Continuous Time Dynamic Contraflow Models and Algorithms
Directory of Open Access Journals (Sweden)
Urmila Pyakurel
2016-01-01
Full Text Available The research on evacuation planning problem is promoted by the very challenging emergency issues due to large scale natural or man-created disasters. It is the process of shifting the maximum number of evacuees from the disastrous areas to the safe destinations as quickly and efficiently as possible. Contraflow is a widely accepted model for good solution of evacuation planning problem. It increases the outbound road capacity by reversing the direction of roads towards the safe destination. The continuous dynamic contraflow problem sends the maximum number of flow as a flow rate from the source to the sink in every moment of time unit. We propose the mathematical model for the continuous dynamic contraflow problem. We present efficient algorithms to solve the maximum continuous dynamic contraflow and quickest continuous contraflow problems on single source single sink arbitrary networks and continuous earliest arrival contraflow problem on single source single sink series-parallel networks with undefined supply and demand. We also introduce an approximation solution for continuous earliest arrival contraflow problem on two-terminal arbitrary networks.
Discounting Models for Outcomes over Continuous Time
DEFF Research Database (Denmark)
Harvey, Charles M.; Østerdal, Lars Peter
Events that occur over a period of time can be described either as sequences of outcomes at discrete times or as functions of outcomes in an interval of time. This paper presents discounting models for events of the latter type. Conditions on preferences are shown to be satisfied if and only if t...... if the preferences are represented by a function that is an integral of a discounting function times a scale defined on outcomes at instants of time....
Computer Aided Continuous Time Stochastic Process Modelling
DEFF Research Database (Denmark)
Kristensen, N.R.; Madsen, Henrik; Jørgensen, Sten Bay
2001-01-01
A grey-box approach to process modelling that combines deterministic and stochastic modelling is advocated for identification of models for model-based control of batch and semi-batch processes. A computer-aided tool designed for supporting decision-making within the corresponding modelling cycle...
A continuous-time control model on production planning network ...
African Journals Online (AJOL)
A continuous-time control model on production planning network. DEA Omorogbe, MIU Okunsebor. Abstract. In this paper, we give a slightly detailed review of Graves and Hollywood model on constant inventory tactical planning model for a job shop. The limitations of this model are pointed out and a continuous time ...
Continuous-time model of structural balance.
Marvel, Seth A; Kleinberg, Jon; Kleinberg, Robert D; Strogatz, Steven H
2011-02-01
It is not uncommon for certain social networks to divide into two opposing camps in response to stress. This happens, for example, in networks of political parties during winner-takes-all elections, in networks of companies competing to establish technical standards, and in networks of nations faced with mounting threats of war. A simple model for these two-sided separations is the dynamical system dX/dt = X(2), where X is a matrix of the friendliness or unfriendliness between pairs of nodes in the network. Previous simulations suggested that only two types of behavior were possible for this system: Either all relationships become friendly or two hostile factions emerge. Here we prove that for generic initial conditions, these are indeed the only possible outcomes. Our analysis yields a closed-form expression for faction membership as a function of the initial conditions and implies that the initial amount of friendliness in large social networks (started from random initial conditions) determines whether they will end up in intractable conflict or global harmony.
Continuous Time Structural Equation Modeling with R Package ctsem
Directory of Open Access Journals (Sweden)
Charles C. Driver
2017-04-01
Full Text Available We introduce ctsem, an R package for continuous time structural equation modeling of panel (N > 1 and time series (N = 1 data, using full information maximum likelihood. Most dynamic models (e.g., cross-lagged panel models in the social and behavioural sciences are discrete time models. An assumption of discrete time models is that time intervals between measurements are equal, and that all subjects were assessed at the same intervals. Violations of this assumption are often ignored due to the difficulty of accounting for varying time intervals, therefore parameter estimates can be biased and the time course of effects becomes ambiguous. By using stochastic differential equations to estimate an underlying continuous process, continuous time models allow for any pattern of measurement occasions. By interfacing to OpenMx, ctsem combines the flexible specification of structural equation models with the enhanced data gathering opportunities and improved estimation of continuous time models. ctsem can estimate relationships over time for multiple latent processes, measured by multiple noisy indicators with varying time intervals between observations. Within and between effects are estimated simultaneously by modeling both observed covariates and unobserved heterogeneity. Exogenous shocks with different shapes, group differences, higher order diffusion effects and oscillating processes can all be simply modeled. We first introduce and define continuous time models, then show how to specify and estimate a range of continuous time models using ctsem.
Continuous time modeling of panel data by means of SEM
Oud, J.H.L.; Delsing, M.J.M.H.; Montfort, C.A.G.M.; Oud, J.H.L.; Satorra, A.
2010-01-01
After a brief history of continuous time modeling and its implementation in panel analysis by means of structural equation modeling (SEM), the problems of discrete time modeling are discussed in detail. This is done by means of the popular cross-lagged panel design. Next, the exact discrete model
Model checking conditional CSL for continuous-time Markov chains
DEFF Research Database (Denmark)
Gao, Yang; Xu, Ming; Zhan, Naijun
2013-01-01
In this paper, we consider the model-checking problem of continuous-time Markov chains (CTMCs) with respect to conditional logic. To the end, we extend Continuous Stochastic Logic introduced in Aziz et al. (2000) [1] to Conditional Continuous Stochastic Logic (CCSL) by introducing a conditional...
Integral-Value Models for Outcomes over Continuous Time
DEFF Research Database (Denmark)
Harvey, Charles M.; Østerdal, Lars Peter
Models of preferences between outcomes over continuous time are important for individual, corporate, and social decision making, e.g., medical treatment, infrastructure development, and environmental regulation. This paper presents a foundation for such models. It shows that conditions on prefere...... on preferences between real- or vector-valued outcomes over continuous time are satisfied if and only if the preferences are represented by a value function having an integral form......Models of preferences between outcomes over continuous time are important for individual, corporate, and social decision making, e.g., medical treatment, infrastructure development, and environmental regulation. This paper presents a foundation for such models. It shows that conditions...
Continuous Time Modeling of the Cross-Lagged Panel Design
Oud, J.H.L.
2002-01-01
Since Newton (1642-1727) continuous time modeling by means of differential equations is the standard approach of dynamic phenomena in natural science. It is argued that most processes in behavioral science also unfold in continuous time and should be analyzed accordingly. After dealing with the
Stability and the structure of continuous-time economic models
Nieuwenhuis, H.J.; Schoonbeek, L.
In this paper we investigate the relationship between the stability of macroeconomic, or macroeconometric, continuous-time models and the structure of the matrices appearing in these models. In particular, we concentrate on dominant-diagonal structures. We derive general stability results for models
A stochastic surplus production model in continuous time
DEFF Research Database (Denmark)
Pedersen, Martin Wæver; Berg, Casper Willestofte
2017-01-01
surplus production model in continuous time (SPiCT), which in addition to stock dynamics also models the dynamics of the fisheries. This enables error in the catch process to be reflected in the uncertainty of estimated model parameters and management quantities. Benefits of the continuous-time state......Surplus production modelling has a long history as a method for managing data-limited fish stocks. Recent advancements have cast surplus production models as state-space models that separate random variability of stock dynamics from error in observed indices of biomass. We present a stochastic......-space model formulation include the ability to provide estimates of exploitable biomass and fishing mortality at any point in time from data sampled at arbitrary and possibly irregular intervals. We show in a simulation that the ability to analyse subannual data can increase the effective sample size...
Modeling of water treatment plant using timed continuous Petri nets
Nurul Fuady Adhalia, H.; Subiono, Adzkiya, Dieky
2017-08-01
Petri nets represent graphically certain conditions and rules. In this paper, we construct a model of the Water Treatment Plant (WTP) using timed continuous Petri nets. Specifically, we consider that (1) the water pump always active and (2) the water source is always available. After obtaining the model, the flow through the transitions and token conservation laws are calculated.
From discrete-time models to continuous-time, asynchronous modeling of financial markets
Boer, Katalin; Kaymak, Uzay; Spiering, Jaap
2007-01-01
Most agent-based simulation models of financial markets are discrete-time in nature. In this paper, we investigate to what degree such models are extensible to continuous-time, asynchronous modeling of financial markets. We study the behavior of a learning market maker in a market with information
From Discrete-Time Models to Continuous-Time, Asynchronous Models of Financial Markets
K. Boer-Sorban (Katalin); U. Kaymak (Uzay); J. Spiering (Jaap)
2006-01-01
textabstractMost agent-based simulation models of financial markets are discrete-time in nature. In this paper, we investigate to what degree such models are extensible to continuous-time, asynchronous modelling of financial markets. We study the behaviour of a learning market maker in a market with
On Transaction-Cost Models in Continuous-Time Markets
Directory of Open Access Journals (Sweden)
Thomas Poufinas
2015-04-01
Full Text Available Transaction-cost models in continuous-time markets are considered. Given that investors decide to buy or sell at certain time instants, we study the existence of trading strategies that reach a certain final wealth level in continuous-time markets, under the assumption that transaction costs, built in certain recommended ways, have to be paid. Markets prove to behave in manners that resemble those of complete ones for a wide variety of transaction-cost types. The results are important, but not exclusively, for the pricing of options with transaction costs.
Martingale Regressions for a Continuous Time Model of Exchange Rates
Guo, Zi-Yi
2017-01-01
One of the daunting problems in international finance is the weak explanatory power of existing theories of the nominal exchange rates, the so-called “foreign exchange rate determination puzzle”. We propose a continuous-time model to study the impact of order flow on foreign exchange rates. The model is estimated by a newly developed econometric tool based on a time-change sampling from calendar to volatility time. The estimation results indicate that the effect of order flow on exchange rate...
A continuous-time neural model for sequential action.
Kachergis, George; Wyatte, Dean; O'Reilly, Randall C; de Kleijn, Roy; Hommel, Bernhard
2014-11-05
Action selection, planning and execution are continuous processes that evolve over time, responding to perceptual feedback as well as evolving top-down constraints. Existing models of routine sequential action (e.g. coffee- or pancake-making) generally fall into one of two classes: hierarchical models that include hand-built task representations, or heterarchical models that must learn to represent hierarchy via temporal context, but thus far lack goal-orientedness. We present a biologically motivated model of the latter class that, because it is situated in the Leabra neural architecture, affords an opportunity to include both unsupervised and goal-directed learning mechanisms. Moreover, we embed this neurocomputational model in the theoretical framework of the theory of event coding (TEC), which posits that actions and perceptions share a common representation with bidirectional associations between the two. Thus, in this view, not only does perception select actions (along with task context), but actions are also used to generate perceptions (i.e. intended effects). We propose a neural model that implements TEC to carry out sequential action control in hierarchically structured tasks such as coffee-making. Unlike traditional feedforward discrete-time neural network models, which use static percepts to generate static outputs, our biological model accepts continuous-time inputs and likewise generates non-stationary outputs, making short-timescale dynamic predictions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Estimation of Continuous Time Models in Economics: an Overview
Clifford R. Wymer
2009-01-01
The dynamics of economic behaviour is often developed in theory as a continuous time system. Rigorous estimation and testing of such systems, and the analysis of some aspects of their properties, is of particular importance in distinguishing between competing hypotheses and the resulting models. The consequences for the international economy during the past eighteen months of failures in the financial sector, and particularly the banking sector, make it essential that the dynamics of financia...
Coaction versus reciprocity in continuous-time models of cooperation.
van Doorn, G Sander; Riebli, Thomas; Taborsky, Michael
2014-09-07
Cooperating animals frequently show closely coordinated behaviours organized by a continuous flow of information between interacting partners. Such real-time coaction is not captured by the iterated prisoner's dilemma and other discrete-time reciprocal cooperation games, which inherently feature a delay in information exchange. Here, we study the evolution of cooperation when individuals can dynamically respond to each other's actions. We develop continuous-time analogues of iterated-game models and describe their dynamics in terms of two variables, the propensity of individuals to initiate cooperation (altruism) and their tendency to mirror their partner's actions (coordination). These components of cooperation stabilize at an evolutionary equilibrium or show oscillations, depending on the chosen payoff parameters. Unlike reciprocal altruism, cooperation by coaction does not require that those willing to initiate cooperation pay in advance for uncertain future benefits. Correspondingly, we show that introducing a delay to information transfer between players is equivalent to increasing the cost of cooperation. Cooperative coaction can therefore evolve much more easily than reciprocal cooperation. When delays entirely prevent coordination, we recover results from the discrete-time alternating prisoner's dilemma, indicating that coaction and reciprocity are connected by a continuum of opportunities for real-time information exchange. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Continuous-Time Model for Valuing Foreign Exchange Options
Directory of Open Access Journals (Sweden)
James J. Kung
2013-01-01
Full Text Available This paper makes use of stochastic calculus to develop a continuous-time model for valuing European options on foreign exchange (FX when both domestic and foreign spot rates follow a generalized Wiener process. Using the dollar/euro exchange rate as input for parameter estimation and employing our FX option model as a yardstick, we find that the traditional Garman-Kohlhagen FX option model, which assumes constant spot rates, values incorrectly calls and puts for different values of the ratio of exchange rate to exercise price. Specifically, it undervalues calls when the ratio is between 0.70 and 1.08, and it overvalues calls when the ratio is between 1.18 and 1.30, whereas it overvalues puts when the ratio is between 0.70 and 0.82, and it undervalues puts when the ratio is between 0.86 and 1.30.
Measuring and modelling occupancy time in NHS continuing healthcare
Directory of Open Access Journals (Sweden)
Millard Peter H
2011-06-01
Full Text Available Abstract Background Due to increasing demand and financial constraints, NHS continuing healthcare systems seek to find better ways of forecasting demand and budgeting for care. This paper investigates two areas of concern, namely, how long existing patients stay in service and the number of patients that are likely to be still in care after a period of time. Methods An anonymised dataset containing information for all funded admissions to placement and home care in the NHS continuing healthcare system was provided by 26 (out of 31 London primary care trusts. The data related to 11289 patients staying in placement and home care between 1 April 2005 and 31 May 2008 were first analysed. Using a methodology based on length of stay (LoS modelling, we captured the distribution of LoS of patients to estimate the probability of a patient staying in care over a period of time. Using the estimated probabilities we forecasted the number of patients that are likely to be still in care after a period of time (e.g. monthly. Results We noticed that within the NHS continuing healthcare system there are three main categories of patients. Some patients are discharged after a short stay (few days, some others staying for few months and the third category of patients staying for a long period of time (years. Some variations in proportions of discharge and transition between types of care as well as between care groups (e.g. palliative, functional mental health were observed. A close agreement of the observed and the expected numbers of patients suggests a good prediction model. Conclusions The model was tested for care groups within the NHS continuing healthcare system in London to support Primary Care Trusts in budget planning and improve their responsiveness to meet the increasing demand under limited availability of resources. Its applicability can be extended to other types of care, such as hospital care and re-ablement. Further work will be geared towards
The problem with time in mixed continuous/discrete time modelling
Rovers, K.C.; Kuper, Jan; Smit, Gerardus Johannes Maria
The design of cyber-physical systems requires the use of mixed continuous time and discrete time models. Current modelling tools have problems with time transformations (such as a time delay) or multi-rate systems. We will present a novel approach that implements signals as functions of time,
The space-time model according to dimensional continuous space-time theory
International Nuclear Information System (INIS)
Martini, Luiz Cesar
2014-01-01
This article results from the Dimensional Continuous Space-Time Theory for which the introductory theoretician was presented in [1]. A theoretical model of the Continuous Space-Time is presented. The wave equation of time into absolutely stationary empty space referential will be described in detail. The complex time, that is the time fixed on the infinite phase time speed referential, is deduced from the New View of Relativity Theory that is being submitted simultaneously with this article in this congress. Finally considering the inseparable Space-Time is presented the duality equation wave-particle.
Hofstede, ter F.; Wedel, M.
1998-01-01
This study investigates the effects of time aggregation in discrete and continuous-time hazard models. A Monte Carlo study is conducted in which data are generated according to various continuous and discrete-time processes, and aggregated into daily, weekly and monthly intervals. These data are
Time inconsistency and reputation in monetary policy: a strategic model in continuous time
Li, Jingyuan; Tian, Guoqiang
2005-01-01
This article develops a model to examine the equilibrium behavior of the time inconsistency problem in a continuous time economy with stochastic and endogenized dis- tortion. First, the authors introduce the notion of sequentially rational equilibrium, and show that the time inconsistency problem may be solved with trigger reputation strategies for stochastic setting. The conditions for the existence of sequentially rational equilibrium are provided. Then, the concept of sequen...
Continuous time modelling of dynamical spatial lattice data observed at sparsely distributed times
DEFF Research Database (Denmark)
Rasmussen, Jakob Gulddahl; Møller, Jesper
2007-01-01
Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice......, and they exhibit spatial interaction. For specificity we consider a particular dynamical spatial lattice data set which has previously been analysed by a discrete time model involving unknown normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared...... with discrete time processes in the setting of the present paper as well as other spatial-temporal situations....
Voelkle, Manuel C; Oud, Johan H L
2013-02-01
When designing longitudinal studies, researchers often aim at equal intervals. In practice, however, this goal is hardly ever met, with different time intervals between assessment waves and different time intervals between individuals being more the rule than the exception. One of the reasons for the introduction of continuous time models by means of structural equation modelling has been to deal with irregularly spaced assessment waves (e.g., Oud & Delsing, 2010). In the present paper we extend the approach to individually varying time intervals for oscillating and non-oscillating processes. In addition, we show not only that equal intervals are unnecessary but also that it can be advantageous to use unequal sampling intervals, in particular when the sampling rate is low. Two examples are provided to support our arguments. In the first example we compare a continuous time model of a bivariate coupled process with varying time intervals to a standard discrete time model to illustrate the importance of accounting for the exact time intervals. In the second example the effect of different sampling intervals on estimating a damped linear oscillator is investigated by means of a Monte Carlo simulation. We conclude that it is important to account for individually varying time intervals, and encourage researchers to conceive of longitudinal studies with different time intervals within and between individuals as an opportunity rather than a problem. © 2012 The British Psychological Society.
Time-aggregation effects on the baseline of continuous-time and discrete-time hazard models
ter Hofstede, F.; Wedel, M.
In this study we reinvestigate the effect of time-aggregation for discrete- and continuous-time hazard models. We reanalyze the results of a previous Monte Carlo study by ter Hofstede and Wedel (1998), in which the effects of time-aggregation on the parameter estimates of hazard models were
An Expectation Maximization Algorithm to Model Failure Times by Continuous-Time Markov Chains
Directory of Open Access Journals (Sweden)
Qihong Duan
2010-01-01
Full Text Available In many applications, the failure rate function may present a bathtub shape curve. In this paper, an expectation maximization algorithm is proposed to construct a suitable continuous-time Markov chain which models the failure time data by the first time reaching the absorbing state. Assume that a system is described by methods of supplementary variables, the device of stage, and so on. Given a data set, the maximum likelihood estimators of the initial distribution and the infinitesimal transition rates of the Markov chain can be obtained by our novel algorithm. Suppose that there are m transient states in the system and that there are n failure time data. The devised algorithm only needs to compute the exponential of m×m upper triangular matrices for O(nm2 times in each iteration. Finally, the algorithm is applied to two real data sets, which indicates the practicality and efficiency of our algorithm.
Integrating Continuous-Time and Discrete-Event Concepts in Process Modelling, Simulation and Control
Beek, van D.A.; Gordijn, S.H.F.; Rooda, J.E.; Ertas, A.
1995-01-01
Currently, modelling of systems in the process industry requires the use of different specification languages for the specification of the discrete-event and continuous-time subsystems. In this way, models are restricted to individual subsystems of either a continuous-time or discrete-event nature.
Stylised facts of financial time series and hidden Markov models in continuous time
DEFF Research Database (Denmark)
Nystrup, Peter; Madsen, Henrik; Lindström, Erik
2015-01-01
presents an extension to continuous time where it is possible to increase the number of states with a linear rather than quadratic growth in the number of parameters. The possibility of increasing the number of states leads to a better fit to both the distributional and temporal properties of daily returns....
Robust model predictive control for constrained continuous-time nonlinear systems
Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong
2018-02-01
In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.
van Rosmalen, Joost; Toy, Mehlika; O'Mahony, James F
2013-08-01
Markov models are a simple and powerful tool for analyzing the health and economic effects of health care interventions. These models are usually evaluated in discrete time using cohort analysis. The use of discrete time assumes that changes in health states occur only at the end of a cycle period. Discrete-time Markov models only approximate the process of disease progression, as clinical events typically occur in continuous time. The approximation can yield biased cost-effectiveness estimates for Markov models with long cycle periods and if no half-cycle correction is made. The purpose of this article is to present an overview of methods for evaluating Markov models in continuous time. These methods use mathematical results from stochastic process theory and control theory. The methods are illustrated using an applied example on the cost-effectiveness of antiviral therapy for chronic hepatitis B. The main result is a mathematical solution for the expected time spent in each state in a continuous-time Markov model. It is shown how this solution can account for age-dependent transition rates and discounting of costs and health effects, and how the concept of tunnel states can be used to account for transition rates that depend on the time spent in a state. The applied example shows that the continuous-time model yields more accurate results than the discrete-time model but does not require much computation time and is easily implemented. In conclusion, continuous-time Markov models are a feasible alternative to cohort analysis and can offer several theoretical and practical advantages.
Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm.
Stoll, Gautier; Viara, Eric; Barillot, Emmanuel; Calzone, Laurence
2012-01-01
Abstract Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to validate a network that describes biological observations and predict the effect of perturbations. This article presents an algorithm for modeling biological networks in a discrete framework with continuous time. Background There exist two major types of mathematical modeling approaches: (1) quantitative modeling, representing various chemical species concentrations by real...
Local and global dynamics of Ramsey model: From continuous to discrete time.
Guzowska, Malgorzata; Michetti, Elisabetta
2018-05-01
The choice of time as a discrete or continuous variable may radically affect equilibrium stability in an endogenous growth model with durable consumption. In the continuous-time Ramsey model [F. P. Ramsey, Econ. J. 38(152), 543-559 (1928)], the steady state is locally saddle-path stable with monotonic convergence. However, in the discrete-time version, the steady state may be unstable or saddle-path stable with monotonic or oscillatory convergence or periodic solutions [see R.-A. Dana et al., Handbook on Optimal Growth 1 (Springer, 2006) and G. Sorger, Working Paper No. 1505 (2015)]. When this occurs, the discrete-time counterpart of the continuous-time model is not consistent with the initial framework. In order to obtain a discrete-time Ramsey model preserving the main properties of the continuous-time counterpart, we use a general backward and forward discretisation as initially proposed by Bosi and Ragot [Theor. Econ. Lett. 2(1), 10-15 (2012)]. The main result of the study here presented is that, with this hybrid discretisation method, fixed points and local dynamics do not change. For what it concerns global dynamics, i.e., long-run behavior for initial conditions taken on the state space, we mainly perform numerical analysis with the main scope of comparing both qualitative and quantitative evolution of the two systems, also varying some parameters of interest.
A continuous time model of the bandwagon effect in collective action
Arieh Gavious; Shlomo Mizrahi
2001-01-01
The paper offers a complex and systematic model of the bandwagon effect in collective action using continuous time equations. The model treats the bandwagon effect as a process influenced by ratio between the mobilization efforts of social activists and the resources invested by the government to counteract this activity. The complex modeling approach makes it possible to identify the conditions for specific types of the bandwagon effect, and determines the scope of that effect. Relying on ce...
A comparison of numerical methods for the solution of continuous-time DSGE models
DEFF Research Database (Denmark)
Parra-Alvarez, Juan Carlos
This paper evaluates the accuracy of a set of techniques that approximate the solution of continuous-time DSGE models. Using the neoclassical growth model I compare linear-quadratic, perturbation and projection methods. All techniques are applied to the HJB equation and the optimality conditions...... parameters of the model and suggest the use of projection methods when a high degree of accuracy is required....
Numerical solution of continuous-time DSGE models under Poisson uncertainty
DEFF Research Database (Denmark)
Posch, Olaf; Trimborn, Timo
We propose a simple and powerful method for determining the transition process in continuous-time DSGE models under Poisson uncertainty numerically. The idea is to transform the system of stochastic differential equations into a system of functional differential equations of the retarded type. We...... classes of models. We illustrate the algorithm simulating both the stochastic neoclassical growth model and the Lucas model under Poisson uncertainty which is motivated by the Barro-Rietz rare disaster hypothesis. We find that, even for non-linear policy functions, the maximum (absolute) error is very...
Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm.
Stoll, Gautier; Viara, Eric; Barillot, Emmanuel; Calzone, Laurence
2012-08-29
Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to validate a network that describes biological observations and predict the effect of perturbations. This article presents an algorithm for modeling biological networks in a discrete framework with continuous time. There exist two major types of mathematical modeling approaches: (1) quantitative modeling, representing various chemical species concentrations by real numbers, mainly based on differential equations and chemical kinetics formalism; (2) and qualitative modeling, representing chemical species concentrations or activities by a finite set of discrete values. Both approaches answer particular (and often different) biological questions. Qualitative modeling approach permits a simple and less detailed description of the biological systems, efficiently describes stable state identification but remains inconvenient in describing the transient kinetics leading to these states. In this context, time is represented by discrete steps. Quantitative modeling, on the other hand, can describe more accurately the dynamical behavior of biological processes as it follows the evolution of concentration or activities of chemical species as a function of time, but requires an important amount of information on the parameters difficult to find in the literature. Here, we propose a modeling framework based on a qualitative approach that is intrinsically continuous in time. The algorithm presented in this article fills the gap between qualitative and quantitative modeling. It is based on continuous time Markov process applied on a Boolean state space. In order to describe the temporal evolution of the biological process we wish to model, we explicitly specify the transition rates for each node. For that purpose, we built a language that can be seen as a generalization of Boolean equations. Mathematically, this approach can be translated in a set of ordinary differential
Discrete- vs. Continuous-Time Modeling of Unequally Spaced Experience Sampling Method Data
Directory of Open Access Journals (Sweden)
Silvia de Haan-Rietdijk
2017-10-01
Full Text Available The Experience Sampling Method is a common approach in psychological research for collecting intensive longitudinal data with high ecological validity. One characteristic of ESM data is that it is often unequally spaced, because the measurement intervals within a day are deliberately varied, and measurement continues over several days. This poses a problem for discrete-time (DT modeling approaches, which are based on the assumption that all measurements are equally spaced. Nevertheless, DT approaches such as (vector autoregressive modeling are often used to analyze ESM data, for instance in the context of affective dynamics research. There are equivalent continuous-time (CT models, but they are more difficult to implement. In this paper we take a pragmatic approach and evaluate the practical relevance of the violated model assumption in DT AR(1 and VAR(1 models, for the N = 1 case. We use simulated data under an ESM measurement design to investigate the bias in the parameters of interest under four different model implementations, ranging from the true CT model that accounts for all the exact measurement times, to the crudest possible DT model implementation, where even the nighttime is treated as a regular interval. An analysis of empirical affect data illustrates how the differences between DT and CT modeling can play out in practice. We find that the size and the direction of the bias in DT (VAR models for unequally spaced ESM data depend quite strongly on the true parameter in addition to data characteristics. Our recommendation is to use CT modeling whenever possible, especially now that new software implementations have become available.
A Continuous-Time Agency Model of Optimal Contracting and Capital Structure
Peter M. DeMarzo; Yuliy Sannikov
2004-01-01
We consider a principal-agent model in which the agent needs to raise capital from the principal to finance a project. Our model is based on DeMarzo and Fishman (2003), except that the agent's cash flows are given by a Brownian motion with drift in continuous time. The difficulty in writing an appropriate financial contract in this setting is that the agent can conceal and divert cash flows for his own consumption rather than pay back the principal. Alternatively, the agent may reduce the mea...
Modeling commodity salam contract between two parties for discrete and continuous time series
Hisham, Azie Farhani Badrol; Jaffar, Maheran Mohd
2017-08-01
In order for Islamic finance to remain competitive as the conventional, there needs a new development of Islamic compliance product such as Islamic derivative that can be used to manage the risk. However, under syariah principles and regulations, all financial instruments must not be conflicting with five syariah elements which are riba (interest paid), rishwah (corruption), gharar (uncertainty or unnecessary risk), maysir (speculation or gambling) and jahl (taking advantage of the counterparty's ignorance). This study has proposed a traditional Islamic contract namely salam that can be built as an Islamic derivative product. Although a lot of studies has been done on discussing and proposing the implementation of salam contract as the Islamic product however they are more into qualitative and law issues. Since there is lack of quantitative study of salam contract being developed, this study introduces mathematical models that can value the appropriate salam price for a commodity salam contract between two parties. In modeling the commodity salam contract, this study has modified the existing conventional derivative model and come out with some adjustments to comply with syariah rules and regulations. The cost of carry model has been chosen as the foundation to develop the commodity salam model between two parties for discrete and continuous time series. However, the conventional time value of money results from the concept of interest that is prohibited in Islam. Therefore, this study has adopted the idea of Islamic time value of money which is known as the positive time preference, in modeling the commodity salam contract between two parties for discrete and continuous time series.
Liang, Yingjie; Chen, Wen
2018-04-01
The mean squared displacement (MSD) of the traditional ultraslow diffusion is a logarithmic function of time. Recently, the continuous time random walk model is employed to characterize this ultraslow diffusion dynamics by connecting the heavy-tailed logarithmic function and its variation as the asymptotical waiting time density. In this study we investigate the limiting waiting time density of a general ultraslow diffusion model via the inverse Mittag-Leffler function, whose special case includes the traditional logarithmic ultraslow diffusion model. The MSD of the general ultraslow diffusion model is analytically derived as an inverse Mittag-Leffler function, and is observed to increase even more slowly than that of the logarithmic function model. The occurrence of very long waiting time in the case of the inverse Mittag-Leffler function has the largest probability compared with the power law model and the logarithmic function model. The Monte Carlo simulations of one dimensional sample path of a single particle are also performed. The results show that the inverse Mittag-Leffler waiting time density is effective in depicting the general ultraslow random motion.
Modelling and real-time simulation of continuous-discrete systems in mechatronics
Energy Technology Data Exchange (ETDEWEB)
Lindow, H. [Rostocker, Magdeburg (Germany)
1996-12-31
This work presents a methodology for simulation and modelling of systems with continuous - discrete dynamics. It derives hybrid discrete event models from Lagrange`s equations of motion. This method combines continuous mechanical, electrical and thermodynamical submodels on one hand with discrete event models an the other hand into a hybrid discrete event model. This straight forward software development avoids numeric overhead.
Distributed synthesis in continuous time
DEFF Research Database (Denmark)
Hermanns, Holger; Krčál, Jan; Vester, Steen
2016-01-01
We introduce a formalism modelling communication of distributed agents strictly in continuous-time. Within this framework, we study the problem of synthesising local strategies for individual agents such that a specified set of goal states is reached, or reached with at least a given probability....... The flow of time is modelled explicitly based on continuous-time randomness, with two natural implications: First, the non-determinism stemming from interleaving disappears. Second, when we restrict to a subclass of non-urgent models, the quantitative value problem for two players can be solved in EXPTIME....... Indeed, the explicit continuous time enables players to communicate their states by delaying synchronisation (which is unrestricted for non-urgent models). In general, the problems are undecidable already for two players in the quantitative case and three players in the qualitative case. The qualitative...
A joint logistic regression and covariate-adjusted continuous-time Markov chain model.
Rubin, Maria Laura; Chan, Wenyaw; Yamal, Jose-Miguel; Robertson, Claudia Sue
2017-12-10
The use of longitudinal measurements to predict a categorical outcome is an increasingly common goal in research studies. Joint models are commonly used to describe two or more models simultaneously by considering the correlated nature of their outcomes and the random error present in the longitudinal measurements. However, there is limited research on joint models with longitudinal predictors and categorical cross-sectional outcomes. Perhaps the most challenging task is how to model the longitudinal predictor process such that it represents the true biological mechanism that dictates the association with the categorical response. We propose a joint logistic regression and Markov chain model to describe a binary cross-sectional response, where the unobserved transition rates of a two-state continuous-time Markov chain are included as covariates. We use the method of maximum likelihood to estimate the parameters of our model. In a simulation study, coverage probabilities of about 95%, standard deviations close to standard errors, and low biases for the parameter values show that our estimation method is adequate. We apply the proposed joint model to a dataset of patients with traumatic brain injury to describe and predict a 6-month outcome based on physiological data collected post-injury and admission characteristics. Our analysis indicates that the information provided by physiological changes over time may help improve prediction of long-term functional status of these severely ill subjects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Fitting and interpreting continuous-time latent Markov models for panel data.
Lange, Jane M; Minin, Vladimir N
2013-11-20
Multistate models characterize disease processes within an individual. Clinical studies often observe the disease status of individuals at discrete time points, making exact times of transitions between disease states unknown. Such panel data pose considerable modeling challenges. Assuming the disease process progresses accordingly, a standard continuous-time Markov chain (CTMC) yields tractable likelihoods, but the assumption of exponential sojourn time distributions is typically unrealistic. More flexible semi-Markov models permit generic sojourn distributions yet yield intractable likelihoods for panel data in the presence of reversible transitions. One attractive alternative is to assume that the disease process is characterized by an underlying latent CTMC, with multiple latent states mapping to each disease state. These models retain analytic tractability due to the CTMC framework but allow for flexible, duration-dependent disease state sojourn distributions. We have developed a robust and efficient expectation-maximization algorithm in this context. Our complete data state space consists of the observed data and the underlying latent trajectory, yielding computationally efficient expectation and maximization steps. Our algorithm outperforms alternative methods measured in terms of time to convergence and robustness. We also examine the frequentist performance of latent CTMC point and interval estimates of disease process functionals based on simulated data. The performance of estimates depends on time, functional, and data-generating scenario. Finally, we illustrate the interpretive power of latent CTMC models for describing disease processes on a dataset of lung transplant patients. We hope our work will encourage wider use of these models in the biomedical setting. Copyright © 2013 John Wiley & Sons, Ltd.
Offset-Free Direct Power Control of DFIG Under Continuous-Time Model Predictive Control
DEFF Research Database (Denmark)
Errouissi, Rachid; Al-Durra, Ahmed; Muyeen, S.M.
2017-01-01
This paper presents a robust continuous-time model predictive direct power control for doubly fed induction generator (DFIG). The proposed approach uses Taylor series expansion to predict the stator current in the synchronous reference frame over a finite time horizon. The predicted stator current...... is directly used to compute the required rotor voltage in order to minimize the difference between the actual stator currents and their references over the predictive time. However, as the proposed strategy is sensitive to parameter variations and external disturbances, a disturbance observer is embedded...... into the control loop to remove the steady-state error of the stator current. It turns out that the steady-state and the transient performances can be identified by simple design parameters. In this paper, the reference of the stator current is directly calculated from the desired stator active and reactive powers...
Continuous-time modeling of cell fate determination in Arabidopsis flowers
Directory of Open Access Journals (Sweden)
Angenent Gerco C
2010-07-01
Full Text Available Abstract Background The genetic control of floral organ specification is currently being investigated by various approaches, both experimentally and through modeling. Models and simulations have mostly involved boolean or related methods, and so far a quantitative, continuous-time approach has not been explored. Results We propose an ordinary differential equation (ODE model that describes the gene expression dynamics of a gene regulatory network that controls floral organ formation in the model plant Arabidopsis thaliana. In this model, the dimerization of MADS-box transcription factors is incorporated explicitly. The unknown parameters are estimated from (known experimental expression data. The model is validated by simulation studies of known mutant plants. Conclusions The proposed model gives realistic predictions with respect to independent mutation data. A simulation study is carried out to predict the effects of a new type of mutation that has so far not been made in Arabidopsis, but that could be used as a severe test of the validity of the model. According to our predictions, the role of dimers is surprisingly important. Moreover, the functional loss of any dimer leads to one or more phenotypic alterations.
Continuous-time interval model identification of blood glucose dynamics for type 1 diabetes
Kirchsteiger, Harald; Johansson, Rolf; Renard, Eric; del Re, Luigi
2014-07-01
While good physiological models of the glucose metabolism in type 1 diabetic patients are well known, their parameterisation is difficult. The high intra-patient variability observed is a further major obstacle. This holds for data-based models too, so that no good patient-specific models are available. Against this background, this paper proposes the use of interval models to cover the different metabolic conditions. The control-oriented models contain a carbohydrate and insulin sensitivity factor to be used for insulin bolus calculators directly. Available clinical measurements were sampled on an irregular schedule which prompts the use of continuous-time identification, also for the direct estimation of the clinically interpretable factors mentioned above. An identification method is derived and applied to real data from 28 diabetic patients. Model estimation was done on a clinical data-set, whereas validation results shown were done on an out-of-clinic, everyday life data-set. The results show that the interval model approach allows a much more regular estimation of the parameters and avoids physiologically incompatible parameter estimates.
An approach to the drone fleet survivability assessment based on a stochastic continues-time model
Kharchenko, Vyacheslav; Fesenko, Herman; Doukas, Nikos
2017-09-01
An approach and the algorithm to the drone fleet survivability assessment based on a stochastic continues-time model are proposed. The input data are the number of the drones, the drone fleet redundancy coefficient, the drone stability and restoration rate, the limit deviation from the norms of the drone fleet recovery, the drone fleet operational availability coefficient, the probability of the drone failure-free operation, time needed for performing the required tasks by the drone fleet. The ways for improving the recoverable drone fleet survivability taking into account amazing factors of system accident are suggested. Dependencies of the drone fleet survivability rate both on the drone stability and the number of the drones are analysed.
Vibration analysis diagnostics by continuous-time models: A case study
International Nuclear Information System (INIS)
Pedregal, Diego J.; Carmen Carnero, Ma.
2009-01-01
In this paper a forecasting system in condition monitoring is developed based on vibration signals in order to improve the diagnosis of a certain critical equipment at an industrial plant. The system is based on statistical models capable of forecasting the state of the equipment combined with a cost model consisting of defining the time of preventive replacement when the minimum of the expected cost per unit of time is reached in the future. The most relevant features of the system are that (i) it is developed for bivariate signals; (ii) the statistical models are set up in a continuous-time framework, due to the specific nature of the data; and (iii) it has been developed from scratch for a real case study and may be generalised to other pieces of equipment. The system is thoroughly tested on the equipment available, showing its correctness with the data in a statistical sense and its capability of producing sensible results for the condition monitoring programme
Vibration analysis diagnostics by continuous-time models: A case study
Energy Technology Data Exchange (ETDEWEB)
Pedregal, Diego J. [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: Diego.Pedregal@uclm.es; Carmen Carnero, Ma. [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: Carmen.Carnero@uclm.es
2009-02-15
In this paper a forecasting system in condition monitoring is developed based on vibration signals in order to improve the diagnosis of a certain critical equipment at an industrial plant. The system is based on statistical models capable of forecasting the state of the equipment combined with a cost model consisting of defining the time of preventive replacement when the minimum of the expected cost per unit of time is reached in the future. The most relevant features of the system are that (i) it is developed for bivariate signals; (ii) the statistical models are set up in a continuous-time framework, due to the specific nature of the data; and (iii) it has been developed from scratch for a real case study and may be generalised to other pieces of equipment. The system is thoroughly tested on the equipment available, showing its correctness with the data in a statistical sense and its capability of producing sensible results for the condition monitoring programme.
The cascade model of teachers’ continuing professional development in Kenya: A time for change?
Directory of Open Access Journals (Sweden)
Harry Kipkemoi Bett
2016-12-01
Full Text Available Kenya is one of the countries whose teachers the UNESCO (2015 report cited as lacking curriculum support in the classroom. As is the case in many African countries, a large portion of teachers in Kenya enter the teaching profession when inadequately prepared, while those already in the field receive insufficient support in their professional lives. The cascade model has often been utilized in the country whenever need for teachers’ continuing professional development (TCPD has arisen, especially on a large scale. The preference for the model is due to, among others, its cost effectiveness and ability to reach out to many teachers within a short period of time. Many researchers have however cast aspersions with this model for its glaring shortcomings. On the contrary, TCPD programmes that are collaborative in nature and based on teachers’ contexts have been found to be more effective than those that are not. This paper briefly examines cases of the cascade model in Kenya, the challenges associated with this model and proposes the adoption of collaborative and institution-based models to mitigate these challenges. The education sectors in many nations in Africa, and those in the developing world will find the discussions here relevant.
Learning a Continuous-Time Streaming Video QoE Model.
Ghadiyaram, Deepti; Pan, Janice; Bovik, Alan C
2018-05-01
Over-the-top adaptive video streaming services are frequently impacted by fluctuating network conditions that can lead to rebuffering events (stalling events) and sudden bitrate changes. These events visually impact video consumers' quality of experience (QoE) and can lead to consumer churn. The development of models that can accurately predict viewers' instantaneous subjective QoE under such volatile network conditions could potentially enable the more efficient design of quality-control protocols for media-driven services, such as YouTube, Amazon, Netflix, and so on. However, most existing models only predict a single overall QoE score on a given video and are based on simple global video features, without accounting for relevant aspects of human perception and behavior. We have created a QoE evaluator, called the time-varying QoE Indexer, that accounts for interactions between stalling events, analyzes the spatial and temporal content of a video, predicts the perceptual video quality, models the state of the client-side data buffer, and consequently predicts continuous-time quality scores that agree quite well with human opinion scores. The new QoE predictor also embeds the impact of relevant human cognitive factors, such as memory and recency, and their complex interactions with the video content being viewed. We evaluated the proposed model on three different video databases and attained standout QoE prediction performance.
DEFF Research Database (Denmark)
A methodology is presented that combines modelling based on first principles and data based modelling into a modelling cycle that facilitates fast decision-making based on statistical methods. A strong feature of this methodology is that given a first principles model along with process data......, the corresponding modelling cycle model of the given system for a given purpose. A computer-aided tool, which integrates the elements of the modelling cycle, is also presented, and an example is given of modelling a fed-batch bioreactor....
International Nuclear Information System (INIS)
Stanzel, Ph; Kahl, B; Haberl, U; Herrnegger, M; Nachtnebel, H P
2008-01-01
A hydrological modelling framework applied within operational flood forecasting systems in three alpine Danube tributary basins, Traisen, Salzach and Enns, is presented. A continuous, semi-distributed rainfall-runoff model, accounting for the main hydrological processes of snow accumulation and melt, interception, evapotranspiration, infiltration, runoff generation and routing is set up. Spatial discretization relies on the division of watersheds into subbasins and subsequently into hydrologic response units based on spatial information on soil types, land cover and elevation bands. The hydrological models are calibrated with meteorological ground measurements and with meteorological analyses incorporating radar information. Operationally, each forecasting sequence starts with the re-calculation of the last 24 to 48 hours. Errors between simulated and observed runoff are minimized by optimizing a correction factor for the input to provide improved system states. For the hydrological forecast quantitative 48 or 72 hour forecast grids of temperature and precipitation - deterministic and probabilistic - are used as input. The forecasted hydrograph is corrected with an autoregressive model. The forecasting sequences are repeated each 15 minutes. First evaluations of resulting hydrological forecasts are presented and reliability of forecasts with different lead times is discussed.
International Nuclear Information System (INIS)
Helmstetter, A.; Sornette, D.
2002-01-01
The epidemic-type aftershock sequence (ETAS) model is a simple stochastic process modeling seismicity, based on the two best-established empirical laws, the Omori law (power-law decay ∼1/t 1+θ of seismicity after an earthquake) and Gutenberg-Richter law (power-law distribution of earthquake energies). In order to describe also the space distribution of seismicity, we use in addition a power-law distribution ∼1/r 1+μ of distances between triggered and triggering earthquakes. The ETAS model has been studied for the last two decades to model real seismicity catalogs and to obtain short-term probabilistic forecasts. Here, we present a mapping between the ETAS model and a class of CTRW (continuous time random walk) models, based on the identification of their corresponding master equations. This mapping allows us to use the wealth of results previously obtained on anomalous diffusion of CTRW. After translating into the relevant variable for the ETAS model, we provide a classification of the different regimes of diffusion of seismic activity triggered by a mainshock. Specifically, we derive the relation between the average distance between aftershocks and the mainshock as a function of the time from the mainshock and of the joint probability distribution of the times and locations of the aftershocks. The different regimes are fully characterized by the two exponents θ and μ. Our predictions are checked by careful numerical simulations. We stress the distinction between the 'bare' Omori law describing the seismic rate activated directly by a mainshock and the 'renormalized' Omori law taking into account all possible cascades from mainshocks to aftershocks of aftershock of aftershock, and so on. In particular, we predict that seismic diffusion or subdiffusion occurs and should be observable only when the observed Omori exponent is less than 1, because this signals the operation of the renormalization of the bare Omori law, also at the origin of seismic diffusion in
Desvillettes, Laurent; Fellner, Klemens
2010-01-01
We study a continuous coagulation-fragmentation model with constant kernels for reacting polymers (see [M. Aizenman and T. Bak, Comm. Math. Phys., 65 (1979), pp. 203-230]). The polymers are set to diffuse within a smooth bounded one
Comolli, Alessandro; Hakoun, Vivien; Dentz, Marco
2017-04-01
Achieving the understanding of the process of solute transport in heterogeneous porous media is of crucial importance for several environmental and social purposes, ranging from aquifers contamination and remediation, to risk assessment in nuclear waste repositories. The complexity of this aim is mainly ascribable to the heterogeneity of natural media, which can be observed at all the scales of interest, from pore scale to catchment scale. In fact, the intrinsic heterogeneity of porous media is responsible for the arising of the well-known non-Fickian footprints of transport, including heavy-tailed breakthrough curves, non-Gaussian spatial density profiles and the non-linear growth of the mean squared displacement. Several studies investigated the processes through which heterogeneity impacts the transport properties, which include local modifications to the advective-dispersive motion of solutes, mass exchanges between some mobile and immobile phases (e.g. sorption/desorption reactions or diffusion into solid matrix) and spatial correlation of the flow field. In the last decades, the continuous time random walk (CTRW) model has often been used to describe solute transport in heterogenous conditions and to quantify the impact of point heterogeneity, spatial correlation and mass transfer on the average transport properties [1]. Open issues regarding this approach are the possibility to relate measurable properties of the medium to the parameters of the model, as well as its capability to provide predictive information. In a recent work [2] the authors have shed new light on understanding the relationship between Lagrangian and Eulerian dynamics as well as on their evolution from arbitrary initial conditions. On the basis of these results, we derive a CTRW model for the description of Darcy-scale transport in d-dimensional media characterized by spatially random permeability fields. The CTRW approach models particle velocities as a spatial Markov process, which is
Continuous-time random-walk model for anomalous diffusion in expanding media
Le Vot, F.; Abad, E.; Yuste, S. B.
2017-09-01
Expanding media are typical in many different fields, e.g., in biology and cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties such as the set of positional moments and the Green's function. Here, we focus on the characterization of such effects when the diffusion process is described by the continuous-time random-walk (CTRW) model. As is well known, when the medium is static this model yields anomalous diffusion for a proper choice of the probability density function (pdf) for the jump length and the waiting time, but the behavior may change drastically if a medium expansion is superimposed on the intrinsic random motion of the diffusing particle. For the case where the jump length and the waiting time pdfs are long-tailed, we derive a general bifractional diffusion equation which reduces to a normal diffusion equation in the appropriate limit. We then study some particular cases of interest, including Lévy flights and subdiffusive CTRWs. In the former case, we find an analytical exact solution for the Green's function (propagator). When the expansion is sufficiently fast, the contribution of the diffusive transport becomes irrelevant at long times and the propagator tends to a stationary profile in the comoving reference frame. In contrast, for a contracting medium a competition between the spreading effect of diffusion and the concentrating effect of contraction arises. In the specific case of a subdiffusive CTRW in an exponentially contracting medium, the latter effect prevails for sufficiently long times, and all the particles are eventually localized at a single point in physical space. This "big crunch" effect, totally absent in the case of normal diffusion, stems from inefficient particle spreading due to subdiffusion. We also derive a hierarchy of differential equations for the moments of the transport process described by the subdiffusive CTRW model in an expanding medium
Continuous-time random-walk model for anomalous diffusion in expanding media.
