WorldWideScience

Sample records for continuous stiffened plate

  1. A Location Method Using Sensor Arrays for Continuous Gas Leakage in Integrally Stiffened Plates Based on the Acoustic Characteristics of the Stiffener

    Directory of Open Access Journals (Sweden)

    Xu Bian

    2015-09-01

    Full Text Available This paper proposes a continuous leakage location method based on the ultrasonic array sensor, which is specific to continuous gas leakage in a pressure container with an integral stiffener. This method collects the ultrasonic signals generated from the leakage hole through the piezoelectric ultrasonic sensor array, and analyzes the space-time correlation of every collected signal in the array. Meanwhile, it combines with the method of frequency compensation and superposition in time domain (SITD, based on the acoustic characteristics of the stiffener, to obtain a high-accuracy location result on the stiffener wall. According to the experimental results, the method successfully solves the orientation problem concerning continuous ultrasonic signals generated from leakage sources, and acquires high accuracy location information on the leakage source using a combination of multiple sets of orienting results. The mean value of location absolute error is 13.51 mm on the one-square-meter plate with an integral stiffener (4 mm width; 20 mm height; 197 mm spacing, and the maximum location absolute error is generally within a ±25 mm interval.

  2. Impact behaviour of stiffened steel plates

    OpenAIRE

    Sølvernes, Sindre Hellem

    2015-01-01

    The impact behavior of stiffened steel plates subjected to impact loading from concentrated loads was studied experimentally and numerically. Both dynamic and quasi-static tests of stiffened steel plates with geometry adopted from a typical external deck area on an offshore platform were conducted. The quasi-static tests were performed to study the relationship between dynamic impact behavior and the corresponding static ones. All tests were carried out in scale 1:4. To allow the executio...

  3. Dynamic buckling of stiffened plates subjected to explosion impact loads

    Science.gov (United States)

    Wang, J.; Guo, J.; Yao, X. L.; Zhang, A. M.

    2017-01-01

    The dynamic buckling characteristics and criteria of a ship's structural stiffened plate subjected to underwater explosion impact loads are investigated in this study. Using the structural deformations observed in the experiments of underwater explosions against a plated grillage model, the mode shapes of the dynamic buckling were obtained. Through the construction of a computational model of stiffened plates subjected to an underwater explosion shock wave, the impact load was theoretically calculated and transformed into a rectangular pulse. According to the different response patterns of stiffened plates under different impact loads, a dynamic buckling criterion for the stiffened plates subjected to an explosion shock wave was proposed. Additionally, the static buckling phenomenon in the stiffened plates was analysed based on the minimum excess principle. In combination with the dynamic buckling criterion, the effects of various stiffening configurations on the dynamic and static buckling loads are discussed. The calculation results show that when the equivalent rectangular pulse is 2-3 times that of the static buckling load, the responses of the stiffened plates under the original shock load and the equivalent rectangular pulse are virtually identical. The impact load amplitude is the primary influencing factor in the dynamic buckling of stiffened plates subjected to underwater explosive impact loads. The stiffened plate aspect ratio has a substantial influence on the dynamic load factor. The analytical method and results are presented, which can be used to design stiffened optimum hull structures to enhance the dynamic load carrying capacity to withstand underwater shock damage.

  4. THE LAYOUT OPTIMIZATION OF STIFFENERS FOR PLATE-SHELL STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    Chen Suhuan; Yang Zhijun

    2005-01-01

    The plate-shell structures with stiffeners are widely used in a broad range of engineering structures. This study presents the layout optimization of stiffeners. The minimum weight of stiffeners is taken as the objective function with the global stiffness constraint. In the layout optimization, the stiffeners should be placed at the locations with high strain energy/or stress.Conversely, elements of stiffeners with a small strain energy/or stress are considered to be used inefficiently and can be removed. Thus, to identify the element efficiency so that most inefficiently used elements of stiffeners can be removed, the element sensitivity of the strain energy of stiffeners is introduced, and a search criterion for locations of stiffeners is presented. The layout optimization approach is given for determining which elements of the stiffeners need to be kept or removed. In each iterative design, a high efficiency reanalysis approach is used to reduce the computational effort. The present approach is implemented for the layout optimization of stiffeners for a bunker loaded by the hydrostatic pressure. The numerical results show that the present approach is effective for dealing with layout optimization of stiffeners for plate-shell structures.

  5. Elastic buckling analysis of corroded stiffened plates with irregular surfaces

    Indian Academy of Sciences (India)

    Ahmad Rahbar-Ranji

    2015-02-01

    Numerical simulation is used to study the influence of corrosion damage in stiffened plates focusing on elastic buckling strength. Three-dimensional specta are used to simulate geometries of corroded surfaces and finite element method is employed for computing Euler stress of stiffened plates. The influence of corrosion patterns, amount of corrosion loss and roughness of surface are investigated. Ratio of Euler stress of corroded stiffened plate over Euler stress of un-corroded stiffened plate is used to characterize the effects of corrosion on reduction of buckling strength. Results show that reduction of buckling strength is very sensitive to the amount of corrosion loss and roughness of surface, but less sensitive to the location of corroded region. The potential for decrease in buckling strength as a consequence of corrosion is found to depend on the dominant buckling mode. Residual buckling strength is reduced by as much as 12% for the interaction of plate-web-torsional buckling mode, and by 2% for column buckling.

  6. Dynamic Response of Stiffened Plates with Holes Subjected to Shock Waves and Fragments

    Institute of Scientific and Technical Information of China (English)

    刘彦; 张庆明; 黄风雷

    2004-01-01

    The power field of shock waves and fragments is analyzed and set up, and the damage modes of stiffened plates are put forward. According to the structural characters of the stiffened plates investigated and the properties of the shock waves and fragments, the experiments on the shock waves acting on the stiffened plates (penetrated and non-penetrated by fragments) are mainly conducted. The dynamic response rules of stiffened plates with holes under shock waves and fragments loading are obtained. The results show that the penetration of fragments into stiffened plates hardly affects their deformation produced by shock waves.

  7. Nonlinear dynamic buckling of stiffened plates under in-plane impact load

    Institute of Scientific and Technical Information of China (English)

    张涛; 刘土光; 赵耀; 罗家智

    2004-01-01

    This paper presents a simple solution of the dynamic buckling of stiffened plates under in-plane impact loading. Based on large deflection theory, a discretely stiffened plate model has been used. The tangential stresses of stiffeners and in-plane displacement are neglected. Appling the Hamilton's principle, the motion equations of stiffened plates are obtained. The deflection of the plate is taken as Fourier series, and using Galerkin method the discrete equations can be deduced, which can be solved easily by Runge-Kutta method. The dynamic buckling loads of the stiffened plates are obtained form Budiansky-Roth criterion.

  8. DYNAMIC BUCKLING OF STIFFENED PLATES UNDER FLUID-SOLID IMPACT LOAD

    Institute of Scientific and Technical Information of China (English)

    张涛; 刘土光; 熊有伦; 张维衡

    2004-01-01

    A simple solution of the dynamic buckling of stiffened plates under fluid-solid impact loading is presented. Based on large deflection theory, a discretely stiffened plate model has been used. The tangential stresses of stiffeners and in-plane displacement are neglected. Applying the Hamilton' s principle, the motion equations of stiffened plates are obtained. The deflection of the plate is taken as Fourier series, and using Galerkin method,the discrete equations can be deduced, which can be solved easily by Runge-Kutta method.The dynamic buckling loads of the stiffened plates are obtained from Budiansky-Roth ( B-R )curves.

  9. Flexural-torsional buckling analysis of angle-bar stiffened plates

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Rahbar Ranji [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-09-15

    The interaction of flexural-torsional buckling modes is critical for stiffened plates with asymmetric stiffeners. However, this interaction is ignored in all design rules because it is complex to characterize. In the literature, the presence of an attached plate is ignored, and stiffened plate is treated as an ordinary asymmetric beam. In the flexural buckling mode, stiffener and the attached plate buckle together; in the torsional buckling mode, the attached plate cannot freely rotate with stiffener. Basic equations of the flexural-torsional buckling modes are deduced based on hybrid beam concept and a new strain distribution assumption for sideway bending of stiffeners. Elastic buckling stresses of different angle-bar stiffened plates are calculated and compared with those generated by the Finite element method (FEM) and those available in the literature. The present method has better agreements with FEM.

  10. NUMERICAL ANALYSIS OF DELAMINATION GROWTH FOR STIFFENED COMPOSITE LAMINATED PLATES

    Institute of Scientific and Technical Information of China (English)

    白瑞祥; 陈浩然

    2004-01-01

    A study of postbuckling and delamination propagation behavior in delaminated stiffened composite plates was presented. A methodology was proposed for simulating the multi-failure responses, such as initial and postbuckling, delamination onset and propagation, etc. A finite element analysis was conducted on the basis of the Mindlin first order shear effect theory and the von-Krmn nonlinear deformation assumption. The total energy release rate used as the criteria of delamination growth was estimated with virtual crack closure technique (VCCT). A self-adaptive grid moving technology was adopted to model the delamination growth process. Moreover, the contact effect along delamination front was also considered during the numerical simulation process. By some numerical examples, the influence of distribution and location of stiffener, configuration and size of the delamination, boundary condition and contact effect upon the delamination growth behavior of the stiffened composite plates were investigated. The method and numerical conclusion provided should be of great value to engineers dealing with composite structures.

  11. Study on buckling and plastic collapse behavior of a continuous stiffened plate subjected to in-plane compression loads; Mennai asshuku kaju wo ukeru renzoku bodo panel no zakutsu sosei hokai kyodo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yao, T.; Fujikubo, M.; Yanagihara, D. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1996-04-10

    A hull structure is constituted by thin panels, and reinforced longitudinally and laterally by stiffened members to increase the effectiveness of the structure. In order to attain findings on buckling and plastic collapse behavior of stiffened plates, this paper describes analysis of elasto-plastic large deflection by using the finite element method on thin stiffened plates having flat-bars and angle-bars. The analysis includes the case of an aspect ratio being 5.0 and the case to consider welding residual stress. Considerations were given on cross sectional shape, panel aspect ratio and effects of initial welding imperfections against the buckling and plastic collapse behavior of the stiffened plates. The angle-bars tend to cause secondary buckling more easily because it has greater bending and twisting rigidity, and stronger constraint against deflection than the flat-bars. When the aspect ratio is larger and the span is longer, the ultimate strength declines, and the withstand power after the ultimate strength decreases rapidly. Existence of the residual stress tends to make the secondary buckling occur more easily. The secondary buckling affects little the withstand power after the ultimate strength. 3 refs., 7 figs., 1 tab.

  12. Locally Corroded Stiffener Effect on Shear Buckling Behaviors of Web Panel in the Plate Girder

    Directory of Open Access Journals (Sweden)

    Jungwon Huh

    2015-01-01

    Full Text Available The shear buckling failure and strength of a web panel stiffened by stiffeners with corrosion damage were examined according to the degree of corrosion of the stiffeners, using the finite element analysis method. For this purpose, a plate girder with a four-panel web girder stiffened by vertical and longitudinal stiffeners was selected, and its deformable behaviors and the principal stress distribution of the web panel at the shear buckling strength of the web were compared after their post-shear buckling behaviors, as well as their out-of-plane displacement, to evaluate the effect of the stiffener in the web panel on the shear buckling failure. Their critical shear buckling load and shear buckling strength were also examined. The FE analyses showed that their typical shear buckling failures were affected by the structural relationship between the web panel and each stiffener in the plate girder, to resist shear buckling of the web panel. Their critical shear buckling loads decreased from 82% to 59%, and their shear buckling strength decreased from 88% to 76%, due to the effect of corrosion of the stiffeners on their shear buckling behavior. Thus, especially in cases with over 40% corrosion damage of the vertical stiffener, they can have lower shear buckling strength than their design level.

  13. Autonomous health monitoring of a stiffened composite plate

    Science.gov (United States)

    Mal, Ajit K.; Banerjee, Sauvik; Ricci, Fabrizio; Monaco, Ernesto; Lecce, L.

    2006-03-01

    The paper presents a unified computer assisted automatic damage identification technique based on a damage index, associated with changes in the vibrational and wave propagation characteristics in damaged structures. An improved ultrasonic and vibration test setup consisting of distributed, high fidelity, intelligent, surface mounted sensor arrays is used to examine the change in the dynamical properties of realistic composite structural components with the appearance of damage. The sensors are assumed to provide both the low frequency global response (i.e., modal frequencies, mode shapes) of the structure to external loads and the (local) high frequency signals due to wave propagation effects in either passive or active mode of the ultrasonic array. Using the initial measurements performed on an undamaged structure as baseline, the damage indices are evaluated from the comparison of the frequency response of the monitored structure with an unknown damage. The technique is applied to identify impact damage in a woven stiffened composite plate that presents practical difficulties in transmitting waves across it due to scattering and other energy dissipation effects present in the material and the geometry of the structure. Moreover, a sensitivity analysis has been carried out in order to estimate a threshold value of the index below which no reliable information about the state of health of the structure can be achieved. The feasibility of developing a practical Intelligent Structural Health Monitoring (ISHM) System, based on the concept of "a structure requesting service when needed," is discussed.

  14. The vibroacoustic response and sound absorption performance of multilayer, microperforated rib-stiffened plates

    Science.gov (United States)

    Zhou, Haian; Wang, Xiaoming; Wu, Huayong; Meng, Jianbing

    2017-04-01

    The vibroacoustic response and sound absorption performance of a structure composed of multilayer plates and one rigid back wall are theoretically analyzed. In this structure, all plates are two-dimensional, microperforated, and periodically rib-stiffened. To investigate such a structural system, semianalytical models of one-layer and multilayer plate structures considering the vibration effects are first developed. Then approaches of the space harmonic method and Fourier transforms are applied to a one-layer plate, and finally the cascade connection method is utilized for a multilayer plate structure. Based on fundamental acoustic formulas, the vibroacoustic responses of microperforated stiffened plates are expressed as functions of a series of harmonic amplitudes of plate displacement, which are then solved by employing the numerical truncation method. Applying the inverse Fourier transform, wave propagation, and linear addition properties, the equations of the sound pressures and absorption coefficients for the one-layer and multilayer stiffened plates in physical space are finally derived. Using numerical examples, the effects of the most important physical parameters—for example, the perforation ratio of the plate, sound incident angles, and periodical rib spacing—on sound absorption performance are examined. Numerical results indicate that the sound absorption performance of the studied structure is effectively enhanced by the flexural vibration of the plate in water. Finally, the proposed approaches are validated by comparing the results of stiffened plates of the present work with solutions from previous studies.

  15. Simplified Procedure For The Free Vibration Analysis Of Rectangular Plate Structures With Holes And Stiffeners

    Directory of Open Access Journals (Sweden)

    Cho Dae Seung

    2015-04-01

    Full Text Available Thin and thick plates, plates with holes, stiffened panels and stiffened panels with holes are primary structural members in almost all fields of engineering: civil, mechanical, aerospace, naval, ocean etc. In this paper, a simple and efficient procedure for the free vibration analysis of such elements is presented. It is based on the assumed mode method and can handle different plate thickness, various shapes and sizes of holes, different framing sizes and types as well as different combinations of boundary conditions. Natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange’s equations. Mindlin theory is applied for a plate and Timoshenko beam theory for stiffeners. The applicability of the method in the design procedure is illustrated with several numerical examples obtained by the in-house developed code VAPS. Very good agreement with standard commercial finite element software is achieved.

  16. Structural Damage Identification in Stiffened Plate Fatigue Specimens Using Piezoelectric Active Sensing

    Science.gov (United States)

    2011-09-01

    welded. The base plate and bulkhead material consist of 3/8 and 1/4 inch thick 5083-H116 aluminum, while the stiffeners are made of extruded 6061 - T6...and weld repair on crack propagation behaviour in aluminium alloy 5083 plates,” Materials & Design, 23(2):201-208. 8. Raghavan, A. and C. E. S

  17. STUDY ON FAILURE PROCESS OF DELAMINATED STIFFENED COMPOSITE PLATES UNDER COMPRESSION

    Institute of Scientific and Technical Information of China (English)

    陈浩然; 白瑞祥; 王蔓

    2003-01-01

    Failure behavior of the delaminated stiffened composite plates under compression is studied by the finite element method, based on a Global-Local variational model. A virtual crack closure technique and a self-adaptive grid moving scheme are proposed to predict the delamination growth process. The contact effect along the delamination front is considered. The numerical results show that the influences of the distribution and location of the stiffeners, the configuration and size of the delamination, the boundary condition and the contact upon the failure behavior of the plates are significant.

  18. Prediction of flow induced sound and vibration of periodically stiffened plates.

    Science.gov (United States)

    Maxit, Laurent; Denis, Vivien

    2013-01-01

    Stiffened structures excited by the turbulent boundary layer (TBL) occur very frequently in engineering applications; for instance, in the wings of airplanes or the pressure hulls of submarines. To improve knowledge of the interaction between stiffened structures and TBL, this paper deals with the modeling of infinite periodically stiffened plates excited by TBL. The mathematical formulation of the problem is well-established in the literature. The originality of the present work relies on the use of a wavenumber-point reciprocity technique for evaluating the response of the plate to convected harmonic pressure waves. It follows a methodology for estimating the vibro-acoustic response of the plate excited by the TBL from the wall pressure spectrum and its displacements in the wavenumber space due to point excitations located at the receiving positions. The computing process can be reduced to the numerical integration of an analytical expression in the case of a periodically stiffened plate. An application to a naval test case highlights the effect of Bloch-Floquet waves on the vibrations of the plate and its radiated pressure in the fluid.

  19. A General Model for Analysis of Sound Radiation from Orthogonally Stiffened Laminated Composite Plates

    Institute of Scientific and Technical Information of China (English)

    金叶青; 庞福振; 杨飞; 李光明

    2014-01-01

    A-general-theoretical-model-is-developed-to-investigate-the-sound-radiation-from-an-infinite-orthogonally-stiffened-plate-under-point-excitation-force.-The-plate-can-be-metallic-or-composite,-and-fluid-loading-is-also-considered-in-the-research.-The-first-order-shear-deformation-theory-is-used-to-account-for-the-transverse-shear-deformation.-The-motion-of-the-equally-spaced-stiffeners-is-examined-by-considering-their-bending-vibrations-and-torsional-movements.-Based-on-the-periodic-structure-theory-and-the-concepts-of-the-equivalent-dynamic-flexibility-of-the-plate,-the-generalized-vibro-acoustic-equation-of-the-model-is-obtained-by-applying-the-Fourier-transform-method.-The-generalized-model-that-can-be-solved-numerically-is-validated-by-comparing-model-predictions-with-the-existing-results.-Numerical-calculations-are-performed-to-investigate-the-effects-of-the-location-of-the-excitation,-the-spacing-of-the-stiffeners,-the-plate-thickness,-the-strengthening-form-and-the-fiber-orientation-on-the-sound-radiation-characteristic-of-the-orthogonally-stiffened-plate,-and-some-practical-conclusions-are-drawn-from-these-parameter-studies.

  20. Influence of location and parameters of stiffeners on the stability of a square plate under shear

    Directory of Open Access Journals (Sweden)

    Pritykin Aleksey Igorevich

    Full Text Available Application of flexible-walled beams is rather effective because the reducing of wall thickness compared to ordinary welded beams leads to substantial reduction of metal expenditure for the walls and its more rational use. The operation experience of such beams shows that the loss of local stability of a wall takes place near bearing cross section with characteristic diagonal type of half waves, indicating, that the reason for the stability loss is in shear deformation. In plate girder with slender web big transverse forces appear, which leads to its buckling as a result of shear. One of the ways to increase stability of the parts of web near supports is to install stiffeners. In the given work the task of finding critical stresses of fixed square plate with installed inclined stiffener is considered. Investigations were performed with the help of finite element method and were experimentally checked. Recommendations were given on the choice of optimal size of the stiffener.

  1. Key techniques and applications of adaptive growth method for stiffener layout design of plates and shells

    Science.gov (United States)

    Ding, Xiaohong; Ji, Xuerong; Ma, Man; Hou, Jianyun

    2013-11-01

    The application of the adaptive growth method is limited because several key techniques during the design process need manual intervention of designers. Key techniques of the method including the ground structure construction and seed selection are studied, so as to make it possible to improve the effectiveness and applicability of the adaptive growth method in stiffener layout design optimization of plates and shells. Three schemes of ground structures, which are comprised by different shell elements and beam elements, are proposed. It is found that the main stiffener layouts resulted from different ground structures are almost the same, but the ground structure comprised by 8-nodes shell elements and both 3-nodes and 2-nodes beam elements can result in clearest stiffener layout, and has good adaptability and low computational cost. An automatic seed selection approach is proposed, which is based on such selection rules that the seeds should be positioned on where the structural strain energy is great for the minimum compliance problem, and satisfy the dispersancy requirement. The adaptive growth method with the suggested key techniques is integrated into an ANSYS-based program, which provides a design tool for the stiffener layout design optimization of plates and shells. Typical design examples, including plate and shell structures to achieve minimum compliance and maximum bulking stability are illustrated. In addition, as a practical mechanical structural design example, the stiffener layout of an inlet structure for a large-scale electrostatic precipitator is also demonstrated. The design results show that the adaptive growth method integrated with the suggested key techniques can effectively and flexibly deal with stiffener layout design problem for plates and shells with complex geometrical shape and loading conditions to achieve various design objectives, thus it provides a new solution method for engineering structural topology design optimization.

  2. Improvements of the smearing technique for cross-stiffened thin rectangular plates

    DEFF Research Database (Denmark)

    Luan, Yu; Ohlrich, Mogens; Jacobsen, Finn

    2011-01-01

    New developments in the simplified smearing technique for modeling vibrations of cross-stiffened, thin rectangular plates are presented. The computationally efficient smearing technique has been known for many years, but so far the accuracy of, say, predicted natural frequencies has been inadequa...

  3. Thermal stability analysis of eccentrically stiffened Sigmoid-FGM plate with metal–ceramic–metal layers based on FSDT

    Directory of Open Access Journals (Sweden)

    Pham Hong Cong

    2016-12-01

    Full Text Available This paper researches the thermal stability of eccentrically stiffened plates made of functionally graded materials (FGM with metal–ceramic–metal layers subjected to thermal load. The equilibrium and compatibility equations for the plates are derived by using the first-order shear deformation theory of plates, taking into account both the geometrical nonlinearity in the von Karman sense and initial geometrical imperfections with Pasternak type elastic foundations. By applying Galerkin method and using stress function, effects of material and geometrical properties, elastic foundations, temperature-dependent material properties, and stiffeners on the thermal stability of the eccentrically stiffened S-FGM plates in thermal environment are analyzed and discussed.

  4. A Study on the Effect of Welding Sequence in Fabrication of Large Stiffened Plate Panels

    Institute of Scientific and Technical Information of China (English)

    Pankaj Biswas; D.Anil Kumar; N.R.Mandal; M.M.Mahapatra

    2011-01-01

    Welding sequence has a significant effect on distortion pattern of large orthogonally stiffened panels normally used in ships and offshore structures.These deformations adversely affect the subsequent fitup and alignment of the adjacent panels.It may also result in loss of structural integrity.These panels primarily suffer from angular and buckling distortions.The extent of distortion depends on several parameters such as welding speed,plate thickness,welding current,voltage,restraints applied to the job while welding,thermal history as well as sequence of welding.Numerical modeling of welding and experimental validation of the FE model has been carried out for estimation of thermal history and resulting distortions.In the present work an FE model has been developed for studying the effect of welding sequence on the distortion pattern and its magnitude in fabrication of orthogonally stiffened plate panels.

  5. Multi-frequency excitation of stiffened triangular plates for large amplitude oscillations

    Science.gov (United States)

    Askari, H.; Saadatnia, Z.; Esmailzadeh, E.; Younesian, D.

    2014-10-01

    Free and forced vibrations of triangular plate are investigated. Diverse types of stiffeners were attached onto the plate to suppress the undesirable large-amplitude oscillations. The governing equation of motion for a triangular plate, based on the von Kármán theory, is developed and the nonlinear ordinary differential equation of the system using Galerkin approach is obtained. Closed-form expressions for the free undamped and large-amplitude vibration of an orthotropic triangular elastic plate are presented using the two well-known analytical methods, namely, the energy balance method and the variational approach. The frequency responses in the closed-form are presented and their sensitivities with respect to the initial amplitudes are studied. An error analysis is performed and the vibration behavior, as well as the accuracy of the solution methods, is evaluated. Different types of the stiffened triangular plates are considered in order to cover a wide range of practical applications. Numerical simulations are carried out and the validity of the solution procedure is explored. It is demonstrated that the two methods of energy balance and variational approach have been quite straightforward and reliable techniques to solve those nonlinear differential equations. Subsequently, due to the importance of multiple resonant responses in engineering design, multi-frequency excitations are considered. It is assumed that three periodic forces are applied to the plate in three specific positions. The multiple time scaling method is utilized to obtain approximate solutions for the frequency resonance cases. Influences of different parameters, namely, the position of applied forces, geometry and the number of stiffeners on the frequency response of the triangular plates are examined.

  6. Study on Seismic Performance of a Stiffened Steel Plate Shear Wall with Slits

    Directory of Open Access Journals (Sweden)

    Jin-yu Lu

    2015-01-01

    Full Text Available To determine the force mechanism for the steel plate shear wall with slits, the pushover analysis method was used in this study. An estimated equation for the lateral bearing capacity which considered the effect of edge stiffener was proposed. A simplified elastic-plastic analytical model for the stiffened steel slit wall composed of beam elements was presented, where the effects of edge stiffeners were taken into account. The wall-frame analysis model was established, and the geometric parameters were defined. Pushover analysis of two specimens was carried out, and the analysis was validated by comparing the results from the experiment, the shell element model, and a simplified model. The simplified model provided a good prediction of the lateral stiffness and the strength of the steel slit wall, with less than 10% error compared with the experimental results. The mutual effects of the bearing wall and the frame were also predicted correctly. In the end, the seismic performance evaluation of a steel slit wall-frame structure was presented. The results showed that the steel slit wall could prevent the beams and columns from being damaged by an earthquake and that the steel slit wall was an efficient energy dissipation component.

  7. A study of the perforation of stiffened plates by rigid projectiles

    Institute of Scientific and Technical Information of China (English)

    Jianguo Ning; Weidong Song; Jing Wang

    2005-01-01

    In the present paper, a four-stage perforation model that accurately predicts the residual velocity is developed by adopting an energy method. The four stages are plug formation, dishing formation, petal formation and projectile exit. In addition, some important experimental results are presented and analyzed to validate the present perforation model. In the experiments, high speed camera system is used to record the perforation process. Observations on target damage and measurements of initial velocities and residual velocities with the aid of the system are presented. Numerical simulations are carried out for projectiles against single and layered plates adopted in the experiments. The perforation process is studied and the deformation and failure modes are obtained. The predictions of numerical simulations and analytical model are found in reasonably good agreement with those of experiments, and can be used to predict the ballistic limit and residual velocity of stiffened plates perforated by rigid projectiles.

  8. Theories and experiments on the stiffening effect of high-frequency excitation for continuous elastic systems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    One effect of strong mechanical high-frequency excitation may be to apparently "stiffen" a structure, a well-described phenomenon for discrete systems. The present study provides theoretical and experimental results on this effect for continuous elastic structures. A laboratory experiment is set ...

  9. Theories and experiments on the stiffening effect of high-frequency excitation for continuous elastic systems

    Science.gov (United States)

    Thomsen, J. J.

    2003-02-01

    One effect of strong mechanical high-frequency excitation may be to apparently "stiffen" a structure, a well-described phenomenon for discrete systems. The present study provides theoretical and experimental results on this effect for continuous elastic structures. A laboratory experiment is set up for demonstrating and measuring the stiffening effect in a simple setting, in the form of a horizontal piano string subjected to longitudinal high-frequency excitation at the clamped base and free at the other end. A simplest possible theoretical model is set up and analyzed using a hierarchy of three approximating theories, each providing valuable insight. One of these is capable of predicting the vertical string lift due to stiffening in terms of simple expressions, with results that agree very well with experimental measurements for a wide range of conditions. It appears that resonance effects cannot be ignored, as was done in a few related studies—unless the system has very low modal density or heavy damping; thus first-order consideration to resonance effects is included. Using the specific example with experimental support to put confidence on the proposed theory, expressions for predicting the stiffening effect for a more general class of continuous systems in differential operator form are also provided.

  10. VIBRATION AND ACOUSTIC RADIATION FROM SUBMERGED STIFFENED SPHERICAL SHELL WITH DECK-TYPE INTERNAL PLATE

    Institute of Scientific and Technical Information of China (English)

    ChenJnnming; HuangYuying

    2003-01-01

    Based on the motion differential equations of vibration and acoustic coupling system for thin elastic spherical shell with an elastic plate attached to its internal surface, in which Dirac-δ functions are employed to introduce the moments and forces applied by the attachment on the surface of shell, by means of expanding field quantities as Legendre series, a semi-analytic solution is derived for the vibration and acoustic radiation from a submerged stiffened spherical shell with a deck-type internal plate, which has a satisfactory computational effectiveness and precision for an arbitrary frequency range. It is easy to analyze the effect of the internal plate on the acoustic radiation field by using the formulas obtained by the method proposed. It is concluded that the internal plate can significantly change the mechanical and acoustic characteristics of shell, and give the coupling system a very rich resonance frequency spectrum. Moreover, the method can be used to study the acoustic radiation mechanism in similar structures as the one studied here.

  11. Progress in the KIT approach for development of the HCPB TBM stiffening plate feasibility mock up fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Heiko, E-mail: heiko.neuberger@kit.edu [Karlsruher Institut für Technologie (KIT), Institut für Neutronenphysik und Reaktortechnik (INR) (Germany); Rey, Jörg [Karlsruher Institut für Technologie (KIT), Institut für Neutronenphysik und Reaktortechnik (INR) (Germany); Materna-Morris, Edeltraud; Bolich, Daniel [Karlsruher Institut für Technologie (KIT), Institut für Angewandte Materialien (IAM-AWP) (Germany); Handl, Thomas [WBHS Wärmebehandlungsservice, Am Hof 5/14, 1010 Wien (Austria); Milker, Torsten [TRUMPF Laser- und Systemtechnik GmbH, Johann-Maus-Straße 2, 71254 Ditzingen (Germany)

    2013-06-15

    Sub-component manufacturing and assembly concepts for the fabrication of the Helium Cooled Pebble Bed Test Blanket Module have been developed since more than one decade in the KIT. In the present design the structure of the HCPB TBM can be sub-divided into three key components: (i) TBM box, (ii) stiffening plates and (iii) the breeder zone. The present fabrication and assembly routines is based on the assumption that each of the aforementioned sub-components can be assembled in parallel and independently before assembling the TBM. Therefore the procedures to fabricate these sub-components can be addressed in independent tasks. This paper shows the results of the KIT/industry collaboration with the final goal to develop a set of preliminary welding procedure specifications (pWPS) for the assembly of the HCPB TBM stiffening plate. Recently a promising set of draft pWPS could be identified in medium scale fabrication experiments. This paper recalls the results of qualification routines according to ISO 15614-11 (RCC-MR Edition 2007, RS 3570) in order to verify the parameters.

  12. Buckling of Delaminated Long Panels Under Pressure and of Radially-Loaded Stiffened Annular Plates.

    Science.gov (United States)

    1985-10-01

    Sheinman [7-10]. The governing equations for the nonlinear analysis of imperfect, stiffened, laminated, circular, cylindrical thin shells, subjected to...No. 4, 1985, pp. 529-544. 7. Simi tses, G. J.I Sheinman , I., and Shaw, D., "Stability of Laminated ComposJte Shells Subjected to Uniform Axial... Sheinman , I., "Imperfect, Laminated, Cyl ndri cal Shells in Torsion and Axial Compression", Acta -,Ftronautica, v. 10, No. 5-6, 1983, pp. 395-400

  13. The structural acoustic properties of stiffened shells

    DEFF Research Database (Denmark)

    Luan, Yu

    2008-01-01

    . This is important when a number of stiffened plates are combined in a complicated structure composed of many plates. However, whereas the equivalent plate theory is well established there is no similar established theory for stiffened shells. This paper investigates the mechanical and structural acoustic properties...... of curved shells with stiffening ribs. Finite element simulations and experimental data will be compared and discussed....

  14. Theories and experiments on the stiffening effect of high-frequency excitation for continuous elastic systems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    theories, each providing valuable insight. One of these is capable of predicting the vertical string lift due to stiffening in terms of simple expressions, with results that agree very well with experimental measurements for a wide range of conditions. It appears that resonance effects cannot be ignored...... for demonstrating and measuring the stiffening effect in a simple setting, in the form of a horizontal piano string subjected to longitudinal high-frequency excitation at the clamped base and free at the other end. A simplest possible theoretical model is set up and analyzed using a hierarchy of three approximating......, as was done in a few related studies¿¿unless the system has very low modal density or heavy damping; thus first-order consideration to resonance effects is included. Using the specific example with experimental support to put confidence on the proposed theory, expressions for predicting the stiffening effect...

  15. Formulas for the elastic constants of plates with integral waffle-like stiffening

    Science.gov (United States)

    Dow, Norris R; Libove, Charles; Hubka, Ralph E

    1954-01-01

    Formulas are derived for the fifteen elastic constants associated with bending, stretching, twisting, and shearing of plates with closely spaced integral ribbing in a variety of configurations and proportions. In the derivation the plates are considered, conceptually, as more uniform orthotropic plates somewhat on the order of plywood. The constants, which include the effectiveness of the ribs for resisting deformations other than bending and stretching in their longitudinal directions, are defined in terms of four coefficients, and theoretical and experimental methods for the evaluation of these coefficients are discussed. Four of the more important elastic constants are predicted by these formulas and are compared with test results. Good correlation is obtained. (author)

  16. Mitigation of Flanking Noise in Double-Plate Panel Structures by Periodic Stiffening

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Dickow, Kristoffer Ahrens; Andersen, Lars

    2011-01-01

    The present analysis focuses on flanking noise transmission within a two-wall structure of finite size. The walls are lightweight panel structures, each consisting of two plates with internal ribs. A finite-element model is utilized, assuming that the studs are fully fixed to the plates. Further...... is important. Hence, analyses are carried out for different positions of the load. It has been found that the ribs have a significant impact, not only on the flanking noise but also on the direct radiation of sound from the wall on which the external force has been placed. Furthermore, the response changes...

  17. Composite multi-modal vibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator

    Science.gov (United States)

    Li, Shengquan; Li, Juan; Mo, Yueping; Zhao, Rong

    2014-01-01

    A novel active method for multi-mode vibration control of an all-clamped stiffened plate (ACSP) is proposed in this paper, using the extended-state-observer (ESO) approach based on non-collocated acceleration sensors and piezoelectric actuators. Considering the estimated capacity of ESO for system state variables, output superposition and control coupling of other modes, external excitation, and model uncertainties simultaneously, a composite control method, i.e., the ESO based vibration control scheme, is employed to ensure the lumped disturbances and uncertainty rejection of the closed-loop system. The phenomenon of phase hysteresis and time delay, caused by non-collocated sensor/actuator pairs, degrades the performance of the control system, even inducing instability. To solve this problem, a simple proportional differential (PD) controller and acceleration feed-forward with an output predictor design produce the control law for each vibration mode. The modal frequencies, phase hysteresis loops and phase lag values due to non-collocated placement of the acceleration sensor and piezoelectric patch actuator are experimentally obtained, and the phase lag is compensated by using the Smith Predictor technology. In order to improve the vibration control performance, the chaos optimization method based on logistic mapping is employed to auto-tune the parameters of the feedback channel. The experimental control system for the ACSP is tested using the dSPACE real-time simulation platform. Experimental results demonstrate that the proposed composite active control algorithm is an effective approach for suppressing multi-modal vibrations.

  18. 冲击载荷下加筋板非线性瞬态分析%Transient Responses of Stiffened Plates under Lateral Impact Load by Semi-analytic Method

    Institute of Scientific and Technical Information of China (English)

    张涛; 刘土光; 刘增荣; 刘敬喜

    2003-01-01

    本文用半解析的方法分析了横向冲击载荷下加筋板的非线性瞬态响应.考虑膜力的存在,忽略筋截面上的剪切应力,引人板的应力函数,采用离散加筋板模型,运用能量原理建立加筋板的动响应控制方程.假设挠度为双级数形式,运用迦辽金法,将加筋板的动响应方程转化为一个多自由度的动力系统,采用数值方法来求解.本文最后给出了几个模型的计算结果.%This paper presents a simple and efficient semi - analytic method to solve the response of stiff-ened plates under lateral impact load. Applying the discrete stiffened plates model, the motion equations ofstiffened plate is deduced using Hamilton's variation principle. Based on the large deformation theory, theyon Karman kinematic relations of the plate and stiffener are considered in the formula. The stress functionsand the deflection of the plate are taken as double Fourier series. The motion equations expressed by deflec-tion are obtained with the Galerkin method, and solved by numerical approach. Examples are given for thenon - linear transient response of stiffened plates tinder lateral impact, and parametric studies are alsoperformed for various stiffener/plate geometric parameters and impact load configurations.

  19. 硼-铝强化板的非线性屈曲有限元分析%Nonlinear buckling finite element analysis of stiffened B-Al plates

    Institute of Scientific and Technical Information of China (English)

    Ezgi GUNAY; Cevdet AYGUN; Yunus Onur YILDIZ

    2014-01-01

    通过有限元方法(FEA)分析强化复合板的非线性屈曲行为。该模型中硼-铝复合材料由硼基体和嵌入其中的不同形态的Al纤维组成。对片层结构的B-Al矩形板施加横向压缩应力,发现强化纤维对具有不同几何形状板材的屈曲行为有明显影响。建模中采用单向、具有矩形截面的强化纤维。结果表明:加载过程中存在一重要的载荷范围,临界屈曲模式在稳态和非稳态之间反复转变。确定由不同的纤维形态和板材高宽比组成的分叉失稳区域。通过 ANSYS 有限元计算,研究简支边界条件下强化板材的失稳模式,分别得到压应力(σx)与平面收缩(u)以及压应力(σx)与面外挠度(δ)的关系曲线。通过非线性分析,在C1、 C2、 C3和 C4四种形态的纤维中,嵌入C2纤维的板材获得最安全的临界屈服应力。结果表明,FEA非线性屈曲分析可以得到精确的结果。%Nonlinear buckling behavior of stiffened composite B-Al plates was analyzed by means of finite element analysis (FEA) method. In the method, the composite material was taken as B matrix into which Al fibers were embedded in different configurations. The laminated B-Al material in the form of rectangular plates was subjected to lateral compressive loading. It is observed that stiffeners have significant effect on the buckling behavior of plates under compressive loading and for various geometrical configurations. The stiffeners used in the modeling are one-sided and have rectangular cross-sections. It is found that there are physically important loading intervals and the critical buckling modes make transitions back and forth between stable and unstable states. Bifurcation buckling regions resulting from various configurations of fiber orientations and different plate aspect ratios are determined. The whole analysis is performed by using ANSYS finite element computations. Only the buckling patterns of stiffened

  20. Buckling of open-section bead-stiffened composite panels

    Science.gov (United States)

    Laananen, D. H.; Renze, S. P.

    Stiffened panels are structures that can be designed to efficiently support inplane compression, bending, and shear loads. Although the stiffeners are usually discrete elements which are fastened or bonded to a flat or continuously curved plate, manufacturing methods such as thermoforming allow integral formation of the stiffeners in a panel. Such a configuration offers potential advantages in terms of a reduced number of parts and manufacturing operations. For thermoplastic composite panels stiffened by integrally formed open-section beads, the effects of bead spacing and bend cross-section geometry on the initiation of buckling under uniaxial compression and uniform shear loading were investigated. Finite elements results for a range of stiffened panel sizes and bead geometries are presented and compared with approximate closed-form solutions based on an effective flat plate size. Experimental verification of analytical predictions for one of the shear panels and one of the compression panels is described. Compensation of the forming tool to reduce the degree of initial curvature of the panels was found to be necessary.

  1. 含离散源损伤Z向增强复合材料加筋板压缩特性研究%STUDY ON COMPRESSIVE PROPERTIES OF Z-REINFORCED STIFFENED COMPOSITE PLATE WITH DISCRETE-SOURCE DAMAGE

    Institute of Scientific and Technical Information of China (English)

    李航; 矫桂琼; 王波

    2012-01-01

    Simulated the discrete-damage with a notch in stiffened composite plate. The mechanical responses of stiffened composite plates with a notch reinforced by Z-pin, improved locking type stitch, Tufting type stitch and unreinforced under compress were investigated. Stiffened panel of Z-reinforced with discrete-source damage had been studied on damage propagation and failure property. The results indicated that Z-reinforced could restrain debonding between web plate and ribs. Partial delamination at the tip of the notch only caused local buckling, cracking along notch direction between unbroken web plate and edge of rib resulted in ultimate failure of stiffened plate. Three-dimensional FEA( finite element analysis) simulation of stiffened composite panel with discrete-source damage showed that Hashin criteria could be used to simulate progressive damage effectively. Simulated Z-reinforced with linear constraints between web plate and ribs were reasonable, those constraints controlled damage extension and changed damage region of the whole model.%以含穿透中央筋条的切口模拟离散源损伤,对无增强、Z-pin增强、改进锁式缝合增强、Tufting缝合增强复合材料加筋板进行轴向压缩试验,研究含离散源损伤Z向增强加筋板的损伤扩展模式与破坏特征.结果表明,壁板和筋条间的Z向增强有效控制了壁板与筋条的脱粘,提高了加筋板的屈曲载荷.切口前端的分层只引起局部的屈曲,沿切口方向未切断筋条的断裂和壁板边缘的突然压溃导致加筋板的最终破坏.三维有限元渐进损伤分析结果显示,选用Hashin判据作为失效判据,可以很好地模拟含离散源损伤复合材料加筋板的轴向压缩渐进损伤过程.采用线约束模拟壁板与筋条翼缘之间的Z向增强是合理的,线约束的引入在损伤扩展至筋条下方壁板区域后有效控制了损伤的扩展.

  2. Incremental ECAP of thick continuous plates - machine and initial trials

    Science.gov (United States)

    Rosochowski, A.; Olejnik, L.

    2014-08-01

    Incremental ECAP (I-ECAP) can be used for SPD of continuous bars, plates and sheets. This paper describes design, construction and preliminary trials of a prototype machine capable of processing thick continuous plates. To increase productivity, a two-turn I-ECAP is used, which is equivalent to route C in conventional one-turn ECAP. The machine has a reciprocating punch inclined at 45°, a clamp holding the plate in the die during deformation and a feeder incrementally feeding the plate when it is not deformed; all these devices are driven by hydraulic actuators controlled by a PLC. The machine is capable of deforming materials at room temperature as well as elevated temperatures. The die is heated with electric heaters. The machine has also an integrated cooling system and a lubrication system. The material used for the initial trials was Al 1050 plate (10×50×1000) conversion coated with calcium aluminate and lubricated with dry soap. The process was carried out at room temperature using 1.6 mm feeding stroke and a low cycle frequency of approximately 0.2 Hz. The UFG structure after the first pass of the process revealed by STEM confirms process feasibility.

  3. 承受轴压载荷的加筋板的准静态分析%QUASI-STATIC ANALYSIS OF STIFFENED PLATE UNDER AXIAL PRESSURE

    Institute of Scientific and Technical Information of China (English)

    吉国明; 孙刚; 张量

    2013-01-01

    Quasi-static analysis is of a simulation of static problem with motion analysis which restricting the load velocity so that the outcome of this analysis can only have a little inertia influence that can be neglected.Solving stability problem of stiffened plate under axial pressure,this quasi-static analysis applying displacement on structure can be adopted.In pro-buckling,compared to the static analysis,quasi-static analysis can get the structure responses accurately with less time cost.In postbuckling,quasi-static analysis can get the structure responses which static analysis can' t get.With this a new method in static problem can be provided.%准静态分析是一种通过限制加载速率,使动力学因素在结果中的影响控制在可接受的范围内的动力学分析方法.为了求解承受轴压载荷的加筋板的稳定性问题,利用施加位移载荷的准静态动力学分析方法,得到加筋板的极限破坏载荷.通过与静态分析对比,表明准静态分析方法能够准确、高效地解决轴压稳定性问题.从而显示动力学分析方法在静力学问题中的应用价值,为求解静力分析问题提供另一种思路.

  4. Comparative Study on UNDEX Resistance of the Air-backed Stiffened Plate with Various Covering Layers%覆盖层加筋板结构水下抗爆性能对比试验研究

    Institute of Scientific and Technical Information of China (English)

    肖锋; 谌勇; 黄修长; 朱大巍; 华宏星

    2013-01-01

    为提高潜艇的隐身性能,潜艇壳体表面常敷设声学覆盖层结构。声学覆盖层常设有各类空腔等特殊结构形式,在受到水下爆炸冲击波时空腔产生变形并吸收能量,对潜艇的抗冲击性能产生影响。分别对不同覆盖层及无覆盖层的加筋平板试件开展水下抗爆炸性能对比性试验研究。通过试验获取各加筋平板试件典型部位的加速度、应变响应。比较不同覆盖层对加筋平板结构的实际抗冲效果,为今后声学覆盖层的抗冲设计和研究提供参考。%In order to improve stealthy capacity of a submarine, acoustic layers with special hollow structures are usually covered on hull surfaces of the submarine. The hollow structures can deform and absorb energy when they are subjected to underwater explosion (UNDEX), which can greatly raise the submarine’s anti-shock performance. In this paper, comparative study on UNDEX resistance of the air-backed stiffened plate with various covering layers was carried out. The acceleration and strain responses of the typical positions of the stiffened plate were obtained by the testing. And the anti-shock effects of the stiffened plate with various covering layers were compared. The results may provide a guideline for the design and study of the acoustic covering layers against UNDEX.

  5. Compressive Strength of a Longitudinally Stiffened FRP Panel

    DEFF Research Database (Denmark)

    Riber, Hans Jørgen; Jensen, Jørgen Juncher; Pedersen, Preben Terndrup

    1997-01-01

    A structural analysis of a cross stiffened orthotropic FRP panel subjected to uni-axial compressive load is crarried out. Analytical Calculations of the strength of the panel are presented and compared to finite element analysis performed by different authors. Both analytica and finite element ap...... approaches confirm an identical failrue scenario. In the present case, the load carrying capacity of the stiffened panel is limited by the plate stiffener debonding stress....

  6. Calculation method of critical buckling stress for stiffened plate with closed ribs%闭口肋加劲板屈曲临界应力计算方法

    Institute of Scientific and Technical Information of China (English)

    张茜; 狄谨; 周绪红

    2012-01-01

    采用能量法,推导了单向均匀受压四边简支闭口肋加劲板屈曲临界应力计算方法,考虑加劲肋扭转刚度的影响,按照截面实际形心位置计算了加劲肋和母板的抗弯刚度。以苏通大桥钢箱梁中采用的梯形闭口肋加劲板为例,采用Timoshenko方法、小西一郎方法、板壳有限元法及提出的能量法进行了屈曲临界应力比较。分析结果表明:加劲板长宽比口小于1时,Timoshenko方法和小西一郎方法计算的临界应力与钢材屈服强度比值A大于能量法计算值;口在1~6之间时,Timoshenko方法和小西一郎方法计算的A值小于能量法计算值;口在3~6之间时,能量法计算值与有限元分析结果最接近,偏差在9%~25%之间。可见,采用能量法进行正交异性钢箱梁顶、底板弹性稳定分析可行。%A calculation method of critical buckling stress for stiffened plate with closed ribs was proposed by using energy method under unidirectional uniform pressure and simply supported on four sides. The influence of torsional rigidity of stiffened ribs was considered, the whole flexural rigidity of mother board and stiffened ribs was calculated according to the centroid of actual section. The stiffened plates with closed trapezoidal ribs in the steel box girder of Suzhou- Nantong Bridge were taken as example, the critical buckling stresses calculated by Timoshenko method, Ichiro Konishi method, shell finite element method and the proposed energy method were compared. Analysis result shows that when the length-width ratio t9 of stiffened plate is less than 1, the ratio A values of critical buckling stress to steel yield strength calculated by Timoshenko method and Iehiro Konishi method are greater than the calculation value of energy method. When p is between 1 to 6, the 3, values calculated by Timoshenko method and Ichiro Konishi method are less than the calculation value of energy method. When/5 is between

  7. 局域共振型加筋板的弯曲波带隙与减振特性∗%Flexural wave band gaps and vibration reduction prop erties of a lo cally resonant stiffened plate

    Institute of Scientific and Technical Information of China (English)

    朱席席; 肖勇; 温激鸿; 郁殿龙

    2016-01-01

    A locally resonant stiffened plate is constructed by attaching a two-dimensional periodic array of spring-mass resonators to a traditional periodic stiffened plate. A method based on the finite element method and Bloch theorem is presented for calculating the flexural wave dispersion relation and forced vibration response of the proposed locally resonant stiffened plate. The method is validated by comparing the predictions with simulations by FEM software COMSOL. The effects of the spring-stiffness and mass ratio of local resonators on the flexural wave band gap and vibration reduction performance are analysed, which can facilitate the design of the locally resonant stiffened plate for vibration-reduction applications in engineering. The main findings of this work are as follows. 1) The local resonator can have a significant effect on the propagation of flexural wave in stiffened plate. On the one hand, the local resonator is able to create a low-frequency local resonance band gap; on the other hand, it can enhance the high-frequency Bragg band gap. Within the band gap frequency range, the vibration of the locally resonant stiffened plate can be reduced remarkably. 2) The spring-stiffness of local resonators shows a notable influence on the band gap and vibration reduction performance of the locally resonant stiffened plate. As the spring-stiffness gradually increases, the nature frequency of local resonator is gradually tuned to higher frequency, and the phenomenon of band-gap transition and band-gap near-coupling may arise. Under the near-coupling condition, the pass band between two band gaps turns narrow, andit seems that these two band gaps form a super-wide pseudo-gap (within which only a very narrow pass band exists). This behaviour is of great interest for the broad band vibration reduction applications. Moreover, the complete band gap will disappear if the nature frequency of local resonator is tuned to a higher value than a threshold frequency, which is

  8. Thermal postbuckling of thin-walled composite stiffeners

    Science.gov (United States)

    Noor, Ahmed K.; Peters, J. M.

    1991-01-01

    A study is made of the thermal postbuckling response of composite stiffeners subjected to prescribed edge displacement and a temperature rise. The flanges and web of the stiffeners are modeled by using two-dimensional plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of the generalized displacements and the stress resultants of the plate. A reduction method is used in conjunction with mixed finite element models for determining the postbuckling response of the stiffeners. Sensitivity derivatives are evaluated and used to study the effects of variations in the different lamination and material parameters of the stiffeners on their postbuckling response characteristics. Numerical studies are presented for anisotropic stiffeners with Zee and channel sections.

  9. 悬索桥板桁结合型加劲梁剪力滞计算的简化方法%Simplified Calculation Method for Shear Lag of Plate and Truss Composite Stiffening Girder of Suspension Bridge

    Institute of Scientific and Technical Information of China (English)

    沈锐利; 颜智法; 唐茂林; 朱军颖

    2015-01-01

    T he simplified calculation method for the shear lag of floor system of the plate and truss composite stiffening girder of suspension bridge was researched in the light of the shear lag characteristics of such type of the structure because the work load of modeling for calculating the shear lag ,using the plate and shell finite element method was enormous and the working efficiency was low .In the simplified method ,the truss in the floor system was converted into a continuous thin‐wall girder by the equivalent beam method and the finite element model of the single main girder suspension bridge that could consider the shear deformation influences w as set up .Based on the variational calculus ,the loading influential intervals that considered the structural geometric nonlinearity influences were taken as the span length of an equivalent simply‐supported girder ,the live load ,suspender forces and bearing reaction forces acting on the intervals were taken as the loads and the shear lag under the action of the combination load was solved on the principle of su‐perposition .By way of example of a railway suspension bridge to be built ,the ANSYS was used to set up the plate and shell finite element model for the w hole bridge of the bridge and the calculation of the shear lag of the model w as analyzed and compared to that implemented by the simplified method .The results of the analysis and comparison proved that the simplified method has high cal‐culation accuracy .%针对采用板壳有限元方法计算悬索桥板桁结合型加劲梁桥面系剪力滞的建模工作量巨大、效率低下的情况,根据该类结构剪力滞的特性,研究其简化计算方法。该方法采用换算梁法将板桁结合桥面系桁梁换算为连续薄壁梁;建立能够考虑剪切变形影响的单主梁悬索桥有限元模型;以变分法为基础,将考虑了结构几何非线性影响的加载影响区间作为等效简支梁的跨

  10. Underwater Shock-Induced Responses of Stiffened Flat Plates: An Investigation Into the Predictive Capabilities of the USA-STAGS Code.

    Science.gov (United States)

    1984-12-01

    rectangular stif- fened plate was small (j pound of TNT), and the correspond- ing plate deflections were far too slight for any firm conclusions to be drawn...s)F(s) = X(s) (eqn 5.5) For an oscillating system of order n, the transfer func- tion will have 2n poles occurring in complex conjugate pairs. Each

  11. A unique continuation result for the plate equation and an application

    OpenAIRE

    Arat, Zehra; Khanmamedov, Azer; Simsek, Sema

    2014-01-01

    In this paper, we prove the unique continuation property for the weak solution of the plate equation with non-smooth coefficients. Then, we apply this result to study the global attractor for the semilinear plate equation with a localized damping.

  12. Finite element analysis of the free-damped beam-stiffened plate%壳梁组合结构自由阻尼处理有限元分析

    Institute of Scientific and Technical Information of China (English)

    杨莉; 孙庆鸿; 朱壮瑞; 许志华

    2004-01-01

    A finite element model is presented for free-damped beam-stiffened plates. The nodes of the plate elements are treated as master-nodes, and the corresponding nodes of the beam elements are considered as slave-nodes. The stiffness and mass matrices of the elements are developed. Based on the analysis of the dynamic properties of the structures, modal loss factors are predicted by the modal strain energy method. Finally, an example is given to compare the results obtained from the proposed method with the results of the ANSYS software. The results show that the method in this paper is computationally efficient, simple and feasible with high precision and engineering practicability.%构造了壳梁组合结构自由阻尼处理薄板结构的有限元模型, 将板单元的节点作为主节点, 梁单元的节点作为从属节点, 推导出相应的刚度矩阵和质量矩阵. 在用有限元法进行结构动态特性分析的基础上, 用模态变形能法估算了结构的模态损耗因子. 最后以一计算实例将本文方法所得结果与用ANSYS软件计算所得结果进行了比较, 结果表明本文方法计算效率高、简单可行, 且具有较高的精度和工程实用性.

  13. Viscous dissipation effects on heat transfer in flow past a continuous moving plate

    Digital Repository Service at National Institute of Oceanography (India)

    Soundalgekar, V.M.; Murty, T.V.R.

    The study of thermal boundary layer on taking into account the viscous dissipative heat, on a continuously moving semi-infinite flat plate is presented here.Similarity solutions are derived and the resulting equations are integrated numerically...

  14. Heat transfer in flow past a continuously moving porous flat plate with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Sarma, Y.V.B.

    The analysis of the heat transfer in flow past a continuously moving semi-infinite plate in the presence of suction/ injection with heat flux has been presented. Similarity solutions have been derived and the resulting equations are integrated...

  15. Stiffener layout design technique of plate structures based on adaptive growth mechanism%基于自适应成长原理的板壳结构加强筋分布设计技术

    Institute of Scientific and Technical Information of China (English)

    丁晓红; 郭春星; 季学荣

    2012-01-01

    将自然界分枝系统形态自适应成长机理应用于板壳结构加强筋分布设计中,深入讨论板壳结构加强筋分布设计技术.应用ANSYS APDL二次开发语言进行编程,使提出的设计原理方便地应用于实际工程设计.整个应用程序包含前处理、优化迭代及后处理三个模块.前处理模块建立设计对象的基结构,基结构由基本板壳结构和初始加强筋组成.基本板壳结构可采用ANSYS中的建模模块创建或直接导入由其他CAE软件建立的几何模型,而初始加强筋由基本板壳结构上的节点连接而成的梁单元构成.优化迭代模块包含“选种”、灵敏度分析、分歧/成长/退化等功能.采用变量扰动法,基于ANSYS有限元分析模块计算活动加强筋的近似灵敏度.根据自然界分枝系统形态形成机理进行加强筋的分歧/成长/退化.最后由后处理模块输出设计结果.以若干典型的设计案例说明所提出方法的有效性,并通过与ANSYS的结构拓扑优化设计模块的设计结果比较说明了所提出方法的可行性.%The adaptive growth method of stiffener layout on plate structures is inspired from the growth mechanism of the branch systems in nature. This paper studied the implemental techniques of the design method on the platform of the commercial FEA software ANSYS. The APDL language was used to program the growth method, and the approach was comprised of three phases, which were pre-process, optimal iteration, and post-process. In the phase of the pre-process, a ground structure was constructed, which included a basic shell structure and initial baby stiffeners. The basic shell structure can be constructed by the modeling module of ANSYS or imported its geometric model constructed by other CAE software. And the initial baby stiffeners were formed by the nodes of shell elements of the basic shell structure. The optimal iteration included seeding, sensitivity analysis and growth

  16. Anatomy of the Dead Sea transform: Does it reflect continuous changes in plate motion?

    Science.gov (United States)

    ten Brink, U.S.; Rybakov, M.; Al-Zoubi, A. S.; Hassouneh, M.; Frieslander, U.; Batayneh, A.T.; Goldschmidt, V.; Daoud, M.N.; Rotstein, Y.; Hall, J.K.

