WorldWideScience

Sample records for continuous random networks

  1. Corrections to scaling in random resistor networks and diluted continuous spin models near the percolation threshold.

    Science.gov (United States)

    Janssen, Hans-Karl; Stenull, Olaf

    2004-02-01

    We investigate corrections to scaling induced by irrelevant operators in randomly diluted systems near the percolation threshold. The specific systems that we consider are the random resistor network and a class of continuous spin systems, such as the x-y model. We focus on a family of least irrelevant operators and determine the corrections to scaling that originate from this family. Our field theoretic analysis carefully takes into account that irrelevant operators mix under renormalization. It turns out that long standing results on corrections to scaling are respectively incorrect (random resistor networks) or incomplete (continuous spin systems).

  2. Continuous-time random walks on networks with vertex- and time-dependent forcing.

    Science.gov (United States)

    Angstmann, C N; Donnelly, I C; Henry, B I; Langlands, T A M

    2013-08-01

    We have investigated the transport of particles moving as random walks on the vertices of a network, subject to vertex- and time-dependent forcing. We have derived the generalized master equations for this transport using continuous time random walks, characterized by jump and waiting time densities, as the underlying stochastic process. The forcing is incorporated through a vertex- and time-dependent bias in the jump densities governing the random walking particles. As a particular case, we consider particle forcing proportional to the concentration of particles on adjacent vertices, analogous to self-chemotactic attraction in a spatial continuum. Our algebraic and numerical studies of this system reveal an interesting pair-aggregation pattern formation in which the steady state is composed of a high concentration of particles on a small number of isolated pairs of adjacent vertices. The steady states do not exhibit this pair aggregation if the transport is random on the vertices, i.e., without forcing. The manifestation of pair aggregation on a transport network may thus be a signature of self-chemotactic-like forcing.

  3. The Kernel Mixture Network: A Nonparametric Method for Conditional Density Estimation of Continuous Random Variables

    OpenAIRE

    Ambrogioni, Luca; Güçlü, Umut; van Gerven, Marcel A. J.; Maris, Eric

    2017-01-01

    This paper introduces the kernel mixture network, a new method for nonparametric estimation of conditional probability densities using neural networks. We model arbitrarily complex conditional densities as linear combinations of a family of kernel functions centered at a subset of training points. The weights are determined by the outer layer of a deep neural network, trained by minimizing the negative log likelihood. This generalizes the popular quantized softmax approach, which can be seen ...

  4. Unifying Pore Network Modeling, Continuous Time Random Walk Theory and Experiment - Accomplishments and Future Directions

    Science.gov (United States)

    Bijeljic, B.

    2008-05-01

    This talk will describe and highlight the advantages offered by a methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause spreading of solute particles. This spreading is traditionally described by dispersion coefficients, D, defined by σ 2 = 2Dt, where σ 2 is the variance of the solute position and t is the time. Using a pore-scale network model based on particle tracking, the rich Peclet- number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. Future directions for further applications of the methodology presented are discussed in relation to the scale- dependent solute dispersion and reactive transport. Significance of pre-asymptotic dispersion in porous media is addressed from pore-scale upwards and the impact

  5. Continuous theta-burst stimulation may improve visuospatial neglect via modulating the attention network: a randomized controlled study.

    Science.gov (United States)

    Fu, Wei; Cao, Lei; Zhang, Yanming; Huo, Su; Du, JuBao; Zhu, Lin; Song, Weiqun

    2017-05-01

    Visuospatial neglect (VSN) is devastating and common after stroke, and is thought to involve functional disturbance of the attention network. Non-invasive theta-burst stimulation (TBS) may help restore the normal function of attention network, therefore facilitating recovery from VSN. This study investigated the effects of continuous TBS on resting-state functional connectivity (RSFC) in the attention network, and behavioral performances of patients with VSN after stroke. Twelve patients were randomly assigned to receive 10-day cTBS of the left posterior parietal cortex delivered at 80% (the cTBS group), or 40% (the active control group) of the resting motor threshold. Both groups received daily visual scanning training and motor function treatment. Resting-state functional MRI (fMRI) and behavioral tests including line bisection test and star cancelation test were conducted at baseline and after the treatment. At baseline, the two groups showed comparable results in the resting-state fMRI experiments and behavioral tests. After treatment, the cTBS group showed lower functional connectivity between right temporoparietal junction (TPJ) and right anterior insula, and between right superior temporal sulcus and right anterior insula, as compared with the active control group; both groups showed improvement in the behavioral tests, with the cTBS group showing larger changes from baseline than the active control group. cTBS of the left posterior parietal cortex in patients with VSN may induce changes in inter-regional RSFC in the right ventral attention network. These changes may be associated with improved recovery of behavioral deficits after behavioral training. The TPJ and superior temporal sulcus may play crucial roles in recovery from VSN.

  6. The random continued fraction transformation

    Science.gov (United States)

    Kalle, Charlene; Kempton, Tom; Verbitskiy, Evgeny

    2017-03-01

    We introduce a random dynamical system related to continued fraction expansions. It uses random combinations of the Gauss map and the Rényi (or backwards) continued fraction map. We explore the continued fraction expansions that this system produces, as well as the dynamical properties of the system.

  7. Gossip in Random Networks

    Science.gov (United States)

    Malarz, K.; Szvetelszky, Z.; Szekf, B.; Kulakowski, K.

    2006-11-01

    We consider the average probability X of being informed on a gossip in a given social network. The network is modeled within the random graph theory of Erd{õ}s and Rényi. In this theory, a network is characterized by two parameters: the size N and the link probability p. Our experimental data suggest three levels of social inclusion of friendship. The critical value pc, for which half of agents are informed, scales with the system size as N-gamma with gamma approx 0.68. Computer simulations show that the probability X varies with p as a sigmoidal curve. Influence of the correlations between neighbors is also evaluated: with increasing clustering coefficient C, X decreases.

  8. Chemical Continuous Time Random Walks

    Science.gov (United States)

    Aquino, T.; Dentz, M.

    2017-12-01

    Traditional methods for modeling solute transport through heterogeneous media employ Eulerian schemes to solve for solute concentration. More recently, Lagrangian methods have removed the need for spatial discretization through the use of Monte Carlo implementations of Langevin equations for solute particle motions. While there have been recent advances in modeling chemically reactive transport with recourse to Lagrangian methods, these remain less developed than their Eulerian counterparts, and many open problems such as efficient convergence and reconstruction of the concentration field remain. We explore a different avenue and consider the question: In heterogeneous chemically reactive systems, is it possible to describe the evolution of macroscopic reactant concentrations without explicitly resolving the spatial transport? Traditional Kinetic Monte Carlo methods, such as the Gillespie algorithm, model chemical reactions as random walks in particle number space, without the introduction of spatial coordinates. The inter-reaction times are exponentially distributed under the assumption that the system is well mixed. In real systems, transport limitations lead to incomplete mixing and decreased reaction efficiency. We introduce an arbitrary inter-reaction time distribution, which may account for the impact of incomplete mixing. This process defines an inhomogeneous continuous time random walk in particle number space, from which we derive a generalized chemical Master equation and formulate a generalized Gillespie algorithm. We then determine the modified chemical rate laws for different inter-reaction time distributions. We trace Michaelis-Menten-type kinetics back to finite-mean delay times, and predict time-nonlocal macroscopic reaction kinetics as a consequence of broadly distributed delays. Non-Markovian kinetics exhibit weak ergodicity breaking and show key features of reactions under local non-equilibrium.

  9. Random catalytic reaction networks

    Science.gov (United States)

    Stadler, Peter F.; Fontana, Walter; Miller, John H.

    1993-03-01

    We study networks that are a generalization of replicator (or Lotka-Volterra) equations. They model the dynamics of a population of object types whose binary interactions determine the specific type of interaction product. Such a system always reduces its dimension to a subset that contains production pathways for all of its members. The network equation can be rewritten at a level of collectives in terms of two basic interaction patterns: replicator sets and cyclic transformation pathways among sets. Although the system contains well-known cases that exhibit very complicated dynamics, the generic behavior of randomly generated systems is found (numerically) to be extremely robust: convergence to a globally stable rest point. It is easy to tailor networks that display replicator interactions where the replicators are entire self-sustaining subsystems, rather than structureless units. A numerical scan of random systems highlights the special properties of elementary replicators: they reduce the effective interconnectedness of the system, resulting in enhanced competition, and strong correlations between the concentrations.

  10. Random walks and diffusion on networks

    Science.gov (United States)

    Masuda, Naoki; Porter, Mason A.; Lambiotte, Renaud

    2017-11-01

    Random walks are ubiquitous in the sciences, and they are interesting from both theoretical and practical perspectives. They are one of the most fundamental types of stochastic processes; can be used to model numerous phenomena, including diffusion, interactions, and opinions among humans and animals; and can be used to extract information about important entities or dense groups of entities in a network. Random walks have been studied for many decades on both regular lattices and (especially in the last couple of decades) on networks with a variety of structures. In the present article, we survey the theory and applications of random walks on networks, restricting ourselves to simple cases of single and non-adaptive random walkers. We distinguish three main types of random walks: discrete-time random walks, node-centric continuous-time random walks, and edge-centric continuous-time random walks. We first briefly survey random walks on a line, and then we consider random walks on various types of networks. We extensively discuss applications of random walks, including ranking of nodes (e.g., PageRank), community detection, respondent-driven sampling, and opinion models such as voter models.

  11. A random number generator for continuous random variables

    Science.gov (United States)

    Guerra, V. M.; Tapia, R. A.; Thompson, J. R.

    1972-01-01

    A FORTRAN 4 routine is given which may be used to generate random observations of a continuous real valued random variable. Normal distribution of F(x), X, E(akimas), and E(linear) is presented in tabular form.

  12. Heterogeneous continuous-time random walks

    Science.gov (United States)

    Grebenkov, Denis S.; Tupikina, Liubov

    2018-01-01

    We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.

  13. Generic Properties of Random Gene Regulatory Networks.

    Science.gov (United States)

    Li, Zhiyuan; Bianco, Simone; Zhang, Zhaoyang; Tang, Chao

    2013-12-01

    Modeling gene regulatory networks (GRNs) is an important topic in systems biology. Although there has been much work focusing on various specific systems, the generic behavior of GRNs with continuous variables is still elusive. In particular, it is not clear typically how attractors partition among the three types of orbits: steady state, periodic and chaotic, and how the dynamical properties change with network's topological characteristics. In this work, we first investigated these questions in random GRNs with different network sizes, connectivity, fraction of inhibitory links and transcription regulation rules. Then we searched for the core motifs that govern the dynamic behavior of large GRNs. We show that the stability of a random GRN is typically governed by a few embedding motifs of small sizes, and therefore can in general be understood in the context of these short motifs. Our results provide insights for the study and design of genetic networks.

  14. Generating random networks and graphs

    CERN Document Server

    Coolen, Ton; Roberts, Ekaterina

    2017-01-01

    This book supports researchers who need to generate random networks, or who are interested in the theoretical study of random graphs. The coverage includes exponential random graphs (where the targeted probability of each network appearing in the ensemble is specified), growth algorithms (i.e. preferential attachment and the stub-joining configuration model), special constructions (e.g. geometric graphs and Watts Strogatz models) and graphs on structured spaces (e.g. multiplex networks). The presentation aims to be a complete starting point, including details of both theory and implementation, as well as discussions of the main strengths and weaknesses of each approach. It includes extensive references for readers wishing to go further. The material is carefully structured to be accessible to researchers from all disciplines while also containing rigorous mathematical analysis (largely based on the techniques of statistical mechanics) to support those wishing to further develop or implement the theory of rand...

  15. Coupled continuous time-random walks in quenched random environment

    Science.gov (United States)

    Magdziarz, M.; Szczotka, W.

    2018-02-01

    We introduce a coupled continuous-time random walk with coupling which is characteristic for Lévy walks. Additionally we assume that the walker moves in a quenched random environment, i.e. the site disorder at each lattice point is fixed in time. We analyze the scaling limit of such a random walk. We show that for large times the behaviour of the analyzed process is exactly the same as in the case of uncoupled quenched trap model for Lévy flights.

  16. Path probabilities of continuous time random walks

    International Nuclear Information System (INIS)

    Eule, Stephan; Friedrich, Rudolf

    2014-01-01

    Employing the path integral formulation of a broad class of anomalous diffusion processes, we derive the exact relations for the path probability densities of these processes. In particular, we obtain a closed analytical solution for the path probability distribution of a Continuous Time Random Walk (CTRW) process. This solution is given in terms of its waiting time distribution and short time propagator of the corresponding random walk as a solution of a Dyson equation. Applying our analytical solution we derive generalized Feynman–Kac formulae. (paper)

  17. Organization of growing random networks

    International Nuclear Information System (INIS)

    Krapivsky, P. L.; Redner, S.

    2001-01-01

    The organizational development of growing random networks is investigated. These growing networks are built by adding nodes successively, and linking each to an earlier node of degree k with an attachment probability A k . When A k grows more slowly than linearly with k, the number of nodes with k links, N k (t), decays faster than a power law in k, while for A k growing faster than linearly in k, a single node emerges which connects to nearly all other nodes. When A k is asymptotically linear, N k (t)∼tk -ν , with ν dependent on details of the attachment probability, but in the range 2 -2 power-law tail, where s is the component size. The out component has a typical size of order lnt, and it provides basic insights into the genealogy of the network

  18. Training trajectories by continuous recurrent multilayer networks.

    Science.gov (United States)

    Leistritz, L; Galicki, M; Witte, H; Kochs, E

    2002-01-01

    This paper addresses the problem of training trajectories by means of continuous recurrent neural networks whose feedforward parts are multilayer perceptrons. Such networks can approximate a general nonlinear dynamic system with arbitrary accuracy. The learning process is transformed into an optimal control framework where the weights are the controls to be determined. A training algorithm based upon a variational formulation of Pontryagin's maximum principle is proposed for such networks. Computer examples demonstrating the efficiency of the given approach are also presented.

  19. Organization of growing random networks

    Energy Technology Data Exchange (ETDEWEB)

    Krapivsky, P. L.; Redner, S.

    2001-06-01

    The organizational development of growing random networks is investigated. These growing networks are built by adding nodes successively, and linking each to an earlier node of degree k with an attachment probability A{sub k}. When A{sub k} grows more slowly than linearly with k, the number of nodes with k links, N{sub k}(t), decays faster than a power law in k, while for A{sub k} growing faster than linearly in k, a single node emerges which connects to nearly all other nodes. When A{sub k} is asymptotically linear, N{sub k}(t){similar_to}tk{sup {minus}{nu}}, with {nu} dependent on details of the attachment probability, but in the range 2{lt}{nu}{lt}{infinity}. The combined age and degree distribution of nodes shows that old nodes typically have a large degree. There is also a significant correlation in the degrees of neighboring nodes, so that nodes of similar degree are more likely to be connected. The size distributions of the in and out components of the network with respect to a given node{emdash}namely, its {open_quotes}descendants{close_quotes} and {open_quotes}ancestors{close_quotes}{emdash}are also determined. The in component exhibits a robust s{sup {minus}2} power-law tail, where s is the component size. The out component has a typical size of order lnt, and it provides basic insights into the genealogy of the network.

  20. Hierarchy in directed random networks.

    Science.gov (United States)

    Mones, Enys

    2013-02-01

    In recent years, the theory and application of complex networks have been quickly developing in a markable way due to the increasing amount of data from real systems and the fruitful application of powerful methods used in statistical physics. Many important characteristics of social or biological systems can be described by the study of their underlying structure of interactions. Hierarchy is one of these features that can be formulated in the language of networks. In this paper we present some (qualitative) analytic results on the hierarchical properties of random network models with zero correlations and also investigate, mainly numerically, the effects of different types of correlations. The behavior of the hierarchy is different in the absence and the presence of giant components. We show that the hierarchical structure can be drastically different if there are one-point correlations in the network. We also show numerical results suggesting that the hierarchy does not change monotonically with the correlations and there is an optimal level of nonzero correlations maximizing the level of hierarchy.

  1. Ring correlations in random networks.

    Science.gov (United States)

    Sadjadi, Mahdi; Thorpe, M F

    2016-12-01

    We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.

  2. Cross over of recurrence networks to random graphs and random ...

    Indian Academy of Sciences (India)

    2017-01-27

    Jan 27, 2017 ... that all recurrence networks can cross over to random geometric graphs by adding sufficient amount of noise to .... municative [19] or social [20], deviate from the random ..... He has shown that the spatial effects become.

  3. Percolation and epidemics in random clustered networks

    Science.gov (United States)

    Miller, Joel C.

    2009-08-01

    The social networks that infectious diseases spread along are typically clustered. Because of the close relation between percolation and epidemic spread, the behavior of percolation in such networks gives insight into infectious disease dynamics. A number of authors have studied percolation or epidemics in clustered networks, but the networks often contain preferential contacts in high degree nodes. We introduce a class of random clustered networks and a class of random unclustered networks with the same preferential mixing. Percolation in the clustered networks reduces the component sizes and increases the epidemic threshold compared to the unclustered networks.

  4. Management continuity in local health networks

    Directory of Open Access Journals (Sweden)

    Mylaine Breton

    2012-04-01

    Full Text Available Introduction: Patients increasingly receive care from multiple providers in a variety of settings. They expect management continuity that crosses boundaries and bridges gaps in the healthcare system. To our knowledge, little research has been done to assess coordination across organizational and professional boundaries from the patients' perspective. Our objective was to assess whether greater local health network integration is associated with management continuity as perceived by patients. Method: We used the data from a research project on the development and validation of a generic and comprehensive continuity measurement instrument that can be applied to a variety of patient conditions and settings. We used the results of a cross-sectional survey conducted in 2009 with 256 patients in two local health networks in Quebec, Canada. We compared four aspects of management continuity between two contrasting network types (highly integrated vs. poorly integrated. Results: The scores obtained in the highly integrated network are better than those of the poorly integrated network on all dimensions of management continuity (coordinator role, role clarity and coordination between clinics, and information gaps between providers except for experience of care plan. Conclusion: Some aspects of care coordination among professionals and organizations are noticed by patients and may be valid indicators to assess care coordination.

  5. Gradient networks on uncorrelated random scale-free networks

    International Nuclear Information System (INIS)

    Pan Guijun; Yan Xiaoqing; Huang Zhongbing; Ma Weichuan

    2011-01-01

    Uncorrelated random scale-free (URSF) networks are useful null models for checking the effects of scale-free topology on network-based dynamical processes. Here, we present a comparative study of the jamming level of gradient networks based on URSF networks and Erdos-Renyi (ER) random networks. We find that the URSF networks are less congested than ER random networks for the average degree (k)>k c (k c ∼ 2 denotes a critical connectivity). In addition, by investigating the topological properties of the two kinds of gradient networks, we discuss the relations between the topological structure and the transport efficiency of the gradient networks. These findings show that the uncorrelated scale-free structure might allow more efficient transport than the random structure.

  6. Entropy Characterization of Random Network Models

    Directory of Open Access Journals (Sweden)

    Pedro J. Zufiria

    2017-06-01

    Full Text Available This paper elaborates on the Random Network Model (RNM as a mathematical framework for modelling and analyzing the generation of complex networks. Such framework allows the analysis of the relationship between several network characterizing features (link density, clustering coefficient, degree distribution, connectivity, etc. and entropy-based complexity measures, providing new insight on the generation and characterization of random networks. Some theoretical and computational results illustrate the utility of the proposed framework.

  7. Unifying Pore Network Modeling, Continuous Time Random Walk (CTRW) Theory and Experiment to Describe Impact of Spatial Heterogeneities on Solute Dispersion at Multiple Length-scales

    Science.gov (United States)

    Bijeljic, B.; Blunt, M. J.; Rhodes, M. E.

    2009-04-01

    This talk will describe and highlight the advantages offered by a novel methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause dispersion of solute particles. Dispersion is traditionally described by dispersion coefficients, D, that are commonly calculated from the spatial moments of the plume. Using a pore-scale network model based on particle tracking, the rich Peclet-number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. The length traveled by solute plumes before Gaussian behaviour is reached increases with an increase in heterogeneity and/or Pe. This opens up the question on the nature of dispersion in natural systems where the heterogeneities at the larger scales will significantly increase the range of

  8. Statistical properties of random clique networks

    Science.gov (United States)

    Ding, Yi-Min; Meng, Jun; Fan, Jing-Fang; Ye, Fang-Fu; Chen, Xiao-Song

    2017-10-01

    In this paper, a random clique network model to mimic the large clustering coefficient and the modular structure that exist in many real complex networks, such as social networks, artificial networks, and protein interaction networks, is introduced by combining the random selection rule of the Erdös and Rényi (ER) model and the concept of cliques. We find that random clique networks having a small average degree differ from the ER network in that they have a large clustering coefficient and a power law clustering spectrum, while networks having a high average degree have similar properties as the ER model. In addition, we find that the relation between the clustering coefficient and the average degree shows a non-monotonic behavior and that the degree distributions can be fit by multiple Poisson curves; we explain the origin of such novel behaviors and degree distributions.

  9. Topological properties of random wireless networks

    Indian Academy of Sciences (India)

    Wireless networks in which the node locations are random are best modelled as random geometric graphs (RGGs). In addition to their extensive application in the modelling of wireless networks, RGGs find many new applications and are being studied in their own right. In this paper we first provide a brief introduction to the ...

  10. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  11. Neural networks in continuous optical media

    International Nuclear Information System (INIS)

    Anderson, D.Z.

    1987-01-01

    The authors' interest is to see to what extent neural models can be implemented using continuous optical elements. Thus these optical networks represent a continuous distribution of neuronlike processors rather than a discrete collection. Most neural models have three characteristic features: interconnections; adaptivity; and nonlinearity. In their optical representation the interconnections are implemented with linear one- and two-port optical elements such as lenses and holograms. Real-time holographic media allow these interconnections to become adaptive. The nonlinearity is achieved with gain, for example, from two-beam coupling in photorefractive media or a pumped dye medium. Using these basic optical elements one can in principle construct continuous representations of a number of neural network models. The authors demonstrated two devices based on continuous optical elements: an associative memory which recalls an entire object when addressed with a partial object and a tracking novelty filter which identifies time-dependent features in an optical scene. These devices demonstrate the potential of distributed optical elements to implement more formal models of neural networks

  12. Reliable dynamics in Boolean and continuous networks

    International Nuclear Information System (INIS)

    Ackermann, Eva; Drossel, Barbara; Peixoto, Tiago P

    2012-01-01

    We investigate the dynamical behavior of a model of robust gene regulatory networks which possess ‘entirely reliable’ trajectories. In a Boolean representation, these trajectories are characterized by being insensitive to the order in which the nodes are updated, i.e. they always go through the same sequence of states. The Boolean model for gene activity is compared with a continuous description in terms of differential equations for the concentrations of mRNA and proteins. We found that entirely reliable Boolean trajectories can be reproduced perfectly in the continuous model when realistic Hill coefficients are used. We investigate to what extent this high correspondence between Boolean and continuous trajectories depends on the extent of reliability of the Boolean trajectories, and we identify simple criteria that enable the faithful reproduction of the Boolean dynamics in the continuous description. (paper)

  13. Thermodynamics of random reaction networks.

    Directory of Open Access Journals (Sweden)

    Jakob Fischer

    Full Text Available Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  14. Thermodynamics of random reaction networks.

    Science.gov (United States)

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  15. Dynamics of neural networks with continuous attractors

    Science.gov (United States)

    Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2008-10-01

    We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stability facilitates the tracking performance of a CANN, which is believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.

  16. Random walk centrality for temporal networks

    International Nuclear Information System (INIS)

    Rocha, Luis E C; Masuda, Naoki

    2014-01-01

    Nodes can be ranked according to their relative importance within a network. Ranking algorithms based on random walks are particularly useful because they connect topological and diffusive properties of the network. Previous methods based on random walks, for example the PageRank, have focused on static structures. However, several realistic networks are indeed dynamic, meaning that their structure changes in time. In this paper, we propose a centrality measure for temporal networks based on random walks under periodic boundary conditions that we call TempoRank. It is known that, in static networks, the stationary density of the random walk is proportional to the degree or the strength of a node. In contrast, we find that, in temporal networks, the stationary density is proportional to the in-strength of the so-called effective network, a weighted and directed network explicitly constructed from the original sequence of transition matrices. The stationary density also depends on the sojourn probability q, which regulates the tendency of the walker to stay in the node, and on the temporal resolution of the data. We apply our method to human interaction networks and show that although it is important for a node to be connected to another node with many random walkers (one of the principles of the PageRank) at the right moment, this effect is negligible in practice when the time order of link activation is included. (paper)

  17. Random walk centrality for temporal networks

    Science.gov (United States)

    Rocha, Luis E. C.; Masuda, Naoki

    2014-06-01

    Nodes can be ranked according to their relative importance within a network. Ranking algorithms based on random walks are particularly useful because they connect topological and diffusive properties of the network. Previous methods based on random walks, for example the PageRank, have focused on static structures. However, several realistic networks are indeed dynamic, meaning that their structure changes in time. In this paper, we propose a centrality measure for temporal networks based on random walks under periodic boundary conditions that we call TempoRank. It is known that, in static networks, the stationary density of the random walk is proportional to the degree or the strength of a node. In contrast, we find that, in temporal networks, the stationary density is proportional to the in-strength of the so-called effective network, a weighted and directed network explicitly constructed from the original sequence of transition matrices. The stationary density also depends on the sojourn probability q, which regulates the tendency of the walker to stay in the node, and on the temporal resolution of the data. We apply our method to human interaction networks and show that although it is important for a node to be connected to another node with many random walkers (one of the principles of the PageRank) at the right moment, this effect is negligible in practice when the time order of link activation is included.

  18. Benford's law and continuous dependent random variables

    Science.gov (United States)

    Becker, Thealexa; Burt, David; Corcoran, Taylor C.; Greaves-Tunnell, Alec; Iafrate, Joseph R.; Jing, Joy; Miller, Steven J.; Porfilio, Jaclyn D.; Ronan, Ryan; Samranvedhya, Jirapat; Strauch, Frederick W.; Talbut, Blaine

    2018-01-01

    Many mathematical, man-made and natural systems exhibit a leading-digit bias, where a first digit (base 10) of 1 occurs not 11% of the time, as one would expect if all digits were equally likely, but rather 30%. This phenomenon is known as Benford's Law. Analyzing which datasets adhere to Benford's Law and how quickly Benford behavior sets in are the two most important problems in the field. Most previous work studied systems of independent random variables, and relied on the independence in their analyses. Inspired by natural processes such as particle decay, we study the dependent random variables that emerge from models of decomposition of conserved quantities. We prove that in many instances the distribution of lengths of the resulting pieces converges to Benford behavior as the number of divisions grow, and give several conjectures for other fragmentation processes. The main difficulty is that the resulting random variables are dependent. We handle this by using tools from Fourier analysis and irrationality exponents to obtain quantified convergence rates as well as introducing and developing techniques to measure and control the dependencies. The construction of these tools is one of the major motivations of this work, as our approach can be applied to many other dependent systems. As an example, we show that the n ! entries in the determinant expansions of n × n matrices with entries independently drawn from nice random variables converges to Benford's Law.

  19. Random networks of Boolean cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Enrique [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1990-01-01

    Some recent results about random networks of Boolean automata -the Kauffman model- are reviewed. The structure of configuration space is explored. Ultrametricity between cycles is analyzed and the effects of noise in the dynamics are studied. (Author).

  20. Random networks of Boolean cellular automata

    International Nuclear Information System (INIS)

    Miranda, Enrique

    1990-01-01

    Some recent results about random networks of Boolean automata -the Kauffman model- are reviewed. The structure of configuration space is explored. Ultrametricity between cycles is analyzed and the effects of noise in the dynamics are studied. (Author)

  1. Exploring biological network structure with clustered random networks

    Directory of Open Access Journals (Sweden)

    Bansal Shweta

    2009-12-01

    Full Text Available Abstract Background Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions and the extent of clustering (the tendency for a set of three nodes to be interconnected are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics. Results Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics. Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks. Conclusion ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in

  2. Routing in Networks with Random Topologies

    Science.gov (United States)

    Bambos, Nicholas

    1997-01-01

    We examine the problems of routing and server assignment in networks with random connectivities. In such a network the basic topology is fixed, but during each time slot and for each of tis input queues, each server (node) is either connected to or disconnected from each of its queues with some probability.

  3. Continuous environmental radiation monitoring network at Kalpakkam

    International Nuclear Information System (INIS)

    Somayaji, K.M.; Mathiyarasu, R.; Prakash, G.S.; Meenakshisundaram, V.; Rajagopal, V.

    1997-01-01

    The report highlights our experience in the design and installation of monitoring stations as part of continuous environmental radiation monitoring network around the periphery of the nuclear complex at Kalpakkam. Five monitoring stations, one each in south-west sector (Main Gate I) and south-south west (Main Gate II) and the others in North sector (HASL and ESG) and in north-west section (WIP) have been set up. Two independent detector systems, based on high pressure ionisation chamber (HPIC) and energy compensated GM have been installed at each of these locations and the data has been logged continuously using a data logger. The data so gathered at each monitoring station is retrieved every week by means of a hand held terminal (HHT) with a built-in non-volatile memory and transferred to an IBM PC-AT for data analysis and archival. The report discusses in depth the design and developmental efforts undertaken to set up the network, starting from the basic detectors. The work involved the design of suitable electrometer circuits for measuring the low levels of current from HPICs, and the subsequent study of the performance of the highly sensitive preamplifier under diurnal variations of ambient conditions. The report includes, in detail the design aspects and fabrication details of low current measuring electrometer circuits

  4. Bipartite quantum states and random complex networks

    International Nuclear Information System (INIS)

    Garnerone, Silvano; Zanardi, Paolo; Giorda, Paolo

    2012-01-01

    We introduce a mapping between graphs and pure quantum bipartite states and show that the associated entanglement entropy conveys non-trivial information about the structure of the graph. Our primary goal is to investigate the family of random graphs known as complex networks. In the case of classical random graphs, we derive an analytic expression for the averaged entanglement entropy S-bar while for general complex networks we rely on numerics. For a large number of nodes n we find a scaling S-bar ∼c log n +g e where both the prefactor c and the sub-leading O(1) term g e are characteristic of the different classes of complex networks. In particular, g e encodes topological features of the graphs and is named network topological entropy. Our results suggest that quantum entanglement may provide a powerful tool for the analysis of large complex networks with non-trivial topological properties. (paper)

  5. Random walks on generalized Koch networks

    International Nuclear Information System (INIS)

    Sun, Weigang

    2013-01-01

    For deterministically growing networks, it is a theoretical challenge to determine the topological properties and dynamical processes. In this paper, we study random walks on generalized Koch networks with features that include an initial state that is a globally connected network to r nodes. In each step, every existing node produces m complete graphs. We then obtain the analytical expressions for first passage time (FPT), average return time (ART), i.e. the average of FPTs for random walks from node i to return to the starting point i for the first time, and average sending time (AST), defined as the average of FPTs from a hub node to all other nodes, excluding the hub itself with regard to network parameters m and r. For this family of Koch networks, the ART of the new emerging nodes is identical and increases with the parameters m or r. In addition, the AST of our networks grows with network size N as N ln N and also increases with parameter m. The results obtained in this paper are the generalizations of random walks for the original Koch network. (paper)

  6. A random network based, node attraction facilitated network evolution method

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2016-03-01

    Full Text Available In present study, I present a method of network evolution that based on random network, and facilitated by node attraction. In this method, I assume that the initial network is a random network, or a given initial network. When a node is ready to connect, it tends to link to the node already owning the most connections, which coincides with the general rule (Barabasi and Albert, 1999 of node connecting. In addition, a node may randomly disconnect a connection i.e., the addition of connections in the network is accompanied by the pruning of some connections. The dynamics of network evolution is determined of the attraction factor Lamda of nodes, the probability of node connection, the probability of node disconnection, and the expected initial connectance. The attraction factor of nodes, the probability of node connection, and the probability of node disconnection are time and node varying. Various dynamics can be achieved by adjusting these parameters. Effects of simplified parameters on network evolution are analyzed. The changes of attraction factor Lamda can reflect various effects of the node degree on connection mechanism. Even the changes of Lamda only will generate various networks from the random to the complex. Therefore, the present algorithm can be treated as a general model for network evolution. Modeling results show that to generate a power-law type of network, the likelihood of a node attracting connections is dependent upon the power function of the node's degree with a higher-order power. Matlab codes for simplified version of the method are provided.