Le Vot, F; Abad, E; Yuste, S B
2017-09-01
Expanding media are typical in many different fields, e.g., in biology and cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties such as the set of positional moments and the Green's function. Here, we focus on the characterization of such effects when the diffusion process is described by the continuous-time random-walk (CTRW) model. As is well known, when the medium is static this model yields anomalous diffusion for a proper choice of the probability density function (pdf) for the jump length and the waiting time, but the behavior may change drastically if a medium expansion is superimposed on the intrinsic random motion of the diffusing particle. For the case where the jump length and the waiting time pdfs are long-tailed, we derive a general bifractional diffusion equation which reduces to a normal diffusion equation in the appropriate limit. We then study some particular cases of interest, including Lévy flights and subdiffusive CTRWs. In the former case, we find an analytical exact solution for the Green's function (propagator). When the expansion is sufficiently fast, the contribution of the diffusive transport becomes irrelevant at long times and the propagator tends to a stationary profile in the comoving reference frame. In contrast, for a contracting medium a competition between the spreading effect of diffusion and the concentrating effect of contraction arises. In the specific case of a subdiffusive CTRW in an exponentially contracting medium, the latter effect prevails for sufficiently long times, and all the particles are eventually localized at a single point in physical space. This "big crunch" effect, totally absent in the case of normal diffusion, stems from inefficient particle spreading due to subdiffusion. We also derive a hierarchy of differential equations for the moments of the transport process described by the subdiffusive CTRW model in an expanding medium
A lattice-model representation of continuous-time random walks
International Nuclear Information System (INIS)
Campos, Daniel; Mendez, Vicenc
2008-01-01
We report some ideas for constructing lattice models (LMs) as a discrete approach to the reaction-dispersal (RD) or reaction-random walks (RRW) models. The analysis of a rather general class of Markovian and non-Markovian processes, from the point of view of their wavefront solutions, let us show that in some regimes their macroscopic dynamics (front speed) turns out to be different from that by classical reaction-diffusion equations, which are often used as a mean-field approximation to the problem. So, the convenience of a more general framework as that given by the continuous-time random walks (CTRW) is claimed. Here we use LMs as a numerical approach in order to support that idea, while in previous works our discussion was restricted to analytical models. For the two specific cases studied here, we derive and analyze the mean-field expressions for our LMs. As a result, we are able to provide some links between the numerical and analytical approaches studied
A lattice-model representation of continuous-time random walks
Energy Technology Data Exchange (ETDEWEB)
Campos, Daniel [School of Mathematics, Department of Applied Mathematics, University of Manchester, Manchester M60 1QD (United Kingdom); Mendez, Vicenc [Grup de Fisica Estadistica, Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)], E-mail: daniel.campos@uab.es, E-mail: vicenc.mendez@uab.es
2008-02-29
We report some ideas for constructing lattice models (LMs) as a discrete approach to the reaction-dispersal (RD) or reaction-random walks (RRW) models. The analysis of a rather general class of Markovian and non-Markovian processes, from the point of view of their wavefront solutions, let us show that in some regimes their macroscopic dynamics (front speed) turns out to be different from that by classical reaction-diffusion equations, which are often used as a mean-field approximation to the problem. So, the convenience of a more general framework as that given by the continuous-time random walks (CTRW) is claimed. Here we use LMs as a numerical approach in order to support that idea, while in previous works our discussion was restricted to analytical models. For the two specific cases studied here, we derive and analyze the mean-field expressions for our LMs. As a result, we are able to provide some links between the numerical and analytical approaches studied.
Meng, Tianhui; Li, Xiaofan; Zhang, Sha; Zhao, Yubin
2016-09-28
Wireless sensor networks (WSNs) have recently gained popularity for a wide spectrum of applications. Monitoring tasks can be performed in various environments. This may be beneficial in many scenarios, but it certainly exhibits new challenges in terms of security due to increased data transmission over the wireless channel with potentially unknown threats. Among possible security issues are timing attacks, which are not prevented by traditional cryptographic security. Moreover, the limited energy and memory resources prohibit the use of complex security mechanisms in such systems. Therefore, balancing between security and the associated energy consumption becomes a crucial challenge. This paper proposes a secure scheme for WSNs while maintaining the requirement of the security-performance tradeoff. In order to proceed to a quantitative treatment of this problem, a hybrid continuous-time Markov chain (CTMC) and queueing model are put forward, and the tradeoff analysis of the security and performance attributes is carried out. By extending and transforming this model, the mean time to security attributes failure is evaluated. Through tradeoff analysis, we show that our scheme can enhance the security of WSNs, and the optimal rekeying rate of the performance and security tradeoff can be obtained.
2016-06-01
This paper develops a microeconomic theory-based multiple discrete continuous choice model that considers: (a) that both goods consumption and time allocations (to work and non-work activities) enter separately as decision variables in the utility fu...
Sasai, Kazuto; Gunji, Yukio-Pegio; Kinoshita, Tetsuo
2017-07-01
Multi-agent models of robust open systems such as natural systems are the important theme in the literature of systems science. Heterarchy, which means dynamical hierarchy, is a structural model, which includes the dynamical interplay between different levels. However, it is not easy to build a formal model of a heterarchical system because the interplay between different levels lead a self-referential paradox. In this paper, we propose an continuous double auction model, which includes a formal model of conitnuous transaction. We encode the model into a restriction rule of the order submittion. The proposed model shows a critical behavior of the actual markets, and it can have the relationship with the behaviors of natural systems.
Cao, Qi; Buskens, Erik; Feenstra, Talitha; Jaarsma, Tiny; Hillege, Hans; Postmus, Douwe
Continuous-time state transition models may end up having large unwieldy structures when trying to represent all relevant stages of clinical disease processes by means of a standard Markov model. In such situations, a more parsimonious, and therefore easier-to-grasp, model of a patient's disease
Data on copula modeling of mixed discrete and continuous neural time series.
Hu, Meng; Li, Mingyao; Li, Wu; Liang, Hualou
2016-06-01
Copula is an important tool for modeling neural dependence. Recent work on copula has been expanded to jointly model mixed time series in neuroscience ("Hu et al., 2016, Joint Analysis of Spikes and Local Field Potentials using Copula" [1]). Here we present further data for joint analysis of spike and local field potential (LFP) with copula modeling. In particular, the details of different model orders and the influence of possible spike contamination in LFP data from the same and different electrode recordings are presented. To further facilitate the use of our copula model for the analysis of mixed data, we provide the Matlab codes, together with example data.
DEFF Research Database (Denmark)
Pedersen, Jonas Nyvold; Li, Liang; Gradinaru, Cristian
2016-01-01
We provide a tool for data-driven modeling of motility, data being time-lapse recorded trajectories. Several mathematical properties of a model to be found can be gleaned from appropriate model-independent experimental statistics, if one understands how such statistics are distorted by the finite...... of these effects that are valid for any reasonable model for persistent random motion. Our findings are illustrated with experimental data and Monte Carlo simulations....
An SEM Approach to Continuous Time Modeling of Panel Data: Relating Authoritarianism and Anomia
Voelkle, Manuel C.; Oud, Johan H. L.; Davidov, Eldad; Schmidt, Peter
2012-01-01
Panel studies, in which the same subjects are repeatedly observed at multiple time points, are among the most popular longitudinal designs in psychology. Meanwhile, there exists a wide range of different methods to analyze such data, with autoregressive and cross-lagged models being 2 of the most well known representatives. Unfortunately, in these…
Desvillettes, Laurent
2010-01-01
We study a continuous coagulation-fragmentation model with constant kernels for reacting polymers (see [M. Aizenman and T. Bak, Comm. Math. Phys., 65 (1979), pp. 203-230]). The polymers are set to diffuse within a smooth bounded one-dimensional domain with no-flux boundary conditions. In particular, we consider size-dependent diffusion coefficients, which may degenerate for small and large cluster-sizes. We prove that the entropy-entropy dissipation method applies directly in this inhomogeneous setting. We first show the necessary basic a priori estimates in dimension one, and second we show faster-than-polynomial convergence toward global equilibria for diffusion coefficients which vanish not faster than linearly for large sizes. This extends the previous results of [J.A. Carrillo, L. Desvillettes, and K. Fellner, Comm. Math. Phys., 278 (2008), pp. 433-451], which assumes that the diffusion coefficients are bounded below. © 2009 Society for Industrial and Applied Mathematics.
A Random Parameter Model for Continuous-Time Mean-Variance Asset-Liability Management
Directory of Open Access Journals (Sweden)
Hui-qiang Ma
2015-01-01
Full Text Available We consider a continuous-time mean-variance asset-liability management problem in a market with random market parameters; that is, interest rate, appreciation rates, and volatility rates are considered to be stochastic processes. By using the theories of stochastic linear-quadratic (LQ optimal control and backward stochastic differential equations (BSDEs, we tackle this problem and derive optimal investment strategies as well as the mean-variance efficient frontier analytically in terms of the solution of BSDEs. We find that the efficient frontier is still a parabola in a market with random parameters. Comparing with the existing results, we also find that the liability does not affect the feasibility of the mean-variance portfolio selection problem. However, in an incomplete market with random parameters, the liability can not be fully hedged.
Chemical Continuous Time Random Walks
Aquino, T.; Dentz, M.
2017-12-01
Traditional methods for modeling solute transport through heterogeneous media employ Eulerian schemes to solve for solute concentration. More recently, Lagrangian methods have removed the need for spatial discretization through the use of Monte Carlo implementations of Langevin equations for solute particle motions. While there have been recent advances in modeling chemically reactive transport with recourse to Lagrangian methods, these remain less developed than their Eulerian counterparts, and many open problems such as efficient convergence and reconstruction of the concentration field remain. We explore a different avenue and consider the question: In heterogeneous chemically reactive systems, is it possible to describe the evolution of macroscopic reactant concentrations without explicitly resolving the spatial transport? Traditional Kinetic Monte Carlo methods, such as the Gillespie algorithm, model chemical reactions as random walks in particle number space, without the introduction of spatial coordinates. The inter-reaction times are exponentially distributed under the assumption that the system is well mixed. In real systems, transport limitations lead to incomplete mixing and decreased reaction efficiency. We introduce an arbitrary inter-reaction time distribution, which may account for the impact of incomplete mixing. This process defines an inhomogeneous continuous time random walk in particle number space, from which we derive a generalized chemical Master equation and formulate a generalized Gillespie algorithm. We then determine the modified chemical rate laws for different inter-reaction time distributions. We trace Michaelis-Menten-type kinetics back to finite-mean delay times, and predict time-nonlocal macroscopic reaction kinetics as a consequence of broadly distributed delays. Non-Markovian kinetics exhibit weak ergodicity breaking and show key features of reactions under local non-equilibrium.
Optimal Compensation with Hidden Action and Lump-Sum Payment in a Continuous-Time Model
International Nuclear Information System (INIS)
Cvitanic, Jaksa; Wan, Xuhu; Zhang Jianfeng
2009-01-01
We consider a problem of finding optimal contracts in continuous time, when the agent's actions are unobservable by the principal, who pays the agent with a one-time payoff at the end of the contract. We fully solve the case of quadratic cost and separable utility, for general utility functions. The optimal contract is, in general, a nonlinear function of the final outcome only, while in the previously solved cases, for exponential and linear utility functions, the optimal contract is linear in the final output value. In a specific example we compute, the first-best principal's utility is infinite, while it becomes finite with hidden action, which is increasing in value of the output. In the second part of the paper we formulate a general mathematical theory for the problem. We apply the stochastic maximum principle to give necessary conditions for optimal contracts. Sufficient conditions are hard to establish, but we suggest a way to check sufficiency using non-convex optimization
Directory of Open Access Journals (Sweden)
Robert M Dorazio
Full Text Available Several spatial capture-recapture (SCR models have been developed to estimate animal abundance by analyzing the detections of individuals in a spatial array of traps. Most of these models do not use the actual dates and times of detection, even though this information is readily available when using continuous-time recorders, such as microphones or motion-activated cameras. Instead most SCR models either partition the period of trap operation into a set of subjectively chosen discrete intervals and ignore multiple detections of the same individual within each interval, or they simply use the frequency of detections during the period of trap operation and ignore the observed times of detection. Both practices make inefficient use of potentially important information in the data.We developed a hierarchical SCR model to estimate the spatial distribution and abundance of animals detected with continuous-time recorders. Our model includes two kinds of point processes: a spatial process to specify the distribution of latent activity centers of individuals within the region of sampling and a temporal process to specify temporal patterns in the detections of individuals. We illustrated this SCR model by analyzing spatial and temporal patterns evident in the camera-trap detections of tigers living in and around the Nagarahole Tiger Reserve in India. We also conducted a simulation study to examine the performance of our model when analyzing data sets of greater complexity than the tiger data.Our approach provides three important benefits: First, it exploits all of the information in SCR data obtained using continuous-time recorders. Second, it is sufficiently versatile to allow the effects of both space use and behavior of animals to be specified as functions of covariates that vary over space and time. Third, it allows both the spatial distribution and abundance of individuals to be estimated, effectively providing a species distribution model, even in
A Model-free Approach to Fault Detection of Continuous-time Systems Based on Time Domain Data
Institute of Scientific and Technical Information of China (English)
Ping Zhang; Steven X. Ding
2007-01-01
In this paper, a model-free approach is presented to design an observer-based fault detection system of linear continuoustime systems based on input and output data in the time domain. The core of the approach is to directly identify parameters of the observer-based residual generator based on a numerically reliable data equation obtained by filtering and sampling the input and output signals.
Bijeljic, B.
2008-05-01
This talk will describe and highlight the advantages offered by a methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause spreading of solute particles. This spreading is traditionally described by dispersion coefficients, D, defined by σ 2 = 2Dt, where σ 2 is the variance of the solute position and t is the time. Using a pore-scale network model based on particle tracking, the rich Peclet- number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. Future directions for further applications of the methodology presented are discussed in relation to the scale- dependent solute dispersion and reactive transport. Significance of pre-asymptotic dispersion in porous media is addressed from pore-scale upwards and the impact
Directory of Open Access Journals (Sweden)
Mindaugas Snipas
2015-01-01
Full Text Available The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC of voltage gating of gap junction (GJ channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs, which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ∼20 times.
Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Bukauskas, Feliksas F.
2015-01-01
The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ∼20 times. PMID:25705700
Institute of Scientific and Technical Information of China (English)
LIAO Baochao; LIU Qun; ZHANG Kui; Abdul BASET; Aamir Mahmood MEMON; Khadim Hussain MEMON; HAN Yanan
2016-01-01
A continuous time delay-difference model (CTDDM) has been established that considers continuous time delays of biological processes.The southern Atlantic albacore (Thunnus alalunga) stock is the one of the commercially important tuna population in the marine world.The age structured production model (ASPM) and the surplus production model (SPM) have already been used to assess the albacore stock.However,the ASPM requires detailed biological information and the SPM lacks the biological realism.In this study,we focus on applying a CTDDM to the southern Atlantic albacore (T.alalunga) species,which provides an alternative method to assess this fishery.It is the first time that CTDDM has been provided for assessing the Atlantic albacore (T.alalunga) fishery.CTDDM obtained the 80％ confidence interval of MSY (maximum sustainable yield) of(21510 t,23118 t).The catch in 2011 (24100 t) is higher than the MSY values and the relative fishing mortality ratio (F2011/FMSY) is higher than 1.0.The results of CTDDM were analyzed to verify the proposed methodology and provide reference information for the sustainable management of the southern Atlantic albacore stock.The CTDDM treats the recruitment,the growth,and the mortality rates as all varying continuously over time and fills gaps between ASPM and SPM in this stock assessment.
International Nuclear Information System (INIS)
Younmyoung Lee; Kunjai Lee
1995-01-01
A model using continuous time Markov process for nuclide transport of decay chain of arbitrary length in the fractured rock medium has been developed. Considering the fracture in the rock matrix as a finite number of compartments, the transition probability for nuclide from the transition intensity between and out of the compartments is represented utilizing Chapman-Kolmogorov equation, with which the expectation and the variance of nuclide distribution for the fractured rock medium could be obtained. A comparison between continuous time Markov process model and available analytical solutions for the nuclide transport of three decay chains without rock matrix diffusion has been made showing comparatively good agreement. Fittings with experimental breakthrough curves obtained with nonsorbing materials such as NaLS and uranine in the artificial fractured rock are also made. (author)
Capasso, Vincenzo
2015-01-01
This textbook, now in its third edition, offers a rigorous and self-contained introduction to the theory of continuous-time stochastic processes, stochastic integrals, and stochastic differential equations. Expertly balancing theory and applications, the work features concrete examples of modeling real-world problems from biology, medicine, industrial applications, finance, and insurance using stochastic methods. No previous knowledge of stochastic processes is required. Key topics include: * Markov processes * Stochastic differential equations * Arbitrage-free markets and financial derivatives * Insurance risk * Population dynamics, and epidemics * Agent-based models New to the Third Edition: * Infinitely divisible distributions * Random measures * Levy processes * Fractional Brownian motion * Ergodic theory * Karhunen-Loeve expansion * Additional applications * Additional exercises * Smoluchowski approximation of Langevin systems An Introduction to Continuous-Time Stochastic Processes, Third Editio...
International Nuclear Information System (INIS)
Stanzel, Ph; Haberl, U; Nachtnebel, H P
2008-01-01
Hydrological models for flood forecasting in Alpine basins need accurate representation of snow accumulation and snow melt processes. A continuous, semi-distributed rainfall-runoff model with snow modelling procedures using only precipitation and temperature as input is presented. Simulation results from an application in an Alpine Danube tributary watershed are shown and evaluated with snow depth measurements and MODIS remote sensing snow cover information. Seasonal variations of runoff due to snow melt were simulated accurately. Evaluation of simulated snow depth and snow covered area showed strengths and limitations of the model and allowed an assessment of input data quality. MODIS snow cover images were found to be valuable sources of information for hydrological modelling in alpine areas, where ground observations are scarce.
Energy Technology Data Exchange (ETDEWEB)
Stanzel, Ph; Haberl, U; Nachtnebel, H P [Institute of Water Management, Hydrology and Hydraulic Engineering, University of Natural Resources and Applied Life Sciences, Muthgasse 18, 1190 Vienna (Austria)], E-mail: philipp.stanzel@boku.ac.at
2008-11-01
Hydrological models for flood forecasting in Alpine basins need accurate representation of snow accumulation and snow melt processes. A continuous, semi-distributed rainfall-runoff model with snow modelling procedures using only precipitation and temperature as input is presented. Simulation results from an application in an Alpine Danube tributary watershed are shown and evaluated with snow depth measurements and MODIS remote sensing snow cover information. Seasonal variations of runoff due to snow melt were simulated accurately. Evaluation of simulated snow depth and snow covered area showed strengths and limitations of the model and allowed an assessment of input data quality. MODIS snow cover images were found to be valuable sources of information for hydrological modelling in alpine areas, where ground observations are scarce.
DEFF Research Database (Denmark)
Jimenez, M.J.; Madsen, Henrik; Bloem, J.J.
2008-01-01
This paper focuses on a method for linear or non-linear continuous time modelling of physical systems using discrete time data. This approach facilitates a more appropriate modelling of more realistic non-linear systems. Particularly concerning advanced building components, convective and radiati...... that a description of the non-linear heat transfer is essential. The resulting model is a non-linear first order stochastic differential equation for the heat transfer of the PV component....... heat interchanges are non-linear effects and represent significant contributions in a variety of components such as photovoltaic integrated facades or roofs and those using these effects as passive cooling strategies, etc. Since models are approximations of the physical system and data is encumbered...
Flatness-based control and Kalman filtering for a continuous-time macroeconomic model
Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.
2017-11-01
The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.
Cao, Qi; Buskens, Erik; Feenstra, Talitha; Jaarsma, Tiny; Hillege, Hans; Postmus, Douwe
2016-01-01
Continuous-time state transition models may end up having large unwieldy structures when trying to represent all relevant stages of clinical disease processes by means of a standard Markov model. In such situations, a more parsimonious, and therefore easier-to-grasp, model of a patient's disease progression can often be obtained by assuming that the future state transitions do not depend only on the present state (Markov assumption) but also on the past through time since entry in the present state. Despite that these so-called semi-Markov models are still relatively straightforward to specify and implement, they are not yet routinely applied in health economic evaluation to assess the cost-effectiveness of alternative interventions. To facilitate a better understanding of this type of model among applied health economic analysts, the first part of this article provides a detailed discussion of what the semi-Markov model entails and how such models can be specified in an intuitive way by adopting an approach called vertical modeling. In the second part of the article, we use this approach to construct a semi-Markov model for assessing the long-term cost-effectiveness of 3 disease management programs for heart failure. Compared with a standard Markov model with the same disease states, our proposed semi-Markov model fitted the observed data much better. When subsequently extrapolating beyond the clinical trial period, these relatively large differences in goodness-of-fit translated into almost a doubling in mean total cost and a 60-d decrease in mean survival time when using the Markov model instead of the semi-Markov model. For the disease process considered in our case study, the semi-Markov model thus provided a sensible balance between model parsimoniousness and computational complexity. © The Author(s) 2015.
A continuous time model for a short-term multiproduct batch process scheduling
Directory of Open Access Journals (Sweden)
Jenny Díaz Ramírez
2018-01-01
Full Text Available In the chemical industry, it is common to find production systems characterized by having a single stage or a previously identified bottleneck stage, with multiple non-identical parallel stations and with setup costs that depend on the production sequence. This paper proposes a mixed integer production-scheduling model that identifies lot size and product sequence that maximize profit. It considers multiple typical industry conditions, such as penalties for noncompliance or out of service periods of the productive units (or stations for preventive maintenance activities. The model was validated with real data from an oil chemical company. Aiming to analyze its performance, we applied the model to 155 instances of production, which were obtained using Monte Carlo technique on the historical production data of the same company. We obtained an average 12 % reduction in the total cost of production and a 19 % increase in the estimated profit.
Continuous-time state-space unsteady aerodynamic modelling for efficient aeroelastic load analysis
Werter, N.P.M.; De Breuker, R.; Abdalla, M.M.
2015-01-01
Over the years, wings have become lighter and more flexible, making them more prone to aeroelastic effects. Thus, aeroelasticity in design becomes more important. In order to determine the response of an aircraft to, for example, a gust, an unsteady aerodynamic model is required to determine the
Real-time resource model updating in continuous mining environment utilizing online sensor data
Yüksel, C.
2017-01-01
In mining, modelling of the deposit geology is the basis for many actions to be taken in the future, such as predictions of quality attributes, mineral resources and ore reserves, as well as mine design and long-term production planning. The essential knowledge about the raw materialproduct is based
DEFF Research Database (Denmark)
Andersen, Torben G.; Bollerslev, Tim; Frederiksen, Per Houmann
arrival process. On applying our sequential test procedure to the thirty individual stocks in the Dow Jones Industrial Average index, the data suggest that it is important to allow for both time-varying diffusive volatility, jumps, and leverage effects in order to satisfactorily describe the daily stock...
Price Formation Modelling by Continuous-Time Random Walk: An Empirical Study
Directory of Open Access Journals (Sweden)
Frédéric Délèze
2015-01-01
Full Text Available Markovian and non-Markovian\tmodels are presented to\tmodel the futures\tmarket price formation.\tWe show that\tthe\twaiting-time\tand\tthe\tsurvival\tprobabilities\thave\ta\tsignificant\timpact\ton\tthe\tprice\tdynamics.\tThis\tstudy tests\tanalytical\tsolutions\tand\tpresent\tnumerical\tresults for the\tprobability\tdensity function\tof the\tcontinuoustime random\twalk\tusing\ttick-by-tick\tquotes\tprices\tfor\tthe\tDAX\t30\tindex\tfutures.
Identifcation of a Linear COntinuous Time Stochastic Model of the Heat Dynamics of a Greenhouse
DEFF Research Database (Denmark)
Nielsen, Bjarne; Madsen, Henrik
1998-01-01
The purpose of this paper is to describe the basis for improving the control of air temperature and heat supply in greenhouses using a method which controls the energy supply by a model-based prediction of the air temperature in the greenhouse. Controllers of this type are the minimum variance co...... controller, the generalized predictive controller and the proportional-integral-plus(PIP) controller. Prediction-based controllers have proved to be powerful in controlling the supply temperature in a distinct heating system....
International Nuclear Information System (INIS)
Lee, Youn Myoung
1995-02-01
As a newly approaching model, a stochastic model using continuous time Markov process for nuclide decay chain transport of arbitrary length in the fractured porous rock medium has been proposed, by which the need for solving a set of partial differential equations corresponding to various sets of side conditions can be avoided. Once the single planar fracture in the rock matrix is represented by a series of finite number of compartments having region wise constant parameter values in them, the medium is continuous in view of various processes associated with nuclide transport but discrete in medium space and such geologic system is assumed to have Markov property, since the Markov process requires that only the present value of the time dependent random variable be known to determine the future value of random variable, nuclide transport in the medium can then be modeled as a continuous time Markov process. Processes that are involved in nuclide transport are advective transport due to groundwater flow, diffusion into the rock matrix, adsorption onto the wall of the fracture and within the pores in the rock matrix, and radioactive decay chain. The transition probabilities for nuclide from the transition intensities between and out of the compartments are represented utilizing Chapman-Kolmogorov equation, through which the expectation and the variance of nuclide distribution for each compartment or the fractured rock medium can be obtained. Some comparisons between Markov process model developed in this work and available analytical solutions for one-dimensional layered porous medium, fractured medium with rock matrix diffusion, and porous medium considering three member nuclide decay chain without rock matrix diffusion have been made showing comparatively good agreement for all cases. To verify the model developed in this work another comparative study was also made by fitting the experimental data obtained with NaLS and uranine running in the artificial fractured
Directory of Open Access Journals (Sweden)
F. Serinaldi
2010-12-01
Full Text Available Discrete multiplicative random cascade (MRC models were extensively studied and applied to disaggregate rainfall data, thanks to their formal simplicity and the small number of involved parameters. Focusing on temporal disaggregation, the rationale of these models is based on multiplying the value assumed by a physical attribute (e.g., rainfall intensity at a given time scale L, by a suitable number b of random weights, to obtain b attribute values corresponding to statistically plausible observations at a smaller L/b time resolution. In the original formulation of the MRC models, the random weights were assumed to be independent and identically distributed. However, for several studies this hypothesis did not appear to be realistic for the observed rainfall series as the distribution of the weights was shown to depend on the space-time scale and rainfall intensity. Since these findings contrast with the scale invariance assumption behind the MRC models and impact on the applicability of these models, it is worth studying their nature. This study explores the possible presence of dependence of the parameters of two discrete MRC models on rainfall intensity and time scale, by analyzing point rainfall series with 5-min time resolution. Taking into account a discrete microcanonical (MC model based on beta distribution and a discrete canonical beta-logstable (BLS, the analysis points out that the relations between the parameters and rainfall intensity across the time scales are detectable and can be modeled by a set of simple functions accounting for the parameter-rainfall intensity relationship, and another set describing the link between the parameters and the time scale. Therefore, MC and BLS models were modified to explicitly account for these relationships and compared with the continuous in scale universal multifractal (CUM model, which is used as a physically based benchmark model. Monte Carlo simulations point out
Directory of Open Access Journals (Sweden)
Dandan Su
2017-12-01
Full Text Available This paper proposes an improved continuous-time model predictive control (CTMPC of permanent magnetic synchronous motors (PMSMs for a wide-speed range, including the constant torque region and the flux-weakening (FW region. In the constant torque region, the mathematic models of PMSMs in dq-axes are decoupled without the limitation of DC-link voltage. However, in the FW region, the mathematic models of PMSMs in dq-axes are cross-coupled together with the limitation of DC-link voltage. A nonlinear PMSMs mathematic model in the FW region is presented based on the voltage angle. The solving of the nonlinear mathematic model of PMSMs in FW region will lead to heavy computation load for digital signal processing (DSP. To overcome such a problem, a linearization method of the voltage angle is also proposed to reduce the computation load. The selection of transiting points between the constant torque region and FW regions is researched to improve the performance of the driven system. Compared with the proportional integral (PI controller, the proposed CTMPC has obvious advantages in dealing with systems’ nonlinear constraints and improving system performance by restraining overshoot current under step torque changing. Both simulation and experimental results confirm the effectiveness of the proposed method in achieving good steady-state performance and smooth switching between the constant torque and FW regions.
Angraini, Yenni; Toharudin, Toni; Folmer, Henk; Oud, Johan H L
2014-01-01
This article analyzes the relationships among nationalism (N), individualism (I), ethnocentrism (E), and authoritarianism (A) in continuous time (CT), estimated as a structural equation model. The analysis is based on the General Election Study for Flanders, Belgium, for 1991, 1995, and 1999. We find reciprocal effects between A and E and between E and I as well as a unidirectional effect from A on I. We furthermore find relatively small, but significant, effects from both I and E on N but no effect from A on N or from N on any of the other variables. Because of its central role in the N-I-E-A complex, mitigation of authoritarianism has the largest potential to reduce the spread of nationalism, ethnocentrism, and racism in Flanders.
Olson, Daniel W.; Dutta, Sarit; Laachi, Nabil; Tian, Mingwei; Dorfman, Kevin D.
2011-01-01
Using the two-state, continuous-time random walk model, we develop expressions for the mobility and the plate height during DNA electrophoresis in an ordered post array that delineate the contributions due to (i) the random distance between collisions and (ii) the random duration of a collision. These contributions are expressed in terms of the means and variances of the underlying stochastic processes, which we evaluate from a large ensemble of Brownian dynamics simulations performed using different electric fields and molecular weights in a hexagonal array of 1 μm posts with a 3 μm center-to-center distance. If we fix the molecular weight, we find that the collision frequency governs the mobility. In contrast, the average collision duration is the most important factor for predicting the mobility as a function of DNA size at constant Péclet number. The plate height is reasonably well-described by a single post rope-over-pulley model, provided that the extension of the molecule is small. Our results only account for dispersion inside the post array and thus represent a theoretical lower bound on the plate height in an actual device. PMID:21290387
For Time-Continuous Optimisation
DEFF Research Database (Denmark)
Heinrich, Mary Katherine; Ayres, Phil
2016-01-01
Strategies for optimisation in design normatively assume an artefact end-point, disallowing continuous architecture that engages living systems, dynamic behaviour, and complex systems. In our Flora Robotica investigations of symbiotic plant-robot bio-hybrids, we re- quire computational tools...
Krengel, Annette; Hauth, Jan; Taskinen, Marja-Riitta; Adiels, Martin; Jirstrand, Mats
2013-01-19
When mathematical modelling is applied to many different application areas, a common task is the estimation of states and parameters based on measurements. With this kind of inference making, uncertainties in the time when the measurements have been taken are often neglected, but especially in applications taken from the life sciences, this kind of errors can considerably influence the estimation results. As an example in the context of personalized medicine, the model-based assessment of the effectiveness of drugs is becoming to play an important role. Systems biology may help here by providing good pharmacokinetic and pharmacodynamic (PK/PD) models. Inference on these systems based on data gained from clinical studies with several patient groups becomes a major challenge. Particle filters are a promising approach to tackle these difficulties but are by itself not ready to handle uncertainties in measurement times. In this article, we describe a variant of the standard particle filter (PF) algorithm which allows state and parameter estimation with the inclusion of measurement time uncertainties (MTU). The modified particle filter, which we call MTU-PF, also allows the application of an adaptive stepsize choice in the time-continuous case to avoid degeneracy problems. The modification is based on the model assumption of uncertain measurement times. While the assumption of randomness in the measurements themselves is common, the corresponding measurement times are generally taken as deterministic and exactly known. Especially in cases where the data are gained from measurements on blood or tissue samples, a relatively high uncertainty in the true measurement time seems to be a natural assumption. Our method is appropriate in cases where relatively few data are used from a relatively large number of groups or individuals, which introduce mixed effects in the model. This is a typical setting of clinical studies. We demonstrate the method on a small artificial example
Dube, Chad; Starns, Jeffrey J.; Rotello, Caren M.; Ratcliff, Roger
2012-01-01
A classic question in the recognition memory literature is whether retrieval is best described as a continuous-evidence process consistent with signal detection theory (SDT), or a threshold process consistent with many multinomial processing tree (MPT) models. Because receiver operating characteristics (ROCs) based on confidence ratings are…
Burnell, Daniel K.; Hansen, Scott K.; Xu, Jie
2017-09-01
Contaminants in groundwater may experience a broad spectrum of velocities and multiple rates of mass transfer between mobile and immobile zones during transport. These conditions may lead to non-Fickian plume evolution which is not well described by the advection-dispersion equation (ADE). Simultaneously, many groundwater contaminants are degraded by processes that may be modeled as first-order decay. It is now known that non-Fickian transport and reaction are intimately coupled, with reaction affecting the transport operator. However, closed-form solutions for these important scenarios have not been published for use in applications. In this paper, we present four new Green's function analytic solutions in the uncoupled, uncorrelated continuous time random walk (CTRW) framework for reactive non-Fickian transport, corresponding to the quartet of conservative tracer solutions presented by Kreft and Zuber (1978) for Fickian transport. These consider pulse injection for both resident and flux concentration combined with detection in both resident and flux concentration. A pair of solutions for resident concentration temporal pulses with detection in both flux and resident concentration is also presented. We also derive the relationship between flux and resident concentration for non-Fickian transport with first-order reaction for this CTRW formulation. An explicit discussion of employment of the new solutions to model transport with arbitrary upgradient boundary conditions as well as mobile-immobile mass transfer is then presented. Using the new solutions, we show that first-order reaction has no effect on the anomalous spatial spreading rate of concentration profiles, but produces breakthrough curves at fixed locations that appear to have been generated by Fickian transport. Under the assumption of a Pareto CTRW transition distribution, we present a variety of numerical simulations including results showing coherence of our analytic solutions and CTRW particle
International Nuclear Information System (INIS)
Qiu-Ye, Sun; Hua-Guang, Zhang; Yan, Zhao
2010-01-01
This paper investigates the chaotification problem of a stable continuous-time T–S fuzzy system. A simple nonlinear state time-delay feedback controller is designed by parallel distributed compensation technique. Then, the asymptotically approximate relationship between the controlled continuous-time T–S fuzzy system with time-delay and a discrete-time T–S fuzzy system is established. Based on the discrete-time T–S fuzzy system, it proves that the chaos in the discrete-time T–S fuzzy system satisfies the Li–Yorke definition by choosing appropriate controller parameters via the revised Marotto theorem. Finally, the effectiveness of the proposed chaotic anticontrol method is verified by a practical example. (general)
A continuous time Cournot duopoly with delays
International Nuclear Information System (INIS)
Gori, Luca; Guerrini, Luca; Sodini, Mauro
2015-01-01
This paper extends the classical repeated duopoly model with quantity-setting firms of Bischi et al. (1998) by assuming that production of goods is subject to some gestation lags but exchanges take place continuously in the market. The model is expressed in the form of differential equations with discrete delays. By using some recent mathematical techniques and numerical experiments, results show some dynamic phenomena that cannot be observed when delays are absent. In addition, depending on the extent of time delays and inertia, synchronisation failure can arise even in the event of homogeneous firms.
Stochastic volatility of volatility in continuous time
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole; Veraart, Almut
This paper introduces the concept of stochastic volatility of volatility in continuous time and, hence, extends standard stochastic volatility (SV) models to allow for an additional source of randomness associated with greater variability in the data. We discuss how stochastic volatility...... of volatility can be defined both non-parametrically, where we link it to the quadratic variation of the stochastic variance process, and parametrically, where we propose two new SV models which allow for stochastic volatility of volatility. In addition, we show that volatility of volatility can be estimated...
Directory of Open Access Journals (Sweden)
Hamidreza Mostafaei
2013-01-01
Full Text Available In this study, it has been attempted to select the best continuous- time stochastic model, in order to describe and forecast the oil price of Russia, by information and statistics about oil price that has been available for oil price in the past. For this purpose, method of The Maximum Likelihood Estimation is implemented for estimation of the parameters of continuous-time stochastic processes. The result of unit root test with a structural break, reveals that time series of the crude oil price is a stationary series. The simulation of continuous-time stochastic processes and the mean square error between the simulated prices and the market ones shows that the Geometric Brownian Motion is the best model for the Russian crude oil price.
Ma, Junsheng; Chan, Wenyaw; Tsai, Chu-Lin; Xiong, Momiao; Tilley, Barbara C
2015-11-30
Continuous time Markov chain (CTMC) models are often used to study the progression of chronic diseases in medical research but rarely applied to studies of the process of behavioral change. In studies of interventions to modify behaviors, a widely used psychosocial model is based on the transtheoretical model that often has more than three states (representing stages of change) and conceptually permits all possible instantaneous transitions. Very little attention is given to the study of the relationships between a CTMC model and associated covariates under the framework of transtheoretical model. We developed a Bayesian approach to evaluate the covariate effects on a CTMC model through a log-linear regression link. A simulation study of this approach showed that model parameters were accurately and precisely estimated. We analyzed an existing data set on stages of change in dietary intake from the Next Step Trial using the proposed method and the generalized multinomial logit model. We found that the generalized multinomial logit model was not suitable for these data because it ignores the unbalanced data structure and temporal correlation between successive measurements. Our analysis not only confirms that the nutrition intervention was effective but also provides information on how the intervention affected the transitions among the stages of change. We found that, compared with the control group, subjects in the intervention group, on average, spent substantively less time in the precontemplation stage and were more/less likely to move from an unhealthy/healthy state to a healthy/unhealthy state. Copyright © 2015 John Wiley & Sons, Ltd.
Heterogeneous continuous-time random walks
Grebenkov, Denis S.; Tupikina, Liubov
2018-01-01
We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.
Pisuchpen, Supachai
A new technique for measuring the sealing force of a container-closure system was developed by employing a strain gage based transducer. The sealing force is considered a direct indicator for monitoring the mechanical seal integrity of the container-closure systems. A sealing force measuring device and a torque meter were used to investigate the effect of environmental conditions on the relaxation behavior of a 28--400 closure system. The responses from both devices during storage over time were transformed to the percent (%) force retention (FRT) and percent (%) torque retention (TRT) and used to analyze the effect. The high temperature and relative humidity of tropical conditions showed significant effect on the relaxation of the systems studied. It was found that the % TRT over time data were less consistent than the % FRT due to the nature of torque measurement and effect of environmental conditions. The % TRT data were higher than the % FRT indicating less relaxation of torque than of force. Therefore, using the removal torque or % TRT may be misleading in the interpretation of the seal integrity of the container-closure systems. The apparent seal integrity is less when measured by force retention. Mathematical modeling of the relaxation behavior of the systems revealed that the theoretical models derived from spring and dashpot are not applicable. Empirical models using the curve fitting techniques were then applied and excellent agreement with the experimental data was found. The mathematical models developed were extended to long-term prediction for 3 years; the predicted values of the % FRT and % TRT were in the acceptable range for agreement among the models.
Voss, P. B.; Zaveri, R. A.; Berkowitz, C. M.
2009-12-01
Controlled Meteorological (CMET) balloons have been used in several recent studies to measure long-range transport over periods as long as 30 hours and distances up to 1000 kilometers. By repeatedly performing shallow soundings as they drift, CMET balloons can quantify evolving atmospheric structure, mixing events, shear advection, and dispersion during transport. In addition, the quasi-Lagrangian wind profiles can be used to drive a multi-layer trajectory model in which the advected air parcels follow the underlying terrain, or are constrained by altitude, potential temperature, or tracer concentration. Data from a coordinated balloon-aircraft study of long range transport over Texas (SETTS 2005) show that the reconstructed trajectories accurately track residual-layer urban outflow (and at times even its fine-scale structure) over distances of many hundreds of kilometers. The reconstructed trajectories and evolving profile visualizations are increasingly being made available in near-real time during balloon flights, supporting data-driven flight planning and sophisticated process studies relevant to atmospheric chemistry and climate. Multilayer trajectories (black grids) derived from CMET balloon flight paths (grey lines) for a transport event across Texas in 2005.
Continuity of Local Time: An applied perspective
Ramirez, Jorge M.; Waymire, Edward C.; Thomann, Enrique A.
2015-01-01
Continuity of local time for Brownian motion ranks among the most notable mathematical results in the theory of stochastic processes. This article addresses its implications from the point of view of applications. In particular an extension of previous results on an explicit role of continuity of (natural) local time is obtained for applications to recent classes of problems in physics, biology and finance involving discontinuities in a dispersion coefficient. The main theorem and its corolla...
International Nuclear Information System (INIS)
Calabrese, Pasquale; Hagendorf, Christian; Doussal, Pierre Le
2008-01-01
We study the time evolution of quantum one-dimensional gapless systems evolving from initial states with a domain wall. We generalize the path integral imaginary time approach that together with boundary conformal field theory allows us to derive the time and space dependence of general correlation functions. The latter are explicitly obtained for the Ising universality class, and the typical behavior of one- and two-point functions is derived for the general case. Possible connections with the stochastic Loewner evolution are discussed and explicit results for one-point time dependent averages are obtained for generic κ for boundary conditions corresponding to stochastic Loewner evolution. We use this set of results to predict the time evolution of the entanglement entropy and obtain the universal constant shift due to the presence of a domain wall in the initial state
Parameter Estimation in Continuous Time Domain
Directory of Open Access Journals (Sweden)
Gabriela M. ATANASIU
2016-12-01
Full Text Available This paper will aim to presents the applications of a continuous-time parameter estimation method for estimating structural parameters of a real bridge structure. For the purpose of illustrating this method two case studies of a bridge pile located in a highly seismic risk area are considered, for which the structural parameters for the mass, damping and stiffness are estimated. The estimation process is followed by the validation of the analytical results and comparison with them to the measurement data. Further benefits and applications for the continuous-time parameter estimation method in civil engineering are presented in the final part of this paper.
Stone, Mandy L.; Graham, Jennifer L.; Gatotho, Jackline W.
2013-01-01
Cheney Reservoir, located in south-central Kansas, is one of the primary water supplies for the city of Wichita, Kansas. The U.S. Geological Survey has operated a continuous real-time water-quality monitoring station in Cheney Reservoir since 2001; continuously measured physicochemical properties include specific conductance, pH, water temperature, dissolved oxygen, turbidity, fluorescence (wavelength range 650 to 700 nanometers; estimate of total chlorophyll), and reservoir elevation. Discrete water-quality samples were collected during 2001 through 2009 and analyzed for sediment, nutrients, taste-and-odor compounds, cyanotoxins, phytoplankton community composition, actinomycetes bacteria, and other water-quality measures. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physicochemical properties to compute concentrations of constituents that are not easily measured in real time. The water-quality information in this report is important to the city of Wichita because it allows quantification and characterization of potential constituents of concern in Cheney Reservoir. This report updates linear regression models published in 2006 that were based on data collected during 2001 through 2003. The update uses discrete and continuous data collected during May 2001 through December 2009. Updated models to compute dissolved solids, sodium, chloride, and suspended solids were similar to previously published models. However, several other updated models changed substantially from previously published models. In addition to updating relations that were previously developed, models also were developed for four new constituents, including magnesium, dissolved phosphorus, actinomycetes bacteria, and the cyanotoxin microcystin. In addition, a conversion factor of 0.74 was established to convert the Yellow Springs Instruments (YSI) model 6026 turbidity sensor measurements to the newer YSI
2014-01-01
M.Com. (Financial Economics) Recently, there has been a growth in the bond market. This growth has brought with it an ever-increasing volume and range of interest rate depended derivative products known as interest rate derivatives. Amongst the variables used in pricing these derivative products is the short-term interest rate. A numbers of short-term interest rate models that are used to fit the short-term interest rate exist. Therefore, understanding the features characterised by various...
Time, physics, and the paradoxes of continuity
Steinberg, D A
2003-01-01
A recent article in this journal proposes a radical reformulation of classical and quantum dynamics based on a perceived deficiency in current definitions of time. The argument is incorrect but the errors highlight aspects of the foundations of mathematics and physics that are commonly confused and misunderstood. For this reason, the article provides an important and heuristic opportunity to reexamine the types of time and non-standard analysis. This paper will discuss the differences between physical time and experiential time and explain how an expanded system of real analysis containing infinitesimals can resolve the paradoxes of continuity without sacrificing the modern edifice of mathematical physics.
a Continuous-Time Positive Linear System
Directory of Open Access Journals (Sweden)
Kyungsup Kim
2013-01-01
Full Text Available This paper discusses a computational method to construct positive realizations with sparse matrices for continuous-time positive linear systems with multiple complex poles. To construct a positive realization of a continuous-time system, we use a Markov sequence similar to the impulse response sequence that is used in the discrete-time case. The existence of the proposed positive realization can be analyzed with the concept of a polyhedral convex cone. We provide a constructive algorithm to compute positive realizations with sparse matrices of some positive systems under certain conditions. A sufficient condition for the existence of a positive realization, under which the proposed constructive algorithm works well, is analyzed.
Time-delay analyzer with continuous discretization
International Nuclear Information System (INIS)
Bayatyan, G.L.; Darbinyan, K.T.; Mkrtchyan, K.K.; Stepanyan, S.S.
1988-01-01
A time-delay analyzer is described which when triggered by a start pulse of adjustable duration performs continuous discretization of the analyzed signal within nearly 22 ns time intervals, the recording in a memory unit with following slow read-out of the information to the computer and its processing. The time-delay analyzer consists of four CAMAC-VECTOR systems of unit width. With its help one can separate comparatively short, small-amplitude rare signals against the background of quasistationary noise processes. 4 refs.; 3 figs
Path probabilities of continuous time random walks
International Nuclear Information System (INIS)
Eule, Stephan; Friedrich, Rudolf
2014-01-01
Employing the path integral formulation of a broad class of anomalous diffusion processes, we derive the exact relations for the path probability densities of these processes. In particular, we obtain a closed analytical solution for the path probability distribution of a Continuous Time Random Walk (CTRW) process. This solution is given in terms of its waiting time distribution and short time propagator of the corresponding random walk as a solution of a Dyson equation. Applying our analytical solution we derive generalized Feynman–Kac formulae. (paper)
Interaction-aided continuous time quantum search
International Nuclear Information System (INIS)
Bae, Joonwoo; Kwon, Younghun; Baek, Inchan; Yoon, Dalsun
2005-01-01
The continuous quantum search algorithm (based on the Farhi-Gutmann Hamiltonian evolution) is known to be analogous to the Grover (or discrete time quantum) algorithm. Any errors introduced in Grover algorithm are fatal to its success. In the same way the Farhi-Gutmann Hamiltonian algorithm has a severe difficulty when the Hamiltonian is perturbed. In this letter we will show that the interaction term in quantum search Hamiltonian (actually which is in the generalized quantum search Hamiltonian) can save the perturbed Farhi-Gutmann Hamiltonian that should otherwise fail. We note that this fact is quite remarkable since it implies that introduction of interaction can be a way to correct some errors on the continuous time quantum search
Language Emptiness of Continuous-Time Parametric Timed Automata
DEFF Research Database (Denmark)
Benes, Nikola; Bezdek, Peter; Larsen, Kim Guldstrand
2015-01-01
Parametric timed automata extend the standard timed automata with the possibility to use parameters in the clock guards. In general, if the parameters are real-valued, the problem of language emptiness of such automata is undecidable even for various restricted subclasses. We thus focus on the case...... where parameters are assumed to be integer-valued, while the time still remains continuous. On the one hand, we show that the problem remains undecidable for parametric timed automata with three clocks and one parameter. On the other hand, for the case with arbitrary many clocks where only one......-time semantics only. To the best of our knowledge, this is the first positive result in the case of continuous-time and unbounded integer parameters, except for the rather simple case of single-clock automata....
Continuous Competence Development Model for Teacher Teams
DEFF Research Database (Denmark)
Weitze, Charlotte Lærke
2014-01-01
"This paper presents the development of the IT‐Pedagogical Think Tank for Teacher Teams (ITP4T), a continuous competence development model. The model was co‐designed following a design‐based research approach with teachers from VUC Storstrøm’s (VUC) Global Classroom (GC), an innovative hybrid...... to create their own continuous competence development. This article describes how and why the different components of the model were developed in response to the teachers’ challenges. Such challenges included lack of time, competence and support from the educational organisation to innovate learning design...
Expectation propagation for continuous time stochastic processes
International Nuclear Information System (INIS)
Cseke, Botond; Schnoerr, David; Sanguinetti, Guido; Opper, Manfred
2016-01-01
We consider the inverse problem of reconstructing the posterior measure over the trajectories of a diffusion process from discrete time observations and continuous time constraints. We cast the problem in a Bayesian framework and derive approximations to the posterior distributions of single time marginals using variational approximate inference, giving rise to an expectation propagation type algorithm. For non-linear diffusion processes, this is achieved by leveraging moment closure approximations. We then show how the approximation can be extended to a wide class of discrete-state Markov jump processes by making use of the chemical Langevin equation. Our empirical results show that the proposed method is computationally efficient and provides good approximations for these classes of inverse problems. (paper)
Stability of continuous-time quantum filters with measurement imperfections
Amini, H.; Pellegrini, C.; Rouchon, P.
2014-07-01
The fidelity between the state of a continuously observed quantum system and the state of its associated quantum filter, is shown to be always a submartingale. The observed system is assumed to be governed by a continuous-time Stochastic Master Equation (SME), driven simultaneously by Wiener and Poisson processes and that takes into account incompleteness and errors in measurements. This stability result is the continuous-time counterpart of a similar stability result already established for discrete-time quantum systems and where the measurement imperfections are modelled by a left stochastic matrix.
Identification of continuous-time systems from samples of input ...
Indian Academy of Sciences (India)
Abstract. This paper presents an introductory survey of the methods that have been developed for identification of continuous-time systems from samples of input±output data. The two basic approaches may be described as (i) the indirect method, where first a discrete-time model is estimated from the sampled data and then ...
Application of continuous-time random walk to statistical arbitrage
Directory of Open Access Journals (Sweden)
Sergey Osmekhin
2015-01-01
Full Text Available An analytical statistical arbitrage strategy is proposed, where the distribution of the spread is modelled as a continuous-time random walk. Optimal boundaries, computed as a function of the mean and variance of the firstpassage time ofthe spread,maximises an objective function. The predictability of the trading strategy is analysed and contrasted for two forms of continuous-time random walk processes. We found that the waiting-time distribution has a significant impact on the prediction of the expected profit for intraday trading
Discrete time and continuous time dynamic mean-variance analysis
Reiss, Ariane
1999-01-01
Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead o...