    1999-01-01

    A new gravity map of the southern half of the Dead Sea transform offers the first regional view of the anatomy of this plate boundary. Interpreted together with auxiliary seismic and well data, the map reveals a string of subsurface basins of widely varying size, shape, and depth along the plate boundary and relatively short (25-55 km) and discontinuous fault segments. We argue that this structure is a result of continuous small changes in relative plate motion. However, several segments must have ruptured simultaneously to produce the inferred maximum magnitude of historical earthquakes.

  17. Finite element analysis of customized reconstruction plates for mandibular continuity defect therapy.

    Science.gov (United States)

    Narra, Nathaniel; Valášek, Jiří; Hannula, Markus; Marcián, Petr; Sándor, George K; Hyttinen, Jari; Wolff, Jan

    2014-01-03

    Large mandibular continuity defects pose a significant challenge in oral maxillofacial surgery. One solution to this problem is to use computer-guided surgical planning and additive manufacturing technology to produce patient-specific reconstruction plates. However, when designing customized plates, it is important to assess potential biomechanical responses that may vary substantially depending on the size and geometry of the defect. The aim of this study was to assess the design of two customized plates using finite element method (FEM). These plates were designed for the reconstruction of the lower left mandibles of two ameloblastoma cases (patient 1/plate 1 and patient 2/plate 2) with large bone resections differing in both geometry and size. Simulations revealed maximum von Mises stresses of 63 MPa and 108 MPa in plates 1 and 2, and 65 MPa and 190 MPa in the fixation screws of patients 1 and 2. The equivalent strain induced in the bone at the screw-bone interface reached maximum values of 2739 micro-strain for patient 1 and 19,575 micro-strain for patient 2. The results demonstrate the influence of design on the stresses induced in the plate and screw bodies. Of particular note, however, are the differences in the induced strains. Unphysiologically high strains in bone adjacent to screws can cause micro-damage leading to bone resorption. This can adversely affect the anchoring capabilities of the screws. Thus, while custom plates offer optimal anatomical fit, attention should be paid to the expected physiological forces on the plates and the induced stresses and strains in the plate-screw-bone assembly.

  18. Effects of Lateral Bracing and Stiffeners on the CFRP Failure of Strengthened Steel Beams

    Science.gov (United States)

    Kamruzzaman, M.; Jumaat, M. Z.; Sulong, N. H. R.; Qeshta, I. M. I.; Narmashiri, K.

    2017-06-01

    In this paper, the effects of lateral bracing and web stiffeners on the Carbon Fibre Reinforced Polymer (CFRP) failure modes and buckling strength of the CFRP strengthened wide-flange steel I-beams are investigated experimentally. The study consisted of eight beams tested under static gradual load until failure. The main test variables were steel plate stiffeners, lateral bracings, and bonding of CFRP plates to beam soffits. The results showed that the use of steel plate stiffeners did not only prevent stress concentration below the point load, but it could also help to delay debonding of the externally bonded CFRP plate. The use of lateral bracing indicated a significant effect in preventing the CFRP splitting failure mode. In addition, the use of stiffeners with lateral bracing simultaneously, showed improvement in the in-plane flexural strength, stiffness and ductility of the CFRP strengthened I-beams.

  19. C1-continuous Virtual Element Method for Poisson-Kirchhoff plate problem

    Energy Technology Data Exchange (ETDEWEB)

    Gyrya, Vitaliy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mourad, Hashem Mohamed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-20

    We present a family of C1-continuous high-order Virtual Element Methods for Poisson-Kirchho plate bending problem. The convergence of the methods is tested on a variety of meshes including rectangular, quadrilateral, and meshes obtained by edge removal (i.e. highly irregular meshes). The convergence rates are presented for all of these tests.

  20. U肋加劲板焊接残余应力数值模拟分析%NUMERICAL ANALYSIS OF WELDING RESIDUAL STRESS OF U-RIB STIFFENED PLATE

    Institute of Scientific and Technical Information of China (English)

    赵秋; 吴冲

    2012-01-01

    通过数值模拟和实验方法对U肋加劲板焊接残余应力进行了估算和分析,建立了三维热弹塑性有限元模型,采用生死单元法模拟焊缝填充和焊接热输入过程,实现了整个焊接过程中的动态应力和变形变化,得到了U肋加劲板的焊接温度场和应力场,分析了u肋加劲板的焊接残余应力分布,并与残余应力测试试验结果比较。结果显示:u肋加劲板近焊缝区残余拉应力达到材料屈服强度,母板远离焊缝区残余压应力平均值约为材料屈服强度的0.2倍,其分布趋势与实验测试得到的残余应力分布比较接近,证明了所采用的焊接数值模拟方法的正确性。%In order to take into account the change of stress and deformation during the whole process of welding and the thermal field distribution of a U-rib stiffened plate, a thermal elastic-plastic FEM model was adopted and element birth and death was used to simulate the weld seam fill-in and heat input. And the residual stress distribution was investigated by numerical simulations and experiments. The comparison of numerical analyses and experimental results of distribution and magnitude of residual stress showed that residual stress near the weld seam is close to material yielding stress, the average value of the residual stress far from weld seam on the mother board was around 0.2 time of material yielding stress. The residual stress distribution tendency derived from numerical simulation was close to the experiment result, which proved the validity of the numerical simulation.

  1. Smearing technique for vibration analysis of simply supported cross-stiffened and doubly curved thin rectangular shells

    DEFF Research Database (Denmark)

    Luan, Yu; Ohlrich, Mogens; Jacobsen, Finn

    2011-01-01

    a number of stiffened plates are combined in a complicated assembly composed of many plate panels. However, whereas the equivalent smeared plate technique is well established and recently improved for flat panels, there is no similar established technique for doubly curved stiffened shells. In this paper...... the improved smeared plate technique is combined with the equation of motion for a doubly curved thin rectangular shell, and a solution is offered for using the smearing technique for stiffened shell structures. The developed prediction technique is validated by comparing natural frequencies and mode shapes...

  2. Numerical analysis of static performance comparison of friction stir welded versus riveted 2024-T3 aluminum alloy stiffened panels

    Science.gov (United States)

    Shao, Qing; He, Yuting; Zhang, Teng; Wu, Liming

    2014-07-01

    Most researches on the static performance of stiffened panel joined by friction stir welding(FSW) mainly focus on the compression stability rather than shear stability. To evaluate the potential of FSW as a replacement for traditional rivet fastening for stiffened panel assembly in aviation application, finite element method(FEM) is applied to compare compression and shear stability performances of FSW stiffened panels with stability performances of riveted stiffened panels. FEMs of 2024-T3 aluminum alloy FSW and riveted stiffened panels are developed and nonlinear static analysis method is applied to obtain buckling pattern, buckling load and load carrying capability of each panel model. The accuracy of each FEM of FSW stiffened panel is evaluated by stability experiment of FSW stiffened panel specimens with identical geometry and boundary condition and the accuracy of each FEM of riveted stiffened panel is evaluated by semi-empirical calculation formulas. It is found that FEMs without considering weld-induced initial imperfections notably overestimate the static strengths of FSW stiffened panels. FEM results show that, buckling patterns of both FSW and riveted compression stiffened panels represent local buckling of plate between stiffeners. The initial buckling waves of FSW stiffened panel emerge uniformly in each plate between stiffeners while those of riveted panel mainly emerge in the mid-plate. Buckling patterns of both FSW and riveted shear stiffened panels represent local buckling of plate close to the loading corner. FEM results indicate that, shear buckling of FSW stiffened panel is less sensitive to the initial imperfections than compression buckling. Load carrying capability of FSW stiffened panel is less sensitive to the initial imperfections than initial buckling. It can be concluded that buckling loads of FSW panels are a bit lower than those of riveted panels whereas carrying capabilities of FSW panels are almost equivalent to those of riveted

  3. The dynamic stiffness matrix of two-dimensional elements: application to Kirchhoff's plate continuous elements

    Science.gov (United States)

    Casimir, J. B.; Kevorkian, S.; Vinh, T.

    2005-10-01

    This paper describes a procedure for building the dynamic stiffness matrix of two-dimensional elements with free edge boundary conditions. The dynamic stiffness matrix is the basis of the continuous element method. Then, the formulation is used to build a Kirchhoff rectangular plate element. Gorman's method of boundary condition decomposition and Levy's series are used to obtain the strong solution of the elementary problem. A symbolic computation software partially performs the construction of the dynamic stiffness matrix from this solution. The performances of the element are evaluated from comparisons with harmonic responses of plates obtained by the finite element method.

  4. Novel thin plate element theory based on a continuity re-relaxed technique

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Thin plate problem has been receiving much interest due to its wide application in engineering.In this paper,a novel thin plate element theory is proposed based on a continuity re-relaxed technique to avoid the high continuity requirement for thin plate formulation which needs the high computation cost.The problem is first discretized into a set of background cells with field nodes,and only deflection field is treated as the field variable.On top of the background cells,the integration domains are further formed.The curvatures over integration domains are restructured through the divergence theorem,and the continuity requirement of the trial deflection function for thin plate problems can be re-relaxed.The Galerkin weak form is then used to create the discretized system equations.The curvatures in the integration domains are constant,and the stiffness matrix of the system can be computed directly without numerical integration.The rotational essential boundary conditions are imposed in the process of curvature field construction.Some numerical examples are computed using the RPIM approximation function.The excellent results demonstrate the efficiency of the proposed method.

  5. A Novel Continuous Extrusion Process to Fabricate Wedge-Shaped Light Guide Plates

    Directory of Open Access Journals (Sweden)

    Wen-Tse Hsiao

    2013-01-01

    Full Text Available Backlight modules are key components in thin-film transistor liquid crystal displays (TFT-LCD. Among the components of a backlight module, the light guide plate (LGP plays the most important role controlling the light projected to the eyes of users. A wedge-shaped LGP, with its asymmetrical structure, is usually fabricated by an injection proces, but the fabrication time of this process is long. This study proposes a continuous extrusion process to fabricate wedge-shaped LGPs. This continuous process has advantages for mass production. Besides a T-die and rollers, this system also has an in situ monitor of the melt-bank that forms during the extrusion process, helping control the plate thickness. Results show that the melt bank has a close relationship with the plate thickness. The temperature of the bottom heater and roller was adjusted to reduce the surface deformation of the wedge-shaped plate. This continuous extrusion system can successfully manufacture wedge-shaped LGPs for mass production.

  6. Fracture Assessment of Strengthened Cracked Metallic Components Using FRP Stiffeners

    Science.gov (United States)

    Ahmed, W. K.; Mourad, A.-H. I.

    2015-07-01

    The present study focuses on applying the fracture mechanics approach to the fracture assessment of a cracked member/component strengthened with fiber-reinforced polymer composite stiffeners. The parameters of linear elastic fracture mechanics (LEFM) — the stress intensity factor and the crack opening displacement — are estimated using a finite-element analysis. A metallic plate with an edge crack repaired with fiber-reinforced polymer composite stiffeners is considered in the study. The effects of crack length, debonding length, and adhesive stiffness on the LEFM parameters are examined. Two different loading conditions are considered — axial tension and bending. The results obtained show that fiber-reinforced polymer composite stiffeners are very useful in repairing cracked metallic components.

  7. Research on Continuous Injection Direct Rolling Process for PMMA Optical Plate

    Directory of Open Access Journals (Sweden)

    HaiXiong Wang

    2014-06-01

    Full Text Available Continuous injection direct rolling (CIDR combined intermittent injection and rolling process is a new technology for molding optical polymer plates with microstructured patterns; research on forming PMMA optical plates is an aspect of it in this paper. The equipment of CIDR process consists of plastic injection module, precision rolling module, and automatic coiling module. Based on the establishing mathematical CIDR models, numerical analysis was used to explode the distribution of velocity, temperature, and pressure in injection-rolling zone. The simulation results show that it is feasible to control the temperature, velocity, and injection-rolling force, so it can form polymer plate under certain process condition. CIDR experiment equipment has been designed and produced. PMMA optical plate was obtained by CIDR experiments, longitudinal thickness difference is 0.005 mm/200 mm, horizontal thickness difference is 0.02/200 mm, transmittance is 86.3%, Haze is 0.61%, and the difference is little compared with optical glasses. So it can be confirmed that CIDR process is practical to produce PMMA optical plates.

  8. Skin friction and heat transfer of liquid jet over a continuous moving horizontal hot plate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The skin friction and heat transfer occurring in the laminarboundary layer which caused by a vertical liquid jet impinging on a continuously moving horizontal plate were studied. Similarity solutionsfor shear stress and heat distribution were obtained by using the shooting technique. The results shows that the skin friction decreases with an increase of velocity parameter, the evolving of thermal boundarydecrease with increasing in Prandtl number, but increase with increasing of velocity parameter.

  9. Elastic tripping analysis of corroded flat-bar stiffeners

    Directory of Open Access Journals (Sweden)

    Ahmad Rahbar-Ranji

    2016-12-01

    Full Text Available Tripping of stiffeners is one of the buckling modes of stiffened panel which could rapidly lead to its catastrophic failure. Loss of thickness in web and flange due to corrosion reduces elastic buckling strength of stiffeners. It is common practice to assume a uniform thickness reduction for general corrosion. Since the real corroded plate has rough surfaces, to estimate the remaining strength of corroded structures, typically a much higher level of accuracy is required. There is a little study on strength analysis of corroded plates with rough surface especially as a function of corrosion degrees. The aim of present work is to analyze elastic tripping stress of flat bar stiffeners with both-sided corroded surfaces. Undulated surfaces are generated based on the power spectrum of the corroded surface. Elastic tripping stress is calculated using ANSYS code. Finite elements method is employed to analyze elastic tripping stress of corroded steel flat bars with both sided rough surfaces. Comparing the results with elastic tripping strength of corroded flat bars with uniform thickness, a reduction factor is proposed. It is found that reduction factor of buckling strength by uniform thickness assumption is overestimated.

  10. Analyses of vibro-acoustic characteristics for orthogonally stiffened panel based on the plate-beam combined theory%基于板梁组合理论的正交加筋板声振特性分析

    Institute of Scientific and Technical Information of China (English)

    金叶青; 庞福振; 姚熊亮; 王献忠

    2012-01-01

    基于板梁组合理论,建立了正交加筋板声透射计算模型,并分析了正交加筋板的声振特性.将加强筋视为平板的动反力及动反力矩,引入到平板振动方程,得到了正交加筋板声振方程;利用空间谐波展开法及虚功原理,得到了正交加筋板透射损失和平均振动速度级表达式.在此基础上,首先研究了单向加筋板的隔声性能,理论结果与已有计算结果取得了很好的一致,验证了模型的有效性;并进一步研究了正交加筋的声振特性.研究表明,正交加筋板对垂直入射声波的隔声效果最好;增大加强筋惯性矩可提高其低频段透射损失;增大加强筋间距可提高正交加筋板的低频段振动响应,却降低了其低频透射损失,总体而言,增大加强筋间距可改善结构的整体隔声性能.%Based on the panel-beam combined theory, a panel-beam theoretical model is established for sound transmission through orthogonally stiffened panel and vibro-acoustic characteristics of the panel are analyzed. The vibro-acoustic equation of the structures was derived by firstly treating the stiffeners as reaction forces and moments on the panel and then inducing them into the vibration equation of the panel. The formulations of Transmission Loss (TL) and mean vibration velocity level for the structures were yielded according to the spatial harmonic expansion method and the virtual work principle. And then the developed model was applied to analyze sound insulation of the stiffened panel in one direction. The validity of the developed model was qualified by comparing those predictions with existing results. The model then employed to investigate the vi-bro-acoustic characteristics of the orthogonally stiffened panel. Results show that the orthogonally stiffened panel is more suitable for the insulation of sound waves with small incidence angle. An enlargement in the moment of inertia of stiffeners increases sound transmission loss in

  11. SORET AND DUFOUR EFFECTS ON STEADY MHD CONVECTIVE FLOW PAST A CONTINUOUSLY MOVING POROUS VERTICAL PLATE

    Directory of Open Access Journals (Sweden)

    DIPAK SARMA

    2012-12-01

    Full Text Available A steady two dimensional MHD convective flow of an incompressible viscous and electrically conducting fluid past a continuously moving porous vertical plate with Soret and Dufour effects is analyzed. A magnetic field of uniform strength is assumed to be applied transversely to the direction of the main flow. The solutions for thevelocity field, temperature and concentrations are performed for a wide range of the governing flow parameters viz the Soret number, Prandtl number, Schmidt number, Grashof number for heat transfer, Dufour number, Solutal Grashof number and Hartmann number. The effects of these flow parameters on the velocity, temperature, concentration, skin friction coefficient and Sherwood number are discussed graphically.

  12. Application of patch test in meshless analysis of continuously non-homogeneous piezoelectric circular plate

    Directory of Open Access Journals (Sweden)

    Staňák P.

    2013-06-01

    Full Text Available Proposed paper presents application of the patch test for meshless analysis of piezoelectric circular plate with functionally graded material properties. Functionally graded materials (FGM are the special class of composite materials with continuous variation of volume fraction of constituents in predominant direction. Patch test analysis is an important tool in numerical methods for addressing the convergence. Meshless local Petrov-Galerkin (MLPG method together with moving least-squares (MLS approximation scheme is applied in the analysis. No finite elements are required for approximation or integration of unknown quantities. Circular plate is considered as a 3-D axisymmetric piezoelectric solid. Considering the axial symmetry, the problem is reduced to a 2-dimensinal one. Displacement and electric potential fields are prescribed on the outer boundaries in order to reach the state of constant stress field inside the considered plate as required by the patch test and the governing equations. Values of prescribed mechanical and electrical fields must be determined in order to comply with applied FGM gradation rule. Convergence study is performed to assess the considered meshless approach and several conclusions are finally presented.

  13. Heat transfer in flow past a continuously moving semi-infinite flat plate in transverse magnetic field with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.

    Thermal boundary layer on a continuously moving semi-infinite flat plate in the presence of transverse magnetic field with heat flux has been examined. Similarity solutions have been derived and the resulting equations are integrated numerically...

  14. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    ’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through......Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  15. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty......’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  16. Continuous/discontinuous finite element modelling of Kirchhoff plate structures in R^3 using tangential differential calculus

    Science.gov (United States)

    Hansbo, Peter; Larson, Mats G.

    2017-06-01

    We employ surface differential calculus to derive models for Kirchhoff plates including in-plane membrane deformations. We also extend our formulation to structures of plates. For solving the resulting set of partial differential equations, we employ a finite element method based on elements that are continuous for the displacements and discontinuous for the rotations, using C^0 -elements for the discretisation of the plate as well as for the membrane deformations. Key to the formulation of the method is a convenient definition of jumps and averages of forms that are d-linear in terms of the element edge normals.

  17. Continuous distributed phase-plate advances for high-energy laser systems

    Science.gov (United States)

    Marozas, J. A.; Collins, T. J. B.; Zuegel, J. D.; McKenty, P. W.; Cao, D.; Fochs, S.; Radha, P. B.

    2016-05-01

    The distributed phase plate (DPP) design code Zhizhoo’ has been used to design full- aperture, continuous near-field transmission optics for a wide variety of high-fidelity focal-spot shapes for high-energy laser systems: OMEGA EP, Dynamic Compression Sector (DCS), and the National Ignition Facility (NIF). The envelope shape, or profile, of the focal spot affects the hydrodynamics of directly driven targets in these laser systems. Controlling the envelope shape to a high degree of fidelity impacts the quality of the ablatively driven implosions. The code Zhizhoo’ not only produces DPP's with great control of the envelope shape, but also spectral and gradient control as well as robustness from near-field phase aberrations. The focal-spot shapes can take on almost any profile from symmetric to irregular patterns and with high fidelity relative to the objective function over many decades of intensity. The control over the near-field phase spectrum and phase gradients offer greater manufacturability of the full- aperture continuous surface-relief pattern. The flexibility and speed of the DPP design code Zhizhoo’ will be demonstrated by showing the wide variety of successful designs that have been made and those that are in progress.

  18. Systematic effects from an ambient-temperature, continuously rotating half-wave plate

    Science.gov (United States)

    Essinger-Hileman, T.; Kusaka, A.; Appel, J. W.; Choi, S. K.; Crowley, K.; Ho, S. P.; Jarosik, N.; Page, L. A.; Parker, L. P.; Raghunathan, S.; Simon, S. M.; Staggs, S. T.; Visnjic, K.

    2016-09-01

    We present an evaluation of systematic effects associated with a continuously rotating, ambient-temperature half-wave plate (HWP) based on two seasons of data from the Atacama B-Mode Search (ABS) experiment located in the Atacama Desert of Chile. The ABS experiment is a microwave telescope sensitive at 145 GHz. Here we present our in-field evaluation of celestial (Cosmic Microwave Background (CMB) plus galactic foreground) temperature-to-polarization leakage. We decompose the leakage into scalar, dipole, and quadrupole leakage terms. We report a scalar leakage of ˜0.01%, consistent with model expectations and an order of magnitude smaller than other CMB experiments have been reported. No significant dipole or quadrupole terms are detected; we constrain each to be ABS survey and focal-plane layout before any data correction such as so-called deprojection. This demonstrates that ABS achieves significant beam systematic error mitigation from its HWP and shows the promise of continuously rotating HWPs for future experiments.

  19. Performance of a continuously rotating half-wave plate on the POLARBEAR telescope

    Science.gov (United States)

    Takakura, Satoru; Aguilar, Mario; Akiba, Yoshiki; Arnold, Kam; Baccigalupi, Carlo; Barron, Darcy; Beckman, Shawn; Boettger, David; Borrill, Julian; Chapman, Scott; Chinone, Yuji; Cukierman, Ari; Ducout, Anne; Elleflot, Tucker; Errard, Josquin; Fabbian, Giulio; Fujino, Takuro; Galitzki, Nicholas; Goeckner-Wald, Neil; Halverson, Nils W.; Hasegawa, Masaya; Hattori, Kaori; Hazumi, Masashi; Hill, Charles; Howe, Logan; Inoue, Yuki; Jaffe, Andrew H.; Jeong, Oliver; Kaneko, Daisuke; Katayama, Nobuhiko; Keating, Brian; Keskitalo, Reijo; Kisner, Theodore; Krachmalnicoff, Nicoletta; Kusaka, Akito; Lee, Adrian T.; Leon, David; Lowry, Lindsay; Matsuda, Frederick; Matsumura, Tomotake; Navaroli, Martin; Nishino, Haruki; Paar, Hans; Peloton, Julien; Poletti, Davide; Puglisi, Giuseppe; Reichardt, Christian L.; Ross, Colin; Siritanasak, Praween; Suzuki, Aritoki; Tajima, Osamu; Takatori, Sayuri; Teply, Grant

    2017-05-01

    A continuously rotating half-wave plate (CRHWP) is a promising tool to improve the sensitivity to large angular scales in cosmic microwave background (CMB) polarization measurements. With a CRHWP, single detectors can measure three of the Stokes parameters, I, Q and U, thereby avoiding the set of systematic errors that can be introduced by mismatches in the properties of orthogonal detector pairs. We focus on the implementation of CRHWPs in large aperture telescopes (i.e. the primary mirror is larger than the current maximum half-wave plate diameter of ~0.5 m), where the CRHWP can be placed between the primary mirror and focal plane. In this configuration, one needs to address the intensity to polarization (I→P) leakage of the optics, which becomes a source of 1/f noise and also causes differential gain systematics that arise from CMB temperature fluctuations. In this paper, we present the performance of a CRHWP installed in the {\\scshape Polarbear} experiment, which employs a Gregorian telescope with a 2.5 m primary illumination pattern. The CRHWP is placed near the prime focus between the primary and secondary mirrors. We find that the I→P leakage is larger than the expectation from the physical properties of our primary mirror, resulting in a 1/f knee of 100 mHz. The excess leakage could be due to imperfections in the detector system, i.e. detector non-linearity in the responsivity and time-constant. We demonstrate, however, that by subtracting the leakage correlated with the intensity signal, the 1/f noise knee frequency is reduced to 32 mHz (l ~ 39 for our scan strategy), which is very promising to probe the primordial B-mode signal. We also discuss methods for further noise subtraction in future projects where the precise temperature control of instrumental components and the leakage reduction will play a key role.

  20. Interior Baja B.C. : Continuing Rotation on a Diffuse Plate Boundary

    Science.gov (United States)

    Symons, D. T.; Harris, M. J.; McCausland, P. J.; Blackburn, W. H.; Hart, C. J.

    2004-12-01

    Interior Baja B.C. - the Intermontane Belt (IMB) and Yukon-Tanana (YT) terranes of northwestern North America - provide a geological record of the complex interactions between the northeastern Pacific basin plates and craton. Geophysical evidence from earthquake seismology, gravity, global positioning system and heat flow data indicate motion of the IMB terranes toward the craton today. Paleomagnetic data show the YT terrane to be parautochthonous and part of the craton's ramp onto which the IMB terranes were obducted. Conversely the IMB terranes behaved as an allochthonous reasonably-coherent microplate with its own apparent polar wander path. Relative to the craton, the path dictates that: 1) from 0-54 Ma the IMB rotated steadily on the craton's ramp at 0.29±±0.11° /Ma or 16±6° clockwise (CW), consistent with Lithoprobe SNORCLE deep crustal seismic evidence for thin skinned tectonics; 2) from 54 to 102±14 Ma the IMB was offshore and was further rotated by 35±14° CW and translated northward by 8.3±7.0° (915±75 km), consistent with geological estimates for total dextral fault displacement and seafloor plate vectors; and 3) more speculatively, from Early Cretaceous to Early Jurassic, the IMB moved in concert with the craton off the western USA seaboard. This history fits with major geologic events such as extensive Eocene extension in southern British Columbia, development of the 1000 km-long Selwyn-Mackenzie orogenic arc in Yukon, YT terrane exposure on either side of the IMB, etc. Further it requires continuing crust-mantle interactions that extend some hundreds of kilometers into the craton today.

  1. Effect of a Local Reinforcement on the Stress Intensity Factor of a Cracked Plate

    Institute of Scientific and Technical Information of China (English)

    JIANGCui-xiang; ZHA0Yao; LIUTu-guang

    2004-01-01

    Stress intensity factors are calculated for a cracked plate reinforced locally subject to mode I loading.The stiffeners are considered to have both longitudinal and transverse stiffness.There is no relative displacement between the plate and the stiffener.It is considered that the shear stresses are lumped at a finite number of locations,the result is obtained by summation.The influence of the stiffener location and the stiffener relative stiffness on cracked plate is included.The stress intensity factor depends on all these factors.Case study shows that the shear stress acting parallel to the stiffener gives more effect on the stress intensity factor than the shear stress acting perpendicular to the stiffener.To increase the relative stiffness of stiffener avails to reduce the stress intensity factor of the cracked plate.

  2. 削斜筋板架的抗屈曲能力研究%Buckling capacity of snip stiffened panel

    Institute of Scientific and Technical Information of China (English)

    蒋晓波; 吴剑国; 洪英; 初艳玲; 师桂杰

    2014-01-01

    According to the CSR senior buckling analysis method, this paper studies the buckling capacity of the snip stiffened panel through the ifnite element software ABAQUS. It calculates the yield strength and the ultimate strength of the ifve-stiffened plate, the small snip stiffened plate, the snip stiffened plate and the four-stiffened plate. The results show that the yield strength of the stiffened plate with the snip stiffener decreases more obviously than its ultimate strength. Under the condition of the longitudinal load, carrying the capacity declines with the snip stiffener, while under the condition of the lateral load, the ultimate strength doesn't show any obvious decrease.%根据CSR高级屈曲分析方法,运用有限元软件ABAQUS,研究削斜筋板架的屈曲能力,计算了5筋板架、小削斜筋板架、削斜筋板架以及4筋板架的屈服强度以及极限强度。结果表明:加强筋削斜后,加筋板屈服强度的下降比极限强度更明显;在纵向载荷条件下,承载能力随着加强筋的削斜而降低,而在横向载荷条件下,其极限强度没有明显下降。

  3. Structural Redundancy for Continuous and Discrete Systems

    Science.gov (United States)

    1991-12-01

    a complex assembly of various shapes and types of •tiffened panels, both flat and curved, and ;ome deep web girder and frame- I ike members...either a deep web beam grillage, with a stiffened plated deck, or may be of a multi-deck multi-celled stiffened plated form. An obvious degree of

  4. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell.

    Science.gov (United States)

    Min, Booki; Logan, Bruce E

    2004-11-01

    A microbial fuel cell (MFC) is a device that converts organic matter to electricity using microorganisms as the biocatalyst. Most MFCs contain two electrodes separated into one or two chambers that are operated as a completely mixed reactor. In this study, a flat plate MFC (FPMFC) was designed to operate as a plug flow reactor (no mixing) using a combined electrode/proton exchange membrane (PEM) system. The reactor consisted of a single channel formed between two nonconductive plates that were separated into two halves by the electrode/PEM assembly. Each electrode was placed on an opposite side of the PEM, with the anode facing the chamber containing the liquid phase and the cathode facing a chamber containing only air. Electricity generation using the FPMFC was examined by continuously feeding a solution containing wastewater, or a specific substrate, into the anode chamber. The system was initially acclimated for 1 month using domestic wastewater orwastewater enriched with a specific substrate such as acetate. Average power density using only domestic wastewater was 72+/-1 mW/m2 at a liquid flow rate of 0.39 mL/min [42% COD (chemical oxygen demand) removal, 1.1 h HRT (hydraulic retention time)]. At a longer HRT = 4.0 h, there was 79% COD removal and an average power density of 43+/-1 mW/m2. Power output was found to be a function of wastewater strength according to a Monod-type relationship, with a half-saturation constant of Ks = 461 or 719 mg COD/L. Power generation was sustained at high rates with several organic substrates (all at approximately 1000 mg COD/L), including glucose (212+/-2 mW/ m2), acetate (286+/-3 mW/m2), butyrate (220+/-1 mW/ m2), dextran (150+/-1 mW/m2), and starch (242+/-3 mW/ m2). These results demonstrate the versatility of power generation in a MFC with a variety of organic substrates and show that power can be generated at a high rate in a continuous flow reactor system.

  5. Fracture Testing of Integral Stiffened Structure

    Science.gov (United States)

    Newman, John A.; Smith, Stephen W.; Piascik, Robert S.; Dawicke, David S.; Johnston, William M.; Willard, Scott A.

    2008-01-01

    Laboratory testing was conducted to evaluate safety concerns for integrally-stiffened tanks that were found to have developed cracks during pressurization testing. Cracks occurred at fastener holes where additional stiffeners were attached to the integrally-stiffened tank structure. Tests were conducted to obtain material properties and to reproduce the crack morphologies that were observed in service to help determine if the tanks are safe for operation. Reproducing the cracking modes observed during pressurization testing required a complex loading state involving both a tensile load in the integrally-stiffened structure and a pin-load at a fastener hole.

  6. Titer-plate formatted continuous flow thermal reactors: Design and performance of a nanoliter reactor.

    Science.gov (United States)

    Chen, Pin-Chuan; Park, Daniel S; You, Byoung-Hee; Kim, Namwon; Park, Taehyun; Soper, Steven A; Nikitopoulos, Dimitris E; Murphy, Michael C

    2010-08-06

    Arrays of continuous flow thermal reactors were designed, configured, and fabricated in a 96-device (12 × 8) titer-plate format with overall dimensions of 120 mm × 96 mm, with each reactor confined to a 8 mm × 8 mm footprint. To demonstrate the potential, individual 20-cycle (740 nL) and 25-cycle (990 nL) reactors were used to perform the continuous flow polymerase chain reaction (CFPCR) for amplification of DNA fragments of different lengths. Since thermal isolation of the required temperature zones was essential for optimal biochemical reactions, three finite element models, executed with ANSYS (v. 11.0, Canonsburg, PA), were used to characterize the thermal performance and guide system design: (1) a single device to determine the dimensions of the thermal management structures; (2) a single CFPCR device within an 8 mm × 8 mm area to evaluate the integrity of the thermostatic zones; and (3) a single, straight microchannel representing a single loop of the spiral CFPCR device, accounting for all of the heat transfer modes, to determine whether the PCR cocktail was exposed to the proper temperature cycling. In prior work on larger footprint devices, simple grooves between temperature zones provided sufficient thermal resistance between zones. For the small footprint reactor array, 0.4 mm wide and 1.2 mm high fins were necessary within the groove to cool the PCR cocktail efficiently, with a temperature gradient of 15.8°C/mm, as it flowed from the denaturation zone to the renaturation zone. With temperature tolerance bands of ±2°C defined about the nominal temperatures, more than 72.5% of the microchannel length was located within the desired temperature bands. The residence time of the PCR cocktail in each temperature zone decreased and the transition times between zones increased at higher PCR cocktail flow velocities, leading to less time for the amplification reactions. Experiments demonstrated the performance of the CFPCR devices as a function of flow

  7. Systematic effects from an ambient-temperature, continuously-rotating half-wave plate

    CERN Document Server

    Essinger-Hileman, T; Appel, J W; Choi, S K; Crowley, K; Jarosik, N; Page, L A; Parker, L P; Raghunathan, S; Simon, S M; Staggs, S T; Visnjic, K

    2016-01-01

    We present an evaluation of systematic effects associated with a continuously-rotating, ambient-temperature half-wave plate (HWP) based on two seasons of data from the Atacama B-Mode Search (ABS) experiment located in the Atacama Desert of Chile. The ABS experiment is a microwave telescope sensitive at 145 GHz. The HWP allows for rejection of unpolarized atmospheric fluctuations and ground pickup, as well as clear separation of celestial polarization from intensity. In a previous paper, we demonstrated 30 dB rejection of atmospheric fluctuations on timescales of 500 s. Here we present our in-field evaluation of celestial (CMB plus galactic foreground) temperature-to-polarization leakage. We decompose the leakage into scalar, dipole, and quadrupole leakage terms. We report a scalar leakage of ~0.01%, consistent with model expectations and an order of magnitude smaller than other CMB experiments have reported. No significant dipole or quadruple terms are detected; we constrain each to be < 0.06% (95% confide...

  8. Analytical comparison of three stiffened panel concepts

    Science.gov (United States)

    Maloney, Jill M.; Wu, K. Chauncey; Robinson, James C.

    1995-01-01

    Three stiffened panel concepts are evaluated to find optimized designs for integral stiffeners in the barrels of Reusable Launch Vehicle fuel tanks. The three panel concepts considered are a T-stiffened panel, a panel with one blade stiffener centered between each pair of T-stiffeners, and a panel with two blade stiffeners equally spaced between each pair of T-stiffeners. The panels are optimized using PASCO for a range of compressive loads, and the computed areal weight for each panel is used to compare the concepts and predict tank weights. The areal weight of the T-stiffened panel with one blade is up to seven-percent lower than the other panel concepts. Two tank construction methods are compared for a representative tank design with three barrels. In the first method, 45-degree circumferential sections of a barrel are each designed to carry the same maximum load in the barrel. In the second method, each barrel section is designed for the maximum load in that section. Representative tanks designed with the first method are over 250 lb heavier than tanks designed using the second method. Optimized panel designs and areal weights are also computed for variation of the nominal panel length and skin thickness.

  9. Stiffening in gels containing whey protein isolate

    NARCIS (Netherlands)

    Purwanti, N.; Veen, van der E.; Goot, van der A.J.; Boom, R.M.

    2013-01-01

    Gels made only from whey protein isolate (WPI) stiffened over the first few days of storage, after which the textural properties remained nearly constant. However, protein gels containing WPI microparticles, at the same total protein content, stiffened over a longer period than those without micropa

  10. INVESTIGATION OF THE VIBRATION RESPONSE AND SOUND TRANSMISSON OF A MICRO-PERFORATED PLATE PERIODICALLY STIFFENED BY TWO SETS OF ORTHOGONAL BEAMS%双周期加筋微穿孔板的振动响应及声透射的研究

    Institute of Scientific and Technical Information of China (English)

    王晓明; 周海安; 梅玉林

    2012-01-01

    论文主要研究了水下无穷大双周期加筋微穿孔薄板,在平面声波斜入射下的振动响应和声透射,并提出了一种半解析半数值的计算方法.利用微穿孔板的声阻抗以及薄板表面的振速边界条件,建立了加筋穿孔薄板的振动方程,并根据傅立叶变换及空间波数法将振动位移表达为波数分量的迭加形式.采用数值计算的方法对波数分量进行求解并通过傅里叶逆变换,最终得到了双周期加筋穿孔薄板的振动响应及透射系数.通过与Taka hashi穿孔板声压结果的对比,证明了该方法的正确性.在算例中,分析了加强筋及穿孔率对薄板结构的振动和声透射的影响.%A semi-analytical method to estimate the vibration response and sound transmission of an infinite micro-perforated plate,stiffened by two periodic sets of orthogonal beams, is proposed in this paper. The plate is submerged in water fluid and excited by a plane wave at arbitrary angle of incidence. Based on the velocity boundary condition and acoustic impedance of the micro-perforated plate, the equation of the vibration response of the studied structure is established, which is then expressed in terms of an infinite set of space harmonic amplitudes using the Fourier transforms and space harmonic method. After solving these space harmonic amplitudes numerically, the vibration response and sound transmission coefficient of the perforated plate in the physical space are finally obtained by employing the Fourier inverse transform. Comparisons with sound pressure results of the unstiffened perforated plate of Takahashi illustrate the validity of the proposed approach. In numerical examples,effects of the perforation ratio and periodic beams on the vibration response and acoustic transmission coefficient are investigated.

  11. Studi Eksperimen Analisa Performa Compact Heat Exchanger Circular Tubes Continuous Plate Fin Untuk Pemanfaatan Waste Energy

    Directory of Open Access Journals (Sweden)

    Rachmadi Gewa Saputra

    2014-03-01

    Full Text Available Harga minyak dunia cenderung mengalami peningkatan dalam beberapa tahun terakhir sehingga manusia berfikir untuk memanfaatkan setiap penggunaan minyak bumi. Dengan berkembangnya teknologi saat ini waste energy yang berupa gas hasil pembakaran pada engine dapat dimanfaatkan menjadi bentuk energi lain menggunakan heat recovery system. Pada tugas akhir ini dilakukan desain sebuah heat exchanger tipe circular tubes continuous plate fin dengan susunan tube aligned yang digunakan untuk menyerap waste energy yang berupa exhaust gas. Untuk mendapatkan dimensi desain yang sesuai digunakan metode ΔTLMTD. Metode ini digunakan untuk menentukan nilai dari overall heat transfer  desain dari heat exchanger, kemudian dilakukan perhitungan untuk nilai overall heat transfer hitung. Setelah didapatkan nilai dari overall heat transfer secara desain dan hitung maka dilakukan iterasi untuk mendapatkan dimensi heat exchanger yang memiliki nilai error paling kecil antara nilai overall heat transfer desain dan hitung. Untuk pengujian performa dari heat exchanger yang telah didesain maka dilakukan variasi kacepatan exhaust gas yang melewati heat exchanger, yaitu 0.4 m/s, 0.3 m/s, dan 0.2 m/s. Exhaust gas yang digunakan memiliki temperatur 280oC. Pada tugas akhir ini didapatkan desain compact heat exchanger dengan dimensi panjang 0.38 m, lebar 0.45 m, dan tebal 0.04m. Setelah dilakukan pengujian dengan memvariasikan kecepatan dari exhaust gas yang melewati heat exchanger maka didapatkan bahwa nilai dari qaktual dari heat exchanger mengalami kenaikan dengan bertambahnya reynolds number akibat bertambahnya kecepatan exhaust gas, kemudian nilai dari effectiveness akan mengalami penurunan untuk setiap kenaikan dari reynold number exhaust gas. Selain itu nilai dari NTU heat exchanger juga mengalami penurunan dengan bertambahnya reynold number exhaust gas. Untuk nilai overall heat transfer dari heat exchanger yang didesain akan mengalami kenaikan akibat bertambahnya nilai

  12. 78 FR 9676 - Clad Steel Plate From Japan: Continuation of Antidumping Duty Order

    Science.gov (United States)

    2013-02-11

    ... ferrous metal (usually carbon or low alloy steel) where the latter predominates by weight. \\1\\ Cladding is... alloy clad steel plate is manufactured to ASTM specification A265. These specifications are illustrative...

  13. Origami - Folded Plate Structures

    OpenAIRE

    Buri, Hans Ulrich

    2010-01-01

    This research investigates new methods of designing folded plate structures that can be built with cross-laminated timber panels. Folded plate structures are attractive to both architects and engineers for their structural, spatial, and plastic qualities. Thin surfaces can be stiffened by a series of folds, and thus not only cover space, but also act as load bearing elements. The variation of light and shadow along the folded faces emphasizes the plas...

  14. The effect of frame torsion on the local stability of a ring-stiffened cylindrical shell

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-tian; QIN Zai-bai; GAO Ling-zhi; LIANG Xue-xian

    2004-01-01

    In the previous research, the effect of the frame torsion on the local stability of a ring-stiffened cylindrical shell, which was proved to be significant, was usually omitted. In this paper this effect under the action of static water pressure is studied. The frame torsional strain energy is calculated by consulting the method used in the research on the stability of a stiffened rectangular plate. With this item of energy being introduced into the total potential energy of the structure, a new stability formula for calculating the critical pressure for the local buckling of the ring-stiffened cylindrical shell is obtained by Ritz method. This new formula can be regarded as a revision of the famous Mises' formula. The calculation of the example shows that the critical pressure given by this formula is closer to the model test data than that given by Mises' formula.

  15. Design, Optimization, and Evaluation of A1-2139 Compression Panel with Integral T-Stiffeners

    Science.gov (United States)

    Mulani, Sameer B.; Havens, David; Norris, Ashley; Bird, R. Keith; Kapania, Rakesh K.; Olliffe, Robert

    2012-01-01

    A T-stiffened panel was designed and optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis and design tool named EBF3PanelOpt. The panel was designed for a compression loading configuration, a realistic load case for a typical aircraft skin-stiffened panel. The panel was integrally machined from 2139 aluminum alloy plate and was tested in compression. The panel was loaded beyond buckling and strains and out-of-plane displacements were extracted from 36 strain gages and one linear variable displacement transducer. A digital photogrammetric system was used to obtain full field displacements and strains on the smooth (unstiffened) side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high-fidelity nonlinear finite element analysis.

  16. The sound transmission of finite ribbed plates using a variational

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    Many lightweight structures consist of plates being stiffened by ribs. The rib stiffeners can significantly change the vibration field and the radiation behavior of the structure. These type of structures has thus often been studied in the past. However, there is a lack of simplified expressions...... for the sound transmission of these structures. Therefore, simplified expressions for the sound transmission of finite single leaf ribbed plates are derived, using a variational technique based on integral equations of the fluid loaded plate....

  17. Optimal design of stiffened composite underwater hulls

    OpenAIRE

    Messager, Tanguy; Chauchot, Pierre; Bigourdan, Benoit

    2006-01-01

    This numerical study deals with the stiffened composite underwater vessel design. The structures under investigation are laminated cylinders with rigid end-closures and inter-nal circumferential and longitudinal unidirectional composite stiffeners. Structural buckling induced by the high external hydrostatic pressure is considered as the major failure risk. An optimization design tool has been developed to obtain the reinforcement definition which maximizes the limit of stability: an analytic...

  18. Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing

    Science.gov (United States)

    Zhang, Rui; Jia, Huaiting; Tian, Xiaocheng; Yuan, Haoyu; Zhu, Na; Su, Jingqin; Hu, Dongxia; Zhu, Qihua; Zheng, Wanguo

    2016-10-01

    In the research of inertial confinement fusion, laser plasma interaction (LPI) is becoming a key problem that affects ignition. Here, multi-frequency modulation (Multi-FM) smoothing by spectral dispersion (SSD), continuous phase plate (CPP) and polarization smoothing (PS) were experimentally studied and implemented on the SG-III laser facility. After using these techniques, the far field distribution of SG-Ⅲ laser facility can be adjusted, controlled and repeated accurately. The output spectrums of the cascade phase modulators used for Multi-FM SSD were stable and the FM-to-AM effect can be restrained. Experiments on SG-III laser facility indicate that when the number of color cycles adopts 1, imposing SSD with 3.3 times diffraction limit (TDL) did not lead to pinhole closure in the spatial filters of preamplifier and main amplifiers with 30-TDL pinhole size. The nonuniformity of the focal spots using Multi-FM SSD, CPP and PS drops to 0.18, comparing to 0.26 with CPP+SSD, 0.57 with CPP+PS and 0.84 with only CPP and wedged lens. Polarization smoothing using flat birefringent plate in the convergent beam of final optics assembly (FOA) was studied. The PS plates were manufactured and equipped on SG-III laser facility for LPI research. Combined beam smoothing and polarization manipulation were also studied to solve the LPI problem. Results indicate that through adjusting dispersion directions of SSD beams in a quad, two dimensional SSD can be obtained. Using polarization control plate (PCP), polarization on the near field and far field can be manipulated, providing new method to solve LPI problem in indirect drive laser fusion.

  19. Steel plate reinforcement of orthotropic bridge decks

    NARCIS (Netherlands)

    Teixeira de Freitas, S.

    2012-01-01

    The PhD research is focused on the reinforcement of fatigue cracked orthotropic steel bridge decks (OBD) by adding a second steel plate to the existing deck. The main idea is to stiffen the existing deck plate, which will reduce the stresses at the fatigue sensitive details and extend the fatigue li

  20. Damage tolerant evaluation of cracked stiffened panels under fatigue loading

    Indian Academy of Sciences (India)

    A Rama Chandra Murthy; G S Palani; Nagesh R Iyer

    2012-02-01

    This paper presents the methodologies for damage tolerant evaluation of stiffened panels under fatigue loading. The two major objectives of damage tolerant evaluation, namely, the remaining life prediction and residual strength evaluation of stiffened panels have been discussed. Concentric and eccentric stiffeners have been considered. Stress intensity factor for a stiffened panel has been computed by using parametric equations of numerically integrated modified virtual crack closure integral technique. Various methodologies for residual strength evaluation, namely, plastic collapse condition, fracture toughness criterion and remaining life approach have been described. Effect of various stiffener sizes and stiffener type (concentric and eccentric stiffeners) on remaining life and residual strength has been studied under constant amplitude load. From the studies, it has been observed that the predicted life is significantly higher with concentric and eccentric stiffener cases compared to the respective unstiffened cases. The percentage increase in life is relatively more in the case of concentric stiffener compared to that of eccentric stiffener case for the same stiffener size and moment of inertia. From the studies, it has also been observed that the predicted residual strength using remaining life approach is lower compared to other methods, namely, plastic collapse condition and fracture toughness criterion and hence remaining life approach will govern the design. It is noted that residual strength increases with the increase of stiffener size.

  1. Formulation of Reduction Rate for Ultimate Compressive Strength of Stiffened Panel Induced by Opening

    Institute of Scientific and Technical Information of China (English)

    于昌利; LEE Joo-sung

    2014-01-01

    The-main-objective-of-this-study-is-to-numerically-investigate-the-characteristics-of-ultimate-compressive-strength-of-stiffened-panels-with-opening-and-also-to-fit-the-design-oriented-formulae.-For-this-purpose,-three-series-of-well-executed-experimental-data-on-longitudinally-stiffened-steel-plates-with-and-without-opening-subjected-to-the-uniform-axial-in-pane-load-which-is-carried-out-to-study-the-buckling-and-post-buckling-up-to-the-final-failure-are-chosen.-Also,-a-nonlinear-finite-element-method-capable-of-efficiently-analyzing-the-large-elasto-plastic-deflection-behavior-of-stiffened-panels-is-developed-and-used-for-simulation.-The-feasibility-of-the-present-simulation-process-is-confirmed-by-a-good-agreement-with-the-experimental-results.-More-case-studies-are-developed-employing-the-simulation-process-to-analyze-the-influence-of-various-design-variables-on-the-reduction-rate-of-ultimate-strength-of-stiffened-panel-induced-by-opening.-Based-on-the-computed-results,-two-design-formulae-are-fitted-and-the-accuracy-of-design-formulae-is-studied.-Furthermore,-the-viability-of-the-design-formulae-for-practical-engineering-is-proved.

  2. Effect of specific light supply rate on photosynthetic efficiency of Nannochloropsis salina in a continuous flat plate photobioreactor.

    Science.gov (United States)

    Sforza, Eleonora; Calvaruso, Claudio; Meneghesso, Andrea; Morosinotto, Tomas; Bertucco, Alberto

    2015-10-01

    In this work, Nannochloropsis salina was cultivated in a continuous-flow flat-plate photobioreactor, working at different residence times and irradiations to study the effect of the specific light supply rate on biomass productivity and photosynthetic efficiency. Changes in residence times lead to different steady-state cell concentrations and specific growth rates. We observed that cultures at steady concentration were exposed to different values of light intensity per cell. This specific light supply rate was shown to affect the photosynthetic status of the cells, monitored by fluorescence measurements. High specific light supply rate can lead to saturation and photoinhibition phenomena if the biomass concentration is not optimized for the selected operating conditions. Energy balances were applied to quantify the biomass growth yield and maintenance requirements in N. salina cells.

  3. Performance of target irradiation in a high-power laser with a continuous phase plate and spectral dispersion.

    Science.gov (United States)

    Jiang, Xiujuan; Li, Jinghui; Wu, Rong; Zhu, Zhengtao; Zhou, Shenlei; Lin, Zunqi

    2013-11-01

    We report on the performance of target irradiation at the SG-II high-power laser facility with a continuous phase plate (CPP) and the technique of smoothing by spectral dispersion (SSD). Simulative and experimental results are presented, where the irradiation uniformity and energy concentration of the target spots are analyzed. The results show that the designed CPP can focus the spot energy into the desired region and shape a profile with steep edge and flat top, but the actual performance of the fabricated CPP needs some improvements. It is also proved that the CPP is insensitive to the long-scale wavefront distortion in the incident beam. The one-dimensional SSD configuration evidently works in smoothing the fine-scale intensity modulation inside the target spot.

  4. Compressive Strength of Longitudinally Stiffened GRP Panels

    DEFF Research Database (Denmark)

    Böhme, J.; Noury, P.; Riber, Hans Jørgen

    1996-01-01

    A structural analysis of a cross stiffened orthotropic GRP panel subjected to uniaxial compressive loads is carried out. Analytical solutions to the buckling of such structures are proposed and validated by a finite element analysis. Both analytical and finite element approaches confirm an identi...

  5. Compressive Strength of Longitudinally Stiffened GRP Panels

    DEFF Research Database (Denmark)

    Böhme, J.; Noury, P.; Riber, Hans Jørgen

    1996-01-01

    A structural analysis of a cross stiffened orthotropic GRP panel subjected to uniaxial compressive loads is carried out. Analytical solutions to the buckling of such structures are proposed and validated by a finite element analysis. Both analytical and finite element approaches confirm an identi...

  6. Continued Trenchward Procession of Upper Plate GPS Sites Following the 2012 Mw 7.6 Nicoya Earthquake

    Science.gov (United States)

    Hobbs, T. E.; Newman, A. V.; Protti, M.

    2015-12-01

    When studying subduction zone deformation one is often forced to consider a region significantly landward of the trench. The Nicoya Peninsula in Costa Rica presents a unique opportunity to obtain rich datasets from land in relatively close proximity to an active megathrust. A recent moment magnitude (Mw) 7.6 earthquake in September 2012 on this portion of the Middle America Trench affords an opportunity to constrain the ongoing postseismic deformation on the subduction interface between the Cocos and Caribbean plates. GPS campaigns occupying 22 sites were undertaken immediately following the earthquake in September-December 2012 and most recently in March 2015. Combined with data from a network of 17 continuous GPS in the region, we analyze the spatial and temporal changes in the postseismic velocity field. Another campaign is planned for 2017, in conjunction with our ongoing analysis of the continuous GPS network. After 2.5 years, campaign GPS results indicate significant trenchward motion of at least 7 cm, relative to a fixed Caribbean plate, for all sites up to the volcanic chain. Maximum values of 22 cm are observed above and updip of the coseismic rupture zone. The trench-parallel component of the displacement field is small, with few deviations between sites. Together these observations are substantially more self-similar over a larger region than what was observed for the coseismic offset. This implies that there may be a low stress differential across the upper plate, suggesting that the subduction interface environment, including the mainshock and surrounding area, has remained relatively weak following the earthquake. By utilizing a dense and long-term geodetic network we will report on initial modeling that aims to characterize the evolution of afterslip. The effect of regional aftershocks, including an Mw 6.5 in October 2012, and viscoelastic mantle relaxation will be considered to establish the necessity of such effects in robustly accounting for

  7. Physical mechanisms of active control of sound transmission through rib stiffened double-panel structure

    Science.gov (United States)

    Ma, Xiyue; Chen, Kean; Ding, Shaohu; Yu, Haoxin

    2016-06-01

    This paper presents an analytical investigation on physical mechanisms of actively controlling sound transmission through a rib stiffened double-panel structure using point source in the cavity. The combined modal expansion and vibro-acoustic coupling methods are applied to establish the theoretical model of such active structure. Under the condition of minimizing radiated power of the radiating ribbed plate, the physical mechanisms are interpreted in detail from the point of view of modal couplings similar as that used in existed literatures. Results obtained demonstrate that the rule of sound energy transmission and the physical mechanisms for the rib stiffened double-panel structure are all changed, and affected by the coupling effects of the rib when compared with the analytical results obtained for unribbed double-panel case. By taking the coupling effects of the rib into considerations, the cavity modal suppression and rearrangement mechanisms obtained in existed investigations are modified and supplemented for the ribbed plate case, which gives a clear interpretation for the physical nature involved in the active rib stiffened double-panel structure.

  8. Modelling Tension Stiffening in Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Christiansen, Morten Bo; Nielsen, Mogens Peter

    1997-01-01

    flexure.In the first model, the yield zone model, it is assumed that the mean crack distance is a descending function of the reinforcement stress in a crack. Furthermore it is assumed that in certain zones between the cracks the concrete is carrying its full effective tensile strength, i.e. the concrete...... with deformations in reinforced concrete disks subjected to pure shear.A physical model for the shear stress-shear strain behaviour of disks, including tension stiffening, is proposed.In the disk model it is assumed that the tensile principal stress in the concrete decreases linearly from the initiation of cracking...... until a certain load level. At any load level the model can predict the shear strains of the disk and the inclination of the crack system. When regarding tension stiffening this latter parameter will be a function of the load level.The model is compared with experimental data, and in the light...

  9. Reversible Thermal Stiffening in Polymer Nanocomposites.

    Science.gov (United States)

    Senses, Erkan; Isherwood, Andrew; Akcora, Pinar

    2015-07-15

    Miscible polymer blends with different glass transition temperatures (Tg) are known to create confined interphases between glassy and mobile chains. Here, we show that nanoparticles adsorbed with a high-Tg polymer, poly(methyl methacrylate), and dispersed in a low-Tg matrix polymer, poly(ethylene oxide), exhibit a liquid-to-solid transition at temperatures above Tg's of both polymers. The mechanical adaptivity of nanocomposites to temperature underlies the existence of dynamically asymmetric bound layers on nanoparticles and more importantly reveals their impact on macroscopic mechanical response of composites. The unusual reversible stiffening behavior sets these materials apart from conventional polymer composites that soften upon heating. The presented stiffening mechanism in polymer nanocomposites can be used in applications for flexible electronics or mechanically induced actuators responding to environmental changes like temperature or magnetic fields.

  10. Parametric study of influence of stiffener variables on postbuckling response of frame-stiffened composite panels

    Science.gov (United States)

    Sanz-Douglass, Gabriela J.

    Traditional aircraft composite stiffened panels are designed to avoid buckling of the skin at service loads, to prevent initiation and growth of delamination damages. In stitched composites, the stitching provides reinforcement against delamination; therefore, the structure can be designed for operation in a post buckled state with local skin buckling. The novel stitched stiffened composite panel concept titled Pultruded-Rod Stiffened Efficient Unitized Structure, PRSEUS, was designed specifically for operating in the postbuckling regime, yet the nonlinear postbuckling behavior of PRSEUS has not been explored fully. This thesis presents a finite element analysis based trade study to understand influence of frame stiffener design variables on the nonlinear postbuckling response of the PRSEUS panel concept. The trade study allowed exploration of the design space as a first step towards design optimization. It also allowed discovery of some of the challenges of post processing that must be addressed to enable an automated surrogate based design optimization of the PRESUS stiffened panel concept for operation in postbuckling regimes.

