The nested algebra is a generalization of the flat relational algebra to manipulate nested relations. In this paper we study the expressive power of the nested algebra relative to its

  9. On Associative Conformal Algebras of Linear Growth

    Retakh, Alexander


    Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...

  10. Computer Program For Linear Algebra

    Krogh, F. T.; Hanson, R. J.


    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  11. Algebra for Gifted Third Graders.

    Borenson, Henry


    Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)

  12. Gradings on simple Lie algebras

    Elduque, Alberto


    Gradings are ubiquitous in the theory of Lie algebras, from the root space decomposition of a complex semisimple Lie algebra relative to a Cartan subalgebra to the beautiful Dempwolff decomposition of E_8 as a direct sum of thirty-one Cartan subalgebras. This monograph is a self-contained exposition of the classification of gradings by arbitrary groups on classical simple Lie algebras over algebraically closed fields of characteristic not equal to 2 as well as on some nonclassical simple Lie algebras in positive characteristic. Other important algebras also enter the stage: matrix algebras, the octonions, and the Albert algebra. Most of the presented results are recent and have not yet appeared in book form. This work can be used as a textbook for graduate students or as a reference for researchers in Lie theory and neighboring areas.

  13. Tensor spaces and exterior algebra

    Yokonuma, Takeo


    This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.

  14. Dynamical systems and linear algebra

    Colonius, Fritz (Prof.)


    Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)

  15. Projector bases and algebraic spinors

    Bergdolt, G.


    In the case of complex Clifford algebras a basis is constructed whose elements satisfy projector relations. The relations are sufficient conditions for the elements to span minimal ideals and hence to define algebraic spinors

  16. Contractions of quantum algebraic structures

    Doikou, A.; Sfetsos, K.


    A general framework for obtaining certain types of contracted and centrally extended algebras is reviewed. The whole process relies on the existence of quadratic algebras, which appear in the context of boundary integrable models. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  17. Polynomial Heisenberg algebras

    Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M


    Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively

  18. Algebraic number theory

    Weiss, Edwin


    Careful organization and clear, detailed proofs characterize this methodical, self-contained exposition of basic results of classical algebraic number theory from a relatively modem point of view. This volume presents most of the number-theoretic prerequisites for a study of either class field theory (as formulated by Artin and Tate) or the contemporary treatment of analytical questions (as found, for example, in Tate's thesis).Although concerned exclusively with algebraic number fields, this treatment features axiomatic formulations with a considerable range of applications. Modem abstract te

  19. Partially ordered algebraic systems

    Fuchs, Laszlo


    Originally published in an important series of books on pure and applied mathematics, this monograph by a distinguished mathematician explores a high-level area in algebra. It constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The self-contained treatment features numerous problems, complete proofs, a detailed bibliography, and indexes. It presumes some knowledge of abstract algebra, providing necessary background and references where appropriate. This inexpensive edition of a hard-to-find systematic survey will fill a gap i

  20. Elementary matrix algebra

    Hohn, Franz E


    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  1. Principles of algebraic geometry

    Griffiths, Phillip A


    A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special top

  2. Helmholtz algebraic solitons

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)


    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  3. Endomorphisms of graph algebras

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech


    We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...

  4. Algebraic curves and cryptography

    Murty, V Kumar


    It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on

  5. Elementary algebraic geometry

    Kendig, Keith


    Designed to make learning introductory algebraic geometry as easy as possible, this text is intended for advanced undergraduates and graduate students who have taken a one-year course in algebra and are familiar with complex analysis. This newly updated second edition enhances the original treatment's extensive use of concrete examples and exercises with numerous figures that have been specially redrawn in Adobe Illustrator. An introductory chapter that focuses on examples of curves is followed by a more rigorous and careful look at plane curves. Subsequent chapters explore commutative ring th

  6. Helmholtz algebraic solitons

    Christian, J M; McDonald, G S; Chamorro-Posada, P


    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  7. Handbook of linear algebra

    Hogben, Leslie


    With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of

  8. Algebra & trigonometry I essentials

    REA, Editors of


    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry I includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, eq

  9. Algebra & trigonometry super review


    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  10. Linear Algebra Thoroughly Explained

    Vujičić, Milan


    Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.

  11. Multi parametric deformed Heisenberg algebras: a route to complexity

    Curado, E.M.F.; Rego-Monteiro, M.A.


    We introduce a generalized of the Heisenberg which is written in terms of a functional of one generator of the algebra, f(J 0 ), that can be any analytical function. When f is linear with slope θ, we show that the algebra in this case corresponds to q-oscillators for q 2 = tan θ. The case where f is polynomial of order n in J 0 corresponds to a n-parameter Heisenberg algebra. The representations of the algebra, when f is any analytical function, are shown to be obtained through the study of the stability of the fixed points of f and their composed functions. The case when f is a quadratic polynomial in J 0 , the simplest non-linear scheme which is able to create chaotic behavior, is analyzed in detail and special regions in the parameter space give representations that ca not be continuously deformed to representations of Heisenberg algebra. (author)

  12. Introduction to vertex algebras, Borcherds algebras and the Monster Lie algebras

    Gebert, R.W.


    The theory of vertex algebras constitutes a mathematically rigorous axiomatic formulation of the algebraic origins of conformal field theory. In this context Borcherds algebras arise as certain ''physical'' subspaces of vertex algebras. The aim of this review is to give a pedagogical introduction into this rapidly-developing area of mathematics. Based on the machinery of formal calculus we present the axiomatic definition of vertex algebras. We discuss the connection with conformal field theory by deriving important implications of these axioms. In particular, many explicit calculations are presented to stress the eminent role of the Jacobi identity axiom for vertex algebras. As a class of concrete examples the vertex algebras associated with even lattices are constructed and it is shown in detail how affine Lie algebras and the fake Monster Lie algebra naturally appear. This leads us to the abstract definition of Borcherds algebras as generalized Kac-Moody algebras and their basic properties. Finally, the results about the simplest generic Borcherds algebras are analysed from the point of view of symmetry in quantum theory and the construction of the Monster Lie algebra is sketched. (orig.)

  13. The theory of algebraic numbers

    Pollard, Harry


    An excellent introduction to the basics of algebraic number theory, this concise, well-written volume examines Gaussian primes; polynomials over a field; algebraic number fields; and algebraic integers and integral bases. After establishing a firm introductory foundation, the text explores the uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; and the Fermat conjecture. 1975 edition. References. List of Symbols. Index.

  14. Spin-4 extended conformal algebras

    Kakas, A.C.


    We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)

  15. An algebra of reversible computation.

    Wang, Yong


    We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.

  16. On Weak-BCC-Algebras

    Thomys, Janus; Zhang, Xiaohong


    We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983

  17. Assessing Elementary Algebra with STACK

    Sangwin, Christopher J.


    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system,, which uses the CAS…

  18. Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras

    Lothar Schlafer


    Full Text Available C*-algebraic Weyl quantization is extended by allowing also degenerate pre-symplectic forms for the Weyl relations with infinitely many degrees of freedom, and by starting out from enlarged classical Poisson algebras. A powerful tool is found in the construction of Poisson algebras and non-commutative twisted Banach-*-algebras on the stage of measures on the not locally compact test function space. Already within this frame strict deformation quantization is obtained, but in terms of Banach-*-algebras instead of C*-algebras. Fourier transformation and representation theory of the measure Banach-*-algebras are combined with the theory of continuous projective group representations to arrive at the genuine C*-algebraic strict deformation quantization in the sense of Rieffel and Landsman. Weyl quantization is recognized to depend in the first step functorially on the (in general infinite dimensional, pre-symplectic test function space; but in the second step one has to select a family of representations, indexed by the deformation parameter h. The latter ambiguity is in the present investigation connected with the choice of a folium of states, a structure, which does not necessarily require a Hilbert space representation.

  19. Particle-like structure of coaxial Lie algebras

    Vinogradov, A. M.


    This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.

  20. Irrational "Coefficients" in Renaissance Algebra.

    Oaks, Jeffrey A


    Argument From the time of al-Khwārizmī in the ninth century to the beginning of the sixteenth century algebraists did not allow irrational numbers to serve as coefficients. To multiply by x, for instance, the result was expressed as the rhetorical equivalent of . The reason for this practice has to do with the premodern concept of a monomial. The coefficient, or "number," of a term was thought of as how many of that term are present, and not as the scalar multiple that we work with today. Then, in sixteenth-century Europe, a few algebraists began to allow for irrational coefficients in their notation. Christoff Rudolff (1525) was the first to admit them in special cases, and subsequently they appear more liberally in Cardano (1539), Scheubel (1550), Bombelli (1572), and others, though most algebraists continued to ban them. We survey this development by examining the texts that show irrational coefficients and those that argue against them. We show that the debate took place entirely in the conceptual context of premodern, "cossic" algebra, and persisted in the sixteenth century independent of the development of the new algebra of Viète, Decartes, and Fermat. This was a formal innovation violating prevailing concepts that we propose could only be introduced because of the growing autonomy of notation from rhetorical text.

  1. Probabilistic thread algebra

    Bergstra, J.A.; Middelburg, C.A.


    We add probabilistic features to basic thread algebra and its extensions with thread-service interaction and strategic interleaving. Here, threads represent the behaviours produced by instruction sequences under execution and services represent the behaviours exhibited by the components of execution

  2. Discourses on Algebra

    BOOK REVIEW ... To the Indian reader, the word discourse, evokes a respected ... I dug a bit deeper with Google trans- late, and ... published in a journal of mathematics educa- tion. ... The article on Shafarevich's work elsewhere ... goal then, is to develop the basics of algebra in ... ometric Greeks, and works like a magician.

  3. Thinking Visually about Algebra

    Baroudi, Ziad


    Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…

  4. College Algebra I.

    Benjamin, Carl; And Others

    Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra I. Topics covered include: sets; vocabulary; linear equations; inequalities; real numbers; operations; factoring; fractions; formulas; ratio, proportion, and…

  5. Algebraic K-theory

    Swan, R G


    From the Introduction: "These notes are taken from a course on algebraic K-theory [given] at the University of Chicago in 1967. They also include some material from an earlier course on abelian categories, elaborating certain parts of Gabriel's thesis. The results on K-theory are mostly of a very general nature."

  6. Real space process algebra

    Bergstra, J.A.; Baeten, J.C.M.


    The real time process algebra of Baeten and Bergstra [Formal Aspects of Computing, 3, 142-188 (1991)] is extended to real space by requiring the presence of spatial coordinates for each atomic action, in addition to the required temporal attribute. It is found that asynchronous communication

  7. Commutative algebra with a view toward algebraic geometry

    Eisenbud, David


    Commutative Algebra is best understood with knowledge of the geometric ideas that have played a great role in its formation, in short, with a view towards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. Many exercises illustrate and sharpen the theory and extended exercises give the reader an active part in complementing the material presented in the text. One novel feature is a chapter devoted to a quick but thorough treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Applications of the theory and even suggestions for computer algebra projects are included. This book will appeal to readers from beginners to advanced students of commutative algebra or algeb...

  8. Semi-algebraic function rings and reflectors of partially ordered rings

    Schwartz, Niels


    The book lays algebraic foundations for real geometry through a systematic investigation of partially ordered rings of semi-algebraic functions. Real spectra serve as primary geometric objects, the maps between them are determined by rings of functions associated with the spectra. The many different possible choices for these rings of functions are studied via reflections of partially ordered rings. Readers should feel comfortable using basic algebraic and categorical concepts. As motivational background some familiarity with real geometry will be helpful. The book aims at researchers and graduate students with an interest in real algebra and geometry, ordered algebraic structures, topology and rings of continuous functions.

  9. Operator algebras and topology

    Schick, T.


    These notes, based on three lectures on operator algebras and topology at the 'School on High Dimensional Manifold Theory' at the ICTP in Trieste, introduce a new set of tools to high dimensional manifold theory, namely techniques coming from the theory of operator algebras, in particular C*-algebras. These are extensively studied in their own right. We will focus on the basic definitions and properties, and on their relevance to the geometry and topology of manifolds. A central pillar of work in the theory of C*-algebras is the Baum-Connes conjecture. This is an isomorphism conjecture, as discussed in the talks of Luck, but with a certain special flavor. Nevertheless, it has important direct applications to the topology of manifolds, it implies e.g. the Novikov conjecture. In the first chapter, the Baum-Connes conjecture will be explained and put into our context. Another application of the Baum-Connes conjecture is to the positive scalar curvature question. This will be discussed by Stephan Stolz. It implies the so-called 'stable Gromov-Lawson-Rosenberg conjecture'. The unstable version of this conjecture said that, given a closed spin manifold M, a certain obstruction, living in a certain (topological) K-theory group, vanishes if and only M admits a Riemannian metric with positive scalar curvature. It turns out that this is wrong, and counterexamples will be presented in the second chapter. The third chapter introduces another set of invariants, also using operator algebra techniques, namely L 2 -cohomology, L 2 -Betti numbers and other L 2 -invariants. These invariants, their basic properties, and the central questions about them, are introduced in the third chapter. (author)

  10. Advanced modern algebra part 2

    Rotman, Joseph J


    This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.

  11. q-deformed Poincare algebra

    Ogievetsky, O.; Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA


    The q-differential calculus for the q-Minkowski space is developed. The algebra of the q-derivatives with the q-Lorentz generators is found giving the q-deformation of the Poincare algebra. The reality structure of the q-Poincare algebra is given. The reality structure of the q-differentials is also found. The real Laplaacian is constructed. Finally the comultiplication, counit and antipode for the q-Poincare algebra are obtained making it a Hopf algebra. (orig.)

  12. Hopf algebras in noncommutative geometry

    Varilly, Joseph C.