Pseudo-Hermitian continuous-time quantum walks
Energy Technology Data Exchange (ETDEWEB)
Salimi, S; Sorouri, A, E-mail: shsalimi@uok.ac.i, E-mail: a.sorouri@uok.ac.i [Department of Physics, University of Kurdistan, PO Box 66177-15175, Sanandaj (Iran, Islamic Republic of)
2010-07-09
In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum-mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian continuous-time quantum walk. We introduce a method to obtain the probability distribution of walk on any vertex and then study a specific system. We observe that the probability distribution on certain vertices increases compared to that of the Hermitian case. This formalism makes the transport process faster and can be useful for search algorithms.
Song, Youngseok; Ishikawa, Hiroshi; Wu, Mengfei; Liu, Yu-Ying; Lucy, Katie A; Lavinsky, Fabio; Liu, Mengling; Wollstein, Gadi; Schuman, Joel S
2018-03-20
Previously, we introduced a state-based 2-dimensional continuous-time hidden Markov model (2D CT HMM) to model the pattern of detected glaucoma changes using structural and functional information simultaneously. The purpose of this study was to evaluate the detected glaucoma change prediction performance of the model in a real clinical setting using a retrospective longitudinal dataset. Longitudinal, retrospective study. One hundred thirty-four eyes from 134 participants diagnosed with glaucoma or as glaucoma suspects (average follow-up, 4.4±1.2 years; average number of visits, 7.1±1.8). A 2D CT HMM model was trained using OCT (Cirrus HD-OCT; Zeiss, Dublin, CA) average circumpapillary retinal nerve fiber layer (cRNFL) thickness and visual field index (VFI) or mean deviation (MD; Humphrey Field Analyzer; Zeiss). The model was trained using a subset of the data (107 of 134 eyes [80%]) including all visits except for the last visit, which was used to test the prediction performance (training set). Additionally, the remaining 27 eyes were used for secondary performance testing as an independent group (validation set). The 2D CT HMM predicts 1 of 4 possible detected state changes based on 1 input state. Prediction accuracy was assessed as the percentage of correct prediction against the patient's actual recorded state. In addition, deviations of the predicted long-term detected change paths from the actual detected change paths were measured. Baseline mean ± standard deviation age was 61.9±11.4 years, VFI was 90.7±17.4, MD was -3.50±6.04 dB, and cRNFL thickness was 74.9±12.2 μm. The accuracy of detected glaucoma change prediction using the training set was comparable with the validation set (57.0% and 68.0%, respectively). Prediction deviation from the actual detected change path showed stability throughout patient follow-up. The 2D CT HMM demonstrated promising prediction performance in detecting glaucoma change performance in a simulated clinical setting
Abbring, J.H.
2009-01-01
We study mixed hitting-time models, which specify durations as the first time a Levy process (a continuous-time process with stationary and independent increments) crosses a heterogeneous threshold. Such models of substantial interest because they can be reduced from optimal-stopping models with
Inference for Continuous-Time Probabilistic Programming
2017-12-01
network of Ising model dynamics. The Ising model is a well-known interaction model with applications in many fields includ- ing statistical mechanics...well- known interaction model with applications in many fields including statistical mechanics, genetics, and neuroscience. This is a Markovian model...chains. The Annals of Mathematical Statistics , 37(6):1554–1563, 1966. ISSN 00034851. URL http://www.jstor.org/stable/2238772. Zachary C Lipton, David C
NONLINEAR PLANT PIECEWISE-CONTINUOUS MODEL MATRIX PARAMETERS ESTIMATION
Directory of Open Access Journals (Sweden)
Roman L. Leibov
2017-09-01
Full Text Available This paper presents a nonlinear plant piecewise-continuous model matrix parameters estimation technique using nonlinear model time responses and random search method. One of piecewise-continuous model application areas is defined. The results of proposed approach application for aircraft turbofan engine piecewisecontinuous model formation are presented
On Probabilistic Automata in Continuous Time
DEFF Research Database (Denmark)
Eisentraut, Christian; Hermanns, Holger; Zhang, Lijun
2010-01-01
We develop a compositional behavioural model that integrates a variation of probabilistic automata into a conservative extension of interactive Markov chains. The model is rich enough to embody the semantics of generalised stochastic Petri nets. We define strong and weak bisimulations and discuss...
Reliability and continuous regeneration model
Directory of Open Access Journals (Sweden)
Anna Pavlisková
2006-06-01
Full Text Available The failure-free function of an object is very important for the service. This leads to the interest in the determination of the object reliability and failure intensity. The reliability of an element is defined by the theory of probability.The element durability T is a continuous random variate with the probability density f. The failure intensity (tλ is a very important reliability characteristics of the element. Often it is an increasing function, which corresponds to the element ageing. We disposed of the data about a belt conveyor failures recorded during the period of 90 months. The given ses behaves according to the normal distribution. By using a mathematical analysis and matematical statistics, we found the failure intensity function (tλ. The function (tλ increases almost linearly.
Coupled continuous time-random walks in quenched random environment
Magdziarz, M.; Szczotka, W.
2018-02-01
We introduce a coupled continuous-time random walk with coupling which is characteristic for Lévy walks. Additionally we assume that the walker moves in a quenched random environment, i.e. the site disorder at each lattice point is fixed in time. We analyze the scaling limit of such a random walk. We show that for large times the behaviour of the analyzed process is exactly the same as in the case of uncoupled quenched trap model for Lévy flights.
Remembering the time: a continuous clock.
Lewis, Penelope A; Miall, R Chris
2006-09-01
The neural mechanisms for time measurement are currently a subject of much debate. This article argues that our brains can measure time using the same dorsolateral prefrontal cells that are known to be involved in working memory. Evidence for this is: (1) the dorsolateral prefrontal cortex is integral to both cognitive timing and working memory; (2) both behavioural processes are modulated by dopamine and disrupted by manipulation of dopaminergic projections to the dorsolateral prefrontal cortex; (3) the neurons in question ramp their activity in a temporally predictable way during both types of processing; and (4) this ramping activity is modulated by dopamine. The dual involvement of these prefrontal neurons in working memory and cognitive timing supports a view of the prefrontal cortex as a multipurpose processor recruited by a wide variety of tasks.
Continuous time finite state mean field games
Gomes, Diogo A.; Mohr, Joana; Souza, Rafael Rigã o
2013-01-01
In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N→∞ of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games. © 2013 Springer Science+Business Media New York.
Continuous time finite state mean field games
Gomes, Diogo A.
2013-04-23
In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N→∞ of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games. © 2013 Springer Science+Business Media New York.
Continuous Time Finite State Mean Field Games
Energy Technology Data Exchange (ETDEWEB)
Gomes, Diogo A., E-mail: dgomes@math.ist.utl.pt [Instituto Superior Tecnico, Center for Mathematical Analysis, Geometry, and Dynamical Systems, Departamento de Matematica (Portugal); Mohr, Joana, E-mail: joana.mohr@ufrgs.br; Souza, Rafael Rigao, E-mail: rafars@mat.ufrgs.br [UFRGS, Instituto de Matematica (Brazil)
2013-08-01
In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N{yields}{infinity} of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games.
Continuous Time Finite State Mean Field Games
International Nuclear Information System (INIS)
Gomes, Diogo A.; Mohr, Joana; Souza, Rafael Rigão
2013-01-01
In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N→∞ of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games
Investigating continuous time open pit dynamics
Askari-Nasab, H.; Frimpong, S.; Szymanski, J.
2008-01-01
Current mine production planning, scheduling, and allocation of resources are based on mathematical programming models. In practice, the optimized solution cannot be attained without examining all possible combinations and permutations of the extraction sequence. Operations research methods have limited applications in large-scale surface mining operations because the number of variables becomes too large. The primary objective of this study is to develop and implement a hybrid simulation fra...
Correlated continuous time random walk and option pricing
Lv, Longjin; Xiao, Jianbin; Fan, Liangzhong; Ren, Fuyao
2016-04-01
In this paper, we study a correlated continuous time random walk (CCTRW) with averaged waiting time, whose probability density function (PDF) is proved to follow stretched Gaussian distribution. Then, we apply this process into option pricing problem. Supposing the price of the underlying is driven by this CCTRW, we find this model captures the subdiffusive characteristic of financial markets. By using the mean self-financing hedging strategy, we obtain the closed-form pricing formulas for a European option with and without transaction costs, respectively. At last, comparing the obtained model with the classical Black-Scholes model, we find the price obtained in this paper is higher than that obtained from the Black-Scholes model. A empirical analysis is also introduced to confirm the obtained results can fit the real data well.
Comparing the Discrete and Continuous Logistic Models
Gordon, Sheldon P.
2008-01-01
The solutions of the discrete logistic growth model based on a difference equation and the continuous logistic growth model based on a differential equation are compared and contrasted. The investigation is conducted using a dynamic interactive spreadsheet. (Contains 5 figures.)
Modeling Suspension and Continuation of a Process
Directory of Open Access Journals (Sweden)
Oleg Svatos
2012-04-01
Full Text Available This work focuses on difficulties an analyst encounters when modeling suspension and continuation of a process in contemporary process modeling languages. As a basis there is introduced general lifecycle of an activity which is then compared to activity lifecycles supported by individual process modeling languages. The comparison shows that the contemporary process modeling languages cover the defined general lifecycle of an activity only partially. There are picked two popular process modeling languages and there is modeled real example, which reviews how the modeling languages can get along with their lack of native support of suspension and continuation of an activity. Upon the unsatisfying results of the contemporary process modeling languages in the modeled example, there is presented a new process modeling language which, as demonstrated, is capable of capturing suspension and continuation of an activity in much simpler and precise way.
Mapping of uncertainty relations between continuous and discrete time.
Chiuchiù, Davide; Pigolotti, Simone
2018-03-01
Lower bounds on fluctuations of thermodynamic currents depend on the nature of time, discrete or continuous. To understand the physical reason, we compare current fluctuations in discrete-time Markov chains and continuous-time master equations. We prove that current fluctuations in the master equations are always more likely, due to random timings of transitions. This comparison leads to a mapping of the moments of a current between discrete and continuous time. We exploit this mapping to obtain uncertainty bounds. Our results reduce the quests for uncertainty bounds in discrete and continuous time to a single problem.
International Nuclear Information System (INIS)
Allafi, Walid; Uddin, Kotub; Zhang, Cheng; Mazuir Raja Ahsan Sha, Raja; Marco, James
2017-01-01
Highlights: •Off-line estimation approach for continuous-time domain for non-invertible function. •Model reformulated to multi-input-single-output; nonlinearity described by sigmoid. •Method directly estimates parameters of nonlinear ECM from the measured-data. •Iterative on-line technique leads to smoother convergence. •The model is validated off-line and on-line using NCA battery. -- Abstract: The accuracy of identifying the parameters of models describing lithium ion batteries (LIBs) in typical battery management system (BMS) applications is critical to the estimation of key states such as the state of charge (SoC) and state of health (SoH). In applications such as electric vehicles (EVs) where LIBs are subjected to highly demanding cycles of operation and varying environmental conditions leading to non-trivial interactions of ageing stress factors, this identification is more challenging. This paper proposes an algorithm that directly estimates the parameters of a nonlinear battery model from measured input and output data in the continuous time-domain. The simplified refined instrumental variable method is extended to estimate the parameters of a Wiener model where there is no requirement for the nonlinear function to be invertible. To account for nonlinear battery dynamics, in this paper, the typical linear equivalent circuit model (ECM) is enhanced by a block-oriented Wiener configuration where the nonlinear memoryless block following the typical ECM is defined to be a sigmoid static nonlinearity. The nonlinear Weiner model is reformulated in the form of a multi-input, single-output linear model. This linear form allows the parameters of the nonlinear model to be estimated using any linear estimator such as the well-established least squares (LS) algorithm. In this paper, the recursive least square (RLS) method is adopted for online parameter estimation. The approach was validated on experimental data measured from an 18650-type Graphite
Deviney, Frank A.; Rice, Karen; Brown, Donald E.
2012-01-01
Natural resource managers require information concerning the frequency, duration, and long-term probability of occurrence of water-quality indicator (WQI) violations of defined thresholds. The timing of these threshold crossings often is hidden from the observer, who is restricted to relatively infrequent observations. Here, a model for the hidden process is linked with a model for the observations, and the parameters describing duration, return period, and long-term probability of occurrence are estimated using Bayesian methods. A simulation experiment is performed to evaluate the approach under scenarios based on the equivalent of a total monitoring period of 5-30 years and an observation frequency of 1-50 observations per year. Given constant threshold crossing rate, accuracy and precision of parameter estimates increased with longer total monitoring period and more-frequent observations. Given fixed monitoring period and observation frequency, accuracy and precision of parameter estimates increased with longer times between threshold crossings. For most cases where the long-term probability of being in violation is greater than 0.10, it was determined that at least 600 observations are needed to achieve precise estimates. An application of the approach is presented using 22 years of quasi-weekly observations of acid-neutralizing capacity from Deep Run, a stream in Shenandoah National Park, Virginia. The time series also was sub-sampled to simulate monthly and semi-monthly sampling protocols. Estimates of the long-term probability of violation were unbiased despite sampling frequency; however, the expected duration and return period were over-estimated using the sub-sampled time series with respect to the full quasi-weekly time series.
Continuous-time quantum walks on star graphs
International Nuclear Information System (INIS)
Salimi, S.
2009-01-01
In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N-fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K 2 graphs (complete graph with two vertices) and the probability of observing walk tends to the uniform distribution.
Recommender engine for continuous-time quantum Monte Carlo methods
Huang, Li; Yang, Yi-feng; Wang, Lei
2017-03-01
Recommender systems play an essential role in the modern business world. They recommend favorable items such as books, movies, and search queries to users based on their past preferences. Applying similar ideas and techniques to Monte Carlo simulations of physical systems boosts their efficiency without sacrificing accuracy. Exploiting the quantum to classical mapping inherent in the continuous-time quantum Monte Carlo methods, we construct a classical molecular gas model to reproduce the quantum distributions. We then utilize powerful molecular simulation techniques to propose efficient quantum Monte Carlo updates. The recommender engine approach provides a general way to speed up the quantum impurity solvers.
Price discovery in a continuous-time setting
DEFF Research Database (Denmark)
Dias, Gustavo Fruet; Fernandes, Marcelo; Scherrer, Cristina
We formulate a continuous-time price discovery model in which the price discovery measure varies (stochastically) at daily frequency. We estimate daily measures of price discovery using a kernel-based OLS estimator instead of running separate daily VECM regressions as standard in the literature. We...... show that our estimator is not only consistent, but also outperforms the standard daily VECM in finite samples. We illustrate our theoretical findings by studying the price discovery process of 10 actively traded stocks in the U.S. from 2007 to 2013....
Finite time convergent learning law for continuous neural networks.
Chairez, Isaac
2014-02-01
This paper addresses the design of a discontinuous finite time convergent learning law for neural networks with continuous dynamics. The neural network was used here to obtain a non-parametric model for uncertain systems described by a set of ordinary differential equations. The source of uncertainties was the presence of some external perturbations and poor knowledge of the nonlinear function describing the system dynamics. A new adaptive algorithm based on discontinuous algorithms was used to adjust the weights of the neural network. The adaptive algorithm was derived by means of a non-standard Lyapunov function that is lower semi-continuous and differentiable in almost the whole space. A compensator term was included in the identifier to reject some specific perturbations using a nonlinear robust algorithm. Two numerical examples demonstrated the improvements achieved by the learning algorithm introduced in this paper compared to classical schemes with continuous learning methods. The first one dealt with a benchmark problem used in the paper to explain how the discontinuous learning law works. The second one used the methane production model to show the benefits in engineering applications of the learning law proposed in this paper. Copyright © 2013 Elsevier Ltd. All rights reserved.
On Discrete Time Control of Continuous Time Systems
DEFF Research Database (Denmark)
Poulsen, Niels Kjølstad
This report is meant as a supplement or an extension to the material used in connection to or after the courses Stochastic Adaptive Control (02421) and Static and Dynamic Optimization (02711) given at the department Department of Informatics and Mathematical Modelling, The Technical University...
Continuous-time quantum Monte Carlo impurity solvers
Gull, Emanuel; Werner, Philipp; Fuchs, Sebastian; Surer, Brigitte; Pruschke, Thomas; Troyer, Matthias
2011-04-01
Continuous-time quantum Monte Carlo impurity solvers are algorithms that sample the partition function of an impurity model using diagrammatic Monte Carlo techniques. The present paper describes codes that implement the interaction expansion algorithm originally developed by Rubtsov, Savkin, and Lichtenstein, as well as the hybridization expansion method developed by Werner, Millis, Troyer, et al. These impurity solvers are part of the ALPS-DMFT application package and are accompanied by an implementation of dynamical mean-field self-consistency equations for (single orbital single site) dynamical mean-field problems with arbitrary densities of states. Program summaryProgram title: dmft Catalogue identifier: AEIL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: ALPS LIBRARY LICENSE version 1.1 No. of lines in distributed program, including test data, etc.: 899 806 No. of bytes in distributed program, including test data, etc.: 32 153 916 Distribution format: tar.gz Programming language: C++ Operating system: The ALPS libraries have been tested on the following platforms and compilers: Linux with GNU Compiler Collection (g++ version 3.1 and higher), and Intel C++ Compiler (icc version 7.0 and higher) MacOS X with GNU Compiler (g++ Apple-version 3.1, 3.3 and 4.0) IBM AIX with Visual Age C++ (xlC version 6.0) and GNU (g++ version 3.1 and higher) compilers Compaq Tru64 UNIX with Compq C++ Compiler (cxx) SGI IRIX with MIPSpro C++ Compiler (CC) HP-UX with HP C++ Compiler (aCC) Windows with Cygwin or coLinux platforms and GNU Compiler Collection (g++ version 3.1 and higher) RAM: 10 MB-1 GB Classification: 7.3 External routines: ALPS [1], BLAS/LAPACK, HDF5 Nature of problem: (See [2].) Quantum impurity models describe an atom or molecule embedded in a host material with which it can exchange electrons. They are basic to nanoscience as
A Continuous Improvement Capital Funding Model.
Adams, Matt
2001-01-01
Describes a capital funding model that helps assess facility renewal needs in a way that minimizes resources while maximizing results. The article explains the sub-components of a continuous improvement capital funding model, including budgeting processes for finish renewal, building performance renewal, and critical outcome. (GR)
Bijeljic, B.; Blunt, M. J.; Rhodes, M. E.
2009-04-01
This talk will describe and highlight the advantages offered by a novel methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause dispersion of solute particles. Dispersion is traditionally described by dispersion coefficients, D, that are commonly calculated from the spatial moments of the plume. Using a pore-scale network model based on particle tracking, the rich Peclet-number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. The length traveled by solute plumes before Gaussian behaviour is reached increases with an increase in heterogeneity and/or Pe. This opens up the question on the nature of dispersion in natural systems where the heterogeneities at the larger scales will significantly increase the range of
Global dissipativity of continuous-time recurrent neural networks with time delay
International Nuclear Information System (INIS)
Liao Xiaoxin; Wang Jun
2003-01-01
This paper addresses the global dissipativity of a general class of continuous-time recurrent neural networks. First, the concepts of global dissipation and global exponential dissipation are defined and elaborated. Next, the sets of global dissipativity and global exponentially dissipativity are characterized using the parameters of recurrent neural network models. In particular, it is shown that the Hopfield network and cellular neural networks with or without time delays are dissipative systems
CONTINUOUS MODELING OF FOREIGN EXCHANGE RATE OF USD VERSUS TRY
Directory of Open Access Journals (Sweden)
Yakup Arı
2011-01-01
Full Text Available This study aims to construct continuous-time autoregressive (CAR model and continuous-time GARCH (COGARCH model from discrete time data of foreign exchange rate of United States Dollar (USD versus Turkish Lira (TRY. These processes are solutions to stochastic differential equation Lévy-driven processes. We have shown that CAR(1 and COGARCH(1,1 processes are proper models to represent foreign exchange rate of USD and TRY for different periods of time February 2002- June 2010.
Modeling plasticity by non-continuous deformation
Ben-Shmuel, Yaron; Altus, Eli
2017-10-01
Plasticity and failure theories are still subjects of intense research. Engineering constitutive models on the macroscale which are based on micro characteristics are very much in need. This study is motivated by the observation that continuum assumptions in plasticity in which neighbour material elements are inseparable at all-time are physically impossible, since local detachments, slips and neighbour switching must operate, i.e. non-continuous deformation. Material microstructure is modelled herein by a set of point elements (particles) interacting with their neighbours. Each particle can detach from and/or attach with its neighbours during deformation. Simulations on two- dimensional configurations subjected to uniaxial compression cycle are conducted. Stochastic heterogeneity is controlled by a single "disorder" parameter. It was found that (a) macro response resembles typical elasto-plastic behaviour; (b) plastic energy is proportional to the number of detachments; (c) residual plastic strain is proportional to the number of attachments, and (d) volume is preserved, which is consistent with macro plastic deformation. Rigid body displacements of local groups of elements are also observed. Higher disorder decreases the macro elastic moduli and increases plastic energy. Evolution of anisotropic effects is obtained with no additional parameters.
Finite-Time H∞ Filtering for Linear Continuous Time-Varying Systems with Uncertain Observations
Directory of Open Access Journals (Sweden)
Huihong Zhao
2012-01-01
Full Text Available This paper is concerned with the finite-time H∞ filtering problem for linear continuous time-varying systems with uncertain observations and ℒ2-norm bounded noise. The design of finite-time H∞ filter is equivalent to the problem that a certain indefinite quadratic form has a minimum and the filter is such that the minimum is positive. The quadratic form is related to a Krein state-space model according to the Krein space linear estimation theory. By using the projection theory in Krein space, the finite-time H∞ filtering problem is solved. A numerical example is given to illustrate the performance of the H∞ filter.
Multimedia Mapping using Continuous State Space Models
DEFF Research Database (Denmark)
Lehn-Schiøler, Tue
2004-01-01
In this paper a system that transforms speech waveforms to animated faces are proposed. The system relies on continuous state space models to perform the mapping, this makes it possible to ensure video with no sudden jumps and allows continuous control of the parameters in 'face space'. Simulations...... are performed on recordings of 3-5 sec. video sequences with sentences from the Timit database. The model is able to construct an image sequence from an unknown noisy speech sequence fairly well even though the number of training examples are limited....
Foster, Guy M.; Graham, Jennifer L.
2016-04-06
The Kansas River is a primary source of drinking water for about 800,000 people in northeastern Kansas. Source-water supplies are treated by a combination of chemical and physical processes to remove contaminants before distribution. Advanced notification of changing water-quality conditions and cyanobacteria and associated toxin and taste-and-odor compounds provides drinking-water treatment facilities time to develop and implement adequate treatment strategies. The U.S. Geological Survey (USGS), in cooperation with the Kansas Water Office (funded in part through the Kansas State Water Plan Fund), and the City of Lawrence, the City of Topeka, the City of Olathe, and Johnson County Water One, began a study in July 2012 to develop statistical models at two Kansas River sites located upstream from drinking-water intakes. Continuous water-quality monitors have been operated and discrete-water quality samples have been collected on the Kansas River at Wamego (USGS site number 06887500) and De Soto (USGS site number 06892350) since July 2012. Continuous and discrete water-quality data collected during July 2012 through June 2015 were used to develop statistical models for constituents of interest at the Wamego and De Soto sites. Logistic models to continuously estimate the probability of occurrence above selected thresholds were developed for cyanobacteria, microcystin, and geosmin. Linear regression models to continuously estimate constituent concentrations were developed for major ions, dissolved solids, alkalinity, nutrients (nitrogen and phosphorus species), suspended sediment, indicator bacteria (Escherichia coli, fecal coliform, and enterococci), and actinomycetes bacteria. These models will be used to provide real-time estimates of the probability that cyanobacteria and associated compounds exceed thresholds and of the concentrations of other water-quality constituents in the Kansas River. The models documented in this report are useful for characterizing changes
Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods
International Nuclear Information System (INIS)
Xia, Bing; Zhao, Xin; Callafon, Raymond de; Garnier, Hugues; Nguyen, Truong; Mi, Chris
2016-01-01
Highlights: • Continuous-time system identification is applied in Lithium-ion battery modeling. • Continuous-time and discrete-time identification methods are compared in detail. • The instrumental variable method is employed to further improve the estimation. • Simulations and experiments validate the advantages of continuous-time methods. - Abstract: The modeling of Lithium-ion batteries usually utilizes discrete-time system identification methods to estimate parameters of discrete models. However, in real applications, there is a fundamental limitation of the discrete-time methods in dealing with sensitivity when the system is stiff and the storage resolutions are limited. To overcome this problem, this paper adopts direct continuous-time system identification methods to estimate the parameters of equivalent circuit models for Lithium-ion batteries. Compared with discrete-time system identification methods, the continuous-time system identification methods provide more accurate estimates to both fast and slow dynamics in battery systems and are less sensitive to disturbances. A case of a 2"n"d-order equivalent circuit model is studied which shows that the continuous-time estimates are more robust to high sampling rates, measurement noises and rounding errors. In addition, the estimation by the conventional continuous-time least squares method is further improved in the case of noisy output measurement by introducing the instrumental variable method. Simulation and experiment results validate the analysis and demonstrate the advantages of the continuous-time system identification methods in battery applications.
Dissipative Continuous Spontaneous Localization (CSL) model.
Smirne, Andrea; Bassi, Angelo
2015-08-05
Collapse models explain the absence of quantum superpositions at the macroscopic scale, while giving practically the same predictions as quantum mechanics for microscopic systems. The Continuous Spontaneous Localization (CSL) model is the most refined and studied among collapse models. A well-known problem of this model, and of similar ones, is the steady and unlimited increase of the energy induced by the collapse noise. Here we present the dissipative version of the CSL model, which guarantees a finite energy during the entire system's evolution, thus making a crucial step toward a realistic energy-conserving collapse model. This is achieved by introducing a non-linear stochastic modification of the Schrödinger equation, which represents the action of a dissipative finite-temperature collapse noise. The possibility to introduce dissipation within collapse models in a consistent way will have relevant impact on the experimental investigations of the CSL model, and therefore also on the testability of the quantum superposition principle.
Occupation times and ergodicity breaking in biased continuous time random walks
International Nuclear Information System (INIS)
Bel, Golan; Barkai, Eli
2005-01-01
Continuous time random walk (CTRW) models are widely used to model diffusion in condensed matter. There are two classes of such models, distinguished by the convergence or divergence of the mean waiting time. Systems with finite average sojourn time are ergodic and thus Boltzmann-Gibbs statistics can be applied. We investigate the statistical properties of CTRW models with infinite average sojourn time; in particular, the occupation time probability density function is obtained. It is shown that in the non-ergodic phase the distribution of the occupation time of the particle on a given lattice point exhibits bimodal U or trimodal W shape, related to the arcsine law. The key points are as follows. (a) In a CTRW with finite or infinite mean waiting time, the distribution of the number of visits on a lattice point is determined by the probability that a member of an ensemble of particles in equilibrium occupies the lattice point. (b) The asymmetry parameter of the probability distribution function of occupation times is related to the Boltzmann probability and to the partition function. (c) The ensemble average is given by Boltzmann-Gibbs statistics for either finite or infinite mean sojourn time, when detailed balance conditions hold. (d) A non-ergodic generalization of the Boltzmann-Gibbs statistical mechanics for systems with infinite mean sojourn time is found
Directory of Open Access Journals (Sweden)
Oleg Svatos
2013-01-01
Full Text Available In this paper we analyze complexity of time limits we can find especially in regulated processes of public administration. First we review the most popular process modeling languages. There is defined an example scenario based on the current Czech legislature which is then captured in discussed process modeling languages. Analysis shows that the contemporary process modeling languages support capturing of the time limit only partially. This causes troubles to analysts and unnecessary complexity of the models. Upon unsatisfying results of the contemporary process modeling languages we analyze the complexity of the time limits in greater detail and outline lifecycles of a time limit using the multiple dynamic generalizations pattern. As an alternative to the popular process modeling languages there is presented PSD process modeling language, which supports the defined lifecycles of a time limit natively and therefore allows keeping the models simple and easy to understand.
Continuous-time Markov decision processes theory and applications
Guo, Xianping
2009-01-01
This volume provides the first book entirely devoted to recent developments on the theory and applications of continuous-time Markov decision processes (MDPs). The MDPs presented here include most of the cases that arise in applications.
Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk
International Nuclear Information System (INIS)
Schmitz, A.T.; Schwalm, W.A.
2016-01-01
Much effort has been made to connect the continuous-time and discrete-time quantum walks. We present a method for making that connection for a general graph Hamiltonian on a bigraph. Furthermore, such a scheme may be adapted for simulating discretized quantum models on a quantum computer. A coin operator is found for the discrete-time quantum walk which exhibits the same dynamics as the continuous-time evolution. Given the spectral decomposition of the graph Hamiltonian and certain restrictions, the discrete-time evolution is solved for explicitly and understood at or near important values of the parameters. Finally, this scheme is connected to past results for the 1D chain. - Highlights: • A discrete-time quantum walk is purposed which approximates a continuous-time quantum walk. • The purposed quantum walk could be used to simulate Hamiltonian dynamics on a quantum computer. • Given the spectra decomposition of the Hamiltonian, the quantum walk is solved explicitly. • The method is demonstrated and connected to previous work done on the 1D chain.
A continuous time formulation of the Regge calculus
International Nuclear Information System (INIS)
Brewin, Leo
1988-01-01
A complete continuous time formulation of the Regge calculus is presented by developing the associated continuous time Regge action. It is shown that the time constraint is, by way of the Bianchi identities conserved by the evolution equations. This analysis leads to an explicit first integral for each of the evolution equations. The dynamical equations of the theory are therefore reduced to a set of first-order differential equations. In this formalism the time constraints reduce to a simple sum of the integration constants. This result is unique to the Regge calculus-there does not appear to be a complete set of first integrals available for the vacuum Einstein equations. (author)
Continuous Certification Within Residency: An Educational Model.
Rachlin, Susan; Schonberger, Alison; Nocera, Nicole; Acharya, Jay; Shah, Nidhi; Henkel, Jacqueline
2015-10-01
Given that maintaining compliance with Maintenance of Certification is necessary for maintaining licensure to practice as a radiologist and provide quality patient care, it is important for radiology residents to practice fulfilling each part of the program during their training not only to prepare for success after graduation but also to adequately learn best practices from the beginning of their professional careers. This article discusses ways to implement continuous certification (called Continuous Residency Certification) as an educational model within the residency training program. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Anomalous transport in turbulent plasmas and continuous time random walks
International Nuclear Information System (INIS)
Balescu, R.
1995-01-01
The possibility of a model of anomalous transport problems in a turbulent plasma by a purely stochastic process is investigated. The theory of continuous time random walks (CTRW's) is briefly reviewed. It is shown that a particular class, called the standard long tail CTRW's is of special interest for the description of subdiffusive transport. Its evolution is described by a non-Markovian diffusion equation that is constructed in such a way as to yield exact values for all the moments of the density profile. The concept of a CTRW model is compared to an exact solution of a simple test problem: transport of charged particles in a fluctuating magnetic field in the limit of infinite perpendicular correlation length. Although the well-known behavior of the mean square displacement proportional to t 1/2 is easily recovered, the exact density profile cannot be modeled by a CTRW. However, the quasilinear approximation of the kinetic equation has the form of a non-Markovian diffusion equation and can thus be generated by a CTRW
Inverse Ising problem in continuous time: A latent variable approach
Donner, Christian; Opper, Manfred
2017-12-01
We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.
Stochastic calculus for uncoupled continuous-time random walks.
Germano, Guido; Politi, Mauro; Scalas, Enrico; Schilling, René L
2009-06-01
The continuous-time random walk (CTRW) is a pure-jump stochastic process with several applications not only in physics but also in insurance, finance, and economics. A definition is given for a class of stochastic integrals driven by a CTRW, which includes the Itō and Stratonovich cases. An uncoupled CTRW with zero-mean jumps is a martingale. It is proved that, as a consequence of the martingale transform theorem, if the CTRW is a martingale, the Itō integral is a martingale too. It is shown how the definition of the stochastic integrals can be used to easily compute them by Monte Carlo simulation. The relations between a CTRW, its quadratic variation, its Stratonovich integral, and its Itō integral are highlighted by numerical calculations when the jumps in space of the CTRW have a symmetric Lévy alpha -stable distribution and its waiting times have a one-parameter Mittag-Leffler distribution. Remarkably, these distributions have fat tails and an unbounded quadratic variation. In the diffusive limit of vanishing scale parameters, the probability density of this kind of CTRW satisfies the space-time fractional diffusion equation (FDE) or more in general the fractional Fokker-Planck equation, which generalizes the standard diffusion equation, solved by the probability density of the Wiener process, and thus provides a phenomenologic model of anomalous diffusion. We also provide an analytic expression for the quadratic variation of the stochastic process described by the FDE and check it by Monte Carlo.
Continuous-time quantum random walks require discrete space
International Nuclear Information System (INIS)
Manouchehri, K; Wang, J B
2007-01-01
Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks
Continuous-time quantum random walks require discrete space
Manouchehri, K.; Wang, J. B.
2007-11-01
Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks.
Continuous-time quantum algorithms for unstructured problems
International Nuclear Information System (INIS)
Hen, Itay
2014-01-01
We consider a family of unstructured optimization problems, for which we propose a method for constructing analogue, continuous-time (not necessarily adiabatic) quantum algorithms that are faster than their classical counterparts. In this family of problems, which we refer to as ‘scrambled input’ problems, one has to find a minimum-cost configuration of a given integer-valued n-bit black-box function whose input values have been scrambled in some unknown way. Special cases within this set of problems are Grover’s search problem of finding a marked item in an unstructured database, certain random energy models, and the functions of the Deutsch–Josza problem. We consider a couple of examples in detail. In the first, we provide an O(1) deterministic analogue quantum algorithm to solve the seminal problem of Deutsch and Josza, in which one has to determine whether an n-bit boolean function is constant (gives 0 on all inputs or 1 on all inputs) or balanced (returns 0 on half the input states and 1 on the other half). We also study one variant of the random energy model, and show that, as one might expect, its minimum energy configuration can be found quadratically faster with a quantum adiabatic algorithm than with classical algorithms. (paper)
Continuous and Discrete-Time Optimal Controls for an Isolated Signalized Intersection
Directory of Open Access Journals (Sweden)
Jiyuan Tan
2017-01-01
Full Text Available A classical control problem for an isolated oversaturated intersection is revisited with a focus on the optimal control policy to minimize total delay. The difference and connection between existing continuous-time planning models and recently proposed discrete-time planning models are studied. A gradient descent algorithm is proposed to convert the optimal control plan of the continuous-time model to the plan of the discrete-time model in many cases. Analytic proof and numerical tests for the algorithm are also presented. The findings shed light on the links between two kinds of models.
A continuous-time/discrete-time mixed audio-band sigma delta ADC
International Nuclear Information System (INIS)
Liu Yan; Hua Siliang; Wang Donghui; Hou Chaohuan
2011-01-01
This paper introduces a mixed continuous-time/discrete-time, single-loop, fourth-order, 4-bit audio-band sigma delta ADC that combines the benefits of continuous-time and discrete-time circuits, while mitigating the challenges associated with continuous-time design. Measurement results show that the peak SNR of this ADC reaches 100 dB and the total power consumption is less than 30 mW. (semiconductor integrated circuits)
Directory of Open Access Journals (Sweden)
Zhaojun Yang
2011-01-01
Full Text Available We study the question what value an agent in a generalized Black-Scholes model with partial information attributes to the complementary information. To do this, we study the utility maximization problems from terminal wealth for the two cases partial information and full information. We assume that the drift term of the risky asset is a dynamic process of general linear type and that the two levels of observation correspond to whether this drift term is observable or not. Applying methods from stochastic filtering theory we derive an analytical tractable formula for the value of information in the case of logarithmic utility. For the case of constant relative risk aversion (CRRA we derive a semianalytical formula, which uses as an input the numerical solution of a system of ODEs. For both cases we present a comparative analysis.
Developing a Forensic Continuous Audit Model
Directory of Open Access Journals (Sweden)
Grover S. Kearns
2011-06-01
Full Text Available Despite increased attention to internal controls and risk assessment, traditional audit approaches do not seem to be highly effective in uncovering the majority of frauds. Less than 20 percent of all occupational frauds are uncovered by auditors. Forensic accounting has recognized the need for automated approaches to fraud analysis yet research has not examined the benefits of forensic continuous auditing as a method to detect and deter corporate fraud. The purpose of this paper is to show how such an approach is possible. A model is presented that supports the acceptance of forensic continuous auditing by auditors and management as an effective tool to support the audit function, meet managementâ€™s regulatory objectives, and to combat fraud. An approach to developing such a system is presented.
Current density and continuity in discretized models
International Nuclear Information System (INIS)
Boykin, Timothy B; Luisier, Mathieu; Klimeck, Gerhard
2010-01-01
Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schroedinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying discrete models, students can encounter conceptual difficulties with the representation of the current and its divergence because different finite-difference expressions, all of which reduce to the current density in the continuous limit, measure different physical quantities. Understanding these different discrete currents is essential and requires a careful analysis of the current operator, the divergence of the current and the continuity equation. Here we develop point forms of the current and its divergence valid for an arbitrary mesh and basis. We show that in discrete models currents exist only along lines joining atomic sites (or mesh points). Using these results, we derive a discrete analogue of the divergence theorem and demonstrate probability conservation in a purely localized-basis approach.
Incomplete Continuous-time Securities Markets with Stochastic Income Volatility
DEFF Research Database (Denmark)
Christensen, Peter Ove; Larsen, Kasper
2014-01-01
We derive closed-form solutions for the equilibrium interest rate and market price of risk processes in an incomplete continuous-time market with uncertainty generated by Brownian motions. The economy has a finite number of heterogeneous exponential utility investors, who receive partially...
Incomplete Continuous-Time Securities Markets with Stochastic Income Volatility
DEFF Research Database (Denmark)
Christensen, Peter Ove; Larsen, Kasper
In an incomplete continuous-time securities market governed by Brownian motions, we derive closed-form solutions for the equilibrium risk-free rate and equity premium processes. The economy has a finite number of heterogeneous exponential utility investors, who receive partially unspanned income ...
The deviation matrix of a continuous-time Markov chain
Coolen-Schrijner, P.; van Doorn, E.A.
2001-01-01
The deviation matrix of an ergodic, continuous-time Markov chain with transition probability matrix $P(.)$ and ergodic matrix $\\Pi$ is the matrix $D \\equiv \\int_0^{\\infty} (P(t)-\\Pi)dt$. We give conditions for $D$ to exist and discuss properties and a representation of $D$. The deviation matrix of a
The deviation matrix of a continuous-time Markov chain
Coolen-Schrijner, Pauline; van Doorn, Erik A.
2002-01-01
he deviation matrix of an ergodic, continuous-time Markov chain with transition probability matrix $P(.)$ and ergodic matrix $\\Pi$ is the matrix $D \\equiv \\int_0^{\\infty} (P(t)-\\Pi)dt$. We give conditions for $D$ to exist and discuss properties and a representation of $D$. The deviation matrix of a
Asymptotic absolute continuity for perturbed time-dependent ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
We study the notion of asymptotic velocity for a class of perturbed time- ... for Mathematical Physics and Stochastics, funded by a grant from the Danish National Research Foun- .... Using (2.4) we can readily continue α(t) to the whole half-axis.
Noise Simulation of Continuous-Time ΣΔ Modulators
International Nuclear Information System (INIS)
Arias, J.; Quintanilla, L.; Bisbal, D.; San Pablo, J.; Enriquez, L.; Vicente, J.; Barbolla, J.
2005-01-01
In this work, an approach for the simulation of the effect of noise sources in the performance of continuous-time ΔΣ modulators is presented. Electrical noise including thermal noise, 1/f noise and clock jitter are included in a simulation program and their impact on the system performance is analyzed
A mean-variance frontier in discrete and continuous time
Bekker, Paul A.
2004-01-01
The paper presents a mean-variance frontier based on dynamic frictionless investment strategies in continuous time. The result applies to a finite number of risky assets whose price process is given by multivariate geometric Brownian motion with deterministically varying coefficients. The derivation
A mean-variance frontier in discrete and continuous time
Bekker, Paul A.
2004-01-01
The paper presents a mean-variance frontier based on dynamic frictionless investment strategies in continuous time. The result applies to a finite number of risky assets whose price process is given by multivariate geometric Brownian motion with deterministically varying coefficients. The derivation is based on the solution for the frontier in discrete time. Using the same multiperiod framework as Li and Ng (2000), I provide an alternative derivation and an alternative formulation of the solu...
Continuous Time Portfolio Selection under Conditional Capital at Risk
Directory of Open Access Journals (Sweden)
Gordana Dmitrasinovic-Vidovic
2010-01-01
Full Text Available Portfolio optimization with respect to different risk measures is of interest to both practitioners and academics. For there to be a well-defined optimal portfolio, it is important that the risk measure be coherent and quasiconvex with respect to the proportion invested in risky assets. In this paper we investigate one such measure—conditional capital at risk—and find the optimal strategies under this measure, in the Black-Scholes continuous time setting, with time dependent coefficients.
Continuous Fine-Fault Estimation with Real-Time GNSS
Norford, B. B.; Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C.; Senko, J.; Larsen, D.
2017-12-01
Thousands of real-time telemetered GNSS stations operate throughout the circum-Pacific that may be used for rapid earthquake characterization and estimation of local tsunami excitation. We report on the development of a GNSS-based finite-fault inversion system that continuously estimates slip using real-time GNSS position streams from the Cascadia subduction zone and which is being expanded throughout the circum-Pacific. The system uses 1 Hz precise point position streams computed in the ITRF14 reference frame using clock and satellite orbit corrections from the IGS. The software is implemented as seven independent modules that filter time series using Kalman filters, trigger and estimate coseismic offsets, invert for slip using a non-negative least squares method developed by Lawson and Hanson (1974) and elastic half-space Green's Functions developed by Okada (1985), smooth the results temporally and spatially, and write the resulting streams of time-dependent slip to a RabbitMQ messaging server for use by downstream modules such as tsunami excitation modules. Additional fault models can be easily added to the system for other circum-Pacific subduction zones as additional real-time GNSS data become available. The system is currently being tested using data from well-recorded earthquakes including the 2011 Tohoku earthquake, the 2010 Maule earthquake, the 2015 Illapel earthquake, the 2003 Tokachi-oki earthquake, the 2014 Iquique earthquake, the 2010 Mentawai earthquake, the 2016 Kaikoura earthquake, the 2016 Ecuador earthquake, the 2015 Gorkha earthquake, and others. Test data will be fed to the system and the resultant earthquake characterizations will be compared with published earthquake parameters. Seismic events will be assumed to occur on major faults, so, for example, only the San Andreas fault will be considered in Southern California, while the hundreds of other faults in the region will be ignored. Rake will be constrained along each subfault to be
Deep Brain Stimulation, Continuity over Time, and the True Self.
Nyholm, Sven; O'Neill, Elizabeth
2016-10-01
One of the topics that often comes up in ethical discussions of deep brain stimulation (DBS) is the question of what impact DBS has, or might have, on the patient's self. This is often understood as a question of whether DBS poses a threat to personal identity, which is typically understood as having to do with psychological and/or narrative continuity over time. In this article, we argue that the discussion of whether DBS is a threat to continuity over time is too narrow. There are other questions concerning DBS and the self that are overlooked in discussions exclusively focusing on psychological and/or narrative continuity. For example, it is also important to investigate whether DBS might sometimes have a positive (e.g., a rehabilitating) effect on the patient's self. To widen the discussion of DBS, so as to make it encompass a broader range of considerations that bear on DBS's impact on the self, we identify six features of the commonly used concept of a person's "true self." We apply these six features to the relation between DBS and the self. And we end with a brief discussion of the role DBS might play in treating otherwise treatment-refractory anorexia nervosa. This further highlights the importance of discussing both continuity over time and the notion of the true self.
Continuous real-time water information: an important Kansas resource
Loving, Brian L.; Putnam, James E.; Turk, Donita M.
2014-01-01
Continuous real-time information on streams, lakes, and groundwater is an important Kansas resource that can safeguard lives and property, and ensure adequate water resources for a healthy State economy. The U.S. Geological Survey (USGS) operates approximately 230 water-monitoring stations at Kansas streams, lakes, and groundwater sites. Most of these stations are funded cooperatively in partnerships with local, tribal, State, or other Federal agencies. The USGS real-time water-monitoring network provides long-term, accurate, and objective information that meets the needs of many customers. Whether the customer is a water-management or water-quality agency, an emergency planner, a power or navigational official, a farmer, a canoeist, or a fisherman, all can benefit from the continuous real-time water information gathered by the USGS.
Verification of Continuous Dynamical Systems by Timed Automata
DEFF Research Database (Denmark)
Sloth, Christoffer; Wisniewski, Rafael
2011-01-01
This paper presents a method for abstracting continuous dynamical systems by timed automata. The abstraction is based on partitioning the state space of a dynamical system using positive invariant sets, which form cells that represent locations of a timed automaton. The abstraction is intended......, which is generated utilizing sub-level sets of Lyapunov functions, as they are positive invariant sets. It is shown that this partition generates sound and complete abstractions. Furthermore, the complete abstractions can be composed of multiple timed automata, allowing parallelization...
Elliott, Thomas J.; Gu, Mile
2018-03-01
Continuous-time stochastic processes pervade everyday experience, and the simulation of models of these processes is of great utility. Classical models of systems operating in continuous-time must typically track an unbounded amount of information about past behaviour, even for relatively simple models, enforcing limits on precision due to the finite memory of the machine. However, quantum machines can require less information about the past than even their optimal classical counterparts to simulate the future of discrete-time processes, and we demonstrate that this advantage extends to the continuous-time regime. Moreover, we show that this reduction in the memory requirement can be unboundedly large, allowing for arbitrary precision even with a finite quantum memory. We provide a systematic method for finding superior quantum constructions, and a protocol for analogue simulation of continuous-time renewal processes with a quantum machine.
Correlating defect density with growth time in continuous graphene films.
Kang, Cheong; Jung, Da Hee; Nam, Ji Eun; Lee, Jin Seok
2014-12-01
We report that graphene flakes and films which were synthesized by copper-catalyzed atmospheric pressure chemical vapor deposition (APCVD) method using a mixture of Ar, H2, and CH4 gases. It was found that variations in the reaction parameters, such as reaction temperature, annealing time, and growth time, influenced the domain size of as-grown graphene. Besides, the reaction parameters influenced the number of layers, degree of defects and uniformity of the graphene films. The increase in growth temperature and annealing time tends to accelerate the graphene growth rate and increase the diffusion length, respectively, thereby increasing the average size of graphene domains. In addition, we confirmed that the number of pinholes reduced with increase in the growth time. Micro-Raman analysis of the as-grown graphene films confirmed that the continuous graphene monolayer film with low defects and high uniformity could be obtained with prolonged reaction time, under the appropriate annealing time and growth temperature.
STATISTICAL ANALYSIS OF NOTATIONAL AFL DATA USING CONTINUOUS TIME MARKOV CHAINS
Directory of Open Access Journals (Sweden)
Denny Meyer
2006-12-01
Full Text Available Animal biologists commonly use continuous time Markov chain models to describe patterns of animal behaviour. In this paper we consider the use of these models for describing AFL football. In particular we test the assumptions for continuous time Markov chain models (CTMCs, with time, distance and speed values associated with each transition. Using a simple event categorisation it is found that a semi-Markov chain model is appropriate for this data. This validates the use of Markov Chains for future studies in which the outcomes of AFL matches are simulated
Continuous equilibrium scores: factoring in the time before a fall.
Wood, Scott J; Reschke, Millard F; Owen Black, F
2012-07-01
The equilibrium (EQ) score commonly used in computerized dynamic posturography is normalized between 0 and 100, with falls assigned a score of 0. The resulting mixed discrete-continuous distribution limits certain statistical analyses and treats all trials with falls equally. We propose a simple modification of the formula in which peak-to-peak sway data from trials with falls is scaled according the percent of the trial completed to derive a continuous equilibrium (cEQ) score. The cEQ scores for trials without falls remain unchanged from the original methodology. The cEQ factors in the time before a fall and results in a continuous variable retaining the central tendencies of the original EQ distribution. A random set of 5315 Sensory Organization Test trials were pooled that included 81 falls. A comparison of the original and cEQ distributions and their rank ordering demonstrated that trials with falls continue to constitute the lower range of scores with the cEQ methodology. The area under the receiver operating characteristic curve (0.997) demonstrates that the cEQ retained near-perfect discrimination between trials with and without falls. We conclude that the cEQ score provides the ability to discriminate between ballistic falls from falls that occur later in the trial. This approach of incorporating time and sway magnitude can be easily extended to enhance other balance tests that include fall data or incomplete trials. Copyright © 2012 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Vajna, Szabolcs; Kertész, János; Tóth, Bálint
2013-01-01
Many human-related activities show power-law decaying interevent time distribution with exponents usually varying between 1 and 2. We study a simple task-queuing model, which produces bursty time series due to the non-trivial dynamics of the task list. The model is characterized by a priority distribution as an input parameter, which describes the choice procedure from the list. We give exact results on the asymptotic behaviour of the model and we show that the interevent time distribution is power-law decaying for any kind of input distributions that remain normalizable in the infinite list limit, with exponents tunable between 1 and 2. The model satisfies a scaling law between the exponents of interevent time distribution (β) and autocorrelation function (α): α + β = 2. This law is general for renewal processes with power-law decaying interevent time distribution. We conclude that slowly decaying autocorrelation function indicates long-range dependence only if the scaling law is violated. (paper)
Introducing the Dimensional Continuous Space-Time Theory
International Nuclear Information System (INIS)
Martini, Luiz Cesar
2013-01-01
This article is an introduction to a new theory. The name of the theory is justified by the dimensional description of the continuous space-time of the matter, energy and empty space, that gathers all the real things that exists in the universe. The theory presents itself as the consolidation of the classical, quantum and relativity theories. A basic equation that describes the formation of the Universe, relating time, space, matter, energy and movement, is deduced. The four fundamentals physics constants, light speed in empty space, gravitational constant, Boltzmann's constant and Planck's constant and also the fundamentals particles mass, the electrical charges, the energies, the empty space and time are also obtained from this basic equation. This theory provides a new vision of the Big-Bang and how the galaxies, stars, black holes and planets were formed. Based on it, is possible to have a perfect comprehension of the duality between wave-particle, which is an intrinsic characteristic of the matter and energy. It will be possible to comprehend the formation of orbitals and get the equationing of atomics orbits. It presents a singular comprehension of the mass relativity, length and time. It is demonstrated that the continuous space-time is tridimensional, inelastic and temporally instantaneous, eliminating the possibility of spatial fold, slot space, worm hole, time travels and parallel universes. It is shown that many concepts, like dark matter and strong forces, that hypothetically keep the cohesion of the atomics nucleons, are without sense.