  7. Continuity of Integrated Density of States - Independent Randomness

    Indian Academy of Sciences (India)

    In this paper we discuss the continuity properties of the integrated density of states for random models based on that of the single site distribution. Our results are valid for models with independent randomness with arbitrary free parts. In particular in the case of the Anderson type models (with stationary, growing, decaying ...

  8. Optimal Quantum Spatial Search on Random Temporal Networks.

    Science.gov (United States)

    Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser

    2017-12-01

    To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G(n,p), where p is the probability that any two given nodes are connected: After every time interval τ, a new graph G(n,p) replaces the previous one. We prove analytically that, for any given p, there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O(sqrt[n]), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.

  9. Optimal Quantum Spatial Search on Random Temporal Networks

    Science.gov (United States)

    Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser

    2017-12-01

    To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G (n ,p ), where p is the probability that any two given nodes are connected: After every time interval τ , a new graph G (n ,p ) replaces the previous one. We prove analytically that, for any given p , there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O (√{n }), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.

  10. Continuous-time quantum random walks require discrete space

    International Nuclear Information System (INIS)

    Manouchehri, K; Wang, J B

    2007-01-01

    Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks

  11. Continuous-time quantum random walks require discrete space

    Science.gov (United States)

    Manouchehri, K.; Wang, J. B.

    2007-11-01

    Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks.

  12. Spectral dimensionality of random superconducting networks

    International Nuclear Information System (INIS)

    Day, A.R.; Xia, W.; Thorpe, M.F.

    1988-01-01

    We compute the spectral dimensionality d of random superconducting-normal networks by directly examining the low-frequency density of states at the percolation threshold. We find that d = 4.1 +- 0.2 and 5.8 +- 0.3 in two and three dimensions, respectively, which confirms the scaling relation d = 2d/(2-s/ν), where s is the superconducting exponent and ν the correlation-length exponent for percolation. We also consider the one-dimensional problem where scaling arguments predict, and our numerical simulations confirm, that d = 0. A simple argument provides an expression for the density of states of the localized high-frequency modes in this special case. We comment on the connection between our calculations and the ''termite'' problem of a random walker on a random superconducting-normal network and point out difficulties in inferring d from simulations of the termite problem

  13. Unraveling spurious properties of interaction networks with tailored random networks.

    Directory of Open Access Journals (Sweden)

    Stephan Bialonski

    Full Text Available We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures--known for their complex spatial and temporal dynamics--we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.

  14. Optimal Preventive Bank Supervision: Combining Random Audits and Continuous Intervention

    OpenAIRE

    Mohamed Belhaj; Nataliya Klimenko

    2012-01-01

    Early regulator interventions into problem banks are one of the key suggestions of Basel II. However, no guidance is given on their design. To fill this gap, we outline an incentive-based preventive supervision strategy that eliminates bad asset management in banks. Two supervision techniques are combined: continuous regulator intervention and random audits. Random audit technologies differ as to quality and cost. Our design ensures good management without excessive supervision costs, through...

  15. Exploring continuous organisational transformation as a form of network interdependence

    OpenAIRE

    Stebbings, H; Braganza, A

    2008-01-01

    In this paper we examine the problematic area of continuous transformation. We conduct our analysis from three theoretical perspectives: the resource based view, social network theory, and stakeholder theory. We found that the continuous transformation can be explained through the concept of Network Interdependence. This paper describes Network Interdependence and develops theoretical propositions from a synthesis of the three theories. Our contribution of Network Interdependence offers f...

  16. Application of continuous-time random walk to statistical arbitrage

    Directory of Open Access Journals (Sweden)

    Sergey Osmekhin

    2015-01-01

    Full Text Available An analytical statistical arbitrage strategy is proposed, where the distribution of the spread is modelled as a continuous-time random walk. Optimal boundaries, computed as a function of the mean and variance of the firstpassage time ofthe spread,maximises an objective function. The predictability of the trading strategy is analysed and contrasted for two forms of continuous-time random walk processes. We found that the waiting-time distribution has a significant impact on the prediction of the expected profit for intraday trading

  17. Recent results for random networks of automata

    International Nuclear Information System (INIS)

    Flyvbjerg, H.

    1987-05-01

    After a very brief historical and contextual introduction to random networks of automata we review recent numerical and analytical results. Open questions and unsolved problems are pointed out and discussed. One such question is also answered: it is shown that the size of the stable core can be used as order parameter for a transition between phases of frozen and chaotic network behavior. A mean-field-like but exact selfconsistency equation for the size of the stable core is given. A new derivation of critical parameter values follows from it. (orig.)

  18. Quantum games on evolving random networks

    OpenAIRE

    Pawela, Łukasz

    2015-01-01

    We study the advantages of quantum strategies in evolutionary social dilemmas on evolving random networks. We focus our study on the two-player games: prisoner's dilemma, snowdrift and stag-hunt games. The obtained result show the benefits of quantum strategies for the prisoner's dilemma game. For the other two games, we obtain regions of parameters where the quantum strategies dominate, as well as regions where the classical strategies coexist.

  19. Low Cost Wireless Sensor Network for Continuous Bridge monitoring

    DEFF Research Database (Denmark)

    Han, Bo; Kalis, A; Tragas, P

    2012-01-01

    Continuous monitoring wireless sensor networks (WSN) are considered as one of the most promising means to harvest information from large structures in order to assist in structural health monitoring and management. At the same time, continuous monitoring WSNs suffer from limited network lifetimes...

  20. Anomalous Anticipatory Responses in Networked Random Data

    International Nuclear Information System (INIS)

    Nelson, Roger D.; Bancel, Peter A.

    2006-01-01

    We examine an 8-year archive of synchronized, parallel time series of random data from a world spanning network of physical random event generators (REGs). The archive is a publicly accessible matrix of normally distributed 200-bit sums recorded at 1 Hz which extends from August 1998 to the present. The primary question is whether these data show non-random structure associated with major events such as natural or man-made disasters, terrible accidents, or grand celebrations. Secondarily, we examine the time course of apparently correlated responses. Statistical analyses of the data reveal consistent evidence that events which strongly affect people engender small but significant effects. These include suggestions of anticipatory responses in some cases, leading to a series of specialized analyses to assess possible non-random structure preceding precisely timed events. A focused examination of data collected around the time of earthquakes with Richter magnitude 6 and greater reveals non-random structure with a number of intriguing, potentially important features. Anomalous effects in the REG data are seen only when the corresponding earthquakes occur in populated areas. No structure is found if they occur in the oceans. We infer that an important contributor to the effect is the relevance of the earthquake to humans. Epoch averaging reveals evidence for changes in the data some hours prior to the main temblor, suggestive of reverse causation

  1. Randomized trial of intermittent or continuous amnioinfusion for variable decelerations.

    Science.gov (United States)

    Rinehart, B K; Terrone, D A; Barrow, J H; Isler, C M; Barrilleaux, P S; Roberts, W E

    2000-10-01

    To determine whether continuous or intermittent bolus amnioinfusion is more effective in relieving variable decelerations. Patients with repetitive variable decelerations were randomized to an intermittent bolus or continuous amnioinfusion. The intermittent bolus infusion group received boluses of 500 mL of normal saline, each over 30 minutes, with boluses repeated if variable decelerations recurred. The continuous infusion group received a bolus infusion of 500 mL of normal saline over 30 minutes and then 3 mL per minute until delivery occurred. The ability of the amnioinfusion to abolish variable decelerations was analyzed, as were maternal demographic and pregnancy outcome variables. Power analysis indicated that 64 patients would be required. Thirty-five patients were randomized to intermittent infusion and 30 to continuous infusion. There were no differences between groups in terms of maternal demographics, gestational age, delivery mode, neonatal outcome, median time to resolution of variable decelerations, or the number of times variable decelerations recurred. The median volume infused in the intermittent infusion group (500 mL) was significantly less than that in the continuous infusion group (905 mL, P =.003). Intermittent bolus amnioinfusion is as effective as continuous infusion in relieving variable decelerations in labor. Further investigation is necessary to determine whether either of these techniques is associated with increased occurrence of rare complications such as cord prolapse or uterine rupture.

  2. Dynamical continuous time random Lévy flights

    Science.gov (United States)

    Liu, Jian; Chen, Xiaosong

    2016-03-01

    The Lévy flights' diffusive behavior is studied within the framework of the dynamical continuous time random walk (DCTRW) method, while the nonlinear friction is introduced in each step. Through the DCTRW method, Lévy random walker in each step flies by obeying the Newton's Second Law while the nonlinear friction f(v) = - γ0v - γ2v3 being considered instead of Stokes friction. It is shown that after introducing the nonlinear friction, the superdiffusive Lévy flights converges, behaves localization phenomenon with long time limit, but for the Lévy index μ = 2 case, it is still Brownian motion.

  3. Continuous state branching processes in random environment: The Brownian case

    OpenAIRE

    Palau, Sandra; Pardo, Juan Carlos

    2015-01-01

    We consider continuous state branching processes that are perturbed by a Brownian motion. These processes are constructed as the unique strong solution of a stochastic differential equation. The long-term extinction and explosion behaviours are studied. In the stable case, the extinction and explosion probabilities are given explicitly. We find three regimes for the asymptotic behaviour of the explosion probability and, as in the case of branching processes in random environment, we find five...

  4. Creating, generating and comparing random network models with NetworkRandomizer.

    Science.gov (United States)

    Tosadori, Gabriele; Bestvina, Ivan; Spoto, Fausto; Laudanna, Carlo; Scardoni, Giovanni

    2016-01-01

    Biological networks are becoming a fundamental tool for the investigation of high-throughput data in several fields of biology and biotechnology. With the increasing amount of information, network-based models are gaining more and more interest and new techniques are required in order to mine the information and to validate the results. To fill the validation gap we present an app, for the Cytoscape platform, which aims at creating randomised networks and randomising existing, real networks. Since there is a lack of tools that allow performing such operations, our app aims at enabling researchers to exploit different, well known random network models that could be used as a benchmark for validating real, biological datasets. We also propose a novel methodology for creating random weighted networks, i.e. the multiplication algorithm, starting from real, quantitative data. Finally, the app provides a statistical tool that compares real versus randomly computed attributes, in order to validate the numerical findings. In summary, our app aims at creating a standardised methodology for the validation of the results in the context of the Cytoscape platform.

  5. Topological Effects and Performance Optimization in Transportation Continuous Network Design

    Directory of Open Access Journals (Sweden)

    Jianjun Wu

    2014-01-01

    Full Text Available Because of the limitation of budget, in the planning of road works, increased efforts should be made on links that are more critical to the whole traffic system. Therefore, it would be helpful to model and evaluate the vulnerability and reliability of the transportation network when the network design is processing. This paper proposes a bilevel transportation network design model, in which the upper level is to minimize the performance of the network under the given budgets, while the lower level is a typical user equilibrium assignment problem. A new solution approach based on particle swarm optimization (PSO method is presented. The topological effects on the performance of transportation networks are studied with the consideration of three typical networks, regular lattice, random graph, and small-world network. Numerical examples and simulations are presented to demonstrate the proposed model.

  6. Complex network analysis of state spaces for random Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Shreim, Amer [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Berdahl, Andrew [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Sood, Vishal [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Grassberger, Peter [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Paczuski, Maya [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada)

    2008-01-15

    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 {<=} K {<=} 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2{sup N}, for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two.

  7. Complex network analysis of state spaces for random Boolean networks

    International Nuclear Information System (INIS)

    Shreim, Amer; Berdahl, Andrew; Sood, Vishal; Grassberger, Peter; Paczuski, Maya

    2008-01-01

    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 ≤ K ≤ 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2 N , for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two

  8. Multi-agent coordination in directed moving neighbourhood random networks

    International Nuclear Information System (INIS)

    Yi-Lun, Shang

    2010-01-01

    This paper considers the consensus problem of dynamical multiple agents that communicate via a directed moving neighbourhood random network. Each agent performs random walk on a weighted directed network. Agents interact with each other through random unidirectional information flow when they coincide in the underlying network at a given instant. For such a framework, we present sufficient conditions for almost sure asymptotic consensus. Numerical examples are taken to show the effectiveness of the obtained results. (general)

  9. A continuous-time control model on production planning network ...

    African Journals Online (AJOL)

    A continuous-time control model on production planning network. DEA Omorogbe, MIU Okunsebor. Abstract. In this paper, we give a slightly detailed review of Graves and Hollywood model on constant inventory tactical planning model for a job shop. The limitations of this model are pointed out and a continuous time ...

  10. Phase-synchronisation in continuous flow models of production networks

    Science.gov (United States)

    Scholz-Reiter, Bernd; Tervo, Jan Topi; Freitag, Michael

    2006-04-01

    To improve their position at the market, many companies concentrate on their core competences and hence cooperate with suppliers and distributors. Thus, between many independent companies strong linkages develop and production and logistics networks emerge. These networks are characterised by permanently increasing complexity, and are nowadays forced to adapt to dynamically changing markets. This factor complicates an enterprise-spreading production planning and control enormously. Therefore, a continuous flow model for production networks will be derived regarding these special logistic problems. Furthermore, phase-synchronisation effects will be presented and their dependencies to the set of network parameters will be investigated.

  11. Random Linear Network Coding for 5G Mobile Video Delivery

    Directory of Open Access Journals (Sweden)

    Dejan Vukobratovic

    2018-03-01

    Full Text Available An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G 3GPP New Radio (NR standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC. In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.

  12. Network Randomization and Dynamic Defense for Critical Infrastructure Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Adrian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Mitchell Tyler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hamlet, Jason [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stout, William M.S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Erik [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-04-01

    Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and development to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.

  13. Random field Ising chain and neutral networks with synchronous dynamics

    International Nuclear Information System (INIS)

    Skantzos, N.S.; Coolen, A.C.C.

    2001-01-01

    We first present an exact solution of the one-dimensional random-field Ising model in which spin-updates are made fully synchronously, i.e. in parallel (in contrast to the more conventional Glauber-type sequential rules). We find transitions where the support of local observables turns from a continuous interval into a Cantor set and we show that synchronous and sequential random-field models lead asymptotically to the same physical states. We then proceed to an application of these techniques to recurrent neural networks where 1D short-range interactions are combined with infinite-range ones. Due to the competing interactions these models exhibit phase diagrams with first-order transitions and regions with multiple locally stable solutions for the macroscopic order parameters

  14. Opinion dynamics on an adaptive random network

    Science.gov (United States)

    Benczik, I. J.; Benczik, S. Z.; Schmittmann, B.; Zia, R. K. P.

    2009-04-01

    We revisit the classical model for voter dynamics in a two-party system with two basic modifications. In contrast to the original voter model studied in regular lattices, we implement the opinion formation process in a random network of agents in which interactions are no longer restricted by geographical distance. In addition, we incorporate the rapidly changing nature of the interpersonal relations in the model. At each time step, agents can update their relationships. This update is determined by their own opinion, and by their preference to make connections with individuals sharing the same opinion, or rather with opponents. In this way, the network is built in an adaptive manner, in the sense that its structure is correlated and evolves with the dynamics of the agents. The simplicity of the model allows us to examine several issues analytically. We establish criteria to determine whether consensus or polarization will be the outcome of the dynamics and on what time scales these states will be reached. In finite systems consensus is typical, while in infinite systems a disordered metastable state can emerge and persist for infinitely long time before consensus is reached.

  15. Dynamic defense and network randomization for computer systems

    Science.gov (United States)

    Chavez, Adrian R.; Stout, William M. S.; Hamlet, Jason R.; Lee, Erik James; Martin, Mitchell Tyler

    2018-05-29

    The various technologies presented herein relate to determining a network attack is taking place, and further to adjust one or more network parameters such that the network becomes dynamically configured. A plurality of machine learning algorithms are configured to recognize an active attack pattern. Notification of the attack can be generated, and knowledge gained from the detected attack pattern can be utilized to improve the knowledge of the algorithms to detect a subsequent attack vector(s). Further, network settings and application communications can be dynamically randomized, wherein artificial diversity converts control systems into moving targets that help mitigate the early reconnaissance stages of an attack. An attack(s) based upon a known static address(es) of a critical infrastructure network device(s) can be mitigated by the dynamic randomization. Network parameters that can be randomized include IP addresses, application port numbers, paths data packets navigate through the network, application randomization, etc.

  16. Designing neural networks that process mean values of random variables

    International Nuclear Information System (INIS)

    Barber, Michael J.; Clark, John W.

    2014-01-01

    We develop a class of neural networks derived from probabilistic models posed in the form of Bayesian networks. Making biologically and technically plausible assumptions about the nature of the probabilistic models to be represented in the networks, we derive neural networks exhibiting standard dynamics that require no training to determine the synaptic weights, that perform accurate calculation of the mean values of the relevant random variables, that can pool multiple sources of evidence, and that deal appropriately with ambivalent, inconsistent, or contradictory evidence. - Highlights: • High-level neural computations are specified by Bayesian belief networks of random variables. • Probability densities of random variables are encoded in activities of populations of neurons. • Top-down algorithm generates specific neural network implementation of given computation. • Resulting “neural belief networks” process mean values of random variables. • Such networks pool multiple sources of evidence and deal properly with inconsistent evidence

  17. Designing neural networks that process mean values of random variables

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Michael J. [AIT Austrian Institute of Technology, Innovation Systems Department, 1220 Vienna (Austria); Clark, John W. [Department of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130 (United States); Centro de Ciências Matemáticas, Universidade de Madeira, 9000-390 Funchal (Portugal)

    2014-06-13

    We develop a class of neural networks derived from probabilistic models posed in the form of Bayesian networks. Making biologically and technically plausible assumptions about the nature of the probabilistic models to be represented in the networks, we derive neural networks exhibiting standard dynamics that require no training to determine the synaptic weights, that perform accurate calculation of the mean values of the relevant random variables, that can pool multiple sources of evidence, and that deal appropriately with ambivalent, inconsistent, or contradictory evidence. - Highlights: • High-level neural computations are specified by Bayesian belief networks of random variables. • Probability densities of random variables are encoded in activities of populations of neurons. • Top-down algorithm generates specific neural network implementation of given computation. • Resulting “neural belief networks” process mean values of random variables. • Such networks pool multiple sources of evidence and deal properly with inconsistent evidence.

  18. Search for Directed Networks by Different Random Walk Strategies

    Science.gov (United States)

    Zhu, Zi-Qi; Jin, Xiao-Ling; Huang, Zhi-Long

    2012-03-01

    A comparative study is carried out on the efficiency of five different random walk strategies searching on directed networks constructed based on several typical complex networks. Due to the difference in search efficiency of the strategies rooted in network clustering, the clustering coefficient in a random walker's eye on directed networks is defined and computed to be half of the corresponding undirected networks. The search processes are performed on the directed networks based on Erdös—Rényi model, Watts—Strogatz model, Barabási—Albert model and clustered scale-free network model. It is found that self-avoiding random walk strategy is the best search strategy for such directed networks. Compared to unrestricted random walk strategy, path-iteration-avoiding random walks can also make the search process much more efficient. However, no-triangle-loop and no-quadrangle-loop random walks do not improve the search efficiency as expected, which is different from those on undirected networks since the clustering coefficient of directed networks are smaller than that of undirected networks.

  19. Cross over of recurrence networks to random graphs and random ...

    Indian Academy of Sciences (India)

    Recurrence networks are complex networks constructed from the time series of chaotic dynamical systems where the connection between two nodes is limited by the recurrence threshold. This condition makes the topology of every recurrence network unique with the degree distribution determined by the probability ...

  20. Correlated continuous time random walk and option pricing

    Science.gov (United States)

    Lv, Longjin; Xiao, Jianbin; Fan, Liangzhong; Ren, Fuyao

    2016-04-01

    In this paper, we study a correlated continuous time random walk (CCTRW) with averaged waiting time, whose probability density function (PDF) is proved to follow stretched Gaussian distribution. Then, we apply this process into option pricing problem. Supposing the price of the underlying is driven by this CCTRW, we find this model captures the subdiffusive characteristic of financial markets. By using the mean self-financing hedging strategy, we obtain the closed-form pricing formulas for a European option with and without transaction costs, respectively. At last, comparing the obtained model with the classical Black-Scholes model, we find the price obtained in this paper is higher than that obtained from the Black-Scholes model. A empirical analysis is also introduced to confirm the obtained results can fit the real data well.

  1. Holographic duality from random tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, Patrick; Nezami, Sepehr; Qi, Xiao-Liang; Thomas, Nathaniel; Walter, Michael; Yang, Zhao [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,382 Via Pueblo, Stanford, CA 94305 (United States)

    2016-11-02

    Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main

  2. Continuous time quantum random walks in free space

    Science.gov (United States)

    Eichelkraut, Toni; Vetter, Christian; Perez-Leija, Armando; Christodoulides, Demetrios; Szameit, Alexander

    2014-05-01

    We show theoretically and experimentally that two-dimensional continuous time coherent random walks are possible in free space, that is, in the absence of any external potential, by properly tailoring the associated initial wave function. These effects are experimentally demonstrated using classical paraxial light. Evidently, the usage of classical beams to explore the dynamics of point-like quantum particles is possible since both phenomena are mathematically equivalent. This in turn makes our approach suitable for the realization of random walks using different quantum particles, including electrons and photons. To study the spatial evolution of a wavefunction theoretically, we consider the one-dimensional paraxial wave equation (i∂z +1/2 ∂x2) Ψ = 0 . Starting with the initially localized wavefunction Ψ (x , 0) = exp [ -x2 / 2σ2 ] J0 (αx) , one can show that the evolution of such Gaussian-apodized Bessel envelopes within a region of validity resembles the probability pattern of a quantum walker traversing a uniform lattice. In order to generate the desired input-field in our experimental setting we shape the amplitude and phase of a collimated light beam originating from a classical HeNe-Laser (633 nm) utilizing a spatial light modulator.

  3. A random spatial network model based on elementary postulates

    Science.gov (United States)

    Karlinger, Michael R.; Troutman, Brent M.

    1989-01-01

    A model for generating random spatial networks that is based on elementary postulates comparable to those of the random topology model is proposed. In contrast to the random topology model, this model ascribes a unique spatial specification to generated drainage networks, a distinguishing property of some network growth models. The simplicity of the postulates creates an opportunity for potential analytic investigations of the probabilistic structure of the drainage networks, while the spatial specification enables analyses of spatially dependent network properties. In the random topology model all drainage networks, conditioned on magnitude (number of first-order streams), are equally likely, whereas in this model all spanning trees of a grid, conditioned on area and drainage density, are equally likely. As a result, link lengths in the generated networks are not independent, as usually assumed in the random topology model. For a preliminary model evaluation, scale-dependent network characteristics, such as geometric diameter and link length properties, and topologic characteristics, such as bifurcation ratio, are computed for sets of drainage networks generated on square and rectangular grids. Statistics of the bifurcation and length ratios fall within the range of values reported for natural drainage networks, but geometric diameters tend to be relatively longer than those for natural networks.

  4. Experimental percolation studies of random networks

    Science.gov (United States)

    Feinerman, A.; Weddell, J.

    2017-06-01

    This report establishes an experimental method of studying electrically percolating networks at a higher resolution than previously implemented. This method measures the current across a conductive sheet as a function of time as elliptical pores are cut into the sheet. This is done utilizing a Universal Laser System X2-600 100 W CO2 laser system with a 76 × 46 cm2 field and 394 dpc (dots/cm) resolution. This laser can cut a random system of elliptical pores into a conductive sheet with a potential voltage applied across it and measures the current versus time. This allows for experimental verification of a percolation threshold as a function of the ellipse's aspect ratio (minor/major diameter). We show that as an ellipse's aspect ratio approaches zero, the percolation threshold approaches one. The benefit of this method is that it can experimentally measure the effect of removing small pores, as well as pores with complex geometries, such as an asterisk from a conductive sheet.

  5. Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes

    Science.gov (United States)

    Orsingher, Enzo; Polito, Federico

    2012-08-01

    In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.

  6. The Random Walk Model Based on Bipartite Network

    Directory of Open Access Journals (Sweden)

    Zhang Man-Dun

    2016-01-01

    Full Text Available With the continuing development of the electronic commerce and growth of network information, there is a growing possibility for citizens to be confused by the information. Though the traditional technology of information retrieval have the ability to relieve the overload of information in some extent, it can not offer a targeted personality service based on user’s interests and activities. In this context, the recommendation algorithm arose. In this paper, on the basis of conventional recommendation, we studied the scheme of random walk based on bipartite network and the application of it. We put forward a similarity measurement based on implicit feedback. In this method, a uneven character vector is imported(the weight of item in the system. We put forward a improved random walk pattern which make use of partial or incomplete neighbor information to create recommendation information. In the end, there is an experiment in the real data set, the recommendation accuracy and practicality are improved. We promise the reality of the result of the experiment

  7. Framework for cascade size calculations on random networks

    Science.gov (United States)

    Burkholz, Rebekka; Schweitzer, Frank

    2018-04-01

    We present a framework to calculate the cascade size evolution for a large class of cascade models on random network ensembles in the limit of infinite network size. Our method is exact and applies to network ensembles with almost arbitrary degree distribution, degree-degree correlations, and, in case of threshold models, for arbitrary threshold distribution. With our approach, we shift the perspective from the known branching process approximations to the iterative update of suitable probability distributions. Such distributions are key to capture cascade dynamics that involve possibly continuous quantities and that depend on the cascade history, e.g., if load is accumulated over time. As a proof of concept, we provide two examples: (a) Constant load models that cover many of the analytically tractable casacade models, and, as a highlight, (b) a fiber bundle model that was not tractable by branching process approximations before. Our derivations cover the whole cascade dynamics, not only their steady state. This allows us to include interventions in time or further model complexity in the analysis.

  8. Random matrix approach to plasmon resonances in the random impedance network model of disordered nanocomposites

    Science.gov (United States)

    Olekhno, N. A.; Beltukov, Y. M.

    2018-05-01

    Random impedance networks are widely used as a model to describe plasmon resonances in disordered metal-dielectric and other two-component nanocomposites. In the present work, the spectral properties of resonances in random networks are studied within the framework of the random matrix theory. We have shown that the appropriate ensemble of random matrices for the considered problem is the Jacobi ensemble (the MANOVA ensemble). The obtained analytical expressions for the density of states in such resonant networks show a good agreement with the results of numerical simulations in a wide range of metal filling fractions 0

  9. Anomalous transport in turbulent plasmas and continuous time random walks

    International Nuclear Information System (INIS)

    Balescu, R.

    1995-01-01

    The possibility of a model of anomalous transport problems in a turbulent plasma by a purely stochastic process is investigated. The theory of continuous time random walks (CTRW's) is briefly reviewed. It is shown that a particular class, called the standard long tail CTRW's is of special interest for the description of subdiffusive transport. Its evolution is described by a non-Markovian diffusion equation that is constructed in such a way as to yield exact values for all the moments of the density profile. The concept of a CTRW model is compared to an exact solution of a simple test problem: transport of charged particles in a fluctuating magnetic field in the limit of infinite perpendicular correlation length. Although the well-known behavior of the mean square displacement proportional to t 1/2 is easily recovered, the exact density profile cannot be modeled by a CTRW. However, the quasilinear approximation of the kinetic equation has the form of a non-Markovian diffusion equation and can thus be generated by a CTRW

  10. Stochastic calculus for uncoupled continuous-time random walks.

    Science.gov (United States)

    Germano, Guido; Politi, Mauro; Scalas, Enrico; Schilling, René L

    2009-06-01

    The continuous-time random walk (CTRW) is a pure-jump stochastic process with several applications not only in physics but also in insurance, finance, and economics. A definition is given for a class of stochastic integrals driven by a CTRW, which includes the Itō and Stratonovich cases. An uncoupled CTRW with zero-mean jumps is a martingale. It is proved that, as a consequence of the martingale transform theorem, if the CTRW is a martingale, the Itō integral is a martingale too. It is shown how the definition of the stochastic integrals can be used to easily compute them by Monte Carlo simulation. The relations between a CTRW, its quadratic variation, its Stratonovich integral, and its Itō integral are highlighted by numerical calculations when the jumps in space of the CTRW have a symmetric Lévy alpha -stable distribution and its waiting times have a one-parameter Mittag-Leffler distribution. Remarkably, these distributions have fat tails and an unbounded quadratic variation. In the diffusive limit of vanishing scale parameters, the probability density of this kind of CTRW satisfies the space-time fractional diffusion equation (FDE) or more in general the fractional Fokker-Planck equation, which generalizes the standard diffusion equation, solved by the probability density of the Wiener process, and thus provides a phenomenologic model of anomalous diffusion. We also provide an analytic expression for the quadratic variation of the stochastic process described by the FDE and check it by Monte Carlo.

  11. Application of random matrix theory to biological networks

    Energy Technology Data Exchange (ETDEWEB)

    Luo Feng [Department of Computer Science, Clemson University, 100 McAdams Hall, Clemson, SC 29634 (United States); Department of Pathology, U.T. Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390-9072 (United States); Zhong Jianxin [Department of Physics, Xiangtan University, Hunan 411105 (China) and Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)]. E-mail: zhongjn@ornl.gov; Yang Yunfeng [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Scheuermann, Richard H. [Department of Pathology, U.T. Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390-9072 (United States); Zhou Jizhong [Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019 (United States) and Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)]. E-mail: zhouj@ornl.gov

    2006-09-25

    We show that spectral fluctuation of interaction matrices of a yeast protein-protein interaction network and a yeast metabolic network follows the description of the Gaussian orthogonal ensemble (GOE) of random matrix theory (RMT). Furthermore, we demonstrate that while the global biological networks evaluated belong to GOE, removal of interactions between constituents transitions the networks to systems of isolated modules described by the Poisson distribution. Our results indicate that although biological networks are very different from other complex systems at the molecular level, they display the same statistical properties at network scale. The transition point provides a new objective approach for the identification of functional modules.