  11. Optimal Design of Stiffeners for Bucket Foundations

    OpenAIRE

    Courtney, William Tucker; Stolpe, Mathias; Buhl, Thomas; Bitsche, Robert; Hallum, Nicolai; Nielsen, Søren A.

    2015-01-01

    The potential for structural optimization of the bucket foundation’s outer stiffeners is investigated using commercial optimization software. In order to obtain the optimal design both shape and topology optimization problems are formulated and solved using the structural optimization software Tosca Structure coupled with the finite element software Abaqus. The solutions to these optimization problems are then manually interpreted as a new design concept. Results show that shape optimization ...

  12. Flexible neural interfaces with integrated stiffening shank

    Science.gov (United States)

    Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tolosa, Vanessa

    2016-07-26

    A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.

  13. Plate/shell structure topology optimization of orthotropic material for buckling problem based on independent continuous topological variables

    Science.gov (United States)

    Ye, Hong-Ling; Wang, Wei-Wei; Chen, Ning; Sui, Yun-Kang

    2017-03-01

    The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.

  14. A comparative parametric study of a catalytic plate methane reformer coated with segmented and continuous layers of combustion catalyst for hydrogen production

    Science.gov (United States)

    Mundhwa, Mayur; Parmar, Rajesh D.; Thurgood, Christopher P.

    2017-03-01

    A parametric comparison study is carried out between segmented and conventional continuous layer configurations of the coated combustion-catalyst to investigate their influence on the performance of methane steam reforming (MSR) for hydrogen production in a catalytic plate reactor (CPR). MSR is simulated on one side of a thin plate over a continuous layer of nickel-alumina catalyst by implementing an experimentally validated surface microkinetic model. Required thermal energy for the MSR reaction is supplied by simulating catalytic methane combustion (CMC) on the opposite side of the plate over segmented and continuous layer of a platinum-alumina catalyst by implementing power law rate model. The simulation results of both coating configurations of the combustion-catalyst are compared using the following parameters: (1) co-flow and counter-flow modes between CMC and MSR, (2) gas hourly space velocity and (3) reforming-catalyst thickness. The study explains why CPR designed with the segmented combustion-catalyst and co-flow mode shows superior performance not only in terms of high hydrogen production but also in terms of minimizing the maximum reactor plate temperature and thermal hot-spots. The study shows that the segmented coating requires 7% to 8% less combustion-side feed flow and 70% less combustion-catalyst to produce the required flow of hydrogen (29.80 mol/h) on the reforming-side to feed a 1 kW fuel-cell compared to the conventional continuous coating of the combustion-catalyst.

  15. Keratin network modifications lead to the mechanical stiffening of the hair follicle fiber.

    Science.gov (United States)

    Bornschlögl, Thomas; Bildstein, Lucien; Thibaut, Sébastien; Santoprete, Roberto; Fiat, Françoise; Luengo, Gustavo S; Doucet, Jean; Bernard, Bruno A; Baghdadli, Nawel

    2016-05-24

    The complex mechanical properties of biomaterials such as hair, horn, skin, or bone are determined by the architecture of the underlying fibrous bionetworks. Although much is known about the influence of the cytoskeleton on the mechanics of isolated cells, this has been less studied in tridimensional tissues. We used the hair follicle as a model to link changes in the keratin network composition and architecture to the mechanical properties of the nascent hair. We show using atomic force microscopy that the soft keratinocyte matrix at the base of the follicle stiffens by a factor of ∼360, from 30 kPa to 11 MPa along the first millimeter of the follicle. The early mechanical stiffening is concomitant to an increase in diameter of the keratin macrofibrils, their continuous compaction, and increasingly parallel orientation. The related stiffening of the material follows a power law, typical of the mechanics of nonthermal bending-dominated fiber networks. In addition, we used X-ray diffraction to monitor changes in the (supra)molecular organization within the keratin fibers. At later keratinization stages, the inner mechanical properties of the macrofibrils dominate the stiffening due to the progressive setting up of the cystine network. Our findings corroborate existing models on the sequence of biological and structural events during hair keratinization.

  16. Keratin network modifications lead to the mechanical stiffening of the hair follicle fiber

    Science.gov (United States)

    Bornschlögl, Thomas; Bildstein, Lucien; Thibaut, Sébastien; Santoprete, Roberto; Fiat, Françoise; Luengo, Gustavo S.; Doucet, Jean; Bernard, Bruno A.; Baghdadli, Nawel

    2016-01-01

    The complex mechanical properties of biomaterials such as hair, horn, skin, or bone are determined by the architecture of the underlying fibrous bionetworks. Although much is known about the influence of the cytoskeleton on the mechanics of isolated cells, this has been less studied in tridimensional tissues. We used the hair follicle as a model to link changes in the keratin network composition and architecture to the mechanical properties of the nascent hair. We show using atomic force microscopy that the soft keratinocyte matrix at the base of the follicle stiffens by a factor of ∼360, from 30 kPa to 11 MPa along the first millimeter of the follicle. The early mechanical stiffening is concomitant to an increase in diameter of the keratin macrofibrils, their continuous compaction, and increasingly parallel orientation. The related stiffening of the material follows a power law, typical of the mechanics of nonthermal bending-dominated fiber networks. In addition, we used X-ray diffraction to monitor changes in the (supra)molecular organization within the keratin fibers. At later keratinization stages, the inner mechanical properties of the macrofibrils dominate the stiffening due to the progressive setting up of the cystine network. Our findings corroborate existing models on the sequence of biological and structural events during hair keratinization. PMID:27162354

  17. Influence of Ring Stiffeners on a Steel Cylindrical Shell

    Directory of Open Access Journals (Sweden)

    D. Lemák

    2005-01-01

    Full Text Available Shell structures are usually formed from concrete, steel and nowadays also from many others materials. Steel is typically used in the structures of chimneys, reservoirs, silos, pipelines, etc. Unlike concrete shells, steel shells are regularly stiffened with the help of longitudinal and/or ring stiffeners.The authors of this paper investigated steel cylindrical shells and their stiffening with the use of ring stiffeners. The more complete the stiffening, the more closely the shell will act to beam theory, and the calculations will be much easier. However, this would make realization of the structure more expensive and more laborious. The target of the study is to find the limits of ring stiffeners for cylindrical shells. Adequate stiffeners will eliminate semi-bending action of the shells in such way that the shell structures can be analyzed with the use of numerical models of the struts (e.g., by beam theory without significant divergences from reality. Recommendations are made for the design of ring stiffeners, especially for the distances between stiffeners and for their bending stiffness. 

  18. Analysis of continuous solvent extraction of nickel from spent electroless nickel plating baths by a mixer-settler.

    Science.gov (United States)

    Huang, Ying; Tanaka, Mikiya

    2009-05-30

    It is urgent to develop an effective technique to treat the large amount of spent electroless nickel plating bath and recycle the high concentration nickel. In our previous study, high recycling efficiency of nickel from the model spent bath was obtained by continuous solvent extraction with 2-hydroxy-5-nonylacetophenone oxime (LIX84I) as the extractant and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A) as the accelerator using a mixer-settler extractor. It was observed that the extraction efficiency was affected by the operation parameters such as the flow rates of the aqueous and organic phases and the total stage number. In the present study, the effects of the operation parameters on the extraction efficiency were quantitatively studied on the basis of the pseudo-first-order interfacial extraction rate equation together with the hydrodynamic properties in the mixer. The organic phase holdup, measured under varying conditions of the flow rates of both phases, was analyzed by the Takahashi-Takeuchi holdup model in order to estimate the specific interfacial area. The overall extraction rate coefficients defined by the product of the interfacial extraction rate constant and the specific interfacial area were evaluated using the experimental data and ranged from 3.5 x 10(-3) to 6.7 x 10(-3)s(-1), which was close to the value of 3.4 x 10(-3)s(-1) obtained by batch extraction. Finally, an engineering simulation method was established for assessing the extraction efficiency of nickel during a multistage operation.

  19. 孟庙至平顶山铁路钢管混凝土拱加劲连续梁桥设计%Design of Continuous Beam Bridge Stiffened by Concrete-Filled Steel Tubular Arch on Mengmiao-Pingdingshan Railway

    Institute of Scientific and Technical Information of China (English)

    陈卫华; 龙俊贤

    2016-01-01

    孟庙至平顶山铁路跨311国道特大桥主桥为(32+100+32) m钢管混凝土拱加劲连续梁桥,平面位于R=1600 m的曲线上。主梁为预应力混凝土双纵箱梁结构,纵梁间桥面结构采用纵、横梁体系格子梁,纵梁为单箱单室截面,沿纵向等宽、变高度;在100 m 主跨上方,对应于双纵梁设2道变高度钢管混凝土拱肋加劲,2道拱肋间采用空心钢管组成的3道横撑实现横向连接,每道拱肋由2根钢管组成,拱肋钢管及实腹段内填筑C50微膨胀混凝土;每道拱肋下设13组吊杆,每组吊杆的纵向间距为6 m。采用有限元程序MIDAS建立主桥有限元模型,进行静、动力特性分析,采用ANSYS建立拱脚处空间实体模型对拱脚处局部应力进行分析,分析结果表明该桥各项静、动力特性均满足要求。%The main bridge of the Bridge crossing the No .311 National Highway on the Meng‐miao‐Pingdingshan Railway is a (32+100+32) m continuous beam bridge stiffened by concrete‐filled steel tubular arch .T he plan curvature of the bridge is 1 600 m .T he main girder consists of two longitudinal prestressed concrete box structures ,on which the lattice bridge deck system that is formed of longitudinal and transverse beams rests .The longitudinal beams adopt the single cell single box section ,with constant width and varying height along the bridge length .Above the 100 m long main span ,just over the two longitudinal box beam structures ,two varying‐height con‐crete‐filled steel tubular arch ribs were installed ,aiming to stiffen the longitudinal box beams .Be‐tween the two arch ribs ,three pairs of lateral bracings made of void steel tubes were added to form transverse connection .Each arch rib consists of two steel tubes ,which together with the solid‐spandrel section were filled with C50 micro‐expansive concrete .13 pairs of hangers were tensioned from each arch rib ,spaced by 6 m along the

  20. Optimal Design of Stiffeners for Bucket Foundations

    DEFF Research Database (Denmark)

    Courtney, William Tucker; Stolpe, Mathias; Buhl, Thomas;

    2015-01-01

    The potential for structural optimization of the bucket foundation’s outer stiffeners is investigated using commercial optimization software. In order to obtain the optimal design both shape and topology optimization problems are formulated and solved using the structural optimization software...... Tosca Structure coupled with the finite element software Abaqus. The solutions to these optimization problems are then manually interpreted as a new design concept. Results show that shape optimization of the initial design can reduce stress concentrations by 38%. Additionally, topology optimization has...

  1. Buckling Analysis of Grid-Stiffened Composite Shells

    NARCIS (Netherlands)

    Wang, D.; Abdalla, M.M.

    2014-01-01

    There is a renewed interest in grid-stiffened composite structures; they are not only competitive with conventional stiffened constructions and sandwich shells in terms of weight but also enjoy superior damage tolerance properties. In this paper, both global and local structural instabilities are

  2. Buckling Analysis of Grid-Stiffened Composite Shells

    NARCIS (Netherlands)

    Wang, D.; Abdalla, M.M.

    2014-01-01

    There is a renewed interest in grid-stiffened composite structures; they are not only competitive with conventional stiffened constructions and sandwich shells in terms of weight but also enjoy superior damage tolerance properties. In this paper, both global and local structural instabilities are in

  3. Strength of Ship Stiffened Panels under Combined Loading

    DEFF Research Database (Denmark)

    Weicheng, Cui; Wang, Young-jun; Pedersen, Preben Terndrup

    2000-01-01

    A ship's hull is a box girder structure composed of stiffened panels and therefore, strength of stiffened panels plays a significant role for the ultimate strength analysis of ship structures. In recent years several authors have proposed simplified methods to calculate the ultimate strength of s...

  4. Ultra-responsive soft matter from strain-stiffening hydrogels

    Science.gov (United States)

    Jaspers, Maarten; Dennison, Matthew; Mabesoone, Mathijs F. J.; Mackintosh, Frederick C.; Rowan, Alan E.; Kouwer, Paul H. J.

    2014-12-01

    The stiffness of hydrogels is crucial for their application. Nature’s hydrogels become stiffer as they are strained. This stiffness is not constant but increases when the gel is strained. This stiffening is used, for instance, by cells that actively strain their environment to modulate their function. When optimized, such strain-stiffening materials become extremely sensitive and very responsive to stress. Strain stiffening, however, is unexplored in synthetic gels since the structural design parameters are unknown. Here we uncover how readily tuneable parameters such as concentration, temperature and polymer length impact the stiffening behaviour. Our work also reveals the marginal point, a well-described but never observed, critical point in the gelation process. Around this point, we observe a transition from a low-viscous liquid to an elastic gel upon applying minute stresses. Our experimental work in combination with network theory yields universal design principles for future strain-stiffening materials.

  5. POSTOP: Postbuckled open-stiffener optimum panels, user's manual

    Science.gov (United States)

    Biggers, S. B.; Dickson, J. N.

    1984-01-01

    The computer program POSTOP developed to serve as an aid in the analysis and sizing of stiffened composite panels that may be loaded in the postbuckling regime, is intended for the preliminary design of metal or composite panels with open-section stiffeners, subjected to multiple combined biaxial compression (or tension), shear and normal pressure load cases. Longitudinal compression, however, is assumed to be the dominant loading. Temperature, initial bow eccentricity and load eccentricity effects are included. The panel geometry is assumed to be repetitive over several bays in the longitudinal (stiffener) direction as well as in the transverse direction. Analytical routines are included to compute panel stiffnesses, strains, local and panel buckling loads, and skin/stiffener interface stresses. The resulting program is applicable to stiffened panels as commonly used in fuselage, wing, or empennage structures. The capabilities and limitations of the code are described. Instructions required to use the program and several example problems are included.

  6. Wavelet Spectral Finite Elements for Wave Propagation in Composite Plates with Damages - Years 3-4

    Science.gov (United States)

    2014-05-23

    proposed by Timoshenko (1921) and Timoshenko and Woinowski-Krieger (1989). Gavric (1994) developed a numerical approach to model the cross section...Hence, in this section, skin is modeled as spectral plate element and the stiffener is modeled as a Timoshenko beam element and they are coupled using a...plates using a new stiffened element. Tech. Mech. 28 (3-4), 227-236. Timoshenko , S., 1921. On the correction of transverse shear deformation of the

  7. Study of the vibration of bulkhead-stiffened cylindrical shells by laser-based methods

    Science.gov (United States)

    Zhu, Ninghui

    The first part of this dissertation work deals with an experimental study of the vibration behavior of bulkhead stiffened cylindrical shells by using laser-based vibration measurement methods. Holographic interferometry and laser speckle photography are first demonstrated on revealing the dynamic behavior of a 22 ft long cylindrical shell. These methods are thereafter further explored to study the vibration characteristic of cylindrical shells with different stiffeners such as a full bulkhead or a partial bulkhead. Many experimentally obtained holograms and specklegrams reveal interesting features of the vibration of bulkhead stiffened cylindrical shells. The experimentally obtained results are compared with those obtained from a finite element model developed by General Dynamic Electric Boat Division, and the finite element model is generally validated. Mode localization theory is used to explain some interesting findings in experiments and the reason of some discrepancies between the finite element analysis and experiment results. The presence of irregularities in a weakly coupled structure such as a bulkhead-stiffened cylindrical shell is shown to be able to localize the modes of vibration and inhibit the propagation of vibration within the shell. A numerical simulation based on the finite element modal analysis indicates the validation of this explanation of the experimental findings. Thereafter, the eigensolutions of disordered, plate-stiffened cylindrical shell stiffened are derived by the use of receptance method. Numerical calculations are thereafter performed based upon this model and indeed reveal the exist of localized vibration in this kind of structure. This analytical study provides physical insights into the mode localization phenomenon in stiffened cylindrical shell type of structures from a more systematic manner. The conditions and the effect of mode localization on natural frequencies and mode shapes of cylindrical shell structure are also

  8. Stability characteristics of ring-stiffened cylindrical shells under different longitudinal and transverse external pressures

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Tian; YAO Wen; LIANG Chao; JI Nan

    2007-01-01

    Because ring-stiffened cylindrical shell structures have many merits, they are widely used in many areas. However, as the strength of steel increase continuously, ensuring of the structure stability is becoming more and more important. Therefore, it is necessary to carry on a more particular analysis. Based on the understanding and analysis of the characteristics of stability for a ring-stiffened cylindrical shell under uniform external pressure and under external single pressure, the characteristics under different cross uniform external pressures are analyzed, and the regularity of it is also gotten. The curve of stability given various geometrical parameters under different cross uniform external pressures is protracted by the analysis of the theory. The conclusion not only improves the theory structural mechanics, it also was important effects on engineering calculation and design.

  9. Tension Stiffened and Tendon Actuated Manipulator

    Science.gov (United States)

    Doggett, William R. (Inventor); Dorsey, John T. (Inventor); Ganoe, George G. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Mercer, Charles D. (Inventor); Corbin, Cole K. (Inventor)

    2015-01-01

    A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.

  10. Reliability of stiffened structural panels: Two examples

    Science.gov (United States)

    Stroud, W. Jefferson; Davis, D. Dale, Jr.; Maring, Lise D.; Krishnamurthy, Thiagaraja; Elishakoff, Isaac

    1992-12-01

    The reliability of two graphite-epoxy stiffened panels that contain uncertainties is examined. For one panel, the effect of an overall bow-type initial imperfection is studied. The size of the bow is assumed to be a random variable. The failure mode is buckling. The benefits of quality control are explored by using truncated distributions. For the other panel, the effect of uncertainties in a strain-based failure criterion is studied. The allowable strains are assumed to be random variables. A geometrically nonlinear analysis is used to calculate a detailed strain distribution near an elliptical access hole in a wing panel that was tested to failure. Calculated strains are used to predict failure. Results are compared with the experimental failure load of the panel.

  11. Distortion and Residual Stress Control in Integrally Stiffened Structure Produced by Direct Metal Deposition

    Science.gov (United States)

    Lin, Shih-Yung; Hoffman, Eric K.; Domack, Marcia S.

    2007-01-01

    2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD. Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures. Distortion and residual stresses are local to deposit. Most distortion develops during deposition of the first few layers; Little change in distortion or residual stresses after fifth deposit layer Most of distortion is localized just beneath the build. Thicker build plates and the use of build lands results in greatest decrease in levels of distortion. Pre-straining shown to reduce distortion. Difficult to implement, particularly for complex stiffener arrays. Clamp position has complex effect on distortion and stresses. Overall distortion reduced with decreasing clamp clearance. Larger clamp clearances induce bending. Use of pre-heat and active cooling show minor influence on panel distortion. Generate changes in thermal gradients in the build plate.

  12. The 2.0 Ga Usagaran eclogites, Tanzania: the onset of modern plate tectonics or a continuation of the norm?

    Science.gov (United States)

    Buchan, C.; Collins, A. S.; Reddy, S. M.; Mruma, A.

    2003-04-01

    Phanerozoic eclogites are widely interpreted to have formed in subduction zone environments where fragments of oceanic crust have been buried to depths greater than 50 km. The formation and preservation of Phanerozoic eclogites is demonstrably linked to plate convergence and their study of eclogite-facies rocks underpins our understanding of subduction zones and plate tectonic models. Our understanding of more ancient, Precambrian tectonics is based on a uniformitarian model, which assumes that modern day tectonic processes are good analogues of those in the past. This assumption is limited because numerical modelling has shown that the driving force of plate tectonics, the thermal structure of the Earth, has changed dramatically over geological time. For example, at the start of the Palaeoproterozoic (2.5 Ga) the Earth's heat production was twice as high as at present. If these models are true then it is difficult to reconcile the formation of low-med temperature eclogite facies rocks in the Early Earth. The Palaeoproterozoic Usagaran orogenic belt of Tanzania contains the Earth’s oldest reported examples (2.0 Ga) of low/med temperature eclogites. The eclogites are reported to have MORB-like geochemical characteristics, which coupled with P-T estimates for their formation, suggests that they are subduction related. In this study detailed structural analysis and U-Th-Pb SHRIMP zircon dating of gneisses exposed in the high-grade, eclogite bearing part of the orogen (the Isimani Suite), has demonstrated that detrital grains in paragneisses yield ages between 2.4 &2.9 Ga. These are intercalated with 2.7 Ga orthogneisses of a similar age to the Tanzanian craton. The extensive distribution of 2.7 Ga crust in both the footwall and hangingwall of the Usagaran Orogen suggests that the most likely tectonic setting for the protoliths of the mafic eclogites was as oceanic crust in a marginal basin. The identification of Palaeoproterozoic subduction related eclogites that

  13. A wearable force plate system for the continuous measurement of triaxial ground reaction force in biomechanical applications

    Science.gov (United States)

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko

    2010-08-01

    The ambulatory measurement of ground reaction force (GRF) and human motion under free-living conditions is convenient, inexpensive and never restricted to gait analysis in a laboratory environment and is therefore much desired by researchers and clinical doctors in biomedical applications. A wearable force plate system was developed by integrating small triaxial force sensors and three-dimensional (3D) inertial sensors for estimating dynamic triaxial GRF in biomechanical applications. The system, in comparison to existent systems, is characterized by being lightweight, thin and easy-to-wear. A six-axial force sensor (Nitta Co., Japan) was used as a verification measurement device to validate the static accuracy of the developed force plate. To evaluate the precision during dynamic gait measurements, we compared the measurements of the triaxial GRF and the center of pressure (CoP) by using the developed system with the reference measurements made using a stationary force plate and an optical motion analysis system. The root mean square (RMS) differences of the two transverse components (x- and y-axes) and the vertical component (z-axis) of the GRF were 4.3 ± 0.9 N, 6.0 ± 1.3 N and 12.1 ± 1.1 N, respectively, corresponding to 5.1 ± 1.1% and 6.5 ± 1% of the maximum of each transverse component and 1.3 ± 0.2% of the maximum vertical component of GRF. The RMS distance between the two systems' CoP traces was 3.2 ± 0.8 mm, corresponding to 1.2 ± 0.3% of the length of the shoe. Moreover, based on the results of the assessment of the influence of the system on natural gait, we found that gait was almost never affected. Therefore, the wearable system as an alternative device can be a potential solution for measuring CoP and triaxial GRF in non-laboratory environments.

  14. Biomimetic Reversible Heat-Stiffening Polymer Nanocomposites

    Science.gov (United States)

    2017-01-01

    Inspired by the ability of the sea cucumber to (reversibly) increase the stiffness of its dermis upon exposure to a stimulus, we herein report a stimuli-responsive nanocomposite that can reversibly increase its stiffness upon exposure to warm water. Nanocomposites composed of cellulose nanocrystals (CNCs) that are grafted with a lower critical solution temperature (LCST) polymer embedded within a poly(vinyl acetate) (PVAc) matrix show a dramatic increase in modulus, for example, from 1 to 350 MPa upon exposure to warm water, the hypothesis being that grafting the polymers from the CNCs disrupts the interactions between the nanofibers and minimizes the mechanical reinforcement of the film. However, exposure to water above the LCST leads to the collapse of the polymer chains and subsequent stiffening of the nanocomposite as a result of the enhanced CNC interactions. Backing up this hypothesis are energy conserving dissipative particle dynamics (EDPD) simulations which show that the attractive interactions between CNCs are switched on upon the temperature-induced collapse of the grafted polymer chains, resulting in the formation of a percolating reinforcing network. PMID:28852703

  15. Reinforcement of a Mindlin-Timoshenko plate by a thin layer

    Science.gov (United States)

    Rahmani, Leila

    2015-12-01

    We consider a problem of reinforcement of a Mindlin-Timoshenko plate with a thin stiffener of thickness {δ }, on a portion of its boundary. We investigate the case where the mass density, the rigidity and the shear modulus of the material constituting the stiffener vary as {δ ^{-a}}, where {ain R+^{ast}}. We perform an asymptotic analysis of the solution as {δ } goes to zero. We shall show that different limit behaviors occur when a vary in {{R+^{ast }}}. The situation where the stiffener is of variable thickness is also investigated. It is also shown how the Kirchhoff-Love model, with Ventcel boundary conditions, is obtained, when the shear modulus approaches +{∞} (when it behaves as specific power of {δ}) in both the plate and the stiffener.

  16. Design aids for stiffened composite shells with cutouts

    CERN Document Server

    Sahoo, Sarmila

    2017-01-01

    This book focuses on the free vibrations of graphite-epoxy laminated composite stiffened shells with cutout both in terms of the natural frequencies and mode shapes. The dynamic analysis of shell structures, which may have complex geometry and arbitrary loading and boundary conditions, is solved efficiently by the finite element method, even including cutouts in shells. The results may be readily used by practicing engineers dealing with stiffened composite shells with cutouts. Several shell forms viz. cylindrical shell, hypar shell, conoidal shell, spherical shell, saddle shell, hyperbolic paraboloidal shell and elliptic paraboloidal shell are considered in the book. The dynamic characteristics of stiffened composite shells with cutout are described in terms of the natural frequency and mode shapes. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite shells. The effects of these parametric variat...

  17. Double-plating of ovine critical sized defects of the tibia: a low morbidity model enabling continuous in vivo monitoring of bone healing

    Directory of Open Access Journals (Sweden)

    Pearce Alexandra

    2011-09-01

    Full Text Available Abstract Background Recent studies using sheep critical sized defect models to test tissue engineered products report high morbidity and complications rates. This study evaluates a large bone defect model in the sheep tibia, stabilized with two, a novel Carbon fibre Poly-ether-ether-ketone (CF-PEEK and a locking compression plate (LCP which could sustain duration for up to 6 month with an acceptable low complication rate. Methods A large bone defect of 3 cm was performed in the mid diaphysis of the right tibia in 33 sheep. The defect was stabilised with the CF - PEEK plate and an LCP. All sheep were supported with slings for 8 weeks after surgery. The study was carried out for 3 months in 6 and for 6 months in 27 animals. Results The surgical procedure could easily be performed in all sheep and continuous in vivo radiographic evaluation of the defect was possible. This long bone critical sized defect model shows with 6.1% a low rate of complications compared with numbers mentioned in the literature. Conclusions This experimental animal model could serve as a standard model in comparative research. A well defined standard model would reduce the number of experimental animals needed in future studies and would therefore add to ethical considerations.

  18. MHD Effects on Non-Newtonian Power-Law Fluid Past a Continuously Moving Porous Flat Plate with Heat Flux and Viscous Dissipation

    Science.gov (United States)

    Kishan, N.; Shashidar Reddy, B.

    2013-06-01

    The problem of a magneto-hydro dynamic flow and heat transfer to a non-Newtonian power-law fluid flow past a continuously moving flat porous plate in the presence of sucion/injection with heat flux by taking into consideration the viscous dissipation is analysed. The non-linear partial differential equations governing the flow and heat transfer are transformed into non-linear ordinary differential equations using appropriate transformations and then solved numerically by an implicit finite difference scheme. The solution is found to be dependent on various governing parameters including the magnetic field parameter M, power-law index n, suction/injection parameter ƒw, Prandtl number Pr and Eckert number Ec. A systematical study is carried out to illustrate the effects of these major parameters on the velocity profiles, temperature profile, skin friction coefficient and rate of heat transfer and the local Nusslet number.

  19. Thermoelastic Formulation of Stiffened, Unsymmetric Composite Panels for Finite Element Analysis of High Speed Aircraft

    Science.gov (United States)

    Collier, Craig S.

    2004-01-01

    An emerging technology need for capturing 3-D panel thermoelastic response with 2-D planar finite element models (FEMs) is aided with an equivalent plate stiffness and thermal coefficient formulation. The formulation is general and applies to all panel concepts. Included with the formulation is the ability to provide membrane-bending coupling of unsymmetric sections and calculation of all thermal expansion and bending responses from in-plane and through-the-thickness temperature gradients. Thermal residual strains for both the laminates and plies are included. The general formulation is defined and then applied to a hat-shaped, corrugated stiffened panel. Additional formulations are presented where required to include all of the hat's unique characteristics. Each formulation is validated independently with 3-D FEA.

  20. Reduction of initial stress stiffening by topology optimization

    DEFF Research Database (Denmark)

    Philippine, M. A.; Sigmund, Ole; Rebeiz, G. M.

    2012-01-01

    Topology optimization is a rigorous method of obtaining non-intuitive designs. We use it to obtain a capacitive RF switch that stiffens little in response to an increase of the in-plane biaxial stresses that typically develop during MEMS fabrication. The actuation voltage is closely related...

  1. Prediction of Vibrational Behavior of Grid-Stiffened Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    G. H. Rahimi

    2014-01-01

    Full Text Available A unified analytical approach is applied to investigate the vibrational behavior of grid-stiffened cylindrical shells with different boundary conditions. A smeared method is employed to superimpose the stiffness contribution of the stiffeners with those of shell in order to obtain the equivalent stiffness parameters of the whole panel. Theoretical formulation is established based on Sanders’ thin shell theory. The modal forms are assumed to have the axial dependency in the form of Fourier series whose derivatives are legitimized using Stoke's transformation. A 3D finite element model is also built using ABAQUS software which takes into consideration the exact geometric configuration of the stiffeners and the shell. The achievements from the two types of analyses are compared with each other and good agreement has been obtained. The Influences of variations in shell geometrical parameters, boundary condition, and changes in the cross stiffeners angle on the natural frequencies are studied. The results obtained are novel and can be used as a benchmark for further studies. The simplicity and the capability of the present method are also discussed.

  2. Strength Reliability Analysis of Stiffened Cylindrical Shells Considering Failure Correlation

    Institute of Scientific and Technical Information of China (English)

    Xu Bai; Liping Sun; Wei Qin; Yongkun Lv

    2014-01-01

    The stiffened cylindrical shell is commonly used for the pressure hull of submersibles and the legs of offshore platforms. There are various failure modes because of uncertainty with the structural size and material properties, uncertainty of the calculation model and machining errors. Correlations among failure modes must be considered with the structural reliability of stiffened cylindrical shells. However, the traditional method cannot consider the correlations effectively. The aim of this study is to present a method of reliability analysis for stiffened cylindrical shells which considers the correlations among failure modes. Firstly, the joint failure probability calculation formula of two related failure modes is derived through use of the 2D joint probability density function. Secondly, the full probability formula of the tandem structural system is given with consideration to the correlations among failure modes. At last, the accuracy of the system reliability calculation is verified through use of the Monte Carlo simulation. Result of the analysis shows the failure probability of stiffened cylindrical shells can be gained through adding the failure probability of each mode.

  3. Elastic Response of a Cylinder Containing Longitudinal Stiffeners

    Science.gov (United States)

    2011-04-11

    determine the system’s pass and stop bands using a variety of different stiffener shapes. A study of Timoshenko -Mindlin type shell with an internal...the mass terms in equations (27) and (28) can be replaced by a dynamic beam model such as the Bernoulli-Euler beam equation or the Timoshenko beam

  4. ANALYSIS OF SOUND RADIATION FROM THE RING-STIFFENED CYLINDRICAL SHELL COATED WITH VISCOELASTIC LAYER IN FLUID MEDIUM

    Institute of Scientific and Technical Information of China (English)

    LuoDonning; CaiMinbo; PengXu; LuoBin

    2003-01-01

    The Donnell theory of shell is applied to describe shell motion and layer motion is described by means of three-dimensional Navier equations. Using deformation harmonious conditions of the interface, the effects of stiffeners and layer are treated as reverse forces and moments acting on the cylindrical shell. In studying the acoustic field produced by vibration of the submerged ring-stiffened cylindrical coated shell, the structure dynamic equation, Helmholtz equation in the fluid field and the continuous conditions of the fluid-structure interface compose the cou-pling vibration equation of the sound-fluid-structure. The extract of sound pressure comes down to the extract of coupling vibration equation. By use of the solution of the equation, the influences of hydrostatic pressure, physical characters and geometric parameters of the layer on sound radiation are discussed.

  5. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics.

    Science.gov (United States)

    Guvendiren, Murat; Burdick, Jason A

    2012-04-24

    Biological processes are dynamic in nature, and growing evidence suggests that matrix stiffening is particularly decisive during development, wound healing and disease; yet, nearly all in vitro models are static. Here we introduce a step-wise approach, addition then light-mediated crosslinking, to fabricate hydrogels that stiffen (for example, ~3-30 kPa) in the presence of cells, and investigated the short-term (minutes-to-hours) and long-term (days-to-weeks) cell response to dynamic stiffening. When substrates are stiffened, adhered human mesenchymal stem cells increase their area from ~500 to 3,000 μm(2) and exhibit greater traction from ~1 to 10 kPa over a timescale of hours. For longer cultures up to 14 days, human mesenchymal stem cells selectively differentiate based on the period of culture, before or after stiffening, such that adipogenic differentiation is favoured for later stiffening, whereas osteogenic differentiation is favoured for earlier stiffening.

  6. Multidisciplinary Optimization and Damage Tolerance of Stiffened Structures

    Science.gov (United States)

    Jrad, Mohamed

    THE structural optimization of a cantilever aircraft wing with curvilinear spars and ribs and stiffeners is described. For the optimization of a complex wing, a common strategy is to divide the optimization procedure into two subsystems: the global wing optimization which optimizes the geometry of spars, ribs and wing skins; and the local panel optimization which optimizes the design variables of local panels bordered by spars and ribs. The stiffeners are placed on the local panels to increase the stiffness and buckling resistance. During the local panel optimization, the stress information is taken from the global model as a displacement boundary condition on the panel edges using the so-called "Global-Local Approach". Particle swarm optimization is used in the integration of global/local optimization to optimize the SpaRibs. Parallel computing approach has been developed in the Python programming language to reduce the CPU time. The license cycle-check method and memory self-adjustment method are two approaches that have been applied in the parallel framework in order to optimize the use of the resources by reducing the license and memory limitations and making the code robust. The integrated global-local optimization approach has been applied to subsonic NASA common research model (CRM) wing, which proves the methodology's application scaling with medium fidelity FEM analysis. The structural weight of the wing has been reduced by 42% and the parallel implementation allowed a reduction in the CPU time by 89%. The aforementioned Global-Local Approach is investigated and applied to a composite panel with crack at its center. Because of composite laminates' heterogeneity, an accurate analysis of these requires very high time and storage space. A possible alternative to reduce the computational complexity is the global-local analysis which involves an approximate analysis of the whole structure followed by a detailed analysis of a significantly smaller region of

  7. Design and development of an ambient-temperature continuously-rotating achromatic half-wave plate for CMB polarization modulation on the POLARBEAR-2 experiment

    Science.gov (United States)

    Hill, Charles A.; Beckman, Shawn; Chinone, Yuji; Goeckner-Wald, Neil; Hazumi, Masashi; Keating, Brian; Kusaka, Akito; Lee, Adrian T.; Matsuda, Frederick; Plambeck, Richard; Suzuki, Aritoki; Takakura, Satoru

    2016-07-01

    We describe the development of an ambient-temperature continuously-rotating half-wave plate (HWP) for study of the Cosmic Microwave Background (CMB) polarization by the POLARBEAR-2 (PB2) experiment. Rapid polarization modulation suppresses 1/f noise due to unpolarized atmospheric turbulence and improves sensitivity to degree-angular-scale CMB fluctuations where the inflationary gravitational wave signal is thought to exist. A HWP modulator rotates the input polarization signal and therefore allows a single polarimeter to measure both linear polarization states, eliminating systematic errors associated with differencing of orthogonal detectors. PB2 projects a 365-mm-diameter focal plane of 7,588 dichroic, 95/150 GHz transition-edge-sensor bolometers onto a 4-degree field of view that scans the sky at 1 degree per second. We find that a 500-mm-diameter ambient-temperature sapphire achromatic HWP rotating at 2 Hz is a suitable polarization modulator for PB2. We present the design considerations for the PB2 HWP, the construction of the HWP optical stack and rotation mechanism, and the performance of the fully-assembled HWP instrument. We conclude with a discussion of HWP polarization modulation for future Simons Array receivers.

  8. Design and development of an ambient-temperature continuously-rotating achromatic half-wave plate for CMB polarization modulation on the POLARBEAR-2 experiment

    CERN Document Server

    Hill, Charles A; Chinone, Yuji; Goeckner-Wald, Neil; Hazumi, Masashi; Keating, Brian; Kusaka, Akito; Lee, Adrian T; Matsuda, Frederick; Plambeck, Richard; Suzuki, Aritoki; Takakura, Satoru

    2016-01-01

    We describe the development of an ambient-temperature continuously-rotating half-wave plate (HWP) for study of the Cosmic Microwave Background (CMB) polarization by the POLARBEAR-2 (PB2) experiment. Rapid polarization modulation suppresses 1/f noise due to unpolarized atmospheric turbulence and improves sensitivity to degree-angular-scale CMB fluctuations where the inflationary gravitational wave signal is thought to exist. A HWP modulator rotates the input polarization signal and therefore allows a single polarimeter to measure both linear polarization states, eliminating systematic errors associated with differencing of orthogonal detectors. PB2 projects a 365-mm-diameter focal plane of 7,588 dichroic, 95/150 GHz transition-edge-sensor bolometers onto a 4-degree field of view that scans the sky at $\\sim$ 1 degree per second. We find that a 500-mm-diameter ambient-temperature sapphire achromatic HWP rotating at 2 Hz is a suitable polarization modulator for PB2. We present the design considerations for the PB...

  9. Plate Boundary Observatory East Region Update and Status: Supporting New Science Through Enhanced Telemetry, Monument Evaluation, and Continued Operations and Maintenance

    Science.gov (United States)

    Dittmann, S. T.

    2012-12-01

    The EarthScope Plate Boundary Observatory (PBO) - East Region consists of 280 continuously operating GPS sites in a region that extends from the western border of California to the East Coast of the U.S. We present a number of highlights from the operations and maintenance (O&M) of the network in FY2012. One goal for 2012 was to replace poorly performing stations and another was to fill in some of the gaps in the eastern region of PBO. Accordingly, new GPS sites were installed at several locations across the mid-west, including in Wisconsin and South Dakota. CAYU, a GPS station at Cayuga College, New York also was incorporated into the PBO data flow to replace the poorly performing PBO station, LOZ1. UNAVCO now manages over 20 PBO GPS stations east of the Rocky Mountains, including 2 GPS stations installed in November 2011 as part of an NSF-funded RAPID project to the study of the post-rupture crustal relaxation resulting from the M5.8 Mineral, VA earthquake. PBO engineers also are constructing two additional monuments at five existing PBO sites to compare the performance of different monument types in different geological and tectonic settings. In addition, PBO engineers are upgrading GPS stations in Colorado and New Mexico, which comprise the semi-permanent Rio Grande Rift GPS network, and which have been downloaded manually for over 6 years, to cellular data communications. Lastly, engineers from the PBO-East region continued to support special projects from EarthScope-funded PIs, including Dr. Kristine Larson, who is advancing the use of GPS multipath observations to estimate snow depth (PBO H20) and vegetation growth. In summary, the PBO East Region sub-network state of health remained consistently above 97% throughout 2012, a testament to network hardening completed during the last three years of PBO O&M.

  10. 潜艇耐压艇体纵筋加强锥—柱结合壳结构行为的分析%Structural behavior of longitudinal-stiffened cone-cylinder shell combination in submarine pressure hull

    Institute of Scientific and Technical Information of China (English)

    白雪飞; 郭日修

    2012-01-01

    In order to investigate the structural behaviors of longitudinal-stiffened cone-cylinder shell combination, a computation model is designed. Stress distributions of convex and concave cone-cylinder joint section of the computation model are analyzed by finite element method. The results of analysis show that the longitudinals destroy not only meridional and circumferential continuity but also axi-symmetry of the shell combination. Due to sudden changes of stress distribution, lots of stress concentrations appear in shells plating at the ends of longitudinals and around the joint section of cone and cylinder. Meanwhile, longitudinals add many welds on cone-cylinder jointed zone.The stress distribution of the joint zone becomes worse and the risk of fatigue increases.It can be concluded that the structure behavior of longitudinal-stiffened cone-cylinder shell combination is bad; the longitudinal stiffeners can not be used at the cone-cylinder joint zone of large-diving-depth submarine built of high strength steel with σs/σb approaching to 1.%为考察“纵筋加强锥—柱结合壳”的力学行为,设计了“纵筋加强锥—柱结合壳”作为计算模型,运用有限元方法分析了该模型凸/凹结合部母线方向和圆周方向应力分布.纵筋在纵向和环向均破坏了结构的连续性,在环向还破坏了结构的轴对称性,在纵筋端部(纵向)和纵筋与纵筋之间(环向)的壳板上产生了应力突变和很多应力集中点;此外,在锥—柱结合部增加了许多纵向焊缝,锥—柱结合部应力环境十分恶劣.这种结构形式增大了艇体出现疲劳破坏的危险性.在采用高强度钢(屈强比接近1)的大潜深潜艇的锥—柱结合部不能采用“纵筋加强”结构形式.

  11. Buckling analysis of a ring stiffened hybrid composite cylinder

    Science.gov (United States)

    Potluri, Rakesh; Eswara Kumar, A.; Navuri, Karteek; Nagaraju, M.; Mojeswara Rao, Duduku

    2016-09-01

    This study aims to understand the response of the ring stiffened cylinders made up of hybrid composites subjected to buckling loads by using the concepts of Design of Experiments (DOE) and optimization by using Finite Element Method (FEM) simulation software Ansys workbench V15. Carbon epoxy and E-glass epoxy composites were used in the hybrid composite. This hybrid composite was analyzed by using different layup angles. Central composite design (CCD) was used to perform design of experiments (D.O.E) and kriging method was used to generate a response surface. The response surface optimization (RSO) was performed by using the method of the multi-objective genetic algorithm (MOGA). After optimization, the best candidate was chosen and applied to the ring stiffened cylinder and eigenvalue buckling analysis was performed to understand the buckling behavior. Best laminate candidates with high buckling strength have been identified. A generalized procedure of the laminate optimization and analysis have been shown.

  12. Stiffening of semiflexible biopolymers and cross-linked networks

    CERN Document Server

    Van Dillen, T; Van der Giessen, E

    2006-01-01

    We study the mechanical stiffening behavior in two-dimensional (2D) cross-linked networks of semiflexible biopolymer filaments under simple shear. Filamental constituents immersed in a fluid undergo thermally excited bending motions. Pulling out these undulations results in an increase in the axial stiffness. We analyze this stiffening behavior of 2D semiflexible filaments in detail: we first investigate the average, {static} force-extension relation by considering the initially present undulated configuration that is pulled straight under a tensile force, and compare this result with the average response in which undulation dynamics is allowed during pulling, as derived earlier by MacKintosh and coworkers. We will show that the resulting mechanical behavior is rather similar, but with the axial stiffness being a factor 2 to 4 larger in the dynamic model. Furthermore, we study the stretching contribution in case of extensible filaments and show that, for 2D filaments, the mechanical response is dominated by {...

  13. Stiffening mechanisms in amorphous polyamide bio-nanocomposites

    Science.gov (United States)

    Focke, Walter W.; Macheca, Afonso D.; Benhamida, Aida; Kaci, Mustapha

    2016-05-01

    Dimer fatty acid polyamide nanocomposites based on flake- or needle-shaped nanoparticles were prepared via melt compounding. Transmission electron microscopy showed the presence of both individually dispersed particles and particle agglomerates in the polymer matrix. Dynamic mechanical analysis suggests that three stiffening mechanisms were operating. The reinforcing effect of the high stiffness inorganic filler particles is the primary contributor. Together with the chain confinement effect, that expresses itself in an apparent increase in the glass transition temperature, this provided an adequate rationalization of the stiffness variation below Tg. However, an additional stiffening effect is indicated at temperatures above Tg. The mechanism may involve dynamic network formation based on fluctuating hydrogen bonding interactions between the polymer chains and the filler particles.

  14. Stiffening mechanisms in amorphous polyamide bio-nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Focke, Walter W. [Institute of Applied Materials, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria (South Africa); Macheca, Afonso D. [Institute of Applied Materials, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria (South Africa); Department of Chemical Engineering, Eduardo Mondlane University, P.O. Box 257, Maputo (Mozambique); Benhamida, Aida; Kaci, Mustapha [Laboratoire des Matériaux Polymères Avancés (LMPA), Université de Bejaia 06000 (Algeria)

    2016-05-18

    Dimer fatty acid polyamide nanocomposites based on flake- or needle-shaped nanoparticles were prepared via melt compounding. Transmission electron microscopy showed the presence of both individually dispersed particles and particle agglomerates in the polymer matrix. Dynamic mechanical analysis suggests that three stiffening mechanisms were operating. The reinforcing effect of the high stiffness inorganic filler particles is the primary contributor. Together with the chain confinement effect, that expresses itself in an apparent increase in the glass transition temperature, this provided an adequate rationalization of the stiffness variation below Tg. However, an additional stiffening effect is indicated at temperatures above Tg. The mechanism may involve dynamic network formation based on fluctuating hydrogen bonding interactions between the polymer chains and the filler particles.

  15. Tensile behavior and tension stiffening of reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Seo, Jeong Moon

    2001-03-01

    For the ultimate behavior analysis of containment buildings under severe accident conditions, a clear understanding of tensile behaviors of plain and reinforced concrete is necessary. Nonlinear models for tensile behaviors of concrete are also needed. This report describe following items: tensile behaviors of plain concrete, test results of reinforced concrete panels in uniaxial and biaxial tension, tension stiffening. The tensile behaviors of reinforced concrete are significantly influenced by the properties of concrete and reinforcing steel. Thus, for a more reliable evaluation of tensile behavior and ultimate pressure capacity of a reinforced or prestressed concrete containment building, an advanced concrete model which can be considered rebar-concrete interaction effects should be developed. In additions, a crack behavior analysis method and tension stiffening models, which are based on fracture mechanics, should be developed. The model should be based on the various test data from specimens considering material and sectional properties of the containment building.

  16. Modelling of tension stiffening for normal and high strength concrete

    DEFF Research Database (Denmark)

    Christiansen, Morten Bo; Nielsen, Mogens Peter

    1998-01-01

    Accurate calculations of the stiffness of concrete members are rare. Only in the uncracked state and the fully cracked state, where the reinforcement is near yielding, the stiffness calculations are relatively easy. The difficulties are due to the fact that concrete between cracks may give...... a substantial contribution to the stiffness, a phenomenon which is generally referred to as tension stiffening. The present paper describes a new theory of tension stiffening. It is based on a simple physical model for pure tension, which works with three different stages of crack generation. In a simplified...... form the model is extended to apply to biaxial stress fields as well. To determine the biaxial stress field, the theorem of minimum complementary elastic energy is used. The theory has been compared with tests on rods, disks, and beams of both normal and high strength concrete, and very good results...

  17. Guideline for Forming Stiffened Panels by Using the Electromagnetic Forces

    Directory of Open Access Journals (Sweden)

    Jinqiang Tan

    2016-11-01

    Full Text Available Electromagnetic forming (EMF, as a high-speed forming technology by applying the electromagnetic forces to manufacture sheet or tube metal parts, has many potential advantages, such as contact-free and resistance to buckling and springback. In this study, EMF is applied to form several panels with stiffened ribs. The distributions and variations of the electromagnetic force, the velocity and the forming height during the EMF process of the bi-directional panel with gird ribs are obtained by numerical simulations, and are analyzed via the comparison to those with the flat panel (non-stiffened and two uni-directional panels (only with X-direction or Y-direction ribs. It is found that the electromagnetic body force loads simultaneously in the ribs and the webs, and the deformation of the panels is mainly driven by the force in the ribs. The distribution of force in the grid-rib panel can be found as the superposition of the two uni-directional stiffened panels. The velocity distribution for the grid-rib panel is primarily affected by the X-directional ribs, then the Y-directional ribs, and the variation of the velocity are influenced by the force distribution primarily and secondly the inertial effect. Mutual influence of deformation exists between the region undergoing deformation and the deformed or underformed free ends. It is useful to improve forming uniformity via a second discharge at the same position. Comparison between EMF and the brake forming with a stiffened panel shows that the former has more advantages in reducing the defects of springback and buckling.

  18. Study of the Geometric Stiffening Effect: Comparison of Different Formulations

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, Juana M., E-mail: juana@us.es; Garcia-Vallejo, Daniel; Dominguez, Jaime [Universidad de Sevilla, Departamento de Ingenieria Mecanica y de los Materiales (Spain)

    2004-05-15

    This paper reviews different formulations to account for the stress stiffening or geometric stiffening effect arising from deflections large enough to cause significant changes in the configuration of the system The importance of such effect on many engineering applications, such as the dynamic behavior of helicopter blades, flexible rotor arms, turbine blades, etc., is well known. The analysis is carried out only for one-dimensional elements in 2D.Formulations based on the floating frame of reference approach are computationally very efficient, as the use of the component synthesis method allows for a reduced number of coordinates. However, something must be done for them to account for the geometric stiffening effect. The easiest method is the application of the substructuring technique, because the formulation is not modified. This, however, is not the most efficient approach. In problems where deformation is moderated, the simple inclusion of the geometric stiffness matrix is enough. On the other hand, if the deformation is large, higher-order terms must be included in the strain energy. In order to achieve an efficient and stable formulation, an explicit geometrically nonlinear beam element was developed. The formulations that use absolute coordinates are, generally, computationally more costly than the previous ones, as they must use a large number of degrees of freedom. However, the geometric stiffening effect can be automatically accounted for with these formulations. The aim of this work is to investigate the applicability of the different existing formulations in order to help the user select the right one for his particular application.

  19. Nuclear stiffening inhibits migration of invasive melanoma cells

    OpenAIRE

    Ribeiro, Alexandre J. S.; Khanna, Payal; Sukumar, Aishwarya; Dong, Cheng; Dahl, Kris Noel

    2014-01-01

    During metastasis, melanoma cells must be sufficiently deformable to squeeze through extracellular barriers with small pore sizes. We visualize and quantify deformability of single cells using micropipette aspiration and examine the migration potential of a population of melanoma cells using a flow migration apparatus. We artificially stiffen the nucleus with recombinant overexpression of Δ50 lamin A, which is found in patients with Hutchison Gilford progeria syndrome and in aged individuals....

  20. LINEAR AND NONLINEAR BUCKLING ANALYSIS OF STIFFENED CYLINDRICAL SUBMARINE HULL

    OpenAIRE

    SREELATHA P.R; ALICE MATHAI

    2012-01-01

    Submarine is a watercraft capable of independent operation under water. Use of submarines includes marine science, offshore industry underwater exploration etc. The pressure hull of submarine is constructed as combination of cylinders and domes. The shell is subjected to very high hydrostatic pressure, which creates large compressive stress resultants. Due to this the structure is susceptible to buckling. The introduction of stiffeners in both directions considerably increases the buckling st...

  1. Structural and Acoustic Responses of a Submerged Stiffened Conical Shell

    Directory of Open Access Journals (Sweden)

    Meixia Chen

    2014-01-01

    Full Text Available This paper studies the vibrational behavior and far-field sound radiation of a submerged stiffened conical shell at low frequencies. The solution for the dynamic response of the conical shell is presented in the form of a power series. A smeared approach is used to model the ring stiffeners. Fluid loading is taken into account by dividing the conical shell into narrow strips which are considered to be local cylindrical shells. The far-field sound pressure is solved by the Element Radiation Superposition Method. Excitations in two directions are considered to simulate the loading on the surface of the conical shell. These excitations are applied along the generator and normal to the surface of the conical shell. The contributions from the individual circumferential modes on the structural responses of the conical shell are studied. The effects of the external fluid loading and stiffeners are discussed. The results from the analytical models are validated by numerical results from a fully coupled finite element/boundary element model.

  2. The Noble-Abel Stiffened-Gas equation of state

    Science.gov (United States)

    Le Métayer, Olivier; Saurel, Richard

    2016-04-01

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.

  3. MyPlate Food Guide

    Science.gov (United States)

    ... Choosing the Right Sport for You Shyness MyPlate Food Guide KidsHealth > For Teens > MyPlate Food Guide Print ... other sugary drinks. Avoid oversized portions. continue Five Food Groups Different food groups meet different nutrition needs. ...

  4. Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates

    Directory of Open Access Journals (Sweden)

    Kensy Frank

    2009-06-01

    Full Text Available Abstract Background An advanced version of a recently reported high-throughput fermentation system with online measurement, called BioLector, and its validation is presented. The technology combines high-throughput screening and high-information content by applying online monitoring of scattered light and fluorescence intensities in continuously shaken microtiter plates. Various examples in calibration of the optical measurements, clone and media screening and promoter characterization are given. Results Bacterial and yeast biomass concentrations of up to 50 g/L cell dry weight could be linearly correlated to scattered light intensities. In media screening, the BioLector could clearly demonstrate its potential for detecting different biomass and product yields and deducing specific growth rates for quantitatively evaluating media and nutrients. Growth inhibition due to inappropriate buffer conditions could be detected by reduced growth rates and a temporary increase in NADH fluorescence. GFP served very well as reporter protein for investigating the promoter regulation under different carbon sources in yeast strains. A clone screening of 90 different GFP-expressing Hansenula polymorpha clones depicted the broad distribution of growth behavior and an even stronger distribution in GFP expression. The importance of mass transfer conditions could be demonstrated by varying filling volumes of an E. coli culture in 96 well MTP. The different filling volumes cause a deviation in the culture growth and acidification both monitored via scattered light intensities and the fluorescence of a pH indicator, respectively. Conclusion The BioLector technology is a very useful tool to perform quantitative microfermentations under engineered reaction conditions. With this technique, specific yields and rates can be directly deduced from online biomass and product concentrations, which is superior to existing technologies such as microplate readers or optode

  5. Introduction to Analysis and Design of Plate Panels

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Lützen, Marie

    The present notes cover plate theory dealing with bending, vibrations, elastic buckling and ultimate strength. The plate structures considered are isotropic, orthotropic and stiffened plates made of metallic materials. The main objective of the notes is to give an introduction to plates and plate....... Comments and amendments received by the students in the course have had a significant influence on the present layout. A special thanks to Torben Christiansen for careful proof-readings of the examples and valuable improvements.......¨utzen in 2002. It has now been amended and extended with ultimate strength of plates, an introduction to the theory of shells and additional examples to cover the lecture material for the course ”41215 Plate and Shell Structures” at the Department of Mechanical Engineering, the Technical University of Denmark...

  6. Vibration analysis of ring-stiffened cross-ply laminated cylindrical shells

    Science.gov (United States)

    Wang, Rong-Tyai; Lin, Zung-Xian

    2006-08-01

    This work presents the formulation of governing equations for a symmetric cross-ply laminated cylindrical shell with a circumferential stiffener. Two kinds of the circumferential stiffeners are considered: outer ring and inner ring. The effects of rotatory inertia and transverse shearing strain of both the cross-ply laminated shell and stiffener are considered. Further, the warping effect of stiffener also is included. An analytic method is presented to obtain the modal frequencies and their corresponding mode shape functions of the ring-stiffened laminated shell. The orthogonality of two distinct sets of mode shape functions is shown. The effects of inner ring and outer ring on modal frequencies of the ring-stiffened laminated shell are compared. Further, the effect of ply arrangement on modal frequencies of the ring-stiffened shell also is studied. The forced vibration of the ring-stiffened laminated shell due to a concentrated transient force is examined. The stress distributions in the plies of the ring-stiffened laminated shell due to the transient force are investigated.

  7. Reliability of the ultimate strength of ship stiffened panel subjected to random corrosion degradation

    Science.gov (United States)

    Feng, Guo-qing; Hu, Bing-nan; Ren, Hui-long

    2017-03-01

    Attentions have been increasingly paid to the influence of the corrosion on the ultimate strength of ship structures. In consideration of the random characteristics of the corrosion of ship structures, the method for the ultimate strength analysis of the ship stiffened panel structure subjected to random corrosion degradation is presented. According to the measured corrosion data of the bulk carriers, the distribution characteristics of the corrosion data for the stiffened panel on the midship deck are analyzed, and a random corrosion model is established. The ultimate strength of the corroded stiffened panel is calculated by the nonlinear finite element analysis. The statistical descriptions of the ultimate strength of the corroded stiffened panel are defined through the Monte Carlo simulations. A formula is proposed on the ultimate strength reduction of the stiffened panel as a function of the corrosion volume. The reliability analysis of the ultimate strength of the corroded deck stiffened panel is performed. It shows that both the corrosion data of the deck stiffened panel and the ultimate strength of the random corroded deck stiffened panel follow the log-normal distribution. The ultimate stress ratio of the stiffened panel is inversely proportional to the corrosion volume ratio.