    We give an introductory survey to the use of Hopf algebras in several problems of non- commutative geometry. The main example, the Hopf algebra of rooted trees, is a graded, connected Hopf algebra arising from a universal construction. We show its relation to the algebra of transverse differential operators introduced by Connes and Moscovici in order to compute a local index formula in cyclic cohomology, and to the several Hopf algebras defined by Connes and Kreimer to simplify the combinatorics of perturbative renormalization. We explain how characteristic classes for a Hopf module algebra can be obtained from the cyclic cohomology of the Hopf algebra which acts on it. Finally, we discuss the theory of non- commutative spherical manifolds and show how they arise as homogeneous spaces of certain compact quantum groups. (author)

  13. On Dunkl angular momenta algebra

    Feigin, Misha [School of Mathematics and Statistics, University of Glasgow,15 University Gardens, Glasgow G12 8QW (United Kingdom); Hakobyan, Tigran [Yerevan State University,1 Alex Manoogian, 0025 Yerevan (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)


    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl(N) version of the subalgebra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  14. Quantized Algebras of Functions on Homogeneous Spaces with Poisson Stabilizers

    Neshveyev, Sergey; Tuset, Lars


    Let G be a simply connected semisimple compact Lie group with standard Poisson structure, K a closed Poisson-Lie subgroup, 0 topology on the spectrum of C( G q / K q ). Next we show that the family of C*-algebras C( G q / K q ), 0 < q ≤ 1, has a canonical structure of a continuous field of C*-algebras and provides a strict deformation quantization of the Poisson algebra {{C}[G/K]} . Finally, extending a result of Nagy, we show that C( G q / K q ) is canonically KK-equivalent to C( G/ K).

  15. Non commutative geometry methods for group C*-algebras

    Do Ngoc Diep.


    This book is intended to provide a quick introduction to the subject. The exposition is scheduled in the sequence, as possible for more understanding for beginners. The author exposed a K-theoretic approach to study group C * -algebras: started in the elementary part, with one example of description of the structure of C * -algebra of the group of affine transformations of the real straight line, continued then for some special classes of solvable and nilpotent Lie groups. In the second advanced part, he introduced the main tools of the theory. In particular, the conception of multidimensional geometric quantization and the index of group C * -algebras were created and developed. (author). Refs

  16. Continuum analogues of contragredient Lie algebras

    Saveliev, M.V.; Vershik, A.M.


    We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs

  17. Quartic Poisson algebras and quartic associative algebras and realizations as deformed oscillator algebras

    Marquette, Ian


    We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently

  18. A Process Algebra Approach to Quantum Electrodynamics

    Sulis, William


    The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.

  19. Fast Bitwise Implementation of the Algebraic Normal Form Transform

    Bakoev, Valentin


    The representation of Boolean functions by their algebraic normal forms (ANFs) is very important for cryptography, coding theory and other scientific areas. The ANFs are used in computing the algebraic degree of S-boxes, some other cryptographic criteria and parameters of errorcorrecting codes. Their applications require these criteria and parameters to be computed by fast algorithms. Hence the corresponding ANFs should also be obtained by fast algorithms. Here we continue o...

  20. Real algebraic geometry

    Bochnak, Jacek; Roy, Marie-Françoise


    This book is a systematic treatment of real algebraic geometry, a subject that has strong interrelation with other areas of mathematics: singularity theory, differential topology, quadratic forms, commutative algebra, model theory, complexity theory etc. The careful and clearly written account covers both basic concepts and up-to-date research topics. It may be used as text for a graduate course. The present edition is a substantially revised and expanded English version of the book "Géometrie algébrique réelle" originally published in French, in 1987, as Volume 12 of ERGEBNISSE. Since the publication of the French version the theory has made advances in several directions. Many of these are included in this English version. Thus the English book may be regarded as a completely new treatment of the subject.

  1. Algebra de Clifford

    María Carolina Spinel G.


    Con esta base, en posteriores artículos de divulgación, presentaremos algunas aplicaciones que muestren la ventaja de su empleo en la descripción de sistema físico. Dado el amplio conocimiento que se tiene de los espacios vectoriales. La estructura y propiedades del algebra de Clifford suele presentarse con base en los elementos de un espacio vectorial. En esta dirección, en la sección 2 se define la notación y se describe la estructura de un algebra de Clifford Gn, introduciendo con detalle las operaciones básicas entre los elementos del álgebra. La sección 3 se dedica a describir una base tensorial de Gn.

  2. Split Malcev algebras

    project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.

  3. Algebra of Majorana doubling.

    Lee, Jaehoon; Wilczek, Frank


    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  4. The Algebra Artist

    Beigie, Darin


    Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…

  5. Fundamentals of linear algebra

    Dash, Rajani Ballav


    FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.

  6. Algebras of Information States

    Punčochář, Vít


    Roč. 27, č. 5 (2017), s. 1643-1675 ISSN 0955-792X R&D Projects: GA ČR(CZ) GC16-07954J Institutional support: RVO:67985955 Keywords : information states * relational semantics * algebraic semantics * intuitionistic logic * inquisitive disjunction Subject RIV: AA - Philosophy ; Religion OBOR OECD: Philosophy, History and Philosophy of science and technology Impact factor: 0.909, year: 2016

  7. Clifford Algebras and Spinors

    Todorov, Ivan


    Expository notes on Clifford algebras and spinors with a detailed discussion of Majorana, Weyl, and Dirac spinors. The paper is meant as a review of background material, needed, in particular, in now fashionable theoretical speculations on neutrino masses. It has a more mathematical flavour than the over twenty-six-year-old Introduction to Majorana masses [M84] and includes historical notes and biographical data on past participants in the story. (author)

  8. Algebra & trigonometry II essentials

    REA, Editors of


    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Algebra & Trigonometry II includes logarithms, sequences and series, permutations, combinations and probability, vectors, matrices, determinants and systems of equations, mathematica

  9. Modern algebra essentials

    Lutfiyya, Lutfi A


    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Modern Algebra includes set theory, operations, relations, basic properties of the integers, group theory, and ring theory.

  10. Priority in Process Algebras

    Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.


    This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.

  11. Assessing Algebraic Solving Ability: A Theoretical Framework

    Lian, Lim Hooi; Yew, Wun Thiam


    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…

  12. Associative and Lie deformations of Poisson algebras

    Remm, Elisabeth


    Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.

  13. Fusion rules of chiral algebras

    Gaberdiel, M.


    Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)

  14. Einstein algebras and general relativity

    Heller, M.


    A purely algebraic structure called an Einstein algebra is defined in such a way that every spacetime satisfying Einstein's equations is an Einstein algebra but not vice versa. The Gelfand representation of Einstein algebras is defined, and two of its subrepresentations are discussed. One of them is equivalent to the global formulation of the standard theory of general relativity; the other one leads to a more general theory of gravitation which, in particular, includes so-called regular singularities. In order to include other types of singularities one must change to sheaves of Einstein algebras. They are defined and briefly discussed. As a test of the proposed method, the sheaf of Einstein algebras corresponding to the space-time of a straight cosmic string with quasiregular singularity is constructed. 22 refs

  15. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    Verburgt, Lukas M


    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  16. Categorical Algebra and its Applications


    Categorical algebra and its applications contain several fundamental papers on general category theory, by the top specialists in the field, and many interesting papers on the applications of category theory in functional analysis, algebraic topology, algebraic geometry, general topology, ring theory, cohomology, differential geometry, group theory, mathematical logic and computer sciences. The volume contains 28 carefully selected and refereed papers, out of 96 talks delivered, and illustrates the usefulness of category theory today as a powerful tool of investigation in many other areas.

  17. Chiral algebras of class S

    Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.


    Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.

  18. Applications of Computer Algebra Conference

    Martínez-Moro, Edgar


    The Applications of Computer Algebra (ACA) conference covers a wide range of topics from Coding Theory to Differential Algebra to Quantam Computing, focusing on the interactions of these and other areas with the discipline of Computer Algebra. This volume provides the latest developments in the field as well as its applications in various domains, including communications, modelling, and theoretical physics. The book will appeal to researchers and professors of computer algebra, applied mathematics, and computer science, as well as to engineers and computer scientists engaged in research and development.

  19. Chiral algebras for trinion theories

    Lemos, Madalena; Peelaers, Wolfger


    It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.

  20. Computational aspects of algebraic curves

    Shaska, Tanush


    The development of new computational techniques and better computing power has made it possible to attack some classical problems of algebraic geometry. The main goal of this book is to highlight such computational techniques related to algebraic curves. The area of research in algebraic curves is receiving more interest not only from the mathematics community, but also from engineers and computer scientists, because of the importance of algebraic curves in applications including cryptography, coding theory, error-correcting codes, digital imaging, computer vision, and many more.This book cove

  1. Quadratic algebras applied to noncommutative integration of the Klein-Gordon equation: Four-dimensional quadratic algebras containing three-dimensional nilpotent lie algebras

    Varaksin, O.L.; Firstov, V.V.; Shapovalov, A.V.


    The study is continued on noncommutative integration of linear partial differential equations in application to the exact integration of quantum-mechanical equations in a Riemann space. That method gives solutions to the Klein-Gordon equation when the set of noncommutative symmetry operations for that equation forms a quadratic algebra consisting of one second-order operator and of first-order operators forming a Lie algebra. The paper is a continuation of, where a single nontrivial example is used to demonstrate noncommutative integration of the Klein-Gordon equation in a Riemann space not permitting variable separation

  2. 2-Local derivations on matrix algebras over semi-prime Banach algebras and on AW*-algebras

    Ayupov, Shavkat; Kudaybergenov, Karimbergen


    The paper is devoted to 2-local derivations on matrix algebras over unital semi-prime Banach algebras. For a unital semi-prime Banach algebra A with the inner derivation property we prove that any 2-local derivation on the algebra M 2 n (A), n ≥ 2, is a derivation. We apply this result to AW*-algebras and show that any 2-local derivation on an arbitrary AW*-algebra is a derivation. (paper)

  3. Dynamical entropy of C* algebras and Von Neumann algebras

    Connes, A.; Narnhofer, H.; Thirring, W.


    The definition of the dynamical entropy is extended for automorphism groups of C * algebras. As example the dynamical entropy of the shift of a lattice algebra is studied and it is shown that in some cases it coincides with the entropy density. (Author)

  4. Abstract Algebra to Secondary School Algebra: Building Bridges

    Christy, Donna; Sparks, Rebecca


    The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…

  5. Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras

    Put, Marius van der


    The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.

  6. Topological أ-algebras with Cأ-enveloping algebras II

    necessarily complete) pro-Cأ-topology which coincides with the relative uniform .... problems in Cأ-algebras, Phillips introduced more general weakly Cأ- .... Banach أ-algebra obtained by completing A=Np in the norm jjxpjjp ¼ pًxق where.

  7. A modal characterization of Peirce algebras

    M. de Rijke (Maarten)


    textabstractPeirce algebras combine sets, relations and various operations linking the two in a unifying setting.This note offers a modal perspective on Peirce algebras.It uses modal logic to characterize the full Peirce algebras.

  8. Quantum deformation of the affine transformation algebra

    Aizawa, N.; Sato, Haru-Tada


    We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators. (orig.)

  9. Algebra in Cuneiform

    Høyrup, Jens

    with basic Assyriology but otherwise philological details are avoided. All of these texts are from the second half of the Old Babylonian period, that is, 1800–1600 BCE. It is indeed during this period that the “algebraic” discipline, and Babylonian mathematics in general, culminates. Even though a few texts...... particular culture. Finally, it describes the origin of the discipline and its impact in later mathematics, not least Euclid’s geometry and genuine algebra as created in medieval Islam and taken over in European medieval and Renaissance mathematics....

  10. Algebraic topology and concurrency

    Fajstrup, Lisbeth; Raussen, Martin; Goubault, Eric


    We show in this article that some concepts from homotopy theory, in algebraic topology,are relevant for studying concurrent programs. We exhibit a natural semantics of semaphore programs, based on partially ordered topological spaces, which are studied up to “elastic deformation” or homotopy...... differences between ordinary and directed homotopy through examples. We also relate the topological view to a combinatorial view of concurrent programs closer to transition systems, through the notion of a cubical set. Finally we apply some of these concepts to the proof of the safeness of a two...

  11. Elements of abstract algebra

    Clark, Allan


    This concise, readable, college-level text treats basic abstract algebra in remarkable depth and detail. An antidote to the usual surveys of structure, the book presents group theory, Galois theory, and classical ideal theory in a framework emphasizing proof of important theorems.Chapter I (Set Theory) covers the basics of sets. Chapter II (Group Theory) is a rigorous introduction to groups. It contains all the results needed for Galois theory as well as the Sylow theorems, the Jordan-Holder theorem, and a complete treatment of the simplicity of alternating groups. Chapter III (Field Theory)

  12. Geometric Algebra Computing

    Corrochano, Eduardo Bayro


    This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int

  13. Matlab linear algebra

    Lopez, Cesar


    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to

  14. Handbook of algebra

    Hazewinkel, M


    Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it i

  15. On the derivation of causal propagators for algebraic gauges from the principle of analytic extension

    Pimentel, B.M.; Suzuki, A.T.; Tomazelli, J.L.


    The principle of analytic continuation can be used to derive causal distributions for covariant propagators. We apply this principle as a basis for deriving analytically continued causal distributions for algebraic non-covariant propagators. (author)

  16. Solution of systems of linear algebraic equations by the method of summation of divergent series

    Kirichenko, G.A.; Korovin, Ya.S.; Khisamutdinov, M.V.; Shmojlov, V.I.