Continuous-Time Symmetric Hopfield Nets are Computationally Universal
Czech Academy of Sciences Publication Activity Database
Šíma, Jiří; Orponen, P.
2003-01-01
Roč. 15, č. 3 (2003), s. 693-733 ISSN 0899-7667 R&D Projects: GA AV ČR IAB2030007; GA ČR GA201/02/1456 Institutional research plan: AV0Z1030915 Keywords : continuous-time Hopfield network * Liapunov function * analog computation * computational power * Turing universality Subject RIV: BA - General Mathematics Impact factor: 2.747, year: 2003
Parallel algorithms for simulating continuous time Markov chains
Nicol, David M.; Heidelberger, Philip
1992-01-01
We have previously shown that the mathematical technique of uniformization can serve as the basis of synchronization for the parallel simulation of continuous-time Markov chains. This paper reviews the basic method and compares five different methods based on uniformization, evaluating their strengths and weaknesses as a function of problem characteristics. The methods vary in their use of optimism, logical aggregation, communication management, and adaptivity. Performance evaluation is conducted on the Intel Touchstone Delta multiprocessor, using up to 256 processors.
International Nuclear Information System (INIS)
Liang Jinling; Cao Jinde
2004-01-01
First, convergence of continuous-time Bidirectional Associative Memory (BAM) neural networks are studied. By using Lyapunov functionals and some analysis technique, the delay-independent sufficient conditions are obtained for the networks to converge exponentially toward the equilibrium associated with the constant input sources. Second, discrete-time analogues of the continuous-time BAM networks are formulated and studied. It is shown that the convergence characteristics of the continuous-time systems are preserved by the discrete-time analogues without any restriction imposed on the uniform discretionary step size. An illustrative example is given to demonstrate the effectiveness of the obtained results
Dynamical continuous time random Lévy flights
Liu, Jian; Chen, Xiaosong
2016-03-01
The Lévy flights' diffusive behavior is studied within the framework of the dynamical continuous time random walk (DCTRW) method, while the nonlinear friction is introduced in each step. Through the DCTRW method, Lévy random walker in each step flies by obeying the Newton's Second Law while the nonlinear friction f(v) = - γ0v - γ2v3 being considered instead of Stokes friction. It is shown that after introducing the nonlinear friction, the superdiffusive Lévy flights converges, behaves localization phenomenon with long time limit, but for the Lévy index μ = 2 case, it is still Brownian motion.
Infinite time interval backward stochastic differential equations with continuous coefficients.
Zong, Zhaojun; Hu, Feng
2016-01-01
In this paper, we study the existence theorem for [Formula: see text] [Formula: see text] solutions to a class of 1-dimensional infinite time interval backward stochastic differential equations (BSDEs) under the conditions that the coefficients are continuous and have linear growths. We also obtain the existence of a minimal solution. Furthermore, we study the existence and uniqueness theorem for [Formula: see text] [Formula: see text] solutions of infinite time interval BSDEs with non-uniformly Lipschitz coefficients. It should be pointed out that the assumptions of this result is weaker than that of Theorem 3.1 in Zong (Turkish J Math 37:704-718, 2013).
Quantum trajectories and measurements in continuous time. The diffusive case
International Nuclear Information System (INIS)
Barchielli, Alberto; Gregoratti, Matteo
2009-01-01
continuous time for quantum systems. The two-level atom is again used to introduce and study an example of feedback based on the observed output. (orig.)
Travel time reliability modeling.
2011-07-01
This report includes three papers as follows: : 1. Guo F., Rakha H., and Park S. (2010), "A Multi-state Travel Time Reliability Model," : Transportation Research Record: Journal of the Transportation Research Board, n 2188, : pp. 46-54. : 2. Park S.,...
International Nuclear Information System (INIS)
Huo Haifeng; Li Wantong
2009-01-01
This paper is concerned with the global stability characteristics of a system of equations modelling the dynamics of continuous-time bidirectional associative memory neural networks with impulses. Sufficient conditions which guarantee the existence of a unique equilibrium and its exponential stability of the networks are obtained. For the goal of computation, discrete-time analogues of the corresponding continuous-time bidirectional associative memory neural networks with impulses are also formulated and studied. Our results show that the above continuous-time and discrete-time systems with impulses preserve the dynamics of the networks without impulses when we make some modifications and impose some additional conditions on the systems, the convergence characteristics dynamics of the networks are preserved by both continuous-time and discrete-time systems with some restriction imposed on the impulse effect.
Distinct timing mechanisms produce discrete and continuous movements.
Directory of Open Access Journals (Sweden)
Raoul Huys
2008-04-01
Full Text Available The differentiation of discrete and continuous movement is one of the pillars of motor behavior classification. Discrete movements have a definite beginning and end, whereas continuous movements do not have such discriminable end points. In the past decade there has been vigorous debate whether this classification implies different control processes. This debate up until the present has been empirically based. Here, we present an unambiguous non-empirical classification based on theorems in dynamical system theory that sets discrete and continuous movements apart. Through computational simulations of representative modes of each class and topological analysis of the flow in state space, we show that distinct control mechanisms underwrite discrete and fast rhythmic movements. In particular, we demonstrate that discrete movements require a time keeper while fast rhythmic movements do not. We validate our computational findings experimentally using a behavioral paradigm in which human participants performed finger flexion-extension movements at various movement paces and under different instructions. Our results demonstrate that the human motor system employs different timing control mechanisms (presumably via differential recruitment of neural subsystems to accomplish varying behavioral functions such as speed constraints.
Hybrid Modeling and Optimization of Yogurt Starter Culture Continuous Fermentation
Directory of Open Access Journals (Sweden)
Silviya Popova
2009-10-01
Full Text Available The present paper presents a hybrid model of yogurt starter mixed culture fermentation. The main nonlinearities within a classical structure of continuous process model are replaced by neural networks. The new hybrid model accounts for the dependence of the two microorganisms' kinetics from the on-line measured characteristics of the culture medium - pH. Then the model was used further for calculation of the optimal time profile of pH. The obtained results are with agreement with the experimental once.
Exploratory Study for Continuous-time Parameter Estimation of Ankle Dynamics
Kukreja, Sunil L.; Boyle, Richard D.
2014-01-01
Recently, a parallel pathway model to describe ankle dynamics was proposed. This model provides a relationship between ankle angle and net ankle torque as the sum of a linear and nonlinear contribution. A technique to identify parameters of this model in discrete-time has been developed. However, these parameters are a nonlinear combination of the continuous-time physiology, making insight into the underlying physiology impossible. The stable and accurate estimation of continuous-time parameters is critical for accurate disease modeling, clinical diagnosis, robotic control strategies, development of optimal exercise protocols for longterm space exploration, sports medicine, etc. This paper explores the development of a system identification technique to estimate the continuous-time parameters of ankle dynamics. The effectiveness of this approach is assessed via simulation of a continuous-time model of ankle dynamics with typical parameters found in clinical studies. The results show that although this technique improves estimates, it does not provide robust estimates of continuous-time parameters of ankle dynamics. Due to this we conclude that alternative modeling strategies and more advanced estimation techniques be considered for future work.
Relative entropy and waiting time for continuous-time Markov processes
Chazottes, J.R.; Giardinà, C.; Redig, F.H.J.
2006-01-01
For discrete-time stochastic processes, there is a close connection between return (resp. waiting) times and entropy (resp. relative entropy). Such a connection cannot be straightforwardly extended to the continuous-time setting. Contrarily to the discrete-time case one needs a reference measure on
Nonequilibrium thermodynamic potentials for continuous-time Markov chains.
Verley, Gatien
2016-01-01
We connect the rare fluctuations of an equilibrium (EQ) process and the typical fluctuations of a nonequilibrium (NE) stationary process. In the framework of large deviation theory, this observation allows us to introduce NE thermodynamic potentials. For continuous-time Markov chains, we identify the relevant pairs of conjugated variables and propose two NE ensembles: one with fixed dynamics and fluctuating time-averaged variables, and another with fixed time-averaged variables, but a fluctuating dynamics. Accordingly, we show that NE processes are equivalent to conditioned EQ processes ensuring that NE potentials are Legendre dual. We find a variational principle satisfied by the NE potentials that reach their maximum in the NE stationary state and whose first derivatives produce the NE equations of state and second derivatives produce the NE Maxwell relations generalizing the Onsager reciprocity relations.
Time-Weighted Balanced Stochastic Model Reduction
DEFF Research Database (Denmark)
Tahavori, Maryamsadat; Shaker, Hamid Reza
2011-01-01
A new relative error model reduction technique for linear time invariant (LTI) systems is proposed in this paper. Both continuous and discrete time systems can be reduced within this framework. The proposed model reduction method is mainly based upon time-weighted balanced truncation and a recently...
Continuous-time quantum walks on multilayer dendrimer networks
Galiceanu, Mircea; Strunz, Walter T.
2016-08-01
We consider continuous-time quantum walks (CTQWs) on multilayer dendrimer networks (MDs) and their application to quantum transport. A detailed study of properties of CTQWs is presented and transport efficiency is determined in terms of the exact and average return probabilities. The latter depends only on the eigenvalues of the connectivity matrix, which even for very large structures allows a complete analytical solution for this particular choice of network. In the case of MDs we observe an interplay between strong localization effects, due to the dendrimer topology, and good efficiency from the linear segments. We show that quantum transport is enhanced by interconnecting more layers of dendrimers.
Discrete and continuous time dynamic mean-variance analysis
Reiss, Ariane
1999-01-01
Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead o...
On properties of continuous-time random walks with non-Poissonian jump-times
International Nuclear Information System (INIS)
Villarroel, Javier; Montero, Miquel
2009-01-01
The usual development of the continuous-time random walk (CTRW) proceeds by assuming that the present is one of the jumping times. Under this restrictive assumption integral equations for the propagator and mean escape times have been derived. We generalize these results to the case when the present is an arbitrary time by recourse to renewal theory. The case of Erlang distributed times is analyzed in detail. Several concrete examples are considered.
Lyapunov stability robust analysis and robustness design for linear continuous-time systems
Luo, J.S.; Johnson, A.; Bosch, van den P.P.J.
1995-01-01
The linear continuous-time systems to be discussed are described by state space models with structured time-varying uncertainties. First, the explicit maximal perturbation bound for maintaining quadratic Lyapunov stability of the closed-loop systems is presented. Then, a robust design method is
A queueing theory based model for business continuity in hospitals.
Miniati, R; Cecconi, G; Dori, F; Frosini, F; Iadanza, E; Biffi Gentili, G; Niccolini, F; Gusinu, R
2013-01-01
Clinical activities can be seen as results of precise and defined events' succession where every single phase is characterized by a waiting time which includes working duration and possible delay. Technology makes part of this process. For a proper business continuity management, planning the minimum number of devices according to the working load only is not enough. A risk analysis on the whole process should be carried out in order to define which interventions and extra purchase have to be made. Markov models and reliability engineering approaches can be used for evaluating the possible interventions and to protect the whole system from technology failures. The following paper reports a case study on the application of the proposed integrated model, including risk analysis approach and queuing theory model, for defining the proper number of device which are essential to guarantee medical activity and comply the business continuity management requirements in hospitals.
Gap timing and the spectral timing model.
Hopson, J W
1999-04-01
A hypothesized mechanism underlying gap timing was implemented in the Spectral Timing Model [Grossberg, S., Schmajuk, N., 1989. Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Netw. 2, 79-102] , a neural network timing model. The activation of the network nodes was made to decay in the absence of the timed signal, causing the model to shift its peak response time in a fashion similar to that shown in animal subjects. The model was then able to accurately simulate a parametric study of gap timing [Cabeza de Vaca, S., Brown, B., Hemmes, N., 1994. Internal clock and memory processes in aminal timing. J. Exp. Psychol.: Anim. Behav. Process. 20 (2), 184-198]. The addition of a memory decay process appears to produce the correct pattern of results in both Scalar Expectancy Theory models and in the Spectral Timing Model, and the fact that the same process should be effective in two such disparate models argues strongly that process reflects a true aspect of animal cognition.
A novel approach of modeling continuous dark hydrogen fermentation.
Alexandropoulou, Maria; Antonopoulou, Georgia; Lyberatos, Gerasimos
2018-02-01
In this study a novel modeling approach for describing fermentative hydrogen production in a continuous stirred tank reactor (CSTR) was developed, using the Aquasim modeling platform. This model accounts for the key metabolic reactions taking place in a fermentative hydrogen producing reactor, using fixed stoichiometry but different reaction rates. Biomass yields are determined based on bioenergetics. The model is capable of describing very well the variation in the distribution of metabolic products for a wide range of hydraulic retention times (HRT). The modeling approach is demonstrated using the experimental data obtained from a CSTR, fed with food industry waste (FIW), operating at different HRTs. The kinetic parameters were estimated through fitting to the experimental results. Hydrogen and total biogas production rates were predicted very well by the model, validating the basic assumptions regarding the implicated stoichiometric biochemical reactions and their kinetic rates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of hydraulic retention time on continuous biocatalytic calcification reactor
International Nuclear Information System (INIS)
Isik, Mustafa; Altas, Levent; Kurmac, Yakup; Ozcan, Samet; Oruc, Ozcan
2010-01-01
High calcium concentrations in the wastewaters are problematic, because they lead to clogging of pipelines, boilers and heat exchangers through scaling (as carbonate, sulfate or phosphate precipitates), or malfunctioning of aerobic and anaerobic reactors. As a remedy to this problem, the industry typically uses chemical crystallization reactors which are efficient but often require complex monitoring and control and, as a drawback, can give rise to highly alkaline effluents. Biomineralization are emerging as alternative mechanisms for the removal of calcium from aqueous environments. Biocatalytic calcification reactors (BCR) utilize microbial urea hydrolysis by bacteria for the removal of calcium, as calcite, from industrial wastewater. Hydraulic retention time (HRT) effect on calcium removal was studied with a continuous feed BCR reactor treating a simulated pulp paper wastewater. Study showed that HRT is important parameter and HRT of 5-6 h is optimum for calcium removal from calcium-rich wastewaters.
Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.
Serebrinsky, Santiago A
2011-03-01
We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.
Time limit and time at VO2max' during a continuous and an intermittent run.
Demarie, S; Koralsztein, J P; Billat, V
2000-06-01
The purpose of this study was to verify, by track field tests, whether sub-elite runners (n=15) could (i) reach their VO2max while running at v50%delta, i.e. midway between the speed associated with lactate threshold (vLAT) and that associated with maximal aerobic power (vVO2max), and (ii) if an intermittent exercise provokes a maximal and/or supra maximal oxygen consumption longer than a continuous one. Within three days, subjects underwent a multistage incremental test during which their vVO2max and vLAT were determined; they then performed two additional testing sessions, where continuous and intermittent running exercises at v50%delta were performed up to exhaustion. Subject's gas exchange and heart rate were continuously recorded by means of a telemetric apparatus. Blood samples were taken from fingertip and analysed for blood lactate concentration. In the continuous and the intermittent tests peak VO2 exceeded VO2max values, as determined during the incremental test. However in the intermittent exercise, peak VO2, time to exhaustion and time at VO2max reached significantly higher values, while blood lactate accumulation showed significantly lower values than in the continuous one. The v50%delta is sufficient to stimulate VO2max in both intermittent and continuous running. The intermittent exercise results better than the continuous one in increasing maximal aerobic power, allowing longer time at VO2max and obtaining higher peak VO2 with lower lactate accumulation.
Continuous data recording on fast real-time systems
Energy Technology Data Exchange (ETDEWEB)
Zabeo, L., E-mail: lzabeo@jet.u [Euratom-CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sartori, F. [Euratom-CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Neto, A. [Associacao Euratom-IST, Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Piccolo, F. [Euratom-CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Alves, D. [Associacao Euratom-IST, Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Vitelli, R. [Dipartimento di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico, 1-00133 Roma (Italy); Barbalace, A. [Euratom-ENEA Association, Consorzio RFX, 35127 Padova (Italy); De Tommasi, G. [Associazione EURATOM/ENEA/CREATE, Universita di Napoli Federico II, Napoli (Italy)
2010-07-15
The PCU-Project launched for the enhancement of the vertical stabilisation system at JET required the design of a new real-time control system with the challenging specifications of 2Gops and a cycle time of 50 {mu}s. The RTAI based architecture running on an x86 multi-core processor technology demonstrated to be the best platform for meeting the high requirements. Moreover, on this architecture thanks to the smart allocation of the interrupts it was possible to demonstrate simultaneous data streaming at 50 MBs on Ethernet while handling a real-time 100 kHz interrupt source with a maximum jitter of just 3 {mu}s. Because of the memory limitation imposed by 32 bit version Linux running in kernel mode, the RTAI-based new controller allows a maximum practical data storage of 800 MB per pulse. While this amount of data can be accepted for JET normal operation it posed some limitations in the debugging and commissioning of the system. In order to increase the capability of the data acquisition of the system we have designed a mechanism that allows continuous full bandwidth (56 MB/s) data streaming from the real-time task (running in kernel mode) to either a data collector (running in user mode) or an external data acquisition server. The exploited architecture involves a peer to peer mechanisms where the sender running in RTAI kernel mode broadcasts large chunks of data using UDP packets, implemented using the 'fcomm' RTAI extension , to a receiver that will store the data. The paper will present the results of the initial RTAI operating system tests, the design of the streaming architecture and the first experimental results.
Verhoeven, Ronald; Dalmau Codina, Ramon; Prats Menéndez, Xavier; de Gelder, Nico
2014-01-01
1 Abstract In this paper an initial implementation of a real - time aircraft trajectory optimization algorithm is presented . The aircraft trajectory for descent and approach is computed for minimum use of thrust and speed brake in support of a “green” continuous descent and approach flight operation, while complying with ATC time constraints for maintaining runway throughput and co...
Chaos and unpredictability in evolution of cooperation in continuous time
You, Taekho; Kwon, Minji; Jo, Hang-Hyun; Jung, Woo-Sung; Baek, Seung Ki
2017-12-01
Cooperators benefit others with paying costs. Evolution of cooperation crucially depends on the cost-benefit ratio of cooperation, denoted as c . In this work, we investigate the infinitely repeated prisoner's dilemma for various values of c with four of the representative memory-one strategies, i.e., unconditional cooperation, unconditional defection, tit-for-tat, and win-stay-lose-shift. We consider replicator dynamics which deterministically describes how the fraction of each strategy evolves over time in an infinite-sized well-mixed population in the presence of implementation error and mutation among the four strategies. Our finding is that this three-dimensional continuous-time dynamics exhibits chaos through a bifurcation sequence similar to that of a logistic map as c varies. If mutation occurs with rate μ ≪1 , the position of the bifurcation sequence on the c axis is numerically found to scale as μ0.1, and such sensitivity to μ suggests that mutation may have nonperturbative effects on evolutionary paths. It demonstrates how the microscopic randomness of the mutation process can be amplified to macroscopic unpredictability by evolutionary dynamics.
The continuous similarity model of bulk soil-water evaporation
Clapp, R. B.
1983-01-01
The continuous similarity model of evaporation is described. In it, evaporation is conceptualized as a two stage process. For an initially moist soil, evaporation is first climate limited, but later it becomes soil limited. During the latter stage, the evaporation rate is termed evaporability, and mathematically it is inversely proportional to the evaporation deficit. A functional approximation of the moisture distribution within the soil column is also included in the model. The model was tested using data from four experiments conducted near Phoenix, Arizona; and there was excellent agreement between the simulated and observed evaporation. The model also predicted the time of transition to the soil limited stage reasonably well. For one of the experiments, a third stage of evaporation, when vapor diffusion predominates, was observed. The occurrence of this stage was related to the decrease in moisture at the surface of the soil. The continuous similarity model does not account for vapor flow. The results show that climate, through the potential evaporation rate, has a strong influence on the time of transition to the soil limited stage. After this transition, however, bulk evaporation is independent of climate until the effects of vapor flow within the soil predominate.
Bi-Criteria System Optimum Traffic Assignment in Networks With Continuous Value of Time
Directory of Open Access Journals (Sweden)
Xin Wang
2013-04-01
Full Text Available For an elastic demand transportation network with continuously distributed value of time, the system disutility can be measured either in time units or in cost units. The user equilibrium model and the system optimization model are each formulated in two different criteria. The conditions required for making the system optimum link flow pattern equivalent to the user equilibrium link flow pattern are derived. Furthermore, a bi-objective model has been developed which minimizes simultaneously the system travel time and the system travel cost. The existence of a pricing scheme with anonymous link tolls which can decentralize a Pareto system optimum into the user equilibrium has been investigated.
Continuous time quantum random walks in free space
Eichelkraut, Toni; Vetter, Christian; Perez-Leija, Armando; Christodoulides, Demetrios; Szameit, Alexander
2014-05-01
We show theoretically and experimentally that two-dimensional continuous time coherent random walks are possible in free space, that is, in the absence of any external potential, by properly tailoring the associated initial wave function. These effects are experimentally demonstrated using classical paraxial light. Evidently, the usage of classical beams to explore the dynamics of point-like quantum particles is possible since both phenomena are mathematically equivalent. This in turn makes our approach suitable for the realization of random walks using different quantum particles, including electrons and photons. To study the spatial evolution of a wavefunction theoretically, we consider the one-dimensional paraxial wave equation (i∂z +1/2 ∂x2) Ψ = 0 . Starting with the initially localized wavefunction Ψ (x , 0) = exp [ -x2 / 2σ2 ] J0 (αx) , one can show that the evolution of such Gaussian-apodized Bessel envelopes within a region of validity resembles the probability pattern of a quantum walker traversing a uniform lattice. In order to generate the desired input-field in our experimental setting we shape the amplitude and phase of a collimated light beam originating from a classical HeNe-Laser (633 nm) utilizing a spatial light modulator.
Soundness of Timed-Arc Workflow Nets in Discrete and Continuous-Time Semantics
DEFF Research Database (Denmark)
Mateo, Jose Antonio; Srba, Jiri; Sørensen, Mathias Grund
2015-01-01
Analysis of workflow processes with quantitative aspectslike timing is of interest in numerous time-critical applications. We suggest a workflow model based on timed-arc Petri nets and studythe foundational problems of soundness and strong (time-bounded) soundness.We first consider the discrete-t...
Zheng, F.
2011-01-01
Urban travel times are intrinsically uncertain due to a lot of stochastic characteristics of traffic, especially at signalized intersections. A single travel time does not have much meaning and is not informative to drivers or traffic managers. The range of travel times is large such that certain
Discrete and Continuous Models for Partitioning Problems
Lellmann, Jan
2013-04-11
Recently, variational relaxation techniques for approximating solutions of partitioning problems on continuous image domains have received considerable attention, since they introduce significantly less artifacts than established graph cut-based techniques. This work is concerned with the sources of such artifacts. We discuss the importance of differentiating between artifacts caused by discretization and those caused by relaxation and provide supporting numerical examples. Moreover, we consider in depth the consequences of a recent theoretical result concerning the optimality of solutions obtained using a particular relaxation method. Since the employed regularizer is quite tight, the considered relaxation generally involves a large computational cost. We propose a method to significantly reduce these costs in a fully automatic way for a large class of metrics including tree metrics, thus generalizing a method recently proposed by Strekalovskiy and Cremers (IEEE conference on computer vision and pattern recognition, pp. 1905-1911, 2011). © 2013 Springer Science+Business Media New York.
Continuation-like semantics for modeling structural process anomalies
Directory of Open Access Journals (Sweden)
Grewe Niels
2012-09-01
Full Text Available Abstract Background Biomedical ontologies usually encode knowledge that applies always or at least most of the time, that is in normal circumstances. But for some applications like phenotype ontologies it is becoming increasingly important to represent information about aberrations from a norm. These aberrations may be modifications of physiological structures, but also modifications of biological processes. Methods To facilitate precise definitions of process-related phenotypes, such as delayed eruption of the primary teeth or disrupted ocular pursuit movements, I introduce a modeling approach that draws inspiration from the use of continuations in the analysis of programming languages and apply a similar idea to ontological modeling. This approach characterises processes by describing their outcome up to a certain point and the way they will continue in the canonical case. Definitions of process types are then given in terms of their continuations and anomalous phenotypes are defined by their differences to the canonical definitions. Results The resulting model is capable of accurately representing structural process anomalies. It allows distinguishing between different anomaly kinds (delays, interruptions, gives identity criteria for interrupted processes, and explains why normal and anomalous process instances can be subsumed under a common type, thus establishing the connection between canonical and anomalous process-related phenotypes. Conclusion This paper shows how to to give semantically rich definitions of process-related phenotypes. These allow to expand the application areas of phenotype ontologies beyond literature annotation and establishment of genotype-phenotype associations to the detection of anomalies in suitably encoded datasets.
Anticontrol of chaos in continuous-time systems via time-delay feedback.
Wang, Xiao Fan; Chen, Guanrong; Yu, Xinghuo
2000-12-01
In this paper, a systematic design approach based on time-delay feedback is developed for anticontrol of chaos in a continuous-time system. This anticontrol method can drive a finite-dimensional, continuous-time, autonomous system from nonchaotic to chaotic, and can also enhance the existing chaos of an originally chaotic system. Asymptotic analysis is used to establish an approximate relationship between a time-delay differential equation and a discrete map. Anticontrol of chaos is then accomplished based on this relationship and the differential-geometry control theory. Several examples are given to verify the effectiveness of the methodology and to illustrate the systematic design procedure. (c) 2000 American Institute of Physics.
Finite-Time Stability and Controller Design of Continuous-Time Polynomial Fuzzy Systems
Directory of Open Access Journals (Sweden)
Xiaoxing Chen
2017-01-01
Full Text Available Finite-time stability and stabilization problem is first investigated for continuous-time polynomial fuzzy systems. The concept of finite-time stability and stabilization is given for polynomial fuzzy systems based on the idea of classical references. A sum-of-squares- (SOS- based approach is used to obtain the finite-time stability and stabilization conditions, which include some classical results as special cases. The proposed conditions can be solved with the help of powerful Matlab toolbox SOSTOOLS and a semidefinite-program (SDP solver. Finally, two numerical examples and one practical example are employed to illustrate the validity and effectiveness of the provided conditions.
Echocardiography as an indication of continuous-time cardiac quiescence
Wick, C. A.; Auffermann, W. F.; Shah, A. J.; Inan, O. T.; Bhatti, P. T.; Tridandapani, S.
2016-07-01
Cardiac computed tomography (CT) angiography using prospective gating requires that data be acquired during intervals of minimal cardiac motion to obtain diagnostic images of the coronary vessels free of motion artifacts. This work is intended to assess B-mode echocardiography as a continuous-time indication of these quiescent periods to determine if echocardiography can be used as a cost-efficient, non-ionizing modality to develop new prospective gating techniques for cardiac CT. These new prospective gating approaches will not be based on echocardiography itself but on CT-compatible modalities derived from the mechanics of the heart (e.g. seismocardiography and impedance cardiography), unlike the current standard electrocardiogram. To this end, echocardiography and retrospectively-gated CT data were obtained from ten patients with varied cardiac conditions. CT reconstructions were made throughout the cardiac cycle. Motion of the interventricular septum (IVS) was calculated from both echocardiography and CT reconstructions using correlation-based, deviation techniques. The IVS was chosen because it (1) is visible in echocardiography images, whereas the coronary vessels generally are not, and (2) has been shown to be a suitable indicator of cardiac quiescence. Quiescent phases were calculated as the minima of IVS motion and CT volumes were reconstructed for these phases. The diagnostic quality of the CT reconstructions from phases calculated from echocardiography and CT data was graded on a four-point Likert scale by a board-certified radiologist fellowship-trained in cardiothoracic radiology. Using a Wilcoxon signed-rank test, no significant difference in the diagnostic quality of the coronary vessels was found between CT volumes reconstructed from echocardiography- and CT-selected phases. Additionally, there was a correlation of 0.956 between the echocardiography- and CT-selected phases. This initial work suggests that B-mode echocardiography can be used as a
On discrete models of space-time
International Nuclear Information System (INIS)
Horzela, A.; Kempczynski, J.; Kapuscik, E.; Georgia Univ., Athens, GA; Uzes, Ch.
1992-02-01
Analyzing the Einstein radiolocation method we come to the conclusion that results of any measurement of space-time coordinates should be expressed in terms of rational numbers. We show that this property is Lorentz invariant and may be used in the construction of discrete models of space-time different from the models of the lattice type constructed in the process of discretization of continuous models. (author)
Current Density and Continuity in Discretized Models
Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard
2010-01-01
Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schrodinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying…
Mathematical Modelling of Continuous Biotechnological Processes
Pencheva, T.; Hristozov, I.; Shannon, A. G.
2003-01-01
Biotechnological processes (BTP) are characterized by a complicated structure of organization and interdependent characteristics. Partial differential equations or systems of partial differential equations are used for their behavioural description as objects with distributed parameters. Modelling of substrate without regard to dispersion…
Modelling spatial density using continuous wavelet transforms
Indian Academy of Sciences (India)
As the demand for space-based systems for remote ... of the scanned object at the time of scan (epoch), security classification, nature of debri ... dow based search for peaks is sensitive to noise and do not differentiate strong and weak peaks.
Introduction to Time Series Modeling
Kitagawa, Genshiro
2010-01-01
In time series modeling, the behavior of a certain phenomenon is expressed in relation to the past values of itself and other covariates. Since many important phenomena in statistical analysis are actually time series and the identification of conditional distribution of the phenomenon is an essential part of the statistical modeling, it is very important and useful to learn fundamental methods of time series modeling. Illustrating how to build models for time series using basic methods, "Introduction to Time Series Modeling" covers numerous time series models and the various tools f
Identification of parameters of discrete-continuous models
International Nuclear Information System (INIS)
Cekus, Dawid; Warys, Pawel
2015-01-01
In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible
Identification of parameters of discrete-continuous models
Energy Technology Data Exchange (ETDEWEB)
Cekus, Dawid, E-mail: cekus@imipkm.pcz.pl; Warys, Pawel, E-mail: warys@imipkm.pcz.pl [Institute of Mechanics and Machine Design Foundations, Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa (Poland)
2015-03-10
In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible.
Optimal batch production strategies under continuous price decrease and time discounting
Directory of Open Access Journals (Sweden)
Mandal S.
2007-01-01
Full Text Available Single price discount in unit cost for bulk purchasing is quite common in reality as well as in inventory literature. However, in today's high-tech industries such as personal computers and mobile industries, continuous decrease in unit cost is a regular phenomenon. In the present paper, an attempt has been made to investigate the effects of continuous price decrease and time-value of money on optimal decisions for inventoried goods having time-dependent demand and production rates. The proposed models are developed over a finite time horizon considering both shortages and without shortages in inventory. Numerical examples are taken to illustrate the developed models and to examine the sensitivity of model parameters.
Continuous-Time Random Walk with multi-step memory: an application to market dynamics
Gubiec, Tomasz; Kutner, Ryszard
2017-11-01
An extended version of the Continuous-Time Random Walk (CTRW) model with memory is herein developed. This memory involves the dependence between arbitrary number of successive jumps of the process while waiting times between jumps are considered as i.i.d. random variables. This dependence was established analyzing empirical histograms for the stochastic process of a single share price on a market within the high frequency time scale. Then, it was justified theoretically by considering bid-ask bounce mechanism containing some delay characteristic for any double-auction market. Our model appeared exactly analytically solvable. Therefore, it enables a direct comparison of its predictions with their empirical counterparts, for instance, with empirical velocity autocorrelation function. Thus, the present research significantly extends capabilities of the CTRW formalism. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Wang, Lianzhen; Pei, Yulong
2014-09-01
This real road driving study was conducted to investigate the effects of driving time and rest time on the driving performance and recovery of commercial coach drivers. Thirty-three commercial coach drivers participated in the study, and were divided into three groups according to driving time: (a) 2 h, (b) 3 h, and (c) 4 h. The Stanford Sleepiness Scale (SSS) was used to assess the subjective fatigue level of the drivers. One-way ANOVA was employed to analyze the variation in driving performance. The statistical analysis revealed that driving time had a significant effect on the subjective fatigue and driving performance measures among the three groups. After 2 h of driving, both the subjective fatigue and driving performance measures began to deteriorate. After 4 h of driving, all of the driving performance indicators changed significantly except for depth perception. A certain amount of rest time eliminated the negative effects of fatigue. A 15-minute rest allowed drivers to recover from a two-hour driving task. This needed to be prolonged to 30 min for driving tasks of 3 to 4 h of continuous driving. Drivers' attention, reactions, operating ability, and perceptions are all affected in turn after over 2 h of continuous driving. Drivers should take a certain amount of rest to recover from the fatigue effects before they continue driving. Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Mikadze, I.; Namchevadze, T.; Gobiani, I.
2007-01-01
There is proposed a generalized mathematical model of the queuing system with time redundancy without preliminary checking of the queuing system at transition from the free state into the engaged one. The model accounts for various failures of the queuing system detected by continuous instrument control, periodic control, control during recovery and the failures revealed immediately after accumulation of a certain number of failures. The generating function of queue length in both stationary and nonstationary modes was determined. (author)
Detectability of Granger causality for subsampled continuous-time neurophysiological processes.
Barnett, Lionel; Seth, Anil K
2017-01-01
Granger causality is well established within the neurosciences for inference of directed functional connectivity from neurophysiological data. These data usually consist of time series which subsample a continuous-time biophysiological process. While it is well known that subsampling can lead to imputation of spurious causal connections where none exist, less is known about the effects of subsampling on the ability to reliably detect causal connections which do exist. We present a theoretical analysis of the effects of subsampling on Granger-causal inference. Neurophysiological processes typically feature signal propagation delays on multiple time scales; accordingly, we base our analysis on a distributed-lag, continuous-time stochastic model, and consider Granger causality in continuous time at finite prediction horizons. Via exact analytical solutions, we identify relationships among sampling frequency, underlying causal time scales and detectability of causalities. We reveal complex interactions between the time scale(s) of neural signal propagation and sampling frequency. We demonstrate that detectability decays exponentially as the sample time interval increases beyond causal delay times, identify detectability "black spots" and "sweet spots", and show that downsampling may potentially improve detectability. We also demonstrate that the invariance of Granger causality under causal, invertible filtering fails at finite prediction horizons, with particular implications for inference of Granger causality from fMRI data. Our analysis emphasises that sampling rates for causal analysis of neurophysiological time series should be informed by domain-specific time scales, and that state-space modelling should be preferred to purely autoregressive modelling. On the basis of a very general model that captures the structure of neurophysiological processes, we are able to help identify confounds, and offer practical insights, for successful detection of causal connectivity
An industry-sponsored, school-focused model for continuing ...
African Journals Online (AJOL)
An industry-sponsored, school-focused model for continuing professional ... HEIs and Departments of Education (DoE), could change the traditional concept that CPTD is the responsibility of DoEs into a new model where the business
Continuous Online Sequence Learning with an Unsupervised Neural Network Model.
Cui, Yuwei; Ahmad, Subutar; Hawkins, Jeff
2016-09-14
The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variableorder temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.
Continuous Spatial Process Models for Spatial Extreme Values
Sang, Huiyan
2010-01-28
We propose a hierarchical modeling approach for explaining a collection of point-referenced extreme values. In particular, annual maxima over space and time are assumed to follow generalized extreme value (GEV) distributions, with parameters μ, σ, and ξ specified in the latent stage to reflect underlying spatio-temporal structure. The novelty here is that we relax the conditionally independence assumption in the first stage of the hierarchial model, an assumption which has been adopted in previous work. This assumption implies that realizations of the the surface of spatial maxima will be everywhere discontinuous. For many phenomena including, e. g., temperature and precipitation, this behavior is inappropriate. Instead, we offer a spatial process model for extreme values that provides mean square continuous realizations, where the behavior of the surface is driven by the spatial dependence which is unexplained under the latent spatio-temporal specification for the GEV parameters. In this sense, the first stage smoothing is viewed as fine scale or short range smoothing while the larger scale smoothing will be captured in the second stage of the modeling. In addition, as would be desired, we are able to implement spatial interpolation for extreme values based on this model. A simulation study and a study on actual annual maximum rainfall for a region in South Africa are used to illustrate the performance of the model. © 2009 International Biometric Society.
Modeling discrete time-to-event data
Tutz, Gerhard
2016-01-01
This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are expla...
Cluster Observations of Non-Time Continuous Magnetosonic Waves
Walker, Simon N.; Demekhov, Andrei G.; Boardsen, Scott A.; Ganushkina, Natalia Y.; Sibeck, David G.; Balikhin, Michael A.
2016-01-01
Equatorial magnetosonic waves are normally observed as temporally continuous sets of emissions lasting from minutes to hours. Recent observations, however, have shown that this is not always the case. Using Cluster data, this study identifies two distinct forms of these non temporally continuous use missions. The first, referred to as rising tone emissions, are characterized by the systematic onset of wave activity at increasing proton gyroharmonic frequencies. Sets of harmonic emissions (emission elements)are observed to occur periodically in the region +/- 10 off the geomagnetic equator. The sweep rate of these emissions maximizes at the geomagnetic equator. In addition, the ellipticity and propagation direction also change systematically as Cluster crosses the geomagnetic equator. It is shown that the observed frequency sweep rate is unlikely to result from the sideband instability related to nonlinear trapping of suprathermal protons in the wave field. The second form of emissions is characterized by the simultaneous onset of activity across a range of harmonic frequencies. These waves are observed at irregular intervals. Their occurrence correlates with changes in the spacecraft potential, a measurement that is used as a proxy for electron density. Thus, these waves appear to be trapped within regions of localized enhancement of the electron density.
Course Development Cycle Time: A Framework for Continuous Process Improvement.
Lake, Erinn
2003-01-01
Details Edinboro University's efforts to reduce the extended cycle time required to develop new courses and programs. Describes a collaborative process improvement framework, illustrated data findings, the team's recommendations for improvement, and the outcomes of those recommendations. (EV)
Directory of Open Access Journals (Sweden)
Y. Saiki
2007-09-01
Full Text Available An infinite number of unstable periodic orbits (UPOs are embedded in a chaotic system which models some complex phenomenon. Several algorithms which extract UPOs numerically from continuous-time chaotic systems have been proposed. In this article the damped Newton-Raphson-Mees algorithm is reviewed, and some important techniques and remarks concerning the practical numerical computations are exemplified by employing the Lorenz system.
Wang, Xinghu; Hong, Yiguang; Yi, Peng; Ji, Haibo; Kang, Yu
2017-05-24
In this paper, a distributed optimization problem is studied for continuous-time multiagent systems with unknown-frequency disturbances. A distributed gradient-based control is proposed for the agents to achieve the optimal consensus with estimating unknown frequencies and rejecting the bounded disturbance in the semi-global sense. Based on convex optimization analysis and adaptive internal model approach, the exact optimization solution can be obtained for the multiagent system disturbed by exogenous disturbances with uncertain parameters.
Correlated continuous-time random walks—scaling limits and Langevin picture
International Nuclear Information System (INIS)
Magdziarz, Marcin; Metzler, Ralf; Szczotka, Wladyslaw; Zebrowski, Piotr
2012-01-01
In this paper we analyze correlated continuous-time random walks introduced recently by Tejedor and Metzler (2010 J. Phys. A: Math. Theor. 43 082002). We obtain the Langevin equations associated with this process and the corresponding scaling limits of their solutions. We prove that the limit processes are self-similar and display anomalous dynamics. Moreover, we extend the model to include external forces. Our results are confirmed by Monte Carlo simulations
Continuous-Time Mean-Variance Portfolio Selection under the CEV Process
Ma, Hui-qiang
2014-01-01
We consider a continuous-time mean-variance portfolio selection model when stock price follows the constant elasticity of variance (CEV) process. The aim of this paper is to derive an optimal portfolio strategy and the efficient frontier. The mean-variance portfolio selection problem is formulated as a linearly constrained convex program problem. By employing the Lagrange multiplier method and stochastic optimal control theory, we obtain the optimal portfolio strategy and mean-variance effici...
Model Hosting for continuous updating and transparent Water Resources Management
Jódar, Jorge; Almolda, Xavier; Batlle, Francisco; Carrera, Jesús
2013-04-01
Numerical models have become a standard tool for water resources management. They are required for water volume bookkeeping and help in decision making. Nevertheless, numerical models are complex and they can be used only by highly qualified technicians, which are often far from the decision makers. Moreover, they need to be maintained. That is, they require updating of their state, by assimilation of measurements, natural and anthropic actions (e.g., pumping and weather data), and model parameters. Worst, their very complexity implies that are they viewed as obscure and far, which hinders transparency and governance. We propose internet model hosting as an alternative to overcome these limitations. The basic idea is to keep the model hosted in the cloud. The model is updated as new data (measurements and external forcing) becomes available, which ensures continuous maintenance, with a minimal human cost (only required to address modelling problems). Internet access facilitates model use not only by modellers, but also by people responsible for data gathering and by water managers. As a result, the model becomes an institutional tool shared by water agencies to help them not only in decision making for sustainable management of water resources, but also in generating a common discussion platform. By promoting intra-agency sharing, the model becomes the common official position of the agency, which facilitates commitment in their adopted decisions regarding water management. Moreover, by facilitating access to stakeholders and the general public, the state of the aquifer and the impacts of alternative decisions become transparent. We have developed a tool (GAC, Global Aquifer Control) to address the above requirements. The application has been developed using Cloud Computing technologies, which facilitates the above operations. That is, GAC automatically updates the numerical models with the new available measurements, and then simulates numerous management options
Energy Technology Data Exchange (ETDEWEB)
Salimi, S; Radgohar, R, E-mail: shsalimi@uok.ac.i, E-mail: r.radgohar@uok.ac.i [Faculty of Science, Department of Physics, University of Kurdistan, Pasdaran Ave, Sanandaj (Iran, Islamic Republic of)
2010-01-28
In this paper, we consider decoherence in continuous-time quantum walks on long-range interacting cycles (LRICs), which are the extensions of the cycle graphs. For this purpose, we use Gurvitz's model and assume that every node is monitored by the corresponding point-contact induced by the decoherence process. Then, we focus on large rates of decoherence and calculate the probability distribution analytically and obtain the lower and upper bounds of the mixing time. Our results prove that the mixing time is proportional to the rate of decoherence and the inverse of the square of the distance parameter (m). This shows that the mixing time decreases with increasing range of interaction. Also, what we obtain for m = 0 is in agreement with Fedichkin, Solenov and Tamon's results [48] for cycle, and we see that the mixing time of CTQWs on cycle improves with adding interacting edges.
Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
Directory of Open Access Journals (Sweden)
Nicolas Frémaux
2013-04-01
Full Text Available Animals repeat rewarded behaviors, but the physiological basis of reward-based learning has only been partially elucidated. On one hand, experimental evidence shows that the neuromodulator dopamine carries information about rewards and affects synaptic plasticity. On the other hand, the theory of reinforcement learning provides a framework for reward-based learning. Recent models of reward-modulated spike-timing-dependent plasticity have made first steps towards bridging the gap between the two approaches, but faced two problems. First, reinforcement learning is typically formulated in a discrete framework, ill-adapted to the description of natural situations. Second, biologically plausible models of reward-modulated spike-timing-dependent plasticity require precise calculation of the reward prediction error, yet it remains to be shown how this can be computed by neurons. Here we propose a solution to these problems by extending the continuous temporal difference (TD learning of Doya (2000 to the case of spiking neurons in an actor-critic network operating in continuous time, and with continuous state and action representations. In our model, the critic learns to predict expected future rewards in real time. Its activity, together with actual rewards, conditions the delivery of a neuromodulatory TD signal to itself and to the actor, which is responsible for action choice. In simulations, we show that such an architecture can solve a Morris water-maze-like navigation task, in a number of trials consistent with reported animal performance. We also use our model to solve the acrobot and the cartpole problems, two complex motor control tasks. Our model provides a plausible way of computing reward prediction error in the brain. Moreover, the analytically derived learning rule is consistent with experimental evidence for dopamine-modulated spike-timing-dependent plasticity.
Summary statistics for end-point conditioned continuous-time Markov chains
DEFF Research Database (Denmark)
Hobolth, Asger; Jensen, Jens Ledet
Continuous-time Markov chains are a widely used modelling tool. Applications include DNA sequence evolution, ion channel gating behavior and mathematical finance. We consider the problem of calculating properties of summary statistics (e.g. mean time spent in a state, mean number of jumps between...... two states and the distribution of the total number of jumps) for discretely observed continuous time Markov chains. Three alternative methods for calculating properties of summary statistics are described and the pros and cons of the methods are discussed. The methods are based on (i) an eigenvalue...... decomposition of the rate matrix, (ii) the uniformization method, and (iii) integrals of matrix exponentials. In particular we develop a framework that allows for analyses of rather general summary statistics using the uniformization method....
Applying Mean-Field Approximation to Continuous Time Markov Chains
Kolesnichenko, A.V.; Senni, Valerio; Pourranjabar, Alireza; Remke, A.K.I.; Stoelinga, M.I.A.
2014-01-01
The mean-field analysis technique is used to perform analysis of a system with a large number of components to determine the emergent deterministic behaviour and how this behaviour modifies when its parameters are perturbed. The computer science performance modelling and analysis community has found
An automated quasi-continuous capillary refill timing device
International Nuclear Information System (INIS)
Blaxter, L L; Morris, D E; Crowe, J A; Hayes-Gill, B R; Henry, C; Hill, S; Sharkey, D; Vyas, H
2016-01-01
Capillary refill time (CRT) is a simple means of cardiovascular assessment which is widely used in clinical care. Currently, CRT is measured through manual assessment of the time taken for skin tone to return to normal colour following blanching of the skin surface. There is evidence to suggest that manually assessed CRT is subject to bias from ambient light conditions, a lack of standardisation of both blanching time and manually applied pressure, subjectiveness of return to normal colour, and variability in the manual assessment of time. We present a novel automated system for CRT measurement, incorporating three components: a non-invasive adhesive sensor incorporating a pneumatic actuator, a diffuse multi-wavelength reflectance measurement device, and a temperature sensor; a battery operated datalogger unit containing a self contained pneumatic supply; and PC based data analysis software for the extraction of refill time, patient skin surface temperature, and sensor signal quality. Through standardisation of the test, it is hoped that some of the shortcomings of manual CRT can be overcome. In addition, an automated system will facilitate easier integration of CRT into electronic record keeping and clinical monitoring or scoring systems, as well as reducing demands on clinicians. Summary analysis of volunteer (n = 30) automated CRT datasets are presented, from 15 healthy adults and 15 healthy children (aged from 5 to 15 years), as their arms were cooled from ambient temperature to 5°C. A more detailed analysis of two typical datasets is also presented, demonstrating that the response of automated CRT to cooling matches that of previously published studies. (paper)
Bayesian inference for hybrid discrete-continuous stochastic kinetic models
International Nuclear Information System (INIS)
Sherlock, Chris; Golightly, Andrew; Gillespie, Colin S
2014-01-01
We consider the problem of efficiently performing simulation and inference for stochastic kinetic models. Whilst it is possible to work directly with the resulting Markov jump process (MJP), computational cost can be prohibitive for networks of realistic size and complexity. In this paper, we consider an inference scheme based on a novel hybrid simulator that classifies reactions as either ‘fast’ or ‘slow’ with fast reactions evolving as a continuous Markov process whilst the remaining slow reaction occurrences are modelled through a MJP with time-dependent hazards. A linear noise approximation (LNA) of fast reaction dynamics is employed and slow reaction events are captured by exploiting the ability to solve the stochastic differential equation driving the LNA. This simulation procedure is used as a proposal mechanism inside a particle MCMC scheme, thus allowing Bayesian inference for the model parameters. We apply the scheme to a simple application and compare the output with an existing hybrid approach and also a scheme for performing inference for the underlying discrete stochastic model. (paper)
Mental time travel: a case for evolutionary continuity.
Corballis, Michael C
2013-01-01
In humans, hippocampal activity responds to the imagining of past or future events. In rats, hippocampal activity is tied to particular locations in a maze, occurs after the animal has been in the maze, and sometimes corresponds to locations the animal did not actually visit. This suggests that mental time travel has neurophysiological underpinnings that go far back in evolution, and may not be, as some (including myself) have claimed, unique to humans. Copyright © 2012 Elsevier Ltd. All rights reserved.