  8. The influence of stiffeners on axial crushing of glass-fabric-reinforced epoxy composite shells

    Directory of Open Access Journals (Sweden)

    A. Vasanthanathan

    2017-01-01

    Full Text Available A generic static and impact experimental procedure has been developed in this work aimed at improving the stability of glass fabric reinforced epoxy shell structures by bonding with axial stiffeners. Crashworthy structures fabricated from composite laminate with stiffeners would offer energy absorption superior to metallic structures under compressive loading situations. An experimental material characterisation of the glass fabric reinforced epoxy composite under uni-axial tension has been carried out in this study. This work provides a numerical simulation procedure to describe the static and dynamic response of unstiffened glass fabric reinforced epoxy composite shell (without stiffeners and stiffened glass fabric reinforced epoxy composite shell (with axial stiffeners under static and impact loading using the Finite Element Method. The finite element calculation for the present study was made with ANSYS®-LS-DYNA® software. Based upon the experimental and numerical investigations, it has been asserted that glass fabric reinforced epoxy shells stiffened with GFRP stiffeners are better than unstiffened glass fabric reinforced epoxy shell and glass fabric reinforced epoxy shell stiffened with aluminium stiffeners. The failure surfaces of the glass fabric reinforced epoxy composite shell structures tested under impact were examined by SEM.

  9. A network model of correlated growth of tissue stiffening in pulmonary fibrosis

    CERN Document Server

    Oliveira, Cláudio L N; Suki, Béla

    2013-01-01

    During the progression of pulmonary fibrosis, initially isolated regions of high stiffness form and grow in the lung tissue due to collagen deposition by fibroblast cells. We have previously shown that ongoing collagen deposition may not lead to significant increases in the bulk modulus of the lung until these local remodeled regions have become sufficiently numerous and extensive to percolate in a continuous path across the entire tissue [Bates {\\it et al.} 2007 {\\it Am. J. Respir. Crit. Care Med.} {\\bf 176} 617]. In the present study, we investigate whether spatial correlations influence the bulk modulus in a two-dimensional elastic network model of lung tissue. Random collagen deposition at a single site is modeled by increasing the elastic constant of the spring at that site by a factor of 100. By contrast, correlated collagen deposition is represented by stiffening the springs encountered along a random walk starting from some initial spring, the rationale being that excess collagen deposition is more li...

  10. Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener

    Directory of Open Access Journals (Sweden)

    Yun-Kyu An

    2016-09-01

    Full Text Available This paper proposes a stripe-PZT sensor-based baseline-free crack diagnosis technique in the heat affected zone (HAZ of a structure with a welded stiffener. The proposed technique enables one to identify and localize a crack in the HAZ using only current data measured using a stripe-PZT sensor. The use of the stripe-PZT sensor makes it possible to significantly improve the applicability to real structures and minimize man-made errors associated with the installation process by embedding multiple piezoelectric sensors onto a printed circuit board. Moreover, a new frequency-wavenumber analysis-based baseline-free crack diagnosis algorithm minimizes false alarms caused by environmental variations by avoiding simple comparison with the baseline data accumulated from the pristine condition of a target structure. The proposed technique is numerically as well as experimentally validated using a plate-like structure with a welded stiffener, reveling that it successfully identifies and localizes a crack in HAZ.

  11. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.

    Science.gov (United States)

    Perepelyuk, Maryna; Chin, LiKang; Cao, Xuan; van Oosten, Anne; Shenoy, Vivek B; Janmey, Paul A; Wells, Rebecca G

    2016-01-01

    Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G' and G" and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.

  12. Experimental Investigation of Tension Stiffening in RC Ties

    Directory of Open Access Journals (Sweden)

    Aleksandr Sokolov

    2016-01-01

    Full Text Available The increasing application of high-performance materials in civil engineering led to the development of reinforced concrete (RC structures with reduced cross sections and increased spans. In such structures serviceability limit state often becomes the governing condition of the design. Present study investigates the deformation behaviour of high-strength RC ties reinforced with high-grade bars. Experimental investigation was carried out measuring the postcracking stiffness of the specimens at high strain levels. It was found that, despite the reduction in stiffness, a considerable part of the average tensile stresses were carried by the concrete at the advanced loading stages, thus effectively stiffening the RC member.

  13. Tests of Flat Panels with Four Types of Stiffeners

    Science.gov (United States)

    1943-01-01

    within one-half of 1 percent by a standard tensile test. in this test two Huggenberger tensometers with 1-inch gage lengths were used to measure the...into three equal parts by a lever arrsngement, the loads being 25-pound bags of shot. This lever system wss designed to fit all four stiffener spacings...the platens about an axis normal to the plane of the specimen was very small. In the second and third groups of tests, tensometers were also attached

  14. Preliminary analysis techniques for ring and stringer stiffened cylindrical shells

    Science.gov (United States)

    Graham, J.

    1993-03-01

    This report outlines methods of analysis for the buckling of thin-walled circumferentially and longitudinally stiffened cylindrical shells. Methods of analysis for the various failure modes are presented in one cohesive package. Where applicable, more than one method of analysis for a failure mode is presented along with standard practices. The results of this report are primarily intended for use in launch vehicle design in the elastic range. A Microsoft Excel worksheet with accompanying macros has been developed to automate the analysis procedures.

  15. Temperature effect on the static behaviour of adhesively-bonded metal skin to composite stiffener

    NARCIS (Netherlands)

    Teixeira De Freitas, S.; Sinke, J.

    2015-01-01

    The purpose of this research is to study the effect of temperature on the static behavior of an hybrid structure consisting of adhesively bonded Fiber Metal Laminate skin to a composite stiffener. This hybrid structure was tested using stiffener pull-off tests, which is a typical set-up used to simu

  16. Minimum stiffness criteria for ring frame stiffeners of space launch vehicles

    Science.gov (United States)

    Friedrich, Linus; Schröder, Kai-Uwe

    2016-12-01

    Frame stringer-stiffened shell structures show high load carrying capacity in conjunction with low structural mass and are for this reason frequently used as primary structures of aerospace applications. Due to the great number of design variables, deriving suitable stiffening configurations is a demanding task and needs to be realized using efficient analysis methods. The structural design of ring frame stringer-stiffened shells can be subdivided into two steps. One, the design of a shell section between two ring frames. Two, the structural design of the ring frames such that a general instability mode is avoided. For sizing stringer-stiffened shell sections, several methods were recently developed, but existing ring frame sizing methods are mainly based on empirical relations or on smeared models. These methods do not mandatorily lead to reliable designs and in some cases the lightweight design potential of stiffened shell structures can thus not be exploited. In this paper, the explicit physical behaviour of ring frame stiffeners of space launch vehicles at the onset of panel instability is described using mechanical substitute models. Ring frame stiffeners of a stiffened shell structure are sized applying existing methods and the method suggested in this paper. To verify the suggested method and to demonstrate its potential, geometrically non-linear finite element analyses are performed using detailed finite element models.

  17. Evaluation of Steel Shear Walls Behavior with Sinusoidal and Trapezoidal Corrugated Plates

    Directory of Open Access Journals (Sweden)

    Emad Hosseinpour

    2015-01-01

    Full Text Available Reinforcement of structures aims to control the input energy of unnatural and natural forces. In the past four decades, steel shear walls are utilized in huge constructions in some seismic countries such as Japan, United States, and Canada to lessen the risk of destructive forces. The steel shear walls are divided into two types: unstiffened and stiffened. In the former, a series of plates (sinusoidal and trapezoidal corrugated with light thickness are used that have the postbuckling field property under overall buckling. In the latter, steel profile belt series are employed as stiffeners with different arrangement: horizontal, vertical, or diagonal in one side or both sides of wall. In the unstiffened walls, increasing the thickness causes an increase in the wall capacity under large forces in tall structures. In the stiffened walls, joining the stiffeners to the wall is costly and time consuming. The ANSYS software was used to analyze the different models of unstiffened one-story steel walls with sinusoidal and trapezoidal corrugated plates under lateral load. The obtained results demonstrated that, in the walls with the same dimensions, the trapezoidal corrugated plates showed higher ductility and ultimate bearing compared to the sinusoidal corrugated plates.

  18. Design Charts for Flat Compression Panels Having Longitudinal Extruded Y-Section Stiffeners and Comparison with Panels Having Formed Z-Section Stiffeners

    Science.gov (United States)

    1947-08-01

    pi L/G ts’ is emallest for the ’j𔃿s-T Y-stiffened panela and largest for the 2&3-T Z-stfffened panela - -’ ~.tiO’ fi&ureti 18 to 26 shaw’ti a...differences occurred be~been the test SpCfinene for the 2bS-T Y-stiflened and Z-stiffened panela . Differences occurred in mterial properties, diamter and

  19. 用于造船的夹层板构件(SPS)%A new concept for a new age Sandwich Plate System (SPS) for shipbuilding

    Institute of Scientific and Technical Information of China (English)

    黄沛成

    2005-01-01

    The revolutionary Sandwich Plate System (SPS) is superior in every practical way to conventional, stiffened steel plate. A totally new concept in heavy engineering construction, SPS, a steelelastomer-steel structural laminate, is a new-generation building material bringing the shipbuilding and civil engineering industries to the threshold of a new era.

  20. Arterial stiffening precedes systolic hypertension in diet-induced obesity.

    Science.gov (United States)

    Weisbrod, Robert M; Shiang, Tina; Al Sayah, Leona; Fry, Jessica L; Bajpai, Saumendra; Reinhart-King, Cynthia A; Lob, Heinrich E; Santhanam, Lakshmi; Mitchell, Gary; Cohen, Richard A; Seta, Francesca

    2013-12-01

    Stiffening of conduit arteries is a risk factor for cardiovascular morbidity. Aortic wall stiffening increases pulsatile hemodynamic forces that are detrimental to the microcirculation in highly perfused organs, such as the heart, brain, and kidney. Arterial stiffness is associated with hypertension but presumed to be due to an adaptive response to increased hemodynamic load. In contrast, a recent clinical study found that stiffness precedes and may contribute to the development of hypertension although the mechanisms underlying hypertension are unknown. Here, we report that in a diet-induced model of obesity, arterial stiffness, measured in vivo, develops within 1 month of the initiation of the diet and precedes the development of hypertension by 5 months. Diet-induced obese mice recapitulate the metabolic syndrome and are characterized by inflammation in visceral fat and aorta. Normalization of the metabolic state by weight loss resulted in return of arterial stiffness and blood pressure to normal. Our findings support the hypothesis that arterial stiffness is a cause rather than a consequence of hypertension.

  1. Structural and acoustic response of a finite stiffened submarine hull

    Science.gov (United States)

    Wang, Xian-zhong; Jiang, Chen-ban; Xu, Rui-yang

    2016-12-01

    After borrowing the idea of precise integration method, a precise integration transfer matrix method (PITMM) is proposed by modifying traditional transfer matrix method. The submarine hull can be modeled as joined conicalcylindrical-spherical shells. By considering the effect of the ring-stiffeners, the field transfer matrixes of shells of revolution are obtained accurately by PITMM. After assembling the field transfer matrixes into an entire matrix, the dynamic model is established to solve the dynamic responses of the joined shell. By describing the sound pressure in fluid by modified wave superposition method (MWSM) and collocating points along the meridian line of the joined shell, finally the structural and acoustic responses of a finite stiffened submarine hull can be predicted by coupled PITMM and MWSM. The effectiveness of the present method has been verified by comparing the structural and acoustic responses of the spherical shell with existing results. Furthermore, the effects of the model truncation, stiffness and thickness on the structural and acoustic responses of the submarine hull are studied.

  2. Sandwich panels with high performance concrete thin plates at elevated temperatures

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2015-01-01

    of a coupled heat and mass transfer (HMT) model to HPC thin plates to study their behaviour at elevated temperatures, predicting temperature and pore pressure distributions. The same model was applied to a sandwich structure including thin plate, stiffening rib, and insulation layer. A last simulation...... (PP) fibres for pressure release is recommended. Stress analysis showed the stiffening rib assumes the major load-carrying role. The thin plate was found largely sensitive to heat, its thermal bowing restrained by shear connectors creating high localised tensile stresses. It was suggested to anchor...... the shear connectors in the ribs. Geometric discontinuities were also found critical; therefore separation of rib and plate is advised for hazardous situations such as fire events....

  3. The forced sound transmission of finite ribbed plates, investigating the influence of point connections and periodicity

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2015-01-01

    Many engineering structures consist of plates being stiffened by ribs. The ribs can be connected to the plate in a line connection (welded or glued) or in point connections (screwed). It is well known that the rib stiffeners can significantly change the vibration field and the radiation behavior...... been derived, using a variational technique based on integral-differential equations of the fluid loaded plate. In this way an optimal solution is derived, using a very simple initial guess of the vibration field. The finite plate is assumed being mounted in a rigid baffle. The approach is based...... the model. The influence of point versus line connections, as well as periodicity effects, is investigated....

  4. Crack growth prediction of deck plate-stiffener joints in orthotropic steel bridge decks

    NARCIS (Netherlands)

    Maljaars, J.; Gration, D.; Vonk, E.; Dooren, F. van

    2013-01-01

    Orthotropic deck structures are used in many steel bridges. Due to the typical detailing applied as around 1970, a significant number of deck structures constructed in that period suffer from fatigue damage. In many countries cracks have been detected, in particular in the weld between the deck plat

  5. Plastic Deformation and Rupture of Ring-Stiffened Cylinders under Localized Pressure Pulse Loading

    Directory of Open Access Journals (Sweden)

    Michelle S. Hoo Fatt

    1994-01-01

    Full Text Available An analytical solution for the dynamic plastic deformation of a ring-stiffened cylindrical shell subject to high intensity pressure pulse loading is presented. By using an analogy between a cylindrical shell that undergoes large plastic deformation and a rigid-plastic string resting on a rigid-plastic foundation, one derives closed-form solutions for the transient and final deflection profiles and fracture initiation of the shell. Discrete masses' and springs are used to describe the ring stiffeners in the stiffened shell. The problem of finding the transient deflection profile of the central bay is reduced to solving an inhomogeneous wave equation with inhomogeneous boundary conditions using the method of eigenfunction expansion. The overall deflection profile consists of both global (stiffener and local (bay components. This division of the shell deflection profile reveals a complex interplay between the motions of the stiffener and the bay. Furthermore, a parametric study on a ring-stiffened shell damaged by a succession of underwater explosions shows that the string-on-foundation model with ring stiffeners described by lumped masses and springs is a promising method of analyzing the structure.

  6. The Tension-Stiffening Contribution of NSM CFRP to the Behavior of Strengthened RC Beams

    Directory of Open Access Journals (Sweden)

    Ahmad Azim Shukri

    2015-07-01

    Full Text Available Tension stiffening is a characteristic behavior of reinforced concrete (RC beams which is directly affected by the bond-slip property of steel bar and concrete interfaces. A beam strengthened with a near-surface mounted (NSM technique would be even more affected by tension stiffening, as the NSM reinforcement also possess a bond-slip property. Yet assessing how much the tension stiffening of NSM contributes to the behavior of RC beams is difficult due to the fact that bond-slip effects cannot be directly incorporated into a strain-based moment-curvature analysis. As such, the tension stiffening is typically incorporated through various empirical formulations, which can require a great deal of testing and calibrations to be done. In this paper a relatively new method, which can be called the mechanics-based segmental approach, is used to directly simulate the tension stiffening effect of NSM reinforcements on RC beams, without the need for empirical formulations to indirectly simulate the tension stiffening. Analysis shows that the tension stiffening of NSM fiber reinforced polymer (FRP contributes a significant portion to the stiffness and strength of the strengthened RC beam not only during serviceability, but at all load levels.

  7. Buckling and Post-buckling Performance of Advanced Composite Stiffened Panel Under Compression

    Directory of Open Access Journals (Sweden)

    ZHANG Haoyu

    2016-08-01

    Full Text Available The axial compressive experiment was conducted on the domestic advanced composite stiffened panel, and its buckling and post-buckling performance was analyzed by monitoring strain and out-of-plane displacement of typical positions. The initial buckling load and buckling mode of panels were calculated by engineering methods to direct the follow-up axial compressive experiment. The experimental results show that the buckling patterns are mainly local buckling of panels between stiffeners, the second buckling of few positions of panels and cylindrical buckling of all 4 stiffeners successively; after local buckling of panels, part of load bearded by panels before is transferred to stiffeners and then stiffeners become the main bearing part; after fracture failure of stiffeners, the specimen is destroyed rapidly; the average value of failure load is 482.67 kN, which is 2.37 times of 204 kN of the average value of buckling load; the composite stiffened panel can bear more load after buckling.

  8. Compressive Behavior of 3D Woven Composite Stiffened Panels: Experimental and Numerical Study

    Science.gov (United States)

    Zhou, Guangming; Pan, Ruqin; Li, Chao; Cai, Deng'an; Wang, Xiaopei

    2017-08-01

    The structural behavior and damage propagation of 3D woven composite stiffened panels with different woven patterns under axial-compression are here investigated. The panel is 2.5D interlock woven composites (2.5DIWC), while the straight-stiffeners are 3D woven orthogonal composites (3DWOC). They are coupled together with the Z-fibers from the stiffener passing straight thought the thickness of the panel. A "T-shape" model, in which the fiber bundle structure and resin matrix are drawn out to simulate the real situation of the connection area, is established to predict elastic constants and strength of the connection region. Based on Hashin failure criterion, a progressive damage model is carried out to simulate the compressive behavior of the stiffened panel. The 3D woven composite stiffened panels are manufactured using RTM process and then tested. A good agreement between experimental results and numerical predicted values for the compressive failure load is obtained. From initial damage to final collapse, the panel and stiffeners will not separate each other in the connection region. The main failure mode of 3D woven composite stiffened panels is compressive failure of fiber near the loading end corner.

  9. SHEAR STRENGTH OF CASTELLATED BEAM WITH AND WITHOUT STIFFENERS USING FEA (ANSYS 14

    Directory of Open Access Journals (Sweden)

    B.ANUPRIYA

    2014-08-01

    Full Text Available This paper is focused on the investigation behavior of shear strength of castellated beam with and without stiffeners. Castellated beams are steel beams with web openings and they gain its advantage due to its increased depth of section without any additional weight. However one consequence is the presence of web opening which leads to various local effects like shear and deformation. In this paper steel I section ISMB 150 and ISMB 200 is selected and castellated beams are fabricated such that depth of the beam is 1.5 times greater than the original depth. The beam is analysed using Finite Element Analysis (ANSYS 14.Two point loads is applied and stress distribution is studied. Stress concentration increases at the hole corners along the shear zone and at load application point. Deflection of the beam with and without stiffeners is studied. And stiffeners are introduced diagonally on the web opening along the shear zone, and in the other case stiffeners are provided on the solid portion of the web along the shear zone. From the results obtained from ANSYS14 it is concluded that shear strength of castellated beam can be improved by providing diagonal stiffeners along the web opening. Also it is concluded that stiffeners provided on the opening of the web is more effective than stiffeners provided on the solid portion of the web

  10. Less is more: removing membrane attachments stiffens the RBC cytoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Gov, Nir S [Department of Chemical Physics, The Weizmann Institute of Science, PO Box 26, Rehovot 76100 (Israel)

    2007-11-15

    The polymerized network of the cytoskeleton of the red-blood cell (RBC) contains different protein components that maintain its overall integrity and attachment to the lipid bilayer. One of these key components is the band 3-ankyrin complex that attaches the spectrin filaments to the fluid bilayer. Defects in this particular component result in the shape transformation called spherocytosis, through the shedding of membrane nano-vesicles. We show here that this transition and membrane shedding can be explained through the increased stiffness of the network when the band 3-ankyrin complexes are removed. ATP-induced transient dissociations lead to network softening, which offsets the stiffening to some extent, and causes increased fragility of these mutant cells, as is observed.

  11. Communication: Stiffening of dilute alcohol and alkane mixtures with water

    Science.gov (United States)

    Ashbaugh, Henry S.; Wesley Barnett, J.; Saltzman, Alexander; Langrehr, Mae E.; Houser, Hayden

    2016-11-01

    We probe the anomalous compressibilities of dilute mixtures of alcohols and alkane gases in water using molecular simulations. The response to increasing solute concentration depends sensitively on temperature, with the compressibility decreasing upon solute addition at low temperatures and increasing at elevated temperatures. The thermodynamic origin of stiffening is directly tied to the solute's partial compressibility, which is negative at low temperatures and rises above water's compressibility with increasing temperature. Hydration shell waters concurrently tilt towards clathrate-like structures at low temperatures that fade with heating. Kirkwood-Buff theory traces the solute's partial compressibility to changes in the solute-water association volume upon heating and incongruous packing of waters at the boundary between the more structured hydration shell and bulk water.

  12. Palatal stiffening via transoral, retrograde interstitial laser coagulation

    Directory of Open Access Journals (Sweden)

    Yosef P. Krespi

    2011-10-01

    Full Text Available Current treatment modalities for snoring may include mucosal removal, coblation or radiofrequency palatoplasty, injection snoreplasty and placement of palatal implants with described disadvantages. We introduce a new laser assisted method avoiding intraoral injury. A pilot study treating 13 loud snorers having an RDI<8 was conducted. A diode laser coupled to a flexible fiberand a handle with curved needle was used. The fiber was introduced into the nasal surface of soft palate between palatoglossal and glossopharyngeal arches and advanced progressively anteriorly after pulling the uvula forward three times to create palatal scarring and stiffening. All responded to a phone survey. Six patients reported significant improvement, 4 had some improvement, 2 had mild improvement and one patient had no change. Pain score was moderate for 3 patients while the rest had mild pain. The laser harbors many advantages over other methods. Results with this technique are encouraging further studies.

  13. Multi-scale strain-stiffening of semiflexible bundle networks

    CERN Document Server

    Piechocka, I K; Broedersz, C P; Kurniawan, N A; MacKintosh, F C; Koenderink, G H

    2015-01-01

    Bundles of polymer filaments are responsible for the rich and unique mechanical behaviors of many biomaterials, including cells and extracellular matrices. In fibrin biopolymers, whose nonlinear elastic properties are crucial for normal blood clotting, protofibrils self-assemble and bundle to form networks of semiflexible fibers. Here we show that the extraordinary strain-stiffening response of fibrin networks is a direct reflection of the hierarchical architecture of the fibrin fibers. We measure the rheology of networks of unbundled protofibrils and find excellent agreement with an affine model of extensible wormlike polymers. By direct comparison with these data, we show that physiological fibrin networks composed of thick fibers can be modeled as networks of tight protofibril bundles. We demonstrate that the tightness of coupling between protofibrils in the fibers can be tuned by the degree of enzymatic intermolecular crosslinking by the coagulation Factor XIII. Furthermore, at high stress, the protofibri...

  14. Influence of Impact Damage on Carbon-Epoxy Stiffener Crippling

    Science.gov (United States)

    Jegley, Dawn C.

    2010-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression subjected to impact damage and loaded in fatigue and to failure. A comparison with analytical predictions for pristine and damaged specimens is included.

  15. Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons.

    Science.gov (United States)

    Qi, Yanmei; Andolfi, Laura; Frattini, Flavia; Mayer, Florian; Lazzarino, Marco; Hu, Jing

    2015-10-07

    Sensing force is crucial to maintain the viability of all living cells. Despite its fundamental importance, how force is sensed at the molecular level remains largely unknown. Here we show that stomatin-like protein-3 (STOML3) controls membrane mechanics by binding cholesterol and thus facilitates force transfer and tunes the sensitivity of mechano-gated channels, including Piezo channels. STOML3 is detected in cholesterol-rich lipid rafts. In mouse sensory neurons, depletion of cholesterol and deficiency of STOML3 similarly and interdependently attenuate mechanosensitivity while modulating membrane mechanics. In heterologous systems, intact STOML3 is required to maintain membrane mechanics to sensitize Piezo1 and Piezo2 channels. In C57BL/6N, but not STOML3(-/-) mice, tactile allodynia is attenuated by cholesterol depletion, suggesting that membrane stiffening by STOML3 is essential for mechanical sensitivity. Targeting the STOML3-cholesterol association might offer an alternative strategy for control of chronic pain.

  16. New interpretation of arterial stiffening due to cigarette smoking using a structurally motivated constitutive model

    DEFF Research Database (Denmark)

    Enevoldsen, Marie Sand; Henneberg, Kaj-Åge; Jensen, Jørgen Arendt

    2011-01-01

    Cigarette smoking is the leading self-inflicted risk factor for cardiovascular diseases; it causes arterial stiffening with serious sequelea including atherosclerosis and abdominal aortic aneurysms. This work presents a new interpretation of arterial stiffening caused by smoking based on data...... caused by smoking was reflected by consistent increase in an elastin-associated parameter and moreover by marked increase in the collagen-associated parameters. That is, we suggest that arterial stiffening due to cigarette smoking appears to be isotropic, which may allow simpler phenomenological models...

  17. New interpretation of arterial stiffening due to cigarette smoking using a structurally motivated constitutive model

    DEFF Research Database (Denmark)

    Enevoldsen, Majken; Henneberg, K-A; Jensen, J A

    2011-01-01

    Cigarette smoking is the leading self-inflicted risk factor for cardiovascular diseases; it causes arterial stiffening with serious sequelea including atherosclerosis and abdominal aortic aneurysms. This work presents a new interpretation of arterial stiffening caused by smoking based on data...... by smoking was reflected by consistent increase in an elastin-associated parameter and moreover by marked increase in the collagen-associated parameters. That is, we suggest that arterial stiffening due to cigarette smoking appears to be isotropic, which may allow simpler phenomenological models to capture...

  18. 连续电镀锌机组预镀镍设备及工艺特点%Equipment and Process Features of Ni-flash Plating in the Continuous Electro Galvanizing Line

    Institute of Scientific and Technical Information of China (English)

    陈晓晓

    2014-01-01

    介绍了连续电镀锌机组的预镀镍过程,详细说明了镀镍设备的优点和预镀镍的工艺条件。采用性能优良的镀镍槽和不溶阳极时,如何保证镀液的 PH 值在3~4是关键的工艺条件,着重介绍了阴离子交换树脂中和 SO2-4和释放 OH-去维持镀液 PH 值的原理。%Ni-flash plating process of the continuous electro galvanizing line (EGL)is described.This report mainly explains the equipment and process conditions of Ni-flash plating.When the Ni-flash plating cell of excellent performance and insoluble anode are applied,maintain the PH value between 3~4 is the key process condition which can be achieved by using anion-exchange resin to absorb SO2-4 and release OH- .

  19. Application of Ultrasonic Phased Array Technology to the Detection of Defect in Composite Stiffened-structures

    Science.gov (United States)

    Zhou, Yuan-Qi; Zhan, Li-Hua

    2016-05-01

    Composite stiffened-structure consists of the skin and stringer has been widely used in aircraft fuselage and wings. The main purpose of the article is to detect the composite material reinforced structure accurately and explore the relationship between defect formation and structural elements or curing process. Based on ultrasonic phased array inspection technology, the regularity of defects in the manufacture of composite materials are obtained, the correlation model between actual defects and nondestructive testing are established. The article find that the forming quality of deltoid area in T-stiffened structure is obviously improved by pre-curing, the defects of hat-stiffened structure are affected by the mandrel. The results show that the ultrasonic phased array inspection technology can be an effectively way for the detection of composite stiffened-structures, which become an important means to control the defects of composite and improve the quality of the product.

  20. Ultimate uniaxial compressive strength of stiffened panel with opening under lateral pressure

    Directory of Open Access Journals (Sweden)

    Yu Chang-Li

    2015-06-01

    Full Text Available This paper concentrated on the ultimate uniaxial compressive strength of stiffened panel with opening under lateral load and also studied the design-oriented formulae. For this purpose, three series of well executed experiments on longitudinal stiffened panel with rectangular opening subjected to the combined load have been selected as test models. The finite element analysis package, ABAQUS, is used for simulation with considering the large elasticplastic deflection behavior of stiffened panels. The feasibility of the numerical procedure is verified by a good agreement of experimental results and numerical results. More cases studies are executed employing nonlinear finite element method to analyze the influence of design variables on the ultimate strength of stiffened panel with opening under combined pressure. Based on data, two design formulae corresponding to different opening types are fitted, and accuracy of them is illustrated to demonstrate that they could be applied to basic design of practical engineering structure.

  1. Research on the stiffening girder erection sequence of three-tower suspension bridge

    Institute of Scientific and Technical Information of China (English)

    Zheng Runqing; Luo Xiheng

    2012-01-01

    Compared to the conventional two-tower suspension bridge, the three-tower suspension bridge has obviously different characteristics in structural performance because of the extra middle tower and main span. The construction sequence for the stiffening girder is significantly different between the three-tower suspension bridge and the two-tower suspension bridge. The tangential angle of the main cable is one of the controlling factors of the stiffening girder erection stage for a suspension bridge. According to 5 feasible cases for the stiffening girder erection scheme in Taizhou Bridge, the research about the tangential angle in each case mentioned above was made, and some factors that should be taken into account for the erection scheme of stiffening girder were pointed out.

  2. Ultimate uniaxial compressive strength of stiffened panel with opening under lateral pressure

    Directory of Open Access Journals (Sweden)

    Chang-Li Yu

    2015-03-01

    Full Text Available This paper concentrated on the ultimate uniaxial compressive strength of stiffened panel with opening under lateral load and also studied the design-oriented formulae. For this purpose, three series of well executed experiments on longitudinal stiffened panel with rectangular opening subjected to the combined load have been selected as test models. The finite element analysis package, ABAQUS, is used for simulation with considering the large elasticplastic deflection behavior of stiffened panels. The feasibility of the numerical procedure is verified by a good agreement of experimental results and numerical results. More cases studies are executed employing nonlinear finite element method to analyze the influence of design variables on the ultimate strength of stiffened panel with opening under combined pressure. Based on data, two design formulae corresponding to different opening types are fitted, and accuracy of them is illustrated to demonstrate that they could be applied to basic design of practical engineering structure.

  3. Dynamic design of stiffeners for a typical panel using topology optimization and finite element analysis

    National Research Council Canada - National Science Library

    Zhou, Yadong; Fei, Qingguo

    2015-01-01

    .... In order to improve the stiffness–mass efficiency, this article presents a combined use of topology optimization and finite element analysis to the dynamic design of stiffeners for a typical panel...

  4. PANDA2: Program for Minimum Weight Design of Stiffened, Composite, Locally Buckled Panels

    Science.gov (United States)

    1986-09-01

    stiffened cylinders under axial compression," AIA i, Vol. 13, pp 750-755 (1975) [34] I. Sheinman and G. J. Simitses, "Buckling analysis of geometrically...J. Simitses and I. Sheinman , "Optimization of geometrically imperfect stiffened cylindrical shells under axial compression," Comp. Struct, Vol. 9, pp...Structures, Vol. 6, pp. 221-239 (1976) (60] G. J. Simitses and I. Sheinman , "Accurate predic- tion of critical conditions for shear-loaded panels," A.IA

  5. Plate and shell theory

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Fundamental analytical methods for the calculation of the bending strength and stability of isotrop and stiffened panels typically used in ship structures.Practical working examples with references to the rules of ship classification societies....

  6. Static and Dynamic Structural Response of an Aircraft Wing with Damage Using Equivalent Plate Analysis

    Science.gov (United States)

    Krishnamurthy, T.; Tsai, Frank J.

    2008-01-01

    A process to generate an equivalent plate based on an optimization approach to predict the static and dynamic response of flight vehicle wing structures is proposed. Geometric-scale and frequency-scale factors are defined to construct an equivalent plate with any desired scale to use in simulation and wind tunnel experiments. It is shown that the stiffness and the displacements are scaled linearly with the geometric-scale factor, whereas the load is scaled as the square of the geometric-scale factor. The scaled stiffness of the reference flight vehicle is matched first to construct the equivalent plate. Then the frequency-scale factor is defined to scale the flight vehicle frequencies. The scaled flight vehicle frequencies are matched by placing arbitrary point masses along the equivalent plate geometry. Two simple stiffened-plate examples, one with damage and another without damage, were used to demonstrate the accuracy of the optimization procedure proposed. Geometric-scale factors ranging from 0.2 to 1.0 were used in the analyses. In both examples, the static and dynamic response of the reference stiffened-panel solution is matched accurately. The scaled equivalent plate predicted the first five frequencies of the stiffened panel very accurately. Finally, the proposed equivalent plate procedure was demonstrated in a more realistic typical aircraft wing structure. Two scale equivalent plate models were generated using the geometric-scale factors 1.0 and 0.2. Both equivalent plate models predicted the static response of the wing structure accurately. The equivalent plate models reproduced the first five frequencies of the wing structure accurately.

  7. A Brief Analysis of Continuous Spray Pickling Process in Austenitic Stainless Medium and Heavy Plate Production%奥氏体不锈钢中厚板连续喷淋酸洗工艺浅析

    Institute of Scientific and Technical Information of China (English)

    沈继刚; 闫君

    2015-01-01

    论述了奥氏体不锈钢中厚板连续喷淋酸洗工艺的技术特征,并对典型的卧式、立式连续喷淋酸洗机组设备组成和生产工艺加以分析和对比。介绍了连续喷淋酸洗技术在国内不锈钢中厚板生产厂的实际应用情况。%The paper introduces the technical features of continuous spray pickling process,makes analysis and comparison on equipment configuration and production process of horizontal and vertical type continuous spray pickling lines,describes the actual applications of the pickling technique in domestic steel works of stainless steel medium and heavy plate.

  8. Evaluation of Braided Stiffener Concepts for Transport Aircraft Wing Structure Applications

    Science.gov (United States)

    Deaton, Jerry W.; Dexter, H. Benson (Editor); Markus, Alan; Rohwer, Kim

    1995-01-01

    Braided composite materials have potential for application in aircraft structures. Stiffeners, wing spars, floor beams, and fuselage frames are examples where braided composites could find application if cost effective processing and damage requirements are met. Braiding is an automated process for obtaining near-net shape preforms for fabrication of components for structural applications. Previous test results on braided composite materials obtained at NASA Langley indicate that damage tolerance requirements can be met for some applications. In addition, the braiding industry is taking steps to increase the material through-put to be more competitive with other preform fabrication processes. Data are presented on the compressive behavior of three braided stiffener preform fabric constructions as determined from individual stiffener crippling test and three stiffener wide panel tests. Stiffener and panel fabrication are described and compression data presented for specimens tested with and without impact damage. In addition, data are also presented on the compressive behavior of the stitched stiffener preform construction currently being used by McDonnell Douglas Aerospace in the NASA ACT wing development program.

  9. Multilevel Optimization Framework for Hierarchical Stiffened Shells Accelerated by Adaptive Equivalent Strategy

    Science.gov (United States)

    Wang, Bo; Tian, Kuo; Zhao, Haixin; Hao, Peng; Zhu, Tianyu; Zhang, Ke; Ma, Yunlong

    2016-09-01

    In order to improve the post-buckling optimization efficiency of hierarchical stiffened shells, a multilevel optimization framework accelerated by adaptive equivalent strategy is presented in this paper. Firstly, the Numerical-based Smeared Stiffener Method (NSSM) for hierarchical stiffened shells is derived by means of the numerical implementation of asymptotic homogenization (NIAH) method. Based on the NSSM, a reasonable adaptive equivalent strategy for hierarchical stiffened shells is developed from the concept of hierarchy reduction. Its core idea is to self-adaptively decide which hierarchy of the structure should be equivalent according to the critical buckling mode rapidly predicted by NSSM. Compared with the detailed model, the high prediction accuracy and efficiency of the proposed model is highlighted. On the basis of this adaptive equivalent model, a multilevel optimization framework is then established by decomposing the complex entire optimization process into major-stiffener-level and minor-stiffener-level sub-optimizations, during which Fixed Point Iteration (FPI) is employed to accelerate convergence. Finally, the illustrative examples of the multilevel framework is carried out to demonstrate its efficiency and effectiveness to search for the global optimum result by contrast with the single-level optimization method. Remarkably, the high efficiency and flexibility of the adaptive equivalent strategy is indicated by compared with the single equivalent strategy.

  10. From arc-continent collision to continuous convergence, clues from Paleogene conglomerates along the southern Caribbean-South America plate boundary

    Science.gov (United States)

    Cardona, A.; Montes, C.; Ayala, C.; Bustamante, C.; Hoyos, N.; Montenegro, O.; Ojeda, C.; Niño, H.; Ramirez, V.; Valencia, V.; Rincón, D.; Vervoort, J.; Zapata, S.

    2012-12-01

    A Paleogene conglomeratic-sandy succession preserves the complex record of arc-continent collision, orogen collapse and basin opening, followed by inversion related to renewed oblique convergence. This record is unique because both arc and continental margin are now severely fragmented and only partially exposed along the southern Caribbean-South American boundary in northern Colombia. We studied these clastic sequences in the San Jacinto deformed belt using an integrated provenance study that includes conglomerate clast counting, geochemistry and U-Pb and Hf isotopic analysis in magmatic clasts, together with sandstone petrography, heavy mineral analysis and detrital zircon U-Pb geochronology. The record of events extracted from these coarse clastic rocks includes the formation and approach of an allochthonous Upper Cretaceous intra-oceanic arc active from 88 Ma until 73 Ma. This arc collides against the upper Paleozoic to Triassic continental margin after 73 Ma, but before late Paleocene times. Poorly exposed remnants of serpentinized peridotites and middle pressure metamorphic detritus are related to closure of an intervening oceanic basin between the continent and the colliding arc. This orogen was emerged in late Maastrichtian-early Paleocene, and then collapsed as recorded by the thick upper Paleocene and younger succession of the San Jacinto deformed belt where the coarse clastics, subject of this study, are exposed. Orogenic collapse may have been the result of subduction zone flip, with incipient subduction of the buoyant Caribbean Plate under South America.

  11. Nonlinear free vibrations of centrifugally stiffened uniform beams at high angular velocity

    Science.gov (United States)

    Bekhoucha, F.; Rechak, S.; Duigou, L.; Cadou, J. M.

    2016-09-01

    In this paper, we study the bending nonlinear free vibrations of a centrifugally stiffened beam with uniform cross-section and constant angular velocity. The nonlinear intrinsic equations of motion used here are geometrically exact and specific to beams exhibiting large amplitude displacements and rotations associated with small strains. Based on the Timoshenko beam model, these equations are derived from Hamilton's principle, in which the warping is considered. All coupling terms are considered including Coriolis terms. The studied beams are isotropic with clamped-free boundary conditions. By combining the Galerkin method with the harmonic balance method, the equations of motion are converted into a quadratic function treated with a continuation method: the Asymptotic Numerical Method, where the generalized displacement vector is presented as a series expansion. While analysing the effect of the angular velocity, we determine the amplitude versus frequency variations which are plotted as backbone curves. Considering the first lagging and flapping modes, the changes in beam behaviour from hardening to softening are investigated and identified as a function of the angular velocity and the effect of shear. Particular attention is paid to high angular velocities for both Euler-Bernoulli and Timoshenko beams and the natural frequencies so obtained are compared with the results available in the literature.

  12. Geometrically nonlinear behavior of piezoelectric laminated plates

    Science.gov (United States)

    Rabinovitch, Oded

    2005-08-01

    The geometrically nonlinear behavior of piezo-laminated plates actuated with isotropic or anisotropic piezoelectric layers is analytically investigated. The analytical model is derived using the variational principle of virtual work along with the lamination and plate theories, the von Karman large displacement and moderate rotation kinematic relations, and the anisotropic piezoelectric constitutive laws. A solution strategy that combines the approach of the method of lines, the advantages of the finite element concept, and the variational formulation is developed. This approach yields a set of nonlinear ordinary differential equations with nonlinear boundary conditions, which are solved using the multiple-shooting method. Convergence and verification of the model are examined through comparison with linear and nonlinear results of other approximation methods. The nonlinear response of two active plate structures is investigated numerically. The first plate is actuated in bending using monolithic piezoceramic layers and the second one is actuated in twist using macro-fiber composites. The results quantitatively reveal the complicated in-plane stress state associated with the piezoelectric actuation and the geometrically nonlinear coupling of the in-plane and out-of-plane responses of the plate. The influence of the nonlinear effects ranges from significant stiffening in certain combinations of electrical loads and boundary conditions to amplifications of the induced deflections in others. The paper closes with a summary and conclusions.

  13. Bearing Behaviors of Stiffened Deep Cement Mixed Pile

    Institute of Scientific and Technical Information of China (English)

    WU Mai; ZHAO Xin

    2006-01-01

    A series of investigations were conducted to study the bearing capacity and load transfer mechanism of stiffened deep cement mixed (SDCM) pile.Laboratory tests including six specimens were conducted to investigate the frictional resistance between the concrete core and the cementsoil.Two model piles and twenty-four full-scale piles were tested to examine the bearing behavior of single pile.Laboratory and model tests results indicate that the cohesive strength is large enough to ensure the interaction between core pile and the outer cement-soil.The full-scale test results show that the SDCM piles exhibit similar bearing behavior to bored and cast-in-place concrete piles.In general, with the rational composite structure the SDCM piles can transmit the applied load effectively, and due to the addition of the stiffer core, the SDCM piles possess high bearing capacity.Based on the findings of these experimental investigations and theoretical analysis, a practical design method is developed to predict the vertical bearing capacity of SDCM pile.

  14. Arterial stiffening provides sufficient explanation for primary hypertension.

    Directory of Open Access Journals (Sweden)

    Klas H Pettersen

    2014-05-01

    Full Text Available Hypertension is one of the most common age-related chronic disorders, and by predisposing individuals for heart failure, stroke, and kidney disease, it is a major source of morbidity and mortality. Its etiology remains enigmatic despite intense research efforts over many decades. By use of empirically well-constrained computer models describing the coupled function of the baroreceptor reflex and mechanics of the circulatory system, we demonstrate quantitatively that arterial stiffening seems sufficient to explain age-related emergence of hypertension. Specifically, the empirically observed chronic changes in pulse pressure with age and the impaired capacity of hypertensive individuals to regulate short-term changes in blood pressure arise as emergent properties of the integrated system. The results are consistent with available experimental data from chemical and surgical manipulation of the cardio-vascular system. In contrast to widely held opinions, the results suggest that primary hypertension can be attributed to a mechanogenic etiology without challenging current conceptions of renal and sympathetic nervous system function.

  15. Cartilage-like electrostatic stiffening of responsive cryogel scaffolds

    Science.gov (United States)

    Offeddu, G. S.; Mela, I.; Jeggle, P.; Henderson, R. M.; Smoukov, S. K.; Oyen, M. L.

    2017-02-01

    Cartilage is a structural tissue with unique mechanical properties deriving from its electrically-charged porous structure. Traditional three-dimensional environments for the culture of cells fail to display the complex physical response displayed by the natural tissue. In this work, the reproduction of the charged environment found in cartilage is achieved using polyelectrolyte hydrogels based on polyvinyl alcohol and polyacrylic acid. The mechanical response and morphology of microporous physically-crosslinked cryogels are compared to those of heat-treated chemical gels made from the same polymers, as a result of pH-dependent swelling. In contrast to the heat-treated chemically-crosslinked gels, the elastic modulus of the physical cryogels was found to increase with charge activation and swelling, explained by the occurrence of electrostatic stiffening of the polymer chains at large charge densities. At the same time, the permeability of both materials to fluid flow was impaired by the presence of electric charges. This cartilage-like mechanical behavior displayed by responsive cryogels can be reproduced in other polyelectrolyte hydrogel systems to fabricate biomimetic cellular scaffolds for the repair of the tissue.

  16. Calculation and comparison between alternate and continuous controlled cooling technology for X65 pipeline steel plate%X65管线钢板交替与连续控冷工艺的计算与比较

    Institute of Scientific and Technical Information of China (English)

    张德丰; 陆建生; 吕建国; 宋鹏; 杜重麟

    2012-01-01

    为减小X65管线钢板控制冷却后的残余应力和翘曲,通过开发线性混合热膨胀模型、拓展Avrami相变动力学模型和应用Leblond的相变诱发塑性(TRIP)模型建立了热力耦合有限元模型,考虑了控冷时的弹塑性变形、热膨胀、相变潜热、相变膨胀、TRIP等所有物理效应.用该模型研究了2种控制冷却工艺下X65管线钢板的温度、残余应力、残余应变及翘曲.结果表明:与连续控冷相比,交替控冷使板的温度进一步降低7℃;上表面一侧的残余拉应力峰值进一步减小44 MPa;下表面一侧的残余总压应变峰值进一步增加0.001;翘曲由0.54×10-3减至0.09×10-3;故交替控冷可降低板内的残余应力,并减小翘曲.%To decrease the residual stress and warping of X65 pipeline steel plate after controlled cooling, a thermo-mechanical coupled FEM model was established according to linear mixture thermal expansion model, modified Avrami transformation dynamics model and Leblond transformation induced plasticity (TRIP) model. All relevant physical effects of elastoplastic deformation, thermal expansion, latent heat, transformation dilatation and TRIP effect were considered in the FEM model. Temperature, residual stress, residual strain and warping of X65 pipeline steel plate were analyzed by the proposed model under two controlled cooling technologies. The results show that the temperature of plate under alternate controlled cooling is 7 ℃ less than that under continuous controlled cooling. The residual tensile stress peak value near top surface is decreased by 44 Mpa with enhanced residual compressive strain peak value of 0.001 near bottom surface, while the warping is reduced from 0. 54 × 10-3 to 0. 09 × 10-3. Alternate controlled cooling can reduce residual stress and warping of plate.

  17. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation

    Science.gov (United States)

    Caliari, Steven R.; Perepelyuk, Maryna; Cosgrove, Brian D.; Tsai, Shannon J.; Lee, Gi Yun; Mauck, Robert L.; Wells, Rebecca G.; Burdick, Jason A.

    2016-02-01

    Tissue fibrosis contributes to nearly half of all deaths in the developed world and is characterized by progressive matrix stiffening. Despite this, nearly all in vitro disease models are mechanically static. Here, we used visible light-mediated stiffening hydrogels to investigate cell mechanotransduction in a disease-relevant system. Primary hepatic stellate cell-seeded hydrogels stiffened in situ at later time points (following a recovery phase post-isolation) displayed accelerated signaling kinetics of both early (Yes-associated protein/Transcriptional coactivator with PDZ-binding motif, YAP/TAZ) and late (alpha-smooth muscle actin, α-SMA) markers of myofibroblast differentiation, resulting in a time course similar to observed in vivo activation dynamics. We further validated this system by showing that α-SMA inhibition following substrate stiffening resulted in attenuated stellate cell activation, with reduced YAP/TAZ nuclear shuttling and traction force generation. Together, these data suggest that stiffening hydrogels may be more faithful models for studying myofibroblast activation than static substrates and could inform the development of disease therapeutics.

  18. Impact Analysis of Embedded Delamination Location in Hybrid Curved Laminated Composite Stiffened Panel

    Science.gov (United States)

    Naini, Jeevan Kumar; P, Ramesh Babu

    2016-08-01

    Modern, aero structures are predominantly of curved construction characterized by a skin and stiffeners. The latest generation of large passenger aircraft also uses mostly composite material in their primary structure and there is trend towards the utilization of bonding of subcomponents. The presence of delamination is a major problem in composite laminated panels and so, it is of great concern to both the academic and aeronautical industrial worlds Indeed delamination can strongly affect the material strength and, sometimes, can cause their breaking up in service. A Pre-damaged configuration is loaded to study the delamination location and mode for delamination initiation and propagation. A parametric study is conducted to investigate the effect of the location of the delamination propagation when delamination is embedded inbetween plies of the skin-stiffener interface, with the cases i) delamination located at front and inbetween plies of the skin-stiffener interface ii) delamination located in middle and inbetween plies of the skin-stiffener interface iii) delamination located at the end and inbetween plies of the skin- stiffener interface. Further the influence of the location of the delamination on load carrying capacity of the panel is investigated. The effect of location of debonds on crack growth and collapse behavior is analyzed using analysis tool. An analysis tool is applied that includes an approach for predicting interlaminar damage initiation and interlaminar damage growth as well as in-plane damage mechanisms to predict the design of defect free panel.

  19. Improvement and evaluation of polymer-matrix composite panels with hat stiffeners

    Directory of Open Access Journals (Sweden)

    Li S. J.

    2016-01-01

    Full Text Available Hat-stiffened composite panels fabricated by co-curing technologies are widely used in the fuselage panel due to the good structural stability and high efficiency of axial load transferring. The bonding capability between the stiffener and skin is a primary criterion to assess the co-curing quality. In this paper, two reinforcement technologies of filling filler in the triangle region and adding split-stopping tape between the stiffener and skin were employed to improve the bonding capability. Effect of filler and split-stopping tape on the interface strength was analyzed, and the optimal size range of the filler and split-stopping tape were obtained. To improve the universality of application for the two reinforcement techniques, the filling coefficient of 0.62~0.77 and the split-stopping tape width coefficient of 0.56~0.67 were obtained by calculation. Results of the study can be used to develop other kinds of stiffened panels and will ultimately lead to optimized skin/stiffener designs.

  20. Residual Strength of Stiffened LY12CZ Aluminum Alloy Panels with Widespread Fatigue Damage

    Institute of Scientific and Technical Information of China (English)

    Li Zhong; Ge Sen; Lu Guozhi; Chen Li; Ding Huiliang

    2008-01-01

    Experimental and analytical investigations on the residual strength of the stiffened LY12CZ aluminum alloy panels with widespread fatigue damage (WFD) are conducted. Nine stiffened LY12CZ aluminum alloy panels with three different types of damage are tested for residual strength. Each specimen is pre-cracked at rivet holes by saw cuts and subjected to a monotonically increasing tensile load until failure is occurred and the failure load is recorded. The stress intensity factors at the tips of the lead crack and the adjacent WFD cracks of the stiffened aluminum alloy panels are calculated by compounding approach and finite element method (FEM) respectively. The residual strength of the stiffened panels with WFD is evaluated by the engineering method with plastic zone linkup criterion and the FEM with apparent fracture toughness criterion respectively. The predicted residual strength agrees well with the experiment results. It indicates that in engineering practice these methods can be used for residual strength evaluation with the acceptable accuracy. It can be seen from this research that WFD can significantly reduce the residual strength and the critical crack length of the stiffened panels with WFD. The effect of WFD crack length on residual strength is also studied.

  1. Stiffened yeast telomerase RNA supports RNP function in vitro and in vivo.

    Science.gov (United States)

    Lebo, Kevin J; Zappulla, David C

    2012-09-01

    The 1157-nt Saccharomyces cerevisiae telomerase RNA, TLC1, in addition to providing a 16-nt template region for reverse transcription, has been proposed to act as a scaffold for protein subunits. Although accessory subunits of the telomerase ribonucleoprotein (RNP) complex function even when their binding sites are relocated on the yeast telomerase RNA, the physical nature of the RNA scaffold has not been directly analyzed. Here we explore the structure-function organization of the yeast telomerase RNP by extensively stiffening the three long arms of TLC1, which connect essential and important accessory protein subunits Ku, Est1, and Sm(7), to its central catalytic hub. This 956-nt triple-stiff-arm TLC1 (TSA-T) reconstitutes active telomerase with TERT (Est2) in vitro. Furthermore, TSA-T functions in vivo, even maintaining longer telomeres than TLC1 on a per RNA basis. We also tested functional contributions of each stiffened arm within TSA-T and found that the stiffened Est1 and Ku arms contribute to telomere lengthening, while stiffening the terminal arm reduces telomere length and telomerase RNA abundance. The fact that yeast telomerase tolerates significant stiffening of its RNA subunit in vivo advances our understanding of the architectural and functional organization of this RNP and, more broadly, our conception of the world of lncRNPs.

  2. POSTOP: Postbuckled open-stiffener optimum panels-theory and capability

    Science.gov (United States)

    Dickson, J. N.; Biggers, S. B.

    1984-01-01

    The computer program POSTOP was developed to serve as an aid in the analysis and sizing of stiffened composite panels that are loaded in the postbuckling regime. A comprehensive set of analysis routines was coupled to a widely used optimization program to produce this sizing code. POSTOP is intended for the preliminary design of metal or composite panels with open-section stiffeners, subjected to multiple combined biaxial compression (or tension), shear and normal pressure load cases. Longitudinal compression, however, is assumed to be the dominant loading. Temperature, initial bow eccentricity and load eccentricity effects are included. The panel geometry is assumed to be repetitive over several bays in the longitudinal (stiffener) direction as well as in the transverse direction. Analytical routines are included to compute panel stiffnesses, strains, local and panel buckling loads, and skin/stiffener interface stresses. The resulting program is applicable to stiffened panels as commonly used in fuselage, wing, or empennage structures. The analysis procedures and rationale for the assumptions used therein are described in detail.

  3. Analysis of Stiffened Penstock External Pressure Stability Based on Immune Algorithm and Neural Network

    Directory of Open Access Journals (Sweden)

    Wensheng Dong

    2014-01-01

    Full Text Available The critical external pressure stability calculation of stiffened penstock in the hydroelectric power station is very important work for penstock design. At present, different assumptions and boundary simplification are adopted by different calculation methods which sometimes cause huge differences too. In this paper, we present an immune based artificial neural network model via the model and stability theory of elastic ring, we study effects of some factors (such as pipe diameter, pipe wall thickness, sectional size of stiffening ring, and spacing between stiffening rings on penstock critical external pressure during huge thin-wall procedure of penstock. The results reveal that the variation of diameter and wall thickness can lead to sharp variation of penstock external pressure bearing capacity and then give the change interval of it. This paper presents an optimizing design method to optimize sectional size and spacing of stiffening rings and to determine penstock bearing capacity coordinate with the bearing capacity of stiffening rings and penstock external pressure stability coordinate with its strength safety. As a practical example, the simulation results illustrate that the method presented in this paper is available and can efficiently overcome inherent defects of BP neural network.

  4. Withdrawing method of the stiffening tube incidentally inserted into the descending colon

    Institute of Scientific and Technical Information of China (English)

    Shinsaku Fukuda; Tatsuya Mikami; Tadashi Shimoyama; Norihiro Hanabata; Hideki Iwamura; Akihiro Munakata

    2005-01-01

    We experienced a very rare complication of colonoscopy,a migration of stiffening tube into the colorectum. We herein introduce a withdrawing method of migrating stiffening tube incidentally inserted into the colorectum.A 65-year-old Japanese woman underwent colonoscopy because of abdominal discomfort. We used stiffening tube to insert the scope to the proximal colon because of her redundant sigmoid colon. When withdrawing the scope,we realized that the tube was fully inside the colorectum.We could not remove the tube instantly, and it reached the splenic flexure, finally. We reinserted the scope through the migrating tube, straightened the scope, and withdrew it holding a slight angle of the scope over the proximal end of the tube. Then, we could safely remove the tube along with the scope through the anus.

  5. Lamb Wave Interaction with Adhesively Bonded Stiffeners and Disbonds Using 3D Vibrometry

    Directory of Open Access Journals (Sweden)

    Ryan Marks

    2016-01-01

    Full Text Available There are many advantages to adhesively bonding stiffeners onto aircraft structures rather than using traditional mechanical fastening methods. However there is a lack of confidence of the structural integrity of adhesively bonded joints over time. Acousto-ultrasonic Lamb waves have shown great potential in structural health monitoring applications in both metallic and composite structures. This paper presents an experimental investigation of the use of acousto-ultrasonic Lamb waves for the monitoring of adhesively bonded joints in metallic structures using 3D scanning laser vibrometry. Two stiffened panels were manufactured, one with an intentional disbonded region. Lamb wave interaction with the healthy and disbonded stiffeners was investigated at three excitation frequencies. A windowed root-mean-squared technique was applied to quantify where Lamb wave energy was reflected, attenuated and transmitted across the structure enabling the size and shape of the defect to be visualised which was verified by traditional ultrasonic inspection techniques.

  6. A fracture mechanics analysis of bonded repaired skin/stiffener structures with inclined central crack

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ki Hyun; Yang, Won Ho; Kim, Cheol; Heo, Sung Pil [Sungkyunkwan Univ., Seoul (Korea, Republic of); Ko, Myung Hoon [Daelim College, Anyang (Korea, Republic of)

    2001-07-01

    Composite patch repair of cracked aircraft structures has been accepted as one of improving fatigue life and attaining better structural integrity. Analysis for the stress intensity factor at the skin/stiffener structure with inclined central crack repaired by composite stiffened panels are developed. A numerical investigation was conducted to characterize the fracture behavior and crack growth behavior. In order to investigate the crack growth direction, Maximum Tangential Stress(MTS) criteria is used. The main objective of this research is the validation of the inclined crack patching design. In this paper, the reduction of stresses intensity factors at the crack-tip and prediction of crack growth direction are determined to evaluate the effects of various non-dimensional design parameter including; composite patch thickness and stiffener distance. The research on cracked structure subjected to mixed mode loading is accomplished and it is evident that more work using different approaches is necessary.