    A method for solving systems of linear algebraic equations has been proposed on the basis on the summation of the corresponding continued fractions. The proposed algorithm for solving systems of linear algebraic equations is classified as direct algorithms providing an exact solution in a finite number of operations. Examples of solving systems of linear algebraic equations have been presented and the effectiveness of the algorithm has been estimated [ru

  17. Banach C*-algebras not containing a subspace isomorphic to C0

    Basit, B.


    If X is a locally Hausdorff space and C 0 (X) the Banach algebra of continuous functions defined on X vanishing at infinity, we showed that a subalgebra A of C 0 (X) is finite dimensional if it does not contain a subspace isomorphic to the Banach space C 0 of convergent to zero complex sequences. In this paper we extend this result to noncommutative Banach C*-algebras and Banach* algebras. 10 refs

  18. Traces generating what was there


    Traces keep time contained and make visible what was there. Going back to the art of trace-reading, they continue to be a fundamental resource for scientific knowledge production. The contributions study, from the biology laboratory to the large colliders of particle physics, techniques involved in the production of material traces. Following their changes over two centuries, this collection shows the continuities they have in the digital age.

  19. The Unitality of Quantum B-algebras

    Han, Shengwei; Xu, Xiaoting; Qin, Feng


    Quantum B-algebras as a generalization of quantales were introduced by Rump and Yang, which cover the majority of implicational algebras and provide a unified semantic for a wide class of substructural logics. Unital quantum B-algebras play an important role in the classification of implicational algebras. The main purpose of this paper is to construct unital quantum B-algebras from non-unital quantum B-algebras.

  20. Fractional supersymmetry and infinite dimensional lie algebras

    Rausch de Traubenberg, M.


    In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed

  1. New examples of continuum graded Lie algebras

    Savel'ev, M.V.


    Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs

  2. Graded associative conformal algebras of finite type

    Kolesnikov, Pavel


    In this paper, we consider graded associative conformal algebras. The class of these objects includes pseudo-algebras over non-cocommutative Hopf algebras of regular functions on some linear algebraic groups. In particular, an associative conformal algebra which is graded by a finite group $\\Gamma $ is a pseudo-algebra over the coordinate Hopf algebra of a linear algebraic group $G$ such that the identity component $G^0$ is the affine line and $G/G^0\\simeq \\Gamma $. A classification of simple...

  3. Linear Algebra and Image Processing

    Allali, Mohamed


    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  4. Templates for Linear Algebra Problems

    Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der


    The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and

  5. Differential Equation over Banach Algebra

    Kleyn, Aleks


    In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.

  6. Smarandache hyper BCC-algebra

    Ahadpanah, A.; Borumand Saeid, A.


    In this paper, we define the Smarandache hyper BCC-algebra, and Smarandache hyper BCC-ideals of type 1, 2, 3 and 4. We state and prove some theorems in Smarandache hyper BCC -algebras, and then we determine the relationships between these hyper ideals.

  7. Tilting-connected symmetric algebras

    Aihara, Takuma


    The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.

  8. Algebraic study of chiral anomalies


    Jun 14, 2012 ... They form a group G which acts on the (affine) space of ... The curvature F of A is defined by (notice that in this paper the bracket is defined ... This purely algebraic formulation easily extends to the consideration of the Lie algebra of vector .... namely the case of perturbatively renormalizable theories in four ...

  9. Logarithmic residues in Banach algebras

    H. Bart (Harm); T. Ehrhardt; B. Silbermann


    textabstractLet f be an analytic Banach algebra valued function and suppose that the contour integral of the logarithmic derivative f′f-1 around a Cauchy domain D vanishes. Does it follow that f takes invertible values on all of D? For important classes of Banach algebras, the answer is positive. In

  10. Modular specifications in process algebra

    R.J. van Glabbeek (Rob); F.W. Vaandrager (Frits)


    textabstractIn recent years a wide variety of process algebras has been proposed in the literature. Often these process algebras are closely related: they can be viewed as homomorphic images, submodels or restrictions of each other. The aim of this paper is to show how the semantical reality,

  11. Galois Connections for Flow Algebras

    Filipiuk, Piotr; Terepeta, Michal Tomasz; Nielson, Hanne Riis


    to the approach taken by Monotone Frameworks and other classical analyses. We present a generic framework for static analysis based on flow algebras and program graphs. Program graphs are often used in Model Checking to model concurrent and distributed systems. The framework allows to induce new flow algebras...

  12. The Algebra of Complex Numbers.

    LePage, Wilbur R.

    This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…

  13. Donaldson invariants in algebraic geometry

    Goettsche, L.


    In these lectures I want to give an introduction to the relation of Donaldson invariants with algebraic geometry: Donaldson invariants are differentiable invariants of smooth compact 4-manifolds X, defined via moduli spaces of anti-self-dual connections. If X is an algebraic surface, then these moduli spaces can for a suitable choice of the metric be identified with moduli spaces of stable vector bundles on X. This can be used to compute Donaldson invariants via methods of algebraic geometry and has led to a lot of activity on moduli spaces of vector bundles and coherent sheaves on algebraic surfaces. We will first recall the definition of the Donaldson invariants via gauge theory. Then we will show the relation between moduli spaces of anti-self-dual connections and moduli spaces of vector bundles on algebraic surfaces, and how this makes it possible to compute Donaldson invariants via algebraic geometry methods. Finally we concentrate on the case that the number b + of positive eigenvalues of the intersection form on the second homology of the 4-manifold is 1. In this case the Donaldson invariants depend on the metric (or in the algebraic geometric case on the polarization) via a system of walls and chambers. We will study the change of the invariants under wall-crossing, and use this in particular to compute the Donaldson invariants of rational algebraic surfaces. (author)

  14. Learning Algebra from Worked Examples

    Lange, Karin E.; Booth, Julie L.; Newton, Kristie J.


    For students to be successful in algebra, they must have a truly conceptual understanding of key algebraic features as well as the procedural skills to complete a problem. One strategy to correct students' misconceptions combines the use of worked example problems in the classroom with student self-explanation. "Self-explanation" is the…

  15. Covariant representations of nuclear *-algebras

    Moore, S.M.


    Extensions of the Csup(*)-algebra theory for covariant representations to nuclear *-algebra are considered. Irreducible covariant representations are essentially unique, an invariant state produces a covariant representation with stable vacuum, and the usual relation between ergodic states and covariant representations holds. There exist construction and decomposition theorems and a possible relation between derivations and covariant representations

  16. Practical algebraic renormalization

    Grassi, Pietro Antonio; Hurth, Tobias; Steinhauser, Matthias


    A practical approach is presented which allows the use of a non-invariant regularization scheme for the computation of quantum corrections in perturbative quantum field theory. The theoretical control of algebraic renormalization over non-invariant counterterms is translated into a practical computational method. We provide a detailed introduction into the handling of the Slavnov-Taylor and Ward-Takahashi identities in the standard model both in the conventional and the background gauge. Explicit examples for their practical derivation are presented. After a brief introduction into the Quantum Action Principle the conventional algebraic method which allows for the restoration of the functional identities is discussed. The main point of our approach is the optimization of this procedure which results in an enormous reduction of the calculational effort. The counterterms which have to be computed are universal in the sense that they are independent of the regularization scheme. The method is explicitly illustrated for two processes of phenomenological interest: QCD corrections to the decay of the Higgs boson into two photons and two-loop electroweak corrections to the process B→X s γ

  17. Basic algebraic geometry, v.2

    Shafarevich, Igor Rostislavovich


    Shafarevich Basic Algebraic Geometry 2 The second edition of Shafarevich's introduction to algebraic geometry is in two volumes. The second volume covers schemes and complex manifolds, generalisations in two different directions of the affine and projective varieties that form the material of the first volume. Two notable additions in this second edition are the section on moduli spaces and representable functors, motivated by a discussion of the Hilbert scheme, and the section on Kähler geometry. The book ends with a historical sketch discussing the origins of algebraic geometry. From the Zentralblatt review of this volume: "... one can only respectfully repeat what has been said about the first part of the book (...): a great textbook, written by one of the leading algebraic geometers and teachers himself, has been reworked and updated. As a result the author's standard textbook on algebraic geometry has become even more important and valuable. Students, teachers, and active researchers using methods of al...

  18. Invariants of triangular Lie algebras

    Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman


    Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated

  19. Waterloo Workshop on Computer Algebra

    Zima, Eugene; WWCA-2016; Advances in computer algebra : in honour of Sergei Abramov's' 70th birthday


    This book discusses the latest advances in algorithms for symbolic summation, factorization, symbolic-numeric linear algebra and linear functional equations. It presents a collection of papers on original research topics from the Waterloo Workshop on Computer Algebra (WWCA-2016), a satellite workshop of the International Symposium on Symbolic and Algebraic Computation (ISSAC’2016), which was held at Wilfrid Laurier University (Waterloo, Ontario, Canada) on July 23–24, 2016.   This workshop and the resulting book celebrate the 70th birthday of Sergei Abramov (Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow), whose highly regarded and inspirational contributions to symbolic methods have become a crucial benchmark of computer algebra and have been broadly adopted by many Computer Algebra systems.

  20. Elements of algebraic coding systems

    Cardoso da Rocha, Jr, Valdemar


    Elements of Algebraic Coding Systems is an introductory text to algebraic coding theory. In the first chapter, you'll gain inside knowledge of coding fundamentals, which is essential for a deeper understanding of state-of-the-art coding systems. This book is a quick reference for those who are unfamiliar with this topic, as well as for use with specific applications such as cryptography and communication. Linear error-correcting block codes through elementary principles span eleven chapters of the text. Cyclic codes, some finite field algebra, Goppa codes, algebraic decoding algorithms, and applications in public-key cryptography and secret-key cryptography are discussed, including problems and solutions at the end of each chapter. Three appendices cover the Gilbert bound and some related derivations, a derivation of the Mac- Williams' identities based on the probability of undetected error, and two important tools for algebraic decoding-namely, the finite field Fourier transform and the Euclidean algorithm f...

  1. Representations of affine Hecke algebras

    Xi, Nanhua


    Kazhdan and Lusztig classified the simple modules of an affine Hecke algebra Hq (q E C*) provided that q is not a root of 1 (Invent. Math. 1987). Ginzburg had some very interesting work on affine Hecke algebras. Combining these results simple Hq-modules can be classified provided that the order of q is not too small. These Lecture Notes of N. Xi show that the classification of simple Hq-modules is essentially different from general cases when q is a root of 1 of certain orders. In addition the based rings of affine Weyl groups are shown to be of interest in understanding irreducible representations of affine Hecke algebras. Basic knowledge of abstract algebra is enough to read one third of the book. Some knowledge of K-theory, algebraic group, and Kazhdan-Lusztig cell of Cexeter group is useful for the rest

  2. Simultaneous multi-laser, multi-species trace-level sensing of gas mixtures by rapidly swept continuous-wave cavity-ringdown spectroscopy.

    He, Yabai; Kan, Ruifeng; Englich, Florian V; Liu, Wenqing; Orr, Brian J


    The greenhouse-gas molecules CO(2), CH(4), and H(2)O are detected in air within a few ms by a novel cavity-ringdown laser-absorption spectroscopy technique using a rapidly swept optical cavity and multi-wavelength coherent radiation from a set of pre-tuned near-infrared diode lasers. The performance of various types of tunable diode laser, on which this technique depends, is evaluated. Our instrument is both sensitive and compact, as needed for reliable environmental monitoring with high absolute accuracy to detect trace concentrations of greenhouse gases in outdoor air.

  3. (Modular Effect Algebras are Equivalent to (Frobenius Antispecial Algebras

    Dusko Pavlovic


    Full Text Available Effect algebras are one of the generalizations of Boolean algebras proposed in the quest for a quantum logic. Frobenius algebras are a tool of categorical quantum mechanics, used to present various families of observables in abstract, often nonstandard frameworks. Both effect algebras and Frobenius algebras capture their respective fragments of quantum mechanics by elegant and succinct axioms; and both come with their conceptual mysteries. A particularly elegant and mysterious constraint, imposed on Frobenius algebras to characterize a class of tripartite entangled states, is the antispecial law. A particularly contentious issue on the quantum logic side is the modularity law, proposed by von Neumann to mitigate the failure of distributivity of quantum logical connectives. We show that, if quantum logic and categorical quantum mechanics are formalized in the same framework, then the antispecial law of categorical quantum mechanics corresponds to the natural requirement of effect algebras that the units are each other's unique complements; and that the modularity law corresponds to the Frobenius condition. These correspondences lead to the equivalence announced in the title. Aligning the two formalisms, at the very least, sheds new light on the concepts that are more clearly displayed on one side than on the other (such as e.g. the orthogonality. Beyond that, it may also open up new approaches to deep and important problems of quantum mechanics (such as the classification of complementary observables.

  4. Rota-Baxter algebras and the Hopf algebra of renormalization

    Ebrahimi-Fard, K.


    Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

  5. Rota-Baxter algebras and the Hopf algebra of renormalization

    Ebrahimi-Fard, K.


    Recently, the theory of renormalization in perturbative quantum field theory underwent some exciting new developments. Kreimer discovered an organization of Feynman graphs into combinatorial Hopf algebras. The process of renormalization is captured by a factorization theorem for regularized Hopf algebra characters. Hereby the notion of Rota-Baxter algebras enters the scene. In this work we develop in detail several mathematical aspects of Rota-Baxter algebras as they appear also in other sectors closely related to perturbative renormalization, to wit, for instance multiple-zeta-values and matrix differential equations. The Rota-Baxter picture enables us to present the algebraic underpinning for the Connes-Kreimer Birkhoff decomposition in a concise way. This is achieved by establishing a general factorization theorem for filtered algebras. Which in turn follows from a new recursion formula based on the Baker-Campbell-Hausdorff formula. This allows us to generalize a classical result due to Spitzer to non-commutative Rota-Baxter algebras. The Baker-Campbell-Hausdorff based recursion turns out to be a generalization of Magnus' expansion in numerical analysis to generalized integration operators. We will exemplify these general results by establishing a simple representation of the combinatorics of renormalization in terms of triangular matrices. We thereby recover in the presence of a Rota-Baxter operator the matrix representation of the Birkhoff decomposition of Connes and Kreimer. (orig.)