  12. A novel Random Walk algorithm with Compulsive Evolution for heat exchanger network synthesis

    International Nuclear Information System (INIS)

    Xiao, Yuan; Cui, Guomin

    2017-01-01

    Highlights: • A novel Random Walk Algorithm with Compulsive Evolution is proposed for HENS. • A simple and feasible evolution strategy is presented in RWCE algorithm. • The integer and continuous variables of HEN are optimized simultaneously in RWCE. • RWCE is demonstrated a relatively strong global search ability in HEN optimization. - Abstract: The heat exchanger network (HEN) synthesis can be characterized as highly combinatorial, nonlinear and nonconvex, contributing to unmanageable computational time and a challenge in identifying the global optimal network design. Stochastic methods are robust and show a powerful global optimizing ability. Based on the common characteristic of different stochastic methods, namely randomness, a novel Random Walk algorithm with Compulsive Evolution (RWCE) is proposed to achieve the best possible total annual cost of heat exchanger network with the relatively simple and feasible evolution strategy. A population of heat exchanger networks is first randomly initialized. Next, the heat load of heat exchanger for each individual is randomly expanded or contracted in order to optimize both the integer and continuous variables simultaneously and to obtain the lowest total annual cost. Besides, when individuals approach to local optima, there is a certain probability for them to compulsively accept the imperfect networks in order to keep the population diversity and ability of global optimization. The presented method is then applied to heat exchanger network synthesis cases from the literature to compare the best results published. RWCE consistently has a lower computed total annual cost compared to previously published results.

  13. Continuous-time quantum walks on multilayer dendrimer networks

    Science.gov (United States)

    Galiceanu, Mircea; Strunz, Walter T.

    2016-08-01

    We consider continuous-time quantum walks (CTQWs) on multilayer dendrimer networks (MDs) and their application to quantum transport. A detailed study of properties of CTQWs is presented and transport efficiency is determined in terms of the exact and average return probabilities. The latter depends only on the eigenvalues of the connectivity matrix, which even for very large structures allows a complete analytical solution for this particular choice of network. In the case of MDs we observe an interplay between strong localization effects, due to the dendrimer topology, and good efficiency from the linear segments. We show that quantum transport is enhanced by interconnecting more layers of dendrimers.

  14. Networked Learning and Network Science: Potential Applications to Health Professionals' Continuing Education and Development.

    Science.gov (United States)

    Margolis, Alvaro; Parboosingh, John

    2015-01-01

    Prior interpersonal relationships and interactivity among members of professional associations may impact the learning process in continuing medical education (CME). On the other hand, CME programs that encourage interactivity between participants may impact structures and behaviors in these professional associations. With the advent of information and communication technologies, new communication spaces have emerged that have the potential to enhance networked learning in national and international professional associations and increase the effectiveness of CME for health professionals. In this article, network science, based on the application of network theory and other theories, is proposed as an approach to better understand the contribution networking and interactivity between health professionals in professional communities make to their learning and adoption of new practices over time. © 2015 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on Continuing Medical Education, Association for Hospital Medical Education.

  15. Quantum Random Networks for Type 2 Quantum Computers

    National Research Council Canada - National Science Library

    Allara, David L; Hasslacher, Brosl

    2006-01-01

    Random boolean networks (RBNs) have been studied theoretically and computationally in order to be able to use their remarkable self-healing and large basins of altercation properties as quantum computing architectures, especially...

  16. Softening in Random Networks of Non-Identical Beams.

    Science.gov (United States)

    Ban, Ehsan; Barocas, Victor H; Shephard, Mark S; Picu, Catalin R

    2016-02-01

    Random fiber networks are assemblies of elastic elements connected in random configurations. They are used as models for a broad range of fibrous materials including biopolymer gels and synthetic nonwovens. Although the mechanics of networks made from the same type of fibers has been studied extensively, the behavior of composite systems of fibers with different properties has received less attention. In this work we numerically and theoretically study random networks of beams and springs of different mechanical properties. We observe that the overall network stiffness decreases on average as the variability of fiber stiffness increases, at constant mean fiber stiffness. Numerical results and analytical arguments show that for small variabilities in fiber stiffness the amount of network softening scales linearly with the variance of the fiber stiffness distribution. This result holds for any beam structure and is expected to apply to a broad range of materials including cellular solids.

  17. Random networking : between order and chaos

    NARCIS (Netherlands)

    Hofstad, van der R.W.

    2007-01-01

    With the arrival of the Internet, a good understanding of networks has become important for everyone. Network theory, which originated in the eighteenth century with Euler, and in the nineteenth century withMarkov, has until recently concentrated its attentionmainly on regular types of graphs. In

  18. Finite time convergent learning law for continuous neural networks.

    Science.gov (United States)

    Chairez, Isaac

    2014-02-01

    This paper addresses the design of a discontinuous finite time convergent learning law for neural networks with continuous dynamics. The neural network was used here to obtain a non-parametric model for uncertain systems described by a set of ordinary differential equations. The source of uncertainties was the presence of some external perturbations and poor knowledge of the nonlinear function describing the system dynamics. A new adaptive algorithm based on discontinuous algorithms was used to adjust the weights of the neural network. The adaptive algorithm was derived by means of a non-standard Lyapunov function that is lower semi-continuous and differentiable in almost the whole space. A compensator term was included in the identifier to reject some specific perturbations using a nonlinear robust algorithm. Two numerical examples demonstrated the improvements achieved by the learning algorithm introduced in this paper compared to classical schemes with continuous learning methods. The first one dealt with a benchmark problem used in the paper to explain how the discontinuous learning law works. The second one used the methane production model to show the benefits in engineering applications of the learning law proposed in this paper. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Selectivity and sparseness in randomly connected balanced networks.

    Directory of Open Access Journals (Sweden)

    Cengiz Pehlevan

    Full Text Available Neurons in sensory cortex show stimulus selectivity and sparse population response, even in cases where no strong functionally specific structure in connectivity can be detected. This raises the question whether selectivity and sparseness can be generated and maintained in randomly connected networks. We consider a recurrent network of excitatory and inhibitory spiking neurons with random connectivity, driven by random projections from an input layer of stimulus selective neurons. In this architecture, the stimulus-to-stimulus and neuron-to-neuron modulation of total synaptic input is weak compared to the mean input. Surprisingly, we show that in the balanced state the network can still support high stimulus selectivity and sparse population response. In the balanced state, strong synapses amplify the variation in synaptic input and recurrent inhibition cancels the mean. Functional specificity in connectivity emerges due to the inhomogeneity caused by the generative statistical rule used to build the network. We further elucidate the mechanism behind and evaluate the effects of model parameters on population sparseness and stimulus selectivity. Network response to mixtures of stimuli is investigated. It is shown that a balanced state with unselective inhibition can be achieved with densely connected input to inhibitory population. Balanced networks exhibit the "paradoxical" effect: an increase in excitatory drive to inhibition leads to decreased inhibitory population firing rate. We compare and contrast selectivity and sparseness generated by the balanced network to randomly connected unbalanced networks. Finally, we discuss our results in light of experiments.

  20. Robustness of Dengue Complex Network under Targeted versus Random Attack

    Directory of Open Access Journals (Sweden)

    Hafiz Abid Mahmood Malik

    2017-01-01

    Full Text Available Dengue virus infection is one of those epidemic diseases that require much consideration in order to save the humankind from its unsafe impacts. According to the World Health Organization (WHO, 3.6 billion individuals are at risk because of the dengue virus sickness. Researchers are striving to comprehend the dengue threat. This study is a little commitment to those endeavors. To observe the robustness of the dengue network, we uprooted the links between nodes randomly and targeted by utilizing different centrality measures. The outcomes demonstrated that 5% targeted attack is equivalent to the result of 65% random assault, which showed the topology of this complex network validated a scale-free network instead of random network. Four centrality measures (Degree, Closeness, Betweenness, and Eigenvector have been ascertained to look for focal hubs. It has been observed through the results in this study that robustness of a node and links depends on topology of the network. The dengue epidemic network presented robust behaviour under random attack, and this network turned out to be more vulnerable when the hubs of higher degree have higher probability to fail. Moreover, representation of this network has been projected, and hub removal impact has been shown on the real map of Gombak (Malaysia.

  1. Continuity of integrated density of states – independent randomness

    Indian Academy of Sciences (India)

    Abstract. In this paper we discuss the continuity properties of the integrated density ... Density of states; Wegner estimate; Hölder continuous. 1. Introduction ..... and inverse spectral theory (Goa, 2000), Proc. Indian Acad. Sci. (Math. Sci.) 112(1).

  2. Spectra of random networks in the weak clustering regime

    Science.gov (United States)

    Peron, Thomas K. DM.; Ji, Peng; Kurths, Jürgen; Rodrigues, Francisco A.

    2018-03-01

    The asymptotic behavior of dynamical processes in networks can be expressed as a function of spectral properties of the corresponding adjacency and Laplacian matrices. Although many theoretical results are known for the spectra of traditional configuration models, networks generated through these models fail to describe many topological features of real-world networks, in particular non-null values of the clustering coefficient. Here we study effects of cycles of order three (triangles) in network spectra. By using recent advances in random matrix theory, we determine the spectral distribution of the network adjacency matrix as a function of the average number of triangles attached to each node for networks without modular structure and degree-degree correlations. Implications to network dynamics are discussed. Our findings can shed light in the study of how particular kinds of subgraphs influence network dynamics.

  3. Continuous Online Sequence Learning with an Unsupervised Neural Network Model.

    Science.gov (United States)

    Cui, Yuwei; Ahmad, Subutar; Hawkins, Jeff

    2016-09-14

    The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variableorder temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.

  4. Epidemic transmission on random mobile network with diverse infection periods

    Science.gov (United States)

    Li, Kezan; Yu, Hong; Zeng, Zhaorong; Ding, Yong; Ma, Zhongjun

    2015-05-01

    The heterogeneity of individual susceptibility and infectivity and time-varying topological structure are two realistic factors when we study epidemics on complex networks. Current research results have shown that the heterogeneity of individual susceptibility and infectivity can increase the epidemic threshold in a random mobile dynamical network with the same infection period. In this paper, we will focus on random mobile dynamical networks with diverse infection periods due to people's different constitutions and external circumstances. Theoretical results indicate that the epidemic threshold of the random mobile network with diverse infection periods is larger than the counterpart with the same infection period. Moreover, the heterogeneity of individual susceptibility and infectivity can play a significant impact on disease transmission. In particular, the homogeneity of individuals will avail to the spreading of epidemics. Numerical examples verify further our theoretical results very well.

  5. A scaling law for random walks on networks

    Science.gov (United States)

    Perkins, Theodore J.; Foxall, Eric; Glass, Leon; Edwards, Roderick

    2014-10-01

    The dynamics of many natural and artificial systems are well described as random walks on a network: the stochastic behaviour of molecules, traffic patterns on the internet, fluctuations in stock prices and so on. The vast literature on random walks provides many tools for computing properties such as steady-state probabilities or expected hitting times. Previously, however, there has been no general theory describing the distribution of possible paths followed by a random walk. Here, we show that for any random walk on a finite network, there are precisely three mutually exclusive possibilities for the form of the path distribution: finite, stretched exponential and power law. The form of the distribution depends only on the structure of the network, while the stepping probabilities control the parameters of the distribution. We use our theory to explain path distributions in domains such as sports, music, nonlinear dynamics and stochastic chemical kinetics.

  6. Efficient sampling of complex network with modified random walk strategies

    Science.gov (United States)

    Xie, Yunya; Chang, Shuhua; Zhang, Zhipeng; Zhang, Mi; Yang, Lei

    2018-02-01

    We present two novel random walk strategies, choosing seed node (CSN) random walk and no-retracing (NR) random walk. Different from the classical random walk sampling, the CSN and NR strategies focus on the influences of the seed node choice and path overlap, respectively. Three random walk samplings are applied in the Erdös-Rényi (ER), Barabási-Albert (BA), Watts-Strogatz (WS), and the weighted USAir networks, respectively. Then, the major properties of sampled subnets, such as sampling efficiency, degree distributions, average degree and average clustering coefficient, are studied. The similar conclusions can be reached with these three random walk strategies. Firstly, the networks with small scales and simple structures are conducive to the sampling. Secondly, the average degree and the average clustering coefficient of the sampled subnet tend to the corresponding values of original networks with limited steps. And thirdly, all the degree distributions of the subnets are slightly biased to the high degree side. However, the NR strategy performs better for the average clustering coefficient of the subnet. In the real weighted USAir networks, some obvious characters like the larger clustering coefficient and the fluctuation of degree distribution are reproduced well by these random walk strategies.

  7. Throughput vs. Delay in Lossy Wireless Mesh Networks with Random Linear Network Coding

    OpenAIRE

    Hundebøll, Martin; Pahlevani, Peyman; Roetter, Daniel Enrique Lucani; Fitzek, Frank

    2014-01-01

    This work proposes a new protocol applying on–the–fly random linear network coding in wireless mesh net-works. The protocol provides increased reliability, low delay,and high throughput to the upper layers, while being obliviousto their specific requirements. This seemingly conflicting goalsare achieved by design, using an on–the–fly network codingstrategy. Our protocol also exploits relay nodes to increasethe overall performance of individual links. Since our protocolnaturally masks random p...

  8. Decoding Algorithms for Random Linear Network Codes

    DEFF Research Database (Denmark)

    Heide, Janus; Pedersen, Morten Videbæk; Fitzek, Frank

    2011-01-01

    We consider the problem of efficient decoding of a random linear code over a finite field. In particular we are interested in the case where the code is random, relatively sparse, and use the binary finite field as an example. The goal is to decode the data using fewer operations to potentially...... achieve a high coding throughput, and reduce energy consumption.We use an on-the-fly version of the Gauss-Jordan algorithm as a baseline, and provide several simple improvements to reduce the number of operations needed to perform decoding. Our tests show that the improvements can reduce the number...

  9. Dynamic Output Feedback Control for Nonlinear Networked Control Systems with Random Packet Dropout and Random Delay

    Directory of Open Access Journals (Sweden)

    Shuiqing Yu

    2013-01-01

    Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.

  10. Gender Differences in the Continuance of Online Social Networks

    Science.gov (United States)

    Shi, Na; Cheung, Christy M. K.; Lee, Matthew K. O.; Chen, Huaping

    Social network sites (SNS) have become increasingly popular in the past few years benefiting from the rapid growth of Web 2.0 applications. However, research on the adoption and usage of SNS is limited. In this study, we attempt to understand users' continuance intention to use SNS and investigate the role of gender. A research model was developed and tested with 213 respondents from an online survey. The results confirm that users' continuance intention to use SNS is strongly determined by satisfaction. The effect of disconfirmation of maintaining offline contacts on satisfaction is more important for women, while the effect of disconfirmation of entertainment is more salient for men. Implications of this study for both researchers and practitioners are discussed.

  11. Adaptive importance sampling of random walks on continuous state spaces

    International Nuclear Information System (INIS)

    Baggerly, K.; Cox, D.; Picard, R.

    1998-01-01

    The authors consider adaptive importance sampling for a random walk with scoring in a general state space. Conditions under which exponential convergence occurs to the zero-variance solution are reviewed. These results generalize previous work for finite, discrete state spaces in Kollman (1993) and in Kollman, Baggerly, Cox, and Picard (1996). This paper is intended for nonstatisticians and includes considerable explanatory material

  12. Boundary Region Detection for Continuous Objects in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yaqiang Zhang

    2018-01-01

    Full Text Available Industrial Internet of Things has been widely used to facilitate disaster monitoring applications, such as liquid leakage and toxic gas detection. Since disasters are usually harmful to the environment, detecting accurate boundary regions for continuous objects in an energy-efficient and timely fashion is a long-standing research challenge. This article proposes a novel mechanism for continuous object boundary region detection in a fog computing environment, where sensing holes may exist in the deployed network region. Leveraging sensory data that have been gathered, interpolation algorithms have been applied to estimate sensory data at certain geographical locations, in order to estimate a more accurate boundary line. To examine whether estimated sensory data reflect that fact, mobile sensors are adopted to traverse these locations for gathering their sensory data, and the boundary region is calibrated accordingly. Experimental evaluation shows that this technique can generate a precise object boundary region with certain time constraints, and the network lifetime can be prolonged significantly.

  13. Project ECHO: A Telementoring Network Model for Continuing Professional Development.

    Science.gov (United States)

    Arora, Sanjeev; Kalishman, Summers G; Thornton, Karla A; Komaromy, Miriam S; Katzman, Joanna G; Struminger, Bruce B; Rayburn, William F

    2017-01-01

    A major challenge with current systems of CME is the inability to translate the explosive growth in health care knowledge into daily practice. Project ECHO (Extension for Community Healthcare Outcomes) is a telementoring network designed for continuing professional development (CPD) and improving patient outcomes. The purpose of this article was to describe how the model has complied with recommendations from several authoritative reports about redesigning and enhancing CPD. This model links primary care clinicians through a knowledge network with an interprofessional team of specialists from an academic medical center who provide telementoring and ongoing education enabling community clinicians to treat patients with a variety of complex conditions. Knowledge and skills are shared during weekly condition-specific videoconferences. The model exemplifies learning as described in the seven levels of CPD by Moore (participation, satisfaction, learning, competence, performance, patient, and community health). The model is also aligned with recommendations from four national reports intended to redesign knowledge transfer in improving health care. Efforts in learning sessions focus on information that is relevant to practice, focus on evidence, education methodology, tailoring of recommendations to individual needs and community resources, and interprofessionalism. Project ECHO serves as a telementoring network model of CPD that aligns with current best practice recommendations for CME. This transformative initiative has the potential to serve as a leading model for larger scale CPD, nationally and globally, to enhance access to care, improve quality, and reduce cost.

  14. Complex networks: when random walk dynamics equals synchronization

    International Nuclear Information System (INIS)

    Kriener, Birgit; Anand, Lishma; Timme, Marc

    2012-01-01

    Synchrony prevalently emerges from the interactions of coupled dynamical units. For simple systems such as networks of phase oscillators, the asymptotic synchronization process is assumed to be equivalent to a Markov process that models standard diffusion or random walks on the same network topology. In this paper, we analytically derive the conditions for such equivalence for networks of pulse-coupled oscillators, which serve as models for neurons and pacemaker cells interacting by exchanging electric pulses or fireflies interacting via light flashes. We find that the pulse synchronization process is less simple, but there are classes of, e.g., network topologies that ensure equivalence. In particular, local dynamical operators are required to be doubly stochastic. These results provide a natural link between stochastic processes and deterministic synchronization on networks. Tools for analyzing diffusion (or, more generally, Markov processes) may now be transferred to pin down features of synchronization in networks of pulse-coupled units such as neural circuits. (paper)

  15. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator

    Directory of Open Access Journals (Sweden)

    Jan Hahne

    2017-05-01

    Full Text Available Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.

  16. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator.

    Science.gov (United States)

    Hahne, Jan; Dahmen, David; Schuecker, Jannis; Frommer, Andreas; Bolten, Matthias; Helias, Moritz; Diesmann, Markus

    2017-01-01

    Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.

  17. Structure of a randomly grown 2-d network

    DEFF Research Database (Denmark)

    Ajazi, Fioralba; Napolitano, George M.; Turova, Tatyana

    2015-01-01

    We introduce a growing random network on a plane as a model of a growing neuronal network. The properties of the structure of the induced graph are derived. We compare our results with available data. In particular, it is shown that depending on the parameters of the model the system undergoes in...... in time different phases of the structure. We conclude with a possible explanation of some empirical data on the connections between neurons.......We introduce a growing random network on a plane as a model of a growing neuronal network. The properties of the structure of the induced graph are derived. We compare our results with available data. In particular, it is shown that depending on the parameters of the model the system undergoes...

  18. Statistical mechanics of the fashion game on random networks

    International Nuclear Information System (INIS)

    Sun, YiFan

    2016-01-01

    A model of fashion on networks is studied. This model consists of two groups of agents that are located on a network and have opposite viewpoints towards being fashionable: behaving consistently with either the majority or the minority of adjacent agents. Checking whether the fashion game has a pure Nash equilibrium (pure NE) is a non-deterministic polynomial complete problem. Using replica-symmetric mean field theory, the largest proportion of satisfied agents and the region where at least one pure NE should exist are determined for several types of random networks. Furthermore, a quantitive analysis of the asynchronous best response dynamics yields the phase diagram of existence and detectability of pure NE in the fashion game on some random networks. (paper: classical statistical mechanics, equilibrium and non-equilibrium).

  19. Simulation of nonlinear random vibrations using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Paez, T.L.; Tucker, S.; O`Gorman, C.

    1997-02-01

    The simulation of mechanical system random vibrations is important in structural dynamics, but it is particularly difficult when the system under consideration is nonlinear. Artificial neural networks provide a useful tool for the modeling of nonlinear systems, however, such modeling may be inefficient or insufficiently accurate when the system under consideration is complex. This paper shows that there are several transformations that can be used to uncouple and simplify the components of motion of a complex nonlinear system, thereby making its modeling and random vibration simulation, via component modeling with artificial neural networks, a much simpler problem. A numerical example is presented.

  20. Network formation determined by the diffusion process of random walkers

    International Nuclear Information System (INIS)

    Ikeda, Nobutoshi

    2008-01-01

    We studied the diffusion process of random walkers in networks formed by their traces. This model considers the rise and fall of links determined by the frequency of transports of random walkers. In order to examine the relation between the formed network and the diffusion process, a situation in which multiple random walkers start from the same vertex is investigated. The difference in diffusion rate of random walkers according to the difference in dimension of the initial lattice is very important for determining the time evolution of the networks. For example, complete subgraphs can be formed on a one-dimensional lattice while a graph with a power-law vertex degree distribution is formed on a two-dimensional lattice. We derived some formulae for predicting network changes for the 1D case, such as the time evolution of the size of nearly complete subgraphs and conditions for their collapse. The networks formed on the 2D lattice are characterized by the existence of clusters of highly connected vertices and their life time. As the life time of such clusters tends to be small, the exponent of the power-law distribution changes from γ ≅ 1-2 to γ ≅ 3

  1. Growth of preferential attachment random graphs via continuous ...

    Indian Academy of Sciences (India)

    Preferential attachment processes have a long history dating back at least to Yule ... We remark that some connections to branching and continuous-time Markov ..... convenience, we provide a short proof of Lemma 2.1 in the general form in ...

  2. Random resistor network model of minimal conductivity in graphene.

    Science.gov (United States)

    Cheianov, Vadim V; Fal'ko, Vladimir I; Altshuler, Boris L; Aleiner, Igor L

    2007-10-26

    Transport in undoped graphene is related to percolating current patterns in the networks of n- and p-type regions reflecting the strong bipolar charge density fluctuations. Finite transparency of the p-n junctions is vital in establishing the macroscopic conductivity. We propose a random resistor network model to analyze scaling dependencies of the conductance on the doping and disorder, the quantum magnetoresistance and the corresponding dephasing rate.

  3. Reliability of Broadcast Communications Under Sparse Random Linear Network Coding

    OpenAIRE

    Brown, Suzie; Johnson, Oliver; Tassi, Andrea

    2018-01-01

    Ultra-reliable Point-to-Multipoint (PtM) communications are expected to become pivotal in networks offering future dependable services for smart cities. In this regard, sparse Random Linear Network Coding (RLNC) techniques have been widely employed to provide an efficient way to improve the reliability of broadcast and multicast data streams. This paper addresses the pressing concern of providing a tight approximation to the probability of a user recovering a data stream protected by this kin...

  4. Complementary feeding: a Global Network cluster randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Pasha Omrana

    2011-01-01

    Full Text Available Abstract Background Inadequate and inappropriate complementary feeding are major factors contributing to excess morbidity and mortality in young children in low resource settings. Animal source foods in particular are cited as essential to achieve micronutrient requirements. The efficacy of the recommendation for regular meat consumption, however, has not been systematically evaluated. Methods/Design A cluster randomized efficacy trial was designed to test the hypothesis that 12 months of daily intake of beef added as a complementary food would result in greater linear growth velocity than a micronutrient fortified equi-caloric rice-soy cereal supplement. The study is being conducted in 4 sites of the Global Network for Women's and Children's Health Research located in Guatemala, Pakistan, Democratic Republic of the Congo (DRC and Zambia in communities with toddler stunting rates of at least 20%. Five clusters per country were randomized to each of the food arms, with 30 infants in each cluster. The daily meat or cereal supplement was delivered to the home by community coordinators, starting when the infants were 6 months of age and continuing through 18 months. All participating mothers received nutrition education messages to enhance complementary feeding practices delivered by study coordinators and through posters at the local health center. Outcome measures, obtained at 6, 9, 12, and 18 months by a separate assessment team, included anthropometry; dietary variety and diversity scores; biomarkers of iron, zinc and Vitamin B12 status (18 months; neurocognitive development (12 and 18 months; and incidence of infectious morbidity throughout the trial. The trial was supervised by a trial steering committee, and an independent data monitoring committee provided oversight for the safety and conduct of the trial. Discussion Findings from this trial will test the efficacy of daily intake of meat commencing at age 6 months and, if beneficial, will

  5. Randomizing growing networks with a time-respecting null model

    Science.gov (United States)

    Ren, Zhuo-Ming; Mariani, Manuel Sebastian; Zhang, Yi-Cheng; Medo, Matúš

    2018-05-01

    Complex networks are often used to represent systems that are not static but grow with time: People make new friendships, new papers are published and refer to the existing ones, and so forth. To assess the statistical significance of measurements made on such networks, we propose a randomization methodology—a time-respecting null model—that preserves both the network's degree sequence and the time evolution of individual nodes' degree values. By preserving the temporal linking patterns of the analyzed system, the proposed model is able to factor out the effect of the system's temporal patterns on its structure. We apply the model to the citation network of Physical Review scholarly papers and the citation network of US movies. The model reveals that the two data sets are strikingly different with respect to their degree-degree correlations, and we discuss the important implications of this finding on the information provided by paradigmatic node centrality metrics such as indegree and Google's PageRank. The randomization methodology proposed here can be used to assess the significance of any structural property in growing networks, which could bring new insights into the problems where null models play a critical role, such as the detection of communities and network motifs.

  6. Lexical decoder for continuous speech recognition: sequential neural network approach

    International Nuclear Information System (INIS)

    Iooss, Christine

    1991-01-01

    The work presented in this dissertation concerns the study of a connectionist architecture to treat sequential inputs. In this context, the model proposed by J.L. Elman, a recurrent multilayers network, is used. Its abilities and its limits are evaluated. Modifications are done in order to treat erroneous or noisy sequential inputs and to classify patterns. The application context of this study concerns the realisation of a lexical decoder for analytical multi-speakers continuous speech recognition. Lexical decoding is completed from lattices of phonemes which are obtained after an acoustic-phonetic decoding stage relying on a K Nearest Neighbors search technique. Test are done on sentences formed from a lexicon of 20 words. The results are obtained show the ability of the proposed connectionist model to take into account the sequentiality at the input level, to memorize the context and to treat noisy or erroneous inputs. (author) [fr

  7. Exponential random graph models for networks with community structure.

    Science.gov (United States)

    Fronczak, Piotr; Fronczak, Agata; Bujok, Maksymilian

    2013-09-01

    Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop an exponential random graph approach to networks with community structure. To this end we mainly built upon the idea of blockmodels. We consider both the classical blockmodel and its degree-corrected counterpart and study many of their properties analytically. We show that in the degree-corrected blockmodel, node degrees display an interesting scaling property, which is reminiscent of what is observed in real-world fractal networks. A short description of Monte Carlo simulations of the models is also given in the hope of being useful to others working in the field.

  8. Continuous measurements of methane from a tower network over Siberia

    International Nuclear Information System (INIS)

    Sasakawa, M.; Machida, T.; Saeki, T.; Koyama, Y.; Maksyutov, S.; Shimoyama, K.; Tsuda, N.; Suto, H.; Arshinov, M.; Davydov, D.; Fofonov, A.; Krasnov, O.

    2010-01-01

    We have been conducting continuous measurements of Methane (CH 4 ) concentration from an expanding network of towers (JR-STATION: Japan-Russia Siberian Tall Tower Inland Observation Network) located in taiga, steppe and wetland biomes of Siberia since 2004. High daytime means (>2000 ppb) observed simultaneously at several towers during winter, together with in situ weather data and NCEP/NCAR reanalysis data, indicate that high pressure systems caused CH 4 accumulation at subcontinental scale due to the widespread formation of an inversion layer. Daytime means sometimes exceeded 2000 ppb, particularly in the summer of 2007 when temperature and precipitation rates were anomalously high over West Siberia, which implies that CH 4 emission from wetlands were exceptionally high in 2007. Many hot spots detected by MODIS in the summer of 2007 illustrate that the contribution of biomass burning also cannot be neglected. Daytime mean CH 4 concentrations from the Siberian tower sites were generally higher than CH 4 values reported at NOAA coastal sites in the same latitudinal zone, and the difference in concentrations between two sets of sites was reproduced with a coupled Eulerian-Lagrangian transport model. Simulations of emissions from different CH 4 sources suggested that the major contributor to variation switched from wetlands during summer to fossil fuel during winter.

  9. Continuous measurements of methane from a tower network over Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Sasakawa, M.; Machida, T.; Saeki, T.; Koyama, Y.; Maksyutov, S. (Center for Global Environmental Research, National Inst. for Environmental Studies, Tsukuba, Ibaraki (Japan)); Shimoyama, K. (Inst. of Low Temperature Science, Hokkaido Univ., Hokkaido (Japan)); Tsuda, N. (Global Environmental Forum, Tokyo (Japan)); Suto, H. (Japan Aerospace Exploration Agency (Japan)); Arshinov, M.; Davydov, D.; Fofonov, A.; Krasnov, O. (Inst. of Atmospheric Optics, Russian Academy of Sciences, Siberian Branch (Russian Federation))

    2010-11-15

    We have been conducting continuous measurements of Methane (CH{sub 4}) concentration from an expanding network of towers (JR-STATION: Japan-Russia Siberian Tall Tower Inland Observation Network) located in taiga, steppe and wetland biomes of Siberia since 2004. High daytime means (>2000 ppb) observed simultaneously at several towers during winter, together with in situ weather data and NCEP/NCAR reanalysis data, indicate that high pressure systems caused CH{sub 4} accumulation at subcontinental scale due to the widespread formation of an inversion layer. Daytime means sometimes exceeded 2000 ppb, particularly in the summer of 2007 when temperature and precipitation rates were anomalously high over West Siberia, which implies that CH{sub 4} emission from wetlands were exceptionally high in 2007. Many hot spots detected by MODIS in the summer of 2007 illustrate that the contribution of biomass burning also cannot be neglected. Daytime mean CH{sub 4} concentrations from the Siberian tower sites were generally higher than CH{sub 4} values reported at NOAA coastal sites in the same latitudinal zone, and the difference in concentrations between two sets of sites was reproduced with a coupled Eulerian-Lagrangian transport model. Simulations of emissions from different CH{sub 4} sources suggested that the major contributor to variation switched from wetlands during summer to fossil fuel during winter.