  7. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    Science.gov (United States)

    Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine

    2005-01-01

    Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element

  8. Topology Optimization and Design Guidelines of Sub-Stiffened Panels in Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Layachi Hemza

    2017-01-01

    Full Text Available The present work is a proposed optimization model of grid sub-stiffened panels for aerospace applications, having a better knowledge about the stability analysis of conventional grid sub-stiffened panels against loading and different mode of failure occurring lead us thinking about the topology optimization. In a first stage, we will analyse the stability performance of such structures against specific mechanical loading and conclude some techniques to introduce a topology optimization through PSO algorithm of some design variables. The aim is the better exploitation of the sub-stiffened panel along the plan so that the area less stressed due the charging will be extruded in mass for the enhancement of the concept of looking for better performance with a structure already saved in weight.

  9. Axial guided wave technique for rapid inspection of the "Noodle" regions in a stiffened composite component

    Science.gov (United States)

    Manogharan, Prabhakaran; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2015-03-01

    Composite structures are used in a wide variety of applications. The use of stiffened composites is common in aerospace box-like components and provides the additional stiffness required. Examples of such stiffened structural geometries include airfoils, fuselage, wing box, tail section, etc. The inspection of the radius filler "Noodle" that fills the interface between skin and stiffener has been of great concern to the aerospace composites industry. This paper describes the 3D FEM models of the ultrasonic axially propagating guided wave modes. Additionally, the models were used for understanding their confinement in the Noodle region, their leakage to the remaining sections of the component and their interaction with defects of different types, sizes and their locations along Noodle region. The ultrasonic guided wave modes that propagate along the length of the Noodle were identified using the 3D finite element model. These simulations were validated using graphite-epoxy test coupons and components from aerospace industry.

  10. Vibration and Acoustic Radiation from Orthogonally Stiffened Infinite Circular Cylindrical Shells in Water

    Institute of Scientific and Technical Information of China (English)

    陈军明; 黄玉盈; 曾革委

    2002-01-01

    Based on the motion differential equations of vibration and acoustic coupling system for thin elastic shells with ribs,by means of the Fourier integral transformation and the Fourier inverse transformation, as well as the stationary phasemethod, an analytic solution, which has satisfying computational effectiveness and precision, is derived for the solution tothe vibration and acoustic radiation from a submerged stiffened infinite circular cylinder with both ring and axial ribs. It iseasy to analyze the effect of stiffening supports in the acoustic radiation field by use of the formulas obtainod by the pre-sented method and corresponding numerical computation. It is shown that the axial-stiffeners can improve the mechanicaland acoustical characteristics. Moreover, the present method can be used to study the acoustic radiation mechanism of thetype of structure.

  11. Active vibration control of ring-stiffened cylindrical shell structure using macro fiber composite actuators.

    Science.gov (United States)

    Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2014-10-01

    Vibration control performance of the ring-stiffened cylindrical shell structure is experimentally evaluated in this work. In order to achieve high control performance, advanced flexible piezoelectric actuator whose commercial name is Macro-Fiber Composite (MFC) is adapted to the shell structure. Governing equation is derived by finite element method and dynamic characteristics are investigated from the modal analysis results. Ring-stiffened cylindrical shell structure is then manufactured and modal test is conducted to verify modal analysis results. An optimal controller is designed and experimentally realized to the proposed shell structure system. Vibration control performance is experimentally evaluated in time domain and verified by simulated control results.

  12. Study of the Stiffening Systems For Seismic Loads in Multistoreyed Building

    Directory of Open Access Journals (Sweden)

    N.N.Shah

    2014-06-01

    Full Text Available Tall building developments have been rapidly increasing worldwide. This paper deals with the evolution of tall building’s structural systems and the technological driving force behind tall building developments. While most representative structural systems for tall buildings are discussed, the emphasis in paper is on the stiffening systems used in the structures for different heights. This paper describes seismic analysis of high-rise building using software STAADPro. with various lateral stiffness system. Some models are prepared using different stiffening systems and analysis is done.

  13. Ultimate negative bending-moment capacity of outer-plated steel-concrete continuous composite beams%外包钢-混凝土连续组合梁的负弯矩极限承载力

    Institute of Scientific and Technical Information of China (English)

    陈丽华; 李爱群; 娄宇; 李培彬

    2009-01-01

    Static load tests and bearing capacity analyses are cardeA out for two outer-plated steel-concrete continuous composite beams.The load-deflection curve and the loat-strain culve of specimens are obtained and analyzed.The test results indicate that effective cooperation can be achieved by the shear-resistant connection between the reinforcement in the negative moment area and the outer-plated steel beam,and the overall working performance of the composite beams is favorable.At the load-bearing limiting state,the plastic strain on the maximum negative and positive moment section becomes fully developed so as to form relatively ideal plastic hinges.With the increase in the reinforcement ratio,the moment-carrying capacity of the composite beams improves significantly,but the ductility of the beams and the rotation ability of the plastic hinges decrease.The formulae for calculating the limit bending capacity in the negative moment area of outer-plated steel-concrete composite beams are proposed based on the test data.The calculated results agree well with the test results.%对2根外包钢-混凝土连续梁试件进行了静力加载实验研究与承栽力分析.测量并分析了试件的荷栽-挠度及荷载-应变关系曲线.结果表明:外包钢-混凝土组合梁负弯矩区钢筋和外包钢梁通过抗剪连接措施能有效地共同工作,整体工作性能良好.在承栽能力极限状态,负弯矩和正弯矩最大截面的塑性应变均充分发展,并形成比较理想的塑性铰.随着配筋率的提高,组合梁受弯承栽力明显提高,而延性和转动能力相应降低.在试验数据基础上,给出了外包钢-混凝土组合梁在负弯矩区极限受弯承载力的计算公式,计算结果与实验结果吻合良好.

  14. Development Trends of Continuous Selective Gold Plating Techniques for Connectors%接插件端子连续选择性镀金工艺的发展趋势

    Institute of Scientific and Technical Information of China (English)

    张荣光; 黄皓

    2011-01-01

    The development of continuous selective gold plating technology for connectors is focused on the improvement of gold layer quality and reducing of production cost. In the pretrearment process, the application of chemical or electrochemical polishing and pre-plating techniques could enhance the brightness and the appearance of connector surface. Meanwhile, new-style barrier layer and combined different barrier layers could reduce the pore density, and then increase the density of barrier layer so as to prevent the diffusion between substrate and gold layer. Finally the addition of new additives, discoloration protective agents and environment-friendly material-gold potassium citrate instead of toxic gold potassium cyanide in gold-plating techniques were introduced.%接插件端子连续选择性镀金工艺技术的发展趋势,主要是围绕提高镀金层技术质量,降低镀金成本.介绍了在端子镀金前处理工序中,增加化学抛光或电化学抛光以及预镀工艺等,提高端子基材表面光亮度,来改善镀金层的外观质量.开发新的镀金中间阻挡层和应用中间阻挡层组合工艺技术,减少镀金中间阻挡层孔隙,提高阻挡层致密性.防止铜合金基材金属扩散迁移到镀金层表面.介绍了镀金新添加剂应用,如防沉积(置换)的微酸性镀金、自封孔的微酸性镀金、钴合金镀金工艺等.应用防变色保护剂降低镀金层厚度.介绍了应用环保新材料丙尔金替代有毒氰化亚金钾镀金工艺.

  15. A Bayesian Approach for Localization of Acoustic Emission Source in Plate-Like Structures

    Directory of Open Access Journals (Sweden)

    Gang Yan

    2015-01-01

    Full Text Available This paper presents a Bayesian approach for localizing acoustic emission (AE source in plate-like structures with consideration of uncertainties from modeling error and measurement noise. A PZT sensor network is deployed to monitor and acquire AE wave signals released by possible damage. By using continuous wavelet transform (CWT, the time-of-flight (TOF information of the AE wave signals is extracted and measured. With a theoretical TOF model, a Bayesian parameter identification procedure is developed to obtain the AE source location and the wave velocity at a specific frequency simultaneously and meanwhile quantify their uncertainties. It is based on Bayes’ theorem that the posterior distributions of the parameters about the AE source location and the wave velocity are obtained by relating their priors and the likelihood of the measured time difference data. A Markov chain Monte Carlo (MCMC algorithm is employed to draw samples to approximate the posteriors. Also, a data fusion scheme is performed to fuse results identified at multiple frequencies to increase accuracy and reduce uncertainty of the final localization results. Experimental studies on a stiffened aluminum panel with simulated AE events by pensile lead breaks (PLBs are conducted to validate the proposed Bayesian AE source localization approach.

  16. effects of joints stiffening on the dynamic response of frames subje

    African Journals Online (AJOL)

    Uncle Greg 4 Real

    In the absence of joint stiffeners (i.e. α = β = 0) the obtained modified coefficients revert to ... Shear Force, and Axial Force for various values of the parameters α and β ranging from 0.00 ... (i.e. gravity loads) but also to dynamic loads. (i.e. lateral ...

  17. Some general effects of strong high-frequency excitation: stiffening, biasing, and smoothening

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2002-01-01

    Mechanical high-frequency (HF) excitation provides a working principle behind many industrial and natural applications and phenomena. This paper concerns three particular effects of HF excitation, that may change the apparent characteristics of mechanical systems: 1) stiffening, by which the appa...

  18. Investigation into Z-Pin Reinforced Composite Skin/Stiffener Debond under Monotonic and Cyclic Bending

    Science.gov (United States)

    Zhang, Xiangyang; Li, Yong; Van Hoa, Suong; Xiao, Jun; Chu, Qiyi

    2017-08-01

    Skin/stiffener debonding has been a longstanding concern for the users of stiffened composite panels in long-term service. Z-pinning technology is an emerging solution to reinforce the composite assembly joints. This work experimentally characterizes the progressive debonding of Z-pinned skin/stiffener interface with the skin under static bend loading. The three-stage failure process is identified as: flange edge debonding, pin/laminate debonding, and ultimate structural failure. Three different distribution patterns were compared in terms of the static debonding properties revealed the affirmative fact that locating pins in high normal stress regions, that is close to the flange edges in skin/stiffener structures, is more beneficial to utilize the full potential of Z-pinning reinforcement. The unit strip FE model was developed and demonstrated effective to analysis the effect of Z-pin distribution on the ultimate debond load. On the other hand, the evolution of fatigue cracks at Z-pinned skin/flange interface was investigated with a series of displacement-controlled fatigue bending tests and microscopic observations. Results show that Z-pinning postpones crack initiations at low displacement levels, and the remarkable crack-arresting function of pins enables the structure a prolonged fatigue life. However, pins become less effective when the maximum displacement exceeds the crack initiation level due to gradually pullout of pins.

  19. Computationally efficient analysis and optimisation of stiffened thin-walled panels in shear

    CSIR Research Space (South Africa)

    Viljoen, A

    2005-05-01

    Full Text Available nonlinear finite element analysis, which makes it attractive for use during initial design iterations, even though global collapse of a structure cannot be predicted. As an illustration of the optimal design of buckled, stiffened thin-walled structures...

  20. AUTOMATION METHODS FOR FORMING AND RECTIFYING STIFFENED PARTS WITH ROLLING MACHINES

    Directory of Open Access Journals (Sweden)

    A.Ye. Pashkov

    2015-12-01

    Full Text Available To improve the capabilities of forming and rectifying stiffened parts, rolling as one of the implemented methods of local plastic deformation has been examined. The tools for edge and sheet rolling have been described. The methods of process automation have been developed.

  1. Delayed Onset Vascular Stiffening Induced by Eccentric Resistance Exercise and Downhill Running.

    Science.gov (United States)

    Lin, Hsin-Fu; Chou, Chun-Chung; Cheng, Hao-Min; Tanaka, Hirofumi

    2017-07-01

    Eccentric exercise induces muscle stiffening and soreness as well as unfavorable changes in macrovascular function. We tested the hypothesis that systemic eccentric exercise could evoke greater arterial stiffening than local eccentric resistance exercise. Twenty healthy young men were randomly assigned into either the downhill running (DR) and the eccentric resistance exercise (RE) group followed by a crossover design with an exercise and sham control trial. Carotid-femoral pulse wave velocity (cfPWV), central hemodynamic measures, and biomarkers were obtained. Muscle soreness and plasma creatine kinase concentrations increased similarly after exercise in both groups. The cfPWV increased significantly at 48 hours post-exercise in both groups and remained elevated at 72 hours in DR. C-reactive protein (CRP) was elevated at 24 and 48 hours in DR, and 48 hours in RE. The increases in cfPWV were associated with the corresponding elevations in CRP in DR (r = 0.70, P < 0.05). There were no changes in arterial wave reflection measures. Both systemic and localized eccentric exercise modes induced delayed onset vascular stiffening with more prolonged changes observed in downhill running. The effect on arterial stiffening was associated, at least in part, with systemic inflammatory responses.

  2. Skin Autofluorescence and Pentosidine Are Associated With Aortic Stiffening : The Maastricht Study

    NARCIS (Netherlands)

    van Eupen, Marcelle G. A.; Schram, Miranda T.; van Sloten, Thomas T.; Scheijen, Jean; Sep, Simone J. S.; van der Kallen, Carla J.; Dagnelie, Pieter C.; Koster, Annemarie; Schaper, Nicolaas; Henry, Ronald M. A.; Kroon, Abraham A.; Smit, Andries J.; Stehouwer, Coen D. A.; Schalkwijk, Casper G.

    2016-01-01

    Arterial stiffening, as characterized by an increase in carotid-femoral pulse-wave velocity or pulse pressure, increases the risk of cardiovascular disease, especially among individuals with type 2 diabetes mellitus. Advanced glycation end products are hypothesized to play a role in the development

  3. Create Your Plate

    Medline Plus

    Full Text Available ... A A A Listen En Español Create Your Plate Create Your Plate is a simple and effective ... and that your options are endless. Create Your Plate! Click on the plate sections below to add ...

  4. Regional variation in arterial stiffening and dysfunction in Western diet-induced obesity.

    Science.gov (United States)

    Bender, Shawn B; Castorena-Gonzalez, Jorge A; Garro, Mona; Reyes-Aldasoro, Constantino C; Sowers, James R; DeMarco, Vincent G; Martinez-Lemus, Luis A

    2015-08-15

    Increased central vascular stiffening, assessed in vivo by determination of pulse wave velocity (PWV), is an independent predictor of cardiovascular event risk. Recent evidence demonstrates that accelerated aortic stiffening occurs in obesity; however, little is known regarding stiffening of other disease-relevant arteries or whether regional variation in arterial stiffening occurs in this setting. We addressed this gap in knowledge by assessing femoral PWV in vivo in conjunction with ex vivo analyses of femoral and coronary structure and function in a mouse model of Western diet (WD; high-fat/high-sugar)-induced obesity and insulin resistance. WD feeding resulted in increased femoral PWV in vivo. Ex vivo analysis of femoral arteries revealed a leftward shift in the strain-stress relationship, increased modulus of elasticity, and decreased compliance indicative of increased stiffness following WD feeding. Confocal and multiphoton fluorescence microscopy revealed increased femoral stiffness involving decreased elastin/collagen ratio in conjunction with increased femoral transforming growth factor-β (TGF-β) content in WD-fed mice. Further analysis of the femoral internal elastic lamina (IEL) revealed a significant reduction in the number and size of fenestrae with WD feeding. Coronary artery stiffness and structure was unchanged by WD feeding. Functionally, femoral, but not coronary, arteries exhibited endothelial dysfunction, whereas coronary arteries exhibited increased vasoconstrictor responsiveness not present in femoral arteries. Taken together, our data highlight important regional variations in the development of arterial stiffness and dysfunction associated with WD feeding. Furthermore, our results suggest TGF-β signaling and IEL fenestrae remodeling as potential contributors to femoral artery stiffening in obesity.

  5. Plate tectonics, damage and inheritance.

    Science.gov (United States)

    Bercovici, David; Ricard, Yanick

    2014-04-24

    The initiation of plate tectonics on Earth is a critical event in our planet's history. The time lag between the first proto-subduction (about 4 billion years ago) and global tectonics (approximately 3 billion years ago) suggests that plates and plate boundaries became widespread over a period of 1 billion years. The reason for this time lag is unknown but fundamental to understanding the origin of plate tectonics. Here we suggest that when sufficient lithospheric damage (which promotes shear localization and long-lived weak zones) combines with transient mantle flow and migrating proto-subduction, it leads to the accumulation of weak plate boundaries and eventually to fully formed tectonic plates driven by subduction alone. We simulate this process using a grain evolution and damage mechanism with a composite rheology (which is compatible with field and laboratory observations of polycrystalline rocks), coupled to an idealized model of pressure-driven lithospheric flow in which a low-pressure zone is equivalent to the suction of convective downwellings. In the simplest case, for Earth-like conditions, a few successive rotations of the driving pressure field yield relic damaged weak zones that are inherited by the lithospheric flow to form a nearly perfect plate, with passive spreading and strike-slip margins that persist and localize further, even though flow is driven only by subduction. But for hotter surface conditions, such as those on Venus, accumulation and inheritance of damage is negligible; hence only subduction zones survive and plate tectonics does not spread, which corresponds to observations. After plates have developed, continued changes in driving forces, combined with inherited damage and weak zones, promote increased tectonic complexity, such as oblique subduction, strike-slip boundaries that are subparallel to plate motion, and spalling of minor plates.

  6. 连铸板坯的粘弹性板模型及鼓肚变形分析%MATHEMATICAL MODEL OF VISCO-ELASTIC THIN PLATE AND ANALYSES OF BULGING DEFORMATION FOR CONTINUOUS CAST SLABS

    Institute of Scientific and Technical Information of China (English)

    王忠民; 刘宏昭; 杨拉道; 闫瑞河

    2001-01-01

    从坯壳材料的粘弹性(Maxwell模型)畸变关系和弹性体变关系出发,建立了连铸板坯鼓肚变形的粘弹性薄板计算模型。根据弹性—粘弹性的相应原理,得到了板坯鼓肚变形的解析解。与宝钢板坯连铸机鼓肚变形的设计公式及现有的其他公式相比,该解包含有弹性变形、粘性变形和弹性、粘性的耦合变形,能求出在任一时刻板坯内任一点的弯曲变形及鼓肚变形,并讨论了材料的松弛时间对板坯鼓肚变形的影响。%Based on the distortion relation of Maxwell viscoelastic modeland the volume change relation of the elasticity in the slab shell materials, a mathematical model of visco-elastic thin plate for bulging deformation in continuous cast slab is established. Using the corresponding principle between elasticity and viscoelasticity, an analytical solution of bulging deformation in slab shell is obtained. Compared with the design formula for the continuous casting machine of Baoshan Iron and Steel Plant and other current design formula, the formula consists of the elastic deformation, viscous deformation and coupled deformation between elastic deformation and viscous deformation, and it may solve the bending deformation and bulging deformation of every point in slab shell at any instant. In addition,the influence of relaxation time of slab materials(characteristic value of creep)on bulging deformation of slab shell is also discussed.

  7. How two-dimensional bending can extraordinarily stiffen thin sheets

    Science.gov (United States)

    Pini, V.; Ruz, J. J.; Kosaka, P. M.; Malvar, O.; Calleja, M.; Tamayo, J.

    2016-07-01

    Curved thin sheets are ubiquitously found in nature and manmade structures from macro- to nanoscale. Within the framework of classical thin plate theory, the stiffness of thin sheets is independent of its bending state for small deflections. This assumption, however, goes against intuition. Simple experiments with a cantilever sheet made of paper show that the cantilever stiffness largely increases with small amounts of transversal curvature. We here demonstrate by using simple geometric arguments that thin sheets subject to two-dimensional bending necessarily develop internal stresses. The coupling between the internal stresses and the bending moments can increase the stiffness of the plate by several times. We develop a theory that describes the stiffness of curved thin sheets with simple equations in terms of the longitudinal and transversal curvatures. The theory predicts experimental results with a macroscopic cantilever sheet as well as numerical simulations by the finite element method. The results shed new light on plant and insect wing biomechanics and provide an easy route to engineer micro- and nanomechanical structures based on thin materials with extraordinary stiffness tunability.

  8. Stiffener lamination defect improvement of Flexible Printed Circuit Boards%挠性板压合补强缺陷改善

    Institute of Scientific and Technical Information of China (English)

    莫欣满; 徐波; 陈蓓

    2012-01-01

    Stiffener lamination of FPC to strengthen support flexible substrates is always one of the vital steps in FPC producing process. Stiffener lamination requires the use of thermosetting adhesive as bonding. Due to the existence of the gap between the circuit substrate and the flexible plate, the difficult problem of AD underfilling always exist in the lamination process, adhesive filling full or not directly affect the product reliability and durability. By studying the resin filling difficulties in different circuit layout, a simple relationship based on a series of line spacing under different copper thickness was given through resin filling requirement and CVL bending depth, the selection principle of the thickness of the stiffener adhesive. Also different conforming type way were contrast, filling voids and pad depression made to analysis to improve, the better improve way was given by not change the lamination parameters.%挠性板生产过程中,在板上局部位置压合补强板以加强对挠性基板的支撑和方便插接是关键流程之一。补强热压时一般是采用半固化态且流动性相对较小的热固性等胶作为粘结,且由于一些补强板刚性大变形小,因此补强的压合过程存在填胶难的问题,胶的填充饱满与否直接影响到产品的可靠性和耐用性。通过研究不同的线路布置时填胶的难易,根据不同铜厚下的系列线路间距所需填胶量与覆盖膜弯曲深度的简单关系,提出了补强压合胶厚的选择原则;同时通过覆型方式的对比,对填胶空洞和焊盘凹陷等做出改善分析,在不改变压合参数的前提下给出了可行的改善途径。

  9. A network model of correlated growth of tissue stiffening in pulmonary fibrosis

    Science.gov (United States)

    Oliveira, Cláudio L. N.; Bates, Jason H. T.; Suki, Béla

    2014-06-01

    During the progression of pulmonary fibrosis, initially isolated regions of high stiffness form and grow in the lung tissue due to collagen deposition by fibroblast cells. We have previously shown that ongoing collagen deposition may not lead to significant increases in the bulk modulus of the lung until these local remodeled regions have become sufficiently numerous and extensive to percolate in a continuous path across the entire tissue (Bates et al 2007 Am. J. Respir. Crit. Care Med. 176 617). This model, however, did not include the possibility of spatially correlated deposition of collagen. In the present study, we investigate whether spatial correlations influence the bulk modulus in a two-dimensional elastic network model of lung tissue. Random collagen deposition at a single site is modeled by increasing the elastic constant of the spring at that site by a factor of 100. By contrast, correlated collagen deposition is represented by stiffening the springs encountered along a random walk starting from some initial spring, the rationale being that excess collagen deposition is more likely in the vicinity of an already stiff region. A combination of random and correlated deposition is modeled by performing random walks of length N from randomly selected initial sites, the balance between the two processes being determined by N. We found that the dependence of bulk modulus, B(N,c), on both N and the fraction of stiff springs, c, can be described by a strikingly simple set of empirical equations. For c0.8, B(N,c) is linear in c and independent of N, such that B(N,c)=100\\;{{B}_{0}}-100{{a}_{III}}(1-c){{B}_{0}}, where {{a}_{III}}=2.857. For small concentrations, the physiologically most relevant regime, the forces in the network springs are distributed according to a power law. When c = 0.3, the exponent of this power law increases from -4.5, when N = 1, and saturates to about -2, as N increases above 40. These results suggest that the spatial correlation of

  10. Early stiffening and softening of collagen: interplay of deformation mechanisms in biopolymer networks.

    Science.gov (United States)

    Kurniawan, Nicholas A; Wong, Long Hui; Rajagopalan, Raj

    2012-03-12

    Collagen networks, the main structural/mechanical elements in biological tissues, increasingly serve as biomimetic scaffolds for cell behavioral studies, assays, and tissue engineering, and yet their full spectrum of nonlinear behavior remains unclear. Here, with self-assembled type-I collagen as model, we use metrics beyond those in standard single-harmonic analysis of rheological measurements to reveal strain-softening and strain-stiffening of collagen networks both in instantaneous responses and at steady state. The results show how different deformation mechanisms, such as deformation-induced increase in the elastically active fibrils, nonlinear extension of individual fibrils, and slips in the physical cross-links in the network, can lead to the observed complex nonlinearity. We demonstrate how comprehensive rheological analyses can uncover the rich mechanical properties of biopolymer networks, including the above-mentioned softening as well as an early strain-stiffening, which are important for understanding physiological response of biological materials to mechanical loading.

  11. Optical measurement on dynamic buckling behavior of stiffened composite panels under in-plane shear

    Science.gov (United States)

    Lei, Zhenkun; Bai, Ruixiang; Tao, Wang; Wei, Xiao; Leng, Ruijiao

    2016-12-01

    The buckling behavior and failure mode of a composite panel stiffened by I-shaped stringers under in-plane shear is studied using digital fringe projection profilometry. The basic principles of the dynamic phase-shifting technique, multi-frequency phase-unwrapping technique and inverse-phase technique for nonlinear error compensation are introduced. Multi-frequency fringe projection profilometry was used to monitor and measure the change in the morphology of a discontinuous surface of the stiffened composite panel during in-plane shearing. Meanwhile, the strain history of multiple points on the skin was obtained using strain rosettes. The buckling mode and deflection of the panel at different moments were analyzed and compared with those obtained using the finite element method. The experimental results validated the FEM analysis.

  12. Mechanical interaction between concrete and structural reinforcement in the tension stiffening process

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2011-01-01

    investigated using an image-based deformation measurement and analysis system. This allowed for detailed view of surface deformations and the implications on the resulting response of the member in tension. In this study, conventional concrete and a ductile, strain hardening cement composite, known......The interaction between structural reinforcement and the surrounding concrete matrix in tension is a governing mechanism in the structural response of reinforced concrete members. The tension stiffening process, defined as the concrete ´s contribution to tensile response of the composite, has been...... as Engineered Cementitious Composite (ECC), have been combined with steel and glass fiber reinforced polymer (GFRP) reinforcement to contrast the effects of brittle and ductile cement matrices as well as elastic/plastic and elastic reinforcement on the tension stiffening process. Particular focus...

  13. Dynamic Characters of Stiffened Composite Conoidal Shell Roofs with Cutouts: Design Aids and Selection Guidelines

    Directory of Open Access Journals (Sweden)

    Sarmila Sahoo

    2013-01-01

    Full Text Available Dynamic characteristics of stiffened composite conoidal shells with cutout are analyzed in terms of the natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight-noded curved shell element with a three-noded curved beam element. The code is validated by solving benchmark problems available in the literature and comparing the results. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite conoids. The effects of these parametric variations on the fundamental frequencies and mode shapes are considered in details. The results furnished here may be readily used by practicing engineers dealing with stiffened composite conoids with cutouts central or eccentric.

  14. Tumor Stiffening, a Key Determinant of Tumor Progression, is Reversed by Nanomaterial-Induced Photothermal Therapy

    Science.gov (United States)

    Marangon, Iris; Silva, Amanda A. K.; Guilbert, Thomas; Kolosnjaj-Tabi, Jelena; Marchiol, Carmen; Natkhunarajah, Sharuja; Chamming's, Foucault; Ménard-Moyon, Cécilia; Bianco, Alberto; Gennisson, Jean-Luc; Renault, Gilles; Gazeau, Florence

    2017-01-01

    Tumor stiffening, stemming from aberrant production and organization of extracellular matrix (ECM), has been considered a predictive marker of tumor malignancy, non-invasively assessed by ultrasound shear wave elastography (SWE). Being more than a passive marker, tumor stiffening restricts the delivery of diagnostic and therapeutic agents to the tumor and per se could modulate cellular mechano-signaling, tissue inflammation and tumor progression. Current strategies to modify the tumor extracellular matrix are based on ECM-targeting chemical agents but also showed deleterious systemic effects. On-demand excitable nanomaterials have shown their ability to perturb the tumor microenvironment in a spatiotemporal-controlled manner and synergistically with chemotherapy. Here, we investigated the evolution of tumor stiffness as well as tumor integrity and progression, under the effect of mild hyperthermia and thermal ablation generated by light-exposed multi-walled carbon nanotubes (MWCNTs) in an epidermoid carcinoma mouse xenograft. SWE was used for real-time mapping of the tumor stiffness, both during the two near infrared irradiation sessions and over the days after the treatment. We observed a transient and reversible stiffening of the tumor tissue during laser irradiation, which was lowered at the second session of mild hyperthermia or photoablation. In contrast, over the days following photothermal treatment, the treated tumors exhibited a significant softening together with volume reduction, whereas non-treated growing tumors showed an increase of tumor rigidity. The organization of the collagen matrix and the distribution of CNTs revealed a spatio-temporal correlation between the presence of nanoheaters and the damages on collagen and cells. This study highlights nanohyperthermia as a promising adjuvant strategy to reverse tumor stiffening and normalize the mechanical tumor environment. PMID:28042338

  15. Keratin network modifications lead to the mechanical stiffening of the hair follicle fiber

    OpenAIRE

    Bornschlögl, Thomas; Bildstein, Lucien; Thibaut, Sébastien; Santoprete, Roberto; Fiat, Françoise; Luengo, Gustavo S.; Doucet, Jean; Bernard, Bruno A.; Baghdadli, Nawel

    2016-01-01

    Mechanical properties of tissues often emerge from fibrous protein networks spanning multiple cell lengths. For the first time, to our knowledge, atomic force microscopy was used to measure the mechanical properties of the human hair follicle. We find a considerable stiffening along the first millimeter that we link to changes in the keratin network architecture and composition. In early keratinization stages, the thickening, densification, and increasing orientation of fibers are responsible...

  16. Lamb Wave Line Sensing for Crack Detection in a Welded Stiffener

    OpenAIRE

    Yun-Kyu An; Jae Hong Kim; Hong Jae Yim

    2014-01-01

    This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as...

  17. Reliability-based design optimization of composite stiffened panels in post-buckling regime

    OpenAIRE

    Lopez, C.; Bacarreza Nogales, OR; Baldomir, A.; Hernandez, S; Aliabadi, MH

    2016-01-01

    This paper focuses on Deterministic and Reliability Based Design Optimization (DO and RBDO) of composite stiffened panels considering post-buckling regime and progressive failure analysis. The ultimate load that a post-buckled panel can hold is to be maximised by changing the stacking sequence of both skin and stringers composite layups. The RBDO problem looks for a design that collapses beyond the shortening of failure obtained in the DO phase with a target reliability while considering unce...

  18. The effects of changes in the metabolic syndrome detection status on arterial stiffening: a prospective study.

    Science.gov (United States)

    Tomiyama, Hirofumi; Hirayama, Yoji; Hashimoto, Hideki; Yambe, Minoru; Yamada, Jiko; Koji, Yutaka; Motobe, Kohki; Shiina, Kazuki; Yamamoto, Yoshio; Yamashinai, Akira

    2006-09-01

    We conducted a prospective study to examine the effects of alterations of the metabolic syndrome detection status on the rate of progression of arterial stiffness, which is recognized as a marker of arterial damage and an indicator of cardiovascular risk. Brachial-ankle pulse wave velocity as an index of arterial stiffening was recorded twice over a 3-year period in 2080 Japanese men (age, 42 +/- 9 years). At the start of the prospective study, pulse wave velocity was higher in the subjects with metabolic syndrome (n=125) than in those without metabolic syndrome (n=1,955) even after adjusting for mean blood pressure. The annual rate of increase of the pulse wave velocity was higher in the group with persistent metabolic syndrome (27 +/- 51 cm/s/year, n=71) than in the group with regression of metabolic syndrome (6 +/- 39 cm/s/year, n=54) or the group in which metabolic syndrome was absent (13 +/- 37 cm/s/year, n=1843; p changes in blood pressure. In conclusion, the changes in the metabolic syndrome detection status of the subjects during the study period affected the annual rate of progression of arterial stiffening, and persistent metabolic syndrome during the study period was associated with acceleration of arterial stiffening in middle-aged Japanese men. On the other hand, resolution of metabolic syndrome may be associated with attenuation of the progression of arterial damage. Therefore, the increased cardiovascular risk associated with the presence of metabolic syndrome may be at least partly mediated by acceleration of the progression of arterial stiffening.

  19. Integrated Composite Stiffener Structure (ICoSS) Concept for Planetary Entry Vehicles

    Science.gov (United States)

    Kellas, Sotiris

    2016-01-01

    Results from the design, manufacturing, and testing of a lightweight Integrated Composite Stiffened Structure (ICoSS) concept, intended for multi-mission planetary entry vehicles are presented. Tests from both component and full-scale tests for a typical Earth Entry Vehicle forward shell manufactured using the ICoSS concept are presented and advantages of the concept for the particular application of passive Earth Entry Vehicles over other structural concepts are discussed.

  20. Correction of malfunctioning peritoneal dialysis catheter with guidewire and stiffener under fluoroscopic guidance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Ryong; Baek, Kyong Hee; Jung, Gyoo Sik; Huh, Jin Do; Joh, Young Duk; Rim, Hark [Kosin Medical College, Pusan (Korea, Republic of)

    1997-11-01

    To determine the efficacy of correction of a malfunctioning peritoneal dialysis catheter with guidewire and stiffener under fluoroscopic guidance. Between November 1994 and March 1997, we performed 15 manipulations in 12 patients in whom a dual-cuff, straight Tenckhoff peritoneal dialysis catheter had been implanted due to chronic renal failure. The causes of catheter malfunctioning were inadequate drainage of the dialysate(n=14) and painful dialysis(n=1). Under fluoroscopic guidance, adhesiolysis and repositioning of the malfunctioning catheter were performed with an Amplatz Super Stiff guidewire and the stiffener from a biliary drainage catheter. The results of procedures were categorized as either immediate or durable success, this latter being defined as adequate catheter function for at least one month after the procedure. Immediate success was achieved in 14 of 15 procedures (93%), and durable success in 7 of 15(47%). The mean duration of catheter function was 157 (range, 30 to 578) days. After manipulation, abdominal pain developed in eight patients and peritonitis in two, but with conservative treatment, these symptoms improved. The correction of a malfunctioning peritoneal dialysis catheter with guidewire and stiffener under fluoroscopic guidance is an effective means of restoring catheter function and may be an effective alternative to surgical reimplantation of the catheter, or hemodialysis.

  1. Coupled Thermo-Electro-Magneto-Elastic Response of Smart Stiffened Panels

    Science.gov (United States)

    Bednarcyk, Brett A.; Yarrington, Phillip W.

    2009-01-01

    This report documents the procedures developed for incorporating smart laminate and panel analysis capabilities within the HyperSizer aerospace structural sizing software package. HyperSizer analyzes stiffened panels composed of arbitrary composite laminates through stiffener homogenization, or "smearing " techniques. The result is an effective constitutive equation for the stiffened panel that is suitable for use in a full vehicle-scale finite element analysis via MSC/NASTRAN. The existing thermo-elastic capabilities of HyperSizer have herein been extended to include coupled thermo-electro-magneto-elastic analysis capabilities. This represents a significant step toward realization of design tools capable of guiding the development of the next generation of smart aerospace structures. Verification results are presented that compare the developed smart HyperSizer capability with an ABAQUS piezoelectric finite element solution for a facesheet-flange combination. These results show good agreement between HyperSizer and ABAQUS, but highlight a limitation of the HyperSizer formulation in that constant electric field components are assumed.

  2. An Investigation into the Postbuckling Response of a Single Blade-Stiffened Composite Panel

    Science.gov (United States)

    Spediacci, Alexander Daniel

    The large strength reserves of stiffened composite structures in the postbuckling range appeal to the aerospace industry because of the high strength-to weight-ratio. Design and analysis of these large-scale, complex structures is technical, and requires major computational effort. Using the building-block approach, a smaller, single-stringer panel can be a useful and efficient tool for initial design, and can reveal critical behavior of a larger, multi-stringer panel. A characterization, through finite element modeling, of buckling and postbuckling response of a single blade-stiffened composite panel is proposed. Several factors affecting buckling and postbuckling behavior are investigated, including specimen length, initial imperfections, mode switching, and skin stringer separation. Two specimens are repeatedly tested under quasi- static compression loading well into the postbuckling range, showing no sign of damage. The test data from the specimens are used to compare and validate the nonlinear finite element models, show good correlation with the models. Ultimately, this work will serve to demonstrate the safety of stiffened structures operating in the postbuckling range and allow for thinner, lighter structures, which can increase the overall efficiency of aircraft.

  3. Lamb Wave Line Sensing for Crack Detection in a Welded Stiffener

    Science.gov (United States)

    An, Yun-Kyu; Kim, Jae Hong; Yim, Hong Jae

    2014-01-01

    This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener. PMID:25046014

  4. Lamb Wave Line Sensing for Crack Detection in a Welded Stiffener

    Directory of Open Access Journals (Sweden)

    Yun-Kyu An

    2014-07-01

    Full Text Available This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener.

  5. Lamb wave line sensing for crack detection in a welded stiffener.

    Science.gov (United States)

    An, Yun-Kyu; Kim, Jae Hong; Yim, Hong Jae

    2014-07-18

    This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener.

  6. Effects of conformational ordering on protein/polyelectrolyte electrostatic complexation: ionic binding and chain stiffening.

    Science.gov (United States)

    Cao, Yiping; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O

    2016-03-31

    Coupling of electrostatic complexation with conformational transition is rather general in protein/polyelectrolyte interaction and has important implications in many biological processes and practical applications. This work studied the electrostatic complexation between κ-carrageenan (κ-car) and type B gelatin, and analyzed the effects of the conformational ordering of κ-car induced upon cooling in the presence of potassium chloride (KCl) or tetramethylammonium iodide (Me4NI). Experimental results showed that the effects of conformational ordering on protein/polyelectrolyte electrostatic complexation can be decomposed into ionic binding and chain stiffening. At the initial stage of conformational ordering, electrostatic complexation can be either suppressed or enhanced due to the ionic bindings of K(+) and I(-) ions, which significantly alter the charge density of κ-car or occupy the binding sites of gelatin. Beyond a certain stage of conformational ordering, i.e., helix content θ > 0.30, the effect of chain stiffening, accompanied with a rapid increase in helix length ζ, becomes dominant and tends to dissociate the electrostatic complexation. The effect of chain stiffening can be theoretically interpreted in terms of double helix association.

  7. Numerical Comparison of Active Acoustic and Structural Noise Control in a Stiffened Double Wall Cylinder

    Science.gov (United States)

    Grosveld, Ferdinand W.

    1996-01-01

    The active acoustic and structural noise control characteristics of a double wall cylinder with and without ring stiffeners were numerically evaluated. An exterior monopole was assumed to acoustically excite the outside of the double wall cylinder at an acoustic cavity resonance frequency. Structural modal vibration properties of the inner and outer shells were analyzed by post-processing the results from a finite element analysis. A boundary element approach was used to calculate the acoustic cavity response and the coupled structural-acoustic interaction. In the frequency region of interest, below 500 Hz, all structural resonant modes were found to be acoustically slow and the nonresonant modal response to be dominant. Active sound transmission control was achieved by control forces applied to the inner or outer shell, or acoustic control monopoles placed just outside the inner or outer shell. A least mean square technique was used to minimize the interior sound pressures at the nodes of a data recovery mesh. Results showed that single acoustic control monopoles placed just outside the inner or outer shells resulted in better sound transmission control than six distributed point forces applied to either one of the shells. Adding stiffeners to the double wall structure constrained the modal vibrations of the shells, making the double wall stiffer with associated higher modal frequencies. Active noise control obtained for the stiffened double wall configurations was less than for the unstiffened cylinder. In all cases, the acoustic control monopoles controlled the sound transmission into the interior better than the structural control forces.

  8. CONTRIBUTIONS TO THE DETERMINATION OF A MOULDING MATERIALS OTHER THAN STIFFENERS AND SHOES INSOLES

    Directory of Open Access Journals (Sweden)

    LUCA Cornelia

    2015-05-01

    Full Text Available The footwear insoles and heel counter stiffeners are made using fibrous structure materials. The spatial forming of these parts is made in moulds. After forming, the parts must have the same spatial dimensions with those of the shoe lasts used in the footwear manufacturing. During the forming process, the fibrous structure materials have an elastic-plastic behavior. So, for the moulds dimensioning, it is important to know the percentage of plastic deformation from the total deformation of the stressed material; this means to know the value of these materials forming subscript. The paper presents some theoretical and experimental contributions in finding of the forming subscript of the materials used in the footwear industry, for the footwear insoles and heel counter stiffeners manufacturing. Experiments were made on installations and experimental moulds sphere, cylinder and central angle. Experimental results shows that the forming subscript depends on the mould shape and the sample humidity when the stress is cancel. So, the deformations have a high rate, the sphere surfaces having the, highest forming subscript. In the case of sample forming which use cylinder moulds the value of the forming subscript on these surfaces is the lowest. In the case of the center angle occurs a a high level of plastic deformation. The results will be applied at the designing of the insoles and heel counter stiffeners moulds used for the pre-moulding.

  9. A Virtual Tool for Minimum Cost Design of a Wind Turbine Tower with Ring Stiffeners

    Directory of Open Access Journals (Sweden)

    Fatih Karpat

    2013-07-01

    Full Text Available Currently, renewable energy resources are becoming more important to reduce greenhouse gas emissions and increase energy efficiency. Researchers have focused on all components of wind turbines to increase reliability and minimize cost. In this paper, a procedure including a cost analysis method and a particle swarm optimization algorithm has been presented to efficiently design low cost steel wind turbine towers. A virtual tool is developed in MATLAB for the cost optimization of wind turbine steel towers with ring stiffeners using a particle swarm optimization algorithm. A wind turbine tower optimization problem in the literature is solved using the developed computer program. In the optimization procedure the optimization results match very well with the optimization results obtained previously. The wall thickness of the shell segments and the dimensions of the ring stiffeners are selected as the design variables, and the limits of the local buckling for the flat ring stiffeners, the local shell buckling limit, the panel ring buckling limit and the limitation of the frequency are considered the design constraints. Numerical examples are presented to understand the impacts of the design variables on the total cost of the wind turbine tower.

  10. Skin Autofluorescence and Pentosidine Are Associated With Aortic Stiffening: The Maastricht Study.

    Science.gov (United States)

    van Eupen, Marcelle G A; Schram, Miranda T; van Sloten, Thomas T; Scheijen, Jean; Sep, Simone J S; van der Kallen, Carla J; Dagnelie, Pieter C; Koster, Annemarie; Schaper, Nicolaas; Henry, Ronald M A; Kroon, Abraham A; Smit, Andries J; Stehouwer, Coen D A; Schalkwijk, Casper G

    2016-10-01

    Arterial stiffening, as characterized by an increase in carotid-femoral pulse-wave velocity or pulse pressure, increases the risk of cardiovascular disease, especially among individuals with type 2 diabetes mellitus. Advanced glycation end products are hypothesized to play a role in the development of arterial stiffness. Therefore, we investigated the association between skin autofluorescence, an estimate of tissue advanced glycation end products, and plasma advanced glycation end products on the one hand and arterial stiffening on the other in 862 participants of The Maastricht Study (mean age of 60 years; 45% women) with normal glucose metabolism (n=469), impaired glucose metabolism (n=140), or type 2 diabetes (n=253). Associations were analyzed with linear regression analysis and adjusted for potential confounders. We found that higher skin autofluorescence as measured by the AGE Reader and plasma pentosidine were independently associated with higher carotid-femoral pulse-wave velocity (sβ 0.10; 95% confidence interval, 0.03-0.17 and 0.10; 0.04-0.16, respectively) and central pulse pressure (sβ 0.08; 95% confidence interval 0.01-0.15 and 0.07; 0.01-0.13, respectively). The associations between skin autofluorescence and pentosidine, and carotid-femoral pulse-wave velocity were more pronounced in individuals with type 2 diabetes mellitus (P-interactionadvanced glycation end products is involved in arterial stiffening and may explain part of the increased risk of cardiovascular disease in individuals with type 2 diabetes mellitus.

  11. Hidden force stiffening molecular clusters, surface skins, and ultrathin films of water

    CERN Document Server

    Sun, Chang Q

    2013-01-01

    A slight, molecular-undercoordination-induced contraction of the stiffer O-H real-bond and a significant, inter-electron-pair repulsion driven, elongation of the softer H:O non-bond, and the associated stiffness relaxation, of the segmented O-H:O bond, are recognized as the key to stiffening molecular clusters, surface skins, and ultrathin films of water. Agreement between calculations and measurements verified our expectations that the shortened-and-stiffened real-bond stiffens the stiffer phonons (>3000 cm-1), densifies bonding electrons, entraps binding energy, and elevates the melting point and hence the viscosity, surface tension, and elasticity, and that the lengthened-and-softened non-bond softens the softer phonons (<300 cm-1), expands the volume, and polarizes the electron pairs of the undercoordinated molecules in freestanding and encapsuled clusters, water surfaces, and ultrathin films that exhibit ice- or glue-like and hydrophobic nature at the ambient. This effect becomes more significant as N...

  12. Stresses in adhesively bonded joints: A closed form solution. [plate theory

    Science.gov (United States)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1980-01-01

    The plane strain of adhesively bonded structures which consist of two different orthotropic adherents is considered. Assuming that the thicknesses of the adherends are constant and are small in relation to the lateral dimensions of the bonded region, the adherends are treated as plates. The transverse shear effects in the adherends and the in-plane normal strain in the adhesive are taken into account. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form. A single lap joint and a stiffened plate under various loading conditions are considered as examples. To verify the basic trend of the solutions obtained from the plate theory a sample problem is solved by using the finite element method and by treating the adherends and the adhesive as elastic continua. The plate theory not only predicts the correct trend for the adhesive stresses but also gives rather surprisingly accurate results.

  13. Longitudinal and transverse bending by a cylindrical shape of the sandwich plate stiffened in the end sections by rigid bodies

    Science.gov (United States)

    Badriev, I. B.; Makarov, M. V.; Paimuhin, V. N.

    2016-11-01

    We study the problems of deformation mechanics of sandwich constructions with taking into account the interaction with the contour reinforcing rods. To derive the basic equations of equilibrium, static boundary conditions for the shell and reinforcing rods, as well as conditions of the kinematic conjugation the carrier layers with a core, the carrier layers and a core with reinforcing rods we use a generalized variational Lagrange principle. We reduce the boundary value problem on the to the integral-algebraic system of Volterra equations of the second kind. To approximate the obtained integral equations of Volterra type a collocation method with Gaussian nodes and a method for constructing the integrating matrices are proposed. For the numerical realization of the proposed methods we have developed a software package. Numerical calculations were performed. Analyze the results of numerical experiments is carried out.

  14. Behavior of Shear Link of WF Section with Diagonal Web Stiffener of Eccentrically Braced Frame (EBF of Steel Structure

    Directory of Open Access Journals (Sweden)

    Yurisman

    2010-11-01

    Full Text Available This paper presents results of numerical and experimental study of shear link behavior, utilizing diagonal stiffener on web of steel profile to increase shear link performance in an eccentric braced frame (EBF of a steel structure system. The specimen is to examine the behavior of shear link by using diagonal stiffener on web part under static monotonic and cyclic load. The cyclic loading pattern conducted in the experiment is adjusted according to AISC loading standards 2005. Analysis was carried out using non-linear finite element method using MSC/NASTRAN software. Link was modeled as CQUAD shell element. Along the boundary of the loading area the nodal are constraint to produce only one direction loading. The length of the link in this analysis is 400mm of the steel profile of WF 200.100. Important parameters considered to effect significantly to the performance of shear link have been analyzed, namely flange and web thicknesses, , thickness and length of web stiffener, thickness of diagonal stiffener and geometric of diagonal stiffener. The behavior of shear link with diagonal web stiffener was compared with the behavior of standard link designed based on AISC 2005 criteria. Analysis results show that diagonal web stiffener is capable to increase shear link performance in terms of stiffness, strength and energy dissipation in supporting lateral load. However, differences in displacement ductility’s between shear links with diagonal stiffener and shear links based on AISC standards have not shown to be significant. Analysis results also show thickness of diagonal stiffener and geometric model of stiffener to have a significant influence on the performance of shear links. To perform validation of the numerical study, the research is followed by experimental work conducted in Structural Mechanic Laboratory Center for Industrial Engineering ITB. The Structures and Mechanics Lab rotary PAU-ITB. The experiments were carried out using three test

  15. 40 CFR 413.70 - Applicability: Description of the electroless plating subcategory.

    Science.gov (United States)

    2010-07-01

    ... electroless plating subcategory. 413.70 Section 413.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTROPLATING POINT SOURCE CATEGORY Electroless Plating Subcategory § 413.70 Applicability: Description of the electroless plating subcategory....

  16. 40 CFR 426.40 - Applicability; description of the plate glass manufacturing subcategory.

    Science.gov (United States)

    2010-07-01

    ... plate glass manufacturing subcategory. 426.40 Section 426.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Plate Glass Manufacturing Subcategory § 426.40 Applicability; description of the plate...

  17. Corrosion resistant metallic bipolar plate

    Science.gov (United States)

    Brady, Michael P.; Schneibel, Joachim H.; Pint, Bruce A.; Maziasz, Philip J.

    2007-05-01

    A corrosion resistant, electrically conductive component such as a bipolar plate for a PEM fuel cell includes 20 55% Cr, balance base metal such as Ni, Fe, or Co, the component having thereon a substantially external, continuous layer of chromium nitride.

  18. Intermittent plate tectonics?

    Science.gov (United States)

    Silver, Paul G; Behn, Mark D

    2008-01-04

    Although it is commonly assumed that subduction has operated continuously on Earth without interruption, subduction zones are routinely terminated by ocean closure and supercontinent assembly. Under certain circumstances, this could lead to a dramatic loss of subduction, globally. Closure of a Pacific-type basin, for example, would eliminate most subduction, unless this loss were compensated for by comparable subduction initiation elsewhere. Given the evidence for Pacific-type closure in Earth's past, the absence of a direct mechanism for termination/initiation compensation, and recent data supporting a minimum in subduction flux in the Mesoproterozoic, we hypothesize that dramatic reductions or temporary cessations of subduction have occurred in Earth's history. Such deviations in the continuity of plate tectonics have important consequences for Earth's thermal and continental evolution.

  19. 轻型钢结构"带加劲肋的刚接柱脚"的改进建议%An Advice on the Improvement of the "rigid Connection Pedestal with the Stiffener" of the Lightweight Steel Structure

    Institute of Scientific and Technical Information of China (English)

    梁耕

    2015-01-01

    浮法玻璃厂房轻钢结构应用很普遍,轻钢结构立柱及其柱脚设计对整个厂房的结构起着重要的作用.轻型钢结构带加劲肋的刚接柱脚的次生水平力,会对钢柱翼缘板局部稳定产生不利的影响,本文针对轻钢结构中出现的问题,提出了轻型钢结构带加劲肋的刚接柱脚型式的改进建议.%The factory building with lightweight steel structure are popular in glass industry as the production capacity extending . Lightweight steel structure column and pedestal play important role for the construction of the overall factory building . The secondary horizontal force of the rigid connection pedestal with the stiffener of the lightweight steel structure has a detrimental impact on the partial stability of the flange plate of steel column. This essay gives an advice on the improvement of the pattern of the rigid connection pedestal with the stiffener of the lightweight steel structure.

  20. Continuous Passive Motion Provides Good Pain Control in Patients with Adhesive Capsulitis

    Science.gov (United States)

    Dundar, Umit; Toktas, Hasan; Cakir, Tuncay; Evcik, Deniz; Kavuncu, Vural

    2009-01-01

    Painful stiffening of the shoulder, "frozen shoulder" is a common cause of shoulder pain and disability. Continuous passive motion (CPM) is an established method of preventing joint stiffness and of overcoming it. A randomized, comparative prospective clinical trial was planned to compare the early response with different rehabilitation…

  1. Processless offset printing plates

    Directory of Open Access Journals (Sweden)

    Sanja Mahović Poljaček

    2015-06-01

    Full Text Available With the implementation of platesetters in the offset printing plate making process, imaging of the printing plate became more stable and ensured increase of the printing plate quality. But as the chemical processing of the printing plates still highly influences the plate making process and the graphic reproduction workflow, development of printing plates that do not require chemical processing for offset printing technique has been one of the top interests in graphic technology in the last few years. The main reason for that came from the user experience, where majority of the problems with plate making process could be connected with the chemical processing of the printing plate. Furthermore, increased environmental standards lead to reducing of the chemicals used in the industrial processes. Considering these facts, different types of offset printing plates have been introduced to the market today. This paper presents some of the processless printing plates.

  2. Relative performance of antisymmetric angle-ply laminated stiffened hypar shell roofs with cutout in terms of static behavior

    Directory of Open Access Journals (Sweden)

    Chowdhury Puja B.

    2016-01-01

    Full Text Available A review of literature reveals that bending analysis of laminated composite stiffened hypar shells with cutout have not received due attention. Being a doubly ruled surface, a skewed hypar shell fulfils aesthetic as well as ease of casting requirements. Further, this shell allows entry of north light making it suitable as civil engineering roofing units. Hypar shell with cutout subjected to uniformly distributed load exhibits improved performances with stiffeners. Hence relative performances of antisymmetric angle-ply laminated composite stiffened hypar shells in terms of displacements and stress resultants are studied in this paper under static loading. A curved quadratic isoparametric eight noded element and three noded beam elements are used to model the shell surface and the stiffeners respectively. Results obtained from the present study are compared with established ones to check the correctness of the present approach. A number of additional problems of antisymmetric angle-ply laminated composite stiffened hypar shells are solved for various fibre orientations, number of layers and boundary conditions. Results are interpreted from practical application standpoints and findings important for a designer to decide on the shell combination among a number of possible options are highlighted.

  3. Simulation of Detecting Damage in Composite Stiffened Panel Using Lamb Waves

    Science.gov (United States)

    Wang, John T.; Ross, Richard W.; Huang, Guo L.; Yuan, Fuh G.

    2013-01-01

    Lamb wave damage detection in a composite stiffened panel is simulated by performing explicit transient dynamic finite element analyses and using signal imaging techniques. This virtual test process does not need to use real structures, actuators/sensors, or laboratory equipment. Quasi-isotropic laminates are used for the stiffened panels. Two types of damage are studied. One type is a damage in the skin bay and the other type is a debond between the stiffener flange and the skin. Innovative approaches for identifying the damage location and imaging the damage were developed. The damage location is identified by finding the intersection of the damage locus and the path of the time reversal wave packet re-emitted from the sensor nodes. The damage locus is a circle that envelops the potential damage locations. Its center is at the actuator location and its radius is computed by multiplying the group velocity by the time of flight to damage. To create a damage image for estimating the size of damage, a group of nodes in the neighborhood of the damage location is identified for applying an image condition. The image condition, computed at a finite element node, is the zero-lag cross-correlation (ZLCC) of the time-reversed incident wave signal and the time reversal wave signal from the sensor nodes. This damage imaging process is computationally efficient since only the ZLCC values of a small amount of nodes in the neighborhood of the identified damage location are computed instead of those of the full model.

  4. Buckling of un-stiffened cylindrical shell under non-uniform axial conpressive stress

    Institute of Scientific and Technical Information of China (English)

    宋昌永

    2002-01-01

    This paper provides a review of recent research advances and trends in the area of stability of un-stiffened circular cylindrical shells subjected to general non-uniform axial compressive stresses. Only the more important and interesting aspects of the research, judged from a personal viewpoint, are discussed. They can be crudely classified into four categories: (1) shells subjected to non-uniform loads; (2) shells on discrete supports; (3) shells with intended cutouts/holes; and (4) shells with non-uniform settlements.

  5. Buckling analysis of stringer-stiffened laminated cylindrical shells with nonuniform eccentricity

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghifar, M. [Islamic Azad University, Department of Mechanical Engineering, Nowshahr Branch, Nowshahr (Iran, Islamic Republic of); Bagheri, M. [Sattari Air University, Faculty of Aerospace Engineering, Tehran (Iran, Islamic Republic of); Jafari, A.A. [K.N. Toosi University of Technology, Faculty of Mechanical Engineering, Tehran (Iran, Islamic Republic of)

    2011-07-15

    In this study, the influence of nonuniformity of eccentricity of stringers on the general axial buckling load of stiffened laminated cylindrical shells with simply supported end conditions is investigated. The critical loads are calculated using Love's First-order Shear Deformation Theory and solved using the Rayleigh-Ritz procedure. The effects of the shell length-to-radius ratio, shell thickness-to-radius ratio, number of stringers, and stringers depth-to-width ratio on the buckling load of nonuniformly eccentric shells, are examined. The research demonstrates that an appropriate nonuniform distribution of eccentricity of stringers leads the buckling load to increase significantly. (orig.)

  6. 21 CFR 866.4600 - Ouchterlony agar plate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ouchterlony agar plate. 866.4600 Section 866.4600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....4600 Ouchterlony agar plate. (a) Identification. An ouchterlony agar plate for clinical use is a device...