  6. Continuity theory

    Nel, Louis


    This book presents a detailed, self-contained theory of continuous mappings. It is mainly addressed to students who have already studied these mappings in the setting of metric spaces, as well as multidimensional differential calculus. The needed background facts about sets, metric spaces and linear algebra are developed in detail, so as to provide a seamless transition between students' previous studies and new material. In view of its many novel features, this book will be of interest also to mature readers who have studied continuous mappings from the subject's classical texts and wish to become acquainted with a new approach. The theory of continuous mappings serves as infrastructure for more specialized mathematical theories like differential equations, integral equations, operator theory, dynamical systems, global analysis, topological groups, topological rings and many more. In light of the centrality of the topic, a book of this kind fits a variety of applications, especially those that contribute to ...

  7. The BRS algebra of a free differential algebra

    Boukraa, S.


    We construct in this work, the Weil and the universal BRS algebras of theories that can have as a gauge symmetry a free differential (Sullivan) algebra, the natural extension of Lie algebras allowing the definition of p-form gauge potentials (p>1). The finite gauge transformations of these potentials are deduced from the infinitesimal ones and the group structure is shown. The geometrical meaning of these p-form gauge potentials is given by the notion of a Quillen superconnection. (author). 19 refs

  8. Lie algebra in quantum physics by means of computer algebra

    Kikuchi, Ichio; Kikuchi, Akihito


    This article explains how to apply the computer algebra package GAP ( in the computation of the problems in quantum physics, in which the application of Lie algebra is necessary. The article contains several exemplary computations which readers would follow in the desktop PC: such as, the brief review of elementary ideas of Lie algebra, the angular momentum in quantum mechanics, the quark eight-fold way model, and the usage of Weyl character formula (in order to construct w...

  9. Head First Algebra A Learner's Guide to Algebra I

    Pilone, Tracey


    Having trouble understanding algebra? Do algebraic concepts, equations, and logic just make your head spin? We have great news: Head First Algebra is designed for you. Full of engaging stories and practical, real-world explanations, this book will help you learn everything from natural numbers and exponents to solving systems of equations and graphing polynomials. Along the way, you'll go beyond solving hundreds of repetitive problems, and actually use what you learn to make real-life decisions. Does it make sense to buy two years of insurance on a car that depreciates as soon as you drive i

  10. Subgroups of class groups of algebraic quadratic function fields

    Wang Kunpeng; Zhang Xianke


    Ideal class groups H(K) of algebraic quadratic function fields K are studied, by using mainly the theory of continued fractions of algebraic functions. Properties of such continued fractions are discussed first. Then a necessary and sufficient condition is given for the class group H(K) to contain a cyclic subgroup of any order n, this criterion condition holds true for both real and imaginary fields K. Furthermore, several series of function fields K, including real, inertia imaginary, as well as ramified imaginary quadratic function fields, are given, and their class groups H(K) are proved to contain cyclic subgroups of order n. (author)

  11. On the homotopy equivalence of simple AI-algebras

    Aristov, O Yu


    Let A and B be simple unital AI-algebras (an AI-algebra is an inductive limit of C*-algebras of the form BigOplus i k C([0,1],M N i ). It is proved that two arbitrary unital homomorphisms from A into B such that the corresponding maps K 0 A→K 0 B coincide are homotopic. Necessary and sufficient conditions on the Elliott invariant for A and B to be homotopy equivalent are indicated. Moreover, two algebras in the above class having the same K-theory but not homotopy equivalent are constructed. A theorem on the homotopy of approximately unitarily equivalent homomorphisms between AI-algebras is used in the proof, which is deduced in its turn from a generalization to the case of AI-algebras of a theorem of Manuilov stating that a unitary matrix almost commuting with a self-adjoint matrix h can be joined to 1 by a continuous path consisting of unitary matrices almost commuting with h

  12. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

    Gonzalez-Vega, Laureano


    Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

  13. Maximal violation of Bell's inequalities for algebras of observables in tangent spacetime regions

    Summers, S.J.; Werner, R.


    We continue our study of Bell's inequalities and quantum field theory. It is shown in considerably broader generality than in our previous work that algebras of local observables corresponding to complementary wedge regions maximally violate Bell's inequality in all normal states. Pairs of commuting von Neumann algebras that maximally violate Bell's inequalities in all normal states are characterized. Algebras of local observables corresponding to tangent double cones are shown to maximally violate Bell's inequalities in all normal states in dilatation-invariant theories, in free quantum field models, and in a class of interacting models. Further, it is proven that such algebras are not split in any theory with an ultraviolet scaling limit

  14. Infinite-parametric extension of the conformal algebra in D>2 space-time dimension

    Fradkin, E.S.; Linetsky, V.Ya.


    On the basis of the analytic continuations of semisimple Lie algebras discovered recently by us we construct manifestly quasiconformal infinite-dimensional algebras AC(so(4,1)) and PAC(so(3,2)) extending the conformal algebras in three-dimensional Euclidean and Minkowski space-time like the Virasoro algebra extends so(2,1). Their higher spin generalizations are also constructed. A counterpart of the central extension for D>2 and possible applications in exactly solvable conformal quantum field models in D>2 are discussed. (author). 31 refs, 2 figs

  15. Algebra for cryptologists

    Meijer, Alko R


    This textbook provides an introduction to the mathematics on which modern cryptology is based. It covers not only public key cryptography, the glamorous component of modern cryptology, but also pays considerable attention to secret key cryptography, its workhorse in practice. Modern cryptology has been described as the science of the integrity of information, covering all aspects like confidentiality, authenticity and non-repudiation and also including the protocols required for achieving these aims. In both theory and practice it requires notions and constructions from three major disciplines: computer science, electronic engineering and mathematics. Within mathematics, group theory, the theory of finite fields, and elementary number theory as well as some topics not normally covered in courses in algebra, such as the theory of Boolean functions and Shannon theory, are involved. Although essentially self-contained, a degree of mathematical maturity on the part of the reader is assumed, corresponding to his o...

  16. Space-time algebra

    Hestenes, David


    This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, a...

  17. Current algebra for parafields

    Palev, Ch.D.


    Within the framework of the Lagrangean QFT a generalization of canonical commutation and anticommutation relations in terms of three-linear commutation relations, corresponding to the parastatistics, s discussed. A detailed derivation of these three-linear relations for a set of parafermi fields is presented. Then for a Lagrangean, depending of a family of parabose fields and a family of paraferm fields, is shown that the fundamental hypothesis of current algebra is valid. In other words, the currents corresponding to the linear gauge transformations are found to meet the commutation relation: [Jsub(f)sup(0)(x), Jsub(g)sup(0)]sub(x 0 =y 0 ) = -idelta(x vector - y vector)Jsub([f,g])sup(0) (x), where Jsub(f)sup(0) is a time component of the current, corresponding to transformation f. (S.P.)

  18. Applications of computer algebra


    Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with in­ creasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equa­ tion and obtains a closed for...

  19. MATLAB matrix algebra

    Pérez López, César


    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...

  20. Quantum algebra of N superspace

    Hatcher, Nicolas; Restuccia, A.; Stephany, J.


    We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the κ-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra

  1. Macdonald index and chiral algebra

    Song, Jaewon


    For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.

  2. Vertex algebras and mirror symmetry

    Borisov, L.A.


    Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)

  3. Algebra of 2D periodic operators with local and perpendicular defects

    Kutsenko, Anton


    We show that 2D periodic operators with local and perpendicular defects form an algebra. We provide an algorithm for finding spectrum for such operators. While the continuous spectral components can be computed by simple algebraic operations on some matrix-valued functions and a few number...

  4. Simple skew category algebras associated with minimal partially defined dynamical systems

    Nystedt, Patrik; Öinert, Per Johan


    In this article, we continue our study of category dynamical systems, that is functors s from a category G to Topop, and their corresponding skew category algebras. Suppose that the spaces s(e), for e∈ob(G), are compact Hausdorff. We show that if (i) the skew category algebra is simple, then (ii) G...

  5. Markov traces and II1 factors in conformal field theory

    Boer, J. de; Goeree, J.


    Using the duality equations of Moore and Seiberg we define for every primary field in a Rational Conformal Field Theory a proper Markov trace and hence a knot invariant. Next we define two nested algebras and show, using results of Ocneanu, how the position of the smaller algebra in the larger one reproduces part of the duality data. A new method for constructing Rational Conformal Field Theories is proposed. (orig.)

  6. Handbook of algebra Vol. 1


    Handbook of Algebra defines algebra as consisting of many different ideas, concepts and results. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. Each chapter of the book combines some of the features of both a graduate-level textbook and a research-level survey. This book is divided into eight sections. Section 1A focuses on linear algebra and discusses such concepts as matrix functions and equations and random matrices. Section 1B cover linear d

  7. Introduction to applied algebraic systems

    Reilly, Norman R


    This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as

  8. Remarks on finite W algebras

    Barbarin, F.; Sorba, P.; Ragoucy, E.


    The property of some finite W algebras to be the commutant of a particular subalgebra of a simple Lie algebra G is used to construct realizations of G. When G ≅ so (4,2), unitary representations of the conformal and Poincare algebras are recognized in this approach, which can be compared to the usual induced representation technique. When G approx=(2, R), the anyonic parameter can be seen as the eigenvalue of a W generator in such W representations of G. The generalization of such properties to the affine case is also discussed in the conclusion, where an alternative of the Wakimoto construction for sl(2) k is briefly presented. (authors)

  9. Lectures on Algebraic Geometry I

    Harder, Gunter


    This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern metho

  10. Lie Algebras and Integrable Systems

    Zhang Yufeng; Mei Jianqin


    A 3 × 3 matrix Lie algebra is first introduced, its subalgebras and the generated Lie algebras are obtained, respectively. Applications of a few Lie subalgebras give rise to two integrable nonlinear hierarchies of evolution equations from their reductions we obtain the nonlinear Schrödinger equations, the mKdV equations, the Broer-Kaup (BK) equation and its generalized equation, etc. The linear and nonlinear integrable couplings of one integrable hierarchy presented in the paper are worked out by casting a 3 × 3 Lie subalgebra into a 2 × 2 matrix Lie algebra. Finally, we discuss the elliptic variable solutions of a generalized BK equation. (general)

  11. Study guide for college algebra

    Snow, James W; Shapiro, Arnold


    Study Guide for College Algebra is a supplemental material for the basic text, College Algebra. Its purpose is to make the learning of college algebra and trigonometry easier and enjoyable.The book provides detailed solutions to exercises found in the text. Students are encouraged to use the study guide as a learning tool during the duration of the course, a reviewer prior to an exam, a reference book, and as a quick overview before studying a section of the text. The Study Guide and Solutions Manual consists of four major components: basic concepts that should be learned from each unit, what

  12. Test bank for college algebra

    Kolman, Bernard; Levitan, Michael L


    Test Bank for College Algebra, Second Edition is a supplementary material for the text, College Algebra, Second Edition. The book is intended for use by mathematics teachers.The book contains standard tests for each chapter in the textbook. Each set of test aims to evaluate the level of understanding the student has achieved during the course. The answers for each chapter test and the final exam are found at the end of the book.Mathematics teachers teaching college algebra will find the book very useful.

  13. Coxeter groups and Hopf algebras

    Aguiar, Marcelo


    An important idea in the work of G.-C. Rota is that certain combinatorial objects give rise to Hopf algebras that reflect the manner in which these objects compose and decompose. Recent work has seen the emergence of several interesting Hopf algebras of this kind, which connect diverse subjects such as combinatorics, algebra, geometry, and theoretical physics. This monograph presents a novel geometric approach using Coxeter complexes and the projection maps of Tits for constructing and studying many of these objects as well as new ones. The first three chapters introduce the necessary backgrou

  14. Algebraic and stochastic coding theory

    Kythe, Dave K


    Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.

  15. Linear operators in Clifford algebras

    Laoues, M.


    We consider the real vector space structure of the algebra of linear endomorphisms of a finite-dimensional real Clifford algebra (2, 4, 5, 6, 7, 8). A basis of that space is constructed in terms of the operators M eI,eJ defined by x→e I .x.e J , where the e I are the generators of the Clifford algebra and I is a multi-index (3, 7). In particular, it is shown that the family (M eI,eJ ) is exactly a basis in the even case. (orig.)

  16. Introduction to algebra and trigonometry

    Kolman, Bernard


    Introduction to Algebra and Trigonometry provides a complete and self-contained presentation of the fundamentals of algebra and trigonometry.This book describes an axiomatic development of the foundations of algebra, defining complex numbers that are used to find the roots of any quadratic equation. Advanced concepts involving complex numbers are also elaborated, including the roots of polynomials, functions and function notation, and computations with logarithms. This text also discusses trigonometry from a functional standpoint. The angles, triangles, and applications involving triangles are

  17. Brauer algebras of type F4

    Liu, S.


    We present an algebra related to the Coxeter group of type F4 which can be viewed as the Brauer algebra of type F4 and is obtained as a subalgebra of the Brauer algebra of type E6. We also describe some properties of this algebra.

  18. Contraction of graded su(2) algebra

    Patra, M.K.; Tripathy, K.C.


    The Inoenu-Wigner contraction scheme is extended to Lie superalgebras. The structure and representations of extended BRS algebra are obtained from contraction of the graded su(2) algebra. From cohomological consideration, we demonstrate that the graded su(2) algebra is the only superalgebra which, on contraction, yields the full BRS algebra. (orig.)