  10. Continuous Learning of a Multilayered Network Topology in a Video Camera Network

    Directory of Open Access Journals (Sweden)

    Zou Xiaotao

    2009-01-01

    Full Text Available Abstract A multilayered camera network architecture with nodes as entry/exit points, cameras, and clusters of cameras at different layers is proposed. Unlike existing methods that used discrete events or appearance information to infer the network topology at a single level, this paper integrates face recognition that provides robustness to appearance changes and better models the time-varying traffic patterns in the network. The statistical dependence between the nodes, indicating the connectivity and traffic patterns of the camera network, is represented by a weighted directed graph and transition times that may have multimodal distributions. The traffic patterns and the network topology may be changing in the dynamic environment. We propose a Monte Carlo Expectation-Maximization algorithm-based continuous learning mechanism to capture the latent dynamically changing characteristics of the network topology. In the experiments, a nine-camera network with twenty-five nodes (at the lowest level is analyzed both in simulation and in real-life experiments and compared with previous approaches.

  11. Continuous Learning of a Multilayered Network Topology in a Video Camera Network

    Directory of Open Access Journals (Sweden)

    Xiaotao Zou

    2009-01-01

    Full Text Available A multilayered camera network architecture with nodes as entry/exit points, cameras, and clusters of cameras at different layers is proposed. Unlike existing methods that used discrete events or appearance information to infer the network topology at a single level, this paper integrates face recognition that provides robustness to appearance changes and better models the time-varying traffic patterns in the network. The statistical dependence between the nodes, indicating the connectivity and traffic patterns of the camera network, is represented by a weighted directed graph and transition times that may have multimodal distributions. The traffic patterns and the network topology may be changing in the dynamic environment. We propose a Monte Carlo Expectation-Maximization algorithm-based continuous learning mechanism to capture the latent dynamically changing characteristics of the network topology. In the experiments, a nine-camera network with twenty-five nodes (at the lowest level is analyzed both in simulation and in real-life experiments and compared with previous approaches.

  12. Computer simulation of randomly cross-linked polymer networks

    International Nuclear Information System (INIS)

    Williams, Timothy Philip

    2002-01-01

    In this work, Monte Carlo and Stochastic Dynamics computer simulations of mesoscale model randomly cross-linked networks were undertaken. Task parallel implementations of the lattice Monte Carlo Bond Fluctuation model and Kremer-Grest Stochastic Dynamics bead-spring continuum model were designed and used for this purpose. Lattice and continuum precursor melt systems were prepared and then cross-linked to varying degrees. The resultant networks were used to study structural changes during deformation and relaxation dynamics. The effects of a random network topology featuring a polydisperse distribution of strand lengths and an abundance of pendant chain ends, were qualitatively compared to recent published work. A preliminary investigation into the effects of temperature on the structural and dynamical properties was also undertaken. Structural changes during isotropic swelling and uniaxial deformation, revealed a pronounced non-affine deformation dependant on the degree of cross-linking. Fractal heterogeneities were observed in the swollen model networks and were analysed by considering constituent substructures of varying size. The network connectivity determined the length scales at which the majority of the substructure unfolding process occurred. Simulated stress-strain curves and diffraction patterns for uniaxially deformed swollen networks, were found to be consistent with experimental findings. Analysis of the relaxation dynamics of various network components revealed a dramatic slowdown due to the network connectivity. The cross-link junction spatial fluctuations for networks close to the sol-gel threshold, were observed to be at least comparable with the phantom network prediction. The dangling chain ends were found to display the largest characteristic relaxation time. (author)

  13. Gossips and prejudices: ergodic randomized dynamics in social networks

    NARCIS (Netherlands)

    Frasca, Paolo; Ravazzi, Chiara; Tempo, Roberto; Ishii, Hideaki

    In this paper we study a new model of opinion dynamics in social networks, which has two main features. First, agents asynchronously interact in pairs, and these pairs are chosen according to a random process: following recent literature, we refer to this communication model as “gossiping‿. Second,

  14. Random linear network coding for streams with unequally sized packets

    DEFF Research Database (Denmark)

    Taghouti, Maroua; Roetter, Daniel Enrique Lucani; Pedersen, Morten Videbæk

    2016-01-01

    State of the art Random Linear Network Coding (RLNC) schemes assume that data streams generate packets with equal sizes. This is an assumption that results in the highest efficiency gains for RLNC. A typical solution for managing unequal packet sizes is to zero-pad the smallest packets. However, ...

  15. Navigation by anomalous random walks on complex networks.

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Khajehnejad, Moein; Small, Michael; Zheng, Rui; Hui, Pan

    2016-11-23

    Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. We use Lévy walks on networks as an example, and demonstrate that the proposed approach can unravel the interplay between diffusion dynamics of Lévy walks and the underlying network structure. Moreover, applying our framework to the famous PageRank search, we show how to inform the optimality of the PageRank search. The framework for analyzing anomalous random walks on complex networks offers a useful new paradigm to understand the dynamics of anomalous diffusion processes, and provides a unified scheme to characterize search and transport processes on networks.

  16. Navigation by anomalous random walks on complex networks

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Khajehnejad, Moein; Small, Michael; Zheng, Rui; Hui, Pan

    2016-11-01

    Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. We use Lévy walks on networks as an example, and demonstrate that the proposed approach can unravel the interplay between diffusion dynamics of Lévy walks and the underlying network structure. Moreover, applying our framework to the famous PageRank search, we show how to inform the optimality of the PageRank search. The framework for analyzing anomalous random walks on complex networks offers a useful new paradigm to understand the dynamics of anomalous diffusion processes, and provides a unified scheme to characterize search and transport processes on networks.

  17. Listening to the Noise: Random Fluctuations Reveal Gene Network Parameters

    Science.gov (United States)

    Munsky, Brian; Trinh, Brooke; Khammash, Mustafa

    2010-03-01

    The cellular environment is abuzz with noise originating from the inherent random motion of reacting molecules in the living cell. In this noisy environment, clonal cell populations exhibit cell-to-cell variability that can manifest significant prototypical differences. Noise induced stochastic fluctuations in cellular constituents can be measured and their statistics quantified using flow cytometry, single molecule fluorescence in situ hybridization, time lapse fluorescence microscopy and other single cell and single molecule measurement techniques. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. We use theoretical investigations to establish experimental guidelines for the identification of gene regulatory networks, and we apply these guideline to experimentally identify predictive models for different regulatory mechanisms in bacteria and yeast.

  18. Random Deep Belief Networks for Recognizing Emotions from Speech Signals.

    Science.gov (United States)

    Wen, Guihua; Li, Huihui; Huang, Jubing; Li, Danyang; Xun, Eryang

    2017-01-01

    Now the human emotions can be recognized from speech signals using machine learning methods; however, they are challenged by the lower recognition accuracies in real applications due to lack of the rich representation ability. Deep belief networks (DBN) can automatically discover the multiple levels of representations in speech signals. To make full of its advantages, this paper presents an ensemble of random deep belief networks (RDBN) method for speech emotion recognition. It firstly extracts the low level features of the input speech signal and then applies them to construct lots of random subspaces. Each random subspace is then provided for DBN to yield the higher level features as the input of the classifier to output an emotion label. All outputted emotion labels are then fused through the majority voting to decide the final emotion label for the input speech signal. The conducted experimental results on benchmark speech emotion databases show that RDBN has better accuracy than the compared methods for speech emotion recognition.

  19. Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification.

    Science.gov (United States)

    Rueckauer, Bodo; Lungu, Iulia-Alexandra; Hu, Yuhuang; Pfeiffer, Michael; Liu, Shih-Chii

    2017-01-01

    Spiking neural networks (SNNs) can potentially offer an efficient way of doing inference because the neurons in the networks are sparsely activated and computations are event-driven. Previous work showed that simple continuous-valued deep Convolutional Neural Networks (CNNs) can be converted into accurate spiking equivalents. These networks did not include certain common operations such as max-pooling, softmax, batch-normalization and Inception-modules. This paper presents spiking equivalents of these operations therefore allowing conversion of nearly arbitrary CNN architectures. We show conversion of popular CNN architectures, including VGG-16 and Inception-v3, into SNNs that produce the best results reported to date on MNIST, CIFAR-10 and the challenging ImageNet dataset. SNNs can trade off classification error rate against the number of available operations whereas deep continuous-valued neural networks require a fixed number of operations to achieve their classification error rate. From the examples of LeNet for MNIST and BinaryNet for CIFAR-10, we show that with an increase in error rate of a few percentage points, the SNNs can achieve more than 2x reductions in operations compared to the original CNNs. This highlights the potential of SNNs in particular when deployed on power-efficient neuromorphic spiking neuron chips, for use in embedded applications.

  20. Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification

    Directory of Open Access Journals (Sweden)

    Bodo Rueckauer

    2017-12-01

    Full Text Available Spiking neural networks (SNNs can potentially offer an efficient way of doing inference because the neurons in the networks are sparsely activated and computations are event-driven. Previous work showed that simple continuous-valued deep Convolutional Neural Networks (CNNs can be converted into accurate spiking equivalents. These networks did not include certain common operations such as max-pooling, softmax, batch-normalization and Inception-modules. This paper presents spiking equivalents of these operations therefore allowing conversion of nearly arbitrary CNN architectures. We show conversion of popular CNN architectures, including VGG-16 and Inception-v3, into SNNs that produce the best results reported to date on MNIST, CIFAR-10 and the challenging ImageNet dataset. SNNs can trade off classification error rate against the number of available operations whereas deep continuous-valued neural networks require a fixed number of operations to achieve their classification error rate. From the examples of LeNet for MNIST and BinaryNet for CIFAR-10, we show that with an increase in error rate of a few percentage points, the SNNs can achieve more than 2x reductions in operations compared to the original CNNs. This highlights the potential of SNNs in particular when deployed on power-efficient neuromorphic spiking neuron chips, for use in embedded applications.

  1. Weighted Scaling in Non-growth Random Networks

    International Nuclear Information System (INIS)

    Chen Guang; Yang Xuhua; Xu Xinli

    2012-01-01

    We propose a weighted model to explain the self-organizing formation of scale-free phenomenon in non-growth random networks. In this model, we use multiple-edges to represent the connections between vertices and define the weight of a multiple-edge as the total weights of all single-edges within it and the strength of a vertex as the sum of weights for those multiple-edges attached to it. The network evolves according to a vertex strength preferential selection mechanism. During the evolution process, the network always holds its total number of vertices and its total number of single-edges constantly. We show analytically and numerically that a network will form steady scale-free distributions with our model. The results show that a weighted non-growth random network can evolve into scale-free state. It is interesting that the network also obtains the character of an exponential edge weight distribution. Namely, coexistence of scale-free distribution and exponential distribution emerges.

  2. Wave speed in excitable random networks with spatially constrained connections.

    Directory of Open Access Journals (Sweden)

    Nikita Vladimirov

    Full Text Available Very fast oscillations (VFO in neocortex are widely observed before epileptic seizures, and there is growing evidence that they are caused by networks of pyramidal neurons connected by gap junctions between their axons. We are motivated by the spatio-temporal waves of activity recorded using electrocorticography (ECoG, and study the speed of activity propagation through a network of neurons axonally coupled by gap junctions. We simulate wave propagation by excitable cellular automata (CA on random (Erdös-Rényi networks of special type, with spatially constrained connections. From the cellular automaton model, we derive a mean field theory to predict wave propagation. The governing equation resolved by the Fisher-Kolmogorov PDE fails to describe wave speed. A new (hyperbolic PDE is suggested, which provides adequate wave speed v( that saturates with network degree , in agreement with intuitive expectations and CA simulations. We further show that the maximum length of connection is a much better predictor of the wave speed than the mean length. When tested in networks with various degree distributions, wave speeds are found to strongly depend on the ratio of network moments / rather than on mean degree , which is explained by general network theory. The wave speeds are strikingly similar in a diverse set of networks, including regular, Poisson, exponential and power law distributions, supporting our theory for various network topologies. Our results suggest practical predictions for networks of electrically coupled neurons, and our mean field method can be readily applied for a wide class of similar problems, such as spread of epidemics through spatial networks.

  3. Ryu-Takayanagi formula for symmetric random tensor networks

    Science.gov (United States)

    Chirco, Goffredo; Oriti, Daniele; Zhang, Mingyi

    2018-06-01

    We consider the special case of random tensor networks (RTNs) endowed with gauge symmetry constraints on each tensor. We compute the Rényi entropy for such states and recover the Ryu-Takayanagi (RT) formula in the large-bond regime. The result provides first of all an interesting new extension of the existing derivations of the RT formula for RTNs. Moreover, this extension of the RTN formalism brings it in direct relation with (tensorial) group field theories (and spin networks), and thus provides new tools for realizing the tensor network/geometry duality in the context of background-independent quantum gravity, and for importing quantum gravity tools into tensor network research.

  4. Depth Reconstruction from Single Images Using a Convolutional Neural Network and a Condition Random Field Model.

    Science.gov (United States)

    Liu, Dan; Liu, Xuejun; Wu, Yiguang

    2018-04-24

    This paper presents an effective approach for depth reconstruction from a single image through the incorporation of semantic information and local details from the image. A unified framework for depth acquisition is constructed by joining a deep Convolutional Neural Network (CNN) and a continuous pairwise Conditional Random Field (CRF) model. Semantic information and relative depth trends of local regions inside the image are integrated into the framework. A deep CNN network is firstly used to automatically learn a hierarchical feature representation of the image. To get more local details in the image, the relative depth trends of local regions are incorporated into the network. Combined with semantic information of the image, a continuous pairwise CRF is then established and is used as the loss function of the unified model. Experiments on real scenes demonstrate that the proposed approach is effective and that the approach obtains satisfactory results.

  5. Depth Reconstruction from Single Images Using a Convolutional Neural Network and a Condition Random Field Model

    Directory of Open Access Journals (Sweden)

    Dan Liu

    2018-04-01

    Full Text Available This paper presents an effective approach for depth reconstruction from a single image through the incorporation of semantic information and local details from the image. A unified framework for depth acquisition is constructed by joining a deep Convolutional Neural Network (CNN and a continuous pairwise Conditional Random Field (CRF model. Semantic information and relative depth trends of local regions inside the image are integrated into the framework. A deep CNN network is firstly used to automatically learn a hierarchical feature representation of the image. To get more local details in the image, the relative depth trends of local regions are incorporated into the network. Combined with semantic information of the image, a continuous pairwise CRF is then established and is used as the loss function of the unified model. Experiments on real scenes demonstrate that the proposed approach is effective and that the approach obtains satisfactory results.

  6. Delineating social network data anonymization via random edge perturbation

    KAUST Repository

    Xue, Mingqiang

    2012-01-01

    Social network data analysis raises concerns about the privacy of related entities or individuals. To address this issue, organizations can publish data after simply replacing the identities of individuals with pseudonyms, leaving the overall structure of the social network unchanged. However, it has been shown that attacks based on structural identification (e.g., a walk-based attack) enable an adversary to re-identify selected individuals in an anonymized network. In this paper we explore the capacity of techniques based on random edge perturbation to thwart such attacks. We theoretically establish that any kind of structural identification attack can effectively be prevented using random edge perturbation and show that, surprisingly, important properties of the whole network, as well as of subgraphs thereof, can be accurately calculated and hence data analysis tasks performed on the perturbed data, given that the legitimate data recipient knows the perturbation probability as well. Yet we also examine ways to enhance the walk-based attack, proposing a variant we call probabilistic attack. Nevertheless, we demonstrate that such probabilistic attacks can also be prevented under sufficient perturbation. Eventually, we conduct a thorough theoretical study of the probability of success of any}structural attack as a function of the perturbation probability. Our analysis provides a powerful tool for delineating the identification risk of perturbed social network data; our extensive experiments with synthetic and real datasets confirm our expectations. © 2012 ACM.

  7. Epidemic spreading on random surfer networks with infected avoidance strategy

    International Nuclear Information System (INIS)

    Feng Yun; Ding Li; Huang Yun-Han; Guan Zhi-Hong

    2016-01-01

    In this paper, we study epidemic spreading on random surfer networks with infected avoidance (IA) strategy. In particular, we consider that susceptible individuals’ moving direction angles are affected by the current location information received from infected individuals through a directed information network. The model is mainly analyzed by discrete-time numerical simulations. The results indicate that the IA strategy can restrain epidemic spreading effectively. However, when long-distance jumps of individuals exist, the IA strategy’s effectiveness on restraining epidemic spreading is heavily reduced. Finally, it is found that the influence of the noises from information transferring process on epidemic spreading is indistinctive. (paper)

  8. Network meta-analysis of disconnected networks: How dangerous are random baseline treatment effects?

    Science.gov (United States)

    Béliveau, Audrey; Goring, Sarah; Platt, Robert W; Gustafson, Paul

    2017-12-01

    In network meta-analysis, the use of fixed baseline treatment effects (a priori independent) in a contrast-based approach is regularly preferred to the use of random baseline treatment effects (a priori dependent). That is because, often, there is not a need to model baseline treatment effects, which carry the risk of model misspecification. However, in disconnected networks, fixed baseline treatment effects do not work (unless extra assumptions are made), as there is not enough information in the data to update the prior distribution on the contrasts between disconnected treatments. In this paper, we investigate to what extent the use of random baseline treatment effects is dangerous in disconnected networks. We take 2 publicly available datasets of connected networks and disconnect them in multiple ways. We then compare the results of treatment comparisons obtained from a Bayesian contrast-based analysis of each disconnected network using random normally distributed and exchangeable baseline treatment effects to those obtained from a Bayesian contrast-based analysis of their initial connected network using fixed baseline treatment effects. For the 2 datasets considered, we found that the use of random baseline treatment effects in disconnected networks was appropriate. Because those datasets were not cherry-picked, there should be other disconnected networks that would benefit from being analyzed using random baseline treatment effects. However, there is also a risk for the normality and exchangeability assumption to be inappropriate in other datasets even though we have not observed this situation in our case study. We provide code, so other datasets can be investigated. Copyright © 2017 John Wiley & Sons, Ltd.

  9. A simple model of global cascades on random networks

    Science.gov (United States)

    Watts, Duncan J.

    2002-04-01

    The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascadesherein called global cascadesthat occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable.

  10. 78 FR 69018 - Improving the Resiliency of Mobile Wireless Communications Networks; Reliability and Continuity...

    Science.gov (United States)

    2013-11-18

    ... consumers value overall network reliability and quality in selecting mobile wireless service providers, they...-125] Improving the Resiliency of Mobile Wireless Communications Networks; Reliability and Continuity... (Reliability NOI) in 2011 to ``initiate a comprehensive examination of issues regarding the reliability...

  11. Complex networks: Effect of subtle changes in nature of randomness

    Science.gov (United States)

    Goswami, Sanchari; Biswas, Soham; Sen, Parongama

    2011-03-01

    In two different classes of network models, namely, the Watts Strogatz type and the Euclidean type, subtle changes have been introduced in the randomness. In the Watts Strogatz type network, rewiring has been done in different ways and although the qualitative results remain the same, finite differences in the exponents are observed. In the Euclidean type networks, where at least one finite phase transition occurs, two models differing in a similar way have been considered. The results show a possible shift in one of the phase transition points but no change in the values of the exponents. The WS and Euclidean type models are equivalent for extreme values of the parameters; we compare their behaviour for intermediate values.

  12. Order-based representation in random networks of cortical neurons.

    Directory of Open Access Journals (Sweden)

    Goded Shahaf

    2008-11-01

    Full Text Available The wide range of time scales involved in neural excitability and synaptic transmission might lead to ongoing change in the temporal structure of responses to recurring stimulus presentations on a trial-to-trial basis. This is probably the most severe biophysical constraint on putative time-based primitives of stimulus representation in neuronal networks. Here we show that in spontaneously developing large-scale random networks of cortical neurons in vitro the order in which neurons are recruited following each stimulus is a naturally emerging representation primitive that is invariant to significant temporal changes in spike times. With a relatively small number of randomly sampled neurons, the information about stimulus position is fully retrievable from the recruitment order. The effective connectivity that makes order-based representation invariant to time warping is characterized by the existence of stations through which activity is required to pass in order to propagate further into the network. This study uncovers a simple invariant in a noisy biological network in vitro; its applicability under in vivo constraints remains to be seen.

  13. Upscaling solute transport in naturally fractured porous media with the continuous time random walk method

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, S.; Cortis, A.; Birkholzer, J.T.

    2010-04-01

    Solute transport in fractured porous media is typically 'non-Fickian'; that is, it is characterized by early breakthrough and long tailing and by nonlinear growth of the Green function-centered second moment. This behavior is due to the effects of (1) multirate diffusion occurring between the highly permeable fracture network and the low-permeability rock matrix, (2) a wide range of advection rates in the fractures and, possibly, the matrix as well, and (3) a range of path lengths. As a consequence, prediction of solute transport processes at the macroscale represents a formidable challenge. Classical dual-porosity (or mobile-immobile) approaches in conjunction with an advection-dispersion equation and macroscopic dispersivity commonly fail to predict breakthrough of fractured porous media accurately. It was recently demonstrated that the continuous time random walk (CTRW) method can be used as a generalized upscaling approach. Here we extend this work and use results from high-resolution finite element-finite volume-based simulations of solute transport in an outcrop analogue of a naturally fractured reservoir to calibrate the CTRW method by extracting a distribution of retention times. This procedure allows us to predict breakthrough at other model locations accurately and to gain significant insight into the nature of the fracture-matrix interaction in naturally fractured porous reservoirs with geologically realistic fracture geometries.

  14. Prediction of hot-ductility of steels during continuous casting using artificial neural networks

    International Nuclear Information System (INIS)

    Liu, W.J.; Emadi, D.; Essadiqi, E.

    2000-01-01

    During continuous casting, transversal cracks can be developed due to tensile stress in temperature regions where the steel exhibits a low ductility. The cracking tendency during continuous casting depends on the steel chemistry and the casting parameters such as lubrication, mold type, secondary cooling and bending/unbending temperatures. To prevent cracking one needs to predict the hot-ductility of a material under continuous-casting conditions. However, hot-ductility is one of the poorly understood material behaviors and cannot be readily modeled using conventional techniques. In the present study, we used an alternative method, namely Artificial Neural Networks (ANN), to model the ductility of a steel under continuous casting conditions. A hot-ductility database was established based on published literature. Several standard three-layer ANN models were then trained using data randomly selected from the database. The outputs of the ANN models were subsequently compared with the remaining data in the database. The results indicate that ANN is a suitable modelling technique for hot-ductility prediction. (author)

  15. Co-evolution of social networks and continuous actor attributes

    NARCIS (Netherlands)

    Niezink, Nynke M.D.; Snijders, Tom A.B.

    2017-01-01

    Social networks and the attributes of the actors in these networks are not static; they may develop interdependently over time. The stochastic actor-oriented model allows for statistical inference on the mechanisms driving this co-evolution process. In earlier versions of this model, dynamic actor

  16. Non-homogeneous dynamic Bayesian networks for continuous data

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk

    Classical dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption and cannot deal with non-homogeneous temporal processes. Various approaches to relax the homogeneity assumption have recently been proposed. The present paper presents a combination of a Bayesian network with

  17. Effect of direct reciprocity and network structure on continuing prosperity of social networking services.

    Science.gov (United States)

    Osaka, Kengo; Toriumi, Fujio; Sugawara, Toshihauru

    2017-01-01

    Social networking services (SNSs) are widely used as communicative tools for a variety of purposes. SNSs rely on the users' individual activities associated with some cost and effort, and thus it is not known why users voluntarily continue to participate in SNSs. Because the structures of SNSs are similar to that of the public goods (PG) game, some studies have focused on why voluntary activities emerge as an optimal strategy by modifying the PG game. However, their models do not include direct reciprocity between users, even though reciprocity is a key mechanism that evolves and sustains cooperation in human society. We developed an abstract SNS model called the reciprocity rewards and meta-rewards games that include direct reciprocity by extending the existing models. Then, we investigated how direct reciprocity in an SNS facilitates cooperation that corresponds to participation in SNS by posting articles and comments and how the structure of the networks of users exerts an influence on the strategies of users using the reciprocity rewards game. We run reciprocity rewards games on various complex networks and an instance network of Facebook and found that two types of stable cooperation emerged. First, reciprocity slightly improves the rate of cooperation in complete graphs but the improvement is insignificant because of the instability of cooperation. However, this instability can be avoided by making two assumptions: high degree of fun, i.e. articles are read with high probability, and different attitudes to reciprocal and non-reciprocal agents. We then propose the concept of half free riders to explain what strategy sustains cooperation-dominant situations. Second, we indicate that a certain WS network structure affects users' optimal strategy and facilitates stable cooperation without any extra assumptions. We give a detailed analysis of the different characteristics of the two types of cooperation-dominant situations and the effect of the memory of

  18. Random Deep Belief Networks for Recognizing Emotions from Speech Signals

    Directory of Open Access Journals (Sweden)

    Guihua Wen

    2017-01-01

    Full Text Available Now the human emotions can be recognized from speech signals using machine learning methods; however, they are challenged by the lower recognition accuracies in real applications due to lack of the rich representation ability. Deep belief networks (DBN can automatically discover the multiple levels of representations in speech signals. To make full of its advantages, this paper presents an ensemble of random deep belief networks (RDBN method for speech emotion recognition. It firstly extracts the low level features of the input speech signal and then applies them to construct lots of random subspaces. Each random subspace is then provided for DBN to yield the higher level features as the input of the classifier to output an emotion label. All outputted emotion labels are then fused through the majority voting to decide the final emotion label for the input speech signal. The conducted experimental results on benchmark speech emotion databases show that RDBN has better accuracy than the compared methods for speech emotion recognition.

  19. Throughput vs. Delay in Lossy Wireless Mesh Networks with Random Linear Network Coding

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Pahlevani, Peyman; Roetter, Daniel Enrique Lucani

    2014-01-01

    This work proposes a new protocol applying on– the–fly random linear network coding in wireless mesh net- works. The protocol provides increased reliability, low delay, and high throughput to the upper layers, while being oblivious to their specific requirements. This seemingly conflicting goals ...

  20. Distributed clone detection in static wireless sensor networks: random walk with network division.

    Science.gov (United States)

    Khan, Wazir Zada; Aalsalem, Mohammed Y; Saad, N M

    2015-01-01

    Wireless Sensor Networks (WSNs) are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND) for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s) by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads.

  1. Distributed clone detection in static wireless sensor networks: random walk with network division.

    Directory of Open Access Journals (Sweden)

    Wazir Zada Khan

    Full Text Available Wireless Sensor Networks (WSNs are vulnerable to clone attacks or node replication attacks as they are deployed in hostile and unattended environments where they are deprived of physical protection, lacking physical tamper-resistance of sensor nodes. As a result, an adversary can easily capture and compromise sensor nodes and after replicating them, he inserts arbitrary number of clones/replicas into the network. If these clones are not efficiently detected, an adversary can be further capable to mount a wide variety of internal attacks which can emasculate the various protocols and sensor applications. Several solutions have been proposed in the literature to address the crucial problem of clone detection, which are not satisfactory as they suffer from some serious drawbacks. In this paper we propose a novel distributed solution called Random Walk with Network Division (RWND for the detection of node replication attack in static WSNs which is based on claimer-reporter-witness framework and combines a simple random walk with network division. RWND detects clone(s by following a claimer-reporter-witness framework and a random walk is employed within each area for the selection of witness nodes. Splitting the network into levels and areas makes clone detection more efficient and the high security of witness nodes is ensured with moderate communication and memory overheads. Our simulation results show that RWND outperforms the existing witness node based strategies with moderate communication and memory overheads.

  2. Pure Absolutely Continuous Spectrum for Random Operators on $l^2(Z^d)$ at Low Disorder

    CERN Document Server

    Grinshpun, V

    2006-01-01

    Absence of singular continuous component, with probability one, in the spectra of random perturbations of multidimensional finite-difference Hamiltonians, is for the first time rigorously established under certain conditions ensuring either absence of point component, or absence of absolutely continuous component in the corresponding regions of spectra. The main technical tool involved is the rank-one perturbation theory of singular spectra. The respective new result (the non-mixing property) is applied to establish existence and bounds of the (non-empty) pure absolutely continuous component in the spectrum of the Anderson model with bounded random potential in dimension d=2 at low disorder (similar proof holds for d>4). The new result implies, via the trace-class perturbation analysis, Anderson model with the unbounded random potential having only pure point spectrum (complete system of localized wave-functions) with probability one in arbitrary dimension. The basic idea is to establish absence of the mixed,...

  3. A spatial error model with continuous random effects and an application to growth convergence

    Science.gov (United States)

    Laurini, Márcio Poletti

    2017-10-01

    We propose a spatial error model with continuous random effects based on Matérn covariance functions and apply this model for the analysis of income convergence processes (β -convergence). The use of a model with continuous random effects permits a clearer visualization and interpretation of the spatial dependency patterns, avoids the problems of defining neighborhoods in spatial econometrics models, and allows projecting the spatial effects for every possible location in the continuous space, circumventing the existing aggregations in discrete lattice representations. We apply this model approach to analyze the economic growth of Brazilian municipalities between 1991 and 2010 using unconditional and conditional formulations and a spatiotemporal model of convergence. The results indicate that the estimated spatial random effects are consistent with the existence of income convergence clubs for Brazilian municipalities in this period.

  4. Epidemic spreading on random surfer networks with infected avoidance strategy

    Science.gov (United States)

    Feng, Yun; Ding, Li; Huang, Yun-Han; Guan, Zhi-Hong

    2016-12-01

    In this paper, we study epidemic spreading on random surfer networks with infected avoidance (IA) strategy. In particular, we consider that susceptible individuals’ moving direction angles are affected by the current location information received from infected individuals through a directed information network. The model is mainly analyzed by discrete-time numerical simulations. The results indicate that the IA strategy can restrain epidemic spreading effectively. However, when long-distance jumps of individuals exist, the IA strategy’s effectiveness on restraining epidemic spreading is heavily reduced. Finally, it is found that the influence of the noises from information transferring process on epidemic spreading is indistinctive. Project supported in part by the National Natural Science Foundation of China (Grant Nos. 61403284, 61272114, 61673303, and 61672112) and the Marine Renewable Energy Special Fund Project of the State Oceanic Administration of China (Grant No. GHME2013JS01).

  5. Scaling law of resistance fluctuations in stationary random resistor networks

    Science.gov (United States)

    Pennetta; Trefan; Reggiani

    2000-12-11

    In a random resistor network we consider the simultaneous evolution of two competing random processes consisting in breaking and recovering the elementary resistors with probabilities W(D) and W(R). The condition W(R)>W(D)/(1+W(D)) leads to a stationary state, while in the opposite case, the broken resistor fraction reaches the percolation threshold p(c). We study the resistance noise of this system under stationary conditions by Monte Carlo simulations. The variance of resistance fluctuations is found to follow a scaling law |p-p(c)|(-kappa(0)) with kappa(0) = 5.5. The proposed model relates quantitatively the defectiveness of a disordered media with its electrical and excess-noise characteristics.

  6. Deep recurrent conditional random field network for protein secondary prediction

    DEFF Research Database (Denmark)

    Johansen, Alexander Rosenberg; Sønderby, Søren Kaae; Sønderby, Casper Kaae

    2017-01-01

    Deep learning has become the state-of-the-art method for predicting protein secondary structure from only its amino acid residues and sequence profile. Building upon these results, we propose to combine a bi-directional recurrent neural network (biRNN) with a conditional random field (CRF), which...... of the labels for all time-steps. We condition the CRF on the output of biRNN, which learns a distributed representation based on the entire sequence. The biRNN-CRF is therefore close to ideally suited for the secondary structure task because a high degree of cross-talk between neighboring elements can...