  7. 21 CFR 886.1160 - Color vision plate illuminator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Color vision plate illuminator. 886.1160 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1160 Color vision plate illuminator. (a) Identification. A color vision plate illuminator is an AC-powered device that is a lamp...

  8. VISAS AND GREEN PLATES

    CERN Multimedia

    2000-01-01

    From 3 April 2000, all questions relating to visa requests for Switzerland, France, or Russia for a member of the personnel must be addressed to Ms. Agnita Querrou (telephone 72838, office 5-2-019, e-mail Agnita.Querrou@cern.ch).The Users' Office continues to deal with requests for letters of invitation and questions concerning visas for users in EP Division.Questions relating to removals, requests for green plates, to privileges of members of the personnel and to the importation of vehicles are still dealt with by Ms Zuzana Miller (telephone 79257, office 33-1-017, e-mail Zuzana.Muller@cern.ch) and Ms Joëlle Belleman (telephone 73962, office 33-1-019, e-mail Joelle.Belleman@cern.ch).

  9. Experimental investigations of sandwich panels using high performance concrete thin plates exposed to fire

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2015-01-01

    temperatures for panels with 30 mm thick plates stiffened by structural ribs, thick insulation layers, and steel shear connecting systems. Parametric variation assessing the role of each component of the sandwich structure was performed on unloaded specimens of reduced size. Full size walls were tested......Structural sandwich panels using thin high performance concrete (HPC) plates offer a possibility to address the modern environmental challenges faced by the construction industry. Fire resistance is a major necessity in structures using HPC. This paper presents experimental studies at elevated...... plate and one of them experienced heavy heat-induced spalling. Results highlighted insulation shear failure from differential thermal expansion at the interface with concrete. It suggests the existence of a high bond level between the two materials which might allow structural applications at early age...

  10. Electronic structure modification and Fermi level shifting in niobium-doped anatase titanium dioxide thin films: a comparative study of NEXAFS, work function and stiffening of phonons.

    Science.gov (United States)

    Gautam, Subodh K; Das, Arkaprava; Ojha, S; Shukla, D K; Phase, D M; Singh, Fouran

    2016-02-07

    The electronic structure and tuning of work function (WF) by electronic excitations (EEs) induced by swift heavy ions (SHIs) in anatase niobium-doped titanium dioxide (NTO) thin films is reported. The densities of EEs were varied using 80 MeV O, 130 MeV Ni and 120 MeV Ag ions for irradiation. The EE-induced modifications in electronic structure were studied by O K-edge and Ti L3,2 edge absorption spectra using near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The reduction of hybridized O 2p and Ti 3d unoccupied states in the conduction band with a decrease in energy of the crystal field strength of ∼ 480 meV and the correlated effect on the decrease in the WF value of ∼ 520 meV upon increasing the total energy deposition in the lattice are evident from the study of NEXAFS and scanning Kelvin probe microscopy (SKPM), respectively. The observed stiffening in the low frequency Raman mode (LFRM) of ∼ 9 cm(-1) further validates the electronic structure modification under the influence of EE-induced strain in TiO6 octahedra. The reduction of hybridized valence states, stiffening behavior of LFRM and decrease in WF by nano-crystallization followed by amorphization and defects in NTO lattice are explained in terms of continuous, discontinuous amorphous ion tracks containing intestinally created defects and non-stoichiometry in the lattice. These studies are very appropriate for better insights of electronic structure modification during phase transformation and controlled Fermi level shifting, which plays a crucial role in controlling the charge carrier injection efficiency in opto-electronic applications and also provides a deeper understanding of the involved physical processes.

  11. Estimation of stiffening effect of shaft and housing material outside projected area of a rolling element bearing

    Science.gov (United States)

    Taylor, C. M.

    1977-01-01

    In the analysis of distortions occurring in rolling-element bearings, it is common to neglect the stiffening effect of shafting outside the bearing region. The magnitude of such an effect will be dependent primarily on the bearing width-to-bore ratio, the shaft geometry, and the location of the bearing on the shaft. An estimate is given of the stiffening effect for a wide range of these variables. In addition, brief consideration is given to the parallel situation existing at the outer ring housing.

  12. DYNAMIC BUCKLING OF STATICALLY PRELOADED RING-STIFFENED CYLINDRICAL SHELLS UNDER AXIAL FLUID-SOLID IMPACT LOADING

    Institute of Scientific and Technical Information of China (English)

    Jiang Songqing; Li Yongchi; Hu Xiuzhang; Zheng Jijia

    2000-01-01

    The Initial Imperfection Amplified Criterion is applied to investigate the geometric nonlinear dynamic buckling of statically preloaded ring-stiffened cylindrical shells under axial fluid-solid impact. Tak ing account of the effects of large deformation and initial geometric imperfection, the governing equations are obtained by the Galerkin method and solved by the Runge-Kutta method. The effects of static preloading (uniform external radial pressure) on the buckling features and the load-carrying ability of ring-stiffened cy lindrical shells against axial impact are discussed.

  13. Field testing of stiffened deep cement mixing piles under lateral cyclic loading

    Science.gov (United States)

    Raongjant, Werasak; Jing, Meng

    2013-06-01

    Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.

  14. Direct measurement of cell wall stress-stiffening and turgor pressure in live bacterial cells

    CERN Document Server

    Deng, Yi; Shaevitz, Joshua W

    2011-01-01

    The mechanical properties of gram-negative bacteria are governed by a rigid peptidoglycan (PG) cell wall and the turgor pressure generated by the large concentration of solutes in the cytoplasm. The elasticity of the PG has been measured in bulk and in isolated sacculi and shown to be compliant compared to the overall stiffness of the cell itself. However, the stiffness of the cell wall in live cells has not been measured. In particular, the effects that pressure-induced stress might have on the stiffness of the mesh-like PG network have not been addressed even though polymeric materials often exhibit large amounts of stress-stiffening. We study bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. We find strong evidence of power-law stress-stiffening in the E. coli cell wall, with an exponent of $1.07 \\pm 0.25$, such that the wall is significantly stiffer in live cells ($E\\sim32\\pm10$ MPa) than in unpres...

  15. Structure-Property Correlations in Al-Li Alloy Integrally Stiffened Extrusions

    Science.gov (United States)

    Hales, Stephen J.; Hafley, Robert A.

    2001-01-01

    The objective of this investigation was to establish the relationship between mechanical property anisotropy, microstructure and crystallographic texture in integrally 'T'-stiffened extruded panels fabricated from the Al-Li alloys 2195, 2098 and 2096. In-plane properties were measured as a function of orientation at two locations in the panels, namely mid-way between (Skin), and directly beneath (Base), the integral 'T' stiffeners. The 2195 extrusion exhibited the best combination of strength and toughness, but was the most anisotropic. The 2098 extrusion exhibited lower strength and comparable toughness, but was more isotropic than 2195. The 2096 extrusion exhibited the lowest strength and poor toughness, but was the most isotropic. All three alloys exhibited highly elongated grain structures and similar location-dependent variations in grain morphology. The textural characteristics comprised a beta + fiber texture, similar to rolled product, in the Skin regions and alpha + fiber texture, comparable to axisymmetric extruded product, in the Base regions. In an attempt to quantitatively correlate texture with yield strength anisotropy, the original 'full constraint' Taylor model and a variant of the 'relaxed constraint' model, explored by Wert et al., were applied to the data. A comparison of the results revealed that the Wert model was consistently more accurate than the Taylor model.

  16. Experiments on channel columns with inclined simple edge stiffeners under compression loading

    Institute of Scientific and Technical Information of China (English)

    WANG Chungang; ZHANG Yaochun; ZHANG Zhuangnan

    2007-01-01

    In order to investigate the compression behavior of pin-ended cold-formed channel columns with inclined simple edge stiffeners,a total of 30 pin-ended cold-formed channel columns with three sections (sloping lip stiffener turned at 45°,90°,and 135°to the flange,respectively) and three different lengths (500 mm,1 250 mm,and 2 000 mm)were tested.It was found that the inclination angles and loading positions have an obvious effect on compression ultimate load-carrying capacities and failure modes.All three sections have certain post-buckling strength,and the failure modes of most of the specimens contained distortional buckling.The capacity of the specimens with 45° inclined angle for bearing compression is appreciably higher than the other two types of specimens with 90° or 135° inclined angles at the same negative eccentricity,but obviously lower than the other two at the same positive eccentricity.Furthermore,tests were simulated by finite element analysis.Results from the analysis are in great agreement with the experimental data.

  17. Vibroacoustic Optimization of Stiffening Ribs and Damping Material Distribution on Sheet Metal Parts

    Directory of Open Access Journals (Sweden)

    M. Carfagni

    2004-01-01

    Full Text Available Vehicle noise and vibration levels are basic parameters in passenger comfort. Both static and dynamic stiffness of sheet metal parts is commonly increased by means of stiffening ribs. Vibrations are also reduced by adding a layer of damping material on the floor, the roof, the firewall and other parts of the vehicle. In common practice the panels to be treated are ribbed according to criteria based on the designer’s experience, rather than on well defined design procedures and are uniformly covered by a layer of damping material. However, these are not efficient design solutions, especially with regard to the effectiveness of vibration reduction and to weight containment. In this paper a novel approach to achieve an optimal distribution of stiffening ribs and damping material will be presented. The proposed method is based on a Genetic Algorithm (G.A. procedure which takes into account both the vibroacoustic performance and the weight and cost reduction. A simple case study will be illustrated to demonstrate the capabilities of the developed procedure.

  18. On the vein-stiffening membrane structure of a dragonfly hind wing

    Institute of Scientific and Technical Information of China (English)

    Zhong-xue LI; Wei SHEN; Gen-shu TONG; Jia-meng TIAN; Loc VU-QUOC

    2009-01-01

    Aiming at exploring the excellent structural performance of the vein-stiffening membrane structure of dragonfly hind wings, we analyzed two planar computational models and three 3D computational models with cambered corrugation based on the finite element method. It is shown that the vein size in different zones is proportional to the magnitude of the vein internal force when the wing structure is subjected to uniform out-of-plane transverse loading. The membrane contributes little to the flexural stiffness of the planar wing models, while exerting an immense impact upon the stiffness of the 3D wing models with cambered corrugation. If a lumped mass of 10% of the wing is fixed on the leading edge close to the wing tip, the wing fundamental fre-quency decreases by 10.7%~13.2%; ifa lumped mass is connected to the wing via multiple springs, the wing fundamental fre-quency decreases by 16.0%~18.0%. Such decrease in fundamental frequency explains the special function of the wing pterostigma in alleviating the wing quivering effect. These particular features of dragonfly wings can be mimicked in the design of new-style reticulately stiffening thin-walled roof systems and flapping wings in novel intelligent aerial vehicles.

  19. Energy transmission through a double-wall curved stiffened panel using Green's theorem

    Science.gov (United States)

    Ghosh, Subha; Bhattacharya, Partha

    2015-04-01

    It is a common practice in aerospace and automobile industries to use double wall panels as fuselage skins or in window panels to improve acoustic insulation. However, the scientific community is yet to develop a reliable prediction method for a suitable vibro-acoustic model for sound transmission through a curved double-wall panel. In this quest, the present work tries to delve into the modeling of energy transmission through a double-wall curved panel. Subsequently the radiation of sound power into the free field from the curved panel in the low to mid frequency range is also studied. In the developed model to simulate a stiffened aircraft fuselage configuration, the outer wall is provided with longitudinal stiffeners. A modal expansion theory based on Green's theorem is implemented to model the energy transmission through an acoustically coupled double-wall curved panel. An elemental radiator approach is implemented to calculate the radiated energy from the curved surface in to the free field. The developed model is first validated with various numerical models available. It has been observed in the present study that the radius of curvature of the surface has a prominent effect on the behavior of radiated sound power into the free field. Effect of the thickness of the air gap between the two curved surfaces on the sound power radiation has also been noted.

  20. Mathematical methods for elastic plates

    CERN Document Server

    Constanda, Christian

    2014-01-01

    Mathematical models of deformation of elastic plates are used by applied mathematicians and engineers in connection with a wide range of practical applications, from microchip production to the construction of skyscrapers and aircraft. This book employs two important analytic techniques to solve the fundamental boundary value problems for the theory of plates with transverse shear deformation, which offers a more complete picture of the physical process of bending than Kirchhoff’s classical one.   The first method transfers the ellipticity of the governing system to the boundary, leading to singular integral equations on the contour of the domain. These equations, established on the basis of the properties of suitable layer potentials, are then solved in spaces of smooth (Hölder continuous and Hölder continuously differentiable) functions.   The second technique rewrites the differential system in terms of complex variables and fully integrates it, expressing the solution as a combination of complex ana...

  1. Create Your Plate

    Medline Plus

    Full Text Available ... steps to get started: Using your dinner plate, put a line down the middle of the plate. ... vegetables . Now in one of the small sections, put grains and starchy foods. See this list of ...

  2. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets ... 2016 Articles from Diabetes Forecast® magazine: wcie-meal-planning, In this section Food Planning Meals Diabetes Meal ...

  3. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ... Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...

  4. Food guide plate

    Science.gov (United States)

    ... chips or cookies. VEGETABLES: MAKE HALF OF YOUR PLATE FRUITS AND VEGETABLES Vegetables can be raw, fresh, ... as a snack. FRUITS: MAKE HALF OF YOUR PLATE FRUITS AND VEGETABLES Fruits can be fresh, canned, ...

  5. Growth Plate Fractures

    Science.gov (United States)

    ... the most widely used by doctors is the Salter-Harris system, described below. Type I Fractures These ... incidence of growth plate fractures peaks in adolescence. Salter-Harris classification of growth plate fractures. AAOS does ...

  6. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart- ...

  7. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart- ...

  8. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets you still choose the foods you want, but changes the portion sizes so you are getting larger ...

  9. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate It's simple and effective for both managing diabetes and losing weight. Creating your plate lets ... Sleeve Custom jerseys for your Tour de Cure team benefits the cause. Ask the Experts: Learn to ...

  10. A backing device based on an embedded stiffener and retractable insertion tool for thin-film cochlear arrays

    Science.gov (United States)

    Tewari, Radheshyam

    Intracochlear trauma from surgical insertion of bulky electrode arrays and inadequate pitch perception are areas of concern with current hand-assembled commercial cochlear implants. Parylene thin-film arrays with higher electrode densities and lower profiles are a potential solution, but lack rigidity and hence depend on manually fabricated permanently attached polyethylene terephthalate (PET) tubing based bulky backing devices. As a solution, we investigated a new backing device with two sub-systems. The first sub-system is a thin poly(lactic acid) (PLA) stiffener that will be embedded in the parylene array. The second sub-system is an attaching and detaching mechanism, utilizing a poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PDLLA) copolymer-based biodegradable and water soluble adhesive, that will help to retract the PET insertion tool after implantation. As a proof-of-concept of sub-system one, a microfabrication process for patterning PLA stiffeners embedded in parylene has been developed. Conventional hot-embossing, mechanical micromachining, and standard cleanroom processes were integrated for patterning fully released and discrete stiffeners coated with parylene. The released embedded stiffeners were thermoformed to demonstrate that imparting perimodiolar shapes to stiffener-embedded arrays will be possible. The developed process when integrated with the array fabrication process will allow fabrication of stiffener-embedded arrays in a single process. As a proof-of-concept of sub-system two, the feasibility of the attaching and detaching mechanism was demonstrated by adhering 1x and 1.5x scale PET tube-based insertion tools and PLA stiffeners embedded in parylene using the copolymer adhesive. The attached devices survived qualitative adhesion tests, thermoforming, and flexing. The viability of the detaching mechanism was tested by aging the assemblies in-vitro in phosphate buffer solution. The average detachment times, 2.6 minutes and 10 minutes

  11. Fatigue crack detection in a plate girder using Lamb waves

    Science.gov (United States)

    Greve, D. W.; Oppenheim, I. J.; Wu, Wei; Zheng, Peng

    2007-04-01

    We report on the application of wafer-type PZT transducers to the detection of flaws in steel plate girders. In these experiments one transducer is used to emit a pulse and the second receives the pulse and reflections from nearby boundaries, flaws, or discontinuities (pitch-catch mode). In this application there will typically be numerous reflections observed in the undamaged structure. A major challenge is to recognize new reflections caused by fatigue cracks in the presence of these background reflections. A laboratory specimen plate girder was fabricated at approximately half scale, 910 mm deep with an h/t ratio of 280 for the web and a b/t ratio of 16 for the flanges, and with transverse stiffeners fabricated with a web gap at the tension flange. Two wafer-type transducers were mounted on the web approximately 175 mm from the crack location, one on each side of the stiffener. The transducers were operated in pitch-catch mode, excited by a windowed sinusoid to create a narrowband transient excitation. The transducer location relative to the crack corresponded to a total included angle of roughly 30 degrees in the path reflecting from the crack. Cyclic loading was applied to develop a distortion-induced fatigue crack in the web at the web gap location. After appearance of the crack, ultrasonic measurements were performed at a range of center frequencies below the cutoff frequency of the A1 Lamb wave mode. Subsequently the crack was extended mechanically to simulate crack growth under primary longitudinal (bending) stress and the measurements were repeated. Direct differencing of the signals showed arrivals at times corresponding to reflection from the crack location, growing in amplitude as the crack was lengthened mechanically. These results demonstrate the utility of Lamb waves for crack detection even in the presence of numerous background reflections.

  12. Accelerated plate tectonics.

    Science.gov (United States)

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  13. A NEW QUADRILATERAL THIN PLATE ELEMENT BASED ON THE MEMBRANE-PLATE SIMILARITY THEORY

    Institute of Scientific and Technical Information of China (English)

    黄若煜; 郑长良; 钟万勰; 姚伟岸

    2002-01-01

    A new effective path has been proposed to formulate thin plate element by using the similarity theory between plane elasticity and plate bending. Because of avoiding the difficulty of c1 continuity , the construction of thin plate elements becomes easier. The similarity theory and its applications were discussed more deeply, and a new four nodes, sixteen D. O. F. ( degree of fieedom) thin plate element was presented on the base of the similarity theory. Numerical results for typical problems show that this new element can pass the patch test and has a very good convergence and a high precision.

  14. 中厚板轧后冷却正规阶段温度场变分解%VARIATIONAL SOLUTION OF CONTINUOUS COOLING TEMPERATURE FIELD FOR PLATE AFTER ROLLING DURING FULLY DEVELOPED REGIME

    Institute of Scientific and Technical Information of China (English)

    章顺虎; 赵德文; 刘南君; 高彩茹

    2013-01-01

    该文从导热微分方程和定解条件出发,设定了预先满足边界条件的试函数,并结合拉格朗日乘子法,构建了里兹温度场泛函的广义表达式,经泛函变分,首次获得了中厚板轧后冷却正规阶段温度场的变分解,该解为板厚δ,换热系数α,比热cp,冷却时间t,热传导率λ,钢板密度p,开冷温度T0,水温Tf的函数.该解与分离变量法获得的解析解比较表明,该解对分离变量法获得的解析解具有较高的逼近程度,两者最大误差不超过7℃.该文导出的平均温度出现在x=0.577δ的位置上,心表温差随着冷却时间的增加而减少.该文中变分解法未报道.%From the heat conduction,differential equations and definite conditions,a trial function which satisfies boundary condition in advance is set.With the Lagrange multiplier method,the generalized expression of Ritz temperature field functional is first established.The variational solution of temperature field for a plate after rolling during fully developed regime is then first obtained by functional variation.It is a function of plate thick δ,heat transfer coefficient a,specific heat cp,cooling time t,thermal conductivity λ,plate density p,starting cooling temperature T0,and water temperature Tf.The comparison between the variational results and those analytical results by the separation variable method shows that the present results have high forecast precision and the maximum error between them is no more than 7%.It is also deduced that the average temperature occurs at the location of x=0.577δ,and the temperature difference between plate surface and centre along the thick direction decreases as the cooling time increases.The method in the present paper has not been reported yet.

  15. Create Your Plate

    Medline Plus

    Full Text Available ... Reset Plate Share Create Your Plate ! Share: Seven Simple Steps to Create Your Plate It's simple and effective for both managing diabetes and losing ... en.html Have Type 2 Diabetes? Our free program will help you live well. More from diabetes. ...

  16. Obliquity along plate boundaries

    Science.gov (United States)

    Philippon, Mélody; Corti, Giacomo

    2016-12-01

    Most of the plate boundaries are activated obliquely with respect to the direction of far field stresses, as roughly only 8% of the plate boundaries total length shows a very low obliquity (ranging from 0 to 10°, sub-orthogonal to the plate displacement). The obliquity along plate boundaries is controlled by (i) lateral rheological variations within the lithosphere and (ii) consistency with the global plate circuit. Indeed, plate tectonics and magmatism drive rheological changes within the lithosphere and consequently influence strain localization. Geodynamical evolution controls large-scale mantle convection and plate formation, consumption, and re-organization, thus triggering plate kinematics variations, and the adjustment and re-orientation of far field stresses. These geological processes may thus result in plate boundaries that are not perpendicular but oblique to the direction of far field stresses. This paper reviews the global patterns of obliquity along plate boundaries. Using GPlate, we provide a statistical analysis of present-day obliquity along plate boundaries. Within this framework, by comparing natural examples and geological models, we discuss deformation patterns and kinematics recorded along oblique plate boundaries.

  17. Experimental Research on Fiber Compaction of L-shaped Stiffeners in Stiffened Skins by Autoclave Process%热压罐成型加筋板L形筋条纤维密实影响因素研究

    Institute of Scientific and Technical Information of China (English)

    王雪明; 谢富原; 李敏; 张佐光

    2011-01-01

    L-shaped stiffeners were fabricated by integral co-bonding technique in the autoclave. This study focused on investigating the influence of tool assembly, filler, curvature radius and bleeding process on the fiber compaction and manufacturing defects of L-shaped stiffeners, with analyzing the formation mechanism of these defects. The results indicated that non-uniform thickness, bridging and rich resin were the main defects of L-shaped stiffeners. The fiber compaction was improved significantly on the condition that the pressure in comer section was increased by applying flexible tools and rolling unidirectional prepregs as fillers into the stiffener core, and that the comer effect was remarkably caused a decrease by increasing curvature radius and applying pre-bleeding process. All these results are the vital importance for declaring the formation mechanism of defects and enhancing integral manufacturing quality of composite stiffened skins.%采用胶接共固化整体成型工艺制备了L形筋条,研究了模具配合、填充料、曲率半径、吸胶工艺等因素对L形筋条纤维密实和制造缺陷的影响规律,分析了缺陷形成机制.结果表明:厚度不均、架桥、富脂是L形筋条中存在的主要缺陷;采用软模辅助成型和加入适量填充料可改善筋条拐角区的压力分布,增大曲率半径和采用预吸胶工艺可降低拐角效应,从而可有效提高筋条纤维密实程度.

  18. Angular shear plate

    Science.gov (United States)

    Ruda, Mitchell C [Tucson, AZ; Greynolds, Alan W [Tucson, AZ; Stuhlinger, Tilman W [Tucson, AZ

    2009-07-14

    One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.

  19. Vibration characteristics of Z-ring-stiffened 60 deg conical shell models of a planetary entry spacecraft

    Science.gov (United States)

    Naumann, E. C.; Mixon, J. S.

    1971-01-01

    An experimental investigation of the vibration characteristics of a 60 deg conical shell model of a planetary entry vehicle is described and the results presented. Model configurations include the shell with or without one or two Z-ring stiffeners and with or without a simulated payload. Tests were conducted with the model clamped at the small diameter and with the model suspended at the simulated payload. Additionally, calculated results obtained from application of several analytical procedures reported in the literature are presented together with comparisons between experimental and calculated frequencies and meridional mode shapes. Generally, very good frequency agreement between experimental and calculated results was obtained for all model configurations. For small values of circumferential mode number, however, the frequency agreement decreased as the number of ring stiffeners increased. Overall agreement between experimental and calculated mode shapes was generally good. The calculated modes usually showed much larger curvatures in the vicinity of the rings than were observed in the experimentally measured mode shapes. Dual resonances associated with modal preference were noted for the shell without Z-ring stiffeners, whereas the addition of stiffeners produced resonances for which the model responded in two or more modes over different sections of the shell length.

  20. Reducing risk where tectonic plates collide

    Science.gov (United States)

    Gomberg, Joan S.; Ludwig, Kristin A.

    2017-06-19

    Most of the world’s earthquakes, tsunamis, landslides, and volcanic eruptions are caused by the continuous motions of the many tectonic plates that make up the Earth’s outer shell. The most powerful of these natural hazards occur in subduction zones, where two plates collide and one is thrust beneath another. The U.S. Geological Survey’s (USGS) “Reducing Risk Where Tectonic Plates Collide—A USGS Plan to Advance Subduction Zone Science” is a blueprint for building the crucial scientific foundation needed to inform the policies and practices that can make our Nation more resilient to subduction zone-related hazards.

  1. Analysis of an Orthotropic Deck Stiffened with a Cement-Based Overlay

    DEFF Research Database (Denmark)

    Walter, Rasmus; Olesen, John Forbes; Stang, Henrik

    2007-01-01

    Over the past years, with increasing traffic volumes and higher wheel loads, fatigue damage in steel parts of typical orthotropic steel bridge decks has been experienced on heavily trafficked routes. A demand exists to find a durable system to increase the fatigue safety of orthotropic steel bridge...... decks. A solution might be to enhance the stiffness of the traditional orthotropic bridge deck by using a cement-based overlay. In this paper, an orthotropic steel bridge deck stiffened with a cement-based overlay is analyzed. The analysis is based on nonlinear fracture mechanics, and utilizes...... of crack widths. Furthermore, the analysis shows that debonding is initiated for a certain crack width in the overlay. The load level where cracking and debonding is initiated depends on the stress-crack opening relationship of the material....

  2. Free vibration of laminated composite stiffened hyperbolic paraboloid shell panel with cutout

    Science.gov (United States)

    Sahoo, Sarmila

    2016-08-01

    Composite shell structures are extensively used in aerospace, civil, marine and other engineering applications. In practical civil engineering applications, the necessity of covering large column free open areas is often an issue and hyperbolic paraboloid shells are used as roofing units. Quite often, to save weight and also to provide a facility for inspection, cutouts are provided in shell panels. The paper considers free vibration characteristics of stiffened composite hyperbolic paraboloid shell panel with cutout in terms of natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight noded curved shell element with a three noded curved beam element. The size of the cutouts and their positions with respect to the shell centre are varied for different edge conditions to arrive at a set of inferences of practical engineering significances.

  3. Vibrational power flow of a finite cylindrical shell with discrete axial stiffeners

    Institute of Scientific and Technical Information of China (English)

    LIU Yanmei; HUANG Xieqing

    2002-01-01

    The structural wave power flows in an elastic finite cylindrical shell with discrete axial stiffeners are studied when a simple harmonic force is applied on it. The equations of motion of the shell are derived by using Flugge equation and Hamilton variational principle,and the responses of the shell are obtained. By use of the basic definition of the power flow, the characteristics of axial propagation of the power flow supplied by input structure and carried by different shell internal forces of a forced shell are investigated. The effects of parameters, such as relative location of driving force and stringer, driving force type and structural damping on the vibrational power flows in the shell, are discussed. These provide some theoretical bases for vibration control and noise reduction of this kind of structure.

  4. Computational Simulation of VARI Fluid Process Molding for Stiffened Panel Structural Composites

    Directory of Open Access Journals (Sweden)

    XIAO Fei

    2016-08-01

    Full Text Available The resin filling time can be predicted and the flow pattern of resin can be simulated in Composites VARI Fluid Process Molding with simulation software PAM-RTM. The permeability is important parameter in VARI process. In-plane and transverse permeability are usually tested with complicate and expensive enclosed mold.A set of model with simple structure, easy operation, low cost, was built to obtain accurate permeability by using a process of vacuum-assisted resin infusion (VARI. Besides, the method of equivalent model was employed. The simulation results of effective model is compared with those of experimental VARI process. The filling times for simulation method is 254 s which is shorter than 301 s of the experimental process. Based on flow runner project with equivalent model, the stiffened panel structural composite is prepared to validate the selective process.

  5. Buckling Analysis for Stiffened Anisotropic Circular Cylinders Based on Sanders Nonlinear Shell Theory

    Science.gov (United States)

    Nemeth, Michael P.

    2014-01-01

    Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.

  6. Influence of Tension Stiffening on the Flexural Stiffness of Reinforced Concrete Circular Sections

    Directory of Open Access Journals (Sweden)

    Francesco Morelli

    2017-06-01

    Full Text Available Within this paper, the assessment of tension stiffening effects on a reinforced concrete element with the circular sections subjected to axial and bending loads is presented. To this purpose, an enhancement of an analytical model already present within the actual technical literature is proposed. The accuracy of the enhanced method is assessed by comparing the experimental results carried out in past research and the numerical ones obtained by the model. Finally, a parametric study is executed in order to study the influence of axial compressive force on the flexural stiffness of reinforced concrete elements that are characterized by a circular section, comparing the secant stiffness evaluated at yielding and at maximum resistance, considering and not considering the effects of tension stiffness.

  7. Stiffening of Red Blood Cells Induced by Disordered Cytoskeleton Structures: A Joint Theory-experiment Study

    CERN Document Server

    Lai, Lipeng; Lim, Chwee Teck; Cao, Jianshu

    2015-01-01

    The functions and elasticities of the cell are largely related to the structures of the cytoskeletons underlying the lipid bi-layer. Among various cell types, the Red Blood Cell (RBC) possesses a relatively simple cytoskeletal structure. Underneath the membrane, the RBC cytoskeleton takes the form of a two dimensional triangular network, consisting of nodes of actins (and other proteins) and edges of spectrins. Recent experiments focusing on the malaria infected RBCs (iRBCs) showed that there is a correlation between the elongation of spectrins in the cytoskeletal network and the stiffening of the iRBCs. Here we rationalize the correlation between these two observations by combining the worm-like chain (WLC) model for single spectrins and the Effective Medium Theory (EMT) for the network elasticity. We specifically focus on how the disorders in the cytoskeletal network affect its macroscopic elasticity. Analytical and numerical solutions from our model reveal that the stiffness of the membrane increases with ...

  8. Galectin-3: A Link between Myocardial and Arterial Stiffening in Patients with Acute Decompensated Heart Failure?

    Directory of Open Access Journals (Sweden)

    Radu Ioan Lala

    2016-01-01

    Full Text Available Abstract Background: Heart failure is accompanied by abnormalities in ventricular-vascular interaction due to increased myocardial and arterial stiffness. Galectin-3 is a recently discovered biomarker that plays an important role in myocardial and vascular fibrosis and heart failure progression. Objectives: The aim of this study was to determine whether galectin-3 is correlated with arterial stiffening markers and impaired ventricular-arterial coupling in decompensated heart failure patients. Methods: A total of 79 inpatients with acute decompensated heart failure were evaluated. Serum galectin-3 was determined at baseline, and during admission, transthoracic echocardiography and measurements of vascular indices by Doppler ultrasonography were performed. Results: Elevated pulse wave velocity and low arterial carotid distensibility are associated with heart failure in patients with preserved ejection fraction (p = 0.04, p = 0.009. Pulse wave velocity, carotid distensibility and Young’s modulus did not correlate with serum galectin-3 levels. Conversely, raised galectin-3 levels correlated with an increased ventricular-arterial coupling ratio (Ea/Elv p = 0.047, OR = 1.9, 95% CI (1.0‑3.6. Increased galectin-3 levels were associated with lower rates of left ventricular pressure rise in early systole (dp/dt (p=0.018 and raised pulmonary artery pressure (p = 0.046. High galectin-3 levels (p = 0.038, HR = 3.07 and arterial pulmonary pressure (p = 0.007, HR = 1.06 were found to be independent risk factors for all-cause mortality and readmissions. Conclusions: This study showed no significant correlation between serum galectin-3 levels and arterial stiffening markers. Instead, high galectin-3 levels predicted impaired ventricular-arterial coupling. Galectin-3 may be predictive of raised pulmonary artery pressures. Elevated galectin-3 levels correlate with severe systolic dysfunction and together with pulmonary hypertension are independent markers of

  9. Interleukin-16 promotes cardiac fibrosis and myocardial stiffening in heart failure with preserved ejection fraction.

    Directory of Open Access Journals (Sweden)

    Shunsuke Tamaki

    Full Text Available BACKGROUND: Chronic heart failure (CHF with preserved left ventricular (LV ejection fraction (HFpEF is observed in half of all patients with CHF and carries the same poor prognosis as CHF with reduced LV ejection fraction (HFrEF. In contrast to HFrEF, there is no established therapy for HFpEF. Chronic inflammation contributes to cardiac fibrosis, a crucial factor in HFpEF; however, inflammatory mechanisms and mediators involved in the development of HFpEF remain unclear. Therefore, we sought to identify novel inflammatory mediators involved in this process. METHODS AND RESULTS: An analysis by multiplex-bead array assay revealed that serum interleukin-16 (IL-16 levels were specifically elevated in patients with HFpEF compared with HFrEF and controls. This was confirmed by enzyme-linked immunosorbent assay in HFpEF patients and controls, and serum IL-16 levels showed a significant association with indices of LV diastolic dysfunction. Serum IL-16 levels were also elevated in a rat model of HFpEF and positively correlated with LV end-diastolic pressure, lung weight and LV myocardial stiffness constant. The cardiac expression of IL-16 was upregulated in the HFpEF rat model. Enhanced cardiac expression of IL-16 in transgenic mice induced cardiac fibrosis and LV myocardial stiffening accompanied by increased macrophage infiltration. Treatment with anti-IL-16 neutralizing antibody ameliorated cardiac fibrosis in the mouse model of angiotensin II-induced hypertension. CONCLUSION: Our data indicate that IL-16 is a mediator of LV myocardial fibrosis and stiffening in HFpEF, and that the blockade of IL-16 could be a possible therapeutic option for HFpEF.

  10. Methylprednisolone stiffens aortas in lipopolysaccharide-induced chronic inflammation in rats.

    Directory of Open Access Journals (Sweden)

    Ya-Hui Ko

    Full Text Available INTRODUCTION: Glucocorticoids are commonly used as therapeutic agents in many acute and chronic inflammatory and auto-immune diseases. The current study investigated the effects of methylprednisolone (a synthetic glucocorticoid on aortic distensibility and vascular resistance in lipopolysaccharide-induced chronic inflammation in male Wistar rats. METHODS: Chronic inflammation was induced by implanting a subcutaneous slow-release ALZET osmotic pump (1 mg kg(-1 day(-1 lipopolysaccharide for either 2 or 4 weeks. Arterial wave transit time (τ was derived to describe the elastic properties of aortas using the impulse response function of the filtered aortic input impedance spectra. RESULTS: Long-term lipopolysaccharide challenge enhanced the expression of advanced glycation end products (AGEs in the aortas. Lipopolysaccharide also upregulated the inducible form of nitric oxide synthase to produce high levels of nitric oxide (NO, which resulted in vasodilation, as evidenced by the fall in total peripheral resistance (Rp . However, lipopolysaccharide challenge did not influence the elastic properties of aortas, as shown by the unaltered τ. The NO-mediated vascular relaxation may counterbalance the AGEs-induced arterial stiffening so that the aortic distensibility remained unaltered. Treating lipopolysaccharide-challenged rats with methylprednisolone prevented peripheral vasodilation because of its ability to increase Rp . However, methylprednisolone produced an increase in aorta stiffness, as manifested by the significant decline in τ. The diminished aortic distensibility by methylprednisolone paralleled a significant reduction in NO plasma levels, in the absence of any significant changes in AGEs content. CONCLUSION: Methylprednisolone stiffens aortas and elastic arteries in lipopolysaccharide-induced chronic inflammation in rats, for NO activity may be dominant as a counteraction of AGEs.

  11. Titin-based stiffening of muscle fibers in Ehlers-Danlos Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Ottenheijm, Coen A.C.; Voermans, Nicol C.; Hudson, Bryan D.; Irving, Thomas; Stienen, Ger J.M.; van Engelen, Baziel G.; Granzier, Henk (IIT); (Radboud); (Ariz); (Vrije)

    2012-05-09

    Tenascin-X (TNX) is an extracellular matrix glycoprotein whose absence leads to Ehlers-Danlos Syndrome (EDS). TNX-deficient EDS patients present with joint hypermobility and muscle weakness attributable to increased compliance of the extracellular matrix. We hypothesized that in response to the increased compliance of the extracellular matrix in TNX-deficient EDS patients, intracellular adaptations take place in the elastic properties of the giant muscle protein titin. We performed extensive single muscle fiber mechanical studies to determine active and passive properties in TNX-deficient EDS patients. Gel-electrophoresis, Western blotting, and microarray studies were used to evaluate titin expression and phosphorylation. X-ray diffraction was used to measure myofilament lattice spacing. Passive tension of muscle fibers from TNX-deficient EDS patients was markedly increased. Myofilament extraction experiments indicated that the increased passive tension is attributable to changes in the properties of the sarcomeric protein titin. Transcript and protein data indicated no changes in titin isoform expression. Instead, differences in posttranslational modifications within titin's elastic region were found. In patients, active tension was not different at maximal activation level, but at submaximal activation level it was augmented attributable to increased calcium sensitivity. This increased calcium sensitivity might be attributable to stiffer titin molecules. In response to the increased compliance of the extracellular matrix in muscle of TNX-deficient EDS patients, a marked intracellular stiffening occurs of the giant protein titin. The stiffening of titin partly compensates for the muscle weakness in these patients by augmenting submaximal active tension generation.

  12. Galectin-3: A Link between Myocardial and Arterial Stiffening in Patients with Acute Decompensated Heart Failure?

    Science.gov (United States)

    Lala, Radu Ioan; Darabantiu, Dan; Pilat, Luminita; Puschita, Maria

    2016-02-01

    Heart failure is accompanied by abnormalities in ventricular-vascular interaction due to increased myocardial and arterial stiffness. Galectin-3 is a recently discovered biomarker that plays an important role in myocardial and vascular fibrosis and heart failure progression. The aim of this study was to determine whether galectin-3 is correlated with arterial stiffening markers and impaired ventricular-arterial coupling in decompensated heart failure patients. A total of 79 inpatients with acute decompensated heart failure were evaluated. Serum galectin-3 was determined at baseline, and during admission, transthoracic echocardiography and measurements of vascular indices by Doppler ultrasonography were performed. Elevated pulse wave velocity and low arterial carotid distensibility are associated with heart failure in patients with preserved ejection fraction (p = 0.04, p = 0.009). Pulse wave velocity, carotid distensibility and Young's modulus did not correlate with serum galectin-3 levels. Conversely, raised galectin-3 levels correlated with an increased ventricular-arterial coupling ratio (Ea/Elv) p = 0.047, OR = 1.9, 95% CI (1.0‑3.6). Increased galectin-3 levels were associated with lower rates of left ventricular pressure rise in early systole (dp/dt) (p=0.018) and raised pulmonary artery pressure (p = 0.046). High galectin-3 levels (p = 0.038, HR = 3.07) and arterial pulmonary pressure (p = 0.007, HR = 1.06) were found to be independent risk factors for all-cause mortality and readmissions. This study showed no significant correlation between serum galectin-3 levels and arterial stiffening markers. Instead, high galectin-3 levels predicted impaired ventricular-arterial coupling. Galectin-3 may be predictive of raised pulmonary artery pressures. Elevated galectin-3 levels correlate with severe systolic dysfunction and together with pulmonary hypertension are independent markers of outcome.

  13. Transfinite thin plate spline interpolation

    CERN Document Server

    Bejancu, Aurelian

    2009-01-01

    Duchon's method of thin plate splines defines a polyharmonic interpolant to scattered data values as the minimizer of a certain integral functional. For transfinite interpolation, i.e. interpolation of continuous data prescribed on curves or hypersurfaces, Kounchev has developed the method of polysplines, which are piecewise polyharmonic functions of fixed smoothness across the given hypersurfaces and satisfy some boundary conditions. Recently, Bejancu has introduced boundary conditions of Beppo Levi type to construct a semi-cardinal model for polyspline interpolation to data on an infinite set of parallel hyperplanes. The present paper proves that, for periodic data on a finite set of parallel hyperplanes, the polyspline interpolant satisfying Beppo Levi boundary conditions is in fact a thin plate spline, i.e. it minimizes a Duchon type functional.

  14. Genesis of amorphous calcium carbonate containing alveolar plates in the ciliate Coleps hirtus (Ciliophora, Prostomatea).

    Science.gov (United States)

    Lemloh, Marie-Louise; Marin, Frédéric; Herbst, Frédéric; Plasseraud, Laurent; Schweikert, Michael; Baier, Johannes; Bill, Joachim; Brümmer, Franz

    2013-02-01

    In the protist world, the ciliate Coleps hirtus (phylum Ciliophora, class Prostomatea) synthesizes a peculiar biomineralized test made of alveolar plates, structures located within alveolar vesicles at the cell cortex. Alveolar plates are arranged by overlapping like an armor and they are thought to protect and/or stiffen the cell. Although their morphology is species-specific and of complex architecture, so far almost nothing is known about their genesis, their structure and their elemental and mineral composition. We investigated the genesis of new alveolar plates after cell division and examined cells and isolated alveolar plates by electron microscopy, energy-dispersive X-ray spectroscopy, FTIR and X-ray diffraction. Our investigations revealed an organic mesh-like structure that guides the formation of new alveolar plates like a template and the role of vesicles transporting inorganic material. We further demonstrated that the inorganic part of the alveolar plates is composed out of amorphous calcium carbonate. For stabilization of the amorphous phase, the alveolar vesicles, the organic fraction and the element phosphorus may play a role.

  15. Generalized Fibonacci zone plates

    CERN Document Server

    Ke, Jie; Zhu, Jianqiang

    2015-01-01

    We propose a family of zone plates which are produced by the generalized Fibonacci sequences and their axial focusing properties are analyzed in detail. Compared with traditional Fresnel zone plates, the generalized Fibonacci zone plates present two axial foci with equal intensity. Besides, we propose an approach to adjust the axial locations of the two foci by means of different optical path difference, and further give the deterministic ratio of the two focal distances which attributes to their own generalized Fibonacci sequences. The generalized Fibonacci zone plates may allow for new applications in micro and nanophotonics.

  16. A closed form large deformation solution of plate bending with surface effects.

    Science.gov (United States)

    Liu, Tianshu; Jagota, Anand; Hui, Chung-Yuen

    2017-01-04

    We study the effect of surface stress on the pure bending of a finite thickness plate under large deformation. The surface is assumed to be isotropic and its stress consists of a part that can be interpreted as a residual stress and a part that stiffens as the surface increases its area. Our results show that residual surface stress and surface stiffness can both increase the overall bending stiffness but through different mechanisms. For sufficiently large residual surface tension, we discover a new type of instability - the bending moment reaches a maximum at a critical curvature. Effects of surface stress on different stress components in the bulk of the plate are discussed and the possibility of self-bending due to asymmetry of the surface properties is also explored. The results of our calculations provide insights into surface stress effects in the large deformation regime and can be used as a test for implementation of finite element methods for surface elasticity.

  17. Blue Willow Story Plates

    Science.gov (United States)

    Fontes, Kris

    2009-01-01

    In the December 1997 issue of "SchoolArts" is a lesson titled "Blue Willow Story Plates" by Susan Striker. In this article, the author shares how she used this lesson with her middle-school students many times over the years. Here, she describes a Blue Willow plate painting project that her students made.

  18. Create Your Plate

    Medline Plus

    Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is a ...

  19. Create Your Plate

    Medline Plus

    Full Text Available ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...

  20. Highly conductive composites for fuel cell flow field plates and bipolar plates

    Science.gov (United States)

    Jang, Bor Z; Zhamu, Aruna; Song, Lulu

    2014-10-21

    This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.

  1. A Damage Tolerance Comparison of Composite Hat-Stiffened and Honeycomb Sandwich Structure for Launch Vehicle Interstage Applications

    Science.gov (United States)

    Nettles, A. T.

    2011-01-01

    In this study, a direct comparison of the compression-after-impact (CAI) strength of impact-damaged, hat-stiffened and honeycomb sandwich structure for launch vehicle use was made. The specimens used consisted of small substructure designed to carry a line load of approx..3,000 lb/in. Damage was inflicted upon the specimens via drop weight impact. Infrared thermography was used to examine the extent of planar damage in the specimens. The specimens were prepared for compression testing to obtain residual compression strength versus damage severity curves. Results show that when weight of the structure is factored in, both types of structure had about the same CAI strength for a given damage level. The main difference was that the hat-stiffened specimens exhibited a multiphase failure whereas the honeycomb sandwich structure failed catastrophically.

  2. Numerically Studying the Effect of Stiffening Rings on Reducing the Thickness of Torospherical Heads under Pressure on Their Concave Side

    Directory of Open Access Journals (Sweden)

    Sa'id Golabi

    2008-01-01

    Full Text Available The high thickness of heads used in pressure vessels is always one of the main concerns of designers and manufacturers. A thorough study has been conducted on all types of heads including torospherical heads, with external and internal pressure to reduce their thickness using stiffening rings by finite element technique. Here the result of analysis on heads with pressure on their concave side is presented. The results include a method for determining the dimensions of the most suitable ring and its location on heads from one hand and its effect on reduction of the head thickness from the other hand. The result of analysis showed that using suitable stiffening ring may reduce up to 30% of the head thickness.

  3. Experimental characterization and multidisciplinary conceptual design optimization of a bendable load stiffened unmanned air vehicle wing

    Science.gov (United States)

    Jagdale, Vijay Narayan

    Demand for deployable MAVs and UAVs with wings designed to reduce aircraft storage volume led to the development of a bendable wing concept at the University of Florida (UF). The wing shows an ability to load stiffen in the flight load direction, still remaining compliant in the opposite direction, enabling UAV storage inside smaller packing volumes. From the design prospective, when the wing shape parameters are treated as design variables, the performance requirements : high aerodynamic efficiency, structural stability under aggressive flight loads and desired compliant nature to prevent breaking while stored, in general conflict with each other. Creep deformation induced by long term storage and its effect on the wing flight characteristics are additional considerations. Experimental characterization of candidate bendable UAV wings is performed in order to demonstrate and understand aerodynamic and structural behavior of the bendable load stiffened wing under flight loads and while the wings are stored inside a canister for long duration, in the process identifying some important wing shape parameters. A multidisciplinary, multiobjective design optimization approach is utilized for conceptual design of a 24 inch span and 7 inch root chord bendable wing. Aerodynamic performance of the wing is studied using an extended vortex lattice method based Athena Vortex Lattice (AVL) program. An arc length method based nonlinear FEA routine in ABAQUS is used to evaluate the structural performance of the wing and to determine maximum flying velocity that the wing can withstand without buckling or failing under aggressive flight loads. An analytical approach is used to study the stresses developed in the composite wing during storage and Tsai-Wu criterion is used to check failure of the composite wing due to the rolling stresses to determine minimum safe storage diameter. Multidisciplinary wing shape and layup optimization is performed using an elitist non-dominated sorting

  4. Stiffeners in variational-difference method for calculating shells with complex geometry

    Directory of Open Access Journals (Sweden)

    Ivanov Vyacheslav Nikolaevich

    2014-05-01

    Full Text Available We have already considered an introduction of reinforcements in the variational-difference method (VDM of shells analysis with complex shape. At the moment only ribbed shells of revolution and shallow shells can be calculated with the help of developed analytical and finite-difference methods. Ribbed shells of arbitrary shape can be calculated only using the finite element method (FEM. However there are problems, when using FEM, which are absent in finite- and variational-difference methods: rigid body motion; conforming trial functions; parameterization of a surface; independent stress strain state. In this regard stiffeners are entered in VDM. VDM is based on the Lagrange principle - the principle of minimum total potential energy. Stress-strain state of ribs is described by the Kirchhoff-Clebsch theory of curvilinear bars: tension, bending and torsion of ribs are taken into account. Stress-strain state of shells is described by the Kirchhoff-Love theory of thin elastic shells. A position of points of the middle surface is defined by curvilinear orthogonal coordinates α, β. Curved ribs are situated along coordinate lines. Strain energy of ribs is added into the strain energy to account for ribs. A matrix form of strain energy of ribs is formed similar to a matrix form of the strain energy of the shell. A matrix of geometrical characteristics of a rib is formed from components of matrices of geometric characteristics of a shell. A matrix of mechanical characteristics of a rib contains rib’s eccentricity and geometrical characteristics of a rib’s section. Derivatives of displacements in the strain vector are replaced with finite-difference relations after the middle surface of a shell gets covered with a grid (grid lines coincide with the coordinate lines of principal curvatures. By this case the total potential energy functional becomes a function of strain nodal displacements. Partial derivatives of unknown nodal displacements are

  5. Device for forming stacks of battery plates. Vorrichtung zur Bildung von Stapeln von Akkumulatorplatten

    Energy Technology Data Exchange (ETDEWEB)

    Krause, E.; Poesch, G.

    1988-01-14

    A device for forming stacks of a given number of battery plates continually supplied via a conveyor belt permits careful handling of the battery plates during the formation of stacks, by forming the stacks in the suspended state of the battery plates and dimensioning the stack by lifting the unnecessary battery plates over the conveyor conveying the other battery plates. The stacks formed in this way are lifted by conveyor belts and can be picked up by robust pickers.

  6. Thermal and Mechanical Buckling Analysis of Hypersonic Aircraft Hat-Stiffened Panels With Varying Face Sheet Geometry and Fiber Orientation

    Science.gov (United States)

    Ko, William L.

    1996-01-01

    Mechanical and thermal buckling behavior of monolithic and metal-matrix composite hat-stiffened panels were investigated. The panels have three types of face-sheet geometry: Flat face sheet, microdented face sheet, and microbulged face sheet. The metal-matrix composite panels have three types of face-sheet layups, each of which is combined with various types of hat composite layups. Finite-element method was used in the eigenvalue extractions for both mechanical and thermal buckling. The thermal buckling analysis required both eigenvalue and material property iterations. Graphical methods of the dual iterations are shown. The mechanical and thermal buckling strengths of the hat-stiffened panels with different face-sheet geometry are compared. It was found that by just microdenting or microbulging of the face sheet, the axial, shear, and thermal buckling strengths of both types of hat-stiffened panels could be enhanced considerably. This effect is more conspicuous for the monolithic panels. For the metal-matrix composite panels, the effect of fiber orientations on the panel buckling strengths was investigated in great detail, and various composite layup combinations offering, high panel buckling strengths are presented. The axial buckling strength of the metal-matrix panel was sensitive to the change of hat fiber orientation. However, the lateral, shear, and thermal buckling strengths were insensitive to the change of hat fiber orientation.

  7. Packaging, deployment, and panel design concepts for a truss-stiffened 7-panel precision deployable reflector with feed boom

    Science.gov (United States)

    Heard, Walter L., Jr.; Collins, Timothy J.; Dyess, James W.; Kenner, Scott; Bush, Harold G.

    1993-01-01

    A concept is presented for achieving a remotely deployable truss-stiffened reflector consisting of seven integrated sandwich panels that form the reflective surface, and an integrated feed boom. The concept has potential for meeting aperture size and surface precision requirements for some high-frequency microwave remote sensing applications. The packaged reflector/feed boom configuration is a self-contained unit that can be conveniently attached to a spacecraft bus. The package has a cylindrical envelope compatible with typical launch vehicle shrouds. Dynamic behavior of a deployed configuration having a 216-inch focal length and consisting of 80-inch-diameter, two-inch-thick panels is examined through finite-element analysis. Results show that the feed boom and spacecraft bus can have a large impact on the fundamental frequency of the deployed configuration. Two candidate rib-stiffened sandwich panel configurations for this application are described, and analytical results for panel mass and stiffness are presented. Results show that the addition of only a few rib stiffeners, if sufficiently deep, can efficiently improve sandwich panel stiffness.

  8. Pixelated neutron image plates

    Science.gov (United States)

    Schlapp, M.; Conrad, H.; von Seggern, H.

    2004-09-01

    Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.

  9. Plate removal following orthognathic surgery.

    Science.gov (United States)

    Little, Mhairi; Langford, Richard Julian; Bhanji, Adam; Farr, David

    2015-11-01

    The objectives of this study are to determine the removal rates of orthognathic plates used during orthognathic surgery at James Cook University Hospital and describe the reasons for plate removal. 202 consecutive orthognathic cases were identified between July 2004 and July 2012. Demographics and procedure details were collected for these patients. Patients from this group who returned to theatre for plate removal between July 2004 and November 2012 were identified and their notes were analysed for data including reason for plate removal, age, smoking status, sex and time to plate removal. 3.2% of plates were removed with proportionally more plates removed from the mandible than the maxilla. 10.4% of patients required removal of one or more plate. Most plates were removed within the first post-operative year. The commonest reasons for plate removal were plate exposure and infection. The plate removal rates in our study are comparable to those seen in the literature.

  10. Effect of plate bending on the Urey ratio and the thermal evolution of the mantle

    Science.gov (United States)

    Davies, Geoffrey F.

    2009-10-01

    The bending of tectonic plates as they subduct causes resistance to plate motions and mantle convection. It has been proposed that this effect could keep plate velocities relatively constant with time, and it would imply relatively high mantle temperatures through much of Earth history and relatively rapid cooling at present. It also implies a low Urey ratio, compatible with that inferred from cosmochemistry. Here it is confirmed that bending resistance only plays a significant role if plate thickness is determined mainly by dehydration stiffening accompanying melting, rather than by conductive cooling. Even then the bending resistance is quite sensitive to the radius of curvature of the subducting plate. Observed radii are generally larger than the 200 km assumed in some studies, ranging up to 600 km or more. Furthermore radii of curvature tend to adjust so as to prevent bending resistance from becoming large. When these factors are accounted for, calculations show that bending resistance is unlikely to have been a large factor through Earth history, and the thermal evolution of the mantle is unlikely to have been affected very much. The resolution of the Urey ratio problem should then be sought elsewhere.

  11. Study on rigid-flexible coupling dynamics of hub-plate system

    Institute of Scientific and Technical Information of China (English)

    ZHAO Feiyun; XIE Yongcheng; ZHANG Ming; HE Yinbiao

    2007-01-01

    Dynamic modeling of a rotating flexible hubplate system is investigated by using Jourdain's variation principle in which the finite element method (FEM) is used as discretization method for a flexible plate. Different from the previous modeling of a plate with a prescribed large overall motion, the coupling between large overall motion of the system and elastic deformation of the flexible plate is taken into account in the proposed coupling model. The quadratic terms are included in the strain-displacement expression,such that the dynamic stiffening terms are included. Simulation of a rotating hub-plate system indicates that the linear model based on linear strain-displacement assumption may lead to erroneous results in the case of high rotation speed. Conservation of energy verifies the validity of the proposed model. Furthermore, frequency analysis of a hub-plate system shows the difference between the frequencies of the system with free and prescribed large overall motion, and parameter analysis of the system reveals the coupling characteristics of the rotational motion and the deformation.

  12. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  13. Plating in Top Agar

    OpenAIRE

    sprotocols

    2014-01-01

    1. Warm plates to room temperature before use. Cold plates causes the top agar to solidify irregularly. DO not warm plates to 37° as the top agar will take forever to solidify. - Prepare top agar as the appropriate liquid medium with 0.7% agar. Keeping 100 mL bottles is convenient. For phages, use λ top agar, which is less rich and yields bigger plaques. - Melt top agar in the microwave completely. Allow the agar to boil after liquification; incompletely melted agar looks liquid, but is...

  14. The influence of stiffening ribs on the natural frequencies of butterfly valve disks

    Science.gov (United States)

    Ursoniu, C.; Pepa, D.; Tufoi, M.; Gillich, R. N.

    2017-01-01

    In this paper a study regarding the influence of the ribs shape on the dynamic behavior of butterfly valves, in terms of natural frequency variation, is presented. This behavior is important because the valve disk vibrates due to fluid flow when it is fully or partially open. If the disk is “locked in”, which means that frequency of oscillation is equal to the frequency of vortex shedding, the negative effect of resonance occurs, and harming of the structure is expected. The phenomenon is undesired and can be avoided by designing the disk in order to have the natural frequencies higher as the shedding frequencies. The study is performed via the finite element method (FEM) and first concerns in finding the proper disk thickness for the valve’s geometrical input parameters by static analysis. Afterward, modal analysis on disks with stiffness ribs of various shapes and positions is made. As a result, guidelines for designing the disk’s stiffening elements are provided.

  15. Resin Flow of an Advanced Grid-Stiffened Composite Structure in the Co-Curing Process

    Science.gov (United States)

    Huang, Qizhong; Ren, Mingfa; Chen, Haoran

    2013-06-01

    The soft-mold aided co-curing process which cures the skin part and ribs part simultaneously was introduced for reducing the cost of advanced grid-stiffened composite structure (AGS). The co-curing process for a typical AGS, preformed by the prepreg AS4/3501-6, was simulated by a finite element program incorporated with the user-subroutines `thermo-chemical' module and the `chemical-flow' module. The variations of temperature, cure degree, resin pressure and fiber volume fraction of the AGS were predicted. It shows that the uniform distributions of temperature, cure degree and viscosity in the AGS would be disturbed by the unique geometrical pattern of AGS. There is an alternation in distribution of resin pressure at the interface between ribs and skin, and the duration time of resin flow is sensitive to the thickness of the AGS. To obtain a desired AGS, the process parameters of the co-curing process should be determined by the geometry of an AGS and the kinds of resin.