  19. Brauer algebra of type F4

    Liu, S.


    We present an algebra related to the Coxeter group of type F4 which can be viewed as the Brauer algebra of type F4 and is obtained as a subalgebra of the Brauer algebra of type E6. We also describe some properties of this algebra.

  20. Strongly \\'etale difference algebras and Babbitt's decomposition

    Tomašić, Ivan; Wibmer, Michael


    We introduce a class of strongly \\'{e}tale difference algebras, whose role in the study of difference equations is analogous to the role of \\'{e}tale algebras in the study of algebraic equations. We deduce an improved version of Babbitt's decomposition theorem and we present applications to difference algebraic groups and the compatibility problem.

  1. Particle-like structure of Lie algebras

    Vinogradov, A. M.


    If a Lie algebra structure 𝔤 on a vector space is the sum of a family of mutually compatible Lie algebra structures 𝔤i's, we say that 𝔤 is simply assembled from the 𝔤i's. Repeating this procedure with a number of Lie algebras, themselves simply assembled from the 𝔤i's, one obtains a Lie algebra assembled in two steps from 𝔤i's, and so on. We describe the process of modular disassembling of a Lie algebra into a unimodular and a non-unimodular part. We then study two inverse questions: which Lie algebras can be assembled from a given family of Lie algebras, and from which Lie algebras can a given Lie algebra be assembled. We develop some basic assembling and disassembling techniques that constitute the elements of a new approach to the general theory of Lie algebras. The main result of our theory is that any finite-dimensional Lie algebra over an algebraically closed field of characteristic zero or over R can be assembled in a finite number of steps from two elementary constituents, which we call dyons and triadons. Up to an abelian summand, a dyon is a Lie algebra structure isomorphic to the non-abelian 2-dimensional Lie algebra, while a triadon is isomorphic to the 3-dimensional Heisenberg Lie algebra. As an example, we describe constructions of classical Lie algebras from triadons.

  2. Galilean contractions of W-algebras

    Jørgen Rasmussen


    Full Text Available Infinite-dimensional Galilean conformal algebras can be constructed by contracting pairs of symmetry algebras in conformal field theory, such as W-algebras. Known examples include contractions of pairs of the Virasoro algebra, its N=1 superconformal extension, or the W3 algebra. Here, we introduce a contraction prescription of the corresponding operator-product algebras, or equivalently, a prescription for contracting tensor products of vertex algebras. With this, we work out the Galilean conformal algebras arising from contractions of N=2 and N=4 superconformal algebras as well as of the W-algebras W(2,4, W(2,6, W4, and W5. The latter results provide evidence for the existence of a whole new class of W-algebras which we call Galilean W-algebras. We also apply the contraction prescription to affine Lie algebras and find that the ensuing Galilean affine algebras admit a Sugawara construction. The corresponding central charge is level-independent and given by twice the dimension of the underlying finite-dimensional Lie algebra. Finally, applications of our results to the characterisation of structure constants in W-algebras are proposed.

  3. The Centroid of a Lie Triple Algebra

    Xiaohong Liu


    Full Text Available General results on the centroids of Lie triple algebras are developed. Centroids of the tensor product of a Lie triple algebra and a unitary commutative associative algebra are studied. Furthermore, the centroid of the tensor product of a simple Lie triple algebra and a polynomial ring is completely determined.

  4. Geometry of Spin: Clifford Algebraic Approach

    Then the various algebraic properties of Pauli matricesare studied as properties of matrix algebra. What has beenshown in this article is that Pauli matrices are a representationof Clifford algebra of spin and hence all the propertiesof Pauli matrices follow from the underlying algebra. Cliffordalgebraic approach provides a ...

  5. Semiprojectivity of universal -algebras generated by algebraic elements

    Shulman, Tatiana


    Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given.......Let be a polynomial in one variable whose roots all have multiplicity more than 1. It is shown that the universal -algebra of a relation , , is semiprojective and residually finite-dimensional. Applications to polynomially compact operators are given....

  6. Lectures on algebraic quantum field theory and operator algebras

    Schroer, Bert


    In this series of lectures directed towards a mainly mathematically oriented audience I try to motivate the use of operator algebra methods in quantum field theory. Therefore a title as why mathematicians are/should be interested in algebraic quantum field theory would be equally fitting. besides a presentation of the framework and the main results of local quantum physics these notes may serve as a guide to frontier research problems in mathematical. (author)

  7. Pre-Algebra Essentials For Dummies

    Zegarelli, Mark


    Many students worry about starting algebra. Pre-Algebra Essentials For Dummies provides an overview of critical pre-algebra concepts to help new algebra students (and their parents) take the next step without fear. Free of ramp-up material, Pre-Algebra Essentials For Dummies contains content focused on key topics only. It provides discrete explanations of critical concepts taught in a typical pre-algebra course, from fractions, decimals, and percents to scientific notation and simple variable equations. This guide is also a perfect reference for parents who need to review critical pre-algebra

  8. On graded algebras of global dimension 3

    Piontkovskii, D I


    Assume that a graded associative algebra A over a field k is minimally presented as the quotient algebra of a free algebra F by the ideal I generated by a set f of homogeneous elements. We study the following two extensions of A: the algebra F-bar=F/I oplus I/I 2 oplus ... associated with F with respect to the I-adic filtration, and the homology algebra H of the Shafarevich complex Sh(f,F) (which is a non-commutative version of the Koszul complex). We obtain several characterizations of algebras of global dimension 3. In particular, the A-algebra H in this case is free, and the algebra F-bar is isomorphic to the quotient algebra of a free A-algebra by the ideal generated by a so-called strongly free (or inert) set

  9. Connections between algebra, combinatorics, and geometry

    Sather-Wagstaff, Sean


    Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra, Combinatorics, and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University, February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resou...

  10. Quantum Heisenberg groups and Sklyanin algebras

    Andruskiewitsch, N.; Devoto, J.; Tiraboschi, A.


    We define new quantizations of the Heisenberg group by introducing new quantizations in the universal enveloping algebra of its Lie algebra. Matrix coefficients of the Stone-von Neumann representation are preserved by these new multiplications on the algebra of functions on the Heisenberg group. Some of the new quantizations provide also a new multiplication in the algebra of theta functions; we obtain in this way Sklyanin algebras. (author). 23 refs

  11. Representations of fundamental groups of algebraic varieties

    Zuo, Kang


    Using harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area.

  12. Pure homology of algebraic varieties

    Weber, Andrzej


    We show that for a complete complex algebraic variety the pure component of homology coincides with the image of intersection homology. Therefore pure homology is topologically invariant. To obtain slightly more general results we introduce "image homology" for noncomplete varieties.

  13. Lie-Algebras. Pt. 1

    Baeuerle, G.G.A.; Kerf, E.A. de


    The structure of the laws in physics is largely based on symmetries. This book is on Lie algebras, the mathematics of symmetry. It gives a thorough mathematical treatment of finite dimensional Lie algebras and Kac-Moody algebras. Concepts such as Cartan matrix, root system, Serre's construction are carefully introduced. Although the book can be read by an undergraduate with only an elementary knowledge of linear algebra, the book will also be of use to the experienced researcher. Experience has shown that students who followed the lectures are well-prepared to take on research in the realms of string-theory, conformal field-theory and integrable systems. 48 refs.; 66 figs.; 3 tabs

  14. Classical theory of algebraic numbers

    Ribenboim, Paulo


    Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...

  15. The algebraic geometry of multimonopoles

    Nahm, W.


    Multimonopole solutions of the Bogomolny equation are treated by a transform to an ordinary differential equation. The solution of this equation yields algebraic curves and holomorphic line bundles over them. (orig.)

  16. Algebraic study of chiral anomalies

    Chiral anomalies; gauge theories; bundles; connections; quantum field ... The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a fixed background connection. ... Current Issue : Vol.

  17. Cartooning in Algebra and Calculus

    Moseley, L. Jeneva


    This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.

  18. Ada Linear-Algebra Program

    Klumpp, A. R.; Lawson, C. L.


    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  19. Algebraic structure of chiral anomalies

    Stora, R.


    I will describe first the algebraic aspects of chiral anomalies, exercising however due care about the topological delicacies. I will illustrate the structure and methods in the context of gauge anomalies and will eventually make contact with results obtained from index theory. I will go into two sorts of generalizations: on the one hand, generalizing the algebraic set up yields e.g. gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories; on the other hand most constructions applied to the cohomologies which characterize anomalies easily extend to higher cohomologies. Section II is devoted to a description of the general set up as it applies to gauge anomalies. Section III deals with a number of algebraic set ups which characterize more general types of anomalies: gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories. It also includes brief remarks on σ models and a reminder on the full BRST algebra of quantized gauge theories

  20. Cluster algebras in mathematical physics

    Francesco, Philippe Di; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito


    This special issue of Journal of Physics A: Mathematical and Theoretical contains reviews and original research articles on cluster algebras and their applications to mathematical physics. Cluster algebras were introduced by S Fomin and A Zelevinsky around 2000 as a tool for studying total positivity and dual canonical bases in Lie theory. Since then the theory has found diverse applications in mathematics and mathematical physics. Cluster algebras are axiomatically defined commutative rings equipped with a distinguished set of generators (cluster variables) subdivided into overlapping subsets (clusters) of the same cardinality subject to certain polynomial relations. A cluster algebra of rank n can be viewed as a subring of the field of rational functions in n variables. Rather than being presented, at the outset, by a complete set of generators and relations, it is constructed from the initial seed via an iterative procedure called mutation producing new seeds successively to generate the whole algebra. A seed consists of an n-tuple of rational functions called cluster variables and an exchange matrix controlling the mutation. Relations of cluster algebra type can be observed in many areas of mathematics (Plücker and Ptolemy relations, Stokes curves and wall-crossing phenomena, Feynman integrals, Somos sequences and Hirota equations to name just a few examples). The cluster variables enjoy a remarkable combinatorial pattern; in particular, they exhibit the Laurent phenomenon: they are expressed as Laurent polynomials rather than more general rational functions in terms of the cluster variables in any seed. These characteristic features are often referred to as the cluster algebra structure. In the last decade, it became apparent that cluster structures are ubiquitous in mathematical physics. Examples include supersymmetric gauge theories, Poisson geometry, integrable systems, statistical mechanics, fusion products in infinite dimensional algebras, dilogarithm

  1. Hopf algebras and topological recursion

    Esteves, João N


    We consider a model for topological recursion based on the Hopf algebra of planar binary trees defined by Loday and Ronco (1998 Adv. Math. 139 293–309 We show that extending this Hopf algebra by identifying pairs of nearest neighbor leaves, and thus producing graphs with loops, we obtain the full recursion formula discovered by Eynard and Orantin (2007 Commun. Number Theory Phys. 1 347–452). (paper)

  2. Nineteen papers on algebraic semigroups

    Aizenshtat, A Ya; Podran, N E; Ponizovskii, IS; Shain, BM


    This volume contains papers selected by leading specialists in algebraic semigroups in the U.S., the United Kingdom, and Australia. Many of the papers strongly influenced the development of algebraic semigroups, but most were virtually unavailable outside the U.S.S.R. Written by some of the most prominent Soviet researchers in the field, the papers have a particular emphasis on semigroups of transformations. Boris Schein of the University of Arkansas is the translator.

  3. Distribution theory of algebraic numbers

    Yang, Chung-Chun


    The book timely surveys new research results and related developments in Diophantine approximation, a division of number theory which deals with the approximation of real numbers by rational numbers. The book is appended with a list of challenging open problems and a comprehensive list of references. From the contents: Field extensions Algebraic numbers Algebraic geometry Height functions The abc-conjecture Roth''s theorem Subspace theorems Vojta''s conjectures L-functions.

  4. Trace analysis

    Warner, M.


    What is the current state of quantitative trace analytical chemistry? What are today's research efforts? And what challenges does the future hold? These are some of the questions addressed at a recent four-day symposium sponsored by the National Bureau of Standards (NBS) entitled Accuracy in Trace Analysis - Accomplishments, Goals, Challenges. The two plenary sessions held on the first day of the symposium reviewed the history of quantitative trace analysis, discussed the present situation from academic and industrial perspectives, and summarized future needs. The remaining three days of the symposium consisted of parallel sessions dealing with the measurement process; quantitation in materials; environmental, clinical, and nutrient analysis; and advances in analytical techniques

  5. Algebraic Systems and Pushdown Automata

    Petre, Ion; Salomaa, Arto

    We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.

  6. Algebras in genetics

    Wörz-Busekros, Angelika


    The purpose of these notes is to give a rather complete presentation of the mathematical theory of algebras in genetics and to discuss in detail many applications to concrete genetic situations. Historically, the subject has its origin in several papers of Etherington in 1939- 1941. Fundamental contributions have been given by Schafer, Gonshor, Holgate, Reiers¢l, Heuch, and Abraham. At the moment there exist about forty papers in this field, one survey article by Monique Bertrand from 1966 based on four papers of Etherington, a paper by Schafer and Gonshor's first paper. Furthermore Ballonoff in the third section of his book "Genetics and Social Structure" has included four papers by Etherington and Reiers¢l's paper. Apparently a complete review, in par­ ticular one comprising more recent results was lacking, and it was difficult for students to enter this field of research. I started to write these notes in spring 1978. A first german version was finished at the end of that year. Further revision and tran...