Continuous radon measurements in schools: time variations and related parameters
International Nuclear Information System (INIS)
Giovani, C.; Cappelletto, C.; Garavaglia, M.; Pividore, S.; Villalta, R.
2004-01-01
Some results are reported of observations made within a four-year survey, during different seasons and in different conditions of school building use. Natural radon variations (day-night cycles, seasonal and temperature dependent variations etc..) and artificial ones (opening of windows, weekends and vacations, deployment of air conditioning or heating systems. etc.) were investigated as parameters affecting time dependent radon concentrations. (P.A.)
Eigenfunction statistics for Anderson model with Hölder continuous ...
Indian Academy of Sciences (India)
The Institute of Mathematical Sciences, Taramani, Chennai 600 113, India ... Anderson model; Hölder continuous measure; Poisson statistics. ...... [4] Combes J-M, Hislop P D and Klopp F, An optimal Wegner estimate and its application to.
Continuous Spatial Process Models for Spatial Extreme Values
Sang, Huiyan; Gelfand, Alan E.
2010-01-01
process model for extreme values that provides mean square continuous realizations, where the behavior of the surface is driven by the spatial dependence which is unexplained under the latent spatio-temporal specification for the GEV parameters
Measuring patient-centered medical home access and continuity in clinics with part-time clinicians.
Rosland, Ann-Marie; Krein, Sarah L; Kim, Hyunglin Myra; Greenstone, Clinton L; Tremblay, Adam; Ratz, David; Saffar, Darcy; Kerr, Eve A
2015-05-01
Common patient-centered medical home (PCMH) performance measures value access to a single primary care provider (PCP), which may have unintended consequences for clinics that rely on part-time PCPs and team-based care. Retrospective analysis of 110,454 primary care visits from 2 Veterans Health Administration clinics from 2010 to 2012. Multi-level models examined associations between PCP availability in clinic, and performance on access and continuity measures. Patient experiences with access and continuity were compared using 2012 patient survey data (N = 2881). Patients of PCPs with fewer half-day clinic sessions per week were significantly less likely to get a requested same-day appointment with their usual PCP (predicted probability 17% for PCPs with 2 sessions/week, 20% for 5 sessions/week, and 26% for 10 sessions/week). Among requests that did not result in a same-day appointment with the usual PCP, there were no significant differences in same-day access to a different PCP, or access within 2 to 7 days with patients' usual PCP. Overall, patients had >92% continuity with their usual PCP at the hospital-based site regardless of PCP sessions/week. Patients of full-time PCPs reported timely appointments for urgent needs more often than patients of part-time PCPs (82% vs 71%; P Part-time PCP performance appeared worse when using measures focused on same-day access to patients' usual PCP. However, clinic-level same-day access, same-week access to the usual PCP, and overall continuity were similar for patients of part-time and full-time PCPs. Measures of in-person access to a usual PCP do not capture alternate access approaches encouraged by PCMH, and often used by part-time providers, such as team-based or non-face-to-face care.
Real-time continuous nitrate monitoring in Illinois in 2013
Warner, Kelly L.; Terrio, Paul J.; Straub, Timothy D.; Roseboom, Donald; Johnson, Gary P.
2013-01-01
Many sources contribute to the nitrogen found in surface water in Illinois. Illinois is located in the most productive agricultural area in the country, and nitrogen fertilizer is commonly used to maximize corn production in this area. Additionally, septic/wastewater systems, industrial emissions, and lawn fertilizer are common sources of nitrogen in urban areas of Illinois. In agricultural areas, the use of fertilizer has increased grain production to meet the needs of a growing population, but also has resulted in increases in nitrogen concentrations in many streams and aquifers (Dubrovsky and others, 2010). The urban sources can increase nitrogen concentrations, too. The Federal limit for nitrate nitrogen in water that is safe to drink is 10 milligrams per liter (mg/L) (http://water.epa.gov/drink/contaminants/basicinformation/nitrate.cfm, accessed on May 24, 2013). In addition to the concern with nitrate nitrogen in drinking water, nitrogen, along with phosphorus, is an aquatic concern because it feeds the intensive growth of algae that are responsible for the hypoxic zone in the Gulf of Mexico. The largest nitrogen flux to the waters feeding the Gulf of Mexico is from Illinois (Alexander and others, 2008). Most studies of nitrogen in surface water and groundwater include samples for nitrate nitrogen collected weekly or monthly, but nitrate concentrations can change rapidly and these discrete samples may not capture rapid changes in nitrate concentrations that can affect human and aquatic health. Continuous monitoring for nitrate could inform scientists and water-resource managers of these changes and provide information on the transport of nitrate in surface water and groundwater.
Modelling of Attentional Dwell Time
DEFF Research Database (Denmark)
Petersen, Anders; Kyllingsbæk, Søren; Bundesen, Claus
2009-01-01
. This confinement of attentional resources leads to the impairment in identifying the second target. With the model, we are able to produce close fits to data from the traditional two target dwell time paradigm. A dwell-time experiment with three targets has also been carried out for individual subjects...... and the model has been extended to fit these data....
Adaptive control of chaotic continuous-time systems with delay
Tian, Yu-Chu; Gao, Furong
1998-06-01
A simple delay system governed by a first-order differential-delay equation may behave chaotically, but the conditions for the system to have such behaviors have not been well recognized. In this paper, a set of rules is postulated first for the conditions for the delay system to display chaos. A model-reference adaptive control scheme is then proposed to control the chaotic system state to converge to an arbitrarily given reference trajectory with certain and uncertain system parameters. Numerical examples are given to analyze the chaotic behaviors of the delay system and to demonstrate the effectiveness of the proposed adaptive control scheme.
Continuous-time random walks on networks with vertex- and time-dependent forcing.
Angstmann, C N; Donnelly, I C; Henry, B I; Langlands, T A M
2013-08-01
We have investigated the transport of particles moving as random walks on the vertices of a network, subject to vertex- and time-dependent forcing. We have derived the generalized master equations for this transport using continuous time random walks, characterized by jump and waiting time densities, as the underlying stochastic process. The forcing is incorporated through a vertex- and time-dependent bias in the jump densities governing the random walking particles. As a particular case, we consider particle forcing proportional to the concentration of particles on adjacent vertices, analogous to self-chemotactic attraction in a spatial continuum. Our algebraic and numerical studies of this system reveal an interesting pair-aggregation pattern formation in which the steady state is composed of a high concentration of particles on a small number of isolated pairs of adjacent vertices. The steady states do not exhibit this pair aggregation if the transport is random on the vertices, i.e., without forcing. The manifestation of pair aggregation on a transport network may thus be a signature of self-chemotactic-like forcing.
Study of superionic conductors dynamics by continued diffusion model
International Nuclear Information System (INIS)
Bennai, M.
1993-12-01
The superionic conductors form a special category of solids characterized by their remarkable transport properties and are in general, Simplified as being constituted by the superposition of two inter penetrable crystal lattices. The ions of the first one form a rigid structure through which the other ions of opposite charge diffuse in quasi-liquid way. Basing on experimental and theoretical arguments, it was proved necessary to adopt a model of N-body continued diffusion which the basic theory is that of brownian movement. This thesis deals with the study of the dynamic structure factor S (q,w) and its line half width by the method of development in continued fractions issued from the Mori theory. With regard to the analytical difficulty met at the time of the static correlations functions calculation, the homogeneous approximation was applied and the notion of effective strength was introduced. So, it was obtained general relationships which give the static correlation functions, only in term of the static structure factor of liquids and effective potential. 98 refs.; 22 figs. (F.M.)
Learning of temporal motor patterns: An analysis of continuous vs. reset timing
Directory of Open Access Journals (Sweden)
Rodrigo eLaje
2011-10-01
Full Text Available Our ability to generate well-timed sequences of movements is critical to an array of behaviors, including the ability to play a musical instrument or a video game. Here we address two questions relating to timing with the goal of better understanding the neural mechanisms underlying temporal processing. First, how does accuracy and variance change over the course of learning of complex spatiotemporal patterns? Second, is the timing of sequential responses most consistent with starting and stopping an internal timer at each interval or with continuous timing?To address these questions we used a psychophysical task in which subjects learned to reproduce a sequence of finger taps in the correct order and at the correct times—much like playing a melody at the piano. This task allowed us to calculate the variance of the responses at different time points using data from the same trials. Our results show that while standard Weber’s law is clearly violated, variance does increase as a function of time squared, as expected according to the generalized form of Weber’s law—which separates the source of variance into time-dependent and time-independent components. Over the course of learning, both the time-independent variance and the coefficient of the time-dependent term decrease. Our analyses also suggest that timing of sequential events does not rely on the resetting of an internal timer at each event.We describe and interpret our results in the context of computer simulations that capture some of our psychophysical findings. Specifically, we show that continuous timing, as opposed to reset timing, is expected from population clock models in which timing emerges from the internal dynamics of recurrent neural networks.
Forecasting the Global Mean Sea Level, a Continuous-Time State-Space Approach
DEFF Research Database (Denmark)
Boldrini, Lorenzo
In this paper we propose a continuous-time, Gaussian, linear, state-space system to model the relation between global mean sea level (GMSL) and the global mean temperature (GMT), with the aim of making long-term projections for the GMSL. We provide a justification for the model specification based......) and the temperature reconstruction from Hansen et al. (2010). We compare the forecasting performance of the proposed specification to the procedures developed in Rahmstorf (2007b) and Vermeer and Rahmstorf (2009). Finally, we compute projections for the sea-level rise conditional on the 21st century SRES temperature...
CRUNCH, Dispersion Model for Continuous Dense Vapour Release in Atmosphere
International Nuclear Information System (INIS)
Jagger, S.F.
1987-01-01
1 - Description of program or function: The situation modelled is as follows. A dense gas emerges from a source such that it can be considered to emerge through a rectangular area, placed in the vertical plane and perpendicular to the plume direction, which assumes that of the ambient wind. The gas flux at the source, and in every plane perpendicular to the plume direction, is constant in time and a stationary flow field has been attained. For this to apply, the characteristic time of release must be much larger than that for dispersal of the contaminant. The plume can be thought to consist of a number of rectangular elements or 'puffs' emerging from the source at regular time intervals. The model follows the development of these puffs at a series of downwind points. These puffs are immediately assumed to advect with the ambient wind at their half-height. The plume also slumps due to the action of gravity and is allowed to entrain air through its sides and top surface. Spreading of a fluid element is caused by pressure differences across this element and since the pressure gradient in the wind direction is small, the resulting pressure differences and slumping velocities are small also, thus permitting this convenient approximation. Initially, as the plume slumps, its vertical dimension decreases and with it the slumping velocity and advection velocity. Thus the plume advection velocity varies as a function of downwind distance. With the present steady state modelling, and to satisfy continuity constraints, there must be consequent adjustment of plume height. Calculation of this parameter from the volume flux ensures this occurs. As the cloud height begins to grow, the advection velocity increases and the plume height decreases accordingly. With advection downwind, the cloud gains buoyancy by entraining air and, if the cloud is cold, by absorbing heat from the ground. Eventually the plume begins to disperse as would a passive pollutant, through the action of
Chen, Xiaofeng; Song, Qiankun; Li, Zhongshan; Zhao, Zhenjiang; Liu, Yurong
2018-07-01
This paper addresses the problem of stability for continuous-time and discrete-time quaternion-valued neural networks (QVNNs) with linear threshold neurons. Applying the semidiscretization technique to the continuous-time QVNNs, the discrete-time analogs are obtained, which preserve the dynamical characteristics of their continuous-time counterparts. Via the plural decomposition method of quaternion, homeomorphic mapping theorem, as well as Lyapunov theorem, some sufficient conditions on the existence, uniqueness, and global asymptotical stability of the equilibrium point are derived for the continuous-time QVNNs and their discrete-time analogs, respectively. Furthermore, a uniform sufficient condition on the existence, uniqueness, and global asymptotical stability of the equilibrium point is obtained for both continuous-time QVNNs and their discrete-time version. Finally, two numerical examples are provided to substantiate the effectiveness of the proposed results.
Continuous time random walk: Galilei invariance and relation for the nth moment
International Nuclear Information System (INIS)
Fa, Kwok Sau
2011-01-01
We consider a decoupled continuous time random walk model with a generic waiting time probability density function (PDF). For the force-free case we derive an integro-differential diffusion equation which is related to the Galilei invariance for the probability density. We also derive a general relation which connects the nth moment in the presence of any external force to the second moment without external force, i.e. it is valid for any waiting time PDF. This general relation includes the generalized second Einstein relation, which connects the first moment in the presence of any external force to the second moment without any external force. These expressions for the first two moments are verified by using several kinds of the waiting time PDF. Moreover, we present new anomalous diffusion behaviours for a waiting time PDF given by a product of power-law and exponential function.
Fermion bag approach to Hamiltonian lattice field theories in continuous time
Huffman, Emilie; Chandrasekharan, Shailesh
2017-12-01
We extend the idea of fermion bags to Hamiltonian lattice field theories in the continuous time formulation. Using a class of models we argue that the temperature is a parameter that splits the fermion dynamics into small spatial regions that can be used to identify fermion bags. Using this idea we construct a continuous time quantum Monte Carlo algorithm and compute critical exponents in the 3 d Ising Gross-Neveu universality class using a single flavor of massless Hamiltonian staggered fermions. We find η =0.54 (6 ) and ν =0.88 (2 ) using lattices up to N =2304 sites. We argue that even sizes up to N =10 ,000 sites should be accessible with supercomputers available today.
Impulsive Control for Continuous-Time Markov Decision Processes: A Linear Programming Approach
Energy Technology Data Exchange (ETDEWEB)
Dufour, F., E-mail: dufour@math.u-bordeaux1.fr [Bordeaux INP, IMB, UMR CNRS 5251 (France); Piunovskiy, A. B., E-mail: piunov@liv.ac.uk [University of Liverpool, Department of Mathematical Sciences (United Kingdom)
2016-08-15
In this paper, we investigate an optimization problem for continuous-time Markov decision processes with both impulsive and continuous controls. We consider the so-called constrained problem where the objective of the controller is to minimize a total expected discounted optimality criterion associated with a cost rate function while keeping other performance criteria of the same form, but associated with different cost rate functions, below some given bounds. Our model allows multiple impulses at the same time moment. The main objective of this work is to study the associated linear program defined on a space of measures including the occupation measures of the controlled process and to provide sufficient conditions to ensure the existence of an optimal control.
Backward jump continuous-time random walk: An application to market trading
Gubiec, Tomasz; Kutner, Ryszard
2010-10-01
The backward jump modification of the continuous-time random walk model or the version of the model driven by the negative feedback was herein derived for spatiotemporal continuum in the context of a share price evolution on a stock exchange. In the frame of the model, we described stochastic evolution of a typical share price on a stock exchange with a moderate liquidity within a high-frequency time scale. The model was validated by satisfactory agreement of the theoretical velocity autocorrelation function with its empirical counterpart obtained for the continuous quotation. This agreement is mainly a result of a sharp backward correlation found and considered in this article. This correlation is a reminiscence of such a bid-ask bounce phenomenon where backward price jump has the same or almost the same length as preceding jump. We suggested that this correlation dominated the dynamics of the stock market with moderate liquidity. Although assumptions of the model were inspired by the market high-frequency empirical data, its potential applications extend beyond the financial market, for instance, to the field covered by the Le Chatelier-Braun principle of contrariness.
Quasi-continuous stochastic simulation framework for flood modelling
Moustakis, Yiannis; Kossieris, Panagiotis; Tsoukalas, Ioannis; Efstratiadis, Andreas
2017-04-01
Typically, flood modelling in the context of everyday engineering practices is addressed through event-based deterministic tools, e.g., the well-known SCS-CN method. A major shortcoming of such approaches is the ignorance of uncertainty, which is associated with the variability of soil moisture conditions and the variability of rainfall during the storm event.In event-based modeling, the sole expression of uncertainty is the return period of the design storm, which is assumed to represent the acceptable risk of all output quantities (flood volume, peak discharge, etc.). On the other hand, the varying antecedent soil moisture conditions across the basin are represented by means of scenarios (e.g., the three AMC types by SCS),while the temporal distribution of rainfall is represented through standard deterministic patterns (e.g., the alternative blocks method). In order to address these major inconsistencies,simultaneously preserving the simplicity and parsimony of the SCS-CN method, we have developed a quasi-continuous stochastic simulation approach, comprising the following steps: (1) generation of synthetic daily rainfall time series; (2) update of potential maximum soil moisture retention, on the basis of accumulated five-day rainfall; (3) estimation of daily runoff through the SCS-CN formula, using as inputs the daily rainfall and the updated value of soil moisture retention;(4) selection of extreme events and application of the standard SCS-CN procedure for each specific event, on the basis of synthetic rainfall.This scheme requires the use of two stochastic modelling components, namely the CastaliaR model, for the generation of synthetic daily data, and the HyetosMinute model, for the disaggregation of daily rainfall to finer temporal scales. Outcomes of this approach are a large number of synthetic flood events, allowing for expressing the design variables in statistical terms and thus properly evaluating the flood risk.
DEFF Research Database (Denmark)
Tataru, Paula Cristina; Hobolth, Asger
2011-01-01
past evolutionary events (exact times and types of changes) are unaccessible and the past must be inferred from DNA sequence data observed in the present. RESULTS: We describe and implement three algorithms for computing linear combinations of expected values of the sufficient statistics, conditioned......BACKGROUND: Continuous time Markov chains (CTMCs) is a widely used model for describing the evolution of DNA sequences on the nucleotide, amino acid or codon level. The sufficient statistics for CTMCs are the time spent in a state and the number of changes between any two states. In applications...... of the algorithms is available at www.birc.au.dk/~paula/. CONCLUSIONS: We use two different models to analyze the accuracy and eight experiments to investigate the speed of the three algorithms. We find that they have similar accuracy and that EXPM is the slowest method. Furthermore we find that UNI is usually...
Models for dependent time series
Tunnicliffe Wilson, Granville; Haywood, John
2015-01-01
Models for Dependent Time Series addresses the issues that arise and the methodology that can be applied when the dependence between time series is described and modeled. Whether you work in the economic, physical, or life sciences, the book shows you how to draw meaningful, applicable, and statistically valid conclusions from multivariate (or vector) time series data.The first four chapters discuss the two main pillars of the subject that have been developed over the last 60 years: vector autoregressive modeling and multivariate spectral analysis. These chapters provide the foundational mater
Spatial age-length key modelling using continuation ratio logits
DEFF Research Database (Denmark)
Berg, Casper W.; Kristensen, Kasper
2012-01-01
-called age-length key (ALK) is then used to obtain the age distribution. Regional differences in ALKs are not uncommon, but stratification is often problematic due to a small number of samples. Here, we combine generalized additive modelling with continuation ratio logits to model the probability of age...
28 CFR 301.204 - Continuation of lost-time wages.
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Continuation of lost-time wages. 301.204... ACCIDENT COMPENSATION Lost-Time Wages § 301.204 Continuation of lost-time wages. (a) Once approved, the inmate shall receive lost-time wages until the inmate: (1) Is released; (2) Is transferred to another...
Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator
Directory of Open Access Journals (Sweden)
Jan Hahne
2017-05-01
Full Text Available Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.
Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator.
Hahne, Jan; Dahmen, David; Schuecker, Jannis; Frommer, Andreas; Bolten, Matthias; Helias, Moritz; Diesmann, Markus
2017-01-01
Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.
A test on analytic continuation of thermal imaginary-time data
International Nuclear Information System (INIS)
Burnier, Y.; Laine, M.; Mether, L.
2011-01-01
Some time ago, Cuniberti et al. have proposed a novel method for analytically continuing thermal imaginary-time correlators to real time, which requires no model input and should be applicable with finite-precision data as well. Given that these assertions go against common wisdom, we report on a naive test of the method with an idealized example. We do encounter two problems, which we spell out in detail; this implies that systematic errors are difficult to quantify. On a more positive note, the method is simple to implement and allows for an empirical recipe by which a reasonable qualitative estimate for some transport coefficient may be obtained, if statistical errors of an ultraviolet-subtracted imaginary-time measurement can be reduced to roughly below the per mille level. (orig.)
International Nuclear Information System (INIS)
Doebrich, Marcus; Markstaller, Klaus; Karmrodt, Jens; Kauczor, Hans-Ulrich; Eberle, Balthasar; Weiler, Norbert; Thelen, Manfred; Schreiber, Wolfgang G
2005-01-01
In this study, an algorithm was developed to measure the distribution of pulmonary time constants (TCs) from dynamic computed tomography (CT) data sets during a sudden airway pressure step up. Simulations with synthetic data were performed to test the methodology as well as the influence of experimental noise. Furthermore the algorithm was applied to in vivo data. In five pigs sudden changes in airway pressure were imposed during dynamic CT acquisition in healthy lungs and in a saline lavage ARDS model. The fractional gas content in the imaged slice (FGC) was calculated by density measurements for each CT image. Temporal variations of the FGC were analysed assuming a model with a continuous distribution of exponentially decaying time constants. The simulations proved the feasibility of the method. The influence of experimental noise could be well evaluated. Analysis of the in vivo data showed that in healthy lungs ventilation processes can be more likely characterized by discrete TCs whereas in ARDS lungs continuous distributions of TCs are observed. The temporal behaviour of lung inflation and deflation can be characterized objectively using the described new methodology. This study indicates that continuous distributions of TCs reflect lung ventilation mechanics more accurately compared to discrete TCs
CONTINUITY OF THE MEANINGS AND FORMS OF PATRIOTISM IN THE CONTEXT OF SOCIAL TIME STUDY
Directory of Open Access Journals (Sweden)
Olga Valerjevna Kashirina
2017-06-01
Full Text Available Purpose. The work objective is to identify the focus of the meanings’ continuity and forms of patriotism in patriotic choice as the frame meaning of main life strategy that each civilized subject has- an individual, a social community of any size. The choice truthfulness is defined by presence of the meaning time continuity and approach of its structure to «the right rate». Methodology. The problem analysis is carried out on the basis of transdisciplinary dialectical and trialectical method of distinction and meaning-making with respect to intellectual technology of civilized and noospheric patriotism continuity. Results. The article regards to the continuity of meanings and forms of patriotism in the context of social time study and searches for the solution to the problem of patriotism in three lines: 1 as the problem of civilized patriotism of Great and Small Motherland, 2 as the problem of noospheric patriotism, 3 as the problem of the continuity of the meanings between them. It highlights the solution flexibility of patriotism problem that is related to the fact that social time study considers patriotism as the culture phenomenon that has the dialectical «nature of existence», and at the same time, it has three way model of civilized reality «existence» meanings – entirety of present, continuity of past and reasonability of future. The article says that the dynamic balance of meanings of civilized and noospheric patriotism in the identity culture of a civilized subject making the culture of his/her behavior and activity provides formation and stability of moral and spiritual immunity that appears by virtue of them in the semantic field of patriotism. Practical implications. The practical implication of the research is in its usability to work out courses on philosophy, culture philosophy, etc. Social time study theory can be realized in teaching practice of the new course unit «The basics of social time study» as a humanity
Impedance models in time domain
Rienstra, S.W.
2005-01-01
Necessary conditions for an impedance function are derived. Methods available in the literature are discussed. A format with recipe is proposed for an exact impedance condition in time domain on a time grid, based on the Helmholtz resonator model. An explicit solution is given of a pulse reflecting
Physical modeling of shoreline bioremediation: Continuous flow mesoscale basins
International Nuclear Information System (INIS)
Sveum, P.; Ramstad, S.; Faksness, L.G.; Bech, C.; Johansen, B.
1995-01-01
This paper describes the design and use of continuous flow basin beach models in the study of bioremediation processes, and gives some results from an experiment designed to study the effects of different strategies for adding fertilizers. The continuous flow experimental basin system simulates an open system with natural tidal variation, wave action, and continuous supply and exchange of seawater. Biodegradation and bioremediation processes can thus be tested close to natural conditions. Results obtained using the models show a significant enhancement of biodegradation of oil in a sediment treated with an organic nutrient source, increased nutrient level in the interstitial water, and sediment microbial activity. These physical models gives biologically significant results, and can be used to simulate biodegradation and bioremediation in natural systems
Stochastic models for time series
Doukhan, Paul
2018-01-01
This book presents essential tools for modelling non-linear time series. The first part of the book describes the main standard tools of probability and statistics that directly apply to the time series context to obtain a wide range of modelling possibilities. Functional estimation and bootstrap are discussed, and stationarity is reviewed. The second part describes a number of tools from Gaussian chaos and proposes a tour of linear time series models. It goes on to address nonlinearity from polynomial or chaotic models for which explicit expansions are available, then turns to Markov and non-Markov linear models and discusses Bernoulli shifts time series models. Finally, the volume focuses on the limit theory, starting with the ergodic theorem, which is seen as the first step for statistics of time series. It defines the distributional range to obtain generic tools for limit theory under long or short-range dependences (LRD/SRD) and explains examples of LRD behaviours. More general techniques (central limit ...
Continuous and Discontinuous Modelling of Fracture in Concrete Using FEM
Tejchman, Jacek
2013-01-01
The book analyzes a quasi-static fracture process in concrete and reinforced concrete by means of constitutive models formulated within continuum mechanics. A continuous and discontinuous modelling approach was used. Using a continuous approach, numerical analyses were performed using a finite element method and three different enhanced continuum models: isotropic elasto-plastic, isotropic damage and anisotropic smeared crack one. The models were equipped with a characteristic length of micro-structure by means of a non-local and a second-gradient theory. So they could properly describe the formation of localized zones with a certain thickness and spacing and a related deterministic size effect. Using a discontinuous FE approach, numerical results of cracks using a cohesive crack model and XFEM were presented which were also properly regularized. Finite element analyses were performed with concrete elements under monotonic uniaxial compression, uniaxial tension, bending and shear-extension. Concrete beams un...
Model Selection in Continuous Test Norming With GAMLSS.
Voncken, Lieke; Albers, Casper J; Timmerman, Marieke E
2017-06-01
To compute norms from reference group test scores, continuous norming is preferred over traditional norming. A suitable continuous norming approach for continuous data is the use of the Box-Cox Power Exponential model, which is found in the generalized additive models for location, scale, and shape. Applying the Box-Cox Power Exponential model for test norming requires model selection, but it is unknown how well this can be done with an automatic selection procedure. In a simulation study, we compared the performance of two stepwise model selection procedures combined with four model-fit criteria (Akaike information criterion, Bayesian information criterion, generalized Akaike information criterion (3), cross-validation), varying data complexity, sampling design, and sample size in a fully crossed design. The new procedure combined with one of the generalized Akaike information criterion was the most efficient model selection procedure (i.e., required the smallest sample size). The advocated model selection procedure is illustrated with norming data of an intelligence test.
Fitting timeseries by continuous-time Markov chains: A quadratic programming approach
International Nuclear Information System (INIS)
Crommelin, D.T.; Vanden-Eijnden, E.
2006-01-01
Construction of stochastic models that describe the effective dynamics of observables of interest is an useful instrument in various fields of application, such as physics, climate science, and finance. We present a new technique for the construction of such models. From the timeseries of an observable, we construct a discrete-in-time Markov chain and calculate the eigenspectrum of its transition probability (or stochastic) matrix. As a next step we aim to find the generator of a continuous-time Markov chain whose eigenspectrum resembles the observed eigenspectrum as closely as possible, using an appropriate norm. The generator is found by solving a minimization problem: the norm is chosen such that the object function is quadratic and convex, so that the minimization problem can be solved using quadratic programming techniques. The technique is illustrated on various toy problems as well as on datasets stemming from simulations of molecular dynamics and of atmospheric flows
Directory of Open Access Journals (Sweden)
Pieprzyca J.
2015-04-01
Full Text Available A common method used in identification of hydrodynamics phenomena occurring in Continuous Casting (CC device's tundish is to determine the RTD curves of time. These curves allows to determine the way of the liquid steel flowing and mixing in the tundish. These can be identified either as the result of numerical simulation or by the experiments - as the result of researching the physical models. Special problem is to objectify it while conducting physical research. It is necessary to precisely determine the time constants which characterize researched phenomena basing on the data acquired in the measured change of the concentration of the tracer in model liquid's volume. The mathematical description of determined curves is based on the approximate differential equations formulated in the theory of fluid mechanics. Solving these equations to calculate the time constants requires a special software and it is very time-consuming. To improve the process a method was created to calculate the time constants with use of automation elements. It allows to solve problems using algebraic method, which improves interpretation of the research results of physical modeling.
Probabilistic Survivability Versus Time Modeling
Joyner, James J., Sr.
2016-01-01
This presentation documents Kennedy Space Center's Independent Assessment work completed on three assessments for the Ground Systems Development and Operations (GSDO) Program to assist the Chief Safety and Mission Assurance Officer during key programmatic reviews and provided the GSDO Program with analyses of how egress time affects the likelihood of astronaut and ground worker survival during an emergency. For each assessment, a team developed probability distributions for hazard scenarios to address statistical uncertainty, resulting in survivability plots over time. The first assessment developed a mathematical model of probabilistic survivability versus time to reach a safe location using an ideal Emergency Egress System at Launch Complex 39B (LC-39B); the second used the first model to evaluate and compare various egress systems under consideration at LC-39B. The third used a modified LC-39B model to determine if a specific hazard decreased survivability more rapidly than other events during flight hardware processing in Kennedy's Vehicle Assembly Building.
Continuous host-macroparasite models with application to aquaculture
Directory of Open Access Journals (Sweden)
Catherine Bouloux Marquet
2004-11-01
Full Text Available We study a continuous deterministic host-macroparasite system which involves populations of hosts, parasites, and larvae. This system leads to a countable number of partial differential equations that under certain hypotheses, is reduced to finitely many equations. Also we assume hypotheses to close the system and to define the global dynamics for the hosts. Then, we analyze the spatially homogeneous model without demography (aquaculture hypothesis, and show some preliminary results for the spatially structured model.
Data Workflow - A Workflow Model for Continuous Data Processing
Wombacher, Andreas
2010-01-01
Online data or streaming data are getting more and more important for enterprise information systems, e.g. by integrating sensor data and workflows. The continuous flow of data provided e.g. by sensors requires new workflow models addressing the data perspective of these applications, since
Continual Lie algebras and noncommutative counterparts of exactly solvable models
Zuevsky, A.
2004-01-01
Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.
Promoting Continuous Quality Improvement in Online Teaching: The META Model
Dittmar, Eileen; McCracken, Holly
2012-01-01
Experienced e-learning faculty members share strategies for implementing a comprehensive postsecondary faculty development program essential to continuous improvement of instructional skills. The high-impact META Model (centered around Mentoring, Engagement, Technology, and Assessment) promotes information sharing and content creation, and fosters…
Teachers' Continuing Professional Development: Framing a Model of Outcomes
Harland, John; Kinder, Kay
2014-01-01
In order to contribute towards the construction of an empirically-grounded theory of effective continuing professional development (CPD), this paper seeks to develop a model of the effects of teachers' CPD or in-service education and training (INSET). It builds on an earlier typology of INSET outcomes and compares it to two previous classification…
The Continuous Improvement Model: A K-12 Literacy Focus
Brown, Jennifer V.
2013-01-01
The purpose of the study was to determine if the eight steps of the Continuous Improvement Model (CIM) provided a framework to raise achievement and to focus educators in identifying high-yield literacy strategies. This study sought to determine if an examination of the assessment data in reading revealed differences among schools that fully,…
Continued development of modeling tools and theory for RF heating
International Nuclear Information System (INIS)
1998-01-01
Mission Research Corporation (MRC) is pleased to present the Department of Energy (DOE) with its renewal proposal to the Continued Development of Modeling Tools and Theory for RF Heating program. The objective of the program is to continue and extend the earlier work done by the proposed principal investigator in the field of modeling (Radio Frequency) RF heating experiments in the large tokamak fusion experiments, particularly the Tokamak Fusion Test Reactor (TFTR) device located at Princeton Plasma Physics Laboratory (PPPL). An integral part of this work is the investigation and, in some cases, resolution of theoretical issues which pertain to accurate modeling. MRC is nearing the successful completion of the specified tasks of the Continued Development of Modeling Tools and Theory for RF Heating project. The following tasks are either completed or nearing completion. (1) Anisotropic temperature and rotation upgrades; (2) Modeling for relativistic ECRH; (3) Further documentation of SHOOT and SPRUCE. As a result of the progress achieved under this project, MRC has been urged to continue this effort. Specifically, during the performance of this project two topics were identified by PPPL personnel as new applications of the existing RF modeling tools. These two topics concern (a) future fast-wave current drive experiments on the large tokamaks including TFTR and (c) the interpretation of existing and future RF probe data from TFTR. To address each of these topics requires some modification or enhancement of the existing modeling tools, and the first topic requires resolution of certain theoretical issues to produce self-consistent results. This work falls within the scope of the original project and is more suited to the project's renewal than to the initiation of a new project
Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.
Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi
2015-02-01
We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.
Electricity price modeling with stochastic time change
International Nuclear Information System (INIS)
Borovkova, Svetlana; Schmeck, Maren Diane
2017-01-01
In this paper, we develop a novel approach to electricity price modeling, based on the powerful technique of stochastic time change. This technique allows us to incorporate the characteristic features of electricity prices (such as seasonal volatility, time varying mean reversion and seasonally occurring price spikes) into the model in an elegant and economically justifiable way. The stochastic time change introduces stochastic as well as deterministic (e.g., seasonal) features in the price process' volatility and in the jump component. We specify the base process as a mean reverting jump diffusion and the time change as an absolutely continuous stochastic process with seasonal component. The activity rate of the stochastic time change can be related to the factors that influence supply and demand. Here we use the temperature as a proxy for the demand and hence, as the driving factor of the stochastic time change, and show that this choice leads to realistic price paths. We derive properties of the resulting price process and develop the model calibration procedure. We calibrate the model to the historical EEX power prices and apply it to generating realistic price paths by Monte Carlo simulations. We show that the simulated price process matches the distributional characteristics of the observed electricity prices in periods of both high and low demand. - Highlights: • We develop a novel approach to electricity price modeling, based on the powerful technique of stochastic time change. • We incorporate the characteristic features of electricity prices, such as seasonal volatility and spikes into the model. • We use the temperature as a proxy for the demand and hence, as the driving factor of the stochastic time change • We derive properties of the resulting price process and develop the model calibration procedure. • We calibrate the model to the historical EEX power prices and apply it to generating realistic price paths.
Mapping from Speech to Images Using Continuous State Space Models
DEFF Research Database (Denmark)
Lehn-Schiøler, Tue; Hansen, Lars Kai; Larsen, Jan
2005-01-01
In this paper a system that transforms speech waveforms to animated faces are proposed. The system relies on continuous state space models to perform the mapping, this makes it possible to ensure video with no sudden jumps and allows continuous control of the parameters in 'face space...... a subjective point of view the model is able to construct an image sequence from an unknown noisy speech sequence even though the number of training examples are limited.......'. The performance of the system is critically dependent on the number of hidden variables, with too few variables the model cannot represent data, and with too many overfitting is noticed. Simulations are performed on recordings of 3-5 sec.\\$\\backslash\\$ video sequences with sentences from the Timit database. From...
OPTIMAL STRATEGIES FOR CONTINUOUS GRAVITATIONAL WAVE DETECTION IN PULSAR TIMING ARRAYS
International Nuclear Information System (INIS)
Ellis, J. A.; Siemens, X.; Creighton, J. D. E.
2012-01-01
Supermassive black hole binaries (SMBHBs) are expected to emit a continuous gravitational wave signal in the pulsar timing array (PTA) frequency band (10 –9 to 10 –7 Hz). The development of data analysis techniques aimed at efficient detection and characterization of these signals is critical to the gravitational wave detection effort. In this paper, we leverage methods developed for LIGO continuous wave gravitational searches and explore the use of the F-statistic for such searches in pulsar timing data. Babak and Sesana have used this approach in the context of PTAs to show that one can resolve multiple SMBHB sources in the sky. Our work improves on several aspects of prior continuous wave search methods developed for PTA data analysis. The algorithm is implemented fully in the time domain, which naturally deals with the irregular sampling typical of PTA data and avoids spectral leakage problems associated with frequency domain methods. We take into account the fitting of the timing model and have generalized our approach to deal with both correlated and uncorrelated colored noise sources. We also develop an incoherent detection statistic that maximizes over all pulsar-dependent contributions to the likelihood. To test the effectiveness and sensitivity of our detection statistics, we perform a number of Monte Carlo simulations. We produce sensitivity curves for PTAs of various configurations and outline an implementation of a fully functional data analysis pipeline. Finally, we present a derivation of the likelihood maximized over the gravitational wave phases at the pulsar locations, which results in a vast reduction of the search parameter space.
Dynamical Downscaling of NASA/GISS ModelE: Continuous, Multi-Year WRF Simulations
Otte, T.; Bowden, J. H.; Nolte, C. G.; Otte, M. J.; Herwehe, J. A.; Faluvegi, G.; Shindell, D. T.
2010-12-01
The WRF Model is being used at the U.S. EPA for dynamical downscaling of the NASA/GISS ModelE fields to assess regional impacts of climate change in the United States. The WRF model has been successfully linked to the ModelE fields in their raw hybrid vertical coordinate, and continuous, multi-year WRF downscaling simulations have been performed. WRF will be used to downscale decadal time slices of ModelE for recent past, current, and future climate as the simulations being conducted for the IPCC Fifth Assessment Report become available. This presentation will focus on the sensitivity to interior nudging within the RCM. The use of interior nudging for downscaled regional climate simulations has been somewhat controversial over the past several years but has been recently attracting attention. Several recent studies that have used reanalysis (i.e., verifiable) fields as a proxy for GCM input have shown that interior nudging can be beneficial toward achieving the desired downscaled fields. In this study, the value of nudging will be shown using fields from ModelE that are downscaled using WRF. Several different methods of nudging are explored, and it will be shown that the method of nudging and the choices made with respect to how nudging is used in WRF are critical to balance the constraint of ModelE against the freedom of WRF to develop its own fields.
Occam factors and model independent Bayesian learning of continuous distributions
International Nuclear Information System (INIS)
Nemenman, Ilya; Bialek, William
2002-01-01
Learning of a smooth but nonparametric probability density can be regularized using methods of quantum field theory. We implement a field theoretic prior numerically, test its efficacy, and show that the data and the phase space factors arising from the integration over the model space determine the free parameter of the theory ('smoothness scale') self-consistently. This persists even for distributions that are atypical in the prior and is a step towards a model independent theory for learning continuous distributions. Finally, we point out that a wrong parametrization of a model family may sometimes be advantageous for small data sets
Building Chaotic Model From Incomplete Time Series
Siek, Michael; Solomatine, Dimitri
2010-05-01
This paper presents a number of novel techniques for building a predictive chaotic model from incomplete time series. A predictive chaotic model is built by reconstructing the time-delayed phase space from observed time series and the prediction is made by a global model or adaptive local models based on the dynamical neighbors found in the reconstructed phase space. In general, the building of any data-driven models depends on the completeness and quality of the data itself. However, the completeness of the data availability can not always be guaranteed since the measurement or data transmission is intermittently not working properly due to some reasons. We propose two main solutions dealing with incomplete time series: using imputing and non-imputing methods. For imputing methods, we utilized the interpolation methods (weighted sum of linear interpolations, Bayesian principle component analysis and cubic spline interpolation) and predictive models (neural network, kernel machine, chaotic model) for estimating the missing values. After imputing the missing values, the phase space reconstruction and chaotic model prediction are executed as a standard procedure. For non-imputing methods, we reconstructed the time-delayed phase space from observed time series with missing values. This reconstruction results in non-continuous trajectories. However, the local model prediction can still be made from the other dynamical neighbors reconstructed from non-missing values. We implemented and tested these methods to construct a chaotic model for predicting storm surges at Hoek van Holland as the entrance of Rotterdam Port. The hourly surge time series is available for duration of 1990-1996. For measuring the performance of the proposed methods, a synthetic time series with missing values generated by a particular random variable to the original (complete) time series is utilized. There exist two main performance measures used in this work: (1) error measures between the actual
Interaction model of steel ladle of continuous caster in steel works
Directory of Open Access Journals (Sweden)
Huang Bang Fu
2016-01-01
Full Text Available For further research on the precondition and interoperability model of interaction ladles among continuous caster, this article takes steel ladle of Y steel works as the object of research. On the basis of turnover number calculation model of single cast steel ladle, the relationship between cast number and the turnover number and turnover times and last turnover number are further analyzed. The simulation of steel ladle turnover rules was taken on the 2 continuous casters with Gantt chart. After that, the relationships between turnover number and last turnover number and non-turnover number are researched deeply. Combining with the Gantt chart, the expressions of start casting time and empty ladle ending time and heavy ladle starting time were put forward. The precondition of steel ladle interaction is obtained, which means the exchange ladle should not undertaking transport task in first stop continuous caster, and the empty ladle end time of exchange ladle of first stop continuous caster should early than the heavy ladle start time of last stop continuous caster. After applying the model to practice, 3 steel ladles of No.2 continuous caster can be reduced. This research results is supplying theoretical basis for steel ladle controlling and production organization optimization, and enriches the theory and method of metallurgical process integration.
Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework
International Nuclear Information System (INIS)
Zhou, X.Y.; Li, D.
2000-01-01
This paper is concerned with a continuous-time mean-variance portfolio selection model that is formulated as a bicriteria optimization problem. The objective is to maximize the expected terminal return and minimize the variance of the terminal wealth. By putting weights on the two criteria one obtains a single objective stochastic control problem which is however not in the standard form due to the variance term involved. It is shown that this nonstandard problem can be 'embedded' into a class of auxiliary stochastic linear-quadratic (LQ) problems. The stochastic LQ control model proves to be an appropriate and effective framework to study the mean-variance problem in light of the recent development on general stochastic LQ problems with indefinite control weighting matrices. This gives rise to the efficient frontier in a closed form for the original portfolio selection problem
Tataru, Paula; Hobolth, Asger
2011-12-05
Continuous time Markov chains (CTMCs) is a widely used model for describing the evolution of DNA sequences on the nucleotide, amino acid or codon level. The sufficient statistics for CTMCs are the time spent in a state and the number of changes between any two states. In applications past evolutionary events (exact times and types of changes) are unaccessible and the past must be inferred from DNA sequence data observed in the present. We describe and implement three algorithms for computing linear combinations of expected values of the sufficient statistics, conditioned on the end-points of the chain, and compare their performance with respect to accuracy and running time. The first algorithm is based on an eigenvalue decomposition of the rate matrix (EVD), the second on uniformization (UNI), and the third on integrals of matrix exponentials (EXPM). The implementation in R of the algorithms is available at http://www.birc.au.dk/~paula/. We use two different models to analyze the accuracy and eight experiments to investigate the speed of the three algorithms. We find that they have similar accuracy and that EXPM is the slowest method. Furthermore we find that UNI is usually faster than EVD.
Directory of Open Access Journals (Sweden)
Tataru Paula
2011-12-01
Full Text Available Abstract Background Continuous time Markov chains (CTMCs is a widely used model for describing the evolution of DNA sequences on the nucleotide, amino acid or codon level. The sufficient statistics for CTMCs are the time spent in a state and the number of changes between any two states. In applications past evolutionary events (exact times and types of changes are unaccessible and the past must be inferred from DNA sequence data observed in the present. Results We describe and implement three algorithms for computing linear combinations of expected values of the sufficient statistics, conditioned on the end-points of the chain, and compare their performance with respect to accuracy and running time. The first algorithm is based on an eigenvalue decomposition of the rate matrix (EVD, the second on uniformization (UNI, and the third on integrals of matrix exponentials (EXPM. The implementation in R of the algorithms is available at http://www.birc.au.dk/~paula/. Conclusions We use two different models to analyze the accuracy and eight experiments to investigate the speed of the three algorithms. We find that they have similar accuracy and that EXPM is the slowest method. Furthermore we find that UNI is usually faster than EVD.
Experimentally supported mathematical modeling of continuous baking processes
DEFF Research Database (Denmark)
Stenby Andresen, Mette
and temperature) and control the process (air flow, temperature, and humidity) are therefore emphasized. The oven is furthermore designed to work outside the range of standard tunnel ovens, making it interesting for manufacturers of both baking products and baking equipment. A mathematical model describing......The scope of the PhD project was to increase knowledge on the process-to-product interactions in continuous tunnel ovens. The work has focused on five main objectives. These objectives cover development of new experimental equipment for pilot plant baking experiments, mathematical modeling of heat...... and mass transfer in a butter cookie product, and evaluation of quality assessment methods. The pilot plant oven is a special batch oven designed to emulate continuous convection tunnel oven baking. The design, construction, and validation of the oven has been part of the project and is described...
J.W. Mouton (Johan); A.A. Vinks; N.C. Punt
1997-01-01
textabstractWe developed and applied pharmacokinetic-pharmacodynamic (PK-PD) models to characterize in vitro bacterial rate of killing as a function of ceftazidime concentrations over time. For PK-PD modeling, data obtained during continuous and intermittent infusion of
Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time SLAM
Park, Chanoh; Moghadam, Peyman; Kim, Soohwan; Elfes, Alberto; Fookes, Clinton; Sridharan, Sridha
2017-01-01
The concept of continuous-time trajectory representation has brought increased accuracy and efficiency to multi-modal sensor fusion in modern SLAM. However, regardless of these advantages, its offline property caused by the requirement of global batch optimization is critically hindering its relevance for real-time and life-long applications. In this paper, we present a dense map-centric SLAM method based on a continuous-time trajectory to cope with this problem. The proposed system locally f...
Dalmau Codina, Ramon; Prats Menéndez, Xavier
2017-01-01
Continuous descent operations with controlled times of arrival at one or several metering fixes could enable environmentally friendly procedures without compromising terminal airspace capacity. This paper focuses on controlled time of arrival updates once the descent has been already initiated, assessing the feasible time window (and associated fuel consumption) of continuous descent operations requiring neither thrust nor speed-brake usage along the whole descent (i.e. only elevator control ...
Clarke, Hannah; Done, Fay; Casadio, Stefano; Mackin, Stephen; Dinelli, Bianca Maria; Castelli, Elisa
2016-08-01
The long time-series of observations made by the Along Track Scanning Radiometers (ATSR) missions represents a valuable resource for a wide range of research and EO applications.With the advent of ESA's Long-TermData Preservation (LTDP) programme, thought has turned to the preservation and improved understanding of such long time-series, to support their continued exploitation in both existing and new areas of research, bringing the possibility of improving the existing data set and to inform and contribute towards future missions. For this reason, the 'Long Term Stability of the ATSR Instrument Series: SWIR Calibration, Cloud Masking and SAA' project, commonly known as the ATSR Long Term Stability (or ALTS) project, is designed to explore the key characteristics of the data set and new and innovative ways of enhancing and exploiting it.Work has focussed on: A new approach to the assessment of Short Wave Infra-Red (SWIR) channel calibration.; Developmentof a new method for Total Column Water Vapour (TCWV) retrieval.; Study of the South Atlantic Anomaly (SAA).; Radiative Transfer (RT) modelling for ATSR.; Providing AATSR observations with their location in the original instrument grid.; Strategies for the retrieval and archiving of historical ATSR documentation.; Study of TCWV retrieval over land; Development of new methods for cloud masking This paper provides an overview of these activities and illustrates the importance of preserving and understanding 'old' data for continued use in the future.
Impulsive control of a continuous-culture and flocculation harvest chemostat model
Zhang, Tongqian; Ma, Wanbiao; Meng, Xinzhu
2017-12-01
In this paper, a new mathematical model describing the process of continuous culture and harvest of microalgaes is proposed. By inputting medium and flocculant at two different fixed moments periodically, continuous culture and harvest of microalgaes is implemented. The mathematical analysis is conducted and the whole dynamics of model is investigated by using theory of impulsive differential equations. We find that the model has a microalgaes-extinction periodic solution and it is globally asymptotically stable when some certain threshold value is less than the unit. And the model is permanent when some certain threshold value is larger than the unit. Then, according to the threshold, the control strategies of continuous culture and harvest of microalgaes are discussed. The results show that continuous culture and harvest of microalgaes can be archived by adjusting suitable input time, input amount of medium or flocculant. Finally, some numerical simulations are carried out to verify the control strategy.
Alken, P.; Chulliat, A.; Maus, S.
2012-12-01
The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays an important role in equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system, equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much interest in accurately measuring and modeling the EEF. However, there are limited sources of direct EEF measurements with full temporal and spatial coverage of the equatorial ionosphere. In this work, we propose a method of estimating a continuous day-time time series of the EEF at any longitude, provided there is a pair of ground magnetic observatories in the region which can accurately track changes in the strength of the EEJ. First, we derive a climatological unit latitudinal current profile from direct overflights of the CHAMP satellite and use delta H measurements from the ground observatory pair to determine the magnitude of the current. The time series of current profiles is then inverted for the EEF by solving the governing electrodynamic equations. While this method has previously been applied and validated in the Peruvian sector, in this work we demonstrate the method using a pair of magnetometers in Africa (Samogossoni, SAM, 0.18 degrees magnetic latitude and Tamanrasset, TAM, 11.5 degrees magnetic latitude) and validate the resulting EEF values against the CINDI ion velocity meter (IVM) instrument on the C/NOFS satellite. We find a very good 80% correlation with C/NOFS IVM measurements and a root-mean-square difference of 9 m/s in vertical drift velocity. This technique can be extended to any pair of ground observatories which can capture the day-time strength of the EEJ. We plan to apply this work to more observatory pairs around the globe and distribute real-time equatorial electric field values to the community.
Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time
Kelly, D. T B
2014-09-22
The ensemble Kalman filter (EnKF) is a method for combining a dynamical model with data in a sequential fashion. Despite its widespread use, there has been little analysis of its theoretical properties. Many of the algorithmic innovations associated with the filter, which are required to make a useable algorithm in practice, are derived in an ad hoc fashion. The aim of this paper is to initiate the development of a systematic analysis of the EnKF, in particular to do so for small ensemble size. The perspective is to view the method as a state estimator, and not as an algorithm which approximates the true filtering distribution. The perturbed observation version of the algorithm is studied, without and with variance inflation. Without variance inflation well-posedness of the filter is established; with variance inflation accuracy of the filter, with respect to the true signal underlying the data, is established. The algorithm is considered in discrete time, and also for a continuous time limit arising when observations are frequent and subject to large noise. The underlying dynamical model, and assumptions about it, is sufficiently general to include the Lorenz \\'63 and \\'96 models, together with the incompressible Navier-Stokes equation on a two-dimensional torus. The analysis is limited to the case of complete observation of the signal with additive white noise. Numerical results are presented for the Navier-Stokes equation on a two-dimensional torus for both complete and partial observations of the signal with additive white noise.
Data-driven strategies for robust forecast of continuous glucose monitoring time-series.
Fiorini, Samuele; Martini, Chiara; Malpassi, Davide; Cordera, Renzo; Maggi, Davide; Verri, Alessandro; Barla, Annalisa
2017-07-01
Over the past decade, continuous glucose monitoring (CGM) has proven to be a very resourceful tool for diabetes management. To date, CGM devices are employed for both retrospective and online applications. Their use allows to better describe the patients' pathology as well as to achieve a better control of patients' level of glycemia. The analysis of CGM sensor data makes possible to observe a wide range of metrics, such as the glycemic variability during the day or the amount of time spent below or above certain glycemic thresholds. However, due to the high variability of the glycemic signals among sensors and individuals, CGM data analysis is a non-trivial task. Standard signal filtering solutions fall short when an appropriate model personalization is not applied. State-of-the-art data-driven strategies for online CGM forecasting rely upon the use of recursive filters. Each time a new sample is collected, such models need to adjust their parameters in order to predict the next glycemic level. In this paper we aim at demonstrating that the problem of online CGM forecasting can be successfully tackled by personalized machine learning models, that do not need to recursively update their parameters.
Xu, Tingting; Close, Dan M.; Webb, James D.; Price, Sarah L.; Ripp, Steven A.; Sayler, Gary S.
2013-05-01
Bioluminescent imaging is an emerging biomedical surveillance strategy that uses external cameras to detect in vivo light generated in small animal models of human physiology or in vitro light generated in tissue culture or tissue scaffold mimics of human anatomy. The most widely utilized of reporters is the firefly luciferase (luc) gene; however, it generates light only upon addition of a chemical substrate, thus only generating intermittent single time point data snapshots. To overcome this disadvantage, we have demonstrated substrate-independent bioluminescent imaging using an optimized bacterial bioluminescence (lux) system. The lux reporter produces bioluminescence autonomously using components found naturally within the cell, thereby allowing imaging to occur continuously and in real-time over the lifetime of the host. We have validated this technology in human cells with demonstrated chemical toxicological profiling against exotoxin exposures at signal strengths comparable to existing luc systems (~1.33 × 107 photons/second). As a proof-in-principle demonstration, we have engineered breast carcinoma cells to express bioluminescence for real-time screening of endocrine disrupting chemicals and validated detection of 17β-estradiol (EC50 = ~ 10 pM). These and other applications of this new reporter technology will be discussed as potential new pathways towards improved models of target chemical bioavailability, toxicology, efficacy, and human safety.
CMOS continuous-time adaptive equalizers for high-speed serial links
Gimeno Gasca, Cecilia; Aldea Chagoyen, Concepción
2015-01-01
This book introduces readers to the design of adaptive equalization solutions integrated in standard CMOS technology for high-speed serial links. Since continuous-time equalizers offer various advantages as an alternative to discrete-time equalizers at multi-gigabit rates, this book provides a detailed description of continuous-time adaptive equalizers design - both at transistor and system levels-, their main characteristics and performances. The authors begin with a complete review and analysis of the state of the art of equalizers for wireline applications, describing why they are necessary, their types, and their main applications. Next, theoretical fundamentals of continuous-time adaptive equalizers are explored. Then, new structures are proposed to implement the different building blocks of the adaptive equalizer: line equalizer, loop-filters, power comparator, etc. The authors demonstrate the design of a complete low-power, low-voltage, high-speed, continuous-time adaptive equalizer. Finally, a cost-...
Frisch, Simon; Dshemuchadse, Maja; Görner, Max; Goschke, Thomas; Scherbaum, Stefan
2015-11-01
Selective attention biases information processing toward stimuli that are relevant for achieving our goals. However, the nature of this bias is under debate: Does it solely rely on the amplification of goal-relevant information or is there a need for additional inhibitory processes that selectively suppress currently distracting information? Here, we explored the processes underlying selective attention with a dynamic, modeling-based approach that focuses on the continuous evolution of behavior over time. We present two dynamic neural field models incorporating the diverging theoretical assumptions. Simulations with both models showed that they make similar predictions with regard to response times but differ markedly with regard to their continuous behavior. Human data observed via mouse tracking as a continuous measure of performance revealed evidence for the model solely based on amplification but no indication of persisting selective distracter inhibition.
International Nuclear Information System (INIS)
Benth, Fred Espen; Taib, Che Mohd Imran Che
2013-01-01
We extend the concept of half life of an Ornstein–Uhlenbeck process to Lévy-driven continuous-time autoregressive moving average processes with stochastic volatility. The half life becomes state dependent, and we analyze its properties in terms of the characteristics of the process. An empirical example based on daily temperatures observed in Petaling Jaya, Malaysia, is presented, where the proposed model is estimated and the distribution of the half life is simulated. The stationarity of the dynamics yield futures prices which asymptotically tend to constant at an exponential rate when time to maturity goes to infinity. The rate is characterized by the eigenvalues of the dynamics. An alternative description of this convergence can be given in terms of our concept of half life. - Highlights: • The concept of half life is extended to Levy-driven continuous time autoregressive moving average processes • The dynamics of Malaysian temperatures are modeled using a continuous time autoregressive model with stochastic volatility • Forward prices on temperature become constant when time to maturity tends to infinity • Convergence in time to maturity is at an exponential rate given by the eigenvalues of the model temperature model
Directory of Open Access Journals (Sweden)
Mokaedi V. Lekgari
2014-01-01
Full Text Available We investigate random-time state-dependent Foster-Lyapunov analysis on subgeometric rate ergodicity of continuous-time Markov chains (CTMCs. We are mainly concerned with making use of the available results on deterministic state-dependent drift conditions for CTMCs and on random-time state-dependent drift conditions for discrete-time Markov chains and transferring them to CTMCs.
Monitoring and modelling of a continuous from-powder-to-tablet process line
DEFF Research Database (Denmark)
Mortier, Séverine T.F.C.; Nopens, Ingmar; De Beer, Thomas
2014-01-01
-time adjustment of critical input variables to ensure that the process stays within the Design Space. Mechanistic models are very useful for this purpose as, once validated, several tools can be applied to gain further process knowledge, for example uncertainty and sensitivity analysis. In addition, several......The intention to shift from batch to continuous production processes within the pharmaceutical industry enhances the need to monitor and control the process in-line and real-time to continuously guarantee the end-product quality. Mass and energy balances have been successfully applied to a drying...... process which is part of a continuous from-powder-to-tablet manufacturing line to calculate the residual moisture content of granules leaving the drying unit on the basis of continuously generated data from univariate sensors. Next to monitoring, the application of continuous processes demands also real...
Continuous-Time Mean-Variance Portfolio Selection under the CEV Process
Directory of Open Access Journals (Sweden)
Hui-qiang Ma
2014-01-01
Full Text Available We consider a continuous-time mean-variance portfolio selection model when stock price follows the constant elasticity of variance (CEV process. The aim of this paper is to derive an optimal portfolio strategy and the efficient frontier. The mean-variance portfolio selection problem is formulated as a linearly constrained convex program problem. By employing the Lagrange multiplier method and stochastic optimal control theory, we obtain the optimal portfolio strategy and mean-variance efficient frontier analytically. The results show that the mean-variance efficient frontier is still a parabola in the mean-variance plane, and the optimal strategies depend not only on the total wealth but also on the stock price. Moreover, some numerical examples are given to analyze the sensitivity of the efficient frontier with respect to the elasticity parameter and to illustrate the results presented in this paper. The numerical results show that the price of risk decreases as the elasticity coefficient increases.
Delsing, M.J.M.H.; Oud, J.H.L.; Bruyn, E.E.J. De
2005-01-01
In family research, bidirectional influences between the family and the individual are usually analyzed in discrete time. Results from discrete time analysis, however, have been shown to be highly dependent on the length of the observation interval. Continuous time analysis using stochastic
Multiphysics modeling of the steel continuous casting process
Hibbeler, Lance C.
This work develops a macroscale, multiphysics model of the continuous casting of steel. The complete model accounts for the turbulent flow and nonuniform distribution of superheat in the molten steel, the elastic-viscoplastic thermal shrinkage of the solidifying shell, the heat transfer through the shell-mold interface with variable gap size, and the thermal distortion of the mold. These models are coupled together with carefully constructed boundary conditions with the aid of reduced-order models into a single tool to investigate behavior in the mold region, for practical applications such as predicting ideal tapers for a beam-blank mold. The thermal and mechanical behaviors of the mold are explored as part of the overall modeling effort, for funnel molds and for beam-blank molds. These models include high geometric detail and reveal temperature variations on the mold-shell interface that may be responsible for cracks in the shell. Specifically, the funnel mold has a column of mold bolts in the middle of the inside-curve region of the funnel that disturbs the uniformity of the hot face temperatures, which combined with the bending effect of the mold on the shell, can lead to longitudinal facial cracks. The shoulder region of the beam-blank mold shows a local hot spot that can be reduced with additional cooling in this region. The distorted shape of the funnel mold narrow face is validated with recent inclinometer measurements from an operating caster. The calculated hot face temperatures and distorted shapes of the mold are transferred into the multiphysics model of the solidifying shell. The boundary conditions for the first iteration of the multiphysics model come from reduced-order models of the process; one such model is derived in this work for mold heat transfer. The reduced-order model relies on the physics of the solution to the one-dimensional heat-conduction equation to maintain the relationships between inputs and outputs of the model. The geometric
A New Approach to Rational Discrete-Time Approximations to Continuous-Time Fractional-Order Systems
Matos , Carlos; Ortigueira , Manuel ,
2012-01-01
Part 10: Signal Processing; International audience; In this paper a new approach to rational discrete-time approximations to continuous fractional-order systems of the form 1/(sα+p) is proposed. We will show that such fractional-order LTI system can be decomposed into sub-systems. One has the classic behavior and the other is similar to a Finite Impulse Response (FIR) system. The conversion from continuous-time to discrete-time systems will be done using the Laplace transform inversion integr...
Generalized classes of continuous symmetries in two-mode Dicke models
Moodie, Ryan I.; Ballantine, Kyle E.; Keeling, Jonathan
2018-03-01
As recently realized experimentally [Nature (London) 543, 87 (2017), 10.1038/nature21067], one can engineer models with continuous symmetries by coupling two cavity modes to trapped atoms via a Raman pumping geometry. Considering specifically cases where internal states of the atoms couple to the cavity, we show an extended range of parameters for which continuous symmetry breaking can occur, and we classify the distinct steady states and time-dependent states that arise for different points in this extended parameter regime.
Sung S. Kim; Naresh K. Malhotra
2005-01-01
Although initial use is an important indicator of information system (IS) success, it does not necessarily lead to the desired managerial outcome unless the use continues. However, compared with the great amount of work done on IS adoption, little systematic effort has gone into providing insight into continued IS use over time. The objective of this study is to develop a longitudinal model of how users' evaluations and behavior evolve as they gain experience with the information technology a...
A novel biomechanical model assessing continuous orthodontic archwire activation
Canales, Christopher; Larson, Matthew; Grauer, Dan; Sheats, Rose; Stevens, Clarke; Ko, Ching-Chang
2013-01-01
Objective The biomechanics of a continuous archwire inserted into multiple orthodontic brackets is poorly understood. The purpose of this research was to apply the birth-death technique to simulate insertion of an orthodontic wire and consequent transfer of forces to the dentition in an anatomically accurate model. Methods A digital model containing the maxillary dentition, periodontal ligament (PDL), and surrounding bone was constructed from human computerized tomography data. Virtual brackets were placed on four teeth (central and lateral incisors, canine and first premolar), and a steel archwire (0.019″ × 0.025″) with a 0.5 mm step bend to intrude the lateral incisor was virtually inserted into the bracket slots. Forces applied to the dentition and surrounding structures were simulated utilizing the birth-death technique. Results The goal of simulating a complete bracket-wire system on accurate anatomy including multiple teeth was achieved. Orthodontic force delivered by the wire-bracket interaction was: central incisor 19.1 N, lateral incisor 21.9 N, and canine 19.9 N. Loading the model with equivalent point forces showed a different stress distribution in the PDL. Conclusions The birth-death technique proved to be a useful biomechanical simulation method for placement of a continuous archwire in orthodontic brackets. The ability to view the stress distribution throughout proper anatomy and appliances advances understanding of orthodontic biomechanics. PMID:23374936
Segment-based acoustic models for continuous speech recognition
Ostendorf, Mari; Rohlicek, J. R.
1993-07-01
This research aims to develop new and more accurate stochastic models for speaker-independent continuous speech recognition, by extending previous work in segment-based modeling and by introducing a new hierarchical approach to representing intra-utterance statistical dependencies. These techniques, which are more costly than traditional approaches because of the large search space associated with higher order models, are made feasible through rescoring a set of HMM-generated N-best sentence hypotheses. We expect these different modeling techniques to result in improved recognition performance over that achieved by current systems, which handle only frame-based observations and assume that these observations are independent given an underlying state sequence. In the fourth quarter of the project, we have completed the following: (1) ported our recognition system to the Wall Street Journal task, a standard task in the ARPA community; (2) developed an initial dependency-tree model of intra-utterance observation correlation; and (3) implemented baseline language model estimation software. Our initial results on the Wall Street Journal task are quite good and represent significantly improved performance over most HMM systems reporting on the Nov. 1992 5k vocabulary test set.
Project ECHO: A Telementoring Network Model for Continuing Professional Development.
Arora, Sanjeev; Kalishman, Summers G; Thornton, Karla A; Komaromy, Miriam S; Katzman, Joanna G; Struminger, Bruce B; Rayburn, William F
2017-01-01
A major challenge with current systems of CME is the inability to translate the explosive growth in health care knowledge into daily practice. Project ECHO (Extension for Community Healthcare Outcomes) is a telementoring network designed for continuing professional development (CPD) and improving patient outcomes. The purpose of this article was to describe how the model has complied with recommendations from several authoritative reports about redesigning and enhancing CPD. This model links primary care clinicians through a knowledge network with an interprofessional team of specialists from an academic medical center who provide telementoring and ongoing education enabling community clinicians to treat patients with a variety of complex conditions. Knowledge and skills are shared during weekly condition-specific videoconferences. The model exemplifies learning as described in the seven levels of CPD by Moore (participation, satisfaction, learning, competence, performance, patient, and community health). The model is also aligned with recommendations from four national reports intended to redesign knowledge transfer in improving health care. Efforts in learning sessions focus on information that is relevant to practice, focus on evidence, education methodology, tailoring of recommendations to individual needs and community resources, and interprofessionalism. Project ECHO serves as a telementoring network model of CPD that aligns with current best practice recommendations for CME. This transformative initiative has the potential to serve as a leading model for larger scale CPD, nationally and globally, to enhance access to care, improve quality, and reduce cost.
Phase-synchronisation in continuous flow models of production networks
Scholz-Reiter, Bernd; Tervo, Jan Topi; Freitag, Michael
2006-04-01
To improve their position at the market, many companies concentrate on their core competences and hence cooperate with suppliers and distributors. Thus, between many independent companies strong linkages develop and production and logistics networks emerge. These networks are characterised by permanently increasing complexity, and are nowadays forced to adapt to dynamically changing markets. This factor complicates an enterprise-spreading production planning and control enormously. Therefore, a continuous flow model for production networks will be derived regarding these special logistic problems. Furthermore, phase-synchronisation effects will be presented and their dependencies to the set of network parameters will be investigated.
Continuous time random walk analysis of solute transport in fractured porous media
Energy Technology Data Exchange (ETDEWEB)
Cortis, Andrea; Cortis, Andrea; Birkholzer, Jens
2008-06-01
The objective of this work is to discuss solute transport phenomena in fractured porous media, where the macroscopic transport of contaminants in the highly permeable interconnected fractures can be strongly affected by solute exchange with the porous rock matrix. We are interested in a wide range of rock types, with matrix hydraulic conductivities varying from almost impermeable (e.g., granites) to somewhat permeable (e.g., porous sandstones). In the first case, molecular diffusion is the only transport process causing the transfer of contaminants between the fractures and the matrix blocks. In the second case, additional solute transfer occurs as a result of a combination of advective and dispersive transport mechanisms, with considerable impact on the macroscopic transport behavior. We start our study by conducting numerical tracer experiments employing a discrete (microscopic) representation of fractures and matrix. Using the discrete simulations as a surrogate for the 'correct' transport behavior, we then evaluate the accuracy of macroscopic (continuum) approaches in comparison with the discrete results. However, instead of using dual-continuum models, which are quite often used to account for this type of heterogeneity, we develop a macroscopic model based on the Continuous Time Random Walk (CTRW) framework, which characterizes the interaction between the fractured and porous rock domains by using a probability distribution function of residence times. A parametric study of how CTRW parameters evolve is presented, describing transport as a function of the hydraulic conductivity ratio between fractured and porous domains.
Panattoni, Laura; Stone, Ashley; Chung, Sukyung; Tai-Seale, Ming
2015-03-01
The growing number of primary care physicians (PCPs) reducing their clinical work hours has raised concerns about meeting the future demand for services and fulfilling the continuity and access mandates for patient-centered care. However, the patient's experience of care with part-time physicians is relatively unknown, and may be mediated by continuity and access to care outcomes. We aimed to examine the relationships between a physicians' clinical full-time equivalent (FTE), continuity of care, access to care, and patient satisfaction with the physician. We used a multi-level structural equation estimation, with continuity and access modeled as mediators, for a cross-section in 2010. The study included family medicine (n = 104) and internal medicine (n = 101) physicians in a multi-specialty group practice, along with their patient satisfaction survey responses (n = 12,688). Physician level FTE, continuity of care received by patients, continuity of care provided by physician, and a Press Ganey patient satisfaction with the physician score, on a 0-100 % scale, were measured. Access to care was measured as days to the third next-available appointment. Physician FTE was directly associated with better continuity of care received (0.172% per FTE, p part-time PCPs in practice redesign efforts and initiatives to meet the demand for primary care services.
Hardware solution for continuous time-resolved burst detection of single molecules in flow
Wahl, Michael; Erdmann, Rainer; Lauritsen, Kristian; Rahn, Hans-Juergen
1998-04-01
Time Correlated Single Photon Counting (TCSPC) is a valuable tool for Single Molecule Detection (SMD). However, existing TCSPC systems did not support continuous data collection and processing as is desirable for applications such as SMD for e.g. DNA-sequencing in a liquid flow. First attempts at using existing instrumentation in this kind of operation mode required additional routing hardware to switch between several memory banks and were not truly continuous. We have designed a hard- and software system to perform continuous real-time TCSPC based upon a modern solid state Time to Digital Converter (TDC). Short dead times of the fully digital TDC design combined with fast Field Programmable Gay Array logic permit a continuous data throughput as high as 3 Mcounts/sec. The histogramming time may be set as short as 100 microsecond(s) . Every histogram or every single fluorescence photon can be real-time tagged at 200 ns resolution in addition to recording its arrival time relative to the excitation pulse. Continuous switching between memory banks permits concurrent histogramming and data read-out. The instrument provides a time resolution of 60 ps and up to 4096 histogram channels. The overall instrument response function in combination with a low cost picosecond diode laser and an inexpensive photomultiplier tube was found to be 180 ps and well sufficient to measure sub-nanosecond fluorescence lifetimes.
Directory of Open Access Journals (Sweden)
F. C. PEIXOTO
1999-09-01
Full Text Available Fragmentation kinetics is employed to model a continuous reactive mixture of alkanes under catalytic cracking conditions. Standard moment analysis techniques are employed, and a dynamic system for the time evolution of moments of the mixture's dimensionless concentration distribution function (DCDF is found. The time behavior of the DCDF is recovered with successive estimations of scaled gamma distributions using the moments time data.
Modelling the Role of Human Resource Management in Continuous Improvement
DEFF Research Database (Denmark)
Jørgensen, Frances; Hyland, Paul; Kofoed, Lise B.
2006-01-01
Although it is widely acknowledged that both Human Resource Management (HRM) and Continuous Improvement have the potential to positively influencing organizational performance, very little attention has been given to how certain HRM practices may support CI, and consequently, a company...... developed by de Leede and Looise (2005) serve as the framework for examining how specific bundles of HRM practices utilized during different phases of the CI implementation process may contribute to sustained organizational performance and enhanced operational performance. The primary contribution...... of the paper is theoretical in nature, as the model developed provides a greater understanding of how HRM can contribute to CI; however, the model also has practical value in that it suggests important relationships between various HRM practices and the behaviors necessary for successful CI. The paper...
Perturbation analysis for Monte Carlo continuous cross section models
International Nuclear Information System (INIS)
Kennedy, Chris B.; Abdel-Khalik, Hany S.
2011-01-01
Sensitivity analysis, including both its forward and adjoint applications, collectively referred to hereinafter as Perturbation Analysis (PA), is an essential tool to complete Uncertainty Quantification (UQ) and Data Assimilation (DA). PA-assisted UQ and DA have traditionally been carried out for reactor analysis problems using deterministic as opposed to stochastic models for radiation transport. This is because PA requires many model executions to quantify how variations in input data, primarily cross sections, affect variations in model's responses, e.g. detectors readings, flux distribution, multiplication factor, etc. Although stochastic models are often sought for their higher accuracy, their repeated execution is at best computationally expensive and in reality intractable for typical reactor analysis problems involving many input data and output responses. Deterministic methods however achieve computational efficiency needed to carry out the PA analysis by reducing problem dimensionality via various spatial and energy homogenization assumptions. This however introduces modeling error components into the PA results which propagate to the following UQ and DA analyses. The introduced errors are problem specific and therefore are expected to limit the applicability of UQ and DA analyses to reactor systems that satisfy the introduced assumptions. This manuscript introduces a new method to complete PA employing a continuous cross section stochastic model and performed in a computationally efficient manner. If successful, the modeling error components introduced by deterministic methods could be eliminated, thereby allowing for wider applicability of DA and UQ results. Two MCNP models demonstrate the application of the new method - a Critical Pu Sphere (Jezebel), a Pu Fast Metal Array (Russian BR-1). The PA is completed for reaction rate densities, reaction rate ratios, and the multiplication factor. (author)
[Modeling continuous scaling of NDVI based on fractal theory].
Luan, Hai-Jun; Tian, Qing-Jiu; Yu, Tao; Hu, Xin-Li; Huang, Yan; Du, Ling-Tong; Zhao, Li-Min; Wei, Xi; Han, Jie; Zhang, Zhou-Wei; Li, Shao-Peng
2013-07-01
Scale effect was one of the very important scientific problems of remote sensing. The scale effect of quantitative remote sensing can be used to study retrievals' relationship between different-resolution images, and its research became an effective way to confront the challenges, such as validation of quantitative remote sensing products et al. Traditional up-scaling methods cannot describe scale changing features of retrievals on entire series of scales; meanwhile, they are faced with serious parameters correction issues because of imaging parameters' variation of different sensors, such as geometrical correction, spectral correction, etc. Utilizing single sensor image, fractal methodology was utilized to solve these problems. Taking NDVI (computed by land surface radiance) as example and based on Enhanced Thematic Mapper Plus (ETM+) image, a scheme was proposed to model continuous scaling of retrievals. Then the experimental results indicated that: (a) For NDVI, scale effect existed, and it could be described by fractal model of continuous scaling; (2) The fractal method was suitable for validation of NDVI. All of these proved that fractal was an effective methodology of studying scaling of quantitative remote sensing.
Ordering dynamics of microscopic models with nonconserved order parameter of continuous symmetry
DEFF Research Database (Denmark)
Zhang, Z.; Mouritsen, Ole G.; Zuckermann, Martin J.
1993-01-01
crystals. For both models, which have a nonconserved order parameter, it is found that the linear scale, R(t), of the evolving order, following quenches to below the transition temperature, grows at late times in an effectively algebraic fashion, R(t)∼tn, with exponent values which are strongly temperature......Numerical Monte Carlo temperature-quenching experiments have been performed on two three-dimensional classical lattice models with continuous ordering symmetry: the Lebwohl-Lasher model [Phys. Rev. A 6, 426 (1972)] and the ferromagnetic isotropic Heisenberg model. Both models describe a transition...... from a disordered phase to an orientationally ordered phase of continuous symmetry. The Lebwohl-Lasher model accounts for the orientational ordering properties of the nematic-isotropic transition in liquid crystals and the Heisenberg model for the ferromagnetic-paramagnetic transition in magnetic...
[Design and implementation of real-time continuous glucose monitoring instrument].
Huang, Yonghong; Liu, Hongying; Tian, Senfu; Jia, Ziru; Wang, Zi; Pi, Xitian
2017-12-01
Real-time continuous glucose monitoring can help diabetics to control blood sugar levels within the normal range. However, in the process of practical monitoring, the output of real-time continuous glucose monitoring system is susceptible to glucose sensor and environment noise, which will influence the measurement accuracy of the system. Aiming at this problem, a dual-calibration algorithm for the moving-window double-layer filtering algorithm combined with real-time self-compensation calibration algorithm is proposed in this paper, which can realize the signal drift compensation for current data. And a real-time continuous glucose monitoring instrument based on this study was designed. This real-time continuous glucose monitoring instrument consisted of an adjustable excitation voltage module, a current-voltage converter module, a microprocessor and a wireless transceiver module. For portability, the size of the device was only 40 mm × 30 mm × 5 mm and its weight was only 30 g. In addition, a communication command code algorithm was designed to ensure the security and integrity of data transmission in this study. Results of experiments in vitro showed that current detection of the device worked effectively. A 5-hour monitoring of blood glucose level in vivo showed that the device could continuously monitor blood glucose in real time. The relative error of monitoring results of the designed device ranged from 2.22% to 7.17% when comparing to a portable blood meter.
Toward Continuous GPS Carrier-Phase Time Transfer: Eliminating the Time Discontinuity at an Anomaly.
Yao, Jian; Levine, Judah; Weiss, Marc
2015-01-01
The wide application of Global Positioning System (GPS) carrier-phase (CP) time transfer is limited by the problem of boundary discontinuity (BD). The discontinuity has two categories. One is "day boundary discontinuity," which has been studied extensively and can be solved by multiple methods [1-8]. The other category of discontinuity, called "anomaly boundary discontinuity (anomaly-BD)," comes from a GPS data anomaly. The anomaly can be a data gap (i.e., missing data), a GPS measurement error (i.e., bad data), or a cycle slip. Initial study of the anomaly-BD shows that we can fix the discontinuity if the anomaly lasts no more than 20 min, using the polynomial curve-fitting strategy to repair the anomaly [9]. However, sometimes, the data anomaly lasts longer than 20 min. Thus, a better curve-fitting strategy is in need. Besides, a cycle slip, as another type of data anomaly, can occur and lead to an anomaly-BD. To solve these problems, this paper proposes a new strategy, i.e., the satellite-clock-aided curve fitting strategy with the function of cycle slip detection. Basically, this new strategy applies the satellite clock correction to the GPS data. After that, we do the polynomial curve fitting for the code and phase data, as before. Our study shows that the phase-data residual is only ~3 mm for all GPS satellites. The new strategy also detects and finds the number of cycle slips by searching the minimum curve-fitting residual. Extensive examples show that this new strategy enables us to repair up to a 40-min GPS data anomaly, regardless of whether the anomaly is due to a data gap, a cycle slip, or a combination of the two. We also find that interference of the GPS signal, known as "jamming", can possibly lead to a time-transfer error, and that this new strategy can compensate for jamming outages. Thus, the new strategy can eliminate the impact of jamming on time transfer. As a whole, we greatly improve the robustness of the GPS CP time transfer.
Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time
International Nuclear Information System (INIS)
Kelly, D T B; Stuart, A M; Law, K J H
2014-01-01
The ensemble Kalman filter (EnKF) is a method for combining a dynamical model with data in a sequential fashion. Despite its widespread use, there has been little analysis of its theoretical properties. Many of the algorithmic innovations associated with the filter, which are required to make a useable algorithm in practice, are derived in an ad hoc fashion. The aim of this paper is to initiate the development of a systematic analysis of the EnKF, in particular to do so for small ensemble size. The perspective is to view the method as a state estimator, and not as an algorithm which approximates the true filtering distribution. The perturbed observation version of the algorithm is studied, without and with variance inflation. Without variance inflation well-posedness of the filter is established; with variance inflation accuracy of the filter, with respect to the true signal underlying the data, is established. The algorithm is considered in discrete time, and also for a continuous time limit arising when observations are frequent and subject to large noise. The underlying dynamical model, and assumptions about it, is sufficiently general to include the Lorenz '63 and '96 models, together with the incompressible Navier–Stokes equation on a two-dimensional torus. The analysis is limited to the case of complete observation of the signal with additive white noise. Numerical results are presented for the Navier–Stokes equation on a two-dimensional torus for both complete and partial observations of the signal with additive white noise. (paper)
Measurement of average continuous-time structure of a bond and ...
African Journals Online (AJOL)
The expected continuous-time structure of a bond and bond's interest rate risk in an investment settings was studied. We determined the expected number of years an investor or manager will wait until the stock comes to maturity. The expected principal amount to be paid back per stock at time 't' was determined, while ...
Continuous-time random walk as a guide to fractional Schroedinger equation
International Nuclear Information System (INIS)
Lenzi, E. K.; Ribeiro, H. V.; Mukai, H.; Mendes, R. S.
2010-01-01
We argue that the continuous-time random walk approach may be a useful guide to extend the Schroedinger equation in order to incorporate nonlocal effects, avoiding the inconsistencies raised by Jeng et al. [J. Math. Phys. 51, 062102 (2010)]. As an application, we work out a free particle in a half space, obtaining the time dependent solution by considering an arbitrary initial condition.
Mathematical modelling of a continuous biomass torrefaction reactor: TORSPYDTM column
International Nuclear Information System (INIS)
Ratte, J.; Fardet, E.; Mateos, D.; Hery, J.-S.
2011-01-01
Torrefaction is a soft thermal process usually applied to cocoa or coffee beans to obtain the Maillard reaction to produce aromatics and enhance the flavour. In the case of biomass the main interest of torrefaction it is to break the fibers. To do so, Thermya company has developed and patented a biomass torrefaction/depolymerisation process called TORSPYD TM . It is a homogeneous 'soft' thermal process that takes place in an inert atmosphere. The process progressively eliminates the biomass water content transforms a portion of the biomass organic matter and breaks the biomass structure by depolymerisation of the fibers. This produces a high performance solid fuel, called Biocoal, which offers a range of benefits over and above that of normal biomass fuel. To develop such a process, this company has developed two main tools: - a continuous torrefaction laboratory pilot with a capacity to produce 3 - 8 kg/h of torrefied biomass; - a mathematical model dedicated to the design and optimisation of the TORSPYD reactor. The mathematical model is able to describe the chemical and physical processes that take place in the torrefaction column at two different scales, namely: the particle, and the surrounding gas. The model enables the gas temperature profiles inside the column to be predicted, and the results of the model are then validated through experiment in the laboratory pilot. The model also allows us to estimate the thermal power necessary to torrefy any type of biomass for a given moisture content. -- Highlights: → We model a patented torrefaction/depolymerisation biomass process: TORPSPYD. → We compare simulated results to experimental data obtained from our torrefaction pilot plant. → We describe phenomenon that occurs in our torrefaction reactor and discuss about the influence of moisture of the input biomass.
Energy Technology Data Exchange (ETDEWEB)
Geiger, S.; Cortis, A.; Birkholzer, J.T.
2010-04-01
Solute transport in fractured porous media is typically 'non-Fickian'; that is, it is characterized by early breakthrough and long tailing and by nonlinear growth of the Green function-centered second moment. This behavior is due to the effects of (1) multirate diffusion occurring between the highly permeable fracture network and the low-permeability rock matrix, (2) a wide range of advection rates in the fractures and, possibly, the matrix as well, and (3) a range of path lengths. As a consequence, prediction of solute transport processes at the macroscale represents a formidable challenge. Classical dual-porosity (or mobile-immobile) approaches in conjunction with an advection-dispersion equation and macroscopic dispersivity commonly fail to predict breakthrough of fractured porous media accurately. It was recently demonstrated that the continuous time random walk (CTRW) method can be used as a generalized upscaling approach. Here we extend this work and use results from high-resolution finite element-finite volume-based simulations of solute transport in an outcrop analogue of a naturally fractured reservoir to calibrate the CTRW method by extracting a distribution of retention times. This procedure allows us to predict breakthrough at other model locations accurately and to gain significant insight into the nature of the fracture-matrix interaction in naturally fractured porous reservoirs with geologically realistic fracture geometries.
Coherent exciton transport in dendrimers and continuous-time quantum walks
Mülken, Oliver; Bierbaum, Veronika; Blumen, Alexander
2006-03-01
We model coherent exciton transport in dendrimers by continuous-time quantum walks. For dendrimers up to the second generation the coherent transport shows perfect recurrences when the initial excitation starts at the central node. For larger dendrimers, the recurrence ceases to be perfect, a fact which resembles results for discrete quantum carpets. Moreover, depending on the initial excitation site, we find that the coherent transport to certain nodes of the dendrimer has a very low probability. When the initial excitation starts from the central node, the problem can be mapped onto a line which simplifies the computational effort. Furthermore, the long time average of the quantum mechanical transition probabilities between pairs of nodes shows characteristic patterns and allows us to classify the nodes into clusters with identical limiting probabilities. For the (space) average of the quantum mechanical probability to be still or to be again at the initial site, we obtain, based on the Cauchy-Schwarz inequality, a simple lower bound which depends only on the eigenvalue spectrum of the Hamiltonian.
Modeling discrete and continuous entities with fractions and decimals.
Rapp, Monica; Bassok, Miriam; DeWolf, Melissa; Holyoak, Keith J
2015-03-01
When people use mathematics to model real-life situations, their use of mathematical expressions is often mediated by semantic alignment (Bassok, Chase, & Martin, 1998): The entities in a problem situation evoke semantic relations (e.g., tulips and vases evoke the functionally asymmetric "contain" relation), which people align with analogous mathematical relations (e.g., the noncommutative division operation, tulips/vases). Here we investigate the possibility that semantic alignment is also involved in the comprehension and use of rational numbers (fractions and decimals). A textbook analysis and results from two experiments revealed that both mathematic educators and college students tend to align the discreteness versus continuity of the entities in word problems (e.g., marbles vs. distance) with distinct symbolic representations of rational numbers--fractions versus decimals, respectively. In addition, fractions and decimals tend to be used with nonmetric units and metric units, respectively. We discuss the importance of the ontological distinction between continuous and discrete entities to mathematical cognition, the role of symbolic notations, and possible implications of our findings for the teaching of rational numbers. PsycINFO Database Record (c) 2015 APA, all rights reserved.
An integrated educational model for continuing nurse education.
Duff, Beverley; Gardner, Glenn; Osborne, Sonya
2014-01-01
This paper reports on the development and evaluation of an integrated clinical learning model to inform ongoing education for surgical nurses. The research aim was to evaluate the effectiveness of implementing a Respiratory Skills Update (ReSKU) education program, in the context of organisational utility, on improving surgical nurses' practice in the area of respiratory assessment. Continuous development and integration of technological innovations and research in the healthcare environment mandate the need for continuing education for nurses. Despite an increased worldwide emphasis on this, there is scant empirical evidence of program effectiveness. A quasi experimental pre test, post test non-equivalent control group design evaluated the impact of the ReSKU program on surgical nurses' clinical practice. The 2008 study was conducted in a 400 bed regional referral public hospital and was consistent with contemporary educational approaches using multi-modal, interactive teaching strategies. The study demonstrated statistically significant differences between groups regarding reported use of respiratory skills, three months after ReSKU program attendance. Between group data analysis indicated that the intervention group's reported beliefs and attitudes pertaining to subscale descriptors showed statistically significant differences in three of the six subscales. The construct of critical thinking in the clinical context, combined with clinical reasoning and purposeful reflection, was a powerful educational strategy to enhance competency and capability in clinicians. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Tao Wang
2013-01-01
Full Text Available To obtain reliable transient auditory evoked potentials (AEPs from EEGs recorded using high stimulus rate (HSR paradigm, it is critical to design the stimulus sequences of appropriate frequency properties. Traditionally, the individual stimulus events in a stimulus sequence occur only at discrete time points dependent on the sampling frequency of the recording system and the duration of stimulus sequence. This dependency likely causes the implementation of suboptimal stimulus sequences, sacrificing the reliability of resulting AEPs. In this paper, we explicate the use of continuous-time stimulus sequence for HSR paradigm, which is independent of the discrete electroencephalogram (EEG recording system. We employ simulation studies to examine the applicability of the continuous-time stimulus sequences and the impacts of sampling frequency on AEPs in traditional studies using discrete-time design. Results from these studies show that the continuous-time sequences can offer better frequency properties and improve the reliability of recovered AEPs. Furthermore, we find that the errors in the recovered AEPs depend critically on the sampling frequencies of experimental systems, and their relationship can be fitted using a reciprocal function. As such, our study contributes to the literature by demonstrating the applicability and advantages of continuous-time stimulus sequences for HSR paradigm and by revealing the relationship between the reliability of AEPs and sampling frequencies of the experimental systems when discrete-time stimulus sequences are used in traditional manner for the HSR paradigm.
A dynamic control water distribution model of steel in continuous casting
International Nuclear Information System (INIS)
Fu Jianxun; Hwang, Weng-Sing; Tsai, De-Chang; Tsai, Ming Hsiu; Wang, Chien-Hsun
2012-01-01
After investigation in many continuous casting shop of steel, a dynamic water distribution model is proposed for flexible control on secondary cooling in continuous casting. In this model, the water cooling intensity is determined by the model casting speed instead of the real casting speed. When the casting speed is steady, the model casting speed is equal to the real casting speed. When the real casting speed is changing, the model casting speed according to calculating algorithm to adjust and approaches to the real one, but there is a time delay between them, so it can avoid the slab surface temperature fluctuated due to casting speed changes. The secondary cooling can be dynamically controlled by monitoring the model casting speed. The compare of the simulation results and the measured results reveals that the temperature field and thickness of slab shell in simulations agree very well with the real production situations.
Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes
Directory of Open Access Journals (Sweden)
Tomoaki Nakamura
2017-12-01
Full Text Available Humans divide perceived continuous information into segments to facilitate recognition. For example, humans can segment speech waves into recognizable morphemes. Analogously, continuous motions are segmented into recognizable unit actions. People can divide continuous information into segments without using explicit segment points. This capacity for unsupervised segmentation is also useful for robots, because it enables them to flexibly learn languages, gestures, and actions. In this paper, we propose a Gaussian process-hidden semi-Markov model (GP-HSMM that can divide continuous time series data into segments in an unsupervised manner. Our proposed method consists of a generative model based on the hidden semi-Markov model (HSMM, the emission distributions of which are Gaussian processes (GPs. Continuous time series data is generated by connecting segments generated by the GP. Segmentation can be achieved by using forward filtering-backward sampling to estimate the model's parameters, including the lengths and classes of the segments. In an experiment using the CMU motion capture dataset, we tested GP-HSMM with motion capture data containing simple exercise motions; the results of this experiment showed that the proposed GP-HSMM was comparable with other methods. We also conducted an experiment using karate motion capture data, which is more complex than exercise motion capture data; in this experiment, the segmentation accuracy of GP-HSMM was 0.92, which outperformed other methods.
Modeling opinion dynamics: Theoretical analysis and continuous approximation
International Nuclear Information System (INIS)
Pinasco, Juan Pablo; Semeshenko, Viktoriya; Balenzuela, Pablo
2017-01-01
Highlights: • We study a simple model of persuasion dynamics with long range pairwise interactions. • The continuous limit of the master equation is a nonlinear, nonlocal, first order partial differential equation. • We compute the analytical solutions to this equation, and compare them with the simulations of the dynamics. - Abstract: Frequently we revise our first opinions after talking over with other individuals because we get convinced. Argumentation is a verbal and social process aimed at convincing. It includes conversation and persuasion and the agreement is reached because the new arguments are incorporated. Given the wide range of opinion formation mathematical approaches, there are however no models of opinion dynamics with nonlocal pair interactions analytically solvable. In this paper we present a novel analytical framework developed to solve the master equations with non-local kernels. For this we used a simple model of opinion formation where individuals tend to get more similar after each interactions, no matter their opinion differences, giving rise to nonlinear differential master equation with non-local terms. Simulation results show an excellent agreement with results obtained by the theoretical estimation.
Generalization bounds of ERM-based learning processes for continuous-time Markov chains.
Zhang, Chao; Tao, Dacheng
2012-12-01
Many existing results on statistical learning theory are based on the assumption that samples are independently and identically distributed (i.i.d.). However, the assumption of i.i.d. samples is not suitable for practical application to problems in which samples are time dependent. In this paper, we are mainly concerned with the empirical risk minimization (ERM) based learning process for time-dependent samples drawn from a continuous-time Markov chain. This learning process covers many kinds of practical applications, e.g., the prediction for a time series and the estimation of channel state information. Thus, it is significant to study its theoretical properties including the generalization bound, the asymptotic convergence, and the rate of convergence. It is noteworthy that, since samples are time dependent in this learning process, the concerns of this paper cannot (at least straightforwardly) be addressed by existing methods developed under the sample i.i.d. assumption. We first develop a deviation inequality for a sequence of time-dependent samples drawn from a continuous-time Markov chain and present a symmetrization inequality for such a sequence. By using the resultant deviation inequality and symmetrization inequality, we then obtain the generalization bounds of the ERM-based learning process for time-dependent samples drawn from a continuous-time Markov chain. Finally, based on the resultant generalization bounds, we analyze the asymptotic convergence and the rate of convergence of the learning process.
Dynamic probabilistic models and social structure essays on socioeconomic continuity
Gómez M , Guillermo L
1992-01-01
Mathematical models have been very successful in the study of the physical world. Galilei and Newton introduced point particles moving without friction under the action of simple forces as the basis for the description of concrete motions like the ones of the planets. This approach was sustained by appro priate mathematical methods, namely infinitesimal calculus, which was being developed at that time. In this way classical analytical mechanics was able to establish some general results, gaining insight through explicit solution of some simple cases and developing various methods of approximation for handling more complicated ones. Special relativity theory can be seen as an extension of this kind of modelling. In the study of electromagnetic phenomena and in general relativity another mathematical model is used, in which the concept of classical field plays the fundamental role. The equations of motion here are partial differential equations, and the methods of study used involve further developments of cl...
Optimization of Modulator and Circuits for Low Power Continuous-Time Delta-Sigma ADC
DEFF Research Database (Denmark)
Marker-Villumsen, Niels; Bruun, Erik
2014-01-01
This paper presents a new optimization method for achieving a minimum current consumption in a continuous-time Delta-Sigma analog-to-digital converter (ADC). The method is applied to a continuous-time modulator realised with active-RC integrators and with a folded-cascode operational transconduc...... levels are swept. Based on the results of the circuit analysis, for each modulator combination the summed current consumption of the 1st integrator and quantizer of the ADC is determined. By also sweeping the partitioning of the noise power for the different circuit parts, the optimum modulator...
Directory of Open Access Journals (Sweden)
Botond Molnár
Full Text Available There has been a long history of using neural networks for combinatorial optimization and constraint satisfaction problems. Symmetric Hopfield networks and similar approaches use steepest descent dynamics, and they always converge to the closest local minimum of the energy landscape. For finding global minima additional parameter-sensitive techniques are used, such as classical simulated annealing or the so-called chaotic simulated annealing, which induces chaotic dynamics by addition of extra terms to the energy landscape. Here we show that asymmetric continuous-time neural networks can solve constraint satisfaction problems without getting trapped in non-solution attractors. We concentrate on a model solving Boolean satisfiability (k-SAT, which is a quintessential NP-complete problem. There is a one-to-one correspondence between the stable fixed points of the neural network and the k-SAT solutions and we present numerical evidence that limit cycles may also be avoided by appropriately choosing the parameters of the model. This optimal parameter region is fairly independent of the size and hardness of instances, this way parameters can be chosen independently of the properties of problems and no tuning is required during the dynamical process. The model is similar to cellular neural networks already used in CNN computers. On an analog device solving a SAT problem would take a single operation: the connection weights are determined by the k-SAT instance and starting from any initial condition the system searches until finding a solution. In this new approach transient chaotic behavior appears as a natural consequence of optimization hardness and not as an externally induced effect.
Modeling continuous cultures of microalgae colimited by nitrogen and phosphorus.
Bougaran, Gaël; Bernard, Olivier; Sciandra, Antoine
2010-08-07
It is well documented that the combination of low nitrogen and phosphorus resources can lead to situations where colimitation of phytoplankton growth arises, yet the underlying mechanisms are not fully understood. Here, we propose a Droop-based model built on the idea that colimitation by nitrogen and phosphorus arises from the uptake of nitrogen. Indeed, since N-porters are active systems, they require energy that could be related to the phosphorus status of the cell. Therefore, we assumed that N uptake is enhanced by the P quota. Our model also accounts for the biological observations that uptake of a nutrient can be down-regulated by its own internal quota, and succeeds in describing the strong contrast for the non-limiting quotas under N-limited and P-limited conditions that was observed on continuous cultures with Selenastrum minutum and with Isochrysis affinis galbana. Our analysis suggests that, regarding the colimitation concept, N and P would be better considered as biochemically dependent rather than biochemically independent nutrients. Copyright 2010 Elsevier Ltd. All rights reserved.
Continuing research on the classical spiraling photon model
Li, Hongrui
2014-11-01
Based no the classical spiraling photon model proposed by Hongrui Li, the laws of reflection, refraction of a single photon can be derived. Moreover, the polarization, total reflection, evanescent wave and Goos-Hanchen shift of a single photon can be elucidated. However, this photon model is still unfinished. Especially, the spiraling diameter of a photon is not definite. In this paper, the continuous research works on this new theory are reported. According to the facts that the diffraction limit of light and the smallest diameter of the focal spot of lenses are all equal to the wavelength λ of the light, we can get that the spiraling diameter of a photon equals to the wavelength λ, so we gain that the angle between the linear velocity of the spiraling photon υ and the component of the linear velocity in the forward direction υb is 45°, and the energy of a classical spiraling photon E = (1/2)mυ2 = (1/2)m2c2 = mc2. This coincides with Einstein's mass-energy relation. While it is obtained that the velocity of the evanescent wave in the vacuum is slower than the velocity of light in glass in straight line. In such a way, the optical fiber can slow the light down. In addition, the force analysis of a single photon in optical tweezers system is discussed. And the reason that the laser beam can capture the particle slightly downstream from the focal point can be explained.
Aristizábal, Natalia; Ramírez, Alex; Hincapié-García, Jaime; Laiton, Estefany; Aristizábal, Carolina; Cuesta, Diana; Monsalve, Claudia; Hincapié, Gloria; Zapata, Eliana; Abad, Verónica; Delgado, Maria-Rocio; Torres, José-Luis; Palacio, Andrés; Botero, José
2015-11-01
To describe baseline characteristics of diabetic patients who were started on insulin pump and real time continuous glucose monitor (CSII-rtCGM) in a specialized center in Medellin, Colombia. All patients with diabetes with complete data who were started on CSII-rtCGM between February 2010 and May 2014 were included. This is a descriptive analysis of the sociodemographic and clinical characteristics. 141 of 174 patients attending the clinic were included. 90,1% had type 1diabetes (T1D). The average age of T1D patients at the beginning of therapy was 31,4 years (SD 14,1). 75.8% of patients had normal weight (BMI30). The median duration of T1D was 13 years (P25-P75=10.7-22.0). 14,2% of the patients were admitted at least once in the year preceding the start of CSII-rtCGM because of diabetes related complications. Mean A1c was 8.6%±1.46%. The main reasons for starting CSII-rtCGM were: poor glycemic control (50.2%); frequent hypoglycemia, nocturnal hypoglycemia, hypoglycemia related to exercise, asymptomatic hypoglycemia (30.2%); severe hypoglycemia (16.44%) and dawn phenomena (3.1%). Baseline characteristics of patients included in this study who were started on CSII-rtCGM are similar to those reported in the literature. The Clinic starts CSII-rtCGM mainly in T1D patients with poor glycemic control, frequent or severe hypoglycemia despite being on basal/bolus therapy. Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.