  16. Stiffener Layout Optimization of Inlet Structure for Electrostatic Precipitator by Improved Adaptive Growth Method

    Directory of Open Access Journals (Sweden)

    Jin Ji

    2014-11-01

    Full Text Available The inlet structure is the main part of an electrostatic precipitator, so its mechanical properties, including the static strength, stiffness, and vibration characteristics, play an important role in the structural safety. In order to achieve good mechanical performance and lightweight of the inlet structure, an optimal design method, which is based on growth mechanism of the branching systems in nature and optimality criteria, named the improved adaptive growth method, is suggested. The method is applied to optimize the stiffener layout of the inlet structure, and the multiobjective optimization mathematical model which consists of the minimum compliance and the maximum natural frequency is considered. The optimality criteria method is applied to solve the design problem. The design result shows that the suggested method is effective, compared with the empirical design of the inlet structure, the weight of the optimal structure is reduced by 3.0%, while the global stiffness and the first natural frequency are increased by 18.83% and 4.66%, respectively.

  17. Effect of High-Fat Diet upon Inflammatory Markers and Aortic Stiffening in Mice

    Directory of Open Access Journals (Sweden)

    Andre Bento Chaves Santana

    2014-01-01

    Full Text Available Changes in lifestyle such as increase in high-fat food consumption are an important cause for vascular diseases. The present study aimed to investigate the involvement of ACE and TGF-β in the aorta stiffness induced by high-fat diet. C57BL/6 male mice were divided in two groups according to their diet for 8 weeks: standard diet (ST and high-fat diet (HF. At the end of the protocol, body weight gain, adipose tissue content, serum lipids and glucose levels, and aorta morphometric and biochemical measurements were performed. Analysis of collagen fibers by picrosirius staining of aorta slices showed that HF diet promoted increase of thin (55% and thick (100% collagen fibers deposition and concomitant disorganization of these fibers orientations in the aorta vascular wall (50%. To unravel the mechanism involved, myeloperoxidase (MPO and angiotensin I converting enzyme (ACE were evaluated by protein expression and enzyme activity. HF diet increased MPO (90% and ACE (28% activities, as well as protein expression of ACE. TGF-β was also increased in aorta tissue of HF diet mice after 8 weeks. Altogether, we have observed that the HF diet-induced aortic stiffening may be associated with increased oxidative stress damage and activation of the RAS in vascular tissue.

  18. Arterial Stiffening in Perspective: Advances in Physical and Physiological Science Over Centuries.

    Science.gov (United States)

    O'Rourke, Michael F; O'Brien, Caroline; Edelman, Elazer R

    2016-07-01

    Arterial stiffening is not a new issue in medicine or research but was the prime concern of Richard Bright in the early 19th century and of the prominent London physicians and pathologists who tried to unscramble the relationship between kidney, heart, and cerebrovascular disease and hardness of the pulse in the late 19th century. It was of major concern to medical educators including Osler and Mackenzie who were still active in practice 100 years ago. It is all too easy (when dependent on the Internet) to consider arterial stiffness to be a new issue. The terms arterial stiffness, aortic stiffness, or wave reflection do not appear as categories for articles such as this in respectable journals, nor in categories for meetings of specialized physicians. Yet as described in this article, the subject was of interest to clinicians, to investigators such as Harvey in the 17th century, and to physicists who developed laws and principles of elasticity from the study of biological materials including ligaments and arteries. This paper provides a perspective on arterial stiffness from the time of William Harvey and Isaac Newton to the present, with a glance into the future.

  19. Stiffening of Red Blood Cells Induced by Cytoskeleton Disorders: A Joint Theory-Experiment Study.

    Science.gov (United States)

    Lai, Lipeng; Xu, Xiaofeng; Lim, Chwee Teck; Cao, Jianshu

    2015-12-01

    The functions and elasticities of the cell are largely related to the structures of the cytoskeletons underlying the lipid bilayer. Among various cell types, the red blood cell (RBC) possesses a relatively simple cytoskeletal structure. Underneath the membrane, the RBC cytoskeleton takes the form of a two-dimensional triangular network, consisting of nodes of actins (and other proteins) and edges of spectrins. Recent experiments focusing on the malaria-infected RBCs (iRBCs) show that there is a correlation between the elongation of spectrins in the cytoskeletal network and the stiffening of the iRBCs. Here we rationalize the correlation between these two observations by combining the wormlike chain model for single spectrins and the effective medium theory for the network elasticity. We specifically focus on how the disorders in the cytoskeletal network affect its macroscopic elasticity. Analytical and numerical solutions from our model reveal that the stiffness of the membrane increases with increasing end-to-end distances of spectrins, but has a nonmonotonic dependence on the variance of the end-to-end distance distributions. These predictions are verified quantitatively by our atomic force microscopy and micropipette aspiration measurements of iRBCs. The model may, from a molecular level, provide guidelines for future identification of new treatment methods for RBC-related diseases, such as malaria infection.

  20. Enzyme Induced Stiffening of Nanoparticle-Hydrogel Composites with Structural Color.

    Science.gov (United States)

    Ayyub, Omar B; Kofinas, Peter

    2015-08-25

    The passive monitoring of biological environments by soft materials has a variety of nanobiotechnology applications; however, invoking distinct transitions in geometric, mechanical or optical properties remains a prevalent design challenge. We demonstrate here that close-packed nanoparticle-hydrogel composites can progress through a substantial shift in such properties by the use of a chemical-to-physical cross-link transition mediated by the catalytic activity of different proteases. Catalytic cleavage of the original hydrogel network structure initiates the self-assembled formation of a secondary, physically cross-linked network, causing a 1200% increase in storage modulus. Furthermore, this unique mechanism can be fabricated as a 3D photonic crystal with broad (∼240 nm), visible responses to the targeted enzymes. Moreover, the material provided threshold responses, requiring a certain extent of proteolytic activity before the transition occurred. This allowed for the fabrication of Boolean logic gates (OR and AND), which responded to a specific assortment of proteases. Ultimately, this mechanism enables the design of stimuli-responsive hydrogels, which can proceed through a secondary network formation, after an energetic barrier has been breached. Protease responsive hydrogel nanocomposites, described here, could offer avenues in degradation-stiffening and collapsing materials for a variety of biomaterial applications.

  1. The constant beat: cardiomyocytes adapt their forces by equal contraction upon environmental stiffening

    Directory of Open Access Journals (Sweden)

    Nils Hersch

    2013-01-01

    Cardiomyocytes are responsible for the permanent blood flow by coordinated heart contractions. This vital function is accomplished over a long period of time with almost the same performance, although heart properties, as its elasticity, change drastically upon aging or as a result of diseases like myocardial infarction. In this paper we have analyzed late rat embryonic heart muscle cells' morphology, sarcomere/costamere formation and force generation patterns on substrates of various elasticities ranging from ∼1 to 500 kPa, which covers physiological and pathological heart stiffnesses. Furthermore, adhesion behaviour, as well as single myofibril/sarcomere contraction patterns, was characterized with high spatial resolution in the range of physiological stiffnesses (15 kPa to 90 kPa. Here, sarcomere units generate an almost stable contraction of ∼4%. On stiffened substrates the contraction amplitude remains stable, which in turn leads to increased force levels allowing cells to adapt almost instantaneously to changing environmental stiffness. Furthermore, our data strongly indicate specific adhesion to flat substrates via both costameric and focal adhesions. The general appearance of the contractile and adhesion apparatus remains almost unaffected by substrate stiffness.

  2. Effect of bow-type initial imperfection on reliability of minimum-weight, stiffened structural panels

    Science.gov (United States)

    Stroud, W. Jefferson; Krishnamurthy, Thiagaraja; Sykes, Nancy P.; Elishakoff, Isaac

    1993-01-01

    Computations were performed to determine the effect of an overall bow-type imperfection on the reliability of structural panels under combined compression and shear loadings. A panel's reliability is the probability that it will perform the intended function - in this case, carry a given load without buckling or exceeding in-plane strain allowables. For a panel loaded in compression, a small initial bow can cause large bending stresses that reduce both the buckling load and the load at which strain allowables are exceeded; hence, the bow reduces the reliability of the panel. In this report, analytical studies on two stiffened panels quantified that effect. The bow is in the shape of a half-sine wave along the length of the panel. The size e of the bow at panel midlength is taken to be the single random variable. Several probability density distributions for e are examined to determine the sensitivity of the reliability to details of the bow statistics. In addition, the effects of quality control are explored with truncated distributions.

  3. Simplified Models for the Study of Postbuckled Hat-Stiffened Composite Panels

    Science.gov (United States)

    Vescovini, Riccardo; Davila, Carlos G.; Bisagni, Chiara

    2012-01-01

    The postbuckling response and failure of multistringer stiffened panels is analyzed using models with three levels of approximation. The first model uses a relatively coarse mesh to capture the global postbuckling response of a five-stringer panel. The second model can predict the nonlinear response as well as the debonding and crippling failure mechanisms in a single stringer compression specimen (SSCS). The third model consists of a simplified version of the SSCS that is designed to minimize the computational effort. The simplified model is well-suited to perform sensitivity analyses for studying the phenomena that lead to structural collapse. In particular, the simplified model is used to obtain a deeper understanding of the role played by geometric and material modeling parameters such as mesh size, inter-laminar strength, fracture toughness, and fracture mode mixity. Finally, a global/local damage analysis method is proposed in which a detailed local model is used to scan the global model to identify the locations that are most critical for damage tolerance.

  4. Stiffening of Red Blood Cells Induced by Cytoskeleton Disorders: A Joint Theory-Experiment Study

    Science.gov (United States)

    Lai, Lipeng; Xu, Xiaofeng; Lim, Chwee Teck; Cao, Jianshu

    2015-12-01

    The functions and elasticities of the cell are largely related to the structures of the cytoskeletons underlying the lipid bi-layer. Among various cell types, the Red Blood Cell (RBC) possesses a relatively simple cytoskeletal structure. Underneath the membrane, the RBC cytoskeleton takes the form of a two dimensional triangular network, consisting of nodes of actins (and other proteins) and edges of spectrins. Recent experiments focusing on the malaria infected RBCs (iRBCs) showed that there is a correlation between the elongation of spectrins in the cytoskeletal network and the stiffening of the iRBCs. Here we rationalize the correlation between these two observations by combining the worm-like chain (WLC) model for single spectrins and the Effective Medium Theory (EMT) for the network elasticity. We specifically focus on how the disorders in the cytoskeletal network affect its macroscopic elasticity. Analytical and numerical solutions from our model reveal that the stiffness of the membrane increases with increasing end-to-end distances of spectrins, but has a non-monotonic dependence on the variance of the end-to-end distance distributions. These predictions are verified quantitively by our AFM and micropipette aspiration measurements of iRBCs. The model may, from a molecular level, provide guidelines for future identification of new treatment methods for RBC related diseases, such as malaria infection.

  5. Preliminary Weight Savings Estimate for a Commercial Transport Wing Using Rod-Stiffened Stitched Composite Technology

    Science.gov (United States)

    Lovejoy, Andrew E.

    2015-01-01

    A structural concept called pultruded rod stitched efficient unitized structure (PRSEUS) was developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. While PRSEUS was an enabling technology for the pressurized HWB structure, limited investigation of PRSEUS for other aircraft structures, such as circular fuselages and wings, has been done. Therefore, a study was undertaken to investigate the potential weight savings afforded by using the PRSEUS concept for a commercial transport wing. The study applied PRSEUS to the Advanced Subsonic Technology (AST) Program composite semi-span test article, which was sized using three load cases. The initial PRSEUS design was developed by matching cross-sectional stiffnesses for each stringer/skin combination within the wing covers, then the design was modified to ensure that the PRSEUS design satisfied the design criteria. It was found that the PRSEUS wing design exhibited weight savings over the blade-stiffened composite AST Program wing of nearly 9%, and a weight savings of 49% and 29% for the lower and upper covers, respectively, compared to an equivalent metallic wing.

  6. Spring-forward in composite plate elements

    NARCIS (Netherlands)

    Wijskamp, Sebastiaan; Lamers, E.A.D.; Akkerman, Remko; Banabic, D.

    2005-01-01

    Spring-forward is a distortion of corner sections in continuous fibre reinforced composite products. The linear thermoelastic prediction for the spring-forward of single curved geometries is incorporated in a FE formulation for plate elements in order to simulate the spring-forward of doubly curved

  7. Spring-forward in composite plate elements

    NARCIS (Netherlands)

    Wijskamp, S.; Lamers, E.A.D.; Akkerman, R.

    2005-01-01

    Spring-forward is a distortion of corner sections in continuous fibre reinforced composite products. The linear thermoelastic prediction for the spring-forward of single curved geometries is incorporated in a FE formulation for plate elements in order to simulate the spring-forward of doubly curved

  8. When Did Plate Tectonics Begin

    Science.gov (United States)

    Brown, M.

    2015-12-01

    Present-day plate tectonics on Earth is characterized by asymmetric (one-sided) subduction, but how do we recognize the imprint of subduction in the geologic record? How do we weigh global (commonly younger) vs local (commonly older) datasets or distinguish initiation from episodic from continuous subduction? How reliable are data gaps? Characteristics of the Paleozoic record of subduction include calc-alkaline magmatism, blueschist/UHP metamorphism and collisional orogenesis, and ophiolites as representatives of former ocean lithosphere. Are these characteristic rocks preserved in Proterozoic, Archean and Hadean crust? Does a hotter mantle, higher heat production and weaker lithosphere modify or eliminate these features? What preceded subduction and how do we recognize that regime? Are rock associations or geochemical fingerprints reliable? Does reworking and overprinting modify geochemical fingerprints? Proposals for the start of plate tectonics have been based on: persistence of isotope anomalies/fractionated chemical domains in the mantle; changes in chemistry of magmatic rocks, rates of crustal growth vs reworking, and sites of growth; the metamorphic record, particularly the first appearance of contrasting thermal gradients or eclogite (including evidence from mineral inclusions in diamonds) or UHP metamorphic rocks; stabilization of cratonic lithosphere and formation of supercratons, and the beginning of the Proterozoic supercontinent cycle; the end of the flat Earth, emergence of continents, development of significant topography, changes in the style of orogeny and the rise in atmospheric oxygen; and, the appearance of passive margins and changes in the style of sedimentation. Estimates of the timing have varied from the Hadean to Neoproterozoic. I will summarize evidence for a growing consensus that the late Mesoarchean to early Paleoproterozoic was a 700 Myr long period of transition to continuous (?) subduction and global (?) mobile-lid plate tectonics.

  9. Create Your Plate

    Medline Plus

    Full Text Available ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ... but changes the portion sizes so you are getting larger portions of non-starchy vegetables and a ...

  10. Create Your Plate

    Medline Plus

    Full Text Available ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ... 4/Box) Taking the guesswork out of portion control has never been easier. It can be a ...

  11. Tectonic Plate Movement.

    Science.gov (United States)

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  12. MyPlate

    Science.gov (United States)

    ... our stage of life, situations, preferences, access to food, culture, traditions, and the personal decisions we make over time. All your food and beverage choices count. MyPlate offers ideas and ...

  13. Create Your Plate

    Medline Plus

    Full Text Available ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ... you have an easy portion control solution that works. Last Reviewed: October 8, 2015 Last Edited: September ...

  14. Designing Assemblies Of Plates

    Science.gov (United States)

    Williams, F. W.; Kennedy, D.; Butler, R.; Aston, G.; Anderson, M. S.

    1992-01-01

    VICONOPT calculates vibrations and instabilities of assemblies of prismatic plates. Designed for efficient, accurate analysis of buckling and vibration, and for optimum design of panels of composite materials. Written in FORTRAN 77.

  15. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning What Can I Eat? Making Healthy Food Choices Diabetes Superfoods Non-starchy Vegetables Grains and Starchy Vegetables ...

  16. Create Your Plate

    Medline Plus

    Full Text Available ... Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning ... serving of dairy or both as your meal plan allows. Choose healthy fats in small amounts. For ...

  17. Create Your Plate

    Medline Plus

    Full Text Available ... 1 Diabetes Get Started Safely Get And Stay Fit Types of Activity Weight Loss Assess Your Lifestyle ... manage portion control wherever you are. Now, our best-selling, sectioned to-go plate with easy-sealing ...

  18. Create Your Plate

    Medline Plus

    Full Text Available ... Plate is a simple and effective way to manage your blood glucose levels and lose weight. With ... been easier. It can be a challenge to manage portion control wherever you are. Now, our best- ...

  19. Tectonic Plate Movement.

    Science.gov (United States)

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  20. Create Your Plate

    Medline Plus

    Full Text Available ... Carbohydrates Carbohydrate Counting Make Your Carbs Count Glycemic ... to manage portion control wherever you are. Now, our best-selling, sectioned to-go plate with easy-sealing ...

  1. Stability Problems for Plates with Short-Term Damageability

    Science.gov (United States)

    Khoroshun, L. P.; Babich, D. V.

    2001-02-01

    The problem on stability of plates with microdamages simulated by hollow randomly dispersed micropores is considered. Two approaches are proposed to investigate the stability of plates weakened by microdamages. These approaches are based on models well known from the theory of stability of elastoplastic bodies — the concepts of tangent-modulus loading and continuous loading

  2. Fractal multifiber microchannel plates

    Science.gov (United States)

    Cook, Lee M.; Feller, W. B.; Kenter, Almus T.; Chappell, Jon H.

    1992-01-01

    The construction and performance of microchannel plates (MCPs) made using fractal tiling mehtods are reviewed. MCPs with 40 mm active areas having near-perfect channel ordering were produced. These plates demonstrated electrical performance characteristics equivalent to conventionally constructed MCPs. These apparently are the first MCPs which have a sufficiently high degree of order to permit single channel addressability. Potential applications for these devices and the prospects for further development are discussed.

  3. Continuous auditing & continuous monitoring : Continuous value?

    NARCIS (Netherlands)

    van Hillo, Rutger; Weigand, Hans; Espana, S; Ralyte, J; Souveyet, C

    2016-01-01

    Advancements in information technology, new laws and regulations and rapidly changing business conditions have led to a need for more timely and ongoing assurance with effectively working controls. Continuous Auditing (CA) and Continuous Monitoring (CM) technologies have made this possible by obtain

  4. Continuous auditing & continuous monitoring : Continuous value?

    NARCIS (Netherlands)

    van Hillo, Rutger; Weigand, Hans; Espana, S; Ralyte, J; Souveyet, C

    2016-01-01

    Advancements in information technology, new laws and regulations and rapidly changing business conditions have led to a need for more timely and ongoing assurance with effectively working controls. Continuous Auditing (CA) and Continuous Monitoring (CM) technologies have made this possible by obtain

  5. Continuous auditing & continuous monitoring : Continuous value?

    NARCIS (Netherlands)

    van Hillo, Rutger; Weigand, Hans; Espana, S; Ralyte, J; Souveyet, C

    2016-01-01

    Advancements in information technology, new laws and regulations and rapidly changing business conditions have led to a need for more timely and ongoing assurance with effectively working controls. Continuous Auditing (CA) and Continuous Monitoring (CM) technologies have made this possible by

  6. Vibration and Buckling of Web Plate of the Plate Girder

    OpenAIRE

    高橋, 和雄; 呉, 明強; 中澤, 聡志; 筑紫, 宏之

    1998-01-01

    The vibration and buckling of the web of the plate girder are studied in this paper. The small deflection theory of the thin plate is used. The finite strip method is employed to solve vibration and buckling of the plate girder. Natural frequenies of buckling properties are shown for various plate girder bridges.

  7. Thermoelastic wave propagation in laminated composites plates

    Directory of Open Access Journals (Sweden)

    Verma K. L.

    2012-12-01

    Full Text Available The dispersion of thermoelastic waves propagation in an arbitrary direction in laminated composites plates is studied in the framework of generalized thermoelasticity in this article. Three dimensional field equations of thermoelasticity with relaxation times are considered. Characteristic equation is obtained on employing the continuity of displacements, temperature, stresses and thermal gradient at the layers’ interfaces. Some important particular cases such as of free waves on reducing plates to single layer and the surface waves when thickness tends to infinity are also discussed. Uncoupled and coupled thermoelasticity are the particular cases of the obtained results. Numerical results are also obtained and represented graphically.

  8. Multiple actin binding domains of Ena/VASP proteins determine actin network stiffening.

    Science.gov (United States)

    Gentry, Brian S; van der Meulen, Stef; Noguera, Philippe; Alonso-Latorre, Baldomero; Plastino, Julie; Koenderink, Gijsje H

    2012-11-01

    Vasodilator-stimulated phosphoprotein (Ena/VASP) is an actin binding protein, important for actin dynamics in motile cells and developing organisms. Though VASP's main activity is the promotion of barbed end growth, it has an F-actin binding site and can form tetramers, and so could additionally play a role in actin crosslinking and bundling in the cell. To test this activity, we performed rheology of reconstituted actin networks in the presence of wild-type VASP or mutants lacking the ability to tetramerize or to bind G-actin and/or F-actin. We show that increasing amounts of wild-type VASP increase network stiffness up to a certain point, beyond which stiffness actually decreases with increasing VASP concentration. The maximum stiffness is 10-fold higher than for pure actin networks. Confocal microscopy shows that VASP forms clustered actin filament bundles, explaining the reduction in network elasticity at high VASP concentration. Removal of the tetramerization site results in significantly reduced bundling and bundle clustering, indicating that VASP's flexible tetrameric structure causes clustering. Removing either the F-actin or the G-actin binding site diminishes VASP's effect on elasticity, but does not eliminate it. Mutating the F-actin and G-actin binding site together, or mutating the F-actin binding site and saturating the G-actin binding site with monomeric actin, eliminates VASP's ability to increase network stiffness. We propose that, in the cell, VASP crosslinking confers only moderate increases in linear network elasticity, and unlike other crosslinkers, VASP's network stiffening activity may be tuned by the local concentration of monomeric actin.

  9. Bending and stretching of plates

    CERN Document Server

    Mansfield, E H; Hemp, W S

    1964-01-01

    The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a

  10. Fe(III) oxides protect fermenter-methanogen syntrophy against interruption by elemental sulfur via stiffening of Fe(II) sulfides produced by sulfur respiration.

    Science.gov (United States)

    Igarashi, Kensuke; Kuwabara, Tomohiko

    2014-03-01

    Thermosipho globiformans (rod-shaped thermophilic fermenter) and Methanocaldococcus jannaschii (coccal hyperthermophilic hydrogenotrophic methanogen) established H2-mediated syntrophy at 68 °C, forming exopolysaccharide-based aggregates. Electron microscopy showed that the syntrophic partners connected to each other directly or via intercellular bridges made from flagella, which facilitated transfer of H2. Elemental sulfur (S(0)) interrupted syntrophy; polysulfides abiotically formed from S(0) intercepted electrons that were otherwise transferred to H(+) to produce H2, resulting in the generation of sulfide (sulfur respiration). However, Fe(III) oxides significantly reduced the interruption by S(0), accompanied by stiffening of Fe(II) sulfides produced by the reduction of Fe(III) oxides with the sulfur respiration-generated sulfide. Sea sand replacing Fe(III) oxides failed to generate stiffening or protect the syntrophy. Several experimental results indicated that the stiffening of Fe(II) sulfides shielded the liquid from S(0), resulting in methane production in the liquid. Field-emission scanning electron microscopy showed that the stiffened Fe(II) sulfides formed a network of spiny structures in which the microorganisms were buried. The individual fermenter rods likely produced Fe(II) sulfides on their surface and became local centers of a core of spiny structures, and the connection of these cores formed the network, which was macroscopically recognized as stiffening.

  11. Surgical approaches for minimally invasive plate osteosynthesis in dogs.

    Science.gov (United States)

    Pozzi, A; Lewis, D

    2009-01-01

    Fracture stabilisation techniques continue to evolve and to provide approaches which minimise the iatrogenic trauma associated with surgery. Minimally invasive plate osteosynthesis (MIPO) is a recently described method of biological internal fixation performed by introducing a bone plate via small insertional incisions that are made remote to the fracture site. The plate is slid adjacent to the bone in an epiperiosteal tunnel connecting the two insertional incisions. Screws are placed in the plate through the insertional incisions or via additional stab incisions made over the holes in the plate. In this paper we describe the surgical approaches used to perform MIPO in humeral, radial, femoral and tibial fractures in dogs. We found that these approaches allowed safe insertion of the plate without grossly damaging neuro-vascular structures. Further studies are needed to evaluate the clinical outcome of MIPO in dogs.

  12. Anterior cervical plating

    Directory of Open Access Journals (Sweden)

    Gonugunta V

    2005-01-01

    Full Text Available Although anterior cervical instrumentation was initially used in cervical trauma, because of obvious benefits, indications for its use have been expanded over time to degenerative cases as well as tumor and infection of the cervical spine. Along with a threefold increase in incidence of cervical fusion surgery, implant designs have evolved over the last three decades. Observation of graft subsidence and phenomenon of stress shielding led to the development of the new generation dynamic anterior cervical plating systems. Anterior cervical plating does not conclusively improve clinical outcome of the patients, but certainly enhances the efficacy of autograft and allograft fusion and lessens the rate of pseudoarthrosis and kyphosis after multilevel discectomy and fusions. A review of biomechanics, surgical technique, indications, complications and results of various anterior cervical plating systems is presented here to enable clinicians to select the appropriate construct design.

  13. Optimizing rib width to height and rib spacing to deck plate thickness ratios in orthotropic decks

    Directory of Open Access Journals (Sweden)

    Abdullah Fettahoglu

    2016-12-01

    Full Text Available Orthotropic decks are composed of deck plate, ribs, and cross-beams and are frequently used in industry to span long distances, due to their light structures and load carrying capacities. Trapezoidal ribs are broadly preferred as longitudinal stiffeners in design of orthotropic decks. They supply the required stiffness to the orthotropic deck in traffic direction. Trapezoidal ribs are chosen in industrial applications because of their high torsional and buckling rigidity, less material and welding needs. Rib width, height, spacing, thickness of deck plate are important parameters for designing of orthotropic decks. In the scope of this study, rib width to height and rib spacing to deck plate thickness ratios are assessed by means of the stresses developed under different ratios of these parameters. For this purpose a FE-model of orthotropic bridge is generated, which encompasses the entire bridge geometry and conforms to recommendations given in Eurocode 3 Part 2. Afterwards necessary FE-analyses are performed to reveal the stresses developed under different rib width to height and rib spacing to deck plate thickness ratios. Based on the results obtained in this study, recommendations regarding these ratios are provided for orthotropic steel decks occupying trapezoidal ribs.

  14. License plate detection algorithm

    Science.gov (United States)

    Broitman, Michael; Klopovsky, Yuri; Silinskis, Normunds

    2013-12-01

    A novel algorithm for vehicle license plates localization is proposed. The algorithm is based on pixel intensity transition gradient analysis. Near to 2500 natural-scene gray-level vehicle images of different backgrounds and ambient illumination was tested. The best set of algorithm's parameters produces detection rate up to 0.94. Taking into account abnormal camera location during our tests and therefore geometrical distortion and troubles from trees this result could be considered as passable. Correlation between source data, such as license Plate dimensions and texture, cameras location and others, and parameters of algorithm were also defined.

  15. Arterial Stiffening With Exercise in Patients With Heart Failure and Preserved Ejection Fraction.

    Science.gov (United States)

    Reddy, Yogesh N V; Andersen, Mads J; Obokata, Masaru; Koepp, Katlyn E; Kane, Garvan C; Melenovsky, Vojtech; Olson, Thomas P; Borlaug, Barry A

    2017-07-11

    Aortic stiffening and reduced nitric oxide (NO) availability may contribute to the pathophysiology of heart failure with preserved ejection fraction (HFpEF). This study compared indices of arterial stiffness at rest and during exercise in subjects with HFpEF and hypertensive control subjects to examine their relationships to cardiac hemodynamics and determine whether exertional arterial stiffening can be mitigated by inorganic nitrite. A total of 22 hypertensive control subjects and 98 HFpEF subjects underwent hemodynamic exercise testing with simultaneous expired gas analysis to measure oxygen consumption. Invasively measured radial artery pressure waveforms were converted to central aortic waveforms by transfer function to assess integrated measures of pulsatile aortic load, including arterial compliance, resistance, elastance, and wave reflection. Arterial load and wave reflections in HFpEF were similar to those in control subjects at rest. During submaximal exercise, HFpEF subjects displayed reduced total arterial compliance and higher effective arterial elastance despite similar mean arterial pressures in control subjects. This was directly correlated with higher ventricular filling pressures and depressed cardiac output reserve (both p exercise, increased wave reflections, impaired compliance, and increased resistance and elastance were observed in subjects with HFpEF. A subset of HFpEF subjects (n = 52) received sodium nitrite or placebo therapy in a 1:1 double-blind, randomized fashion. Compared to placebo, nitrite decreased aortic wave reflections at rest and improved arterial compliance and elastance and central hemodynamics during exercise. Abnormal pulsatile aortic loading during exercise occurs in HFpEF independent of hypertension and is correlated with classical hemodynamic derangements that develop with stress. Inorganic nitrite mitigates arterial stiffening with exercise and improves hemodynamics, indicating that arterial stiffening with

  16. Revealing stiffening and brittling of chronic myelogenous leukemia hematopoietic primary cells through their temporal response to shear stress

    Science.gov (United States)

    Laperrousaz, B.; Berguiga, L.; Nicolini, F. E.; Martinez-Torres, C.; Arneodo, A.; Maguer Satta, V.; Argoul, F.

    2016-06-01

    Cancer cell transformation is often accompanied by a modification of their viscoelastic properties. When capturing the stress-to-strain response of primary chronic myelogenous leukemia (CML) cells, from two data sets of CD34+ hematopoietic cells isolated from healthy and leukemic bone marrows, we show that the mean shear relaxation modulus increases upon cancer transformation. This stiffening of the cells comes along with local rupture events, detected as reinforced sharp local maxima of this modulus, suggesting that these cancer cells respond to a local mechanical stress by a cascade of local brittle failure events.

  17. Casimir force between metal plate and dielectric plate

    Institute of Scientific and Technical Information of China (English)

    刘中柱; 邵成刚; 罗俊

    1999-01-01

    The Casimir effect between metal plate and dielectric plate is discussed with 1+1-dimensional potential model without using cut-off method. Calculation shows that the Casimir force between metal plate and dielectric plate is determined not only by the potential V0, the dielectric thickness and the distance α between the metal plate and dielectric plate, but also by the dimension of the vessel. When α is far less than the dimension of the vessel, the Casimir force Fc∝α(-1); conversely Fc∝α-2. This result is significant for Casimir force experiment.

  18. Parameter survey of a rib stiffened wooden floor using sinus modes model

    DEFF Research Database (Denmark)

    Sjökvist, Lars-Göran; Brunskog, Jonas; Jacobsen, Finn

    2008-01-01

    that reacts onto the plate vibrations. A parameter study is performed with the aim to identify the most important parameters and their behaviour. The preliminary results show that the attenuation of the system is by far most evident in the direction across the beams. The influence from the basic input...

  19. Nuclear reactor alignment plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  20. Create Your Plate

    Medline Plus

    Full Text Available ... 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ Are ... Fitness Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten ...

  1. Create Your Plate

    Medline Plus

    Full Text Available ... Create Your Plate is a simple and effective way to manage your blood glucose levels and lose weight. With ... year of delicious meals to help prevent and manage diabetes. Healthy Recipes: ... to your day with this guide. Ways to Give: Wear Your Cause on Your Sleeve - ...

  2. The Plate Tectonics Project

    Science.gov (United States)

    Hein, Annamae J.

    2011-01-01

    The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will…

  3. Create Your Plate

    Medline Plus

    Full Text Available ... tax-deductible gift today can fund critical diabetes research and support vital diabetes education services that improve the ... way to manage your blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  4. Create Your Plate

    Medline Plus

    Full Text Available ... 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ Are ... Fitness Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten ...

  5. Create Your Plate

    Medline Plus

    Full Text Available ... tax-deductible gift today can fund critical diabetes research and support vital diabetes education services that improve the ... way to manage your blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  6. Create Your Plate

    Medline Plus

    Full Text Available ... unsweetened tea or coffee. Featured Product Precise Portions® Go Healthy Travel Pack (4/Box) Taking the guesswork ... you are. Now, our best-selling, sectioned to-go plate with easy-sealing lid is offered in ...

  7. Create Your Plate

    Medline Plus

    Full Text Available ... manage portion control wherever you are. Now, our best-selling, sectioned to-go plate with easy-sealing lid is offered in a 4-pack. Whether ... Research & Practice We Are Research Leaders We Support Your Doctor ...

  8. INL HIP Plate Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    B. H. Park; C. R. Clark; J. F. Jue

    2010-02-01

    This document outlines the process used to bond monolithic fuel plates by Hot Isostatic Pressing (HIP). This method was developed at Idaho National Laboratory (INL) for the Reduced Enrichment for Research and Test Reactors (RERTR) program. These foils have been used in a number of irradiation experiments in support of the United States Global Threat Reduction Initiative (GTRI) program.

  9. The Plate Tectonics Project

    Science.gov (United States)

    Hein, Annamae J.

    2011-01-01

    The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will…

  10. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals > Create Your Plate Share: Print Page Text Size: A A A Listen En Español Create ... somewhere in between, you have an easy portion control solution that works. Last Reviewed: October 8, 2015 Last Edited: ... Cost of Diabetes Advocate Toolkit Call to Congress Research & ...

  11. Structural evaluation of curved stiffened composite panels fabricated using a THERM-Xsm process

    Science.gov (United States)

    Kassapoglou, Christos; Dinicola, Albert J.; Chou, Jack C.; Deaton, Jerry W.

    1991-01-01

    The use of composites in aircraft structures is often limited by material and manufacturing costs which, for some designs and applications, are prohibitively high. To increase the frequency of application of composites in primary airframe components alternative manufacturing processes are sought that reduce cost and/or enhance structural efficiency. One alternative process involves the use of THERM-Xsm as the pressure transfer medium during autoclave curing. THERM-Xsm, a silicon-based flow able polymer which behaves like a liquid under autoclave presssure, transmits quasi-hydrostatic pressure to all contacting surfaces of the part to be cured. Once the autoclave pressure is relieved, THERM-Xsm reverts back to the powdery solid state and can be reused many times. The THERM-Xsm process to be evaluated is depicted and consists of (1) enclosing the tool and part to be cured by a set of frames that create a box, (2) pouring THERM-Xsm powder onto the part and filling the box, and (3) placing a vacuum bag over the box assembly. In this program, a separating non-porous film (Teflon) was placed between the part to be cured and THERM-Xsm powder to avoid any contamination. The use of THERM-Xsm has two significant advantages over conventional manufacturing procedures. First, it eliminates complicated hard tooling since it guarantees uniform pressure transfer and thus, good compaction at complex structural details (such as frame-stiffener intersections and corners). Second, it greatly simplifies vacuum bagging, since once the part to be cured is covered by THERM-Xsm powder, the vacuum bag need only conform to a relatively flat shape reducing significantly the number of pleats required. A program is on-going at Sikorsky Aircraft to evaluate the structural performance of complex composite fuselage structures made with this THERM-Xsm process and to quantify the impact of THERM-Xsm on manufacturing labor hours and cost. The program involves fuselage panel optimization analysis, a

  12. Effect of Diet and Age on Arterial Stiffening Due to Atherosclerosis in ApoE(-/-) Mice.

    Science.gov (United States)

    Cilla, M; Pérez, M M; Peña, E; Martínez, M A

    2016-07-01

    This work analyzes the progressive stiffening of the aorta due to atherosclerosis development of both ApoE(-/-) and C57BL/6J mice fed on a Western (n = 5) and a normal (n = 5) chow diet for the ApoE(-/-) group and on a normal chow diet (n = 5) for the C57BL/6J group. Sets of 5 animals from the three groups were killed after 10, 20, 30 and 40 weeks on their respective diets (corresponding to 17, 27, 37 and 47 weeks of age). Mechanical properties (inflation test and axial residual stress measurements) and histological properties were compared for both strains, ApoE(-/-) on the hyper-lipidic diet and both ApoE(-/-) and C57BL/6J on the normal diet, after the same period and after different periods of diet. The results indicated that the aorta stiffness in the ApoE(-/-) and C57BL/6J mice under normal diet remained approximately constant irrespective of their age. However, the arterial stiffness in the ApoE(-/-) on the hyper-lipidic diet increased over time. Statistical differences were found between the group after 10 weeks and the groups after 30 and 40 weeks of a hyper-lipidic diet. Comparing the hyper-lipidic and normal diet mice, statistical differences were also found between both diets in all cases after 40 weeks of diet, frequently after 30 weeks, and in some cases after 20 weeks. The early stages of lesion corresponded to the first 2 weeks of diet. Advanced lesions were found at 30 weeks and, finally, the aorta was completely damaged after 40 weeks of diet. In conclusion, we found substantial changes in the mechanical properties of the aorta walls of the ApoE(-/-) mice fed with the hyper-lipidic diet compared to the normal chow diet groups for both the ApoE(-/-) and C57BL/6J groups. These findings could serve as a reference for the study of changes in the arterial wall properties in cases of atherosclerosis.

  13. Effect of bow-type initial imperfection on the buckling load and mass of graphite-epoxy blade-stiffened panels

    Science.gov (United States)

    Stroud, W. J.; Anderson, M. S.; Hennessy, K. W.

    1977-01-01

    A structural synthesis computer code which accounts for first order effects of an initial bow and which can be used for sizing stiffened composite panels having an arbitrary cross section is used to study graphite blade-stiffened panels. The effect of a small initial bow on both the load carrying ability of panels and on the mass of panels designed to carry a specified load is examined. Large reductions in the buckling load caused by a small initial bow emphasize the need for considering a bow when a panel is designed.

  14. Extending Alaska's plate boundary: tectonic tremor generated by Yakutat subduction

    Science.gov (United States)

    Wech, Aaron G.

    2016-01-01

    The tectonics of the eastern end of the Alaska-Aleutian subduction zone are complicated by the inclusion of the Yakutat microplate, which is colliding into and subducting beneath continental North America at near-Pacific-plate rates. The interaction among these plates at depth is not well understood, and further east, even less is known about the plate boundary or the source of Wrangell volcanism. The drop-off in Wadati-Benioff zone (WBZ) seismicity could signal the end of the plate boundary, the start of aseismic subduction, or a tear in the downgoing plate. Further compounding the issue is the possible presence of the Wrangell slab, which is faintly outlined by an anemic, eastward-dipping WBZ beneath the Wrangell volcanoes. In this study, I performed a search for tectonic tremor to map slow, plate-boundary slip in south-central Alaska. I identified ∼11,000 tremor epicenters, which continue 85 km east of the inferred Pacific plate edge marked by WBZ seismicity. The tremor zone coincides with the edges of the downgoing Yakutat terrane, and tremors transition from periodic to continuous behavior as they near the aseismic Wrangell slab. I interpret tremor to mark slow, semicontinuous slip occurring at the interface between the Yakutat and North America plates. The slow slip region lengthens the megathrust interface beyond the WBZ and may provide evidence for a connection between the Yakutat slab and the aseismic Wrangell slab.

  15. Predictive analysis of buckling distortion of thin-plate welded structures

    Institute of Scientific and Technical Information of China (English)

    杨新岐; 霍立兴; 张玉凤; 阎俊霞

    2002-01-01

    The welding buckling distortions of thin-plated structures were investigated based on finite element methods. An engineering treatment method for predicating the buckling distortion was proposed. The equivalent applied thermal-load was used to simulate the welding residual stress, thus the calculation of complex welding distortion can be transformed into 3D elastic structural applied-load analyses, which can reduce the quantities of calculating work effectively. The validation of the method was verified by comparison of the numerical calculation with experimental results. The prediction of buckling distortion for side-walled structures of passenger train was performed and the calculation was in agreement with measuring results in general. It is shown that the main factors for producing the buckling are the intermittent fillet and plug weld during welding the stiffened beams and columns to the panel.

  16. Experimental investigation of the influence of internal frames on the vibroacoustic behavior of a stiffened cylindrical shell using wavenumber analysis

    Science.gov (United States)

    Meyer, V.; Maxit, L.; Renou, Y.; Audoly, C.

    2017-09-01

    The understanding of the influence of non-axisymmetric internal frames on the vibroacoustic behavior of a stiffened cylindrical shell is of high interest for the naval or aeronautic industries. Several numerical studies have shown that the non-axisymmetric internal frame can increase the radiation efficiency significantly in the case of a mechanical point force. However, less attention has been paid to the experimental verification of this statement. That is why this paper proposes to compare the radiation efficiency estimated experimentally for a stiffened cylindrical shell with and without internal frames. The experimental process is based on scanning laser vibrometer measurements of the vibrations on the surface of the shell. A transform of the vibratory field in the wavenumber domain is then performed. It allows estimating the far-field radiated pressure with the stationary phase theorem. An increase of the radiation efficiency is observed in the low frequencies. Analysis of the velocity field in the physical and wavenumber spaces allows highlighting the coupling of the circumferential orders at the origin of the increase in the radiation efficiency.

  17. Nonlinear imaging (NIM) of flaws in a complex composite stiffened panel using a constructive nonlinear array (CNA) technique.

    Science.gov (United States)

    Malfense Fierro, Gian Piero; Meo, Michele

    2017-02-01

    Recently, there has been high interest in the capabilities of nonlinear ultrasound techniques for damage/defect detection as these techniques have been shown to be quite accurate in imaging some particular type of damage. This paper presents a Constructive Nonlinear Array (CNA) method, for the detection and imaging of material defects/damage in a complex composite stiffened panel. CNA requires the construction of an ultrasound array in a similar manner to standard phased arrays systems, which require multiple transmitting and receiving elements. The method constructively phase-match multiple captured signals at a particular position given multiple transmit positions, similar to the total focusing method (TFM) method. Unlike most of the ultrasonic linear techniques, a longer excitation signal was used to achieve a steady-state excitation at each capturing position, so that compressive and tensile stress at defect/crack locations increases the likelihood of the generation of nonlinear elastic waves. Moreover, the technique allows the reduction of instrumentation nonlinear wave generation by relying on signal attenuation to naturally filter these errors. Experimental tests were carried out on a stiffened panel with manufacturing defects. Standard industrial linear ultrasonic test were carried out for comparison. The proposed new method allows to image damages/defects in a reliable and reproducible manner and overcomes some of the main limitations of nonlinear ultrasound techniques. In particular, the effectiveness and robustness of CNA and the advantages over linear ultrasonic were clearly demonstrated allowing a better resolution and imaging of complex and realistic flaws.

  18. Panax ginseng and salvia miltiorrhiza supplementation abolishes eccentric exercise-induced vascular stiffening: a double-blind randomized control trial.

    Science.gov (United States)

    Lin, Hsin-Fu; Tung, Kang; Chou, Chun-Chung; Lin, Ching-Che; Lin, Jaung-Geng; Tanaka, Hirofumi

    2016-06-06

    Muscle damage induced by unaccustomed or eccentric exercise results in delayed onset vascular stiffening. We tested the hypothesis that a 7-day supplementation of panax ginseng and salvia miltiorrhiza prior to an acute eccentric exercise could attenuate arterial stiffening. By using a double-blind study placebo-controlled randomized design, subjects were randomly assigned to either the Chinese herb (N = 12) or the placebo group (N = 11) and performed a downhill running (eccentric exercise) trial and a control (seated rest) trial. Muscle soreness increased 1-2 days after exercise similarly in both groups, whereas the herb group demonstrated a faster recovery on active range of motion. Plasma creatine kinase concentration increased significantly at 24 h in both groups but the magnitude of increase was attenuated in the herb group. Arterial stiffness as measured by carotid-femoral pulse wave velocity increased significantly at 24 h in the placebo group but such increase was absent in the herb group. Flow-mediated dilation did not change in either group. Plasma concentrations of CRP and IL-6 increased in the placebo group but no such increases were observed in the herb group. Changes in arterial stiffness induced by eccentric exercise were associated with the corresponding changes in IL-6 (r = 0.46, P exercise. ClinicalTrials.gov: NCT02007304. Registered Dec. 5, 2013).

  19. Individuals with non-specific low back pain use a trunk stiffening strategy to maintain upright posture.

    Science.gov (United States)

    Jones, Stephanie L; Henry, Sharon M; Raasch, Christine C; Hitt, Juvena R; Bunn, Janice Y

    2012-02-01

    There is increasing evidence that individuals with non-specific low back pain (LBP) have altered movement coordination. However, the relationship of this neuromotor impairment to recurrent pain episodes is unknown. To assess coordination while minimizing the confounding influences of pain we characterized automatic postural responses to multi-directional support surface translations in individuals with a history of LBP who were not in an active episode of their pain. Twenty subjects with and 21 subjects without non-specific LBP stood on a platform that was translated unexpectedly in 12 directions. Net joint torques of the ankles, knees, hips, and trunk in the frontal and sagittal planes as well as surface electromyographs of 12 lower leg and trunk muscles were compared across perturbation directions to determine if individuals with LBP responded using a trunk stiffening strategy. Individuals with LBP demonstrated reduced peak trunk torques, and enhanced activation of the trunk and ankle muscle responses following perturbations. These results suggest that individuals with LBP use a strategy of trunk stiffening achieved through co-activation of trunk musculature, aided by enhanced distal responses, to respond to unexpected support surface perturbations. Notably, these neuromotor alterations persisted between active pain periods and could represent either movement patterns that have developed in response to pain or could reflect underlying impairments that may contribute to recurrent episodes of LBP. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Fracture mechanics analysis on Smart-Cut(R) technology. Part 1: Effects of stiffening wafer and defect interaction

    Institute of Scientific and Technical Information of China (English)

    Bin Gu; Hongyuan Liu; YiuWing Mai; Xi Qiao Feng; Shou Wen Yu

    2009-01-01

    In the present paper, continuum fracture mecha-nics is used to analyze the Smart-Cut process, a recently established ion cut technology which enables highly efficient fabrication of various silicon-on-insulator (SO1) wafers of high uniformity in thickness. Using integral transform and Cauchy singular integral equation methods, the mode-Ⅰ and mode-II stress intensity factors, energy release rate, and crack opening displacements are derived in order to examine seve-ral important fracture mechanisms involved in the Smart-Cut process. The effects of defect interaction and stiffening wafer on defect growth are investigated. The numerical results indi-cate that a stiffener/handle wafer can effectively prevent the donor wafer from blistering and exfoliation, but it slows down the defect growth by decreasing the magnitudes of SIF's. Defect interaction also plays an important role in the splitting process of SOI wafers, but its contribution depends strongly on the size, interval and internal pressure of defects. Finally, an analytical formula is derived to estimate the implantation dose required for splitting a SOI wafer.

  1. 标准加入原子吸收法连续测定光亮镀镍液中铜、锌、铬、铅、铁杂质的含量%Continuous determination of copper, zinc, chromium, lead,and iron impurities in bright nickel plating baths by standard atomic absorption spectrometry

    Institute of Scientific and Technical Information of China (English)

    张秀香; 王旭珍; 于丽; 张曰秋

    2001-01-01

    在相同的光亮镀镍液中分别加入浓度依次递增的铜、锌、铁、铬、铜的标准溶液。用原子吸收光谱法连续测定镀液中铜、锌、铁、铬、铅杂质的含量,优选出最佳的仪器工作条件,讨论了共存元素的干扰及消除。该方法简单,准确度和精密度高,具有使用价值。%Increasing amount of copper, zinc, iron, chromium and leadstandard solutions were separately added in the same nickel plating baths, subsequently, copper, zinc, iron, chromium and lead impurities were continuously determined by atomic absorption spectrometry. Operating parameters of the analytical apparatus were optimized. Interference of coexisting elements was discussed. This method is simple, accurate, and has good application value.

  2. What Are Growth Plate Injuries?

    Science.gov (United States)

    ... plate injuries are:  Falling down  Competitive sports (like football)  Recreational activities. Other reasons for growth plate injuries are:  Child abuse  Injury from extreme cold (for ...

  3. Controlling Laminate Plate Elastic Behavior

    OpenAIRE

    Mareš, T.

    2004-01-01

    This paper aims to express the relation of a measure of laminate plate stiffness with respect to the fiber orientation of its plies. The inverse of the scalar product of the lateral displacement of the central plane and lateral loading of the plate is the measure of laminate plate stiffness. In the case of a simply supported rectangular laminate plate this measure of stiffness is maximized, and the optimum orientation of its plies is searched.

  4. 带有加强筋的Mindlin板动态刚度阵法%Dynamic Stiffness Matrix of Mindlin Plate with Intermediate Stiffeners

    Institute of Scientific and Technical Information of China (English)

    周平; 赵德有

    2007-01-01

    以加筋中厚矩形板为研究对象,推导了加筋板的动态刚度阵,为动态刚度阵法提供一种新单元.板的运动微分方程由Mindlin厚板理论给出,同时还考虑了板平面内的振动.对于板上加强筋的处理,则通过Hamilton原理对板的运动方程作相应的修正,最终得到加筋板的运动微分方程.而方程的解析解直接用于单元刚度阵的推导,所得加筋板单元的动态刚度阵结合传统有限元方法的单元组装和求解方法即可用于计算整个结构的动力响应.此外,还给出了加筋板单元的均方响应计算公式,可用来计算结构的平均振动能量.最后通过数值算例验证本文方法,计算结果与传统有限元方法进行分析比较.

  5. Microchannel plate streak camera

    Science.gov (United States)

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  6. Electronic Equipment Cold Plates

    Science.gov (United States)

    1976-04-01

    equations for such a flow regiae. For laainar flow and Moderate teaperature differwwe« between the well «nd coolant, a aodifled Sieder -Tate...con- figuration. The heat-transfer coefficients, therefore, were determined by using both the Sieder -Tate and McAdams equations and the coaputed...values used In the analytical predictions. As with th* previous cold Plates, the Sieder -Tate equation gave too low of values for the heat- transfer

  7. Elastic plate spallation

    Science.gov (United States)

    Oline, L.; Medaglia, J.

    1972-01-01

    The dynamic finite element method was used to investigate elastic stress waves in a plate. Strain displacement and stress strain relations are discussed along with the stiffness and mass matrix. The results of studying point load, and distributed load over small, intermediate, and large radii are reported. The derivation of finite element matrices, and the derivation of lumped and consistent matrices for one dimensional problems with Laplace transfer solutions are included. The computer program JMMSPALL is also included.

  8. Plate Tearing by a Cone

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1997-01-01

    The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisaton of the damage, which...

  9. Plate Tearing by a Cone

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1998-01-01

    The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisation of the damage, which...

  10. Farsi License Plate Detection and Recognition Based on Characters Features

    Directory of Open Access Journals (Sweden)

    Sedigheh Ghofrani

    2011-06-01

    Full Text Available In this paper a license plate detection and recognition system for Iranian private cars is implemented. The proposed license plate localization algorithm is based on region elements analysis which works properly independent of distance (how far a vehicle is, rotation (angle between camera and vehicle, and contrast (being dirty, reflected, or deformed. In addition, more than one car may exist in the image. The proposed method extracts edges and then determines the candidate regions by applying window movement. The region elements analysis includes binarization, character analysis, character continuity analysis and character parallelism analysis. After detecting license plates, we estimate the rotation angle and try to compensate it. In order to identify a detected plate, every character should be recognized. For this purpose, we present 25 features and use them as the input to an artificial neural network classifier. The experimental results show that our proposed method achieves appropriate performance for both detection and recognition of the Iranian license plates.

  11. Prediction of the point of impact in an anisotropic plate

    Science.gov (United States)

    Koabaz, M.; Hajzargarbashi, T.; Kundu, T.; Deschamps, M.

    2011-01-01

    Locating the point of impact of a foreign object in a plate is important for continuous health monitoring of structures. A new method based on an optimization scheme has been recently proposed to locate the point of impact in anisotropic plates by analyzing the times of arrival of the ultrasonic signals at the passive sensors attached to the plate. Following this optimization based technique, in this paper the impact point on an anisotropic plate is predicted from the acoustic emission data. Experiments are carried out with a carbon-epoxy plate where the impact point is modeled by an acoustic source. A Parallel Pre-stressed Actuator (PPA) is used as the acoustic source and the acoustic signals at different locations are received by adhesively bonded acoustic sensors. The source point is then predicted and compared with its actual location. Related theory is also presented in the paper.

  12. Plate tectonics conserves angular momentum

    Directory of Open Access Journals (Sweden)

    C. Bowin

    2009-03-01

    Full Text Available A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4 E+27 kgm2s−1. Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates. Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth. The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant velocity on the crests of convection cells driven by rising heat. These results imply that spreading centers are primarily passive reactive

  13. Vehicle License Plate Recognition Syst

    Directory of Open Access Journals (Sweden)

    Meenakshi,R. B. Dubey

    2012-12-01

    Full Text Available The vehicle license plate recognition system has greater efficiency for vehicle monitoring in automatic zone access control. This Plate recognition system will avoid special tags, since all vehicles possess a unique registration number plate. A number of techniques have been used for car plate characters recognition. This system uses neural network character recognition and pattern matching of characters as two character recognition techniques. In this approach multilayer feed-forward back-propagation algorithm is used. The performance of the proposed algorithm has been tested on several car plates and provides very satisfactory results.

  14. Active vibration control of a ring-stiffened cylindrical shell in contact with unbounded external fluid and subjected to harmonic disturbance by piezoelectric sensor and actuator

    Science.gov (United States)

    Kwak, Moon K.; Yang, Dong-Ho

    2013-09-01

    This paper is concerned with the suppression of vibrations and radiated sound of a ring-stiffened circular cylindrical shell in contact with unbounded external fluid by means of piezoelectric sensors and actuators. The dynamic model of a circular cylindrical shell based on the Sanders shell theory was considered together with a ring stiffener model. The mass and stiffness matrices for a ring stiffener were newly derived in this study and added to the mass and stiffness matrices of the cylindrical shell, respectively. The fluid-added mass matrix, which was derived by using the baffled shell theory, was also added to the mass matrix. Finally, the equations representing the piezoelectric sensor measurement and piezoelectric actuation complete the theoretical model for the addressed problem. The natural vibration characteristics of the ring-stiffened cylindrical shell both in air and in water were investigated both theoretically and experimentally. The theoretical predictions were in good agreement with the experimental results. An active vibration controller which can cope with a harmonic disturbance was designed by considering the modified higher harmonic control, which is, in fact, a band rejection filter. An active vibration control experiment on the submerged cylindrical shell was carried out in a water tank and the digital control system was used. The experimental results showed that both vibrations and radiation sound of the submerged cylindrical shell were suppressed by a pair of piezoelectric sensor and actuator.

  15. A biofidelic computational model of the female pelvic system to understand effect of bladder fill and progressive vaginal tissue stiffening due to prolapse on anterior vaginal wall.

    Science.gov (United States)

    Chanda, Arnab; Unnikrishnan, Vinu; Richter, Holly E; Lockhart, Mark E

    2016-11-01

    Treatment of anterior vaginal prolapse (AVP), suffered by over 500,000 women in the USA, is a challenge in urogynecology because of the poorly understood mechanics of AVP. Recently, computational modeling combined with finite element method has been used to model AVP through the study of pelvic floor muscle and connective tissue impairments on the anterior vaginal wall (AVW). Also, the effects of pelvic organ displacements on the AVW were studied numerically. In our current work, an MRI-based full-scale biofidelic computational model of the female pelvic system composed of the urinary bladder, vaginal canal, and the uterus was developed, and a novel finite element method framework was employed to simulate vaginal tissue stiffening and also bladder filling due to expansion for the first time. A mesh convergence study was conducted to choose a computationally efficient mesh, and a non-linear hyperelastic Yeoh's material model was adopted for the study. The AVW displacements, mechanical stresses, and strains were estimated at varying degrees of bladder fills and vaginal tissue stiffening. Both bladder filling and vaginal stiffening were found to increase the stress concentration on the AVW with varying trends, which have been discussed in detail in the paper. To our knowledge, this study is the first to estimate the individual and combined effects of bladder filling and vaginal tissue stiffening due to prolapse on the AVW. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Using plate mapping to examine portion size and plate composition for large and small divided plates.

    Science.gov (United States)

    Sharp, David E; Sobal, Jeffery; Wansink, Brian

    2014-12-01

    Does the size of a plate influence the serving of all items equally, or does it influence the serving of some foods - such as meat versus vegetables - differently? To examine this question, we used the new method of plate mapping, where people drew a meal on a paper plate to examine sensitivity to small versus large three-compartment divided plates in portion size and meal composition in a sample of 109 university students. The total drawn meal area was 37% bigger on large plates than small plates, which showed that the portion of plate coverage did not differ by plate size. Men and women drew bigger vegetable portions and men drew bigger meat portions on large plates when compared to small plates. These results suggest that men and women are differentially sensitive to plate size for overall meal size and for meal composition. Implications for decreasing portion size and improving meal balance are that plate size may influence portion size and change the proportions of foods served.