  7. Esercizi scelti di algebra

    Chirivì, Rocco; Dvornicich, Roberto


    Questo libro – primo di due volumi -  presenta oltre 250 esercizi scelti di algebra ricavati dai compiti d'esame dei corsi di Aritmetica tenuti dagli autori all'Università di Pisa. Ogni esercizio viene presentato con una o più soluzioni accuratamente redatte con linguaggio e notazioni uniformi. Caratteristica distintiva del libro è che gli esercizi proposti sono tutti diversi uno dall'altro e le soluzioni richiedono sempre una piccola idea originale; ciò rende il libro unico nel genere. Gli argomenti di questo primo volume sono: principio d'induzione, combinatoria, congruenze, gruppi abeliani, anelli commutativi, polinomi, estensioni di campi, campi finiti. Il libro contiene inoltre una dettagliata sezione di richiami teorici e può essere usato come libro di riferimento per lo studio. Una serie di esercizi preliminari introduce le tecniche principali da usare per confrontarsi con i testi d'esame proposti. Il volume è rivolto a tutti gli studenti del primo anno dei corsi di laur ea in Matematica e Inf...

  8. Quantum deformed su(mvertical stroke n) algebra and superconformal algebra on quantum superspace

    Kobayashi, Tatsuo


    We study a deformed su(mvertical stroke n) algebra on a quantum superspace. Some interesting aspects of the deformed algebra are shown. As an application of the deformed algebra we construct a deformed superconformal algebra. From the deformed su(1vertical stroke 4) algebra, we derive deformed Lorentz, translation of Minkowski space, iso(2,2) and its supersymmetric algebras as closed subalgebras with consistent automorphisms. (orig.)

  9. Approximation of complex algebraic numbers by algebraic numbers of bounded degree

    Bugeaud, Yann; Evertse, Jan-Hendrik


    We investigate how well complex algebraic numbers can be approximated by algebraic numbers of degree at most n. We also investigate how well complex algebraic numbers can be approximated by algebraic integers of degree at most n+1. It follows from our investigations that for every positive integer n there are complex algebraic numbers of degree larger than n that are better approximable by algebraic numbers of degree at most n than almost all complex numbers. As it turns out, these numbers ar...

  10. Process algebras for hybrid systems : comparison and development

    Khadim, U.


    Our research is about formal speci¯cation and analysis of hybrid systems. The formalism used is process algebra. Hybrid systems are systems that exhibit both discrete and continuous behaviour. An example of a hybrid system is a digital controller controlling a physical device such as present in

  11. Operadic formulation of topological vertex algebras and gerstenhaber or Batalin-Vilkovisky algebras

    Huang Yizhi


    We give the operadic formulation of (weak, strong) topological vertex algebras, which are variants of topological vertex operator algebras studied recently by Lian and Zuckerman. As an application, we obtain a conceptual and geometric construction of the Batalin-Vilkovisky algebraic structure (or the Gerstenhaber algebra structure) on the cohomology of a topological vertex algebra (or of a weak topological vertex algebra) by combining this operadic formulation with a theorem of Getzler (or of Cohen) which formulates Batalin-Vilkovisky algebras (or Gerstenhaber algebras) in terms of the homology of the framed little disk operad (or of the little disk operad). (orig.)

  12. An application of the division algebras, Jordan algebras and split composition algebras

    Foot, R.; Joshi, G.C.


    It has been established that the covering group of the Lorentz group in D = 3, 4, 6, 10 can be expressed in a unified way, based on the four composition division algebras R, C, Q and O. In this paper, the authors discuss, in this framework, the role of the complex numbers of quantum mechanics. A unified treatment of quantum-mechanical spinors is given. The authors provide an explicit demonstration that the vector and spinor transformations recently constructed from a subgroup of the reduced structure group of the Jordan algebras M n 3 are indeed the Lorentz transformations. The authors also show that if the division algebras in the construction of the covering groups of the Lorentz groups in D = 3, 4, 6, 10 are replaced by the split composition algebras, then the sequence of groups SO(2, 2), SO(3, 3) and SO(5, 5) result. The analysis is presumed to be self-contained as the relevant aspects of the division algebras and Jordan algebras are reviewed. Some applications to physical theory are indicated

  13. Novikov algebras with associative bilinear forms

    Zhu Fuhai; Chen Zhiqi [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)


    Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. The goal of this paper is to study Novikov algebras with non-degenerate associative symmetric bilinear forms, which we call quadratic Novikov algebras. Based on the classification of solvable quadratic Lie algebras of dimension not greater than 4 and Novikov algebras in dimension 3, we show that quadratic Novikov algebras up to dimension 4 are commutative. Furthermore, we obtain the classification of transitive quadratic Novikov algebras in dimension 4. But we find that not every quadratic Novikov algebra is commutative and give a non-commutative quadratic Novikov algebra in dimension 6.

  14. Extended Kac-Moody algebras and applications

    Ragoucy, E.; Sorba, P.


    The notion of a Kac-Moody algebra defined on the S 1 circle is extended to super Kac-Moody algebras defined on MxG N , M being a smooth closed compact manifold of dimension greater than one, and G N the Grassman algebra with N generators. All the central extensions of these algebras are computed. Then, for each such algebra the derivation algebra constructed from the MxG N diffeomorphism is determined. The twists of such super Kac-Moody algebras as well as the generalization to non-compact surfaces are partially studied. Finally, the general construction is applied to the study of conformal and superconformal algebras, as well as area-preserving diffeomorphisms algebra and its supersymmetric extension. (author) 65 refs

  15. Automorphic Lie algebras with dihedral symmetry

    Knibbeler, V; Lombardo, S; A Sanders, J


    The concept of automorphic Lie algebras arises in the context of reduction groups introduced in the early 1980s in the field of integrable systems. automorphic Lie algebras are obtained by imposing a discrete group symmetry on a current algebra of Krichever–Novikov type. Past work shows remarkable uniformity between algebras associated to different reduction groups. For example, if the base Lie algebra is sl 2 (C) and the poles of the automorphic Lie algebra are restricted to an exceptional orbit of the symmetry group, changing the reduction group does not affect the Lie algebra structure. In this research we fix the reduction group to be the dihedral group and vary the orbit of poles as well as the group action on the base Lie algebra. We find a uniform description of automorphic Lie algebras with dihedral symmetry, valid for poles at exceptional and generic orbits. (paper)

  16. Certain number-theoretic episodes in algebra

    Sivaramakrishnan, R


    Many basic ideas of algebra and number theory intertwine, making it ideal to explore both at the same time. Certain Number-Theoretic Episodes in Algebra focuses on some important aspects of interconnections between number theory and commutative algebra. Using a pedagogical approach, the author presents the conceptual foundations of commutative algebra arising from number theory. Self-contained, the book examines situations where explicit algebraic analogues of theorems of number theory are available. Coverage is divided into four parts, beginning with elements of number theory and algebra such as theorems of Euler, Fermat, and Lagrange, Euclidean domains, and finite groups. In the second part, the book details ordered fields, fields with valuation, and other algebraic structures. This is followed by a review of fundamentals of algebraic number theory in the third part. The final part explores links with ring theory, finite dimensional algebras, and the Goldbach problem.

  17. Infinite dimension algebra and conformal symmetry

    Ragoucy-Aubezon, E.


    A generalisation of Kac-Moody algebras (current algebras defined on a circle) to algebras defined on a compact supermanifold of any dimension and with any number of supersymmetries is presented. For such a purpose, we compute all the central extensions of loop algebras defined on this supermanifold, i.e. all the cohomology classes of these loop algebras. Then, we try to extend the relation (i.e. semi-direct sum) that exists between the two dimensional conformal algebras (called Virasoro algebra) and the usual Kac-Moody algebras, by considering the derivation algebra of our extended Kac-Moody algebras. The case of superconformal algebras (used in superstrings theories) is treated, as well as the cases of area-preserving diffeomorphisms (used in membranes theories), and Krichever-Novikov algebras (used for interacting strings). Finally, we present some generalizations of the Sugawara construction to the cases of extended Kac-Moody algebras, and Kac-Moody of superalgebras. These constructions allow us to get new realizations of the Virasoro, and Ramond, Neveu-Schwarz algebras

  18. Taming the unknown a history of algebra from antiquity to the early twentieth century

    Katz, Victor J


    What is algebra? For some, it is an abstract language of x's and y's. For mathematics majors and professional mathematicians, it is a world of axiomatically defined constructs like groups, rings, and fields. Taming the Unknown considers how these two seemingly different types of algebra evolved and how they relate. Victor Katz and Karen Parshall explore the history of algebra, from its roots in the ancient civilizations of Egypt, Mesopotamia, Greece, China, and India, through its development in the medieval Islamic world and medieval and early modern Europe, to its modern form in the early twentieth century. Defining algebra originally as a collection of techniques for determining unknowns, the authors trace the development of these techniques from geometric beginnings in ancient Egypt and Mesopotamia and classical Greece. They show how similar problems were tackled in Alexandrian Greece, in China, and in India, then look at how medieval Islamic scholars shifted to an algorithmic stage, which was further dev...

  19. An algebraic scheme associated with the non-commutative KP hierarchy and some of its extensions

    Dimakis, Aristophanes; Mueller-Hoissen, Folkert


    A well-known ansatz ('trace method') for soliton solutions turns the equations of the (non-commutative) KP hierarchy, and those of certain extensions, into families of algebraic sum identities. We develop an algebraic formalism, in particular involving a (mixable) shuffle product, to explore their structure. More precisely, we show that the equations of the non-commutative KP hierarchy and its extension (xncKP) in the case of a Moyal-deformed product, as derived in previous work, correspond to identities in this algebra. Furthermore, the Moyal product is replaced by a more general associative product. This leads to a new even more general extension of the non-commutative KP hierarchy. Relations with Rota-Baxter algebras are established

  20. Partially-massless higher-spin algebras and their finite-dimensional truncations

    Joung, Euihun; Mkrtchyan, Karapet


    The global symmetry algebras of partially-massless (PM) higher-spin (HS) fields in (A)dS d+1 are studied. The algebras involving PM generators up to depth 2 (ℓ−1) are defined as the maximal symmetries of free conformal scalar field with 2 ℓ order wave equation in d dimensions. We review the construction of these algebras by quotienting certain ideals in the universal enveloping algebra of (A)dS d+1 isometries. We discuss another description in terms of Howe duality and derive the formula for computing trace in these algebras. This enables us to explicitly calculate the bilinear form for this one-parameter family of algebras. In particular, the bilinear form shows the appearance of additional ideal for any non-negative integer values of ℓ−d/2 , which coincides with the annihilator of the one-row ℓ-box Young diagram representation of so d+2 . Hence, the corresponding finite-dimensional coset algebra spanned by massless and PM generators is equivalent to the symmetries of this representation.

  1. A real nonlinear integrable couplings of continuous soliton hierarchy and its Hamiltonian structure

    Yu Fajun


    Some integrable coupling systems of existing papers are linear integrable couplings. In the Letter, beginning with Lax pairs from special non-semisimple matrix Lie algebras, we establish a scheme for constructing real nonlinear integrable couplings of continuous soliton hierarchy. A direct application to the AKNS spectral problem leads to a novel nonlinear integrable couplings, then we consider the Hamiltonian structures of nonlinear integrable couplings of AKNS hierarchy with the component-trace identity. - Highlights: → We establish a scheme to construct real nonlinear integrable couplings. → We obtain a novel nonlinear integrable couplings of AKNS hierarchy. → Hamiltonian structure of nonlinear integrable couplings AKNS hierarchy is presented.

  2. Enrichment Of Volcanogenic Trace Elements, Co, Cr, Cu, Ni, Mo And Zr In A Continuous Subsurface Eagle Ford Core In South Texas And Origin Of The Oceanic Anoxic Event II At The Cenomanian-Turonian (C/T) Boundary

    Valencia, D.; Basu, A. R.; Loocke, M. P.


    The Eagle Ford Formation containing the Cenomanian-Turonian (C/T) boundary continues to be studied globally not only for its economic potential and analog for `frack-able' unconventional organic-rich formations, but it is of particular interest to researchers because it was deposited across the C/T boundary recording an Oceanic Anoxic Event (OAE2). OAEs are short lived episodes (matter into the sedimentary record remains enigmatic. Geochemical and geochronological analysis of a subsurface 300ft long continuous core of the Eagle Ford Formation of South Texas shows evidence for volcanism throughout. This is confirmed by multiple thin intermittent bentonite beds. The whole rock black shale (marl) shows elevated concentrations of volcanogenic trace elements (Co, Cr, Cu, Ni, Mo and Zn) throughout the core. By sampling bentonite bed zircons near the inferred C/T boundary, U-Pb age of 93.2 ±1.7 Ma for the Eagle Ford is established. Using this horizon, the onset of OAE2 is constrained and well-correlated with the positive δ13C excursion. For the trace element analysis, the core was sampled at 10ft intervals for ICP-MS. The analytical results show significantly increased volcanogenic trace metal input correlating with increased Total Organic Carbon and positive δ13C values at the C/T dated zircon horizon. OAE2, defined by the positive δ13C excursion, was found to span over an interval of 85ft. With a definitive constraint for OAE2 established, this well-defined interval was analyzed at a much higher resolution using ED-XRF. The core was then sampled at 6' intervals throughout the C/T boundary at OAE2. The high-resolution sampling of the core shows 80-99% increase in abundance of Co, Cr, Cu, Ni, Mo, Zn over the average Post Australian Archean Shale(PAAS), representative of average continental crust. These volcanogenic-rich intervals reach peak values before the onset of OAE2 and at the maximum values for the positive δ13C isotope excursion directly after the 93.2 ±1

  3. Matrix De Rham Complex and Quantum A-infinity algebras

    Barannikov, S.