  7. Measuring symmetry, asymmetry and randomness in neural network connectivity.

    Directory of Open Access Journals (Sweden)

    Umberto Esposito

    Full Text Available Cognitive functions are stored in the connectome, the wiring diagram of the brain, which exhibits non-random features, so-called motifs. In this work, we focus on bidirectional, symmetric motifs, i.e. two neurons that project to each other via connections of equal strength, and unidirectional, non-symmetric motifs, i.e. within a pair of neurons only one neuron projects to the other. We hypothesise that such motifs have been shaped via activity dependent synaptic plasticity processes. As a consequence, learning moves the distribution of the synaptic connections away from randomness. Our aim is to provide a global, macroscopic, single parameter characterisation of the statistical occurrence of bidirectional and unidirectional motifs. To this end we define a symmetry measure that does not require any a priori thresholding of the weights or knowledge of their maximal value. We calculate its mean and variance for random uniform or Gaussian distributions, which allows us to introduce a confidence measure of how significantly symmetric or asymmetric a specific configuration is, i.e. how likely it is that the configuration is the result of chance. We demonstrate the discriminatory power of our symmetry measure by inspecting the eigenvalues of different types of connectivity matrices. We show that a Gaussian weight distribution biases the connectivity motifs to more symmetric configurations than a uniform distribution and that introducing a random synaptic pruning, mimicking developmental regulation in synaptogenesis, biases the connectivity motifs to more asymmetric configurations, regardless of the distribution. We expect that our work will benefit the computational modelling community, by providing a systematic way to characterise symmetry and asymmetry in network structures. Further, our symmetry measure will be of use to electrophysiologists that investigate symmetry of network connectivity.

  8. Measuring symmetry, asymmetry and randomness in neural network connectivity.

    Science.gov (United States)

    Esposito, Umberto; Giugliano, Michele; van Rossum, Mark; Vasilaki, Eleni

    2014-01-01

    Cognitive functions are stored in the connectome, the wiring diagram of the brain, which exhibits non-random features, so-called motifs. In this work, we focus on bidirectional, symmetric motifs, i.e. two neurons that project to each other via connections of equal strength, and unidirectional, non-symmetric motifs, i.e. within a pair of neurons only one neuron projects to the other. We hypothesise that such motifs have been shaped via activity dependent synaptic plasticity processes. As a consequence, learning moves the distribution of the synaptic connections away from randomness. Our aim is to provide a global, macroscopic, single parameter characterisation of the statistical occurrence of bidirectional and unidirectional motifs. To this end we define a symmetry measure that does not require any a priori thresholding of the weights or knowledge of their maximal value. We calculate its mean and variance for random uniform or Gaussian distributions, which allows us to introduce a confidence measure of how significantly symmetric or asymmetric a specific configuration is, i.e. how likely it is that the configuration is the result of chance. We demonstrate the discriminatory power of our symmetry measure by inspecting the eigenvalues of different types of connectivity matrices. We show that a Gaussian weight distribution biases the connectivity motifs to more symmetric configurations than a uniform distribution and that introducing a random synaptic pruning, mimicking developmental regulation in synaptogenesis, biases the connectivity motifs to more asymmetric configurations, regardless of the distribution. We expect that our work will benefit the computational modelling community, by providing a systematic way to characterise symmetry and asymmetry in network structures. Further, our symmetry measure will be of use to electrophysiologists that investigate symmetry of network connectivity.

  9. Continuous variable multipartite entanglement and optical implementations of quantum communication networks

    International Nuclear Information System (INIS)

    Lian Yimin; Xie Changde; Peng Kunchi

    2007-01-01

    A variety of optical quantum information networks based on the multipartite entanglement of amplitude and phase quadratures of an electromagnetic field have been proposed and experimentally realized in recent years. The multipartite entanglement of optical continuous variables provides flexible and reliable quantum resources for developing unconditional quantum information networks. In this paper, we review the generation schemes of the multipartite entangled states of optical continuous quantum variables and some applications in the quantum communication networks with emphasis on the experimental implementations

  10. Global dissipativity of continuous-time recurrent neural networks with time delay

    International Nuclear Information System (INIS)

    Liao Xiaoxin; Wang Jun

    2003-01-01

    This paper addresses the global dissipativity of a general class of continuous-time recurrent neural networks. First, the concepts of global dissipation and global exponential dissipation are defined and elaborated. Next, the sets of global dissipativity and global exponentially dissipativity are characterized using the parameters of recurrent neural network models. In particular, it is shown that the Hopfield network and cellular neural networks with or without time delays are dissipative systems

  11. Continuous-time random walk as a guide to fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Lenzi, E. K.; Ribeiro, H. V.; Mukai, H.; Mendes, R. S.

    2010-01-01

    We argue that the continuous-time random walk approach may be a useful guide to extend the Schroedinger equation in order to incorporate nonlocal effects, avoiding the inconsistencies raised by Jeng et al. [J. Math. Phys. 51, 062102 (2010)]. As an application, we work out a free particle in a half space, obtaining the time dependent solution by considering an arbitrary initial condition.

  12. Continuous-Time Random Walk with multi-step memory: an application to market dynamics

    Science.gov (United States)

    Gubiec, Tomasz; Kutner, Ryszard

    2017-11-01

    An extended version of the Continuous-Time Random Walk (CTRW) model with memory is herein developed. This memory involves the dependence between arbitrary number of successive jumps of the process while waiting times between jumps are considered as i.i.d. random variables. This dependence was established analyzing empirical histograms for the stochastic process of a single share price on a market within the high frequency time scale. Then, it was justified theoretically by considering bid-ask bounce mechanism containing some delay characteristic for any double-auction market. Our model appeared exactly analytically solvable. Therefore, it enables a direct comparison of its predictions with their empirical counterparts, for instance, with empirical velocity autocorrelation function. Thus, the present research significantly extends capabilities of the CTRW formalism. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  13. Continuous-time random walks with reset events. Historical background and new perspectives

    Science.gov (United States)

    Montero, Miquel; Masó-Puigdellosas, Axel; Villarroel, Javier

    2017-09-01

    In this paper, we consider a stochastic process that may experience random reset events which relocate the system to its starting position. We focus our attention on a one-dimensional, monotonic continuous-time random walk with a constant drift: the process moves in a fixed direction between the reset events, either by the effect of the random jumps, or by the action of a deterministic bias. However, the orientation of its motion is randomly determined after each restart. As a result of these alternating dynamics, interesting properties do emerge. General formulas for the propagator as well as for two extreme statistics, the survival probability and the mean first-passage time, are also derived. The rigor of these analytical results is verified by numerical estimations, for particular but illuminating examples.

  14. Dynamics of continuous-time bidirectional associative memory neural networks with impulses and their discrete counterparts

    International Nuclear Information System (INIS)

    Huo Haifeng; Li Wantong

    2009-01-01

    This paper is concerned with the global stability characteristics of a system of equations modelling the dynamics of continuous-time bidirectional associative memory neural networks with impulses. Sufficient conditions which guarantee the existence of a unique equilibrium and its exponential stability of the networks are obtained. For the goal of computation, discrete-time analogues of the corresponding continuous-time bidirectional associative memory neural networks with impulses are also formulated and studied. Our results show that the above continuous-time and discrete-time systems with impulses preserve the dynamics of the networks without impulses when we make some modifications and impose some additional conditions on the systems, the convergence characteristics dynamics of the networks are preserved by both continuous-time and discrete-time systems with some restriction imposed on the impulse effect.

  15. Analysis of social network - An approach towards evaluation of spreading of epidemics in randomized social Network.

    OpenAIRE

    Rasmita Panigrahi; Trilochan Rout

    2012-01-01

    Classifying nodes in a network is a task with wide range of applications .it can be particularly useful in epidemics detection .Many resources are invested in the task of epidemics and precisely allow human investigators to work more efficiently. This work creates random and scale- free graphs the simulations with varying relative infectiousness and graph size performed. By using computer simulations it should be possible to model such epidemic Phenomena and to better understand the role play...

  16. Exponential stability of continuous-time and discrete-time bidirectional associative memory networks with delays

    International Nuclear Information System (INIS)

    Liang Jinling; Cao Jinde

    2004-01-01

    First, convergence of continuous-time Bidirectional Associative Memory (BAM) neural networks are studied. By using Lyapunov functionals and some analysis technique, the delay-independent sufficient conditions are obtained for the networks to converge exponentially toward the equilibrium associated with the constant input sources. Second, discrete-time analogues of the continuous-time BAM networks are formulated and studied. It is shown that the convergence characteristics of the continuous-time systems are preserved by the discrete-time analogues without any restriction imposed on the uniform discretionary step size. An illustrative example is given to demonstrate the effectiveness of the obtained results

  17. Selecting Optimal Parameters of Random Linear Network Coding for Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Heide, J; Zhang, Qi; Fitzek, F H P

    2013-01-01

    This work studies how to select optimal code parameters of Random Linear Network Coding (RLNC) in Wireless Sensor Networks (WSNs). With Rateless Deluge [1] the authors proposed to apply Network Coding (NC) for Over-the-Air Programming (OAP) in WSNs, and demonstrated that with NC a significant...... reduction in the number of transmitted packets can be achieved. However, NC introduces additional computations and potentially a non-negligible transmission overhead, both of which depend on the chosen coding parameters. Therefore it is necessary to consider the trade-off that these coding parameters...... present in order to obtain the lowest energy consumption per transmitted bit. This problem is analyzed and suitable coding parameters are determined for the popular Tmote Sky platform. Compared to the use of traditional RLNC, these parameters enable a reduction in the energy spent per bit which grows...

  18. Continuous-Time Mean-Variance Portfolio Selection with Random Horizon

    International Nuclear Information System (INIS)

    Yu, Zhiyong

    2013-01-01

    This paper examines the continuous-time mean-variance optimal portfolio selection problem with random market parameters and random time horizon. Treating this problem as a linearly constrained stochastic linear-quadratic optimal control problem, I explicitly derive the efficient portfolios and efficient frontier in closed forms based on the solutions of two backward stochastic differential equations. Some related issues such as a minimum variance portfolio and a mutual fund theorem are also addressed. All the results are markedly different from those in the problem with deterministic exit time. A key part of my analysis involves proving the global solvability of a stochastic Riccati equation, which is interesting in its own right

  19. Continuous-Time Mean-Variance Portfolio Selection with Random Horizon

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhiyong, E-mail: yuzhiyong@sdu.edu.cn [Shandong University, School of Mathematics (China)

    2013-12-15

    This paper examines the continuous-time mean-variance optimal portfolio selection problem with random market parameters and random time horizon. Treating this problem as a linearly constrained stochastic linear-quadratic optimal control problem, I explicitly derive the efficient portfolios and efficient frontier in closed forms based on the solutions of two backward stochastic differential equations. Some related issues such as a minimum variance portfolio and a mutual fund theorem are also addressed. All the results are markedly different from those in the problem with deterministic exit time. A key part of my analysis involves proving the global solvability of a stochastic Riccati equation, which is interesting in its own right.

  20. Context-dependent retrieval of information by neural-network dynamics with continuous attractors.

    Science.gov (United States)

    Tsuboshita, Yukihiro; Okamoto, Hiroshi

    2007-08-01

    Memory retrieval in neural networks has traditionally been described by dynamic systems with discrete attractors. However, recent neurophysiological findings of graded persistent activity suggest that memory retrieval in the brain is more likely to be described by dynamic systems with continuous attractors. To explore what sort of information processing is achieved by continuous-attractor dynamics, keyword extraction from documents by a network of bistable neurons, which gives robust continuous attractors, is examined. Given an associative network of terms, a continuous attractor led by propagation of neuronal activation in this network appears to represent keywords that express underlying meaning of a document encoded in the initial state of the network-activation pattern. A dominant hypothesis in cognitive psychology is that long-term memory is archived in the network structure, which resembles associative networks of terms. Our results suggest that keyword extraction by the neural-network dynamics with continuous attractors might symbolically represent context-dependent retrieval of short-term memory from long-term memory in the brain.

  1. Information filtering via biased random walk on coupled social network.

    Science.gov (United States)

    Nie, Da-Cheng; Zhang, Zi-Ke; Dong, Qiang; Sun, Chongjing; Fu, Yan

    2014-01-01

    The recommender systems have advanced a great deal in the past two decades. However, most researchers focus their attentions on mining the similarities among users or objects in recommender systems and overlook the social influence which plays an important role in users' purchase process. In this paper, we design a biased random walk algorithm on coupled social networks which gives recommendation results based on both social interests and users' preference. Numerical analyses on two real data sets, Epinions and Friendfeed, demonstrate the improvement of recommendation performance by taking social interests into account, and experimental results show that our algorithm can alleviate the user cold-start problem more effectively compared with the mass diffusion and user-based collaborative filtering methods.

  2. Minimum spanning trees and random resistor networks in d dimensions.

    Science.gov (United States)

    Read, N

    2005-09-01

    We consider minimum-cost spanning trees, both in lattice and Euclidean models, in d dimensions. For the cost of the optimum tree in a box of size L , we show that there is a correction of order L(theta) , where theta or =1 . The arguments all rely on the close relation of Kruskal's greedy algorithm for the minimum spanning tree, percolation, and (for some arguments) random resistor networks. The scaling of the entropy and free energy at small nonzero T , and hence of the number of near-optimal solutions, is also discussed. We suggest that the Steiner tree problem is in the same universality class as the minimum spanning tree in all dimensions, as is the traveling salesman problem in two dimensions. Hence all will have the same value of theta=-3/4 in two dimensions.

  3. Anomalous diffusion on 2d randomly oriented diode networks

    International Nuclear Information System (INIS)

    Aydiner, E.; Kiymach, K.

    2002-01-01

    In this work, we have studied the diffusion properties of a randomly oriented two- dimensional diode network, using Monte Carlo Simulation method. The characteristic exponent α of the diffusion is obtained against the reverse transition probability W γ . We have found two critical values of W γ ; 0.003 and 0.4. α has been found to be 0.376 for W γ ≤ 0.003, and ≅ 1 for W γ ≥ 0.4 . For W γ >0.4 normal diffusion, and for 0.003≤W γ ≤0.4 anomalous sub-diffusion are observed. But for W γ ≤0.003 there seems to be no diffusion at all

  4. Features of Random Metal Nanowire Networks with Application in Transparent Conducting Electrodes

    KAUST Repository

    Maloth, Thirupathi

    2017-01-01

    in terms of sheet resistance and optical transmittance. However, as the electrical properties of such random networks are achieved thanks to a percolation network, a minimum size of the electrodes is needed so it actually exceeds the representative volume

  5. On the random cascading model study of anomalous scaling in multiparticle production with continuously diminishing scale

    International Nuclear Information System (INIS)

    Liu Lianshou; Zhang Yang; Wu Yuanfang

    1996-01-01

    The anomalous scaling of factorial moments with continuously diminishing scale is studied using a random cascading model. It is shown that the model currently used have the property of anomalous scaling only for descrete values of elementary cell size. A revised model is proposed which can give good scaling property also for continuously varying scale. It turns out that the strip integral has good scaling property provided the integral regions are chosen correctly, and that this property is insensitive to the concrete way of self-similar subdivision of phase space in the models. (orig.)

  6. Continuous-Time Classical and Quantum Random Walk on Direct Product of Cayley Graphs

    International Nuclear Information System (INIS)

    Salimi, S.; Jafarizadeh, M. A.

    2009-01-01

    In this paper we define direct product of graphs and give a recipe for obtaining probability of observing particle on vertices in the continuous-time classical and quantum random walk. In the recipe, the probability of observing particle on direct product of graph is obtained by multiplication of probability on the corresponding to sub-graphs, where this method is useful to determining probability of walk on complicated graphs. Using this method, we calculate the probability of continuous-time classical and quantum random walks on many of finite direct product Cayley graphs (complete cycle, complete K n , charter and n-cube). Also, we inquire that the classical state the stationary uniform distribution is reached as t → ∞ but for quantum state is not always satisfied. (general)

  7. The continuous time random walk, still trendy: fifty-year history, state of art and outlook

    Science.gov (United States)

    Kutner, Ryszard; Masoliver, Jaume

    2017-03-01

    In this article we demonstrate the very inspiring role of the continuous-time random walk (CTRW) formalism, the numerous modifications permitted by its flexibility, its various applications, and the promising perspectives in the various fields of knowledge. A short review of significant achievements and possibilities is given. However, this review is still far from completeness. We focused on a pivotal role of CTRWs mainly in anomalous stochastic processes discovered in physics and beyond. This article plays the role of an extended announcement of the Eur. Phys. J. B Special Issue [open-calls-for-papers/123-epj-b/1090-ctrw-50-years-on">http://epjb.epj.org/open-calls-for-papers/123-epj-b/1090-ctrw-50-years-on] containing articles which show incredible possibilities of the CTRWs. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  8. A Random Parameter Model for Continuous-Time Mean-Variance Asset-Liability Management

    Directory of Open Access Journals (Sweden)

    Hui-qiang Ma

    2015-01-01

    Full Text Available We consider a continuous-time mean-variance asset-liability management problem in a market with random market parameters; that is, interest rate, appreciation rates, and volatility rates are considered to be stochastic processes. By using the theories of stochastic linear-quadratic (LQ optimal control and backward stochastic differential equations (BSDEs, we tackle this problem and derive optimal investment strategies as well as the mean-variance efficient frontier analytically in terms of the solution of BSDEs. We find that the efficient frontier is still a parabola in a market with random parameters. Comparing with the existing results, we also find that the liability does not affect the feasibility of the mean-variance portfolio selection problem. However, in an incomplete market with random parameters, the liability can not be fully hedged.

  9. The brain matures with stronger functional connectivity and decreased randomness of its network.

    Directory of Open Access Journals (Sweden)

    Dirk J A Smit

    Full Text Available We investigated the development of the brain's functional connectivity throughout the life span (ages 5 through 71 years by measuring EEG activity in a large population-based sample. Connectivity was established with Synchronization Likelihood. Relative randomness of the connectivity patterns was established with Watts and Strogatz' (1998 graph parameters C (local clustering and L (global path length for alpha (~10 Hz, beta (~20 Hz, and theta (~4 Hz oscillation networks. From childhood to adolescence large increases in connectivity in alpha, theta and beta frequency bands were found that continued at a slower pace into adulthood (peaking at ~50 yrs. Connectivity changes were accompanied by increases in L and C reflecting decreases in network randomness or increased order (peak levels reached at ~18 yrs. Older age (55+ was associated with weakened connectivity. Semi-automatically segmented T1 weighted MRI images of 104 young adults revealed that connectivity was significantly correlated to cerebral white matter volume (alpha oscillations: r = 33, p<01; theta: r = 22, p<05, while path length was related to both white matter (alpha: max. r = 38, p<001 and gray matter (alpha: max. r = 36, p<001; theta: max. r = 36, p<001 volumes. In conclusion, EEG connectivity and graph theoretical network analysis may be used to trace structural and functional development of the brain.

  10. Adaptive-impulsive synchronization in drive-response networks of continuous systems and its application

    International Nuclear Information System (INIS)

    Sun Mei; Zeng Changyan; Tao Yangwei; Tian Lixin

    2009-01-01

    Based on the comparison theorem for the stability of impulsive control system, adaptive-impulsive synchronization in drive-response networks of continuous systems with time-delay and non-time-delay is investigated. And the continuous control input, the simple updated laws and a linear impulsive controller are proposed. Moreover, two numerical examples are presented to verify the effectiveness and correctness of the theorem, using the energy resource system and Lue's system as the nodes of the networks.

  11. An estimation of the domain of attraction and convergence rate for Hopfield continuous feedback neural networks

    International Nuclear Information System (INIS)

    Cao Jinde

    2004-01-01

    In this Letter, the domain of attraction of memory patterns and exponential convergence rate of the network trajectories to memory patterns for Hopfield continuous associative memory are estimated by means of matrix measure and comparison principle. A new estimation is given for the domain of attraction of memory patterns and exponential convergence rate. These results can be used for the evaluation of fault-tolerance capability and the synthesis procedures for Hopfield continuous feedback associative memory neural networks

  12. Spectra of random operators with absolutely continuous integrated density of states

    Energy Technology Data Exchange (ETDEWEB)

    Rio, Rafael del, E-mail: delrio@iimas.unam.mx, E-mail: delriomagia@gmail.com [Departamento de Fisica Matematica, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, C.P. 04510, México D.F. (Mexico)

    2014-04-15

    The structure of the spectrum of random operators is studied. It is shown that if the density of states measure of some subsets of the spectrum is zero, then these subsets are empty. In particular follows that absolute continuity of the integrated density of states implies singular spectra of ergodic operators is either empty or of positive measure. Our results apply to Anderson and alloy type models, perturbed Landau Hamiltonians, almost periodic potentials, and models which are not ergodic.

  13. On properties of continuous-time random walks with non-Poissonian jump-times

    International Nuclear Information System (INIS)

    Villarroel, Javier; Montero, Miquel

    2009-01-01

    The usual development of the continuous-time random walk (CTRW) proceeds by assuming that the present is one of the jumping times. Under this restrictive assumption integral equations for the propagator and mean escape times have been derived. We generalize these results to the case when the present is an arbitrary time by recourse to renewal theory. The case of Erlang distributed times is analyzed in detail. Several concrete examples are considered.

  14. Spectra of random operators with absolutely continuous integrated density of states

    International Nuclear Information System (INIS)

    Rio, Rafael del

    2014-01-01

    The structure of the spectrum of random operators is studied. It is shown that if the density of states measure of some subsets of the spectrum is zero, then these subsets are empty. In particular follows that absolute continuity of the integrated density of states implies singular spectra of ergodic operators is either empty or of positive measure. Our results apply to Anderson and alloy type models, perturbed Landau Hamiltonians, almost periodic potentials, and models which are not ergodic

  15. Correlated continuous-time random walks—scaling limits and Langevin picture

    International Nuclear Information System (INIS)

    Magdziarz, Marcin; Metzler, Ralf; Szczotka, Wladyslaw; Zebrowski, Piotr

    2012-01-01

    In this paper we analyze correlated continuous-time random walks introduced recently by Tejedor and Metzler (2010 J. Phys. A: Math. Theor. 43 082002). We obtain the Langevin equations associated with this process and the corresponding scaling limits of their solutions. We prove that the limit processes are self-similar and display anomalous dynamics. Moreover, we extend the model to include external forces. Our results are confirmed by Monte Carlo simulations

  16. Stable Graphical Model Estimation with Random Forests for Discrete, Continuous, and Mixed Variables

    OpenAIRE

    Fellinghauer, Bernd; Bühlmann, Peter; Ryffel, Martin; von Rhein, Michael; Reinhardt, Jan D.

    2011-01-01

    A conditional independence graph is a concise representation of pairwise conditional independence among many variables. Graphical Random Forests (GRaFo) are a novel method for estimating pairwise conditional independence relationships among mixed-type, i.e. continuous and discrete, variables. The number of edges is a tuning parameter in any graphical model estimator and there is no obvious number that constitutes a good choice. Stability Selection helps choosing this parameter with respect to...

  17. Damage Spreading in Spatial and Small-world Random Boolean Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qiming [Fermilab; Teuscher, Christof [Portland State U.

    2014-02-18

    The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean Networks (RBNs) are commonly used a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other non-random connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the relevant component at very low connectivities ($\\bar{K} \\ll 1$) and that the critical connectivity of stability $K_s$ changes compared to random networks. At higher $\\bar{K}$, this scaling remains unchanged. We also show that the relevant component of spatially local networks scales with a power-law as the system size N increases, but with a different exponent for local and small-world networks. The scaling behaviors are obtained by finite-size scaling. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.

  18. Multivariate normal maximum likelihood with both ordinal and continuous variables, and data missing at random.

    Science.gov (United States)

    Pritikin, Joshua N; Brick, Timothy R; Neale, Michael C

    2018-04-01

    A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random. Exceeding the capability of prior methods, up to 13 ordinal variables can be included before integration time increases beyond 1 s per row. The method relies on the axiom of conditional probability to split apart the distribution of continuous and ordinal variables. Due to the symmetry of the axiom, two similar methods are available. A simulation study provides evidence that the two similar approaches offer equal accuracy. A further simulation is used to develop a heuristic to automatically select the most computationally efficient approach. Joint ordinal continuous SEM is implemented in OpenMx, free and open-source software.

  19. The investigation of social networks based on multi-component random graphs

    Science.gov (United States)

    Zadorozhnyi, V. N.; Yudin, E. B.

    2018-01-01

    The methods of non-homogeneous random graphs calibration are developed for social networks simulation. The graphs are calibrated by the degree distributions of the vertices and the edges. The mathematical foundation of the methods is formed by the theory of random graphs with the nonlinear preferential attachment rule and the theory of Erdôs-Rényi random graphs. In fact, well-calibrated network graph models and computer experiments with these models would help developers (owners) of the networks to predict their development correctly and to choose effective strategies for controlling network projects.

  20. Small-world effect induced by weight randomization on regular networks

    International Nuclear Information System (INIS)

    Li, Menghui; Fan, Ying; Wang, Dahui; Li, Daqing; Wu, Jinshan; Di, Zengru

    2007-01-01

    The concept of edge weight provides additional depth for describing and adjusting the properties of networks. Redistribution of edge weight can effectively change the properties of networks even though the corresponding binary topology remains unchanged. Based on regular networks with initially homogeneous dissimilarity weights, random redistribution of edge weight can be enough to induce small world phenomena. The effects of random weight redistribution on both static properties and dynamical models of networks are investigated. The results reveal that randomization of weight can enhance the ability of synchronization of chaotic systems dramatically

  1. Saddlepoint approximation to the distribution of the total distance of the continuous time random walk

    Science.gov (United States)

    Gatto, Riccardo

    2017-12-01

    This article considers the random walk over Rp, with p ≥ 2, where a given particle starts at the origin and moves stepwise with uniformly distributed step directions and step lengths following a common distribution. Step directions and step lengths are independent. The case where the number of steps of the particle is fixed and the more general case where it follows an independent continuous time inhomogeneous counting process are considered. Saddlepoint approximations to the distribution of the distance from the position of the particle to the origin are provided. Despite the p-dimensional nature of the random walk, the computations of the saddlepoint approximations are one-dimensional and thus simple. Explicit formulae are derived with dimension p = 3: for uniformly and exponentially distributed step lengths, for fixed and for Poisson distributed number of steps. In these situations, the high accuracy of the saddlepoint approximations is illustrated by numerical comparisons with Monte Carlo simulation. Contribution to the "Topical Issue: Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  2. A 3-armed randomized controlled trial of nurses' continuing education meetings on adverse drug reactions.

    Science.gov (United States)

    Sarayani, Amir; Naderi-Behdani, Fahimeh; Hadavand, Naser; Javadi, Mohammadreza; Farsad, Fariborz; Hadjibabaie, Molouk; Gholami, Kheirollah

    2015-01-01

    Nurses' insufficient knowledge of adverse drug reactions is reported as a barrier to spontaneous reporting. Therefore, CE meetings could be utilized to enhance nurses' competencies. In a 3-armed randomized controlled trial, 496 nurses, working in a tertiary medical center, were randomly allocated to a didactic lecture, brainstorming workshop, or the control group (delayed education). Similar instructors (2 clinical pharmacists) prepared and delivered the educational content to all 3 groups. Outcomes were declarative/procedural knowledge (primary outcome), participation rate, and satisfaction. Knowledge was evaluated using a validated researcher-made questionnaire in 3 time points: immediately before, immediately after, and 3 months after each session. Participants' satisfaction was assessed immediately after each meeting via a standard tool. Data were analyzed using appropriate parametric and nonparametric tests. Rate of participation was 37.7% for the lecture group and 47.5% for the workshop group. The workshop participants were significantly more satisfied in comparison with the lecture group (p techniques. © 2015 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on Continuing Medical Education, Association for Hospital Medical Education.

  3. Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network

    Science.gov (United States)

    2013-05-26

    public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University

  4. Derrida's Generalized Random Energy models; 4, Continuous state branching and coalescents

    CERN Document Server

    Bovier, A

    2003-01-01

    In this paper we conclude our analysis of Derrida's Generalized Random Energy Models (GREM) by identifying the thermodynamic limit with a one-parameter family of probability measures related to a continuous state branching process introduced by Neveu. Using a construction introduced by Bertoin and Le Gall in terms of a coherent family of subordinators related to Neveu's branching process, we show how the Gibbs geometry of the limiting Gibbs measure is given in terms of the genealogy of this process via a deterministic time-change. This construction is fully universal in that all different models (characterized by the covariance of the underlying Gaussian process) differ only through that time change, which in turn is expressed in terms of Parisi's overlap distribution. The proof uses strongly the Ghirlanda-Guerra identities that impose the structure of Neveu's process as the only possible asymptotic random mechanism.

  5. Stabilization of Continuous-Time Random Switching Systems via a Fault-Tolerant Controller

    Directory of Open Access Journals (Sweden)

    Guoliang Wang

    2017-01-01

    Full Text Available This paper focuses on the stabilization problem of continuous-time random switching systems via exploiting a fault-tolerant controller, where the dwell time of each subsystem consists of a fixed part and random part. It is known from the traditional design methods that the computational complexity of LMIs related to the quantity of fault combination is very large; particularly system dimension or amount of subsystems is large. In order to reduce the number of the used fault combinations, new sufficient LMI conditions for designing such a controller are established by a robust approach, which are fault-free and could be solved directly. Moreover, the fault-tolerant stabilization realized by a mode-independent controller is considered and suitably applied to a practical case without mode information. Finally, a numerical example is used to demonstrate the effectiveness and superiority of the proposed methods.

  6. Accurate path integration in continuous attractor network models of grid cells.

    Science.gov (United States)

    Burak, Yoram; Fiete, Ila R

    2009-02-01

    Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.

  7. PollyNET - an emerging network of automated raman-polarizarion lidars for continuous aerosolprofiling

    Science.gov (United States)

    Baars, Holger; Althausen, Dietrich; Engelmann, Ronny; Heese, Birgit; Ansmann, Albert; Wandinger, Ulla; Hofer, Julian; Skupin, Annett; Komppula, Mika; Giannakaki, Eleni; Filioglou, Maria; Bortoli, Daniele; Silva, Ana Maria; Pereira, Sergio; Stachlewska, Iwona S.; Kumala, Wojciech; Szczepanik, Dominika; Amiridis, Vassilis; Marinou, Eleni; Kottas, Michail; Mattis, Ina; Müller, Gerhard

    2018-04-01

    PollyNET is a network of portable, automated, and continuously measuring Ramanpolarization lidars of type Polly operated by several institutes worldwide. The data from permanent and temporary measurements sites are automatically processed in terms of optical aerosol profiles and displayed in near-real time at polly.tropos.de. According to current schedules, the network will grow by 3-4 systems during the upcoming 2-3 years and will then comprise 11 permanent stations and 2 mobile platforms.