  17. Continuity theory

    CERN Document Server

    Nel, Louis

    2016-01-01

    This book presents a detailed, self-contained theory of continuous mappings. It is mainly addressed to students who have already studied these mappings in the setting of metric spaces, as well as multidimensional differential calculus. The needed background facts about sets, metric spaces and linear algebra are developed in detail, so as to provide a seamless transition between students' previous studies and new material. In view of its many novel features, this book will be of interest also to mature readers who have studied continuous mappings from the subject's classical texts and wish to become acquainted with a new approach. The theory of continuous mappings serves as infrastructure for more specialized mathematical theories like differential equations, integral equations, operator theory, dynamical systems, global analysis, topological groups, topological rings and many more. In light of the centrality of the topic, a book of this kind fits a variety of applications, especially those that contribute to ...

  18. Temperature field of steel plate cooling process after plate rolling

    Directory of Open Access Journals (Sweden)

    Huijun Feng, Lingen Chen, Fengrui Sun

    2015-01-01

    Full Text Available Based on numerical calculation with Matlab, the study on cooling process after plate rolling is carried out, and the temperature field distribution of the plate varying with the time is obtained. The effects of the plate thickness, final rolling temperature, cooling water temperature, average flow rate of the cooling water, carbon content of the plate and cooling method on the plate surface and central temperatures as well as final cooling temperature are discussed. For the same cooling time, the plate surface and central temperatures as well as their temperature difference increase; with the decrease in rolling temperature and the increase in average flow rate of the cooling water, the plate surface and central temperatures decrease. Compared with the single water cooling process, the temperature difference between the plate centre and surface based on intermittent cooling is lower. In this case, the temperature uniformity of the plate is better, and the corresponding thermal stress is lower. The fitting equation of the final cooling temperature with respect to plate thickness, final rolling temperature, cooling water temperature and average flow rate of the cooling water is obtained.

  19. Ultralight shape-recovering plate mechanical metamaterials.

    Science.gov (United States)

    Davami, Keivan; Zhao, Lin; Lu, Eric; Cortes, John; Lin, Chen; Lilley, Drew E; Purohit, Prashant K; Bargatin, Igor

    2015-12-03

    Unusual mechanical properties of mechanical metamaterials are determined by their carefully designed and tightly controlled geometry at the macro- or nanoscale. We introduce a class of nanoscale mechanical metamaterials created by forming continuous corrugated plates out of ultrathin films. Using a periodic three-dimensional architecture characteristic of mechanical metamaterials, we fabricate free-standing plates up to 2 cm in size out of aluminium oxide films as thin as 25 nm. The plates are formed by atomic layer deposition of ultrathin alumina films on a lithographically patterned silicon wafer, followed by complete removal of the silicon substrate. Unlike unpatterned ultrathin films, which tend to warp or even roll up because of residual stress gradients, our plate metamaterials can be engineered to be extremely flat. They weigh as little as 0.1 g cm(-2) and have the ability to 'pop-back' to their original shape without damage even after undergoing multiple sharp bends of more than 90°.

  20. Real Plates and Dubious Microplates

    Science.gov (United States)

    Kogan, M. G.; Steblov, G. M.

    2008-12-01

    From the onset of plate tectonics, the existence of most of the plates was never put in doubt, although the boundaries of some plates, like Africa, were later revised. There are however, two microplates in northeast Asia, the Amurian and Okhotsk, whose existence and the sense of rotation was revised several times. The rms value of plate-residual GPS velocities is 0.5-0.9 mm/a for sets of stations representing the motion of the following plates: Antarctic, Australian, Eurasian, North American, Nubian, Pacific, and South American. This value can be regarded as an upper bound on deviation of real plates from infinite stiffness. The rms value of plate-residual GPS velocities is 1.2-1.8 mm/a for the Indian, Nazca, and Somalian plates. Higher rms values for India and Nazca are attributed to the noisier data. The higher rms value for Somalia appears to arise from the distributed deformation to the east of the East African Rift; whether this statement is true can only be decided from observations of denser network in the future. From the analysis of plate-residual GPS velocities, the Canadian Arctic and northeastern Siberia belong to the North American plate. The detailed GPS survey on Sakhalin Island shows that the Sea of Okhotsk region also belongs to the North American plate while the region to the west of it belongs to the Eurasian plate. These results provide a constraint on the geometry of the North American plate and put in doubt the existence of smaller plates in northeast Asia.

  1. The postbuckling analysis of laminated circular plate with elliptic delamination

    Science.gov (United States)

    Chen, Deliang; Chen, Changping; Fu, Yiming

    2011-01-01

    Based on the Von Karman plate theory, considering the effect of transverse shear deformation, and using the method of the dissociated three regions, the postbuckling governing equations for the axisymmetric laminated circular plates with elliptical delamination are derived. By using the orthogonal point collocation method, the governing equations, boundary conditions and continuity conditions are transformed into a group of nonlinear algebraically equation and the equations are solved with the alternative method. In the numerical examples, the effects of various elliptical in shape, delamination depth and different material properties on buckling and postbuckling of the laminated circular plates are discussed and the numerical results are compared with available data.

  2. Efeito do ultra-som terapêutico contínuo em placas epifisárias de coelhos Efectos de la ultrasonografia terapéutica continua en placas epifisarias de conejos Effect of continuous therapeutic ultrasound in rabbit growth plates

    Directory of Open Access Journals (Sweden)

    Andersom Ricardo Fréz

    2006-06-01

    que en el control (p The therapeutic efficiency of ultrasound has become an indispensable tool of physical therapy treatment in cases of alteration by lesions and in many kinds of sickness. However, in pediatric cases the use of ultrasound is controversial due to possible disturbance and damage to the growth plate. The aim of this study is to find out if the continuous ultrasound presents alteration effects on the growth plate of female rabbits. Eight New Zealand female rabbits with two months of age were tested. They were treated by continuous therapeutic ultrasound with doses of 1 W/cm² in the lateral region of the right knee joint for five minutes, during 10 days, with an interval of two days after five applications. The left knee joint was used as a control. The histological analysis showed an alteration in the thickness of the growth plate on the treated side 24.40% bigger than in the left knee joint of the control (p < 0.0001. On other hand, the radiological analysis did not show any difference between the limbs. The conclusion was that the therapeutic ultrasound produced significant histological alterations in the cartilage thickness on the treated side according to the manner it was used in the experiment. Such fact suggests an acceleration in the growth plate metabolism.

  3. Significance of stiffening of high damping rubber bearings on the response of base-isolated buildings under near-fault earthquakes

    Science.gov (United States)

    Alhan, Cenk; Gazi, Hatice; Kurtuluş, Hakan

    2016-10-01

    High Damping Rubber Bearings (HDRBs) are among various types of laterally flexible isolation system elements that effectively protect structures from detrimental effects of earthquakes by lengthening their fundamental periods. However, large isolator displacements resulting in strains larger than 100% may come into scene in case of near-fault ground motions containing long-period and large-amplitude velocity and/or displacement pulses. This is particularly important when HDRBs are used since the post-yield stiffness of an HDRB increases due to inherent strain hardening characteristics when a threshold isolator displacement limit is exceeded. Therefore, it may be critical to consider the stiffening of HDRBs in modeling of these elements for accurate seismic response evaluation of the buildings equipped with HDRBs that are located in near-fault regions. In this study, the significance of stiffening of HDRBs on the response of base-isolated buildings is investigated by conducting nonlinear time history analyses of benchmark six-story base-isolated buildings which employ HDRBs that are represented by non-stiffening or stiffening models under both historical and synthetic near-fault ground motions of various magnitudes and fault distances. The structural response parameters included in the comparisons are base displacements, story drifts, and floor accelerations. It is found that, the significance of stiffening of HDRBs on the response of base-isolated buildings under near-fault earthquakes becomes more prominent as the earthquake magnitude increases and the fault distance decreases and thus suggestions for modifications to seismic code regulations are made accordingly.

  4. Plate Full of Color

    Centers for Disease Control (CDC) Podcasts

    2008-08-04

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Plate Full of Color teaches the value of eating a variety of colorful and healthy foods.  Created: 8/4/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 8/5/2008.

  5. Dynamics of Tectonic Plates

    CERN Document Server

    Pechersky, E; Sadowski, G; Yambartsev, A

    2014-01-01

    We suggest a model that describes a mutual dynamic of tectonic plates. The dynamic is a sort of stick-slip one which is modeled by a Markov random process. The process defines a microlevel of the dynamic. A macrolevel is obtained by a scaling limit which leads to a system of integro-differential equations which determines a kind of mean field systems. Conditions when Gutenberg-Richter empirical law are presented on the mean field level. These conditions are rather universal and do not depend on features of resistant forces.

  6. Dynamics of Tectonic Plates

    OpenAIRE

    2014-01-01

    We suggest a model that describes a mutual dynamic of tectonic plates. The dynamic is a sort of stick-slip one which is modeled by a Markov random process. The process defines a microlevel of the dynamic. A macrolevel is obtained by a scaling limit which leads to a system of integro-differential equations which determines a kind of mean field systems. Conditions when Gutenberg-Richter empirical law are presented on the mean field level. These conditions are rather universal and do not depend ...

  7. Dual-Use Transducer for Use with a Boundary-Stiffened Panel and Method of Using the Same

    Science.gov (United States)

    Schiller, Noah H. (Inventor); Cabell, Randolph H. (Inventor)

    2011-01-01

    A transducer for use with a boundary-stiffened panel has an inter-digitated electrode (IDE) and a piezoelectric wafer portion positioned therebetween. The IDE and/or the wafer portion are triangular, with one edge or side aligned with a boundary edge of the panel. The transducer generates and transmits an output force to the panel in response to an input voltage signal from a sensor, which can be another transducer as described above or an accelerometer. A controller can generate an output force signal in response to the input voltage signal to help cancel the input voltage signal. A method of using the transducer minimizes vibration in the panel by connecting multiple transducers around a perimeter thereof. Motion is measured at different portions of the panel, and a voltage signal determined from the motion is transmitted to the transducers to generate an output force at least partially cancelling or damping the motion.

  8. Testing techniques and comparisons between theory and test for vibration modes of ring stiffened truncated-cone shells.

    Science.gov (United States)

    Naumann, E. C.

    1972-01-01

    Vibration tests were carried out on truncated-cone shells with widely spaced ring stiffeners. The models were excited by an air shaker for LF modes and by small electrodynamic shakers for HF modes. The Novozhilov thin shell theory according to which a ring is an assembly of an arbitrary number of segments, each being a short truncated-cone shell of uniform thickness, is used in the analysis of the results. A mobile, noncontacting, displacement-sensitive sensor system developed by the author was used in the tests. Tests results are given for a free-free 60-deg cone and for a clamped-free 60-deg cone. The tests are characterized as having considerable value for the classification of prevalent multimode responses in shells of this type.

  9. Aortic Blood Flow Reversal Determines Renal Function: Potential Explanation for Renal Dysfunction Caused by Aortic Stiffening in Hypertension.

    Science.gov (United States)

    Hashimoto, Junichiro; Ito, Sadayoshi

    2015-07-01

    Aortic stiffness determines the glomerular filtration rate (GFR) and predicts the progressive decline of the GFR. However, the underlying pathophysiological mechanism remains obscure. Recent evidence has shown a close link between aortic stiffness and the bidirectional (systolic forward and early diastolic reverse) flow characteristics. We hypothesized that the aortic stiffening-induced renal dysfunction is attributable to altered central flow dynamics. In 222 patients with hypertension, Doppler velocity waveforms were recorded at the proximal descending aorta to calculate the reverse/forward flow ratio. Tonometric waveforms were recorded to measure the carotid-femoral (aortic) and carotid-radial (peripheral) pulse wave velocities, to estimate the aortic pressure from the radial waveforms, and to compute the aortic characteristic impedance. In addition, renal hemodynamics was evaluated by duplex ultrasound. The estimated GFR was inversely correlated with the aortic pulse wave velocity, reverse/forward flow ratio, pulse pressure, and characteristic impedance, whereas it was not correlated with the peripheral pulse wave velocity or mean arterial pressure. The association between aortic pulse wave velocity and estimated GFR was independent of age, diabetes mellitus, hypercholesterolemia, and antihypertensive medication. However, further adjustment for the aortic reverse/forward flow ratio and pulse pressure substantially weakened this association, and instead, the reverse/forward flow ratio emerged as the strongest determinant of estimated GFR (P=0.001). A higher aortic reverse/forward flow ratio was also associated with lower intrarenal forward flow velocities. These results suggest that an increase in aortic flow reversal (ie, retrograde flow from the descending thoracic aorta toward the aortic arch), caused by aortic stiffening and impedance mismatch, reduces antegrade flow into the kidney and thereby deteriorates renal function. © 2015 American Heart Association

  10. Cost-Benefit Analysis for the Advanced Near Net Shape Technology (ANNST) Method for Fabricating Stiffened Cylinders

    Science.gov (United States)

    Stoner, Mary Cecilia; Hehir, Austin R.; Ivanco, Marie L.; Domack, Marcia S.

    2016-01-01

    This cost-benefit analysis assesses the benefits of the Advanced Near Net Shape Technology (ANNST) manufacturing process for fabricating integrally stiffened cylinders. These preliminary, rough order-of-magnitude results report a 46 to 58 percent reduction in production costs and a 7-percent reduction in weight over the conventional metallic manufacturing technique used in this study for comparison. Production cost savings of 35 to 58 percent were reported over the composite manufacturing technique used in this study for comparison; however, the ANNST concept was heavier. In this study, the predicted return on investment of equipment required for the ANNST method was ten cryogenic tank barrels when compared with conventional metallic manufacturing. The ANNST method was compared with the conventional multi-piece metallic construction and composite processes for fabricating integrally stiffened cylinders. A case study compared these three alternatives for manufacturing a cylinder of specified geometry, with particular focus placed on production costs and process complexity, with cost analyses performed by the analogy and parametric methods. Furthermore, a scalability study was conducted for three tank diameters to assess the highest potential payoff of the ANNST process for manufacture of large-diameter cryogenic tanks. The analytical hierarchy process (AHP) was subsequently used with a group of selected subject matter experts to assess the value of the various benefits achieved by the ANNST method for potential stakeholders. The AHP study results revealed that decreased final cylinder mass and quality assurance were the most valued benefits of cylinder manufacturing methods, therefore emphasizing the relevance of the benefits achieved with the ANNST process for future projects.

  11. Correlation between in vitro expansion-related cell stiffening and differentiation potential of human mesenchymal stem cells.

    Science.gov (United States)

    LeBlon, Courtney E; Casey, Meghan E; Fodor, Caitlin R; Zhang, Tony; Zhang, Xiaohui; Jedlicka, Sabrina S

    2015-01-01

    Human mesenchymal stem cells (hMSCs) are an attractive cell source for tissue regeneration, given their self-renewal and multilineage potential. However, they are present in only small percentages in human bone marrow, and are generally propagated in vitro prior to downstream use. Previous work has shown that hMSC propagation can lead to alterations in cell behavior and differentiation potency, yet optimization of differentiation based on starting cell elastic modulus is an area still under investigation. To further advance the knowledge in this field, hMSCs were cultured and routinely passaged on tissue-culture polystyrene to investigate the correlation between cell stiffening and differentiation potency during in vitro aging. Local cell elastic modulus was measured at every passage using atomic force microscopy indentation. At each passage, cells were induced to differentiate down myogenic and osteogenic paths. Cells induced to differentiate, as well as undifferentiated cells were assessed for gene and protein expression using quantitative polymerase chain reaction and immunofluorescent staining, respectively, for osteogenic and myogenic markers. Myogenic and osteogenic cell potential are highly reliant on the elastic modulus of the starting cell population (of undifferentiated cells), and this potential appears to peak when the innate cell elastic modulus is close to that of differentiated tissue. However, the latent expression of the same markers in undifferentiated cells also appears to undergo a correlative relationship with cell elastic modulus, indicating some endogenous effects of cell elastic modulus and gene/protein expression. Overall, this study correlates age-related changes with regards to innate cell stiffening and gene/protein expression in commercial hMSCs, providing some guidance as to maintenance and future use of hMSCs in future tissue engineering applications.

  12. CMS Resistive plate Champers

    CERN Document Server

    Zainab, Karam

    2013-01-01

    There are many types of gas detectors which are used in CERN in LHC project, There is a main parts for the gas detectors which must be in all gas detectors types like Multiwire proportional chambers, such as the micromesh gaseous structure chamber (the MicroMegas), Gas-electron multiplier (GEM) detector, Resistive Plate Champers... Compact Muon Solenoid (CMS) experiment detecting muons which are powerful tool for recognizing signatures of interesting physics processes. The CMS detector uses: drift tube (DT), cathode strip chamber (CSC) and resistive plate chamber (RPC). Building RPC’s was my project in summer student program (hardware). RPC’s have advantages which are triggering detector and Excellent time resolution which reinforce the measurement of the correct beam crossing time. RPC’s Organized in stations :  RPC barrel (RB) there are 4 stations, namely RB1, RB2, RB3, and RB4  While in the RPC endcap (RE) the 3 stations are RE1, RE2, and RE3. In the endcaps a new starion will be added and this...

  13. Continuation calculus

    Directory of Open Access Journals (Sweden)

    Bram Geron

    2013-09-01

    Full Text Available Programs with control are usually modeled using lambda calculus extended with control operators. Instead of modifying lambda calculus, we consider a different model of computation. We introduce continuation calculus, or CC, a deterministic model of computation that is evaluated using only head reduction, and argue that it is suitable for modeling programs with control. It is demonstrated how to define programs, specify them, and prove them correct. This is shown in detail by presenting in CC a list multiplication program that prematurely returns when it encounters a zero. The correctness proof includes termination of the program. In continuation calculus we can model both call-by-name and call-by-value. In addition, call-by-name functions can be applied to call-by-value results, and conversely.

  14. Localised Plate Motion on Venus

    Science.gov (United States)

    Ghail, R. C.

    1996-03-01

    The volcanic and tectonic features observed in Dali Vinculum, Parga Vinculum and Imdr Regio are concentrated at long, narrow, curvilinear zones, with relatively minor volcanism and tectonism between these zones. These zones, whilst more diffuse than terrestrial plate boundaries, nevertheless define the margins of tectonic plates. In contrast to Earth, however, it appears that venusian plates are neither created nor destroyed by lateral motion. Rather, plates are thinned and intruded at vincula plate boundaries, vertically accreted by small-scale intra-plate (planitia) volcanism and perhaps destroyed by delamination of thickened crust in tesserae and montane regions such as Thetis Regio and Ishtar Terra. The diversity in age both between and within these three areas together with the evidence for infrequent, small scale resurfacing in the planitiae are difficult to reconcile with a non-uniformitarian geological process.

  15. Tectonics of the Easter plate

    Science.gov (United States)

    Engeln, J. F.; Stein, S.

    1984-01-01

    A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.

  16. Tectonics of the Easter plate

    Science.gov (United States)

    Engeln, J. F.; Stein, S.

    1984-01-01

    A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.

  17. This dynamic earth: the story of plate tectonics

    Science.gov (United States)

    Kious, W. Jacquelyne; Tilling, Robert I.

    1996-01-01

    In the early 1960s, the emergence of the theory of plate tectonics started a revolution in the earth sciences. Since then, scientists have verified and refined this theory, and now have a much better understanding of how our planet has been shaped by plate-tectonic processes. We now know that, directly or indirectly, plate tectonics influences nearly all geologic processes, past and present. Indeed, the notion that the entire Earth's surface is continually shifting has profoundly changed the way we view our world.People benefit from, and are at the mercy of, the forces and consequences of plate tectonics. With little or no warning, an earthquake or volcanic eruption can unleash bursts of energy far more powerful than anything we can generate. While we have no control over plate-tectonic processes, we now have the knowledge to learn from them. The more we know about plate tectonics, the better we can appreciate the grandeur and beauty of the land upon which we live, as well as the occasional violent displays of the Earth's awesome power.This booklet gives a brief introduction to the concept of plate tectonics and complements the visual and written information in This Dynamic Planet (see Further reading), a map published in 1994 by the U.S. Geological Survey (USGS) and the Smithsonian Institution. The booklet highlights some of the people and discoveries that advanced the development of the theory and traces its progress since its proposal. Although the general idea of plate tectonics is now widely accepted, many aspects still continue to confound and challenge scientists. The earth-science revolution launched by the theory of plate tectonics is not finished.

  18. Aluminum Manganese Molten Salt Plating

    Science.gov (United States)

    2006-06-01

    Dry fixture thoroughly with the air gun. Be especially careful to dry water out of crevices. Note: water is a contaminant to the plating process...easily destroyed if blown with the air. Be especially careful to dry water out of crevices. Note: water is a contaminant to the plating process and...especially careful to dry water out of crevices. 13. Carefully remove part from fixture. If residual plating solution is present at attachments points

  19. DESIGN OPTIMIZATION METHOD OF STIFFENERS ON PLANE AND SHELL STRUCTURES%板壳结构加强筋优化设计方法

    Institute of Scientific and Technical Information of China (English)

    季学荣; 丁晓红

    2012-01-01

    提出一种板壳结构加强筋设计方法,包括加强筋的分布设计和截面尺寸设计.通过研究植物根系成长机理,提出一种改进的自适应成长法用于加强筋的分布设计.相对于目前常用的以材料密度分布表示加强筋分布的拓扑优化方法,改进的自适应成长法以真实的加强筋分布表示,设计结果不需要复杂的后处理过程.相对于改进前的自适应成长法,改进后的自适应成长法对加强筋高度进行限制,更符合工程上的要求;通过在加强筋成长过程中引入稳定指标及退化指标,大大提高了计算效率,算法更符合植物根系的成长机理.通过典型算例的应用说明提出方法的有效性.在自适应成长法得到的加强筋分布的基础上,进一步优化加强筋的截面尺寸,算例表明,通过加强筋截面尺寸优化,结构应变能降低4%,结构减重6%.%A design optimization method of stiffeners on plane and shell structures is suggested, which comprises of topology and sizing design optimizations of stiffeners. A modified adaptive growth method is applied to the topology design optimization of stiffeners on the basis of the growth mechanism of root systems of plants. With contrast to the conventional topology design optimization with the design variables of the material densities, the modified adaptive growth method describes the arrangement of stiffeners with the real stiffener layout. Thus, the result can be used to manufacture without any complicated post process. By comparing with the current adaptive growth method, the modified adaptive growth method introduces a limit of height of stiffeners to meet the engineering requirements. Moreover, indicators of stability and degeneration according to the growth mechanism of root systems of plants are introduced to improve the efficiency of computation. Examples show that clear and reasonable topological arrangement of stiffeners can be obtained by applying the

  20. Is plate tectonics needed to evolve technological species on exoplanets?

    Directory of Open Access Journals (Sweden)

    Robert J. Stern

    2016-07-01

    Full Text Available As we continue searching for exoplanets, we wonder if life and technological species capable of communicating with us exists on any of them. As geoscientists, we can also wonder how important is the presence or absence of plate tectonics for the evolution of technological species. This essay considers this question, focusing on tectonically active rocky (silicate planets, like Earth, Venus, and Mars. The development of technological species on Earth provides key insights for understanding evolution on exoplanets, including the likely role that plate tectonics may play. An Earth-sized silicate planet is likely to experience several tectonic styles over its lifetime, as it cools and its lithosphere thickens, strengthens, and becomes denser. These include magma ocean, various styles of stagnant lid, and perhaps plate tectonics. Abundant liquid water favors both life and plate tectonics. Ocean is required for early evolution of diverse single-celled organisms, then colonies of cells which specialized further to form guts, appendages, and sensory organisms up to the complexity of fish (central nervous system, appendages, eyes. Large expanses of dry land also begin in the ocean, today produced above subduction zones in juvenile arcs and by their coalescence to form continents, although it is not clear that plate tectonics was required to create continental crust on Earth. Dry land of continents is required for further evolution of technological species, where modification of appendages for grasping and manipulating, and improvement of eyes and central nervous system could be perfected. These bioassets allowed intelligent creatures to examine the night sky and wonder, the beginning of abstract thinking, including religion and science. Technology arises from the exigencies of daily living such as tool-making, agriculture, clothing, and weapons, but the pace of innovation accelerates once it is allied with science. Finally, the importance of plate

  1. Glass-bead peen plating

    Science.gov (United States)

    Graves, J. R.

    1974-01-01

    Peen plating of aluminum, copper, and nickel powders was investigated. Only aluminum was plated successfully within the range of peen plating conditions studied. Optimum plating conditions for aluminum were found to be: (1) bead/powder mixture containing 25 to 35% powder by weight, (2) peening intensity of 0.007A as measured by Almen strip, and (3) glass impact bead diameter of at least 297 microns (0.0117 inches) for depositing-100 mesh aluminum powder. No extensive cleaning or substrate preparation is required beyond removing loose dirt or heavy oil.

  2. Plate osteosynthesis of simple forearm fractures : LCP versus DC plates

    NARCIS (Netherlands)

    Stevens, Charles Tjerk; Ten Duis, Henk Jan

    2008-01-01

    The aim of this study was to compare the time to radiological bony union of simple A-type fractures of the forearm, treated with either a locking compression plate (LCP) or a dynamic compression plate (DCP). For each fracture, the relation between the use of compression and radiological healing time

  3. Plate osteosynthesis of simple forearm fractures : LCP versus DC plates

    NARCIS (Netherlands)

    Stevens, Charles Tjerk; Ten Duis, Henk Jan

    The aim of this study was to compare the time to radiological bony union of simple A-type fractures of the forearm, treated with either a locking compression plate (LCP) or a dynamic compression plate (DCP). For each fracture, the relation between the use of compression and radiological healing time

  4. Characteristics and applications of advanced technology microchannel plates

    Science.gov (United States)

    Horton, Jerry R.; Tasker, G. William; Fijol, John J.

    1990-10-01

    A method for fabrication of novel thin-filrn continuous dynode electron multipliers is described. We have shown the feasibility of crucial manufacturing steps, including anisotropic dry etching of substrates into photolithographically-defined arrays of high-aspect-ratio channels, and the formation of thin-film continuous dynodes by chemical vapor deposition. We discuss potential performance and design advantages of this advanced technology microchannel plate (AT-MCP) over the conven tional reduced lead silicate glass inicrochannel plate (RLSG-'MCP) and implications for new applications.

  5. Seismic Performance Analysis of Rib Stiffener Strengthen T-type RHS Tubular Joints%加劲肋加强T型方管相贯节点抗震性能分析

    Institute of Scientific and Technical Information of China (English)

    刘远征; 袁波; 宋志丹

    2015-01-01

    为了研究加劲肋加强T型方管相贯节点的抗震性能,本文用有限元分析软件ABAQUS对有加劲肋和无加劲肋的T型方管相贯节点进行滞回性能对比分析,通过变换加劲肋的宽度bw和厚度tw分析参数η(bw/D)和τ(tw/T)对节点耗能能力的影响.结果表明:加劲肋加强节点的极限承载力是无加强作用普通相贯节点的2~5倍,加劲肋在提高节点承载力作用上效果明显,无加强普通节点延性系数为1.6,而加劲肋节点延性系数为2~3之间,加劲肋可以改善节点的延性.加劲肋加强节点的滞回曲线比无加强普通相贯焊接节点的滞回曲线更加饱满,设置加劲肋使节点的耗能性能大大提高.%In order to study the seismic performance of rib stiffeners strengthen T-type RHS tubular joints,a comparative analysis of hysteretic behavior of rib stiffeners strengthen and no strengthen T-type RHS tubular joints was carried out by finite element analysis software ABAQUS,research on effects of rib stiffener parametersη( bw/D)and τ( tw/T)to energy dissipation capacity of joints was carried out by transforming the width of rib stiffener bw and the thickness of rib stiffener tw . The results show that:the ultimate bearing capacity of rib stiffeners strengthen joints was 2~5 times of no strengthen common tubular joints,rib stiffener can improve the ultimate bearing capacity of joints effectively,the ductility of no strengthen common joints was 1. 6,however the ductility of rib stiffener strengthen joints was 2~3,so rib stiffener improved ductility of joint. Hysteretic curve of rib stiff-ener strengthen joints were more plumpness than no strengthen common tubular joints,the setting of rib stiffener improved the energy dissipation ability of joints greatly.

  6. Casimir Effect for Dielectric Plates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    We generalize Kupisewska method to the three-dimensional system and another derivation of the Casimir effect between two dielectric plates is presented based on the explicit quantization of the electromagnetic field in the presence of dielectrics, where the physical meaning of "evanescent mode" is discussed. The Lifshitz's formula is rederived perfect metallic plates will the evanescent modes become unimportant.

  7. Micro-channel plate detector

    Science.gov (United States)

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  8. Gold plating on spectacle frames.

    Science.gov (United States)

    Kenny, I; Mitchell, J W; Walsh, G

    1997-05-01

    An investigation was carried out into the thickness and standard of application of the plating and lacquer coatings applied to three metal spectacle frames. All conform to BS 6625 (1991) for plating thickness, but there was considerable variation in regularity and porosity.

  9. Under Wind Load Function the Curtain Wall Aluminum Plate Internal Force and Distortion Calculation%风荷载作用下幕墙铝板内力和变形的计算

    Institute of Scientific and Technical Information of China (English)

    毛伙南

    2012-01-01

    The survey of unit type curtain wall is researched. Using the ANSYS software, the internal force and displacement of the unit type plate structure which are composed of the trough type aluminum plate and S stiffening ribs (portal type frame) are calculated. The stiffening rib and the aluminum plate corner partial rivet loosens by the rigid joint turns the hinge point is studied. The computation model is built and its biggest internal force and displacement are obtained. Finally, the practical application is in troduced.%阐述了槽型铝板和加劲肋构成的单元式幕墙的内力及变形计算.采用ANSYS软件对单元板块由槽型铝板与5条加劲肋组成的结构的内力和变形进行计算,研究了加劲肋转角处由于局部铆钉松脱由刚结点变成铰接点后其计算模型发生改变的应力及位移计算,最后介绍实际应用.

  10. Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials

    Science.gov (United States)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.

    2014-01-01

    This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.

  11. Numerical Wave Flume Study on Wave Motion Around Submerged Plates

    Institute of Scientific and Technical Information of China (English)

    齐鹏; 侯一筠

    2003-01-01

    Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the numerical model are the continuity equation and the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-ε turbulence equations. Incident waves are generated by an absorbing wave-maker that eliminates the waves reflected from structures. Results are obtained for a range of parameters, with consideration of the condition under which the reflection coefficient becomes maximal and the transmission coefficient minimal. Wave breaking over the plate, vortex shedding downwave, and pulsating flow below the plate are observed. Time-averaged hydrodynamic force reveals a negative drift force. All these characteristics provide a reference for construction of submerged plate breakwaters.

  12. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    . This modelling technique is used to model a plate shell structure with a span of 11.5 meters in the FE software \\textsc{Abaqus}. The structure is analyzed with six different connection details with varying stiffness characteristics, to investigate the influence of these characteristics on the structural effects...... University, a script has been developed for an automated generation of a given plate shell geometry and a corresponding finite element (FE) model. A suitable FE modelling technique is proposed, suggesting a relatively simple method of modelling the connection detail's stiffness characteristics....... Based on these investigations, and FE analysis of other plate shell models, the structural behaviour is described. Possible methods of estimating the stresses in a given plate shell structure are proposed. The non-linear behaviour of a plate shell structure is investigated for varying parameters...

  13. The moving plate capacitor paradox

    Science.gov (United States)

    Davis, B. R.; Abbott, D.; Parrondo, J. M. R.

    2000-03-01

    For the first time we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. A demon restores the plates of the capacitor to their original position, only when the voltage across the capacitor is small—hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the question is how? We explore the concept of a moving plate capacitor, driven by noise, a step further by examining the case where the restoring force on the capacitor plates is provided by a simple spring, rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other.

  14. SAMI Automated Plug Plate Configuration

    CERN Document Server

    Lorente, Nuria P F; Goodwin, Michael

    2012-01-01

    The Sydney-AAO Multi-object Integral field spectrograph (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) which uses a plug-plate to mount its 13 x 61-core imaging fibre bundles (hexabundles) in the optical path at the telescope's prime focus. In this paper we describe the process of determining the positions of the plug-plate holes, where plates contain three or more stacked observation configurations. The process, which up until now has involved several separate processes and has required significant manual configuration and checking, is now being automated to increase efficiency and reduce error. This is carried out by means of a thin Java controller layer which drives the configuration cycle. This layer controls the user interface and the C++ algorithm layer where the plate configuration and optimisation is carried out. Additionally, through the Aladin display package, it provides visualisation and facilitates user verification of the resulting plates.

  15. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究%Study on intensity distribution inside the frequency conversion crystals for continuous phase plate front-located in inertial confinement fusion driver

    Institute of Scientific and Technical Information of China (English)

    占江徽; 姚欣; 高福华; 阳泽健; 张怡霄; 郭永康

    2011-01-01

    This paper studies the intensity distribution inside the frequency conversion crystals when the continuous phase plate (CPP) is placed in 1ω light of final optics assembly for inertial confinement fusion (ICF) driver. Our study shows that the modulation of lω light caused by CPP makes the frequency conversion efficiency and the uniformity of intensity field inside the frequency conversion crystals decrease. It leads to the possibility of laser induced damage for frequency conversion crystals to increase. What worth paying special attention to is: the modulation and maximum intensity in the vicinity of entrance and exit surface of frequency conversion crystal is much higher than in other areas, so the possibility of laser induced damage is also relatively greater there. However, if the intensity of 1ω light before the frequency conversion system becomes even greater, for the normal running of final optics assembly the modulation and maximum intensity inside the frequency conversion crystals should be confined within the permitted range.%本文针对惯性约束聚变驱动器终端光学系统中连续相位板置于基频光路(前置)时,频率转换晶体内部光场分布进行了研究.经研究发现连续相位板前置对基频光的相位调制降低了频率转换效率,增大了频率转换晶体内部光场的不均匀性,它导致晶体激光诱导损伤风险的可能性加大.值得特别注意的是:在频率转换晶体入射和出射端面附近激光调制度和最大光强相对于其他区域高,发生激光诱导损伤的可能性相对更大.因此当不断增大频率转换系统输入的基频光光强时,为保证惯性约束聚变终端光学系统的正常运行需要把连续相位板前置对频率转换晶体内部光场分布的影响控制在容许范围之内.

  16. 采用光谱色散平滑和连续相位板实现靶面均匀辐照的实验研究%Experimental research of target uniform illumination using smoothing by spectral dispersion and continuous phase plate

    Institute of Scientific and Technical Information of China (English)

    张锐; 李平; 粟敬钦; 王建军; 李海; 耿远超; 梁樾; 赵润昌; 董军; 卢宗贵; 周丽丹; 刘兰琴; 林宏奂; 许党朋; 邓颖; 朱娜; 景峰; 隋展; 张小民

    2012-01-01

    To improve laser irradiation uniformity, experimental research on smoothing by spectral dispersion (SSD) and continuous phase plate (CPP) is carried out on the technical integration line (TIL). A bulk phase modulator with 9.2 GHz modulation frequency is adopted. The output spectrum of the phase modulator is stable and the residual amplitude modulation is quite small. The experimental results indicate that when the number of color cycles (No) is adopted to be 1, imposing of SSD in this divergence does not lead to pinhole closure in the spatial filters of the preamplifier and main amplifier. The contrast of the focal spot with 95% energy included with SSD and CPP drops to 0.47 compared with 1.71 without SSD and CPP. When the pulse width of the third harmonic wave is 1 ns and its energy is 1115 J, no damage is found in CPP and other final optics. The experiment solves some key techniques by using SSD and CPP on high-power laser facilities, and provides sound basis for the upcoming physics experiment.%为了改善高功率激光装置的靶面辐照均匀性,在神光-Ⅲ原型装置的一路光上开展了结合光谱色散平滑(SSD)和连续相位板(CPP)的高通量实验研究.实验基于调制频率9.2 GHz的体相位调制器开展,输出的相位调制脉冲光谱展宽稳定,脉冲波形顶部剩余调制很小.结果表明SSD色循环数为1时预放和主放各级空间滤波器过孔顺利,包含焦斑95%能量的通量对比度由窄带时的1.71下降到加SSD和CPP时的0.47.三倍频光脉宽1 ns,能量1115 J时,CPP和终端光学组件元件未见损伤.通过实验解决了在高功率激光装置上采用SSD和CPP进行靶面均匀辐照的若干关键技术,为将其应用于物理实验奠定了坚实基础.

  17. Thin plate neotectonic models of the Australian plate

    Science.gov (United States)

    Burbidge, D. R.

    2004-10-01

    Thin plate finite element models of the neotectonic deformation of the Australian plate have been calculated in order to estimate the stress and strain rate within the plate, specifically concentrating on the Australian continent. The model includes plate-bounding faults, an anelastic brittle-ductile layered rheology and the option of laterally varying elevation and heat flow. The results of the models are compared to (1) the velocity of geodetic benchmarks on the Australian plate, (2) the spreading rate of the mid-oceanic ridges along the Australian plate's margins, (3) the direction of the maximum horizontal principal stress, (4) the stress regime within the plate, and (5) the crustal thickness estimated from the depth to the base of Mohorovicic discontinuity's transition zone. A variety of models are tested with a wide range of input parameters. The model with the smallest misfit with observations predicts that the strain rate for most of the Australian continent is approximately 10-17 s-1. This model has a slightly lower strain rate in the central Australia and is higher off the northern coast of Australia than for the rest of the continent. Strain rates of this magnitude would be difficult to observe from geodetic or geologic data for most parts of Australia but would be enough to generate much of the seismicity that has been observed over the last century.

  18. Underwater electrical discharge in plate to plate configuration

    Science.gov (United States)

    Stelmashuk, Vitaliy

    2016-09-01

    Two main configurations of high voltage electrodes submersed in water have been used for an electrical discharge generation: pin to pin and pin to plate. An electrical breakdown between plate electrodes is generally difficult to reproduce, because there is a uniform and weak electric field. One major advantage of using plate electrodes is their greater ``wear hardness'' to high-energy discharges. The plate electrodes can withstand extremely high energy deposition at which the pin electrode is quickly destroyed. The electrical discharge between plate electrodes can be initiated by creating an inhomogeneity in the electrical field. Two methods of discharge initiation between plate electrodes are proposed for this aim: 1) focusing of a shock wave in the interelectrode region; 2) a bubble injection into the electrode gap. The shock wave creates favourable conditions for the electrical breakdown between the two plate electrodes: it causes that numerous microbubbles of dissolved air start to grow and serve as locations for streamer initiation. In the second method the gas bubble is injected from the one of the electrodes, which has a gas inlet hole on the lateral face for this purpose. A ``volcano'' like morphology of positive streamers are observed in the experiments with weak electric field. The authors are grateful to MEYS grant INGO LG 15013.

  19. Gold nanowires fabricated by immersion plating.

    Science.gov (United States)

    Hsu, Chih-Chieh; Shen, Fang-Yee; Huang, Fon-Shan

    2008-05-14

    The growth mechanism of oriented Au nanowires fabricated by immersion plating was investigated. Both n-type crystal Si (c-Si) and amorphous Si (a-Si) with an electron-beam (E-beam) patterned resist nanotrench were immersed into the plating bath HAuCl(4)/HF. For the Au nanowires fabricated on c-Si, voids, nanograins, and clusters were observed at various plating conditions, time and temperature. The voids were often found in the center of the Au nanowires due to there being fewer nucleation sites on the c-Si surface. However, Au can easily nucleate on the surface of a-Si and form continuous Au nanowires with grain sizes about 10-50 nm. The resistivities of Au nanowires with width 105 nm fabricated on a-Si are about 4.4-6.5 µΩ cm. After annealing at 200 °C for 30 min in N(2) ambient, the resistivities are lowered to about 3.0-3.9 µΩ cm, measured in an atomic force microscope (AFM) in contact mode. The grain size of Au is in the range of ∼50-100 nm. A scanning electron microscope (SEM) examination and grazing incident x-ray diffraction (GIXRD) analysis were also carried out to study the morphology and crystalline structure of the Au nanowires.

  20. Multipactor saturation in parallel-plate waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Sorolla, E.; Mattes, M. [Ecole Polytechnique Federale de Lausanne, Laboratoire d' Electromagnetisme et d' Acoustique (LEMA), Station 11, CH-1015 Lausanne (Switzerland)

    2012-07-15

    The saturation stage of a multipactor discharge is considered of interest, since it can guide towards a criterion to assess the multipactor onset. The electron cloud under multipactor regime within a parallel-plate waveguide is modeled by a thin continuous distribution of charge and the equations of motion are calculated taking into account the space charge effects. The saturation is identified by the interaction of the electron cloud with its image charge. The stability of the electron population growth is analyzed and two mechanisms of saturation to explain the steady-state multipactor for voltages near above the threshold onset are identified. The impact energy in the collision against the metal plates decreases during the electron population growth due to the attraction of the electron sheet on the image through the initial plate. When this growth remains stable till the impact energy reaches the first cross-over point, the electron surface density tends to a constant value. When the stability is broken before reaching the first cross-over point the surface charge density oscillates chaotically bounded within a certain range. In this case, an expression to calculate the maximum electron surface charge density is found whose predictions agree with the simulations when the voltage is not too high.

  1. Flow structures generated by elongated plates settling in a water column

    DEFF Research Database (Denmark)

    Sørensen, Henrik; Jensen, Anna Lyhne; Hærvig, Jakob

    angle of 15° in a 0.60 m x 0.30 m  0.35 m (LBH) glass container filled with water. Continuous Particle Image Velocimetry is used to analyse both the velocity field of the continuous phase and the motion of the plates. The experiments show a well-defined oscillating motion of the plate. A stall occurs...... of the dimensionless moment of inertia and Reynolds number was investigated. The objective of the present work is to collect and present experimental data about the flow structures generated by the settling of elongated plates in a water column. The experiments are carried out by releasing the plates at an initial...... each time the plate changes horizontal direction of motion. The results show a flow building up when the plate accelerates and a vortex rolling off in each turn....

  2. Highly curved microchannel plates

    Science.gov (United States)

    Siegmund, O. H. W.; Cully, S.; Warren, J.; Gaines, G. A.; Priedhorsky, W.; Bloch, J.

    1990-01-01

    Several spherically curved microchannel plate (MCP) stack configurations were studied as part of an ongoing astrophysical detector development program, and as part of the development of the ALEXIS satellite payload. MCP pairs with surface radii of curvature as small as 7 cm, and diameters up to 46 mm have been evaluated. The experiments show that the gain (greater than 1.5 x 10 exp 7) and background characteristics (about 0.5 events/sq cm per sec) of highly curved MCP stacks are in general equivalent to the performance achieved with flat MCP stacks of similar configuration. However, gain variations across the curved MCP's due to variations in the channel length to diameter ratio are observed. The overall pulse height distribution of a highly curved surface MCP stack (greater than 50 percent FWHM) is thus broader than its flat counterpart (less than 30 percent). Preconditioning of curved MCP stacks gives comparable results to flat MCP stacks, but it also decreases the overall gain variations. Flat fields of curved MCP stacks have the same general characteristics as flat MCP stacks.

  3. Cost-Benefit Analysis for the Advanced Near Net Shape Technology (ANNST) Method for Fabricating Stiffened Cylinders

    Science.gov (United States)

    Ivanco, Marie L.; Domack, Marcia S.; Stoner, Mary Cecilia; Hehir, Austin R.

    2016-01-01

    Low Technology Readiness Levels (TRLs) and high levels of uncertainty make it challenging to develop cost estimates of new technologies in the R&D phase. It is however essential for NASA to understand the costs and benefits associated with novel concepts, in order to prioritize research investments and evaluate the potential for technology transfer and commercialization. This paper proposes a framework to perform a cost-benefit analysis of a technology in the R&D phase. This framework was developed and used to assess the Advanced Near Net Shape Technology (ANNST) manufacturing process for fabricating integrally stiffened cylinders. The ANNST method was compared with the conventional multi-piece metallic construction and composite processes for fabricating integrally stiffened cylinders. Following the definition of a case study for a cryogenic tank cylinder of specified geometry, data was gathered through interviews with Subject Matter Experts (SMEs), with particular focus placed on production costs and process complexity. This data served as the basis to produce process flowcharts and timelines, mass estimates, and rough order-of-magnitude cost and schedule estimates. The scalability of the results was subsequently investigated to understand the variability of the results based on tank size. Lastly, once costs and benefits were identified, the Analytic Hierarchy Process (AHP) was used to assess the relative value of these achieved benefits for potential stakeholders. These preliminary, rough order-of-magnitude results predict a 46 to 58 percent reduction in production costs and a 7-percent reduction in weight over the conventional metallic manufacturing technique used in this study for comparison. Compared to the composite manufacturing technique, these results predict cost savings of 35 to 58 percent; however, the ANNST concept was heavier. In this study, the predicted return on investment of equipment required for the ANNST method was ten cryogenic tank barrels

  4. Writing and Visualization for Teaching Plate Tectonics

    Science.gov (United States)

    Thomas, S. F.

    2004-12-01

    own collected data and observations. The main goals are for students o To see the relationship between data and the development of a scientific theory o To understand the elements of scientific discourse o To learn how to derive conclusions from interpretations and observations o To back interpretations with observations o To be able to write a scientific argument o To understand the Theory of Plate Tectonics, and o To gain a better understanding about how science works The results of several surveys will be presented that confirm that most of the expected outcomes continue to be met.

  5. Indonesian Landforms and Plate Tectonics

    Directory of Open Access Journals (Sweden)

    Herman Th. Verstappen

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting

  6. Indonesian Landforms and Plate Tectonics

    Directory of Open Access Journals (Sweden)

    Herman Th. Verstappen

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting

  7. Long-term exhumation of landscapes along the Pacific-North American plate boundary as inferred from apatite (U-Th)/He and ArcGIS analyses

    OpenAIRE

    Buscher, Jamie Todd

    2007-01-01

    The Pacific-North American plate boundary is typified by transpression and convergence, yet the relationship between interplate deformation and long-term crustal shortening is not fully understood. The continuous belt of rugged topography that extends along the entire plate boundary is generally associated with oblique tectonic plate motion, strong interplate coupling, and terrane accretion, but relating plate boundary orogenesis to variations in plate geometry and behavior requires detailed ...

  8. Construction of stiffening girder for Akashi straits bridge. Installation with use of latest bridging technology; Akashi kaikyo ohashi hoko keta kasetsu koji. Saishin kakyo gijutsu wo kushishite kasetsu

    Energy Technology Data Exchange (ETDEWEB)

    Oe, S. [Honshu-Shikoku Bridge Authority, Tokyo (Japan)

    1996-05-25

    The Akashi straits bridge is the Kobe-Naruto route of the bridge connecting Honshu and Shikoku; the bridge links Kobe in Hyogo prefecture with Awaji Island and, when completed, it will be a 3-span 2-hinge suspension bridge with the longest center effective span in the world. This report centers on the outline of the construction of stiffening girders for the Akashi straits bridge and especially on the characteristics of the engineering method newly employed. As the method of installing the stiffening girders, an overhang installation of face bars was employed which was a time-tested method. As the installing direction of the side spans, it was decided to install them from the anchorage to the tower. At the beginning, six large block installations were performed. A special balance was developed for the installation of short hanger parts for the purpose of enhancing safety and reduction in the process. A rubber-tired transporting truck was adopted for transporting members of framework on the bridge. GPS survey was used as a method for surveying the configuration. The subject engineering method was based on the construction of suspension bridge stiffening trusses in the past Honshu-Shikoku connecting bridge and reinforced with the improvements as above. Since the bridge is in the middle of construction, a subsequent report will hopefully be made on the actual results of the installation and the spanning after the closure. 8 figs., 2 tabs.

  9. TGF-β regulates LARG and GEF-H1 during EMT to affect stiffening response to force and cell invasion.

    Science.gov (United States)

    Osborne, Lukas D; Li, George Z; How, Tam; O'Brien, E Tim; Blobe, Gerard C; Superfine, Richard; Mythreye, Karthikeyan

    2014-11-05

    Recent studies implicate a role for cell mechanics in cancer progression. The epithelial-to-mesenchymal transition (EMT) regulates the detachment of cancer cells from the epithelium and facilitates their invasion into stromal tissue. Although classic EMT hallmarks include loss of cell-cell adhesions, morphology changes, and increased invasion capacity, little is known about the associated mechanical changes. Previously, force application on integrins has been shown to initiate cytoskeletal rearrangements that result in increased cell stiffness and a stiffening response. Here we demonstrate that transforming growth factor β (TGF-β)-induced EMT results in decreased stiffness and loss of the normal stiffening response to force applied on integrins. We find that suppression of the RhoA guanine nucleotide exchange factors (GEFs) LARG and GEF-H1 through TGF-β/ALK5-enhanced proteasomal degradation mediates these changes in cell mechanics and affects EMT-associated invasion. Taken together, our results reveal a functional connection between attenuated stiffness and stiffening response and the increased invasion capacity acquired after TGF-β-induced EMT.

  10. The concept of locking plates.

    Science.gov (United States)

    Cronier, P; Pietu, G; Dujardin, C; Bigorre, N; Ducellier, F; Gerard, R

    2010-05-01

    After a short historical review of locking bone plates since their inception more than a century ago to the success of the concept less than 15 years ago with today's plates, the authors present the main locking mechanisms in use. In the two broad categories - plates with fixed angulation and those with variable angulation - the screw head is locked in the plate with a locknut by screwing in a threaded chamber on the plate or by screwing through an adapted ring. The authors then provide a concrete explanation, based on simple mechanical models, of the fundamental differences between conventional bone plates and locking plates and why a locking screw system presents greater resistance at disassembly, detailing the role played by the position and number of screws. The advantages of epiphyseal fixation are then discussed, including in cases of mediocre-quality bone. For teaching purposes, the authors also present assembly with an apple fixed with five locking screws withstanding a 47-kg axial load with no resulting disassembly. The principles of plate placement are detailed for both the epiphysis and diaphysis, including the number and position of screws and respect of the soft tissues, with the greatest success assured by the minimally invasive and even percutaneous techniques. The authors then present the advantages of locking plates in fixation of periprosthetic fractures where conventional osteosynthesis often encounters limited success. Based on simplified theoretical cases, the economic impact in France of this type of implant is discussed, showing that on average it accounts for less than 10% of the overall cost of this pathology to society. Finally, the possible problems of material ablation are discussed as well as the means to remediate these problems.

  11. Faulting within the Pacific plate at the Mariana Trench: Implications for plate interface coupling and subduction of hydrous minerals

    Science.gov (United States)

    Emry, Erica L.; Wiens, Douglas A.; Garcia-Castellanos, Daniel

    2014-04-01

    We investigate faulting within the incoming Pacific plate at the Mariana subduction trench to understand stresses within the bending plate, regional stresses acting upon the plate interface, and the extent of possible faulting-induced mantle serpentinization. We determine accurate depths by inverting teleseismic P and SH waveforms for earthquakes occurring during 1990-2011 with Global Centroid Moment Tensor (GCMT) solutions. For earthquakes with Mw 5.0+, we determine centroid depths and source time functions and refine the fault parameters. Results from Central Mariana indicate that all earthquakes are extensional and occur at centroid depths down to 11 km below the Moho. At the Southern Mariana Trench, extensional earthquakes continue to 5 km below the Moho. One compressional earthquake at 34 km below the seafloor suggests stronger plate interface coupling here. In addition, we model the stress distribution within the Pacific plate along two bathymetric profiles extending seaward from the Mariana subduction trench axis to better understand whether our earthquake depth solutions match modeled scenarios for plate bending under applied external forces. Results from our flexure models match the locations of extensional and compressional earthquakes and suggest that the Pacific plate at Southern Mariana is experiencing larger, compressional stresses, possibly due to greater interplate coupling. Additionally, we conclude that if extensional faulting promotes the infiltration of water into the subducting plate mantle, then the top 5-15 km of the Pacific plate mantle are partially serpentinized, and a higher percentage of serpentinization is located near the Central Mariana trench where extensional events extend deeper.

  12. Optical Near-Field Plates

    Science.gov (United States)

    2015-04-08

    color filtering and spectral imaging ,” Nat. Comm. 1, 59 (2010). 3. H.-F. Shi and L. J. Guo, “Design of Plasmonic Near Field Plate at Opitical...AFRL-OSR-VA-TR-2015-0085 OPTICAL NEAR-FILED PLATES Roberto Merlin UNIVERSITY OF MICHIGAN Final Report 04/08/2015 DISTRIBUTION A: Distribution...03-2015 Final 09/01/2009-12/31/2014 Optical Near-Field Plates FA9550-09-1-0636 erlin, Roberto, D. The University of Michigan Ann Arbor, MI 48109

  13. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....

  14. Hierarchical self-organization of tectonic plates

    OpenAIRE

    2010-01-01

    The Earth's surface is subdivided into eight large tectonic plates and many smaller ones. We reconstruct the plate tessellation history and demonstrate that both large and small plates display two distinct hierarchical patterns, described by different power-law size-relationships. While small plates display little organisational change through time, the structure of the large plates oscillate between minimum and maximum hierarchical tessellations. The organization of large plates rapidly chan...

  15. On the increase of geometric accuracy with the help of stiffening elements for robot-based incremental sheet metal forming

    Science.gov (United States)

    Thyssen, Lars; Seim, Patrick; Störkle, Denis D.; Kuhlenkötter, Bernd

    2016-10-01

    This paper describes new developments in an incremental, robot-based sheet metal forming process (`Roboforming') for the production of sheet metal components for small lot sizes and prototypes. The incremental sheet forming (ISF) offers high geometrical form flexibility without the need of any part-dependent tools. To transfer the ISF to industrial applications, it is necessary to respond to the still existing constraints, e.g. the low geometrical accuracy. Especially the subsequent deformation resulting from the interaction of differently shaped elements causes geometrical deviations, which are limiting the scope of formable parts. The impact of the resulting forming forces will vary according to the shape of the individual elements. For this, the paper proposes and examines a new approach to stabilize the geometrical accuracy without losing the universal approach of Roboforming by inserting stiffening elements. Those elements with varying cross-sections at the initial area of various orientations must be examined on their stabilizing or subsequent distorting impact. Especially the different impacts of the subsequent forming of stiffness features in contrast to the direct forming are studied precisely.

  16. Predicting welding distortion in a panel structure with longitudinal stiffeners using inherent deformations obtained by inverse analysis method.

    Science.gov (United States)

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.

  17. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    Science.gov (United States)

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion. PMID:26813872

  18. Predicting Welding Distortion in a Panel Structure with Longitudinal Stiffeners Using Inherent Deformations Obtained by Inverse Analysis Method

    Directory of Open Access Journals (Sweden)

    Wei Liang

    2014-01-01

    Full Text Available Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.

  19. New matrix method for response analysis of circumferentially stiffened non-circular cylindrical shells under harmonic pressure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the governing equation of vibration of a kind of cylindrical shells written in a matrix differential equation of the first order, a new matrix method is presented for steady-state vibration analysis of a noncircular cylindrical shell simply supported at two ends and circumferentially stiffened by rings under harmonic pressure. Its difference from the existing works by Yamada and Irie is that the matrix differential equation is solved by using the extended homogeneous capacity precision integration approach other than the Runge-Kutta-Gill integration method. The transfer matrix can easily be determined by a high precision integration scheme. In addition, besides the normal interacting forces, which were commonly adopted by researchers earlier, the tangential interacting forces between the cylindrical shell and the rings are considered at the same time by means of the Dirac-δ function. The effects of the exciting frequencies on displacements and stresses responses have been investigated. Numerical results show that the proposed method is more efficient than the aforementioned method.

  20. A Study on Response of a Contoured Composite Panel with Co-cured Stiffeners Under Transient Loading

    Science.gov (United States)

    Begum, Shahnaaz; Jain, Prakash Chand; Venkatesh, Siddu

    2016-07-01

    Composite materials are emerging to be the best applied materials for aerospace applications. With rapid improvement in computational facilities, it is now possible to design the best composite lay up for a particular kind of application. This paper presents the development of a Finite Element model of a contoured composite panel with co-cured stiffeners using Finite Element Simulation. Commercial package ANSYS 15.0 is used for this study. Such half contoured panels find wide application in Aerospace industry. The panel is hinged at one of the ends and dynamically loaded at the other end over a relatively small surface area by transverse load. The response of the panel is observed for variation in stresses, deflections and failure criteria. The panel is expected to rotate about the hinge point by 4° from the initial point. The transient response of the composite panel has been observed for expected load and two test load cases and results reported in this paper. Analysis has become useful input for the design of panel.