    I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A ∞-algebras, introduced in Barannikov (Modular operads and non-commutative Batalin-Vilkovisky geometry. IMRN, vol. 2007, rnm075. Max Planck Institute for Mathematics 2006-48, 2007), is represented via de Rham differential acting on the supermatrix spaces related with Bernstein-Leites simple associative algebras with odd trace q( N), and gl( N| N). I also show that the matrix Lagrangians from Barannikov (Noncommutative Batalin-Vilkovisky geometry and matrix integrals. Isaac Newton Institute for Mathematical Sciences, Cambridge University, 2006) are represented by equivariantly closed differential forms.

  4. An algebraic approach to analysis of recursive and concurrent programs

    Terepeta, Michal Tomasz

    -approximation of (or induced from) another flow algebra. Furthermore, we show how flow algebras can be used in communicating or weighted pushdown systems. To achieve that, we show that it is possible to relax some of the requirements imposed by original formulation of those techniques without compromising...... such a language. We also introduce an abstract domain that symbolically represents the messages sent between the concurrently executing processes. It stores prefixes or suffixes of communication traces including various constraints imposed on the messages. Since the problem has exponential complexity, we also...... present a compact data structure as well as efficient algorithms for the semiring operations. Apart from that, we discuss an improvement to Pre* and Post* algorithms for pushdown systems, making it possible to directly use program representations such as program graphs. We present a modular library...

  5. Double-partition Quantum Cluster Algebras

    Jakobsen, Hans Plesner; Zhang, Hechun


    A family of quantum cluster algebras is introduced and studied. In general, these algebras are new, but sub-classes have been studied previously by other authors. The algebras are indexed by double parti- tions or double flag varieties. Equivalently, they are indexed by broken lines L. By grouping...... together neighboring mutations into quantum line mutations we can mutate from the cluster algebra of one broken line to another. Compatible pairs can be written down. The algebras are equal to their upper cluster algebras. The variables of the quantum seeds are given by elements of the dual canonical basis....

  6. Anyons, deformed oscillator algebras and projectors

    Engquist, Johan


    We initiate an algebraic approach to the many-anyon problem based on deformed oscillator algebras. The formalism utilizes a generalization of the deformed Heisenberg algebras underlying the operator solution of the Calogero problem. We define a many-body Hamiltonian and an angular momentum operator which are relevant for a linearized analysis in the statistical parameter ν. There exists a unique ground state and, in spite of the presence of defect lines, the anyonic weight lattices are completely connected by the application of the oscillators of the algebra. This is achieved by supplementing the oscillator algebra with a certain projector algebra.

  7. Principles of linear algebra with Mathematica

    Shiskowski, Kenneth M


    A hands-on introduction to the theoretical and computational aspects of linear algebra using Mathematica® Many topics in linear algebra are simple, yet computationally intensive, and computer algebra systems such as Mathematica® are essential not only for learning to apply the concepts to computationally challenging problems, but also for visualizing many of the geometric aspects within this field of study. Principles of Linear Algebra with Mathematica uniquely bridges the gap between beginning linear algebra and computational linear algebra that is often encountered in applied settings,

  8. A type of loop algebra and the associated loop algebras

    Tam Honwah; Zhang Yufeng


    A higher-dimensional twisted loop algebra is constructed. As its application, a new Lax pair is presented, whose compatibility gives rise to a Liouville integrable hierarchy of evolution equations by making use of Tu scheme. One of the reduction cases of the hierarchy is an analogous of the well-known AKNS system. Next, the twisted loop algebra, furthermore, is extended to another higher dimensional loop algebra, from which a hierarchy of evolution equations with 11-potential component functions is obtained, whose reduction is just standard AKNS system. Especially, we prove that an arbitrary linear combination of the four Hamiltonian operators directly obtained from the recurrence relations is still a Hamiltonian operator. Therefore, the hierarchy with 11-potential functions possesses 4-Hamiltonian structures. Finally, an integrable coupling of the hierarchy is worked out

  9. Non commutative geometry methods for group C{sup *}-algebras

    Diep, Do Ngoc


    This book is intended to provide a quick introduction to the subject. The exposition is scheduled in the sequence, as possible for more understanding for beginners. The author exposed a K-theoretic approach to study group C{sup *}-algebras: started in the elementary part, with one example of description of the structure of C{sup *}-algebra of the group of affine transformations of the real straight line, continued then for some special classes of solvable and nilpotent Lie groups. In the second advanced part, he introduced the main tools of the theory. In particular, the conception of multidimensional geometric quantization and the index of group C{sup *}-algebras were created and developed. (author). Refs.

  10. Spaces of continuous functions

    Groenewegen, G L M


    The space C(X) of all continuous functions on a compact space X carries the structure of a normed vector space, an algebra and a lattice. On the one hand we study the relations between these structures and the topology of X, on the other hand we discuss a number of classical results according to which an algebra or a vector lattice can be represented as a C(X). Various applications of these theorems are given. Some attention is devoted to related theorems, e.g. the Stone Theorem for Boolean algebras and the Riesz Representation Theorem. The book is functional analytic in character. It does not presuppose much knowledge of functional analysis; it contains introductions into subjects such as the weak topology, vector lattices and (some) integration theory.

  11. Directed Abelian algebras and their application to stochastic models.

    Alcaraz, F C; Rittenberg, V


    With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma_(tau)=32 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma_(tau)=1.780+/-0.005 .

  12. Discrete event systems in dioid algebra and conventional algebra

    Declerck, Philippe


    This book concerns the use of dioid algebra as (max, +) algebra to treat the synchronization of tasks expressed by the maximum of the ends of the tasks conditioning the beginning of another task - a criterion of linear programming. A classical example is the departure time of a train which should wait for the arrival of other trains in order to allow for the changeover of passengers.The content focuses on the modeling of a class of dynamic systems usually called "discrete event systems" where the timing of the events is crucial. Events are viewed as sudden changes in a process which i

  13. Modeling and reconfiguration of critical business processes for the purpose of a business continuity management respecting security, risk and compliance requirements at Credit Suisse using algebraic graph transformation (Extended version)

    Brandt, C.; Hermann, F.; Groote, J.F.


    Critical business processes can fail. A Business Continuity Management System is a special management system that will define how to recover from such failures and specifies temporary work-arounds to make sure a company is not going out of business in the worst case. However, because today's

  14. Endomorphisms of the Cuntz algebras

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech


    This mainly expository article is devoted to recent advances in the study of dynamical aspects of the Cuntz algebras O_n, nalgebras O_n, ntrees...... is presented. This in turn gives rise to an algebraic characterization of the restricted Weyl group of O_n. It is shown how this group is related to certain classical dynamical systems on the Cantor set. An identification of the image in Out(O_n) of the restricted Weyl group with the group of automorphisms...

  15. Quantum algebras in nuclear structure

    Bonatsos, D.; Daskaloyannis, C.


    Quantum algebras is a mathematical tool which provides us with a class of symmetries wider than that of Lie algebras, which are contained in the former as a special case. After a self-contained introduction through the necessary mathematical tools (q-numbers, q-analysis, q-oscillators, q-algebras), the su q (2) rotator model and its extensions, the construction of deformed exactly soluble models (Interacting Boson Model, Moszkowski model), the use of deformed bosons in the description of pairing correlations, and the symmetries of the anisotropic quantum harmonic oscillator with rational ratios of frequencies, which underline the structure of superdeformed and hyperdeformed nuclei are discussed in some details. A brief description of similar applications to molecular structure and an outlook are also given. (author) 2 Tabs., 324 Refs

  16. Clifford Algebras and magnetic monopoles

    Recami, E.


    It is known that the introduction of magnetic monopolies in electromagnetism does still present formal problems from the point of view of classical field theory. The author attempts to overcome at least some of them by making recourse to the Clifford Algebra formalism. In fact, while the events of a two-dimensional Minkowski space-time M(1,1) are sufficiently well represented by ordinary Complex Numbers, when dealing with the events of the four-dimensional Minkowski space M(1,3)identical to M/sub 4/ one has of course to look for hypercomplex numbers or, more generally, for the elements of a Clifford Algebra. The author uses the Clifford Algebras in terms of ''multivectors'', and in particular by Hestenes' language, which suits space-time quite well. He recalls that the Clifford product chiγ is the sum of the internal product chi . γ and of the wedge product chiΛγ

  17. Zorn algebra in general relativity

    Oliveira, C.G.; Maia, M.D.

    The covariant differential properties of the split Cayley subalgebra of local real quaternion tetrads is considered. Referred to this local quaternion tetrad several geometrical objects are given in terms of Zorn-Weyl matrices. Associated to a pair of real null vectors we define two-component spinor fields over the curved space and the associated Zorn-Weyl matrices which satisfy the Dirac equation written in terms of the Zorn algebra. The formalism is generalized by considering a field of complex tetrads defining a Hermitian second rank tensor. The real part of this tensor describes the gravitational potentials and the imaginary part the electromagnetic potentials in the Lorentz gauge. The motion of a charged spin zero test body is considered. The Zorn-Weyl algebra associated to this generalized formalism has elements belonging to the full octonion algebra [pt

  18. Topics in quaternion linear algebra

    Rodman, Leiba


    Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses...

  19. Algebraic geometry and effective lagrangians

    Martinec, E.J.; Chicago Univ., IL


    N=2 supersymmetric Landau-Ginsburg fixed points describe nonlinear models whose target spaces are algebraic varieties in certain generalized projective spaces; the defining equation is precisely the zero set of the superpotential, considered as a condition in the projective space. The ADE classification of modular invariants arises as the classification of projective descriptions of P 1 ; in general, the hierarchy of fixed points is conjectured to be isomorphic to the classification of quasihomogeneous singularities. The condition of vanishing first Chern class is an integrality condition on the Virasoro central charge; the central charge is determined by the superpotential. The operator algebra is given by the algebra of Wick contractions of perturbations of the superpotential. (orig.)

  20. Protocol development for continuous nitrogen-15 measurement of N2O and its isotopomers for real-time greenhouse gas tracing

    Slaets, J.; Mayr, L.; Heiling, M.; Zaman, M.; Resch, C.; Weltin, G.; Gruber, R.; Dercon, G.


    Quantifying sources of nitrous oxide (N2O) (soil-N and applied N) is essential to improve our understanding of the global N cycle and to develop climate-smart agriculture, as N 2 O has a global warming potential that is 300 times higher than that of CO 2 . The isotopic signature and the intramolecular distribution (site preference) of 15 N are powerful tools to identify N 2 O sources. We have developed a protocol for continuous (closedloop), real time measurement of the N 2 O flux, the isotopic signature and the intramolecular distribution of 15 N by using off-axis integrated cavity output spectroscopy (ICOS, Los Gatos Research). The method was applied in a fertilizer inhibitor experiment, in which N 2 O emissions were measured on undisturbed soil cores for three weeks. The treatments consisted of enriched 15 N labelled urea (5 atom %) applied at a rate equivalent to 100 kg N/ha), 15 N labelled urea with the nitrification inhibitor (NI) nitrapyrin (375 g/100 kg urea), and controls (no fertilizer or NI).

  1. Neutrosophic filters in BE-algebras

    Akbar Rezaei


    Full Text Available Inthispaper, weintroducethenotionof(implicativeneutrosophicfilters in BE-algebras. The relation between implicative neutrosophic filters and neutrosophic filters is investigated and we show that in self distributive BE-algebras these notions are equivalent.

  2. Hopf algebra structures in particle physics

    Weinzierl, Stefan


    In the recent years, Hopf algebras have been introduced to describe certain combinatorial properties of quantum field theories. I give a basic introduction to these algebras and review some occurrences in particle physics. (orig.)

  3. Introduction to algebraic quantum field theory

    Horuzhy, S.S.


    This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs

  4. Computer Algebra Systems in Undergraduate Instruction.

    Small, Don; And Others


    Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)

  5. Quantum Groupoids Acting on Semiprime Algebras

    Inês Borges


    Full Text Available Following Linchenko and Montgomery's arguments we show that the smash product of an involutive weak Hopf algebra and a semiprime module algebra, satisfying a polynomial identity, is semiprime.

  6. Evolution algebras generated by Gibbs measures

    Rozikov, Utkir A.; Tian, Jianjun Paul


    In this article we study algebraic structures of function spaces defined by graphs and state spaces equipped with Gibbs measures by associating evolution algebras. We give a constructive description of associating evolution algebras to the function spaces (cell spaces) defined by graphs and state spaces and Gibbs measure μ. For finite graphs we find some evolution subalgebras and other useful properties of the algebras. We obtain a structure theorem for evolution algebras when graphs are finite and connected. We prove that for a fixed finite graph, the function spaces have a unique algebraic structure since all evolution algebras are isomorphic to each other for whichever Gibbs measures are assigned. When graphs are infinite graphs then our construction allows a natural introduction of thermodynamics in studying of several systems of biology, physics and mathematics by theory of evolution algebras. (author)

  7. Equationally Noetherian property of Ershov algebras

    Dvorzhetskiy, Yuriy


    This article is about equationally Noetherian and weak equationally Noetherian property of Ershov algebras. Here we show two canonical forms of the system of equations over Ershov algebras and two criteria of equationally Noetherian and weak equationally Noetherian properties.

  8. Generalized Galilean algebras and Newtonian gravity

    González, N.; Rubio, G.; Salgado, P.; Salgado, S.


    The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.

  9. Current algebra, baryons and quark confinement

    Witten, E.


    It is shown that ordinary baryons can be understood as solitons in current algebra effective lagrangiangs. The formation of color flux tubes can also be seen in current algebra, under certain conditions. (orig.)

  10. Colored Quantum Algebra and Its Bethe State

    Wang Jin-Zheng; Jia Xiao-Yu; Wang Shi-Kun


    We investigate the colored Yang—Baxter equation. Based on a trigonometric solution of colored Yang—Baxter equation, we construct a colored quantum algebra. Moreover we discuss its algebraic Bethe ansatz state and highest wight representation. (general)

  11. Generalized NLS hierarchies from rational W algebras

    Toppan, F.