  8. Breakout Prediction Based on BP Neural Network in Continuous Casting Process

    Directory of Open Access Journals (Sweden)

    Zhang Ben-guo

    2016-01-01

    Full Text Available An improved BP neural network model was presented by modifying the learning algorithm of the traditional BP neural network, based on the Levenberg-Marquardt algorithm, and was applied to the breakout prediction system in the continuous casting process. The results showed that the accuracy rate of the model for the temperature pattern of sticking breakout was 96.43%, and the quote rate was 100%, that verified the feasibility of the model.

  9. C-RNN-GAN: Continuous recurrent neural networks with adversarial training

    OpenAIRE

    Mogren, Olof

    2016-01-01

    Generative adversarial networks have been proposed as a way of efficiently training deep generative neural networks. We propose a generative adversarial model that works on continuous sequential data, and apply it by training it on a collection of classical music. We conclude that it generates music that sounds better and better as the model is trained, report statistics on generated music, and let the reader judge the quality by downloading the generated songs.

  10. The generation of random directed networks with prescribed 1-node and 2-node degree correlations

    Energy Technology Data Exchange (ETDEWEB)

    Zamora-Lopez, Gorka; Kurths, Juergen [Institute of Physics, University of Potsdam, PO Box 601553, 14415 Potsdam (Germany); Zhou Changsong [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Zlatic, Vinko [Rudjer Boskovic Institute, PO Box 180, HR-10002 Zagreb (Croatia)

    2008-06-06

    The generation of random networks is a very common problem in complex network research. In this paper, we have studied the correlation nature of several real networks and found that, typically, a large number of links are deterministic, i.e. they cannot be randomized. This finding permits fast generation of ensembles of maximally random networks with prescribed 1-node and 2-node degree correlations. When the introduction of self-loops or multiple-links are not desired, random network generation methods typically reach blocked states. Here, a mechanism is proposed, the 'force-and-drop' method, to overcome such states. Our algorithm can be easily simplified for undirected graphs and reduced to account for any subclass of 2-node degree correlations.

  11. The generation of random directed networks with prescribed 1-node and 2-node degree correlations

    International Nuclear Information System (INIS)

    Zamora-Lopez, Gorka; Kurths, Juergen; Zhou Changsong; Zlatic, Vinko

    2008-01-01

    The generation of random networks is a very common problem in complex network research. In this paper, we have studied the correlation nature of several real networks and found that, typically, a large number of links are deterministic, i.e. they cannot be randomized. This finding permits fast generation of ensembles of maximally random networks with prescribed 1-node and 2-node degree correlations. When the introduction of self-loops or multiple-links are not desired, random network generation methods typically reach blocked states. Here, a mechanism is proposed, the 'force-and-drop' method, to overcome such states. Our algorithm can be easily simplified for undirected graphs and reduced to account for any subclass of 2-node degree correlations

  12. Assessment of energy supply and continuity of service in distribution network with renewable distributed generation

    International Nuclear Information System (INIS)

    Abdullah, M.A.; Agalgaonkar, A.P.; Muttaqi, K.M.

    2014-01-01

    Highlights: • Difficulties in assessing distribution network adequacy with DG are addressed. • Indices are proposed to assess adequacy of energy supply and service continuity. • Analytical methodology is developed to assess the proposed indices. • Concept of joint probability distribution of demand and generation is applied. - Abstract: Continuity of electricity supply with renewable distributed generation (DG) is a topical issue for distribution system planning and operation, especially due to the stochastic nature of power generation and time varying load demand. The conventional adequacy and reliability analysis methods related to bulk generation systems cannot be applied directly for the evaluation of adequacy criteria such as ‘energy supply’ and ‘continuity of service’ for distribution networks embedded with renewable DG. In this paper, new indices highlighting ‘available supply capacity’ and ‘continuity of service’ are proposed for ‘energy supply’ and ‘continuation of service’ evaluation of generation-rich distribution networks, and analytical techniques are developed for their quantification. A probability based analytical method has been developed using the joint probability of the demand and generation, and probability distributions of the proposed indices have been used to evaluate the network adequacy in energy supply and service continuation. A data clustering technique has been used to evaluate the joint probability between coincidental demand and renewable generation. Time sequential Monte Carlo simulation has been used to compare the results obtained using the proposed analytical method. A standard distribution network derived from Roy Billinton test system and a practical radial distribution network have been used to test the proposed method and demonstrate the estimation of the well-being of a system for hosting renewable DG units. It is found that renewable DG systems improve the ‘energy supply’ and ‘continuity

  13. Evolution of Cooperation in Continuous Prisoner's Dilemma Games on Barabasi—Albert Networks with Degree-Dependent Guilt Mechanism

    Science.gov (United States)

    Wang, Xian-Jia; Quan, Ji; Liu, Wei-Bing

    2012-05-01

    This paper studies the continuous prisoner's dilemma games (CPDG) on Barabasi—Albert (BA) networks. In the model, each agent on a vertex of the networks makes an investment and interacts with all of his neighboring agents. Making an investment is costly, but which benefits its neighboring agents, where benefit and cost depend on the level of investment made. The payoff of each agent is given by the sum of payoffs it receives in its interactions with all its neighbors. Not only payoff, individual's guilty emotion in the games has also been considered. The negative guilty emotion produced in comparing with its neighbors can reduce the utility of individuals directly. We assume that the reduction amount depends on the individual's degree and a baseline level parameter. The group's cooperative level is characterized by the average investment of the population. Each player makes his investment in the next step based on a convex combination of the investment of his best neighbors in the last step, his best history strategies in the latest steps which number is controlled by a memory length parameter, and a uniformly distributed random number. Simulation results show that this degree-dependent guilt mechanism can promote the evolution of cooperation dramatically comparing with degree-independent guilt or no guilt cases. Imitation, memory, uncertainty coefficients and network structure also play determinant roles in the cooperation level of the population. All our results may shed some new light on studying the evolution of cooperation based on network reciprocity mechanisms.

  14. A system of networks and continuing education for physical therapists in rheumatology: a feasibility study

    Directory of Open Access Journals (Sweden)

    J. Verhoef

    2004-07-01

    Full Text Available Purpose: To evaluate the feasibility of regional physical therapy networks including continuing education in rheumatology. The aim of these networks was to improve care provided by primary care physical therapists by improving specific knowledge, technical and communicative skills and the collaboration with rheumatologists. Methods: In two regions in The Netherlands continuing education (CE programmes, consisting of a 5-day postgraduate training course followed by bimonthly workshops and teaching practices, were organised simultaneously. Network activities included consultations, newsletters and the development of a communication guideline. Endpoint measures included the participation rate, compliance, quality of the CE programme, teaching practices, knowledge, network activities, communication, number of patients treated and patient satisfaction. Results: Sixty-three physical therapists out of 193 practices (33% participated in the project. They all completed the education programmes and were formally registered. All evaluations of the education programmes showed positive scores. Knowledge scores increased significantly directly after the training course and at 18 months. A draft guideline on communication between physical therapists and rheumatologists was developed, and 4 newsletters were distributed. A substantial proportion of physical therapists and rheumatologists reported improved communication at 18 months. The mean number of patients treated by physical therapists participating in the networks increased significantly. Patients' satisfaction scores within the networks were significantly higher than those from outside the networks at 18 months. Conclusions: Setting up a system of networks for continuing education for physical therapists regarding the treatment of patients with rheumatic diseases is feasible. Further research will focus on the effectiveness of the system and its implementation on a larger scale.

  15. Manual therapy, physical therapy, or continued care by a general practitioner for patients with neck pain: a randomized, controlled trial.

    NARCIS (Netherlands)

    Hoving, J.L.; Koes, B.W.; Vet, H.C.W. de; Windt, D.A.W.M. van der; Assendelft, W.J.J.; Mameren, H. van; Devillé, W.L.J.M.; Pool, J.J.M.; Scholten, R.J.P.M.; Bouter, L.M.

    2002-01-01

    BACKGROUND: Neck pain is a common problem, but the effectiveness of frequently applied conservative therapies has never been directly compared. OBJECTIVE: To determine the effectiveness of manual therapy, physical therapy, and continued care by a general practitioner. DESIGN: Randomized, controlled

  16. Manual therapy, physical therapy, or continued care by a general practitioner for patients with neck pain. A randomized, controlled trial

    NARCIS (Netherlands)

    Hoving, Jan Lucas; Koes, Bart W.; de Vet, Henrica C. W.; van der Windt, Danielle A. W. M.; Assendelft, Willem J. J.; van Mameren, Henk; Devillé, Walter L. J. M.; Pool, Jan J. M.; Scholten, Rob J. P. M.; Bouter, Lex M.

    2002-01-01

    BACKGROUND: Neck pain is a common problem, but the effectiveness of frequently applied conservative therapies has never been directly compared. OBJECTIVE: To determine the effectiveness of manual therapy, physical therapy, and continued care by a general practitioner. DESIGN: Randomized, controlled

  17. Bupivacaine constant continuous surgical wound infusion versus continuous epidural infusion for post cesarean section pain, randomized placebo-controlled study

    Directory of Open Access Journals (Sweden)

    Hossam A. ELShamaa

    2016-10-01

    Conclusion: The current study demonstrated that bupivacaine administered by continuous epidural infusion provided a significantly lower pain scores with mobilization, and hence better analgesia for post cesarean section pain in the first postoperative day compared to continuous bupivacaine wound infusion through fenestrated catheter using the constant flow PainFusor system.

  18. Parameters affecting the resilience of scale-free networks to random failures.

    Energy Technology Data Exchange (ETDEWEB)

    Link, Hamilton E.; LaViolette, Randall A.; Lane, Terran (University of New Mexico, Albuquerque, NM); Saia, Jared (University of New Mexico, Albuquerque, NM)

    2005-09-01

    It is commonly believed that scale-free networks are robust to massive numbers of random node deletions. For example, Cohen et al. in (1) study scale-free networks including some which approximate the measured degree distribution of the Internet. Their results suggest that if each node in this network failed independently with probability 0.99, most of the remaining nodes would still be connected in a giant component. In this paper, we show that a large and important subclass of scale-free networks are not robust to massive numbers of random node deletions. In particular, we study scale-free networks which have minimum node degree of 1 and a power-law degree distribution beginning with nodes of degree 1 (power-law networks). We show that, in a power-law network approximating the Internet's reported distribution, when the probability of deletion of each node is 0.5 only about 25% of the surviving nodes in the network remain connected in a giant component, and the giant component does not persist beyond a critical failure rate of 0.9. The new result is partially due to improved analytical accommodation of the large number of degree-0 nodes that result after node deletions. Our results apply to power-law networks with a wide range of power-law exponents, including Internet-like networks. We give both analytical and empirical evidence that such networks are not generally robust to massive random node deletions.

  19. Analyzing Networked Learning Practices in HigherEducation and Continuing Professional Development

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Lone

    Deliverable 28.5.4 reports on the preparation of the book "Analysing Networked Learning Practices in Higher Education and Continuing Professional Development", which consists of an Introduction, case studies and a concluding section, which presents the theoretical work and empirical work conducte...

  20. Global asymptotic stability of Cohen-Grossberg neural network with continuously distributed delays

    International Nuclear Information System (INIS)

    Wan Li; Sun Jianhua

    2005-01-01

    The convergence dynamical behaviors of Cohen-Grossberg neural network with continuously distributed delays are discussed. By using Brouwer's fixed point theorem, matrix theory and analysis techniques such as Gronwall inequality, some new sufficient conditions guaranteeing the existence, uniqueness of an equilibrium point and its global asymptotic stability are obtained. An example is given to illustrate the theoretical results

  1. Global exponential stability of cellular neural networks with continuously distributed delays and impulses

    International Nuclear Information System (INIS)

    Wang Yixuan; Xiong Wanmin; Zhou Qiyuan; Xiao Bing; Yu Yuehua

    2006-01-01

    In this Letter cellular neural networks with continuously distributed delays and impulses are considered. Sufficient conditions for the existence and global exponential stability of a unique equilibrium point are established by using the fixed point theorem and differential inequality techniques. The results of this Letter are new and they complement previously known results

  2. A continuous-time random-walk approach to the Cole-Davidson dielectric response of dipolar liquids

    DEFF Research Database (Denmark)

    Szabat, B.; Langner, K. M.; Klösgen-Buchkremer, Beate Maria

    2004-01-01

    We show how the Cole-Davidson relaxation response, characteristic of alcoholic systems, can be derived within the framework of the continuous-time random walk (CTRW). Using the random-variable formalism, we indicate that the high-frequency power law of dielectric spectra is determined by the heavy...

  3. A continuous-time random-walk approach to the Cole-Davidson dielectric response of dipolar liquids

    DEFF Research Database (Denmark)

    Szabat, Bozena; Langner, Karol M.; Klösgen, Beate Maria

    2005-01-01

    We show how the Cole-Davidson relaxation response, characteristic of alcoholic systems, can be derived within the framework of the continuous-time random walk 4CTRW). Using the random-variable formalism, we indicate that the high-frequency power law of dielectric spectra is determined by the heav...

  4. Electrospun dye-doped fiber networks: lasing emission from randomly distributed cavities

    DEFF Research Database (Denmark)

    Krammer, Sarah; Vannahme, Christoph; Smith, Cameron

    2015-01-01

    Dye-doped polymer fiber networks fabricated with electrospinning exhibit comb-like laser emission. We identify randomly distributed ring resonators being responsible for lasing emission by making use of spatially resolved spectroscopy. Numerical simulations confirm this result quantitatively....

  5. Continuous time random walk: Galilei invariance and relation for the nth moment

    International Nuclear Information System (INIS)

    Fa, Kwok Sau

    2011-01-01

    We consider a decoupled continuous time random walk model with a generic waiting time probability density function (PDF). For the force-free case we derive an integro-differential diffusion equation which is related to the Galilei invariance for the probability density. We also derive a general relation which connects the nth moment in the presence of any external force to the second moment without external force, i.e. it is valid for any waiting time PDF. This general relation includes the generalized second Einstein relation, which connects the first moment in the presence of any external force to the second moment without any external force. These expressions for the first two moments are verified by using several kinds of the waiting time PDF. Moreover, we present new anomalous diffusion behaviours for a waiting time PDF given by a product of power-law and exponential function.

  6. Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach

    Science.gov (United States)

    Comolli, Alessandro; Dentz, Marco

    2017-09-01

    We study the causes of anomalous dispersion in Darcy-scale porous media characterized by spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial variability in the flow properties through Darcy's law and thus impacts on solute and particle transport. We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conductivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity length scales are kinematically coupled with the transition time through velocity. We show that the average particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales. The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dispersion in terms of heterogeneity correlation and the distribution of conductivity point values. We derive analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their mechanisms, however are very different, which manifests in the distributions of particle positions and arrival times, which plays a central role for the prediction of the fate of dissolved substances in

  7. A lattice-model representation of continuous-time random walks

    International Nuclear Information System (INIS)

    Campos, Daniel; Mendez, Vicenc

    2008-01-01

    We report some ideas for constructing lattice models (LMs) as a discrete approach to the reaction-dispersal (RD) or reaction-random walks (RRW) models. The analysis of a rather general class of Markovian and non-Markovian processes, from the point of view of their wavefront solutions, let us show that in some regimes their macroscopic dynamics (front speed) turns out to be different from that by classical reaction-diffusion equations, which are often used as a mean-field approximation to the problem. So, the convenience of a more general framework as that given by the continuous-time random walks (CTRW) is claimed. Here we use LMs as a numerical approach in order to support that idea, while in previous works our discussion was restricted to analytical models. For the two specific cases studied here, we derive and analyze the mean-field expressions for our LMs. As a result, we are able to provide some links between the numerical and analytical approaches studied

  8. A lattice-model representation of continuous-time random walks

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Daniel [School of Mathematics, Department of Applied Mathematics, University of Manchester, Manchester M60 1QD (United Kingdom); Mendez, Vicenc [Grup de Fisica Estadistica, Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)], E-mail: daniel.campos@uab.es, E-mail: vicenc.mendez@uab.es

    2008-02-29

    We report some ideas for constructing lattice models (LMs) as a discrete approach to the reaction-dispersal (RD) or reaction-random walks (RRW) models. The analysis of a rather general class of Markovian and non-Markovian processes, from the point of view of their wavefront solutions, let us show that in some regimes their macroscopic dynamics (front speed) turns out to be different from that by classical reaction-diffusion equations, which are often used as a mean-field approximation to the problem. So, the convenience of a more general framework as that given by the continuous-time random walks (CTRW) is claimed. Here we use LMs as a numerical approach in order to support that idea, while in previous works our discussion was restricted to analytical models. For the two specific cases studied here, we derive and analyze the mean-field expressions for our LMs. As a result, we are able to provide some links between the numerical and analytical approaches studied.

  9. Continuous energy Monte Carlo calculations for randomly distributed spherical fuels based on statistical geometry model

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Isao [Osaka Univ., Suita (Japan); Mori, Takamasa; Nakagawa, Masayuki; Itakura, Hirofumi

    1996-03-01

    The method to calculate neutronics parameters of a core composed of randomly distributed spherical fuels has been developed based on a statistical geometry model with a continuous energy Monte Carlo method. This method was implemented in a general purpose Monte Carlo code MCNP, and a new code MCNP-CFP had been developed. This paper describes the model and method how to use it and the validation results. In the Monte Carlo calculation, the location of a spherical fuel is sampled probabilistically along the particle flight path from the spatial probability distribution of spherical fuels, called nearest neighbor distribution (NND). This sampling method was validated through the following two comparisons: (1) Calculations of inventory of coated fuel particles (CFPs) in a fuel compact by both track length estimator and direct evaluation method, and (2) Criticality calculations for ordered packed geometries. This method was also confined by applying to an analysis of the critical assembly experiment at VHTRC. The method established in the present study is quite unique so as to a probabilistic model of the geometry with a great number of spherical fuels distributed randomly. Realizing the speed-up by vector or parallel computations in future, it is expected to be widely used in calculation of a nuclear reactor core, especially HTGR cores. (author).

  10. Networks of Learning : Professional Association and the Continuing Education of Teachers of Mathematics in Pakistan

    DEFF Research Database (Denmark)

    Baber, Sikunder Ali

    " and shows how a number of professional associations have become as networks of learning to encourage the continuing professional education of both pre-service and in-service teachers in the context of Pakistan. A case of the Mathematics Association of Pakistan (MAP) as a Network of Learning is presented....... The formation and growth of this network can be viewed as developing insights into the improvement of mathematics education in the developing world. The contributions of the association may also add value to the learning of teacher colleagues in other parts of the world. This sharing of the experience may......Importance of the professional development of teachers has been recognized and research has contributed greatly in terms of proposing variety of approaches for the development of teachers,both pre-service and in-service. Among them, networking among teachers, teacher educators,curriculum developers...

  11. Continual and One-Shot Learning Through Neural Networks with Dynamic External Memory

    DEFF Research Database (Denmark)

    Lüders, Benno; Schläger, Mikkel; Korach, Aleksandra

    2017-01-01

    it easier to find unused memory location and therefor facilitates the evolution of continual learning networks. Our results suggest that augmenting evolving networks with an external memory component is not only a viable mechanism for adaptive behaviors in neuroevolution but also allows these networks...... a new task is learned. This paper takes a step in overcoming this limitation by building on the recently proposed Evolving Neural Turing Machine (ENTM) approach. In the ENTM, neural networks are augmented with an external memory component that they can write to and read from, which allows them to store...... associations quickly and over long periods of time. The results in this paper demonstrate that the ENTM is able to perform one-shot learning in reinforcement learning tasks without catastrophic forgetting of previously stored associations. Additionally, we introduce a new ENTM default jump mechanism that makes...

  12. Merging Bottom-Up with Top-Down: Continuous Lamellar Networks and Block Copolymer Lithography

    Science.gov (United States)

    Campbell, Ian Patrick

    Block copolymer lithography is an emerging nanopatterning technology with capabilities that may complement and eventually replace those provided by existing optical lithography techniques. This bottom-up process relies on the parallel self-assembly of macromolecules composed of covalently linked, chemically distinct blocks to generate periodic nanostructures. Among the myriad potential morphologies, lamellar structures formed by diblock copolymers with symmetric volume fractions have attracted the most interest as a patterning tool. When confined to thin films and directed to assemble with interfaces perpendicular to the substrate, two-dimensional domains are formed between the free surface and the substrate, and selective removal of a single block creates a nanostructured polymeric template. The substrate exposed between the polymeric features can subsequently be modified through standard top-down microfabrication processes to generate novel nanostructured materials. Despite tremendous progress in our understanding of block copolymer self-assembly, continuous two-dimensional materials have not yet been fabricated via this robust technique, which may enable nanostructured material combinations that cannot be fabricated through bottom-up methods. This thesis aims to study the effects of block copolymer composition and processing on the lamellar network morphology of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) and utilize this knowledge to fabricate continuous two-dimensional materials through top-down methods. First, block copolymer composition was varied through homopolymer blending to explore the physical phenomena surrounding lamellar network continuity. After establishing a framework for tuning the continuity, the effects of various processing parameters were explored to engineer the network connectivity via defect annihilation processes. Precisely controlling the connectivity and continuity of lamellar networks through defect engineering and

  13. A continuous time random walk model for Darcy-scale anomalous transport in heterogeneous porous media.

    Science.gov (United States)

    Comolli, Alessandro; Hakoun, Vivien; Dentz, Marco

    2017-04-01

    Achieving the understanding of the process of solute transport in heterogeneous porous media is of crucial importance for several environmental and social purposes, ranging from aquifers contamination and remediation, to risk assessment in nuclear waste repositories. The complexity of this aim is mainly ascribable to the heterogeneity of natural media, which can be observed at all the scales of interest, from pore scale to catchment scale. In fact, the intrinsic heterogeneity of porous media is responsible for the arising of the well-known non-Fickian footprints of transport, including heavy-tailed breakthrough curves, non-Gaussian spatial density profiles and the non-linear growth of the mean squared displacement. Several studies investigated the processes through which heterogeneity impacts the transport properties, which include local modifications to the advective-dispersive motion of solutes, mass exchanges between some mobile and immobile phases (e.g. sorption/desorption reactions or diffusion into solid matrix) and spatial correlation of the flow field. In the last decades, the continuous time random walk (CTRW) model has often been used to describe solute transport in heterogenous conditions and to quantify the impact of point heterogeneity, spatial correlation and mass transfer on the average transport properties [1]. Open issues regarding this approach are the possibility to relate measurable properties of the medium to the parameters of the model, as well as its capability to provide predictive information. In a recent work [2] the authors have shed new light on understanding the relationship between Lagrangian and Eulerian dynamics as well as on their evolution from arbitrary initial conditions. On the basis of these results, we derive a CTRW model for the description of Darcy-scale transport in d-dimensional media characterized by spatially random permeability fields. The CTRW approach models particle velocities as a spatial Markov process, which is

  14. Backward jump continuous-time random walk: An application to market trading

    Science.gov (United States)

    Gubiec, Tomasz; Kutner, Ryszard

    2010-10-01

    The backward jump modification of the continuous-time random walk model or the version of the model driven by the negative feedback was herein derived for spatiotemporal continuum in the context of a share price evolution on a stock exchange. In the frame of the model, we described stochastic evolution of a typical share price on a stock exchange with a moderate liquidity within a high-frequency time scale. The model was validated by satisfactory agreement of the theoretical velocity autocorrelation function with its empirical counterpart obtained for the continuous quotation. This agreement is mainly a result of a sharp backward correlation found and considered in this article. This correlation is a reminiscence of such a bid-ask bounce phenomenon where backward price jump has the same or almost the same length as preceding jump. We suggested that this correlation dominated the dynamics of the stock market with moderate liquidity. Although assumptions of the model were inspired by the market high-frequency empirical data, its potential applications extend beyond the financial market, for instance, to the field covered by the Le Chatelier-Braun principle of contrariness.

  15. Completely random measures for modelling block-structured sparse networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Schmidt, Mikkel Nørgaard; Mørup, Morten

    2016-01-01

    Many statistical methods for network data parameterize the edge-probability by attributing latent traits to the vertices such as block structure and assume exchangeability in the sense of the Aldous-Hoover representation theorem. Empirical studies of networks indicate that many real-world networks...... have a power-law distribution of the vertices which in turn implies the number of edges scale slower than quadratically in the number of vertices. These assumptions are fundamentally irreconcilable as the Aldous-Hoover theorem implies quadratic scaling of the number of edges. Recently Caron and Fox...

  16. On the hop count statistics for randomly deployed wireless sensor networks

    NARCIS (Netherlands)

    Dulman, S.O.; Rossi, M.; Havinga, Paul J.M.; Zorzi, M.

    2006-01-01

    In this paper we focus on exploiting the information provided by a generally accepted and largely ignored hypothesis (the random deployment of the nodes of an ad hoc or wireless sensor network) to design improved networking protocols. Specifically, we derive the relationship between the number of

  17. The Hidden Flow Structure and Metric Space of Network Embedding Algorithms Based on Random Walks.

    Science.gov (United States)

    Gu, Weiwei; Gong, Li; Lou, Xiaodan; Zhang, Jiang

    2017-10-13

    Network embedding which encodes all vertices in a network as a set of numerical vectors in accordance with it's local and global structures, has drawn widespread attention. Network embedding not only learns significant features of a network, such as the clustering and linking prediction but also learns the latent vector representation of the nodes which provides theoretical support for a variety of applications, such as visualization, link prediction, node classification, and recommendation. As the latest progress of the research, several algorithms based on random walks have been devised. Although those algorithms have drawn much attention for their high scores in learning efficiency and accuracy, there is still a lack of theoretical explanation, and the transparency of those algorithms has been doubted. Here, we propose an approach based on the open-flow network model to reveal the underlying flow structure and its hidden metric space of different random walk strategies on networks. We show that the essence of embedding based on random walks is the latent metric structure defined on the open-flow network. This not only deepens our understanding of random- walk-based embedding algorithms but also helps in finding new potential applications in network embedding.

  18. Critical node lifetimes in random networks via the Chen-Stein method

    NARCIS (Netherlands)

    Franceschetti, M.; Meester, R.W.J.

    2006-01-01

    This correspondence considers networks where nodes are connected randomly and can fail at random times. It provides scaling laws that allow to find the critical time at which isolated nodes begin to appear in the system as its size tends to infinity. Applications are in the areas of sensor and

  19. CGBayesNets: conditional Gaussian Bayesian network learning and inference with mixed discrete and continuous data.

    Science.gov (United States)

    McGeachie, Michael J; Chang, Hsun-Hsien; Weiss, Scott T

    2014-06-01

    Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables. Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism, one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different network learning algorithms, each making a different tradeoff between computational cost and network likelihood. CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation, bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.

  20. The effect of continuous ultrasound on chronic low back pain: protocol of a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Naghdi Soofia

    2011-03-01

    Full Text Available Abstract Background Chronic non-specific low-back pain (LBP is one of the most common and expensive musculoskeletal disorders in industrialized countries. Similar to other countries in the world, LBP is a common health and socioeconomic problem in Iran. One of the most widely used modalities in the field of physiotherapy for treating LBP is therapeutic ultrasound. Despite its common use, there is still inconclusive evidence to support its effectiveness in this group of patients. This randomised trial will evaluate the effectiveness of continuous ultrasound in addition to exercise therapy in patients with chronic LBP. Methods and design A total of 46 patients, between the ages 18 and 65 years old who have had LBP for more than three months will be recruited from university hospitals. Participants will be randomized to receive continuous ultrasound plus exercise therapy or placebo ultrasound plus exercise therapy. These groups will be treated for 10 sessions during a period of 4 weeks. Primary outcome measures will be functional disability and pain intensity. Lumbar flexion and extension range of motion, as well as changes in electromyography muscle fatigue indices, will be measured as secondary outcomes. All outcome measures will be measured at baseline, after completion of the treatment sessions, and after one month. Discussion The results of this trial will help to provide some evidence regarding the use of continuous ultrasound in chronic LBP patients. This should lead to a more evidence-based approach to clinical decision making regarding the use of ultrasound for LBP. Trial registration Netherlands Trial Register (NTR: NTR2251

  1. Delineating social network data anonymization via random edge perturbation

    KAUST Repository

    Xue, Mingqiang; Karras, Panagiotis; Raï ssi, Chedy; Kalnis, Panos; Pung, Hungkeng

    2012-01-01

    study of the probability of success of any}structural attack as a function of the perturbation probability. Our analysis provides a powerful tool for delineating the identification risk of perturbed social network data; our extensive experiments

  2. Will electrical cyber-physical interdependent networks undergo first-order transition under random attacks?

    Science.gov (United States)

    Ji, Xingpei; Wang, Bo; Liu, Dichen; Dong, Zhaoyang; Chen, Guo; Zhu, Zhenshan; Zhu, Xuedong; Wang, Xunting

    2016-10-01

    Whether the realistic electrical cyber-physical interdependent networks will undergo first-order transition under random failures still remains a question. To reflect the reality of Chinese electrical cyber-physical system, the "partial one-to-one correspondence" interdependent networks model is proposed and the connectivity vulnerabilities of three realistic electrical cyber-physical interdependent networks are analyzed. The simulation results show that due to the service demands of power system the topologies of power grid and its cyber network are highly inter-similar which can effectively avoid the first-order transition. By comparing the vulnerability curves between electrical cyber-physical interdependent networks and its single-layer network, we find that complex network theory is still useful in the vulnerability analysis of electrical cyber-physical interdependent networks.

  3. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2016-01-01

    (ERNN, the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.

  4. Research on continuous environmental radiation monitoring system for NPP based on wireless sensor network

    International Nuclear Information System (INIS)

    Fu Hailong; Jia Mingchun; Peng Guichu

    2010-01-01

    According to the characteristics of environmental gamma radiation monitoring and the requirement of nuclear power plant (NPP) developing, a new continuous environmental radiation monitoring system based on wireless sensor network (WSN) was presented. The basic concepts and application of WSN were introduced firstly. And then the characteristics of the new system were analyzed. At the same time the configuration of the WSN and the whole structure of the system were built. Finally, the crucial techniques used in system designing, such as the design of sensor node, the choice of communication mode and protocol, the time synchronization and space location, the security of the network and the faults tolerance were introduced. (authors)

  5. Randomization and resilience of brain functional networks as systems-level endophenotypes of schizophrenia.

    Science.gov (United States)

    Lo, Chun-Yi Zac; Su, Tsung-Wei; Huang, Chu-Chung; Hung, Chia-Chun; Chen, Wei-Ling; Lan, Tsuo-Hung; Lin, Ching-Po; Bullmore, Edward T

    2015-07-21

    Schizophrenia is increasingly conceived as a disorder of brain network organization or dysconnectivity syndrome. Functional MRI (fMRI) networks in schizophrenia have been characterized by abnormally random topology. We tested the hypothesis that network randomization is an endophenotype of schizophrenia and therefore evident also in nonpsychotic relatives of patients. Head movement-corrected, resting-state fMRI data were acquired from 25 patients with schizophrenia, 25 first-degree relatives of patients, and 29 healthy volunteers. Graphs were used to model functional connectivity as a set of edges between regional nodes. We estimated the topological efficiency, clustering, degree distribution, resilience, and connection distance (in millimeters) of each functional network. The schizophrenic group demonstrated significant randomization of global network metrics (reduced clustering, greater efficiency), a shift in the degree distribution to a more homogeneous form (fewer hubs), a shift in the distance distribution (proportionally more long-distance edges), and greater resilience to targeted attack on network hubs. The networks of the relatives also demonstrated abnormal randomization and resilience compared with healthy volunteers, but they were typically less topologically abnormal than the patients' networks and did not have abnormal connection distances. We conclude that schizophrenia is associated with replicable and convergent evidence for functional network randomization, and a similar topological profile was evident also in nonpsychotic relatives, suggesting that this is a systems-level endophenotype or marker of familial risk. We speculate that the greater resilience of brain networks may confer some fitness advantages on nonpsychotic relatives that could explain persistence of this endophenotype in the population.