A quantum relativistic integrable model as the continuous limit of the six-vertex model
International Nuclear Information System (INIS)
Zhou, Y.K.
1992-01-01
The six-vertex model in two-dimensional statistical mechanics is used to construct the L-matrix of a one-dimensional quantum relativistic integrable model through a continuous limit. This is the first step to extend the method used earlier by the author to construct quantum completely integrable systems from other well-known two-dimensional vertex models. (orig.)
Multiple Indicator Stationary Time Series Models.
Sivo, Stephen A.
2001-01-01
Discusses the propriety and practical advantages of specifying multivariate time series models in the context of structural equation modeling for time series and longitudinal panel data. For time series data, the multiple indicator model specification improves on classical time series analysis. For panel data, the multiple indicator model…
Quantum cooling and squeezing of a levitating nanosphere via time-continuous measurements
Genoni, Marco G.; Zhang, Jinglei; Millen, James; Barker, Peter F.; Serafini, Alessio
2015-07-01
With the purpose of controlling the steady state of a dielectric nanosphere levitated within an optical cavity, we study its conditional dynamics under simultaneous sideband cooling and additional time-continuous measurement of either the output cavity mode or the nanosphere’s position. We find that the average phonon number, purity and quantum squeezing of the steady-states can all be made more non-classical through the addition of time-continuous measurement. We predict that the continuous monitoring of the system, together with Markovian feedback, allows one to stabilize the dynamics for any value of the laser frequency driving the cavity. By considering state of the art values of the experimental parameters, we prove that one can in principle obtain a non-classical (squeezed) steady-state with an average phonon number {n}{ph}≈ 0.5.
A continuous stochastic model for non-equilibrium dense gases
Sadr, M.; Gorji, M. H.
2017-12-01
While accurate simulations of dense gas flows far from the equilibrium can be achieved by direct simulation adapted to the Enskog equation, the significant computational demand required for collisions appears as a major constraint. In order to cope with that, an efficient yet accurate solution algorithm based on the Fokker-Planck approximation of the Enskog equation is devised in this paper; the approximation is very much associated with the Fokker-Planck model derived from the Boltzmann equation by Jenny et al. ["A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion," J. Comput. Phys. 229, 1077-1098 (2010)] and Gorji et al. ["Fokker-Planck model for computational studies of monatomic rarefied gas flows," J. Fluid Mech. 680, 574-601 (2011)]. The idea behind these Fokker-Planck descriptions is to project the dynamics of discrete collisions implied by the molecular encounters into a set of continuous Markovian processes subject to the drift and diffusion. Thereby, the evolution of particles representing the governing stochastic process becomes independent from each other and thus very efficient numerical schemes can be constructed. By close inspection of the Enskog operator, it is observed that the dense gas effects contribute further to the advection of molecular quantities. That motivates a modelling approach where the dense gas corrections can be cast in the extra advection of particles. Therefore, the corresponding Fokker-Planck approximation is derived such that the evolution in the physical space accounts for the dense effects present in the pressure, stress tensor, and heat fluxes. Hence the consistency between the devised Fokker-Planck approximation and the Enskog operator is shown for the velocity moments up to the heat fluxes. For validation studies, a homogeneous gas inside a box besides Fourier, Couette, and lid-driven cavity flow setups is considered. The results based on the Fokker-Planck model are
Lee, Jae Young; Park, Jin Bae; Choi, Yoon Ho
2015-05-01
This paper focuses on a class of reinforcement learning (RL) algorithms, named integral RL (I-RL), that solve continuous-time (CT) nonlinear optimal control problems with input-affine system dynamics. First, we extend the concepts of exploration, integral temporal difference, and invariant admissibility to the target CT nonlinear system that is governed by a control policy plus a probing signal called an exploration. Then, we show input-to-state stability (ISS) and invariant admissibility of the closed-loop systems with the policies generated by integral policy iteration (I-PI) or invariantly admissible PI (IA-PI) method. Based on these, three online I-RL algorithms named explorized I-PI and integral Q -learning I, II are proposed, all of which generate the same convergent sequences as I-PI and IA-PI under the required excitation condition on the exploration. All the proposed methods are partially or completely model free, and can simultaneously explore the state space in a stable manner during the online learning processes. ISS, invariant admissibility, and convergence properties of the proposed methods are also investigated, and related with these, we show the design principles of the exploration for safe learning. Neural-network-based implementation methods for the proposed schemes are also presented in this paper. Finally, several numerical simulations are carried out to verify the effectiveness of the proposed methods.
Wang, Jun; Liang, Jin-Rong; Lv, Long-Jin; Qiu, Wei-Yuan; Ren, Fu-Yao
2012-02-01
In this paper, we study the problem of continuous time option pricing with transaction costs by using the homogeneous subdiffusive fractional Brownian motion (HFBM) Z(t)=X(Sα(t)), 0transaction costs of replicating strategies. We also give the total transaction costs.
Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data
International Nuclear Information System (INIS)
Gubernatis, J.E.; Bonca, J.; Jarrell, M.
1995-01-01
We present brief description of how methods of Bayesian inference are used to obtain real frequency information by the analytic continuation of imaginary-time quantum Monte Carlo data. We present the procedure we used, which is due to R. K. Bryan, and summarize several bottleneck issues
Directory of Open Access Journals (Sweden)
Wilson S
2015-01-01
Full Text Available Scott Wilson,1,2 Andrea Bowyer,3 Stephen B Harrap4 1Department of Renal Medicine, The Alfred Hospital, 2Baker IDI, Melbourne, 3Department of Anaesthesia, Royal Melbourne Hospital, 4University of Melbourne, Parkville, VIC, Australia Abstract: The clinical characterization of cardiovascular dynamics during hemodialysis (HD has important pathophysiological implications in terms of diagnostic, cardiovascular risk assessment, and treatment efficacy perspectives. Currently the diagnosis of significant intradialytic systolic blood pressure (SBP changes among HD patients is imprecise and opportunistic, reliant upon the presence of hypotensive symptoms in conjunction with coincident but isolated noninvasive brachial cuff blood pressure (NIBP readings. Considering hemodynamic variables as a time series makes a continuous recording approach more desirable than intermittent measures; however, in the clinical environment, the data signal is susceptible to corruption due to both impulsive and Gaussian-type noise. Signal preprocessing is an attractive solution to this problem. Prospectively collected continuous noninvasive SBP data over the short-break intradialytic period in ten patients was preprocessed using a novel median hybrid filter (MHF algorithm and compared with 50 time-coincident pairs of intradialytic NIBP measures from routine HD practice. The median hybrid preprocessing technique for continuously acquired cardiovascular data yielded a dynamic regression without significant noise and artifact, suitable for high-level profiling of time-dependent SBP behavior. Signal accuracy is highly comparable with standard NIBP measurement, with the added clinical benefit of dynamic real-time hemodynamic information. Keywords: continuous monitoring, blood pressure
A sixth-order continuous-time bandpass sigma-delta modulator for digital radio IF
Engelen, van J.A.E.P.; Plassche, van de R.J.; Stikvoort, E.F.; Venes, A.G.W.
1999-01-01
This paper presents a sixth-order continuous-time bandpass sigma-delta modulator (SDM) for analog-to-digital conversion of intermediate-frequency signals. An important aspect in the design of this SDM is the stability analysis using the describing function method. The key to the analysis is the
DEFF Research Database (Denmark)
Lauridsen, Mette Munk; Grønbæk, Henning; Næser, Esben
2012-01-01
Abstract Minimal hepatic encephalopathy (MHE) is a metabolic brain disorder occurring in patients with liver cirrhosis. MHE lessens a patient's quality of life, but is treatable when identified. The continuous reaction times (CRT) method is used in screening for MHE. Gender and age effects...
Computing continuous-time Markov chains as transformers of unbounded observables
DEFF Research Database (Denmark)
Danos, Vincent; Heindel, Tobias; Garnier, Ilias
2017-01-01
The paper studies continuous-time Markov chains (CTMCs) as transformers of real-valued functions on their state space, considered as generalised predicates and called observables. Markov chains are assumed to take values in a countable state space S; observables f: S → ℝ may be unbounded...
Continuous performance test assessed with time-domain functional near infrared spectroscopy
Torricelli, Alessandro; Contini, Davide; Spinelli, Lorenzo; Caffini, Matteo; Butti, Michele; Baselli, Giuseppe; Bianchi, Anna M.; Bardoni, Alessandra; Cerutti, Sergio; Cubeddu, Rinaldo
2007-07-01
A time-domain fNIRS multichannel system was used in a sustained attention protocol (continuous performance test) to study activation of the prefrontal cortex. Preliminary results on volounteers show significant activation (decrease in deoxy-hemoglobin and increase in oxy-hemoglobin) in both left and right prefrontal cortex.
Exploring Continuity of Care in Patients with Alcohol Use Disorders Using Time-Variant Measures
S.C. de Vries (Sjoerd); A.I. Wierdsma (André)
2008-01-01
textabstractBackground/Aims: We used time-variant measures of continuity of care to study fluctuations in long-term treatment use by patients with alcohol-related disorders. Methods: Data on service use were extracted from the Psychiatric Case Register for the Rotterdam Region, The Netherlands.
Continuous relaxation time spectrum of α-process in glass-like B2O3
International Nuclear Information System (INIS)
Bartenev, G.M.; Lomovskij, V.A.
1991-01-01
α-process of relaxation of glass-like B 2 O 3 was investigated in a wide temperature range. Continuous spectrum of relaxation times H(τ) for this process was constructed, using data of dynamic methods of investigation. It is shown that increase of temperature of α-process investigation leads to change of glass-like BaO 3 structure in such a way, that H(τ) spectrum tends to the maxwell one with a unit relaxation time
Global stabilization of linear continuous time-varying systems with bounded controls
International Nuclear Information System (INIS)
Phat, V.N.
2004-08-01
This paper deals with the problem of global stabilization of a class of linear continuous time-varying systems with bounded controls. Based on the controllability of the nominal system, a sufficient condition for the global stabilizability is proposed without solving any Riccati differential equation. Moreover, we give sufficient conditions for the robust stabilizability of perturbation/uncertain linear time-varying systems with bounded controls. (author)
Energy Technology Data Exchange (ETDEWEB)
Bartosch, T. [Erlanger-Nuernberg Univ., Erlanger (Germany). Lehrstul fuer Nachrichtentechnik I; Seidl, D. [Seismologisches Zentralobservatorium Graefenberg, Erlanegen (Greece). Bundesanstalt fuer Geiwissenschaften und Rohstoffe
1999-06-01
Among a variety of spectrogram methods short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were selected to analyse transients in non-stationary signals. Depending on the properties of the tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli (Italy).
Period, epoch, and prediction errors of ephemerides from continuous sets of timing measurements
Deeg, H. J.
2015-06-01
Space missions such as Kepler and CoRoT have led to large numbers of eclipse or transit measurements in nearly continuous time series. This paper shows how to obtain the period error in such measurements from a basic linear least-squares fit, and how to correctly derive the timing error in the prediction of future transit or eclipse events. Assuming strict periodicity, a formula for the period error of these time series is derived, σP = σT (12 / (N3-N))1 / 2, where σP is the period error, σT the timing error of a single measurement, and N the number of measurements. Compared to the iterative method for period error estimation by Mighell & Plavchan (2013), this much simpler formula leads to smaller period errors, whose correctness has been verified through simulations. For the prediction of times of future periodic events, usual linear ephemeris were epoch errors are quoted for the first time measurement, are prone to an overestimation of the error of that prediction. This may be avoided by a correction for the duration of the time series. An alternative is the derivation of ephemerides whose reference epoch and epoch error are given for the centre of the time series. For long continuous or near-continuous time series whose acquisition is completed, such central epochs should be the preferred way for the quotation of linear ephemerides. While this work was motivated from the analysis of eclipse timing measures in space-based light curves, it should be applicable to any other problem with an uninterrupted sequence of discrete timings for which the determination of a zero point, of a constant period and of the associated errors is needed.
A Continuous Dynamic Traffic Assignment Model From Plate Scanning Technique
Energy Technology Data Exchange (ETDEWEB)
Rivas, A.; Gallego, I.; Sanchez-Cambronero, S.; Ruiz-Ripoll, L.; Barba, R.M.
2016-07-01
This paper presents a methodology for the dynamic estimation of traffic flows on all links of a network from observable field data assuming the first-in-first-out (FIFO) hypothesis. The traffic flow intensities recorded at the exit of the scanned links are propagated to obtain the flow waves on unscanned links. For that, the model calculates the flow-cost functions through information registered with the plate scanning technique. The model also responds to the concern about the parameter quality of flow-cost functions to replicate the real traffic flow behaviour. It includes a new algorithm for the adjustment of the parameter values to link characteristics when its quality is questionable. For that, it is necessary the a priori study of the location of the scanning devices to identify all path flows and to measure travel times in all links. A synthetic network is used to illustrate the proposed method and to prove its usefulness and feasibility. (Author)
Directory of Open Access Journals (Sweden)
Elodie Magnanou
2009-06-01
Full Text Available Laboratory conditions nullify the extrinsic factors that determine the wild expected lifespan and release the intrinsic or potential lifespan. Thus, wild animals reared in a laboratory often show an increased lifespan, and consequently an increased senescence phase. Senescence is associated with a broad suite of physiological changes, including a decreased responsiveness of the circadian system. The time-keeping hormone melatonin, an important chemical player in this system, is suspected to have an anti-aging role. The Greater White-toothed shrew Crocidura russula is an ideal study model to address questions related to aging and associated changes in biological functions: its lifespan is short and is substantially increased in captivity; daily and seasonal rhythms, while very marked the first year of life, are dramatically altered during the senescence process which starts during the second year. Here we report on an investigation of the effects of melatonin administration on locomotor activity of aging shrews.1 The diel fluctuations of melatonin levels in young, adult and aging shrews were quantified in the pineal gland and plasma. In both, a marked diel rhythm (low diurnal concentration; high nocturnal concentration was present in young animals but then decreased in adults, and, as a result of a loss in the nocturnal production, was absent in old animals. 2 Daily locomotor activity rhythm was monitored in pre-senescent animals that had received either a subcutaneous melatonin implant, an empty implant or no implant at all. In non-implanted and sham-implanted shrews, the rhythm was well marked in adults. A marked degradation in both period and amplitude, however, started after the age of 14-16 months. This pattern was considerably delayed in melatonin-implanted shrews who maintained the daily rhythm for significantly longer.This is the first long term study (>500 days observation of the same individuals that investigates the effects of
Directory of Open Access Journals (Sweden)
François Niragire
2017-05-01
Full Text Available Child survival programmes are efficient when they target the most significant and area-specific factors. This study aimed to assess the key determinants and spatial variation of child mortality at the district level in Rwanda. Data from the 2010 Rwanda Demographic and Health Survey were analysed for 8817 live births that occurred during five years preceding the survey. Out of the children born, 433 had died before survey interviews were carried out. A full Bayesian geo-additive continuous-time hazard model enabled us to maximise data utilisation and hence improve the accuracy of our estimates. The results showed substantial district- level spatial variation in childhood mortality in Rwanda. District-specific spatial characteristics were particularly associated with higher death hazards in two districts: Musanze and Nyabihu. The model estimates showed that there were lower death rates among children from households of medium and high economic status compared to those from low-economic status households. Factors, such as four antenatal care visits, delivery at a health facility, prolonged breastfeeding and mothers younger than 31 years were associated with lower child death rates. Long preceding birth intervals were also associated with fewer hazards. For these reasons, programmes aimed at reducing child mortality gaps between districts in Rwanda should target maternal factors and take into consideration district-specific spatial characteristics. Further, child survival gains require strengthening or scaling-up of existing programmes pertaining to access to, and utilisation of maternal and child health care services as well as reduction of the household gap in the economic status.
Niragire, François; Achia, Thomas N O; Lyambabaje, Alexandre; Ntaganira, Joseph
2017-05-11
Child survival programmes are efficient when they target the most significant and area-specific factors. This study aimed to assess the key determinants and spatial variation of child mortality at the district level in Rwanda. Data from the 2010 Rwanda Demographic and Health Survey were analysed for 8817 live births that occurred during five years preceding the survey. Out of the children born, 433 had died before survey interviews were carried out. A full Bayesian geo-additive continuous-time hazard model enabled us to maximise data utilisation and hence improve the accuracy of our estimates. The results showed substantial district- level spatial variation in childhood mortality in Rwanda. District-specific spatial characteristics were particularly associated with higher death hazards in two districts: Musanze and Nyabihu. The model estimates showed that there were lower death rates among children from households of medium and high economic status compared to those from low-economic status households. Factors, such as four antenatal care visits, delivery at a health facility, prolonged breastfeeding and mothers younger than 31 years were associated with lower child death rates. Long preceding birth intervals were also associated with fewer hazards. For these reasons, programmes aimed at reducing child mortality gaps between districts in Rwanda should target maternal factors and take into consideration district-specific spatial characteristics. Further, child survival gains require strengthening or scaling-up of existing programmes pertaining to access to, and utilisation of maternal and child health care services as well as reduction of the household gap in the economic status.
Scott, John W; Nyinawankusi, Jeanne D'Arc; Enumah, Samuel; Maine, Rebecca; Uwitonze, Eric; Hu, Yihan; Kabagema, Ignace; Byiringiro, Jean Claude; Riviello, Robert; Jayaraman, Sudha
2017-07-01
Injury is a major cause of premature death and disability in East Africa, and high-quality pre-hospital care is essential for optimal trauma outcomes. The Rwandan pre-hospital emergency care service (SAMU) uses an electronic database to evaluate and optimize pre-hospital care through a continuous quality improvement programme (CQIP), beginning March 2014. The SAMU database was used to assess pre-hospital quality metrics including supplementary oxygen for hypoxia (O2), intravenous fluids for hypotension (IVF), cervical collar placement for head injuries (c-collar), and either splinting (splint) or administration of pain medications (pain) for long bone fractures. Targets of >90% were set for each metric and daily team meetings and monthly feedback sessions were implemented to address opportunities for improvement. These five pre-hospital quality metrics were assessed monthly before and after implementation of the CQIP. Met and unmet needs for O2, IVF, and c-collar were combined into a summative monthly SAMU Trauma Quality Scores (STQ score). An interrupted time series linear regression model compared the STQ score during 14 months before the CQIP implementation to the first 14 months after. During the 29-month study period 3,822 patients met study criteria. 1,028 patients needed one or more of the five studied interventions during the study period. All five endpoints had a significant increase between the pre-CQI and post-CQI periods (pRwanda. This programme may be used as an example for additional efforts engaging frontline staff with real-time data feedback in order to rapidly translate data collection efforts into improved care for the injured in a resource-limited setting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modelling of Zirconium and Hafnium separation using continuous annular chromatography
International Nuclear Information System (INIS)
Moch-Setyadji; Endang Susiantini
2014-01-01
Nuclear degrees of zirconium in the form of a metal alloy is the main material for fuel cladding of NPP. Zirconium is also used as sheathing UO 2 kernel in the form of ZrC as a substitute of SiC in the fuel elements of High Temperature Reactor (HTR). Difficulty separating hafnium from zirconium because it has a lot of similarities in the chemical properties of Zr and Hf. Annular chromatography is a device that can be used for separating of zirconium and hafnium to obtain zirconium nuclear grade. Therefore, it is necessary to construct the mathematical modelling that can describe the separation of zirconium and hafnium in the annular chromatography containing anion resin dowex-1X8. The aim of research is to perform separation simulation by using the equilibrium model and mass transfer coefficient resulted from research. Zr and Hf feed used in this research were 26 and 1 g/l, respectively. Height of resin (L), angular velocity (ω) and the superficial flow rate (uz) was varied to determine the effect of each parameter on the separation of Zr and Hf. By using Kd and Dv values resulted previous research. Simulation results showed that zirconium and hafnium can be separated using a continuous annular chromatography with high resin (long bed) 50 cm, superficial flow rate of 0.001 cm/s, the rotation speed of 0.006 rad/min and 20 cm diameter annular. In these conditions the results obtained zirconium concentration of 10,303.226 g/m 3 and hafnium concentration of 12.324 g/m 3 (ppm). (author)
Pigot, Corentin; Gilibert, Fabien; Reyboz, Marina; Bocquet, Marc; Zuliani, Paola; Portal, Jean-Michel
2018-04-01
Phase-change memory (PCM) compact modeling of the threshold switching based on a thermal runaway in Poole–Frenkel conduction is proposed. Although this approach is often used in physical models, this is the first time it is implemented in a compact model. The model accuracy is validated by a good correlation between simulations and experimental data collected on a PCM cell embedded in a 90 nm technology. A wide range of intermediate states is measured and accurately modeled with a single set of parameters, allowing multilevel programing. A good convergence is exhibited even in snapback simulation owing to this fully continuous approach. Moreover, threshold properties extraction indicates a thermally enhanced switching, which validates the basic hypothesis of the model. Finally, it is shown that this model is compliant with a new drift-resilient cell-state metric. Once enriched with a phase transition module, this compact model is ready to be implemented in circuit simulators.
2016-01-01
Continuously reinforced concrete pavement (CRCP) contains continuous longitudinal reinforcement with no transverse : expansion within the early life of the pavement and can continue to develop cracks in the long-term. The : accurate modeling of CRCPs...
Chen, Zhaoxue; Chen, Hao
2014-01-01
A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.
State-space prediction model for chaotic time series
Alparslan, A. K.; Sayar, M.; Atilgan, A. R.
1998-08-01
A simple method for predicting the continuation of scalar chaotic time series ahead in time is proposed. The false nearest neighbors technique in connection with the time-delayed embedding is employed so as to reconstruct the state space. A local forecasting model based upon the time evolution of the topological neighboring in the reconstructed phase space is suggested. A moving root-mean-square error is utilized in order to monitor the error along the prediction horizon. The model is tested for the convection amplitude of the Lorenz model. The results indicate that for approximately 100 cycles of the training data, the prediction follows the actual continuation very closely about six cycles. The proposed model, like other state-space forecasting models, captures the long-term behavior of the system due to the use of spatial neighbors in the state space.
Saleem, M; Agrawal, Tanuja; Anees, Afzal
2014-01-01
In this paper, we consider a continuous mathematically tractable model and its discrete analogue for the tumour growth. The model formulation is based on stoichiometric principles considering tumour-immune cell interactions in potassium (K (+))-limited environment. Our both continuous and discrete models illustrate 'cancer immunoediting' as a dynamic process having all three phases namely elimination, equilibrium and escape. The stoichiometric principles introduced into the model allow us to study its dynamics with the variation in the total potassium in the surrounding of the tumour region. It is found that an increase in the total potassium may help the patient fight the disease for a longer period of time. This result seems to be in line with the protective role of the potassium against the risk of pancreatic cancer as has been reported by Bravi et al. [Dietary intake of selected micronutrients and risk of pancreatic cancer: An Italian case-control study, Ann. Oncol. 22 (2011), pp. 202-206].
SEM based CARMA time series modeling for arbitrary N
Oud, J.H.L.; Völkle, M.C.; Driver, C.C.
2018-01-01
This article explains in detail the state space specification and estimation of first and higher-order autoregressive moving-average models in continuous time (CARMA) in an extended structural equation modeling (SEM) context for N = 1 as well as N > 1. To illustrate the approach, simulations will be
Hidden Markov Models for Time Series An Introduction Using R
Zucchini, Walter
2009-01-01
Illustrates the flexibility of HMMs as general-purpose models for time series data. This work presents an overview of HMMs for analyzing time series data, from continuous-valued, circular, and multivariate series to binary data, bounded and unbounded counts and categorical observations.
Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.
Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria
2016-01-01
The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system.
Park, K. C.; Belvin, W. Keith
1990-01-01
A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.
Toporov, Maria; Löhnert, Ulrich; Potthast, Roland; Cimini, Domenico; De Angelis, Francesco
2017-04-01
Short-term forecasts of current high-resolution numerical weather prediction models still have large deficits in forecasting the exact temporal and spatial location of severe, locally influenced weather such as summer-time convective storms or cool season lifted stratus or ground fog. Often, the thermodynamic instability - especially in the boundary layer - plays an essential role in the evolution of weather events. While the thermodynamic state of the atmosphere is well measured close to the surface (i.e. 2 m) by in-situ sensors and in the upper troposphere by satellite sounders, the planetary boundary layer remains a largely under-sampled region of the atmosphere where only sporadic information from radiosondes or aircraft observations is available. The major objective of the presented DWD-funded project ARON (Extramural Research Programme) is to overcome this observational gap and to design an optimized network of ground based microwave radiometers (MWR) and compact Differential Absorption Lidars (DIAL) for a continuous, near-real-time monitoring of temperature and humidity in the atmospheric boundary layer in order to monitor thermodynamic (in)stability. Previous studies showed, that microwave profilers are well suited for continuously monitoring the temporal development of atmospheric stability (i.e. Cimini et al., 2015) before the initiation of deep convection, especially in the atmospheric boundary layer. However, the vertical resolution of microwave temperature profiles is best in the lowest kilometer above the surface, decreasing rapidly with increasing height. In addition, humidity profile retrievals typically cannot be resolved with more than two degrees of freedom for signal, resulting in a rather poor vertical resolution throughout the troposphere. Typical stability indices used to assess the potential of convection rely on temperature and humidity values not only in the region of the boundary layer but also in the layers above. Therefore, satellite
Directory of Open Access Journals (Sweden)
Songlin Wo
2018-01-01
Full Text Available Singular systems arise in a great deal of domains of engineering and can be used to solve problems which are more difficult and more extensive than regular systems to solve. Therefore, in this paper, the definition of finite-time robust H∞ control for uncertain linear continuous-time singular systems is presented. The problem we address is to design a robust state feedback controller which can deal with the singular system with time-varying norm-bounded exogenous disturbance, such that the singular system is finite-time robust bounded (FTRB with disturbance attenuation γ. Sufficient conditions for the existence of solutions to this problem are obtained in terms of linear matrix equalities (LMIs. When these LMIs are feasible, the desired robust controller is given. A detailed solving method is proposed for the restricted linear matrix inequalities. Finally, examples are given to show the validity of the methodology.
Continuous-Time Mean-Variance Portfolio Selection with Random Horizon
International Nuclear Information System (INIS)
Yu, Zhiyong
2013-01-01
This paper examines the continuous-time mean-variance optimal portfolio selection problem with random market parameters and random time horizon. Treating this problem as a linearly constrained stochastic linear-quadratic optimal control problem, I explicitly derive the efficient portfolios and efficient frontier in closed forms based on the solutions of two backward stochastic differential equations. Some related issues such as a minimum variance portfolio and a mutual fund theorem are also addressed. All the results are markedly different from those in the problem with deterministic exit time. A key part of my analysis involves proving the global solvability of a stochastic Riccati equation, which is interesting in its own right
Continuous-Time Mean-Variance Portfolio Selection with Random Horizon
Energy Technology Data Exchange (ETDEWEB)
Yu, Zhiyong, E-mail: yuzhiyong@sdu.edu.cn [Shandong University, School of Mathematics (China)
2013-12-15
This paper examines the continuous-time mean-variance optimal portfolio selection problem with random market parameters and random time horizon. Treating this problem as a linearly constrained stochastic linear-quadratic optimal control problem, I explicitly derive the efficient portfolios and efficient frontier in closed forms based on the solutions of two backward stochastic differential equations. Some related issues such as a minimum variance portfolio and a mutual fund theorem are also addressed. All the results are markedly different from those in the problem with deterministic exit time. A key part of my analysis involves proving the global solvability of a stochastic Riccati equation, which is interesting in its own right.
Continuous-variable quantum computing in optical time-frequency modes using quantum memories.
Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A
2014-09-26
We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.
Assessing the Needs of Adults for Continuing Education: A Model.
Moore, Donald E., Jr.
1980-01-01
Reviews the needs assessment studies described in this journal issue. Concludes that (1) lessons from completed needs assessments can help continuing education practitioners plan and conduct future studies, and (2) a rational, need-reduction, decision-making approach can improve continuing education programs. (CT)
In My Own Time: Tuition Fees, Class Time and Student Effort in Non-Formal (Or Continuing) Education
Bolli, Thomas; Johnes, Geraint
2015-01-01
We develop and empirically test a model which examines the impact of changes in class time and tuition fees on student effort in the form of private study. The data come from the European Union's Adult Education Survey, conducted over the period 2005-2008. We find, in line with theoretical predictions, that the time students devote to private…
Quadratic Term Structure Models in Discrete Time
Marco Realdon
2006-01-01
This paper extends the results on quadratic term structure models in continuos time to the discrete time setting. The continuos time setting can be seen as a special case of the discrete time one. Recursive closed form solutions for zero coupon bonds are provided even in the presence of multiple correlated underlying factors. Pricing bond options requires simple integration. Model parameters may well be time dependent without scuppering such tractability. Model estimation does not require a r...
Model Checking Real-Time Systems
DEFF Research Database (Denmark)
Bouyer, Patricia; Fahrenberg, Uli; Larsen, Kim Guldstrand
2018-01-01
This chapter surveys timed automata as a formalism for model checking real-time systems. We begin with introducing the model, as an extension of finite-state automata with real-valued variables for measuring time. We then present the main model-checking results in this framework, and give a hint...
International Nuclear Information System (INIS)
Schulz, Johannes H P; Chechkin, Aleksei V; Metzler, Ralf
2013-01-01
Standard continuous time random walk (CTRW) models are renewal processes in the sense that at each jump a new, independent pair of jump length and waiting time are chosen. Globally, anomalous diffusion emerges through scale-free forms of the jump length and/or waiting time distributions by virtue of the generalized central limit theorem. Here we present a modified version of recently proposed correlated CTRW processes, where we incorporate a power-law correlated noise on the level of both jump length and waiting time dynamics. We obtain a very general stochastic model, that encompasses key features of several paradigmatic models of anomalous diffusion: discontinuous, scale-free displacements as in Lévy flights, scale-free waiting times as in subdiffusive CTRWs, and the long-range temporal correlations of fractional Brownian motion (FBM). We derive the exact solutions for the single-time probability density functions and extract the scaling behaviours. Interestingly, we find that different combinations of the model parameters lead to indistinguishable shapes of the emerging probability density functions and identical scaling laws. Our model will be useful for describing recent experimental single particle tracking data that feature a combination of CTRW and FBM properties. (paper)
Discrete event simulation tool for analysis of qualitative models of continuous processing systems
Malin, Jane T. (Inventor); Basham, Bryan D. (Inventor); Harris, Richard A. (Inventor)
1990-01-01
An artificial intelligence design and qualitative modeling tool is disclosed for creating computer models and simulating continuous activities, functions, and/or behavior using developed discrete event techniques. Conveniently, the tool is organized in four modules: library design module, model construction module, simulation module, and experimentation and analysis. The library design module supports the building of library knowledge including component classes and elements pertinent to a particular domain of continuous activities, functions, and behavior being modeled. The continuous behavior is defined discretely with respect to invocation statements, effect statements, and time delays. The functionality of the components is defined in terms of variable cluster instances, independent processes, and modes, further defined in terms of mode transition processes and mode dependent processes. Model construction utilizes the hierarchy of libraries and connects them with appropriate relations. The simulation executes a specialized initialization routine and executes events in a manner that includes selective inherency of characteristics through a time and event schema until the event queue in the simulator is emptied. The experimentation and analysis module supports analysis through the generation of appropriate log files and graphics developments and includes the ability of log file comparisons.
Astrand, Elaine
2018-06-01
Working memory (WM), crucial for successful behavioral performance in most of our everyday activities, holds a central role in goal-directed behavior. As task demands increase, inducing higher WM load, maintaining successful behavioral performance requires the brain to work at the higher end of its capacity. Because it is depending on both external and internal factors, individual WM load likely varies in a continuous fashion. The feasibility to extract such a continuous measure in time that correlates to behavioral performance during a working memory task remains unsolved. Multivariate pattern decoding was used to test whether a decoder constructed from two discrete levels of WM load can generalize to produce a continuous measure that predicts task performance. Specifically, a linear regression with L2-regularization was chosen with input features from EEG oscillatory activity recorded from healthy participants while performing the n-back task, [Formula: see text]. The feasibility to extract a continuous time-resolved measure that correlates positively to trial-by-trial working memory task performance is demonstrated (r = 0.47, p performance before action (r = 0.49, p < 0.05). We show that the extracted continuous measure enables to study the temporal dynamics of the complex activation pattern of WM encoding during the n-back task. Specifically, temporally precise contributions of different spectral features are observed which extends previous findings of traditional univariate approaches. These results constitute an important contribution towards a wide range of applications in the field of cognitive brain-machine interfaces. Monitoring mental processes related to attention and WM load to reduce the risk of committing errors in high-risk environments could potentially prevent many devastating consequences or using the continuous measure as neurofeedback opens up new possibilities to develop novel rehabilitation techniques for
Duane, Gregory S.; Grabow, Carsten; Selten, Frank; Ghil, Michael
2017-12-01
The synchronization of loosely coupled chaotic systems has increasingly found applications to large networks of differential equations and to models of continuous media. These applications are at the core of the present Focus Issue. Synchronization between a system and its model, based on limited observations, gives a new perspective on data assimilation. Synchronization among different models of the same system defines a supermodel that can achieve partial consensus among models that otherwise disagree in several respects. Finally, novel methods of time series analysis permit a better description of synchronization in a system that is only observed partially and for a relatively short time. This Focus Issue discusses synchronization in extended systems or in components thereof, with particular attention to data assimilation, supermodeling, and their applications to various areas, from climate modeling to macroeconomics.
Duane, Gregory S; Grabow, Carsten; Selten, Frank; Ghil, Michael
2017-12-01
The synchronization of loosely coupled chaotic systems has increasingly found applications to large networks of differential equations and to models of continuous media. These applications are at the core of the present Focus Issue. Synchronization between a system and its model, based on limited observations, gives a new perspective on data assimilation. Synchronization among different models of the same system defines a supermodel that can achieve partial consensus among models that otherwise disagree in several respects. Finally, novel methods of time series analysis permit a better description of synchronization in a system that is only observed partially and for a relatively short time. This Focus Issue discusses synchronization in extended systems or in components thereof, with particular attention to data assimilation, supermodeling, and their applications to various areas, from climate modeling to macroeconomics.
Liemohn, M. W.; Welling, D. T.; De Zeeuw, D.; Kuznetsova, M. M.; Rastaetter, L.; Ganushkina, N. Y.; Ilie, R.; Toth, G.; Gombosi, T. I.; van der Holst, B.
2016-12-01
The ground-based magnetometer index Dst is a decent measure of the near-Earth current systems, in particular those in the storm-time inner magnetosphere. The ability of a large-scale, physics-based model to reproduce, or even predict, this index is therefore a tangible measure of the overall validity of the code for space weather research and space weather operational usage. Experimental real-time simulations of the Space Weather Modeling Framework (SWMF) are conducted at the Community Coordinated Modeling Center (CCMC), with results available there (http://ccmc.gsfc.nasa.gov/realtime.php), through the CCMC Integrated Space Weather Analysis (iSWA) site (http://iswa.ccmc.gsfc.nasa.gov/IswaSystemWebApp/), and the Michigan SWMF site (http://csem.engin.umich.edu/realtime). Presently, two configurations of the SWMF are running in real time at CCMC, both focusing on the geospace modules, using the BATS-R-US magnetohydrodynamic model, the Ridley Ionosphere Model, and with and without the Rice Convection Model for inner magnetospheric drift physics. While both have been running for several years, nearly continuous results are available since July 2015. Dst from the model output is compared against the Kyoto real-time Dst. Various quantitative measures are presented to assess the goodness of fit between the models and observations. In particular, correlation coefficients, RMSE and prediction efficiency are calculated and discussed. In addition, contingency tables are presented, demonstrating the ability of the model to predict "disturbed times" as defined by Dst values below some critical threshold. It is shown that the SWMF run with the inner magnetosphere model is significantly better at reproducing storm-time values, with prediction efficiencies above 0.25 and Heidke skill scores above 0.5. This work was funded by NASA and NSF grants, and the European Union's Horizon 2020 research and innovation programme under grant agreement 637302 PROGRESS.
A new continuous-time formulation for scheduling crude oil operations
International Nuclear Information System (INIS)
Reddy, P. Chandra Prakash; Karimi, I.A.; Srinivasan, R.
2004-01-01
In today's competitive business climate characterized by uncertain oil markets, responding effectively and speedily to market forces, while maintaining reliable operations, is crucial to a refinery's bottom line. Optimal crude oil scheduling enables cost reduction by using cheaper crudes intelligently, minimizing crude changeovers, and avoiding ship demurrage. So far, only discrete-time formulations have stood up to the challenge of this important, nonlinear problem. A continuous-time formulation would portend numerous advantages, however, existing work in this area has just begun to scratch the surface. In this paper, we present the first complete continuous-time mixed integer linear programming (MILP) formulation for the short-term scheduling of operations in a refinery that receives crude from very large crude carriers via a high-volume single buoy mooring pipeline. This novel formulation accounts for real-world operational practices. We use an iterative algorithm to eliminate the crude composition discrepancy that has proven to be the Achilles heel for existing formulations. While it does not guarantee global optimality, the algorithm needs only MILP solutions and obtains excellent maximum-profit schedules for industrial problems with up to 7 days of scheduling horizon. We also report the first comparison of discrete- vs. continuous-time formulations for this complex problem. (Author)
Optimal control of nonlinear continuous-time systems in strict-feedback form.
Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani
2015-10-01
This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.
Wilson, Scott; Bowyer, Andrea; Harrap, Stephen B
2015-01-01
The clinical characterization of cardiovascular dynamics during hemodialysis (HD) has important pathophysiological implications in terms of diagnostic, cardiovascular risk assessment, and treatment efficacy perspectives. Currently the diagnosis of significant intradialytic systolic blood pressure (SBP) changes among HD patients is imprecise and opportunistic, reliant upon the presence of hypotensive symptoms in conjunction with coincident but isolated noninvasive brachial cuff blood pressure (NIBP) readings. Considering hemodynamic variables as a time series makes a continuous recording approach more desirable than intermittent measures; however, in the clinical environment, the data signal is susceptible to corruption due to both impulsive and Gaussian-type noise. Signal preprocessing is an attractive solution to this problem. Prospectively collected continuous noninvasive SBP data over the short-break intradialytic period in ten patients was preprocessed using a novel median hybrid filter (MHF) algorithm and compared with 50 time-coincident pairs of intradialytic NIBP measures from routine HD practice. The median hybrid preprocessing technique for continuously acquired cardiovascular data yielded a dynamic regression without significant noise and artifact, suitable for high-level profiling of time-dependent SBP behavior. Signal accuracy is highly comparable with standard NIBP measurement, with the added clinical benefit of dynamic real-time hemodynamic information.
Time lags in biological models
MacDonald, Norman
1978-01-01
In many biological models it is necessary to allow the rates of change of the variables to depend on the past history, rather than only the current values, of the variables. The models may require discrete lags, with the use of delay-differential equations, or distributed lags, with the use of integro-differential equations. In these lecture notes I discuss the reasons for including lags, especially distributed lags, in biological models. These reasons may be inherent in the system studied, or may be the result of simplifying assumptions made in the model used. I examine some of the techniques available for studying the solution of the equations. A large proportion of the material presented relates to a special method that can be applied to a particular class of distributed lags. This method uses an extended set of ordinary differential equations. I examine the local stability of equilibrium points, and the existence and frequency of periodic solutions. I discuss the qualitative effects of lags, and how these...
Du, Yue; Clark, Jane E; Whitall, Jill
2017-05-01
Timing control, such as producing movements at a given rate or synchronizing movements to an external event, has been studied through a finger-tapping task where timing is measured at the initial contact between finger and tapping surface or the point when a key is pressed. However, the point of peak force is after the time registered at the tapping surface and thus is a less obvious but still an important event during finger tapping. Here, we compared the time at initial contact with the time at peak force as participants tapped their finger on a force sensor at a given rate after the metronome was turned off (continuation task) or in synchrony with the metronome (sensorimotor synchronization task). We found that, in the continuation task, timing was comparably accurate between initial contact and peak force. These two timing events also exhibited similar trial-by-trial statistical dependence (i.e., lag-one autocorrelation). However, the central clock variability was lower at the peak force than the initial contact. In the synchronization task, timing control at peak force appeared to be less variable and more accurate than that at initial contact. In addition to lower central clock variability, the mean SE magnitude at peak force (SEP) was around zero while SE at initial contact (SEC) was negative. Although SEC and SEP demonstrated the same trial-by-trial statistical dependence, we found that participants adjusted the time of tapping to correct SEP, but not SEC, toward zero. These results suggest that timing at peak force is a meaningful target of timing control, particularly in synchronization tapping. This result may explain the fact that SE at initial contact is typically negative as widely observed in the preexisting literature.
Sivak, David A; Chodera, John D; Crooks, Gavin E
2014-06-19
When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.
Continuous-Time Classical and Quantum Random Walk on Direct Product of Cayley Graphs
International Nuclear Information System (INIS)
Salimi, S.; Jafarizadeh, M. A.
2009-01-01
In this paper we define direct product of graphs and give a recipe for obtaining probability of observing particle on vertices in the continuous-time classical and quantum random walk. In the recipe, the probability of observing particle on direct product of graph is obtained by multiplication of probability on the corresponding to sub-graphs, where this method is useful to determining probability of walk on complicated graphs. Using this method, we calculate the probability of continuous-time classical and quantum random walks on many of finite direct product Cayley graphs (complete cycle, complete K n , charter and n-cube). Also, we inquire that the classical state the stationary uniform distribution is reached as t → ∞ but for quantum state is not always satisfied. (general)
System Level Design of a Continuous-Time Delta-Sigma Modulator for Portable Ultrasound Scanners
DEFF Research Database (Denmark)
Llimos Muntal, Pere; Færch, Kjartan; Jørgensen, Ivan Harald Holger
2015-01-01
In this paper the system level design of a continuous-time ∆Σ modulator for portable ultrasound scanners is presented. The overall required signal-to-noise ratio (SNR) is derived to be 42 dB and the sampling frequency used is 320 MHz for an oversampling ratio of 16. In order to match these requir......, based on high-level VerilogA simulations, the performance of the ∆Σ modulator versus various block performance parameters is presented as trade-off curves. Based on these results, the block specifications are derived.......In this paper the system level design of a continuous-time ∆Σ modulator for portable ultrasound scanners is presented. The overall required signal-to-noise ratio (SNR) is derived to be 42 dB and the sampling frequency used is 320 MHz for an oversampling ratio of 16. In order to match...
The continuous time random walk, still trendy: fifty-year history, state of art and outlook
Kutner, Ryszard; Masoliver, Jaume
2017-03-01
In this article we demonstrate the very inspiring role of the continuous-time random walk (CTRW) formalism, the numerous modifications permitted by its flexibility, its various applications, and the promising perspectives in the various fields of knowledge. A short review of significant achievements and possibilities is given. However, this review is still far from completeness. We focused on a pivotal role of CTRWs mainly in anomalous stochastic processes discovered in physics and beyond. This article plays the role of an extended announcement of the Eur. Phys. J. B Special Issue [open-calls-for-papers/123-epj-b/1090-ctrw-50-years-on">http://epjb.epj.org/open-calls-for-papers/123-epj-b/1090-ctrw-50-years-on] containing articles which show incredible possibilities of the CTRWs. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Continuous time sigma delta ADC design and non-idealities analysis
International Nuclear Information System (INIS)
Yuan Jun; Chen Zhenhai; Yang Yintang; Zhang Zhaofeng; Wu Jun; Wang Chao; Qian Wenrong
2011-01-01
A wide bandwidth continuous time sigma delta ADC is implemented in 130 nm CMOS. A detailed non-idealities analysis (excess loop delay, clock jitter, finite gain and GBW, comparator offset and DAC mismatch) is performed developed in Matlab/Simulink. This design is targeted for wide bandwidth applications such as video or wireless base-stations. Athird-order continuous time sigma delta modulator comprises a third-order RC operational-amplifier-based loop filter and 3-bit internal quantizer operated at 512 MHz clock frequency. The sigma delta ADC achieves 60 dB SNR and 59.3 dB SNDR over a 16-MHz signal band at an OSR of 16. The power consumption of the CT sigma delta modulator is 22 mW from the 1.2-V supply. (semiconductor integrated circuits)
International Nuclear Information System (INIS)
Pyragas, V.; Pyragas, K.
2011-01-01
We propose a simple adaptive delayed feedback control algorithm for stabilization of unstable periodic orbits with unknown periods. The state dependent time delay is varied continuously towards the period of controlled orbit according to a gradient-descent method realized through three simple ordinary differential equations. We demonstrate the efficiency of the algorithm with the Roessler and Mackey-Glass chaotic systems. The stability of the controlled orbits is proven by computation of the Lyapunov exponents of linearized equations. -- Highlights: → A simple adaptive modification of the delayed feedback control algorithm is proposed. → It enables the control of unstable periodic orbits with unknown periods. → The delay time is varied continuously according to a gradient descend method. → The algorithm is embodied by three simple ordinary differential equations. → The validity of the algorithm is proven by computation of the Lyapunov exponents.
A Wearable System for Real-Time Continuous Monitoring of Physical Activity
Directory of Open Access Journals (Sweden)
Fabrizio Taffoni
2018-01-01
Full Text Available Over the last decades, wearable systems have gained interest for monitoring of physiological variables, promoting health, and improving exercise adherence in different populations ranging from elite athletes to patients. In this paper, we present a wearable system for the continuous real-time monitoring of respiratory frequency (fR, heart rate (HR, and movement cadence during physical activity. The system has been experimentally tested in the laboratory (by simulating the breathing pattern with a mechanical ventilator and by collecting data from one healthy volunteer. Results show the feasibility of the proposed device for real-time continuous monitoring of fR, HR, and movement cadence both in resting condition and during activity. Finally, different synchronization techniques have been investigated to enable simultaneous data collection from different wearable modules.
Transport properties of the continuous-time random walk with a long-tailed waiting-time density
International Nuclear Information System (INIS)
Weissman, H.; Havlin, S.; Weiss, G.H.
1989-01-01
The authors derive asymptotic properties of the propagator p(r, t) of a continuous-time random walk (CTRW) in which the waiting time density has the asymptotic form ψ(t) ∼ T α /t α+1 when t >> T and 0 = ∫ 0 ∞ τψ(τ)dτ is finite. One is that the asymptotic behavior of p(0, t) is demonstrated by the waiting time at the origin rather than by the dimension. The second difference is that in the presence of a field p(r, t) no longer remains symmetric around a moving peak. Rather, it is shown that the peak of this probability always occurs at r = 0, and the effect of the field is to break the symmetry that occurs when < ∞. Finally, they calculate similar properties, although in not such great detail, for the case in which the single-step jump probabilities themselves have an infinite mean
Modeling nonstationarity in space and time.
Shand, Lyndsay; Li, Bo
2017-09-01
We propose to model a spatio-temporal random field that has nonstationary covariance structure in both space and time domains by applying the concept of the dimension expansion method in Bornn et al. (2012). Simulations are conducted for both separable and nonseparable space-time covariance models, and the model is also illustrated with a streamflow dataset. Both simulation and data analyses show that modeling nonstationarity in both space and time can improve the predictive performance over stationary covariance models or models that are nonstationary in space but stationary in time. © 2017, The International Biometric Society.
Mean-variance Optimal Reinsurance-investment Strategy in Continuous Time
Directory of Open Access Journals (Sweden)
Daheng Peng
2017-10-01
Full Text Available In this paper, Lagrange method is used to solve the continuous-time mean-variance reinsurance-investment problem. Proportional reinsurance, multiple risky assets and risk-free asset are considered synthetically in the optimal strategy for insurers. By solving the backward stochastic differential equation for the Lagrange multiplier, we get the mean-variance optimal reinsurance-investment strategy and its effective frontier in explicit forms.
Directory of Open Access Journals (Sweden)
Hajnalka Péics
2016-08-01
Full Text Available The asymptotic behavior of solutions of the system of difference equations with continuous time and lag function between two known real functions is studied. The cases when the lag function is between two linear delay functions, between two power delay functions and between two constant delay functions are observed and illustrated by examples. The asymptotic estimates of solutions of the considered system are obtained.
Time series analysis of continuous-wave coherent Doppler Lidar wind measurements
International Nuclear Information System (INIS)
Sjoeholm, M; Mikkelsen, T; Mann, J; Enevoldsen, K; Courtney, M
2008-01-01
The influence of spatial volume averaging of a focused 1.55 μm continuous-wave coherent Doppler Lidar on observed wind turbulence measured in the atmospheric surface layer over homogeneous terrain is described and analysed. Comparison of Lidar-measured turbulent spectra with spectra simultaneously obtained from a mast-mounted sonic anemometer at 78 meters height at the test station for large wind turbines at Hoevsoere in Western Jutland, Denmark is presented for the first time
Stability Tests of Positive Fractional Continuous-time Linear Systems with Delays
Directory of Open Access Journals (Sweden)
Tadeusz Kaczorek
2013-06-01
Full Text Available Necessary and sufficient conditions for the asymptotic stability of positive fractional continuous-time linear systems with many delays are established. It is shown that: 1 the asymptotic stability of the positive fractional system is independent of their delays, 2 the checking of the asymptotic stability of the positive fractional systems with delays can be reduced to checking of the asymptotic stability of positive standard linear systems without delays.