    Finite rational W algebras are very natural structures appearing in coset constructions when a Kac-Moody subalgebra is factored out. The problem of relating these algebras to integrable hierarchies of equations is studied by showing how to associate to a rational W algebra its corresponding hierarchy. Two examples are worked out, the sl(2)/U(1) coset, leading to the Non-Linear Schroedinger hierarchy, and the U(1) coset of the Polyakov-Bershadsky W algebra, leading to a 3-field representation of the KP hierarchy already encountered in the literature. In such examples a rational algebra appears as algebra of constraints when reducing a KP hierarchy to a finite field representation. This fact arises the natural question whether rational algebras are always associated to such reductions and whether a classification of rational algebras can lead to a classification of the integrable hierarchies. (author). 19 refs

  12. Applied matrix algebra in the statistical sciences

    Basilevsky, Alexander


    This comprehensive text offers teachings relevant to both applied and theoretical branches of matrix algebra and provides a bridge between linear algebra and statistical models. Appropriate for advanced undergraduate and graduate students. 1983 edition.

  13. Order units in a C-algebra

    Abstract. Order unit property of a positive element in a *-algebra is defined. It is proved that precisely projections satisfy this order theoretic property. This way, unital hereditary *-subalgebras of a *-algebra are characterized.

  14. On extensions of superconformal algebras

    Nagi, Jasbir


    Starting from vector fields that preserve a differential form on a Riemann sphere with Grassmann variables, one can construct a superconformal algebra by considering central extensions of the algebra of vector fields. In this paper, the N=4 case is analyzed closely, where the presence of weight zero operators in the field theory forces the introduction of noncentral extensions. How this modifies the existing field theory, representation theory, and Gelfand-Fuchs constructions is discussed. It is also discussed how graded Riemann sphere geometry can be used to give a geometrical description of the central charge in the N=1 theory

  15. Computational triadic algebras of signs

    Zadrozny, W. [T.J. Watson Research Center, Yorktown Heights, NY (United States)


    We present a finite model of Peirce`s ten classes of signs. We briefly describe Peirce`s taxonomy of signs; we prove that any finite collection of signs can be extended to a finite algebra of signs in which all interpretants are themselves being interpreted; and we argue that Peirce`s ten classes of signs can be defined using constraints on algebras of signs. The paper opens the possibility of defining multimodal cognitive agents using Peirce`s classes of signs, and is a first step towards building a computational logic of signs based on Peirce`s taxonomies.

  16. Surface defects and chiral algebras

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States); Gaiotto, Davide [Perimeter Institute for Theoretical Physics,31 Caroline St N, Waterloo, ON N2L 2Y5 (Canada); Shao, Shu-Heng [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States)


    We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.

  17. Fusion algebra and fusing matrices

    Gao Yihong; Li Miao; Yu Ming.


    We show that the Wilson line operators in topological field theories form a fusion algebra. In general, the fusion algebra is a relation among the fusing (F) matrices. In the case of the SU(2) WZW model, some special F matrix elements are found in this way, and the remaining F matrix elements are then determined up to a sign. In addition, the S(j) modular transformation of the one point blocks on the torus is worked out. Our results are found to agree with those obtained from the quantum group method. (author). 24 refs

  18. Automorphisms of the Cuntz algebras

    Conti, Roberto; Szymanski, Wojciech


    We survey recent results on endomorphisms and especially on automorphisms of the Cuntz algebras, with a special emphasis on the structure of the Weyl group. We discuss endomorphisms globally preserving the diagonal MASA and their corresponding actions. In particular, we investigate those endomorp......We survey recent results on endomorphisms and especially on automorphisms of the Cuntz algebras, with a special emphasis on the structure of the Weyl group. We discuss endomorphisms globally preserving the diagonal MASA and their corresponding actions. In particular, we investigate those...

  19. Introduction to computational linear algebra

    Nassif, Nabil; Erhel, Jocelyne


    Introduction to Computational Linear Algebra introduces the reader with a background in basic mathematics and computer programming to the fundamentals of dense and sparse matrix computations with illustrating examples. The textbook is a synthesis of conceptual and practical topics in ""Matrix Computations."" The book's learning outcomes are twofold: to understand state-of-the-art computational tools to solve matrix computations problems (BLAS primitives, MATLAB® programming) as well as essential mathematical concepts needed to master the topics of numerical linear algebra. It is suitable for s

  20. Regular algebra and finite machines

    Conway, John Horton


    World-famous mathematician John H. Conway based this classic text on a 1966 course he taught at Cambridge University. Geared toward graduate students of mathematics, it will also prove a valuable guide to researchers and professional mathematicians.His topics cover Moore's theory of experiments, Kleene's theory of regular events and expressions, Kleene algebras, the differential calculus of events, factors and the factor matrix, and the theory of operators. Additional subjects include event classes and operator classes, some regulator algebras, context-free languages, communicative regular alg

  1. Algebraic geometry and theta functions

    Coble, Arthur B


    This book is the result of extending and deepening all questions from algebraic geometry that are connected to the central problem of this book: the determination of the tritangent planes of a space curve of order six and genus four, which the author treated in his Colloquium Lecture in 1928 at Amherst. The first two chapters recall fundamental ideas of algebraic geometry and theta functions in such fashion as will be most helpful in later applications. In order to clearly present the state of the central problem, the author first presents the better-known cases of genus two (Chapter III) and

  2. An algorithm to construct the basic algebra of a skew group algebra

    Horobeţ, E.


    We give an algorithm for the computation of the basic algebra Morita equivalent to a skew group algebra of a path algebra by obtaining formulas for the number of vertices and arrows of the new quiver Qb. We apply this algorithm to compute the basic algebra corresponding to all simple quaternion

  3. AT-algebras and extensions of AT-algebras

    Home; Journals; Proceedings – Mathematical Sciences; Volume 120; Issue 2. A T -Algebras and Extensions of A T ... School of Science, Nanjing University of Science and Technology, Nanjing 210014, People's Republic of China; Department of Mathematics, Tongji University, Shanghai 200092, People's Republic of China ...

  4. Parts of the Whole: An Algebra Lesson

    Dorothy Wallace


    Full Text Available This column draws on research of Eon Harper to demonstrate how an understanding of his proposed stages of algebra acquisition would inform a systemic overhaul of algebra education. Harper's stages also explain why students may pass a series of algebra courses yet still be unable to make sense of calculus, as well as offering insight on what aspects of algebra support quantitative literacy.

  5. Finite W-algebras and intermediate statistics

    Barbarin, F.; Ragoucy, E.; Sorba, P.


    New realizations of finite W-algebras are constructed by relaxing the usual constraint conditions. Then finite W-algebras are recognized in the Heisenberg quantization recently proposed by Leinaas and Myrheim, for a system of two identical particles in d dimensions. As the anyonic parameter is directly associated to the W-algebra involved in the d=1 case, it is natural to consider that the W-algebra framework is well adapted for a possible generalization of the anyon statistics. ((orig.))

  6. Lectures on W algebras and W gravity

    Pope, C.N.


    We give a review of the extended conformal algebras, known as W algebras, which contain currents of spins higher than 2 in addition to the energy-momentum tensor. These include the non-linear W N algebras; the linear W ∞ and W 1+∞ algebras; and their super-extensions. We discuss their applications to the construction of W-gravity and W-string theories. (author). 46 refs

  7. The large N=4 superconformal W∞ algebra

    Beccaria, Matteo; Candu, Constantin; Gaberdiel, Matthias R.


    The most general large N=4 superconformal W ∞ algebra, containing in addition to the superconformal algebra one supermultiplet for each integer spin, is analysed in detail. It is found that the W ∞ algebra is uniquely determined by the levels of the two su(2) algebras, a conclusion that holds both for the linear and the non-linear case. We also perform various cross-checks of our analysis, and exhibit two different types of truncations in some detail.

  8. Algebra success in 20 minutes a day

    LearningExpress, LLC


    Stripped of unnecessary math jargon but bursting with algebra essentials, this handy guide covers vital algebra skills that apply to real-world scenarios. Whether you're new to algebra or just looking for a refresher, Algebra Success in 20 Minutes a Day offers a lesson plan that provides quick and thorough instruction in practical, critical skills. All lessons can be completed in just 20 minutes a day, for a manageable and non-intimidating learning experience.

  9. Simple Lie algebras and Dynkin diagrams

    Buccella, F.


    The following theorem is studied: in a simple Lie algebra of rank p there are p positive roots such that all the other n-3p/2 positive roots are linear combinations of them with integer non negative coefficients. Dykin diagrams are built by representing the simple roots with circles and drawing a junction between the roots. Five exceptional algebras are studied, focusing on triple junction algebra, angular momentum algebra, weights of the representation, antisymmetric tensors, and subalgebras

  10. Quantized Matrix Algebras and Quantum Seeds

    Jakobsen, Hans Plesner; Pagani, Chiara


    We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees.......We determine explicitly quantum seeds for classes of quantized matrix algebras. Furthermore, we obtain results on centres and block diagonal forms of these algebras. In the case where is an arbitrary root of unity, this further determines the degrees....

  11. Generalized module extension Banach algebras: Derivations and ...

    Let A and X be Banach algebras and let X be an algebraic Banach A-module. Then the ℓ-1direct sum A x X equipped with the multiplication (a; x)(b; y) = (ab; ay + xb + xy) (a; b ∈ A; x; y ∈ X) is a Banach algebra, denoted by A ⋈ X, which will be called "a generalized module extension Banach algebra". Module extension ...

  12. Block diagonalization for algebra's associated with block codes

    D. Gijswijt (Dion)


    htmlabstractFor a matrix *-algebra B, consider the matrix *-algebra A consisting of the symmetric tensors in the n-fold tensor product of B. Examples of such algebras in coding theory include the Bose-Mesner algebra and Terwilliger algebra of the (non)binary Hamming cube, and algebras arising in

  13. Generalizing the bms3 and 2D-conformal algebras by expanding the Virasoro algebra

    Caroca, Ricardo; Concha, Patrick; Rodríguez, Evelyn; Salgado-Rebolledo, Patricio


    By means of the Lie algebra expansion method, the centrally extended conformal algebra in two dimensions and the bms3 algebra are obtained from the Virasoro algebra. We extend this result to construct new families of expanded Virasoro algebras that turn out to be infinite-dimensional lifts of the so-called Bk, Ck and Dk algebras recently introduced in the literature in the context of (super)gravity. We also show how some of these new infinite-dimensional symmetries can be obtained from expanded Kač-Moody algebras using modified Sugawara constructions. Applications in the context of three-dimensional gravity are briefly discussed.

  14. String field representation of the Virasoro algebra

    Mertes, Nicholas [Institute of Physics AS CR,Na Slovance 2, Prague 8 (Czech Republic); Department of Physics, University of Miami,Coral Gables, FL (United States); Schnabl, Martin [Institute of Physics AS CR,Na Slovance 2, Prague 8 (Czech Republic)


    We construct a representation of the zero central charge Virasoro algebra using string fields in Witten’s open bosonic string field theory. This construction is used to explore extensions of the KBc algebra and find novel algebraic solutions of open string field theory.

  15. Very true operators on MTL-algebras

    Wang Jun Tao


    Full Text Available The main goal of this paper is to investigate very true MTL-algebras and prove the completeness of the very true MTL-logic. In this paper, the concept of very true operators on MTL-algebras is introduced and some related properties are investigated. Also, conditions for an MTL-algebra to be an MV-algebra and a Gödel algebra are given via this operator. Moreover, very true filters on very true MTL-algebras are studied. In particular, subdirectly irreducible very true MTL-algebras are characterized and an analogous of representation theorem for very true MTL-algebras is proved. Then, the left and right stabilizers of very true MTL-algebras are introduced and some related properties are given. As applications of stabilizer of very true MTL-algebras, we produce a basis for a topology on very true MTL-algebras and show that the generated topology by this basis is Baire, connected, locally connected and separable. Finally, the corresponding logic very true MTL-logic is constructed and the soundness and completeness of this logic are proved based on very true MTL-algebras.

  16. Characteristic Dynkin diagrams and W algebras

    Ragoucy, E.


    We present a classification of characteristic Dynkin diagrams for the A N , B N , C N and D N algebras. This classification is related to the classification of W(G, K) algebras arising from non-abelian Toda models, and we argue that it can give new insight on the structure of W algebras. (orig.)

  17. Difficulties in Initial Algebra Learning in Indonesia

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja


    Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was…

  18. Unifying the Algebra for All Movement

    Eddy, Colleen M.; Quebec Fuentes, Sarah; Ward, Elizabeth K.; Parker, Yolanda A.; Cooper, Sandi; Jasper, William A.; Mallam, Winifred A.; Sorto, M. Alejandra; Wilkerson, Trena L.


    There exists an increased focus on school mathematics, especially first-year algebra, due to recent efforts for all students to be college and career ready. In addition, there are calls, policies, and legislation advocating for all students to study algebra epitomized by four rationales of the "Algebra for All" movement. In light of this…

  19. A Balancing Act: Making Sense of Algebra

    Gavin, M. Katherine; Sheffield, Linda Jensen


    For most students, algebra seems like a totally different subject than the number topics they studied in elementary school. In reality, the procedures followed in arithmetic are actually based on the properties and laws of algebra. Algebra should be a logical next step for students in extending the proficiencies they developed with number topics…

  20. Teaching Strategies to Improve Algebra Learning

    Zbiek, Rose Mary; Larson, Matthew R.


    Improving student learning is the primary goal of every teacher of algebra. Teachers seek strategies to help all students learn important algebra content and develop mathematical practices. The new Institute of Education Sciences[IES] practice guide, "Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students"…