  6. A new neural network model for solving random interval linear programming problems.

    Science.gov (United States)

    Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza

    2017-05-01

    This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Morphology and linear-elastic moduli of random network solids.

    Science.gov (United States)

    Nachtrab, Susan; Kapfer, Sebastian C; Arns, Christoph H; Madadi, Mahyar; Mecke, Klaus; Schröder-Turk, Gerd E

    2011-06-17

    The effective linear-elastic moduli of disordered network solids are analyzed by voxel-based finite element calculations. We analyze network solids given by Poisson-Voronoi processes and by the structure of collagen fiber networks imaged by confocal microscopy. The solid volume fraction ϕ is varied by adjusting the fiber radius, while keeping the structural mesh or pore size of the underlying network fixed. For intermediate ϕ, the bulk and shear modulus are approximated by empirical power-laws K(phi)proptophin and G(phi)proptophim with n≈1.4 and m≈1.7. The exponents for the collagen and the Poisson-Voronoi network solids are similar, and are close to the values n=1.22 and m=2.11 found in a previous voxel-based finite element study of Poisson-Voronoi systems with different boundary conditions. However, the exponents of these empirical power-laws are at odds with the analytic values of n=1 and m=2, valid for low-density cellular structures in the limit of thin beams. We propose a functional form for K(ϕ) that models the cross-over from a power-law at low densities to a porous solid at high densities; a fit of the data to this functional form yields the asymptotic exponent n≈1.00, as expected. Further, both the intensity of the Poisson-Voronoi process and the collagen concentration in the samples, both of which alter the typical pore or mesh size, affect the effective moduli only by the resulting change of the solid volume fraction. These findings suggest that a network solid with the structure of the collagen networks can be modeled in quantitative agreement by a Poisson-Voronoi process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Continuous-variable Measurement-device-independent Quantum Relay Network with Phase-sensitive Amplifiers

    Science.gov (United States)

    Li, Fei; Zhao, Wei; Guo, Ying

    2018-01-01

    Continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is now heading towards solving the practical problem of implementing scalable quantum networks. In this paper, we show that a solution can come from deploying an optical amplifier in the CV-MDI system, aiming to establish a high-rate quantum network. We suggest an improved CV-MDI protocol using the EPR states coupled with optical amplifiers. It can implement a practical quantum network scheme, where the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Despite the possibility that the relay could be completely tampered with and imperfect links are subject to the powerful attacks, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Furthermore, we show that the use of optical amplifiers can compensate the inherent imperfections and improve the secret key rate of the CV-MDI system.

  9. Randomized Controlled Trial of Family Therapy in Advanced Cancer Continued Into Bereavement.

    Science.gov (United States)

    Kissane, David W; Zaider, Talia I; Li, Yuelin; Hichenberg, Shira; Schuler, Tammy; Lederberg, Marguerite; Lavelle, Lisa; Loeb, Rebecca; Del Gaudio, Francesca

    2016-06-01

    Systematic family-centered cancer care is needed. We conducted a randomized controlled trial of family therapy, delivered to families identified by screening to be at risk from dysfunctional relationships when one of their relatives has advanced cancer. Eligible patients with advanced cancer and their family members screened above the cut-off on the Family Relationships Index. After screening 1,488 patients or relatives at Memorial Sloan Kettering Cancer Center or three related community hospice programs, 620 patients (42%) were recruited, which represented 170 families. Families were stratified by three levels of family dysfunction (low communicating, low involvement, and high conflict) and randomly assigned to one of three arms: standard care or 6 or 10 sessions of a manualized family intervention. Primary outcomes were the Complicated Grief Inventory-Abbreviated (CGI) and Beck Depression Inventory-II (BDI-II). Generalized estimating equations allowed for clustered data in an intention-to-treat analysis. On the CGI, a significant treatment effect (Wald χ(2) = 6.88; df = 2; P = .032) and treatment by family-type interaction was found (Wald χ(2) = 20.64; df = 4; P families. Low-communicating families improved by 6 months of bereavement. In the standard care arm, 15.5% of the bereaved developed a prolonged grief disorder at 13 months of bereavement compared with 3.3% of those who received 10 sessions of intervention (Wald χ(2) = 8.31; df = 2; P =.048). No significant treatment effects were found on the BDI-II. Family-focused therapy delivered to high-risk families during palliative care and continued into bereavement reduced the severity of complicated grief and the development of prolonged grief disorder. © 2016 by American Society of Clinical Oncology.

  10. Autoregressive Modeling of Drift and Random Error to Characterize a Continuous Intravascular Glucose Monitoring Sensor.

    Science.gov (United States)

    Zhou, Tony; Dickson, Jennifer L; Geoffrey Chase, J

    2018-01-01

    Continuous glucose monitoring (CGM) devices have been effective in managing diabetes and offer potential benefits for use in the intensive care unit (ICU). Use of CGM devices in the ICU has been limited, primarily due to the higher point accuracy errors over currently used traditional intermittent blood glucose (BG) measures. General models of CGM errors, including drift and random errors, are lacking, but would enable better design of protocols to utilize these devices. This article presents an autoregressive (AR) based modeling method that separately characterizes the drift and random noise of the GlySure CGM sensor (GlySure Limited, Oxfordshire, UK). Clinical sensor data (n = 33) and reference measurements were used to generate 2 AR models to describe sensor drift and noise. These models were used to generate 100 Monte Carlo simulations based on reference blood glucose measurements. These were then compared to the original CGM clinical data using mean absolute relative difference (MARD) and a Trend Compass. The point accuracy MARD was very similar between simulated and clinical data (9.6% vs 9.9%). A Trend Compass was used to assess trend accuracy, and found simulated and clinical sensor profiles were similar (simulated trend index 11.4° vs clinical trend index 10.9°). The model and method accurately represents cohort sensor behavior over patients, providing a general modeling approach to any such sensor by separately characterizing each type of error that can arise in the data. Overall, it enables better protocol design based on accurate expected CGM sensor behavior, as well as enabling the analysis of what level of each type of sensor error would be necessary to obtain desired glycemic control safety and performance with a given protocol.

  11. An online spaced-education game for global continuing medical education: a randomized trial.

    Science.gov (United States)

    Kerfoot, B Price; Baker, Harley

    2012-07-01

    To assess the efficacy of a "spaced-education" game as a method of continuing medical education (CME) among physicians across the globe. The efficacy of educational games for the CME has yet to be established. We created a novel online educational game by incorporating game mechanics into "spaced education" (SE), an evidence-based method of online CME. This 34-week randomized trial enrolled practicing urologists across the globe. The SE game consisted of 40 validated multiple-choice questions and explanations on urology clinical guidelines. Enrollees were randomized to 2 cohorts: cohort A physicians were sent 2 questions via an automated e-mail system every 2 days, and cohort B physicians were sent 4 questions every 4 days. Adaptive game mechanics re-sent the questions in 12 or 24 days if answered incorrectly and correctly, respectively. Questions expired if not answered on time (appointment dynamic). Physicians retired questions by answering each correctly twice-in-a-row (progression dynamic). Competition was fostered by posting relative performance among physicians. Main outcome measures were baseline scores (percentage of questions answered correctly upon initial presentation) and completion scores (percentage of questions retired). A total of 1470 physicians from 63 countries enrolled. Median baseline score was 48% (interquartile range [IQR] 17) and, in multivariate analyses, was found to vary significantly by region (Cohen dmax = 0.31, P = 0.001) and age (dmax = 0.41, P games. An online SE game can substantially improve guidelines knowledge and is a well-accepted method of global CME delivery.

  12. Analgesia with interfascial continuous wound infiltration after laparoscopic colon surgery: A randomized clinical trial.

    Science.gov (United States)

    Telletxea, S; Gonzalez, J; Portugal, V; Alvarez, R; Aguirre, U; Anton, A; Arizaga, A

    2016-04-01

    For major laparoscopic surgery, as with open surgery, a multimodal analgesia plan can help to control postoperative pain. Placing a wound catheter intraoperatively following colon surgery could optimize the control of acute pain with less consumption of opioids and few adverse effects. We conducted a prospective, randomized, study of patients scheduled to undergo laparoscopic colon surgery for cancer in Galdakao-Usansolo Hospital from January 2012 to January 2013. Patients were recruited and randomly allocated to wound catheter placement plus standard postoperative analgesia or standard postoperative analgesia alone. A physician from the acute pain management unit monitored all patients for pain at multiple points over the first 48 hours after surgery. The primary outcome variables were verbal numeric pain scale scores and amount of intravenous morphine used via patient controlled infusion. 92 patients were included in the study, 43 had a wound catheter implanted and 49 did not. Statistically significant differences in morphine consumption were observed between groups throughout the course of the treatment period. The mean total morphine consumption at the end of the study was 5.63±5.02mg among wound catheter patients and 21. 86±17.88mg among control patients (P=.0001). Wound catheter patients had lower pain scale scores than control patients throughout the observation period. No adverse effects associated with the wound catheter technique were observed. The wound catheter group showed lower hospital stays with statistically significant difference (P=.02). In patients undergoing laparoscopic colon surgery, continuous infusion of local anaesthetics through interfascial wound catheters during the first 48h aftersurgery reduced the level of perceived pain and also reduced parenteral morphine consumption with no associated adverse effects and lower hospital stays. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor

  13. Continuous spinal anesthesia versus combined spinal epidural block for major orthopedic surgery: prospective randomized study

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo Imbelloni

    Full Text Available CONTEXT AND OBJECTIVES: In major orthopedic surgery of the lower limbs, continuous spinal anesthesia (CSA and combined spinal epidural anesthesia (CSE are safe and reliable anesthesia methods. In this prospective randomized clinical study, the blockading properties and side effects of CSA were compared with single interspace CSE, among patients scheduled for major hip or knee surgery. DESIGN AND SETTING: Prospective clinical study conducted at the Institute for Regional Anesthesia, Hospital de Base, São José do Rio Preto. METHODS: 240 patients scheduled for hip arthroplasty, knee arthroplasty or femoral fracture treatment were randomly assigned to receive either CSA or CSE. Blockades were performed in the lateral position at the L3-L4 interspace. Puncture success, technical difficulties, paresthesia, highest level of sensory and motor blockade, need for complementary doses of local anesthetic, degree of technical difficulties, cardiocirculatory changes and postdural puncture headache (PDPH were recorded. At the end of the surgery, the catheter was removed and cerebrospinal fluid leakage was evaluated. RESULTS: Seven patients were excluded (three CSA and four CSE. There was significantly lower incidence of paresthesia in the CSE group. The resultant sensory blockade level was significantly higher with CSE. Complete motor blockade occurred in 110 CSA patients and in 109 CSE patients. Arterial hypotension was observed significantly more often in the CSE group. PDPH was observed in two patients of each group. CONCLUSION: Our results suggest that both CSA and CSE provided good surgical conditions with low incidence of complications. The sensory blockade level and hemodynamic changes were lower with CSA.

  14. Analytical connection between thresholds and immunization strategies of SIS model in random networks

    Science.gov (United States)

    Zhou, Ming-Yang; Xiong, Wen-Man; Liao, Hao; Wang, Tong; Wei, Zong-Wen; Fu, Zhong-Qian

    2018-05-01

    Devising effective strategies for hindering the propagation of viruses and protecting the population against epidemics is critical for public security and health. Despite a number of studies based on the susceptible-infected-susceptible (SIS) model devoted to this topic, we still lack a general framework to compare different immunization strategies in completely random networks. Here, we address this problem by suggesting a novel method based on heterogeneous mean-field theory for the SIS model. Our method builds the relationship between the thresholds and different immunization strategies in completely random networks. Besides, we provide an analytical argument that the targeted large-degree strategy achieves the best performance in random networks with arbitrary degree distribution. Moreover, the experimental results demonstrate the effectiveness of the proposed method in both artificial and real-world networks.

  15. Effect of Continuous Positive Airway Pressure on Stroke Rehabilitation: A Pilot Randomized Sham-Controlled Trial

    Science.gov (United States)

    Khot, Sandeep P.; Davis, Arielle P.; Crane, Deborah A.; Tanzi, Patricia M.; Li Lue, Denise; Claflin, Edward S.; Becker, Kyra J.; Longstreth, W.T.; Watson, Nathaniel F.; Billings, Martha E.

    2016-01-01

    Study Objectives: Obstructive sleep apnea (OSA) predicts poor functional outcome after stroke and increases the risk for recurrent stroke. Less is known about continuous positive airway pressure (CPAP) treatment on stroke recovery. Methods: In a pilot randomized, double-blind, sham-controlled trial, adult stroke rehabilitation patients were assigned to auto-titrating or sham CPAP without diagnostic testing for OSA. Change in Functional Independence Measure (FIM), a measure of disability, was assessed between rehabilitation admission and discharge. Results: Over 18 months, 40 patients were enrolled and 10 withdrew from the study: 7 from active and 3 from sham CPAP (p > 0.10). For the remaining 30 patients, median duration of CPAP use was 14 days. Average CPAP use was 3.7 h/night, with at least 4 h nightly use among 15 patients. Adherence was not influenced by treatment assignment or stroke severity. In intention-to-treat analyses (n = 40), the median change in FIM favored active CPAP over sham but did not reach statistical significance (34 versus 26, p = 0.25), except for the cognitive component (6 versus 2.5, p = 0.04). The on-treatment analyses (n = 30) yielded similar results (total FIM: 32 versus 26, p = 0.11; cognitive FIM: 6 versus 2, p = 0.06). Conclusions: A sham-controlled CPAP trial among stroke rehabilitation patients was feasible in terms of recruitment, treatment without diagnostic testing and adequate blinding—though was limited by study retention and CPAP adherence. Despite these limitations, a trend towards a benefit of CPAP on recovery was evident. Tolerance and adherence must be improved before the full benefits of CPAP on recovery can be assessed in larger trials. Citation: Khot SP, Davis AP, Crane DA, Tanzi PM, Li Lue D, Claflin ES, Becker KJ, Longstreth WT, Watson NF, Billings ME. Effect of continuous positive airway pressure on stroke rehabilitation: a pilot randomized sham-controlled trial. J Clin Sleep Med 2016;12(7):1019–1026. PMID

  16. CUFID-query: accurate network querying through random walk based network flow estimation.

    Science.gov (United States)

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive

  17. Convergence and approximate calculation of average degree under different network sizes for decreasing random birth-and-death networks

    Science.gov (United States)

    Long, Yin; Zhang, Xiao-Jun; Wang, Kui

    2018-05-01

    In this paper, convergence and approximate calculation of average degree under different network sizes for decreasing random birth-and-death networks (RBDNs) are studied. First, we find and demonstrate that the average degree is convergent in the form of power law. Meanwhile, we discover that the ratios of the back items to front items of convergent reminder are independent of network link number for large network size, and we theoretically prove that the limit of the ratio is a constant. Moreover, since it is difficult to calculate the analytical solution of the average degree for large network sizes, we adopt numerical method to obtain approximate expression of the average degree to approximate its analytical solution. Finally, simulations are presented to verify our theoretical results.

  18. The effect of continuous aerobic exercise on premenstrual syndrome: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Mosallanejad Z

    2007-11-01

    Full Text Available Background: Premenstrual syndrome is one of the most incidencial problems in women's during reproductive age. That effect personal performance in family and society status. Varied therapeutic treatment has been studied for its promotion. The main attention was to find a method without complications. This study performed with aim of assessing effect of one period of continuous aerobic exercise on premenstrual syndrome in 18-25 years female students in jahrom medical school."nMethods: This study was a kind of semi experimental study with two group plane. Forty students were assessed for premenstrual syndrome with regular mense, without previous history of Diabetes mellitus and Thyroid, Gynecologic and psychological disease. Twenty subjects (with similar VO2 MAX were selected and randomly divided to two experimental and control groups. Data gathering was from ILPDD questionnaire concluded 11 question about signs and symptoms of mental and physical complain related to premenstrual syndrome that filled by samples. All samples have positive five complain that four of them depend on mental symptoms of premenstrual syndrome. Intensity of quantity of premenstrual syndrome and levels of estrogen and progesterone were measured. Then, exercise regime including continuous aerobic exercise, were performed for eight weeks, with frequency of three sessions every week. At the end of 8th week, posttests were repeated in the situation similar to pretest. Analytic statistic as a Nonparametric Mann-whitney test, and nonparametric Wilcoxon signed ranks test was used for comparing variables."nResults: This study showed that after two method of aerobic exercise, somatic and effective complain was decrease in case group (p>0.05. Hormonal change in two groups was not significant."nConclusion: Releaving aerobic experiences is effective for somatic and affective complains secondary to premenstrual syndrome and this plan can be replace by other methods of medical

  19. A Realistic Framework for Delay-Tolerant Network Routing in Open Terrains with Continuous Churn

    Science.gov (United States)

    Mahendran, Veeramani; Anirudh, Sivaraman K.; Murthy, C. Siva Ram

    The conventional analysis of Delay-Tolerant Network (DTN) routing assumes that the terrain over which nodes move is closed implying that when the nodes hit a boundary, they either wrap around or get reflected. In this work, we study the effect of relaxing this closed terrain assumption on the routing performance, where a continuous stream of nodes enter the terrain and get absorbed upon hitting the boundary.

  20. Analysis of Greedy Decision Making for Geographic Routing for Networks of Randomly Moving Objects

    Directory of Open Access Journals (Sweden)

    Amber Israr

    2016-04-01

    Full Text Available Autonomous and self-organizing wireless ad-hoc communication networks for moving objects consist of nodes, which use no centralized network infrastructure. Examples of moving object networks are networks of flying objects, networks of vehicles, networks of moving people or robots. Moving object networks have to face many critical challenges in terms of routing because of dynamic topological changes and asymmetric networks links. A suitable and effective routing mechanism helps to extend the deployment of moving nodes. In this paper an attempt has been made to analyze the performance of the Greedy Decision method (position aware distance based algorithm for geographic routing for network nodes moving according to the random waypoint mobility model. The widely used GPSR (Greedy Packet Stateless Routing protocol utilizes geographic distance and position based data of nodes to transmit packets towards destination nodes. In this paper different scenarios have been tested to develop a concrete set of recommendations for optimum deployment of distance based Greedy Decision of Geographic Routing in randomly moving objects network

  1. A random walk evolution model of wireless sensor networks and virus spreading

    International Nuclear Information System (INIS)

    Wang Ya-Qi; Yang Xiao-Yuan

    2013-01-01

    In this paper, considering both cluster heads and sensor nodes, we propose a novel evolving a network model based on a random walk to study the fault tolerance decrease of wireless sensor networks (WSNs) due to node failure, and discuss the spreading dynamic behavior of viruses in the evolution model. A theoretical analysis shows that the WSN generated by such an evolution model not only has a strong fault tolerance, but also can dynamically balance the energy loss of the entire network. It is also found that although the increase of the density of cluster heads in the network reduces the network efficiency, it can effectively inhibit the spread of viruses. In addition, the heterogeneity of the network improves the network efficiency and enhances the virus prevalence. We confirm all the theoretical results with sufficient numerical simulations. (general)

  2. Resilience of networks to environmental stress: From regular to random networks

    Science.gov (United States)

    Eom, Young-Ho

    2018-04-01

    Despite the huge interest in network resilience to stress, most of the studies have concentrated on internal stress damaging network structure (e.g., node removals). Here we study how networks respond to environmental stress deteriorating their external conditions. We show that, when regular networks gradually disintegrate as environmental stress increases, disordered networks can suddenly collapse at critical stress with hysteresis and vulnerability to perturbations. We demonstrate that this difference results from a trade-off between node resilience and network resilience to environmental stress. The nodes in the disordered networks can suppress their collapses due to the small-world topology of the networks but eventually collapse all together in return. Our findings indicate that some real networks can be highly resilient against environmental stress to a threshold yet extremely vulnerable to the stress above the threshold because of their small-world topology.

  3. Peer-Assisted Content Distribution with Random Linear Network Coding

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Ledet-Pedersen, Jeppe; Sluyterman, Georg

    2014-01-01

    Peer-to-peer networks constitute a widely used, cost-effective and scalable technology to distribute bandwidth-intensive content. The technology forms a great platform to build distributed cloud storage without the need of a central provider. However, the majority of todays peer-to-peer systems...

  4. Evaluation of geocast routing trees on random and actual networks

    NARCIS (Netherlands)

    Meijerink, Berend Jan; Baratchi, Mitra; Heijenk, Geert; Koucheryavy, Yevgeni; Mamatas, Lefteris; Matta, Ibrahim; Ometov, Aleksandr; Papadimitriou, Panagiotis

    2017-01-01

    Efficient geocast routing schemes are needed to transmit messages to mobile networked devices in geographically scoped areas. To design an efficient geocast routing algorithm a comprehensive evaluation of different routing tree approaches is needed. In this paper, we present an analytical study

  5. Occupation times and ergodicity breaking in biased continuous time random walks

    International Nuclear Information System (INIS)

    Bel, Golan; Barkai, Eli

    2005-01-01

    Continuous time random walk (CTRW) models are widely used to model diffusion in condensed matter. There are two classes of such models, distinguished by the convergence or divergence of the mean waiting time. Systems with finite average sojourn time are ergodic and thus Boltzmann-Gibbs statistics can be applied. We investigate the statistical properties of CTRW models with infinite average sojourn time; in particular, the occupation time probability density function is obtained. It is shown that in the non-ergodic phase the distribution of the occupation time of the particle on a given lattice point exhibits bimodal U or trimodal W shape, related to the arcsine law. The key points are as follows. (a) In a CTRW with finite or infinite mean waiting time, the distribution of the number of visits on a lattice point is determined by the probability that a member of an ensemble of particles in equilibrium occupies the lattice point. (b) The asymmetry parameter of the probability distribution function of occupation times is related to the Boltzmann probability and to the partition function. (c) The ensemble average is given by Boltzmann-Gibbs statistics for either finite or infinite mean sojourn time, when detailed balance conditions hold. (d) A non-ergodic generalization of the Boltzmann-Gibbs statistical mechanics for systems with infinite mean sojourn time is found

  6. Surface detection performance evaluation of pseudo-random noise continuous wave laser radar

    Science.gov (United States)

    Mitev, Valentin; Matthey, Renaud; Pereira do Carmo, Joao

    2017-11-01

    A number of space missions (including in the ESA Exploration Programme) foreseen a use of laser radar sensor (or lidar) for determination of range between spacecrafts or between spacecraft and ground surface (altimetry). Such sensors need to be compact, robust and power efficient, at the same time with high detection performance. These requirements can be achieved with a Pseudo-Random Noise continuous wave lidar (PRN cw lidar). Previous studies have pointed to the advantages of this lidar with respect to space missions, but they also identified its limitations in high optical background. The progress of the lasers and the detectors in the near IR spectral range requires a re-evaluation of the PRN cw lidar potential. Here we address the performances of this lidar for surface detection (altimetry) in planetary missions. The evaluation is based on the following system configuration: (i) A cw fiber amplifier as lidar transmitter. The seeding laser exhibits a single-frequency spectral line, with subsequent amplitude modulation. The fiber amplifier allows high output power level, keeping the spectral characteristics and the modulation of the seeding light input. (ii) An avalanche photodiode in photon counting detection; (iii) Measurement scenarios representative for Earth, Mercury and Mars.

  7. Fluctuations around equilibrium laws in ergodic continuous-time random walks.

    Science.gov (United States)

    Schulz, Johannes H P; Barkai, Eli

    2015-06-01

    We study occupation time statistics in ergodic continuous-time random walks. Under thermal detailed balance conditions, the average occupation time is given by the Boltzmann-Gibbs canonical law. But close to the nonergodic phase, the finite-time fluctuations around this mean are large and nontrivial. They exhibit dual time scaling and distribution laws: the infinite density of large fluctuations complements the Lévy-stable density of bulk fluctuations. Neither of the two should be interpreted as a stand-alone limiting law, as each has its own deficiency: the infinite density has an infinite norm (despite particle conservation), while the stable distribution has an infinite variance (although occupation times are bounded). These unphysical divergences are remedied by consistent use and interpretation of both formulas. Interestingly, while the system's canonical equilibrium laws naturally determine the mean occupation time of the ergodic motion, they also control the infinite and Lévy-stable densities of fluctuations. The duality of stable and infinite densities is in fact ubiquitous for these dynamics, as it concerns the time averages of general physical observables.

  8. Continuous time random walk analysis of solute transport in fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Cortis, Andrea; Cortis, Andrea; Birkholzer, Jens

    2008-06-01

    The objective of this work is to discuss solute transport phenomena in fractured porous media, where the macroscopic transport of contaminants in the highly permeable interconnected fractures can be strongly affected by solute exchange with the porous rock matrix. We are interested in a wide range of rock types, with matrix hydraulic conductivities varying from almost impermeable (e.g., granites) to somewhat permeable (e.g., porous sandstones). In the first case, molecular diffusion is the only transport process causing the transfer of contaminants between the fractures and the matrix blocks. In the second case, additional solute transfer occurs as a result of a combination of advective and dispersive transport mechanisms, with considerable impact on the macroscopic transport behavior. We start our study by conducting numerical tracer experiments employing a discrete (microscopic) representation of fractures and matrix. Using the discrete simulations as a surrogate for the 'correct' transport behavior, we then evaluate the accuracy of macroscopic (continuum) approaches in comparison with the discrete results. However, instead of using dual-continuum models, which are quite often used to account for this type of heterogeneity, we develop a macroscopic model based on the Continuous Time Random Walk (CTRW) framework, which characterizes the interaction between the fractured and porous rock domains by using a probability distribution function of residence times. A parametric study of how CTRW parameters evolve is presented, describing transport as a function of the hydraulic conductivity ratio between fractured and porous domains.

  9. Didactic Lecture Versus Interactive Workshop for Continuing Pharmacy Education on Reproductive Health: A Randomized Controlled Trial.

    Science.gov (United States)

    Javadi, Mohammadreza; Kargar, Alireza; Gholami, Kheirollah; Hadjibabaie, Molouk; Rashidian, Arash; Torkamandi, Hassan; Sarayani, Amir

    2015-09-01

    Pharmacists are routinely providing reproductive health counseling in community pharmacies, but studies have revealed significant deficits in their competencies. Therefore, continuing pharmacy education (CPE) could be utilized as a valuable modality to upgrade pharmacists' capabilities. A randomized controlled trial was designed to compare the efficacy of CPE meetings (lecture based vs. workshop based) on contraception and male sexual dysfunctions. Sixty pharmacists were recruited for each CPE meeting. Small group training using simulated patients was employed in the workshop-based CPE. Study outcomes were declarative/procedural knowledge, attitudes, and satisfaction of the participants. Data were collected pre-CPE, post-CPE, and 2 months afterward and were analyzed using repeated measure analysis of variance and Mann-Whitney U test. Results showed that lecture-based CPE was more successful in improving pharmacists' knowledge post-CPE (p < .001). In contrast, a significant decrease was observed in the lecture-based group at follow-up (p = .002), whereas the workshop-based group maintained their knowledge over time (p = 1.00). Knowledge scores of both groups were significantly higher at follow-up in comparison with pre-CPE (p < .01). No significant differences were observed regarding satisfaction and attitudes scores between groups. In conclusion, an interactive workshop might not be superior to lecture-based training for improving pharmacists' knowledge and attitudes in a 1-day CPE meeting. © The Author(s) 2013.

  10. Correspondence between sound propagation in discrete and continuous random media with application to forest acoustics.

    Science.gov (United States)

    Ostashev, Vladimir E; Wilson, D Keith; Muhlestein, Michael B; Attenborough, Keith

    2018-02-01

    Although sound propagation in a forest is important in several applications, there are currently no rigorous yet computationally tractable prediction methods. Due to the complexity of sound scattering in a forest, it is natural to formulate the problem stochastically. In this paper, it is demonstrated that the equations for the statistical moments of the sound field propagating in a forest have the same form as those for sound propagation in a turbulent atmosphere if the scattering properties of the two media are expressed in terms of the differential scattering and total cross sections. Using the existing theories for sound propagation in a turbulent atmosphere, this analogy enables the derivation of several results for predicting forest acoustics. In particular, the second-moment parabolic equation is formulated for the spatial correlation function of the sound field propagating above an impedance ground in a forest with micrometeorology. Effective numerical techniques for solving this equation have been developed in atmospheric acoustics. In another example, formulas are obtained that describe the effect of a forest on the interference between the direct and ground-reflected waves. The formulated correspondence between wave propagation in discrete and continuous random media can also be used in other fields of physics.

  11. Application of Poisson random effect models for highway network screening.

    Science.gov (United States)

    Jiang, Ximiao; Abdel-Aty, Mohamed; Alamili, Samer

    2014-02-01

    In recent years, Bayesian random effect models that account for the temporal and spatial correlations of crash data became popular in traffic safety research. This study employs random effect Poisson Log-Normal models for crash risk hotspot identification. Both the temporal and spatial correlations of crash data were considered. Potential for Safety Improvement (PSI) were adopted as a measure of the crash risk. Using the fatal and injury crashes that occurred on urban 4-lane divided arterials from 2006 to 2009 in the Central Florida area, the random effect approaches were compared to the traditional Empirical Bayesian (EB) method and the conventional Bayesian Poisson Log-Normal model. A series of method examination tests were conducted to evaluate the performance of different approaches. These tests include the previously developed site consistence test, method consistence test, total rank difference test, and the modified total score test, as well as the newly proposed total safety performance measure difference test. Results show that the Bayesian Poisson model accounting for both temporal and spatial random effects (PTSRE) outperforms the model that with only temporal random effect, and both are superior to the conventional Poisson Log-Normal model (PLN) and the EB model in the fitting of crash data. Additionally, the method evaluation tests indicate that the PTSRE model is significantly superior to the PLN model and the EB model in consistently identifying hotspots during successive time periods. The results suggest that the PTSRE model is a superior alternative for road site crash risk hotspot identification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The Continuing Growth of Global Cooperation Networks in Research: A Conundrum for National Governments.

    Directory of Open Access Journals (Sweden)

    Caroline S Wagner

    Full Text Available Global collaboration continues to grow as a share of all scientific cooperation, measured as coauthorships of peer-reviewed, published papers. The percent of all scientific papers that are internationally coauthored has more than doubled in 20 years, and they account for all the growth in output among the scientifically advanced countries. Emerging countries, particularly China, have increased their participation in global science, in part by doubling their spending on R&D; they are increasingly likely to appear as partners on internationally coauthored scientific papers. Given the growth of connections at the international level, it is helpful to examine the phenomenon as a communications network and to consider the network as a new organization on the world stage that adds to and complements national systems. When examined as interconnections across the globe over two decades, a global network has grown denser but not more clustered, meaning there are many more connections but they are not grouping into exclusive 'cliques'. This suggests that power relationships are not reproducing those of the political system. The network has features an open system, attracting productive scientists to participate in international projects. National governments could gain efficiencies and influence by developing policies and strategies designed to maximize network benefits-a model different from those designed for national systems.