Regularity of the Rotation Number for the One-Dimensional Time-Continuous Schroedinger Equation
Energy Technology Data Exchange (ETDEWEB)
Amor, Sana Hadj, E-mail: sana_hadjamor@yahoo.fr [Ecole Nationale d' Ingenieurs de Monastir (Tunisia)
2012-12-15
Starting from results already obtained for quasi-periodic co-cycles in SL(2, R), we show that the rotation number of the one-dimensional time-continuous Schroedinger equation with Diophantine frequencies and a small analytic potential has the behavior of a 1/2-Hoelder function. We give also a sub-exponential estimate of the length of the gaps which depends on its label given by the gap-labeling theorem.
Mean-variance Optimal Reinsurance-investment Strategy in Continuous Time
Daheng Peng; Fang Zhang
2017-01-01
In this paper, Lagrange method is used to solve the continuous-time mean-variance reinsurance-investment problem. Proportional reinsurance, multiple risky assets and risk-free asset are considered synthetically in the optimal strategy for insurers. By solving the backward stochastic differential equation for the Lagrange multiplier, we get the mean-variance optimal reinsurance-investment strategy and its effective frontier in explicit forms.
Time to refine key climate policy models
Barron, Alexander R.
2018-05-01
Ambition regarding climate change at the national level is critical but is often calibrated with the projected costs — as estimated by a small suite of energy-economic models. Weaknesses in several key areas in these models will continue to distort policy design unless collectively addressed by a diversity of researchers.
Investigation of continuous-time quantum walk via modules of Bose-Mesner and Terwilliger algebras
International Nuclear Information System (INIS)
Jafarizadeh, M A; Salimi, S
2006-01-01
The continuous-time quantum walk on the underlying graphs of association schemes has been studied, via the algebraic combinatorics structures of association schemes, namely semi-simple modules of their Bose-Mesner and Terwilliger algebras. It is shown that the Terwilliger algebra stratifies the graph into a (d + 1) disjoint union of strata which is different from the stratification based on distance, except for distance regular graphs. In underlying graphs of association schemes, the probability amplitudes and average probabilities are given in terms of dual eigenvalues of association schemes, such that the amplitudes of observing the continuous-time quantum walk on all sites belonging to a given stratum are the same, therefore there are at most (d + 1) different observing probabilities. The importance of association scheme in continuous-time quantum walk is shown by some worked out examples such as arbitrary finite group association schemes followed by symmetric S n , Dihedral D 2m and cyclic groups. At the end it is shown that the highest irreducible representations of Terwilliger algebras pave the way to use the spectral distributions method of Jafarizadeh and Salimi (2005 Preprint quant-ph/0510174) in studying quantum walk on some rather important graphs called distance regular graphs
Relay selection in cooperative communication systems over continuous time-varying fading channel
Directory of Open Access Journals (Sweden)
Ke Geng
2017-02-01
Full Text Available In this paper, we study relay selection under outdated channel state information (CSI in a decode-and-forward (DF cooperative system. Unlike previous researches on cooperative communication under outdated CSI, we consider that the channel varies continuously over time, i.e., the channel not only changes between relay selection and data transmission but also changes during data transmission. Thus the level of accuracy of the CSI used in relay selection degrades with data transmission. We first evaluate the packet error rate (PER of the cooperative system under continuous time-varying fading channel, and find that the PER performance deteriorates more seriously under continuous time-varying fading channel than when the channel is assumed to be constant during data transmission. Then, we propose a repeated relay selection (RRS strategy to improve the PER performance, in which the forwarded data is divided into multiple segments and relay is reselected before the transmission of each segment based on the updated CSI. Finally, we propose a combined relay selection (CRS strategy which takes advantage of three different relay selection strategies to further mitigate the impact of outdated CSI.
A New Continuous-Time Equality-Constrained Optimization to Avoid Singularity.
Quan, Quan; Cai, Kai-Yuan
2016-02-01
In equality-constrained optimization, a standard regularity assumption is often associated with feasible point methods, namely, that the gradients of constraints are linearly independent. In practice, the regularity assumption may be violated. In order to avoid such a singularity, a new projection matrix is proposed based on which a feasible point method to continuous-time, equality-constrained optimization is developed. First, the equality constraint is transformed into a continuous-time dynamical system with solutions that always satisfy the equality constraint. Second, a new projection matrix without singularity is proposed to realize the transformation. An update (or say a controller) is subsequently designed to decrease the objective function along the solutions of the transformed continuous-time dynamical system. The invariance principle is then applied to analyze the behavior of the solution. Furthermore, the proposed method is modified to address cases in which solutions do not satisfy the equality constraint. Finally, the proposed optimization approach is applied to three examples to demonstrate its effectiveness.
Directory of Open Access Journals (Sweden)
D. Seidl
1999-06-01
Full Text Available Among a variety of spectrogram methods Short-Time Fourier Transform (STFT and Continuous Wavelet Transform (CWT were selected to analyse transients in non-stationary tremor signals. Depending on the properties of the tremor signal a more suitable representation of the signal is gained by CWT. Three selected broadband tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli.
Hobolth, Asger; Stone, Eric A
2009-09-01
Analyses of serially-sampled data often begin with the assumption that the observations represent discrete samples from a latent continuous-time stochastic process. The continuous-time Markov chain (CTMC) is one such generative model whose popularity extends to a variety of disciplines ranging from computational finance to human genetics and genomics. A common theme among these diverse applications is the need to simulate sample paths of a CTMC conditional on realized data that is discretely observed. Here we present a general solution to this sampling problem when the CTMC is defined on a discrete and finite state space. Specifically, we consider the generation of sample paths, including intermediate states and times of transition, from a CTMC whose beginning and ending states are known across a time interval of length T. We first unify the literature through a discussion of the three predominant approaches: (1) modified rejection sampling, (2) direct sampling, and (3) uniformization. We then give analytical results for the complexity and efficiency of each method in terms of the instantaneous transition rate matrix Q of the CTMC, its beginning and ending states, and the length of sampling time T. In doing so, we show that no method dominates the others across all model specifications, and we give explicit proof of which method prevails for any given Q, T, and endpoints. Finally, we introduce and compare three applications of CTMCs to demonstrate the pitfalls of choosing an inefficient sampler.
Schimmack, Simon; Hinz, Ulf; Wagner, Andreas; Schmidt, Thomas; Strothmann, Hendrik; Büchler, Markus W; Schmitz-Winnenthal, Hubertus
2014-01-01
The introduction of the European Working Time Directive (EWTD) has greatly reduced training hours of surgical residents, which translates into 30% less surgical and clinical experience. Such a dramatic drop in attendance has serious implications such compromised quality of medical care. As the surgical department of the University of Heidelberg, our goal was to establish a model that was compliant with the EWTD while avoiding reduction in quality of patient care and surgical training. We first performed workload analyses and performance statistics for all working areas of our department (operation theater, emergency room, specialized consultations, surgical wards and on-call duties) using personal interviews, time cards, medical documentation software as well as data of the financial- and personnel-controlling sector of our administration. Using that information, we specifically designed an EWTD-compatible work model and implemented it. Surgical wards and operating rooms (ORs) were not compliant with the EWTD. Between 5 pm and 8 pm, three ORs were still operating two-thirds of the time. By creating an extended work shift (7:30 am-7:30 pm), we effectively reduced the workload to less than 49% from 4 pm and 8 am, allowing the combination of an eight-hour working day with a 16-hour on call duty; thus, maximizing surgical resident training and ensuring patient continuity of care while maintaining EDTW guidelines. A precise workload analysis is the key to success. The Heidelberg New Working Time Model provides a legal model, which, by avoiding rotating work shifts, assures quality of patient care and surgical training.
Vignion-Dewalle, Anne-Sophie; Baert, Gregory; Devos, Laura; Thecua, Elise; Vicentini, Claire; Mortier, Laurent; Mordon, Serge
2017-09-01
Photodynamic therapy (PDT) is an emerging treatment modality for various diseases, especially for dermatological conditions. Although, the standard PDT protocol for the treatment of actinic keratoses in Europe has shown to be effective, treatment-associated pain is often observed in patients. Different modifications to this protocol attempted to decrease pain have been investigated. The decrease in fluence rate seems to be a promising solution. Moreover, it has been suggested that light fractionation significantly increases the efficacy of PDT. Based on a flexible light-emitting textile, the FLEXITHERALIGHT device specifically provides a fractionated illumination at a fluence rate more than six times lower than that of the standard protocol. In a recently completed clinical trial of PDT for the treatment of actinic keratosis, the non-inferiority of a protocol involving illumination with the FLEXITHERALIGHT device after a short incubation time and referred to as the FLEXITHERALIGHT protocol has been assessed compared to the standard protocol. In this paper, we propose a comparison of the two above mentioned 635 nm red light protocols with 37 J/cm 2 in the PDT treatment of actinic keratosis: the standard protocol and the FLEXITHERALIGHT one through a mathematical modeling. This mathematical modeling, which slightly differs from the one we have already published, enables the local damage induced by the therapy to be estimated. The comparison performed in terms of the local damage induced by the therapy demonstrates that the FLEXITHERALIGHT protocol with lower fluence rate, light fractionation and shorter incubation time is somewhat less efficient than the standard protocol. Nevertheless, from the clinical trial results, the FLEXITHERALIGHT protocol results in non-inferior response rates compared to the standard protocol. This finding raises the question of whether the PDT local damage achieved by the FLEXITHERALIGHT protocol (respectively, the standard protocol
Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform
Poggi, V.; Fäh, D.; Giardini, D.
2013-03-01
A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.
On disturbed time continuity in schizophrenia: an elementary impairment in visual perception?
Directory of Open Access Journals (Sweden)
Anne eGiersch
2013-05-01
Full Text Available Schizophrenia is associated with a series of visual perception impairments, which might impact on the patients’ every day life and be related to clinical symptoms. However, the heterogeneity of the visual disorders make it a challenge to understand both the mechanisms and the consequences of these impairments, i.e. the way patients experience the outer world. Based on earlier psychiatry literature, we argue that issues regarding time might shed a new light on the disorders observed in patients with schizophrenia. We will briefly review the mechanisms involved in the sense of time continuity and clinical evidence that they are impaired in patients with schizophrenia. We will then summarize a recent experimental approach regarding the coding of time-event structure in time, namely the ability to discriminate between simultaneous and asynchronous events. The use of an original method of analysis allowed us to distinguish between explicit and implicit judgements of synchrony. We showed that for SOAs below 20 ms neither patients nor controls fuse events in time. On the contrary subjects distinguish events at an implicit level even when judging them as synchronous. In addition, the implicit responses of patients and controls differ qualitatively. It is as if controls always put more weight on the last occurred event, whereas patients have a difficulty to follow events in time at an implicit level. In patients, there is a clear dissociation between results at short and large asynchronies, that suggest selective mechanisms for the implicit coding of time-event structure. These results might explain the disruption of the sense of time continuity in patients. We argue that this line of research might also help us to better understand the mechanisms of the visual impairments in patients and how they see their environment.
Hellrung, Lydia; Dietrich, Anja; Hollmann, Maurice; Pleger, Burkhard; Kalberlah, Christian; Roggenhofer, Elisabeth; Villringer, Arno; Horstmann, Annette
2018-02-01
Real-time fMRI neurofeedback is a feasible tool to learn the volitional regulation of brain activity. So far, most studies provide continuous feedback information that is presented upon every volume acquisition. Although this maximizes the temporal resolution of feedback information, it may be accompanied by some disadvantages. Participants can be distracted from the regulation task due to (1) the intrinsic delay of the hemodynamic response and associated feedback and (2) limited cognitive resources available to simultaneously evaluate feedback information and stay engaged with the task. Here, we systematically investigate differences between groups presented with different variants of feedback (continuous vs. intermittent) and a control group receiving no feedback on their ability to regulate amygdala activity using positive memories and feelings. In contrast to the feedback groups, no learning effect was observed in the group without any feedback presentation. The group receiving intermittent feedback exhibited better amygdala regulation performance when compared with the group receiving continuous feedback. Behavioural measurements show that these effects were reflected in differences in task engagement. Overall, we not only demonstrate that the presentation of feedback is a prerequisite to learn volitional control of amygdala activity but also that intermittent feedback is superior to continuous feedback presentation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
S. I. Bartsev
2015-06-01
Full Text Available A possible method for experimental determination of parameters of the previously proposed continual mathematical model of soil organic matter transformation is theoretically considered in this paper. The previously proposed by the authors continual model of soil organic matter transformation, based on using the rate of matter transformation as a continual scale of its recalcitrance, describes the transformation process phenomenologically without going into detail of microbiological mechanisms of transformation. Thereby simplicity of the model is achieved. The model is represented in form of one differential equation in firstorder partial derivatives, which has an analytical solution in elementary functions. The model equation contains a small number of empirical parameters which generally characterize environmental conditions where the matter transformation process occurs and initial properties of the plant litter. Given the values of these parameters, it is possible to calculate dynamics of soil organic matter stocks and its distribution over transformation rate. In the present study, possible approaches for determination of the model parameters are considered and a simple method of their experimental measurement is proposed. An experiment of an incubation of chemically homogeneous samples in soil and multiple sequential measurement of the sample mass loss with time is proposed. An equation of time dynamics of mass loss of incubated homogeneous sample is derived from the basic assumption of the presented soil organic matter transformation model. Thus, fitting by the least squares method the parameters of sample mass loss curve calculated according the proposed mass loss dynamics equation allows to determine the parameters of the general equation of soil organic transformation model.
Bootstrapping a time series model
International Nuclear Information System (INIS)
Son, M.S.
1984-01-01
The bootstrap is a methodology for estimating standard errors. The idea is to use a Monte Carlo simulation experiment based on a nonparametric estimate of the error distribution. The main objective of this dissertation was to demonstrate the use of the bootstrap to attach standard errors to coefficient estimates and multi-period forecasts in a second-order autoregressive model fitted by least squares and maximum likelihood estimation. A secondary objective of this article was to present the bootstrap in the context of two econometric equations describing the unemployment rate and individual income tax in the state of Oklahoma. As it turns out, the conventional asymptotic formulae (both the least squares and maximum likelihood estimates) for estimating standard errors appear to overestimate the true standard errors. But there are two problems: 1) the first two observations y 1 and y 2 have been fixed, and 2) the residuals have not been inflated. After these two factors are considered in the trial and bootstrap experiment, both the conventional maximum likelihood and bootstrap estimates of the standard errors appear to be performing quite well. At present, there does not seem to be a good rule of thumb for deciding when the conventional asymptotic formulae will give acceptable results
Fluctuations around equilibrium laws in ergodic continuous-time random walks.
Schulz, Johannes H P; Barkai, Eli
2015-06-01
We study occupation time statistics in ergodic continuous-time random walks. Under thermal detailed balance conditions, the average occupation time is given by the Boltzmann-Gibbs canonical law. But close to the nonergodic phase, the finite-time fluctuations around this mean are large and nontrivial. They exhibit dual time scaling and distribution laws: the infinite density of large fluctuations complements the Lévy-stable density of bulk fluctuations. Neither of the two should be interpreted as a stand-alone limiting law, as each has its own deficiency: the infinite density has an infinite norm (despite particle conservation), while the stable distribution has an infinite variance (although occupation times are bounded). These unphysical divergences are remedied by consistent use and interpretation of both formulas. Interestingly, while the system's canonical equilibrium laws naturally determine the mean occupation time of the ergodic motion, they also control the infinite and Lévy-stable densities of fluctuations. The duality of stable and infinite densities is in fact ubiquitous for these dynamics, as it concerns the time averages of general physical observables.
Lag space estimation in time series modelling
DEFF Research Database (Denmark)
Goutte, Cyril
1997-01-01
The purpose of this article is to investigate some techniques for finding the relevant lag-space, i.e. input information, for time series modelling. This is an important aspect of time series modelling, as it conditions the design of the model through the regressor vector a.k.a. the input layer...
Daniel, Colin J.; Sleeter, Benjamin M.; Frid, Leonardo; Fortin, Marie-Josée
2018-01-01
State-and-transition simulation models (STSMs) provide a general framework for forecasting landscape dynamics, including projections of both vegetation and land-use/land-cover (LULC) change. The STSM method divides a landscape into spatially-referenced cells and then simulates the state of each cell forward in time, as a discrete-time stochastic process using a Monte Carlo approach, in response to any number of possible transitions. A current limitation of the STSM method, however, is that all of the state variables must be discrete.Here we present a new approach for extending a STSM, in order to account for continuous state variables, called a state-and-transition simulation model with stocks and flows (STSM-SF). The STSM-SF method allows for any number of continuous stocks to be defined for every spatial cell in the STSM, along with a suite of continuous flows specifying the rates at which stock levels change over time. The change in the level of each stock is then simulated forward in time, for each spatial cell, as a discrete-time stochastic process. The method differs from the traditional systems dynamics approach to stock-flow modelling in that the stocks and flows can be spatially-explicit, and the flows can be expressed as a function of the STSM states and transitions.We demonstrate the STSM-SF method by integrating a spatially-explicit carbon (C) budget model with a STSM of LULC change for the state of Hawai'i, USA. In this example, continuous stocks are pools of terrestrial C, while the flows are the possible fluxes of C between these pools. Importantly, several of these C fluxes are triggered by corresponding LULC transitions in the STSM. Model outputs include changes in the spatial and temporal distribution of C pools and fluxes across the landscape in response to projected future changes in LULC over the next 50 years.The new STSM-SF method allows both discrete and continuous state variables to be integrated into a STSM, including interactions between
The new Big Bang Theory according to dimensional continuous space-time theory
International Nuclear Information System (INIS)
Martini, Luiz Cesar
2014-01-01
This New View of the Big Bang Theory results from the Dimensional Continuous Space-Time Theory, for which the introduction was presented in [1]. This theory is based on the concept that the primitive Universe before the Big Bang was constituted only from elementary cells of potential energy disposed side by side. In the primitive Universe there were no particles, charges, movement and the Universe temperature was absolute zero Kelvin. The time was always present, even in the primitive Universe, time is the integral part of the empty space, it is the dynamic energy of space and it is responsible for the movement of matter and energy inside the Universe. The empty space is totally stationary; the primitive Universe was infinite and totally occupied by elementary cells of potential energy. In its event, the Big Bang started a production of matter, charges, energy liberation, dynamic movement, temperature increase and the conformation of galaxies respecting a specific formation law. This article presents the theoretical formation of the Galaxies starting from a basic equation of the Dimensional Continuous Space-time Theory.
The New Big Bang Theory according to Dimensional Continuous Space-Time Theory
Martini, Luiz Cesar
2014-04-01
This New View of the Big Bang Theory results from the Dimensional Continuous Space-Time Theory, for which the introduction was presented in [1]. This theory is based on the concept that the primitive Universe before the Big Bang was constituted only from elementary cells of potential energy disposed side by side. In the primitive Universe there were no particles, charges, movement and the Universe temperature was absolute zero Kelvin. The time was always present, even in the primitive Universe, time is the integral part of the empty space, it is the dynamic energy of space and it is responsible for the movement of matter and energy inside the Universe. The empty space is totally stationary; the primitive Universe was infinite and totally occupied by elementary cells of potential energy. In its event, the Big Bang started a production of matter, charges, energy liberation, dynamic movement, temperature increase and the conformation of galaxies respecting a specific formation law. This article presents the theoretical formation of the Galaxies starting from a basic equation of the Dimensional Continuous Space-time Theory.
Real-time electrocardiogram transmission from Mount Everest during continued ascent.
Kao, Wei-Fong; Huang, Jyh-How; Kuo, Terry B J; Chang, Po-Lun; Chang, Wen-Chen; Chan, Kuo-Hung; Liu, Wen-Hsiung; Wang, Shih-Hao; Su, Tzu-Yao; Chiang, Hsiu-chen; Chen, Jin-Jong
2013-01-01
The feasibility of a real-time electrocardiogram (ECG) transmission via satellite phone from Mount Everest to determine a climber's suitability for continued ascent was examined. Four Taiwanese climbers were enrolled in the 2009 Mount Everest summit program. Physiological measurements were taken at base camp (5300 m), camp 2 (6400 m), camp 3 (7100 m), and camp 4 (7950 m) 1 hour after arrival and following a 10 minute rest period. A total of 3 out of 4 climbers were able to summit Mount Everest successfully. Overall, ECG and global positioning system (GPS) coordinates of climbers were transmitted in real-time via satellite phone successfully from base camp, camp 2, camp 3, and camp 4. At each camp, Resting Heart Rate (RHR) was transmitted and recorded: base camp (54-113 bpm), camp 2 (94-130 bpm), camp 3 (98-115 bpm), and camp 4 (93-111 bpm). Real-time ECG and GPS coordinate transmission via satellite phone is feasible for climbers on Mount Everest. Real-time RHR data can be used to evaluate a climber's physiological capacity to continue an ascent and to summit.
Real-time electrocardiogram transmission from Mount Everest during continued ascent.
Directory of Open Access Journals (Sweden)
Wei-Fong Kao
Full Text Available The feasibility of a real-time electrocardiogram (ECG transmission via satellite phone from Mount Everest to determine a climber's suitability for continued ascent was examined. Four Taiwanese climbers were enrolled in the 2009 Mount Everest summit program. Physiological measurements were taken at base camp (5300 m, camp 2 (6400 m, camp 3 (7100 m, and camp 4 (7950 m 1 hour after arrival and following a 10 minute rest period. A total of 3 out of 4 climbers were able to summit Mount Everest successfully. Overall, ECG and global positioning system (GPS coordinates of climbers were transmitted in real-time via satellite phone successfully from base camp, camp 2, camp 3, and camp 4. At each camp, Resting Heart Rate (RHR was transmitted and recorded: base camp (54-113 bpm, camp 2 (94-130 bpm, camp 3 (98-115 bpm, and camp 4 (93-111 bpm. Real-time ECG and GPS coordinate transmission via satellite phone is feasible for climbers on Mount Everest. Real-time RHR data can be used to evaluate a climber's physiological capacity to continue an ascent and to summit.
Directory of Open Access Journals (Sweden)
T. A. Mikhailova
2016-01-01
Full Text Available In the paper the algorithm of modeling of continuous low-temperature free-radical butadiene-styrene copolymerization process in emulsion based on the Monte-Carlo method is offered. This process is the cornerstone of industrial production butadiene – styrene synthetic rubber which is the most widespread large-capacity rubber of general purpose. Imitation of growth of each macromolecule of the formed copolymer and tracking of the processes happening to it is the basis of algorithm of modeling. Modeling is carried out taking into account residence-time distribution of particles in system that gives the chance to research the process proceeding in the battery of consistently connected polymerization reactors. At the same time each polymerization reactor represents the continuous stirred tank reactor. Since the process is continuous, it is considered continuous addition of portions to the reaction mixture in the first reactor of battery. The constructed model allows to research molecular-weight and viscous characteristics of the formed copolymerization product, to predict the mass content of butadiene and styrene in copolymer, to carry out calculation of molecular-weight distribution of the received product at any moment of conducting process. According to the results of computational experiments analyzed the influence of mode of the process of the regulator introduced during the maintaining on change of characteristics of the formed butadiene-styrene copolymer. As the considered process takes place with participation of monomers of two types, besides listed the model allows to research compositional heterogeneity of the received product that is to carry out calculation of composite distribution and distribution of macromolecules for the size and structure. On the basis of the proposed algorithm created the software tool that allows you to keep track of changes in the characteristics of the resulting product in the dynamics.
Model based Control of a Continuous Yeast Fermentation
DEFF Research Database (Denmark)
Andersen, Maria Yolanda; Brabrand, Henrik; Jørgensen, Sten Bay
1991-01-01
Control of a continuous fermentation with Saccharomyces cerevisiae is performed by manipulation of the feed flow rate using an ethanol measurement in the exit gas The process is controlled at the critical dilution rate with a low ethanol concentration of 40-50 mg/l. A standard PI controller is able...
Eigenfunction statistics for Anderson model with Hölder continuous ...
Indian Academy of Sciences (India)
We consider random Schrödinger operators on l 2 ( Z d ) with α -Hölder continuous ( 0 < α ≤ 1 ) single site distribution. In localized regime, we study the distribution of eigenfunctions in space and energy simultaneously. In a certain scaling limit, we prove limit points are Poisson.
On the modeling of continuous mixers. Part II: The cokneader
Elemans, P.H.M.; Meijer, H.E.H.
1990-01-01
The Buss cokneader is a single-screw extruder with interrupted flights. Pins from the barrel are inserted into the screw channel. The screw is both rotating and oscillating. Due to this action, screw flights are continuously wiped by the pins. During one passage of the pin, the material is not only
A model supporting Business Continuity auditing & planning in Information Systems
Zambon, Emmanuele; Bolzoni, D.; Etalle, Sandro; Salvato, Marco
2007-01-01
One of the main tasks of IT business continuity planing (BCP) is guaranteeing that incidents affecting the IT infrastructure do not affect the availability of IT-dependent business processes beyond a given acceptable extent. Carrying out BCP of information systems is particularly challenging because
A model supporting Business Continuity auditing & planning in Information Systems
Zambon, Emmanuele; Bolzoni, D.; Etalle, Sandro; Salvato, Marco
2007-01-01
One of the main tasks of IT business continuity planning (BCP) is to guarantee that incidents affecting the IT infrastructure do not affect the availability of IT-dependent business processes beyond a given acceptable extent. Carrying out BCP of information systems is particularly challenging,
Cooperation in stochastic inventory models with continuous review
Boucherie, Richardus J.; Chessa, Michela; Timmer, Judith B.
Consider multiple companies that continuously review their inventories and face Poisson demand. We study cooperation strategies for these companies and analyse if there exist allocations of the joint cost such that any company has lower costs than on its own; such allocations are called stable cost
Binder, Harald; Sauerbrei, Willi; Royston, Patrick
2013-06-15
In observational studies, many continuous or categorical covariates may be related to an outcome. Various spline-based procedures or the multivariable fractional polynomial (MFP) procedure can be used to identify important variables and functional forms for continuous covariates. This is the main aim of an explanatory model, as opposed to a model only for prediction. The type of analysis often guides the complexity of the final model. Spline-based procedures and MFP have tuning parameters for choosing the required complexity. To compare model selection approaches, we perform a simulation study in the linear regression context based on a data structure intended to reflect realistic biomedical data. We vary the sample size, variance explained and complexity parameters for model selection. We consider 15 variables. A sample size of 200 (1000) and R(2) = 0.2 (0.8) is the scenario with the smallest (largest) amount of information. For assessing performance, we consider prediction error, correct and incorrect inclusion of covariates, qualitative measures for judging selected functional forms and further novel criteria. From limited information, a suitable explanatory model cannot be obtained. Prediction performance from all types of models is similar. With a medium amount of information, MFP performs better than splines on several criteria. MFP better recovers simpler functions, whereas splines better recover more complex functions. For a large amount of information and no local structure, MFP and the spline procedures often select similar explanatory models. Copyright © 2012 John Wiley & Sons, Ltd.
International Nuclear Information System (INIS)
Pant, H.J.; Sharma, V.K.; Shenoy, K.T.; Sreenivas, T.
2015-01-01
An alkaline based continuous leaching process is commonly used for extraction of uranium from uranium ore. The reactor in which the leaching process is carried out is called a continuous leaching reactor (CLR) and is expected to behave as a continuously stirred tank reactor (CSTR) for the liquid phase. A pilot-scale CLR used in a Technology Demonstration Pilot Plant (TDPP) was designed, installed and operated; and thus needed to be tested for its hydrodynamic behavior. A radiotracer investigation was carried out in the CLR for measurement of residence time distribution (RTD) of liquid phase with specific objectives to characterize the flow behavior of the reactor and validate its design. Bromine-82 as ammonium bromide was used as a radiotracer and about 40–60 MBq activity was used in each run. The measured RTD curves were treated and mean residence times were determined and simulated using a tanks-in-series model. The result of simulation indicated no flow abnormality and the reactor behaved as an ideal CSTR for the range of the operating conditions used in the investigation. - Highlights: • Radiotracer technique was applied for evaluation of design of a pilot-scale continuous leaching reactor. • Mean residence time and dead volume were estimated. Dead volume was found to be ranging from 4% to 15% at different operating conditions. • Tank-in-series model was used to simulate the measured RTD data and was found suitable to describe the flow in the reactor. • No flow abnormality was found and the reactor behaved as a well-mixed system. The design of the reactor was validated
Astrand, Elaine
2018-06-01
Objective. Working memory (WM), crucial for successful behavioral performance in most of our everyday activities, holds a central role in goal-directed behavior. As task demands increase, inducing higher WM load, maintaining successful behavioral performance requires the brain to work at the higher end of its capacity. Because it is depending on both external and internal factors, individual WM load likely varies in a continuous fashion. The feasibility to extract such a continuous measure in time that correlates to behavioral performance during a working memory task remains unsolved. Approach. Multivariate pattern decoding was used to test whether a decoder constructed from two discrete levels of WM load can generalize to produce a continuous measure that predicts task performance. Specifically, a linear regression with L2-regularization was chosen with input features from EEG oscillatory activity recorded from healthy participants while performing the n-back task, n\\in [1,2] . Main results. The feasibility to extract a continuous time-resolved measure that correlates positively to trial-by-trial working memory task performance is demonstrated (r = 0.47, p < 0.05). It is furthermore shown that this measure allows to predict task performance before action (r = 0.49, p < 0.05). We show that the extracted continuous measure enables to study the temporal dynamics of the complex activation pattern of WM encoding during the n-back task. Specifically, temporally precise contributions of different spectral features are observed which extends previous findings of traditional univariate approaches. Significance. These results constitute an important contribution towards a wide range of applications in the field of cognitive brain–machine interfaces. Monitoring mental processes related to attention and WM load to reduce the risk of committing errors in high-risk environments could potentially prevent many devastating consequences or
Lam, H K; Leung, Frank H F
2007-10-01
This correspondence presents the stability analysis and performance design of the continuous-time fuzzy-model-based control systems. The idea of the nonparallel-distributed-compensation (non-PDC) control laws is extended to the continuous-time fuzzy-model-based control systems. A nonlinear controller with non-PDC control laws is proposed to stabilize the continuous-time nonlinear systems in Takagi-Sugeno's form. To produce the stability-analysis result, a parameter-dependent Lyapunov function (PDLF) is employed. However, two difficulties are usually encountered: 1) the time-derivative terms produced by the PDLF will complicate the stability analysis and 2) the stability conditions are not in the form of linear-matrix inequalities (LMIs) that aid the design of feedback gains. To tackle the first difficulty, the time-derivative terms are represented by some weighted-sum terms in some existing approaches, which will increase the number of stability conditions significantly. In view of the second difficulty, some positive-definitive terms are added in order to cast the stability conditions into LMIs. In this correspondence, the favorable properties of the membership functions and nonlinear control laws, which allow the introduction of some free matrices, are employed to alleviate the two difficulties while retaining the favorable properties of PDLF-based approach. LMI-based stability conditions are derived to ensure the system stability. Furthermore, based on a common scalar performance index, LMI-based performance conditions are derived to guarantee the system performance. Simulation examples are given to illustrate the effectiveness of the proposed approach.
Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge.
MacDonald, N A; Cappelli, M A; Hargus, W A
2012-11-01
A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s(')[1/2](1)(0)-6p(')[3/2](2) xenon atomic transition at λ = 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.
Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge
Energy Technology Data Exchange (ETDEWEB)
MacDonald, N. A.; Cappelli, M. A. [Stanford Plasma Physics Laboratory, Stanford University, Stanford, California 94305 (United States); Hargus, W. A. Jr. [Air Force Research Laboratory, Edwards AFB, California 93524 (United States)
2012-11-15
A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s{sup Prime }[1/2]{sub 1}{sup 0}-6p{sup Prime }[3/2]{sub 2} xenon atomic transition at {lambda}= 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.
Formal Modeling and Analysis of Timed Systems
DEFF Research Database (Denmark)
Larsen, Kim Guldstrand; Niebert, Peter
This book constitutes the thoroughly refereed post-proceedings of the First International Workshop on Formal Modeling and Analysis of Timed Systems, FORMATS 2003, held in Marseille, France in September 2003. The 19 revised full papers presented together with an invited paper and the abstracts of ...... systems, discrete time systems, timed languages, and real-time operating systems....... of two invited talks were carefully selected from 36 submissions during two rounds of reviewing and improvement. All current aspects of formal method for modeling and analyzing timed systems are addressed; among the timed systems dealt with are timed automata, timed Petri nets, max-plus algebras, real-time......This book constitutes the thoroughly refereed post-proceedings of the First International Workshop on Formal Modeling and Analysis of Timed Systems, FORMATS 2003, held in Marseille, France in September 2003. The 19 revised full papers presented together with an invited paper and the abstracts...
Estimating the continuous-time dynamics of energy and fat metabolism in mice.
Guo, Juen; Hall, Kevin D
2009-09-01
The mouse has become the most popular organism for investigating molecular mechanisms of body weight regulation. But understanding the physiological context by which a molecule exerts its effect on body weight requires knowledge of energy intake, energy expenditure, and fuel selection. Furthermore, measurements of these variables made at an isolated time point cannot explain why body weight has its present value since body weight is determined by the past history of energy and macronutrient imbalance. While food intake and body weight changes can be frequently measured over several weeks (the relevant time scale for mice), correspondingly frequent measurements of energy expenditure and fuel selection are not currently feasible. To address this issue, we developed a mathematical method based on the law of energy conservation that uses the measured time course of body weight and food intake to estimate the underlying continuous-time dynamics of energy output and net fat oxidation. We applied our methodology to male C57BL/6 mice consuming various ad libitum diets during weight gain and loss over several weeks and present the first continuous-time estimates of energy output and net fat oxidation rates underlying the observed body composition changes. We show that transient energy and fat imbalances in the first several days following a diet switch can account for a significant fraction of the total body weight change. We also discovered a time-invariant curve relating body fat and fat-free masses in male C57BL/6 mice, and the shape of this curve determines how diet, fuel selection, and body composition are interrelated.
Zhu, Xiaoshu
2013-01-01
The current study introduced a general modeling framework, multilevel mixture IRT (MMIRT) which detects and describes characteristics of population heterogeneity, while accommodating the hierarchical data structure. In addition to introducing both continuous and discrete approaches to MMIRT, the main focus of the current study was to distinguish…
A scan statistic for continuous data based on the normal probability model
Directory of Open Access Journals (Sweden)
Huang Lan
2009-10-01
Full Text Available Abstract Temporal, spatial and space-time scan statistics are commonly used to detect and evaluate the statistical significance of temporal and/or geographical disease clusters, without any prior assumptions on the location, time period or size of those clusters. Scan statistics are mostly used for count data, such as disease incidence or mortality. Sometimes there is an interest in looking for clusters with respect to a continuous variable, such as lead levels in children or low birth weight. For such continuous data, we present a scan statistic where the likelihood is calculated using the the normal probability model. It may also be used for other distributions, while still maintaining the correct alpha level. In an application of the new method, we look for geographical clusters of low birth weight in New York City.
Continuous-time digital front-ends for multistandard wireless transmission
Nuyts, Pieter A J; Dehaene, Wim
2014-01-01
This book describes the design of fully digital multistandard transmitter front-ends which can directly drive one or more switching power amplifiers, thus eliminating all other analog components. After reviewing different architectures, the authors focus on polar architectures using pulse width modulation (PWM), which are entirely based on unclocked delay lines and other continuous-time digital hardware. As a result, readers are enabled to shift accuracy concerns from the voltage domain to the time domain, to coincide with submicron CMOS technology scaling. The authors present different architectural options and compare them, based on their effect on the signal and spectrum quality. Next, a high-level theoretical analysis of two different PWM-based architectures – baseband PWM and RF PWM – is made. On the circuit level, traditional digital components and design techniques are revisited from the point of view of continuous-time digital circuits. Important design criteria are identified and diff...
Energy Technology Data Exchange (ETDEWEB)
Migunov, Vadim, E-mail: v.migunov@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Dwyer, Christian [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Boothroyd, Chris B. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Pozzi, Giulio [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Department of Physics and Astronomy, University of Bologna, viale B. Pichat 6/2, Bologna 40127 (Italy); Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany)
2017-07-15
The technique of double exposure electron holography, which is based on the superposition of two off-axis electron holograms, was originally introduced before the availability of digital image processing to allow differences between electron-optical phases encoded in two electron holograms to be visualised directly without the need for holographic reconstruction. Here, we review the original method and show how it can now be extended to permit quantitative studies of phase shifts that oscillate in time. We begin with a description of the theory of off-axis electron hologram formation for a time-dependent electron wave that results from the excitation of a specimen using an external stimulus with a square, sinusoidal, triangular or other temporal dependence. We refer to the more general method as continuous exposure electron holography, present preliminary experimental measurements and discuss how the technique can be used to image electrostatic potentials and magnetic fields during high frequency switching experiments. - Highlights: • Double and continuous exposure electron holography are described in detail. • The ability to perform quantitative studies of phase shifts that are oscillating in time is illustrated. • Theoretical considerations related to noise are presented. • Future high frequency electromagnetic switching experiments are proposed.
Continuous business model innovation in the Danish newspaper industry
DEFF Research Database (Denmark)
Holm, Anna B.; Günzel, Franziska
Business model innovation is undoubtedly of strategic importance in innovation management. However, little is known on how in fact how companies experiment and innovate with regards to their business models. To shed more light on this issue, we have conducted a qualitative study of the newspaper...... industry in Denmark. Business model innovation became imperative for the traditional newspaper publishers after many years of the declining readership and revenues. We collected rich primary and secondary data from various sources during 2010-2012. Our analysis suggests that changing business models in its...... various parts does not guarantee a successful business model change and may even harm the existing well-functioning business model. To innovate a business model successfully, managers need to secure the business logic flow and its feedback loops....
Semi-continuous and multigroup models in extended kinetic theory
International Nuclear Information System (INIS)
Koller, W.
2000-01-01
The aim of this thesis is to study energy discretization of the Boltzmann equation in the framework of extended kinetic theory. In case that external fields can be neglected, the semi- continuous Boltzmann equation yields a sound basis for various generalizations. Semi-continuous kinetic equations describing a three component gas mixture interacting with monochromatic photons as well as a four component gas mixture undergoing chemical reactions are established and investigated. These equations reflect all major aspects (conservation laws, equilibria, H-theorem) of the full continuous kinetic description. For the treatment of the spatial dependence, an expansion of the distribution function in terms of Legendre polynomials is carried out. An implicit finite differencing scheme is combined with the operator splitting method. The obtained numerical schemes are applied to the space homogeneous study of binary chemical reactions and to spatially one-dimensional laser-induced acoustic waves. In the presence of external fields, the developed overlapping multigroup approach (with the spline-interpolation as its extension) is well suited for numerical studies. Furthermore, two formulations of consistent multigroup approaches to the non-linear Boltzmann equation are presented. (author)
Time series modeling, computation, and inference
Prado, Raquel
2010-01-01
The authors systematically develop a state-of-the-art analysis and modeling of time series. … this book is well organized and well written. The authors present various statistical models for engineers to solve problems in time series analysis. Readers no doubt will learn state-of-the-art techniques from this book.-Hsun-Hsien Chang, Computing Reviews, March 2012My favorite chapters were on dynamic linear models and vector AR and vector ARMA models.-William Seaver, Technometrics, August 2011… a very modern entry to the field of time-series modelling, with a rich reference list of the current lit
Alyushin, M. V.; Kolobashkina, L. V.
2017-01-01
The education technology with continuous monitoring of the current functional and emotional students' states is suggested. The application of this technology allows one to increase the effectiveness of practice through informed planning of the training load. For monitoring the current functional and emotional students' states non-contact remote technologies of person bioparameters registration are encouraged to use. These technologies are based on recording and processing in real time the main person bioparameters in a purely passive mode. Experimental testing of this technology has confirmed its effectiveness.
On the rate of convergence in von Neumann's ergodic theorem with continuous time
International Nuclear Information System (INIS)
Kachurovskii, A G; Reshetenko, Anna V
2010-01-01
The rate of convergence in von Neumann's mean ergodic theorem is studied for continuous time. The condition that the rate of convergence of the ergodic averages be of power-law type is shown to be equivalent to requiring that the spectral measure of the corresponding dynamical system have a power-type singularity at 0. This forces the estimates for the convergence rate in the above ergodic theorem to be necessarily spectral. All the results obtained have obvious exact analogues for wide-sense stationary processes. Bibliography: 7 titles.
Study of N-13 decay on time using continuous kinetic function method
International Nuclear Information System (INIS)
Tran Dai Nghiep; Vu Hoang Lam; Nguyen Ngoc Son; Nguyen Duc Thanh
1993-01-01
The decay function from radioisotope 13 N formed in the reaction 14 N(γ,n) 13 N was registered by high resolution gamma spectrometer in multiscanning mode with gamma energy 511 keV. The experimental data was processed by common and kinetic function method. The continuous comparison of the decay function on time permits to determinate possible deviation from purely exponential decay curve. The results were described by several decay theories. The degrees of corresponding between theories and experiment were evaluated by goodness factor. A complex type of decay was considered. (author). 9 refs, 2 tabs, 6 figs
DEFF Research Database (Denmark)
Lauridsen, M M; Schaffalitzky de Muckadell, O B; Vilstrup, H
2015-01-01
Minimal hepatic encephalopathy (MHE) is a frequent complication to liver cirrhosis that causes poor quality of life, a great burden to caregivers, and can be treated. For diagnosis and grading the international guidelines recommend the use of psychometric tests of different modalities (computer...... based vs. paper and pencil). To compare results of the Continuous Reaction time (CRT) and the Portosystemic Encephalopathy (PSE) tests in a large unselected cohort of cirrhosis patients without clinically detectable brain impairment and to clinically characterize the patients according to their test...
A 10 MHz Bandwidth Continuous-Time Delta-Sigma Modulator for Portable Ultrasound Scanners
DEFF Research Database (Denmark)
Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger; Bruun, Erik
2016-01-01
comparator and a pull-down clocked latch. The feedback signal is generated with voltage DACs based on transmission gates. Using this implementation, a small and low-power solution required for portable ultrasound scanner applications is achieved. The modulator has a bandwidth of 10 MHz with an oversampling......A fourth-order 1-bit continuous-time delta-sigma modulator designed in a 65 nm process for portable ultrasound scanners is presented in this paper. The loop filter consists of RCintegrators, with programmable capacitor arrays and resistors, and the quantizer is implemented with a high-speed clocked...
An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems
Directory of Open Access Journals (Sweden)
Xie Wei
2008-01-01
Full Text Available Abstract An equivalent linear matrix inequality (LMI representation of bounded real lemma (BRL for linear continuous-time systems is introduced. As to LTI system including polytopic-type uncertainties, by using a parameter-dependent Lyapunov function, there are several LMIs-based formulations for the analysis and synthesis of performance. All of these representations only provide us with different sufficient conditions. Compared with previous methods, this new representation proposed here provides us the possibility to obtain better results. Finally, some numerical examples are illustrated to show the effectiveness of proposed method.
Downing, Bryan D.; Bergamaschi, Brian; Kendall, Carol; Kraus, Tamara; Dennis, Kate J.; Carter, Jeffery A.; von Dessonneck, Travis
2016-01-01
Stable isotopes present in water (δ2H, δ18O) have been used extensively to evaluate hydrological processes on the basis of parameters such as evaporation, precipitation, mixing, and residence time. In estuarine aquatic habitats, residence time (τ) is a major driver of biogeochemical processes, affecting trophic subsidies and conditions in fish-spawning habitats. But τ is highly variable in estuaries, owing to constant changes in river inflows, tides, wind, and water height, all of which combine to affect τ in unpredictable ways. It recently became feasible to measure δ2H and δ18O continuously, at a high sampling frequency (1 Hz), using diffusion sample introduction into a cavity ring-down spectrometer. To better understand the relationship of τ to biogeochemical processes in a dynamic estuarine system, we continuously measured δ2H and δ18O, nitrate and water quality parameters, on board a small, high-speed boat (5 to >10 m s–1) fitted with a hull-mounted underwater intake. We then calculated τ as is classically done using the isotopic signals of evaporation. The result was high-resolution (∼10 m) maps of residence time, nitrate, and other parameters that showed strong spatial gradients corresponding to geomorphic attributes of the different channels in the area. The mean measured value of τ was 30.5 d, with a range of 0–50 d. We used the measured spatial gradients in both τ and nitrate to calculate whole-ecosystem uptake rates, and the values ranged from 0.006 to 0.039 d–1. The capability to measure residence time over single tidal cycles in estuaries will be useful for evaluating and further understanding drivers of phytoplankton abundance, resolving differences attributable to mixing and water sources, explicitly calculating biogeochemical rates, and exploring the complex linkages among time-dependent biogeochemical processes in hydrodynamically complex environments such as estuaries.
Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach
Comolli, Alessandro; Dentz, Marco
2017-09-01
We study the causes of anomalous dispersion in Darcy-scale porous media characterized by spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial variability in the flow properties through Darcy's law and thus impacts on solute and particle transport. We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conductivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity length scales are kinematically coupled with the transition time through velocity. We show that the average particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales. The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dispersion in terms of heterogeneity correlation and the distribution of conductivity point values. We derive analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their mechanisms, however are very different, which manifests in the distributions of particle positions and arrival times, which plays a central role for the prediction of the fate of dissolved substances in
Bauer, Daniel J.; Curran, Patrick J.
2004-01-01
Structural equation mixture modeling (SEMM) integrates continuous and discrete latent variable models. Drawing on prior research on the relationships between continuous and discrete latent variable models, the authors identify 3 conditions that may lead to the estimation of spurious latent classes in SEMM: misspecification of the structural model,…
Cummins, Allison M; Denney-Wilson, E; Homer, C S E
2017-05-01
The aim of this paper was to explore the mentoring experiences of new graduate midwives working in midwifery continuity of care models in Australia. Most new graduates find employment in hospitals and undertake a new graduate program rotating through different wards. A limited number of new graduate midwives were found to be working in midwifery continuity of care. The new graduate midwives in this study were mentored by more experienced midwives. Mentoring in midwifery has been described as being concerned with confidence building based through a personal relationship. A qualitative descriptive study was undertaken and the data were analysed using continuity of care as a framework. We found having a mentor was important, knowing the mentor made it easier for the new graduate to call their mentor at any time. The new graduate midwives had respect for their mentors and the support helped build their confidence in transitioning from student to midwife. With the expansion of midwifery continuity of care models in Australia mentoring should be provided for transition midwives working in this way. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
RADON CONCENTRATION TIME SERIES MODELING AND APPLICATION DISCUSSION.
Stránský, V; Thinová, L
2017-11-01
In the year 2010 a continual radon measurement was established at Mladeč Caves in the Czech Republic using a continual radon monitor RADIM3A. In order to model radon time series in the years 2010-15, the Box-Jenkins Methodology, often used in econometrics, was applied. Because of the behavior of radon concentrations (RCs), a seasonal integrated, autoregressive moving averages model with exogenous variables (SARIMAX) has been chosen to model the measured time series. This model uses the time series seasonality, previously acquired values and delayed atmospheric parameters, to forecast RC. The developed model for RC time series is called regARIMA(5,1,3). Model residuals could be retrospectively compared with seismic evidence of local or global earthquakes, which occurred during the RCs measurement. This technique enables us to asses if continuously measured RC could serve an earthquake precursor. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kinematic Cosmology & a new ``Steady State'' Model of Continued Creation
Wegener, Mogens
2006-03-01
Only a new "steady state" model justifies the observations of fully mature galaxies at ever increasing distances. The basic idea behind the world model presented here, which is a synthesis of the cosmologies of Parmenides and Herakleitos, is that the invariant structure of the infinite contents of a universe in flux may be depicted as a finite hyperbolic pseudo-sphere.
A General Cognitive Diagnosis Model for Continuous-Response Data
Minchen, Nathan; de la Torre, Jimmy
2018-01-01
Cognitive diagnosis models (CDMs) allow for the extraction of fine-grained, multidimensional diagnostic information from appropriately designed tests. In recent years, interest in such models has grown as formative assessment grows in popularity. Many dichotomous as well as several polytomous CDMs have been proposed in the last two decades, but…
Vibration modeling of structural fuzzy with continuous boundary
DEFF Research Database (Denmark)
Friis, Lars; Ohlrich, Mogens
2008-01-01
a multitude of different sprung masses each strongly resisting any motion of the main structure (master) at their base antiresonance. The “theory of structural fuzzy” is intended for modeling such high damping. In the present article the theory of fuzzy structures is briefly outlined and a method of modeling...
Soil moisture prediction: bridging event and continuous runoff modelling
Sheikh, V.
2006-01-01
The general objective of this study was to investigate the possibility of providing spatially distributed soil moisture data for event-based hydrological models close before a rainfall event. The study area is known as "Catsop", a small catchmment in south Limburg. The models used are: LISEM and
Continuum-time Hamiltonian for the Baxter's model
International Nuclear Information System (INIS)
Libero, V.L.
1983-01-01
The associated Hamiltonian for the symmetric eight-vertex model is obtained by taking the time-continuous limit in an equivalent Ashkin-Teller model. The result is a Heisenberg Hamiltonian with coefficients J sub(x), J sub(y) and J sub(z) identical to those found by Sutherland for choices of the parameters a, b, c and d that bring the model close to the transition. The change in the operators is accomplished explicitly, the relation between the crossover operator for the Ashkin-Teller model and the energy operator for the eight-vertex model being obtained in a transparent form. (Author) [pt