  13. Evaluating the impact of connectivity, continuity, and topography of sidewalk network on pedestrian safety.

    Science.gov (United States)

    Osama, Ahmed; Sayed, Tarek

    2017-10-01

    With the increasing demand for sustainability, walking is being encouraged as one of the main active modes of transportation. However, pedestrians are vulnerable to severe injuries when involved in crashes which can discourage road users from walking. Therefore, studying factors that affect the safety of pedestrians is important. This paper investigates the relationship between pedestrian-motorist crashes and various sidewalk network indicators in the city of Vancouver. The goal is to assess the impact of network connectivity, directness, and topography on pedestrian safety using macro-level collision prediction models. The models were developed using generalized linear regression and full Bayesian techniques. Both walking trips and vehicle kilometers travelled were used as the main traffic exposure variables in the models. The safety models supported the safety in numbers hypothesis showing a non-linear positive association between pedestrian-motorist crashes and the increase in walking trips and vehicle traffic. The model results also suggested that higher continuity, linearity, coverage, and slope of sidewalk networks were associated with lower crash occurrence. However, network connectivity was associated with higher crash occurrence. The spatial effects were accounted for in the full Bayes models and were found significant. The models provide insights about the factors that influence pedestrian safety and the spatial variability of pedestrian crashes within a city, which can be useful for the planning of pedestrian networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Subgeometric Ergodicity Analysis of Continuous-Time Markov Chains under Random-Time State-Dependent Lyapunov Drift Conditions

    Directory of Open Access Journals (Sweden)

    Mokaedi V. Lekgari

    2014-01-01

    Full Text Available We investigate random-time state-dependent Foster-Lyapunov analysis on subgeometric rate ergodicity of continuous-time Markov chains (CTMCs. We are mainly concerned with making use of the available results on deterministic state-dependent drift conditions for CTMCs and on random-time state-dependent drift conditions for discrete-time Markov chains and transferring them to CTMCs.

  15. Evolution of Cooperation in Continuous Prisoner's Dilemma Games on Barabasi-Albert Networks with Degree-Dependent Guilt Mechanism

    International Nuclear Information System (INIS)

    Wang Xianjia; Quan Ji; Liu Weibing

    2012-01-01

    This paper studies the continuous prisoner's dilemma games (CPDG) on Barabasi-Albert (BA) networks. In the model, each agent on a vertex of the networks makes an investment and interacts with all of his neighboring agents. Making an investment is costly, but which benefits its neighboring agents, where benefit and cost depend on the level of investment made. The payoff of each agent is given by the sum of payoffs it receives in its interactions with all its neighbors. Not only payoff, individual's guilty emotion in the games has also been considered. The negative guilty emotion produced in comparing with its neighbors can reduce the utility of individuals directly. We assume that the reduction amount depends on the individual's degree and a baseline level parameter. The group's cooperative level is characterized by the average investment of the population. Each player makes his investment in the next step based on a convex combination of the investment of his best neighbors in the last step, his best history strategies in the latest steps which number is controlled by a memory length parameter, and a uniformly distributed random number. Simulation results show that this degree-dependent guilt mechanism can promote the evolution of cooperation dramatically comparing with degree-independent guilt or no guilt cases. Imitation, memory, uncertainty coefficients and network structure also play determinant roles in the cooperation level of the population. All our results may shed some new light on studying the evolution of cooperation based on network reciprocity mechanisms. (interdisciplinary physics and related areas of science and technology)

  16. Randomizing world trade. II. A weighted network analysis

    Science.gov (United States)

    Squartini, Tiziano; Fagiolo, Giorgio; Garlaschelli, Diego

    2011-10-01

    Based on the misleading expectation that weighted network properties always offer a more complete description than purely topological ones, current economic models of the International Trade Network (ITN) generally aim at explaining local weighted properties, not local binary ones. Here we complement our analysis of the binary projections of the ITN by considering its weighted representations. We show that, unlike the binary case, all possible weighted representations of the ITN (directed and undirected, aggregated and disaggregated) cannot be traced back to local country-specific properties, which are therefore of limited informativeness. Our two papers show that traditional macroeconomic approaches systematically fail to capture the key properties of the ITN. In the binary case, they do not focus on the degree sequence and hence cannot characterize or replicate higher-order properties. In the weighted case, they generally focus on the strength sequence, but the knowledge of the latter is not enough in order to understand or reproduce indirect effects.

  17. Random access to mobile networks with advanced error correction

    Science.gov (United States)

    Dippold, Michael

    1990-01-01

    A random access scheme for unreliable data channels is investigated in conjunction with an adaptive Hybrid-II Automatic Repeat Request (ARQ) scheme using Rate Compatible Punctured Codes (RCPC) Forward Error Correction (FEC). A simple scheme with fixed frame length and equal slot sizes is chosen and reservation is implicit by the first packet transmitted randomly in a free slot, similar to Reservation Aloha. This allows the further transmission of redundancy if the last decoding attempt failed. Results show that a high channel utilization and superior throughput can be achieved with this scheme that shows a quite low implementation complexity. For the example of an interleaved Rayleigh channel and soft decision utilization and mean delay are calculated. A utilization of 40 percent may be achieved for a frame with the number of slots being equal to half the station number under high traffic load. The effects of feedback channel errors and some countermeasures are discussed.

  18. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems.

    Directory of Open Access Journals (Sweden)

    Martin Rosvall

    Full Text Available To comprehend the hierarchical organization of large integrated systems, we introduce the hierarchical map equation, which reveals multilevel structures in networks. In this information-theoretic approach, we exploit the duality between compression and pattern detection; by compressing a description of a random walker as a proxy for real flow on a network, we find regularities in the network that induce this system-wide flow. Finding the shortest multilevel description of the random walker therefore gives us the best hierarchical clustering of the network--the optimal number of levels and modular partition at each level--with respect to the dynamics on the network. With a novel search algorithm, we extract and illustrate the rich multilevel organization of several large social and biological networks. For example, from the global air traffic network we uncover countries and continents, and from the pattern of scientific communication we reveal more than 100 scientific fields organized in four major disciplines: life sciences, physical sciences, ecology and earth sciences, and social sciences. In general, we find shallow hierarchical structures in globally interconnected systems, such as neural networks, and rich multilevel organizations in systems with highly separated regions, such as road networks.

  19. Fully-distributed randomized cooperation in wireless sensor networks

    KAUST Repository

    Bader, Ahmed

    2015-01-07

    When marrying randomized distributed space-time coding (RDSTC) to geographical routing, new performance horizons can be created. In order to reach those horizons however, routing protocols must evolve to operate in a fully distributed fashion. In this letter, we expose a technique to construct a fully distributed geographical routing scheme in conjunction with RDSTC. We then demonstrate the performance gains of this novel scheme by comparing it to one of the prominent classical schemes.

  20. Fully-distributed randomized cooperation in wireless sensor networks

    KAUST Repository

    Bader, Ahmed; Abed-Meraim, Karim; Alouini, Mohamed-Slim

    2015-01-01

    When marrying randomized distributed space-time coding (RDSTC) to geographical routing, new performance horizons can be created. In order to reach those horizons however, routing protocols must evolve to operate in a fully distributed fashion. In this letter, we expose a technique to construct a fully distributed geographical routing scheme in conjunction with RDSTC. We then demonstrate the performance gains of this novel scheme by comparing it to one of the prominent classical schemes.

  1. A sensor network to iPhone interface separating continuous and sporadic processes in mobile telemedicine.

    Science.gov (United States)

    D'Angelo, Lorenzo T; Schneider, Michael; Neugebauer, Paul; Lueth, Tim C

    2011-01-01

    In this contribution, a new concept for interfacing sensor network nodes (motes) and smartphones is presented for the first time. In the last years, a variety of telemedicine applications on smartphones for data reception, display and transmission have been developed. However, it is not always practical or possible to have a smartphone application running continuously to accomplish these tasks. The presented system allows receiving and storing data continuously using a mote and visualizing or sending it on the go using the smartphone as user interface only when desired. Thus, the processes of data reception and storage run on a safe system consuming less energy and the smartphone's potential along with its battery are not demanded continuously. Both, system concept and realization with an Apple iPhone are presented.

  2. Continuous-time random-walk model for anomalous diffusion in expanding media

    Science.gov (United States)

    Le Vot, F.; Abad, E.; Yuste, S. B.

    2017-09-01

    Expanding media are typical in many different fields, e.g., in biology and cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties such as the set of positional moments and the Green's function. Here, we focus on the characterization of such effects when the diffusion process is described by the continuous-time random-walk (CTRW) model. As is well known, when the medium is static this model yields anomalous diffusion for a proper choice of the probability density function (pdf) for the jump length and the waiting time, but the behavior may change drastically if a medium expansion is superimposed on the intrinsic random motion of the diffusing particle. For the case where the jump length and the waiting time pdfs are long-tailed, we derive a general bifractional diffusion equation which reduces to a normal diffusion equation in the appropriate limit. We then study some particular cases of interest, including Lévy flights and subdiffusive CTRWs. In the former case, we find an analytical exact solution for the Green's function (propagator). When the expansion is sufficiently fast, the contribution of the diffusive transport becomes irrelevant at long times and the propagator tends to a stationary profile in the comoving reference frame. In contrast, for a contracting medium a competition between the spreading effect of diffusion and the concentrating effect of contraction arises. In the specific case of a subdiffusive CTRW in an exponentially contracting medium, the latter effect prevails for sufficiently long times, and all the particles are eventually localized at a single point in physical space. This "big crunch" effect, totally absent in the case of normal diffusion, stems from inefficient particle spreading due to subdiffusion. We also derive a hierarchy of differential equations for the moments of the transport process described by the subdiffusive CTRW model in an expanding medium

  3. Effects of a short course of eszopiclone on continuous positive airway pressure adherence: a randomized trial.

    Science.gov (United States)

    Lettieri, Christopher J; Shah, Anita A; Holley, Aaron B; Kelly, William F; Chang, Audrey S; Roop, Stuart A

    2009-11-17

    Adherence to short-term continuous positive airway pressure (CPAP) may predict long-term use. Unfortunately, initial CPAP intolerance may lead to poor adherence or abandonment of therapy. To determine whether a short course of eszopiclone at the onset of therapy improves long-term CPAP adherence more than placebo in adults with obstructive sleep apnea. Parallel randomized, placebo-controlled trial from March 2007 to December 2008. Randomization, maintained and concealed centrally by pharmacy personnel, was computer-generated using fixed blocks of 10. Referring physicians, investigators, and patients were blinded to the treatment assignment until after the final data were collected. (ClinicalTrials.gov registration number: NCT00612157). Academic sleep disorder center. 160 adults (mean age, 45.7 years [SD, 7.3]; mean apnea-hypopnea index, 36.9 events/h [SD, 23]) with newly diagnosed obstructive sleep apnea initiating CPAP. Eszopiclone, 3 mg (n = 76), or matching placebo (n = 78) for the first 14 nights of CPAP. Use of CPAP was measured weekly for 24 weeks. Adherence to CPAP (primary outcome) and the rate of CPAP discontinuation and improvements in symptoms (secondary outcomes) were compared. Follow-up at 1, 3, and 6 months was completed by 150, 136, and 120 patients, respectively. Patients in the eszopiclone group used CPAP for 20.8% more nights (95% CI, 7.2% to 34.4%; P = 0.003), 1.3 more hours per night for all nights (CI, 0.4 to 2.2 hours; P = 0.005), and 1.1 more hours per night of CPAP use (CI, 0.2 to 2.1 hours; P = 0.019). The hazard ratio for discontinuation of CPAP was 1.90 (CI, 1.1 to 3.4; P = 0.033) times higher in the placebo group. Side effects were reported in 7.1% of patients and did not differ between groups. Patients had severe obstructive sleep apnea treated at a specialized sleep center with frequent follow-up; results may not be generalizable to different settings. Patients' tolerance to CPAP and their reasons for discontinuation were not assessed

  4. Continuous-time random-walk model for anomalous diffusion in expanding media.

    Science.gov (United States)

    Le Vot, F; Abad, E; Yuste, S B

    2017-09-01

    Expanding media are typical in many different fields, e.g., in biology and cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties such as the set of positional moments and the Green's function. Here, we focus on the characterization of such effects when the diffusion process is described by the continuous-time random-walk (CTRW) model. As is well known, when the medium is static this model yields anomalous diffusion for a proper choice of the probability density function (pdf) for the jump length and the waiting time, but the behavior may change drastically if a medium expansion is superimposed on the intrinsic random motion of the diffusing particle. For the case where the jump length and the waiting time pdfs are long-tailed, we derive a general bifractional diffusion equation which reduces to a normal diffusion equation in the appropriate limit. We then study some particular cases of interest, including Lévy flights and subdiffusive CTRWs. In the former case, we find an analytical exact solution for the Green's function (propagator). When the expansion is sufficiently fast, the contribution of the diffusive transport becomes irrelevant at long times and the propagator tends to a stationary profile in the comoving reference frame. In contrast, for a contracting medium a competition between the spreading effect of diffusion and the concentrating effect of contraction arises. In the specific case of a subdiffusive CTRW in an exponentially contracting medium, the latter effect prevails for sufficiently long times, and all the particles are eventually localized at a single point in physical space. This "big crunch" effect, totally absent in the case of normal diffusion, stems from inefficient particle spreading due to subdiffusion. We also derive a hierarchy of differential equations for the moments of the transport process described by the subdiffusive CTRW model in an expanding medium

  5. 3D position estimation using an artificial neural network for a continuous scintillator PET detector

    International Nuclear Information System (INIS)

    Wang, Y; Zhu, W; Cheng, X; Li, D

    2013-01-01

    Continuous crystal based PET detectors have features of simple design, low cost, good energy resolution and high detection efficiency. Through single-end readout of scintillation light, direct three-dimensional (3D) position estimation could be another advantage that the continuous crystal detector would have. In this paper, we propose to use artificial neural networks to simultaneously estimate the plane coordinate and DOI coordinate of incident γ photons with detected scintillation light. Using our experimental setup with an ‘8 + 8’ simplified signal readout scheme, the training data of perpendicular irradiation on the front surface and one side surface are obtained, and the plane (x, y) networks and DOI networks are trained and evaluated. The test results show that the artificial neural network for DOI estimation is as effective as for plane estimation. The performance of both estimators is presented by resolution and bias. Without bias correction, the resolution of the plane estimator is on average better than 2 mm and that of the DOI estimator is about 2 mm over the whole area of the detector. With bias correction, the resolution at the edge area for plane estimation or at the end of the block away from the readout PMT for DOI estimation becomes worse, as we expect. The comprehensive performance of the 3D positioning by a neural network is accessed by the experimental test data of oblique irradiations. To show the combined effect of the 3D positioning over the whole area of the detector, the 2D flood images of oblique irradiation are presented with and without bias correction. (paper)

  6. Network meta-analysis incorporating randomized controlled trials and non-randomized comparative cohort studies for assessing the safety and effectiveness of medical treatments: challenges and opportunities

    OpenAIRE

    Cameron, Chris; Fireman, Bruce; Hutton, Brian; Clifford, Tammy; Coyle, Doug; Wells, George; Dormuth, Colin R.; Platt, Robert; Toh, Sengwee

    2015-01-01

    Network meta-analysis is increasingly used to allow comparison of multiple treatment alternatives simultaneously, some of which may not have been compared directly in primary research studies. The majority of network meta-analyses published to date have incorporated data from randomized controlled trials (RCTs) only; however, inclusion of non-randomized studies may sometimes be considered. Non-randomized studies can complement RCTs or address some of their limitations, such as short follow-up...

  7. Application of the load flow and random flow models for the analysis of power transmission networks

    International Nuclear Information System (INIS)

    Zio, Enrico; Piccinelli, Roberta; Delfanti, Maurizio; Olivieri, Valeria; Pozzi, Mauro

    2012-01-01

    In this paper, the classical load flow model and the random flow model are considered for analyzing the performance of power transmission networks. The analysis concerns both the system performance and the importance of the different system elements; this latter is computed by power flow and random walk betweenness centrality measures. A network system from the literature is analyzed, representing a simple electrical power transmission network. The results obtained highlight the differences between the LF “global approach” to flow dispatch and the RF local approach of randomized node-to-node load transfer. Furthermore, computationally the LF model is less consuming than the RF model but problems of convergence may arise in the LF calculation.

  8. The 'emergent scaling' phenomenon and the dielectric properties of random resistor-capacitor networks

    CERN Document Server

    Bouamrane, R

    2003-01-01

    An efficient algorithm, based on the Frank-Lobb reduction scheme, for calculating the equivalent dielectric properties of very large random resistor-capacitor (R-C) networks has been developed. It has been used to investigate the network size and composition dependence of dielectric properties and their statistical variability. The dielectric properties of 256 samples of random networks containing: 512, 2048, 8192 and 32 768 components distributed randomly in the ratios 60% R-40% C, 50% R-50% C and 40% R-60% C have been computed. It has been found that these properties exhibit the anomalous power law dependences on frequency known as the 'universal dielectric response' (UDR). Attention is drawn to the contrast between frequency ranges across which percolation determines dielectric response, where considerable variability is found amongst the samples, and those across which power laws define response where very little variability is found between samples. It is concluded that the power law UDRs are emergent pr...

  9. Emergence of multilevel selection in the prisoner's dilemma game on coevolving random networks

    International Nuclear Information System (INIS)

    Szolnoki, Attila; Perc, Matjaz

    2009-01-01

    We study the evolution of cooperation in the prisoner's dilemma game, whereby a coevolutionary rule is introduced that molds the random topology of the interaction network in two ways. First, existing links are deleted whenever a player adopts a new strategy or its degree exceeds a threshold value; second, new links are added randomly after a given number of game iterations. These coevolutionary processes correspond to the generic formation of new links and deletion of existing links that, especially in human societies, appear frequently as a consequence of ongoing socialization, change of lifestyle or death. Due to the counteraction of deletions and additions of links the initial heterogeneity of the interaction network is qualitatively preserved, and thus cannot be held responsible for the observed promotion of cooperation. Indeed, the coevolutionary rule evokes the spontaneous emergence of a powerful multilevel selection mechanism, which despite the sustained random topology of the evolving network, maintains cooperation across the whole span of defection temptation values.

  10. Continuous positive airway pressure (CPAP after lung resection: a randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Ligia dos Santos Roceto

    Full Text Available CONTEXT AND OBJECTIVE: Noninvasive mechanical ventilation during the postoperative period (PO following lung resection can restore residual functional capacity, improve oxygenation and spare the inspiratory muscles. The objective of this study was to assess the efficacy of continuous positive airway pressure (CPAP associated with physiotherapy, compared with physiotherapy alone after lung resection. DESIGN AND SETTING: Open randomized clinical trial conducted in the clinical hospital of Universidade Estadual de Campinas. METHOD: Sessions were held in the immediate postoperative period (POi and on the first and second postoperative days (PO1 and PO2, and the patients were reassessed on the discharge day. CPAP was applied for two hours and the pressure adjustment was set between 7 and 8.5 cmH2O. The oxygenation index (OI, Borg scale, pain scale and presence of thoracic drains and air losses were evaluated. RESULTS : There was a significant increase in the OI in the CPAP group in the POi compared to the Chest Physiotherapy (CP group, P = 0.024. In the CP group the OI was significantly lower on PO1 (P = 0,042, than CPAP group. The air losses were significantly greater in the CPAP group in the POi and on PO1 (P = 0.001, P = 0.028, but there was no significant difference between the groups on PO2 and PO3. There was a statistically significant difference between the groups regarding the Borg scale in the POi (P < 0.001, but there were no statistically significant differences between the groups regarding the pain score. CONCLUSION: CPAP after lung resection is safe and improves oxygenation, without increasing the air losses through the drains. CLINICAL TRIAL REGISTRATION: NCT01285648

  11. A randomized clinical trial of continuous aspiration of subglottic secretions in cardiac surgery patients.

    Science.gov (United States)

    Kollef, M H; Skubas, N J; Sundt, T M

    1999-11-01

    To determine whether the application of continuous aspiration of subglottic secretions (CASS) is associated with a decreased incidence of ventilator-associated pneumonia (VAP). Prospective clinical trial. Cardiothoracic ICU (CTICU) of Barnes-Jewish Hospital, St. Louis, a university-affiliated teaching hospital. Three hundred forty-three patients undergoing cardiac surgery and requiring mechanical ventilation in the CTICU. Patients were assigned to receive either CASS, using a specially designed endotracheal tube (Hi-Lo Evac; Mallinckrodt Inc; Athlone, Ireland), or routine postoperative medical care without CASS. One hundred sixty patients were assigned to receive CASS, and 183 were assigned to receive routine postoperative medical care without CASS. The two groups were similar at the time of randomization with regard to demographic characteristics, surgical procedures performed, and severity of illness. Risk factors for the development of VAP were also similar during the study period for both treatment groups. VAP was seen in 8 patients (5.0%) receiving CASS and in 15 patients (8. 2%) receiving routine postoperative medical care without CASS (relative risk, 0.61%; 95% confidence interval, 0.27 to 1.40; p = 0. 238). Episodes of VAP occurred statistically later among patients receiving CASS ([mean +/- SD] 5.6 +/- 2.3 days) than among patients who did not receive CASS (2.9 +/- 1.2 days); (p = 0.006). No statistically significant differences for hospital mortality, overall duration of mechanical ventilation, lengths of stay in the hospital or CTICU, or acquired organ system derangements were found between the two treatment groups. No complications related to CASS were observed in the intervention group. Our findings suggest that CASS can be safely administered to patients undergoing cardiac surgery. The occurrence of VAP can be significantly delayed among patients undergoing cardiac surgery using this simple-to-apply technique.

  12. Shortest loops are pacemakers in random networks of electrically coupled axons

    Directory of Open Access Journals (Sweden)

    Nikita eVladimirov

    2012-04-01

    Full Text Available High-frequency oscillations (HFOs are an important part of brain activity in health and disease. However, their origins remain obscure and controversial. One possible mechanism depends on the presence of sparsely distributed gap junctions that electrically couple the axons of principal cells. A plexus of electrically coupled axons is modeled as a random network with bidirectional connections between its nodes. Under certain conditions the network can demonstrate one of two types of oscillatory activity. Type I oscillations (100-200 Hz are predicted to be caused by spontaneously spiking axons in a network with strong (high-conductance gap junctions. Type II oscillations (200-300 Hz require no spontaneous spiking and relatively weak (low-conductance gap junctions, across which spike propagation failures occur. The type II oscillations are reentrant and self-sustained. Here we examine what determines the frequency of type II oscillations. Using simulations we show that the distribution of loop lengths is the key factor for determining frequency in type II network oscillations. We first analyze spike failure between two electrically coupled cells using a model of anatomically reconstructed CA1 pyramidal neuron. Then network oscillations are studied by a cellular automaton model with random network connectivity, in which we control loop statistics. We show that oscillation periods can be predicted from the network's loop statistics. The shortest loop, around which a spike can travel, is the most likely pacemaker candidate.The principle of one loop as a pacemaker is remarkable, because random networks contain a large number of loops juxtaposed and superimposed, and their number rapidly grows with network size. This principle allows us to predict the frequency of oscillations from network connectivity and visa versa. We finally propose that type I oscillations may correspond to ripples, while type II oscillations correspond to so-called fast ripples.

  13. Formation of Robust Multi-Agent Networks through Self-Organizing Random Regular Graphs

    KAUST Repository

    Yasin Yazicioǧlu, A.; Egerstedt, Magnus; Shamma, Jeff S.

    2015-01-01

    Multi-Agent networks are often modeled as interaction graphs, where the nodes represent the agents and the edges denote some direct interactions. The robustness of a multi-Agent network to perturbations such as failures, noise, or malicious attacks largely depends on the corresponding graph. In many applications, networks are desired to have well-connected interaction graphs with relatively small number of links. One family of such graphs is the random regular graphs. In this paper, we present a decentralized scheme for transforming any connected interaction graph with a possibly non-integer average degree of k into a connected random m-regular graph for some m ϵ [k+k ] 2. Accordingly, the agents improve the robustness of the network while maintaining a similar number of links as the initial configuration by locally adding or removing some edges. © 2015 IEEE.

  14. Formation of Robust Multi-Agent Networks through Self-Organizing Random Regular Graphs

    KAUST Repository

    Yasin Yazicioǧlu, A.

    2015-11-25

    Multi-Agent networks are often modeled as interaction graphs, where the nodes represent the agents and the edges denote some direct interactions. The robustness of a multi-Agent network to perturbations such as failures, noise, or malicious attacks largely depends on the corresponding graph. In many applications, networks are desired to have well-connected interaction graphs with relatively small number of links. One family of such graphs is the random regular graphs. In this paper, we present a decentralized scheme for transforming any connected interaction graph with a possibly non-integer average degree of k into a connected random m-regular graph for some m ϵ [k+k ] 2. Accordingly, the agents improve the robustness of the network while maintaining a similar number of links as the initial configuration by locally adding or removing some edges. © 2015 IEEE.

  15. Decentralized formation of random regular graphs for robust multi-agent networks

    KAUST Repository

    Yazicioglu, A. Yasin

    2014-12-15

    Multi-agent networks are often modeled via interaction graphs, where the nodes represent the agents and the edges denote direct interactions between the corresponding agents. Interaction graphs have significant impact on the robustness of networked systems. One family of robust graphs is the random regular graphs. In this paper, we present a locally applicable reconfiguration scheme to build random regular graphs through self-organization. For any connected initial graph, the proposed scheme maintains connectivity and the average degree while minimizing the degree differences and randomizing the links. As such, if the average degree of the initial graph is an integer, then connected regular graphs are realized uniformly at random as time goes to infinity.

  16. E-I balance emerges naturally from continuous Hebbian learning in autonomous neural networks.

    Science.gov (United States)

    Trapp, Philip; Echeveste, Rodrigo; Gros, Claudius

    2018-06-12

    Spontaneous brain activity is characterized in part by a balanced asynchronous chaotic state. Cortical recordings show that excitatory (E) and inhibitory (I) drivings in the E-I balanced state are substantially larger than the overall input. We show that such a state arises naturally in fully adapting networks which are deterministic, autonomously active and not subject to stochastic external or internal drivings. Temporary imbalances between excitatory and inhibitory inputs lead to large but short-lived activity bursts that stabilize irregular dynamics. We simulate autonomous networks of rate-encoding neurons for which all synaptic weights are plastic and subject to a Hebbian plasticity rule, the flux rule, that can be derived from the stationarity principle of statistical learning. Moreover, the average firing rate is regulated individually via a standard homeostatic adaption of the bias of each neuron's input-output non-linear function. Additionally, networks with and without short-term plasticity are considered. E-I balance may arise only when the mean excitatory and inhibitory weights are themselves balanced, modulo the overall activity level. We show that synaptic weight balance, which has been considered hitherto as given, naturally arises in autonomous neural networks when the here considered self-limiting Hebbian synaptic plasticity rule is continuously active.

  17. On the estimation variance for the specific Euler-Poincaré characteristic of random networks.

    Science.gov (United States)

    Tscheschel, A; Stoyan, D

    2003-07-01

    The specific Euler number is an important topological characteristic in many applications. It is considered here for the case of random networks, which may appear in microscopy either as primary objects of investigation or as secondary objects describing in an approximate way other structures such as, for example, porous media. For random networks there is a simple and natural estimator of the specific Euler number. For its estimation variance, a simple Poisson approximation is given. It is based on the general exact formula for the estimation variance. In two examples of quite different nature and topology application of the formulas is demonstrated.

  18. Probabilistic generation of random networks taking into account information on motifs occurrence.

    Science.gov (United States)

    Bois, Frederic Y; Gayraud, Ghislaine

    2015-01-01

    Because of the huge number of graphs possible even with a small number of nodes, inference on network structure is known to be a challenging problem. Generating large random directed graphs with prescribed probabilities of occurrences of some meaningful patterns (motifs) is also difficult. We show how to generate such random graphs according to a formal probabilistic representation, using fast Markov chain Monte Carlo methods to sample them. As an illustration, we generate realistic graphs with several hundred nodes mimicking a gene transcription interaction network in Escherichia coli.

  19. Mean First Passage Time of Preferential Random Walks on Complex Networks with Applications

    Directory of Open Access Journals (Sweden)

    Zhongtuan Zheng

    2017-01-01

    Full Text Available This paper investigates, both theoretically and numerically, preferential random walks (PRW on weighted complex networks. By using two different analytical methods, two exact expressions are derived for the mean first passage time (MFPT between two nodes. On one hand, the MFPT is got explicitly in terms of the eigenvalues and eigenvectors of a matrix associated with the transition matrix of PRW. On the other hand, the center-product-degree (CPD is introduced as one measure of node strength and it plays a main role in determining the scaling of the MFPT for the PRW. Comparative studies are also performed on PRW and simple random walks (SRW. Numerical simulations of random walks on paradigmatic network models confirm analytical predictions and deepen discussions in different aspects. The work may provide a comprehensive approach for exploring random walks on complex networks, especially biased random walks, which may also help to better understand and tackle some practical problems such as search and routing on networks.

  20. A Comprehensive Sensitivity Analysis of a Data Center Network with Server Virtualization for Business Continuity

    Directory of Open Access Journals (Sweden)

    Tuan Anh Nguyen

    2015-01-01

    Full Text Available Sensitivity assessment of availability for data center networks (DCNs is of paramount importance in design and management of cloud computing based businesses. Previous work has presented a performance modeling and analysis of a fat-tree based DCN using queuing theory. In this paper, we present a comprehensive availability modeling and sensitivity analysis of a DCell-based DCN with server virtualization for business continuity using stochastic reward nets (SRN. We use SRN in modeling to capture complex behaviors and dependencies of the system in detail. The models take into account (i two DCell configurations, respectively, composed of two and three physical hosts in a DCell0 unit, (ii failure modes and corresponding recovery behaviors of hosts, switches, and VMs, and VM live migration mechanism within and between DCell0s, and (iii dependencies between subsystems (e.g., between a host and VMs and between switches and VMs in the same DCell0. The constructed SRN models are analyzed in detail with regard to various metrics of interest to investigate system’s characteristics. A comprehensive sensitivity analysis of system availability is carried out in consideration of the major impacting parameters in order to observe the system’s complicated behaviors and find the bottlenecks of system availability. The analysis results show the availability improvement, capability of fault tolerance, and business continuity of the DCNs complying with DCell network topology. This study provides a basis of designing and management of DCNs for business continuity.

  1. Efficacy of Continuing Education in Improving Pharmacists' Competencies for Providing Weight Management Service: Three-Arm Randomized Controlled Trial

    Science.gov (United States)

    Sarayani, Amir; Rashidian, Arash; Gholami, Kheirollah; Torkamandi, Hassan; Javadi, Mohammadreza

    2012-01-01

    Introduction: Weight management is a new public health role for community pharmacists in many countries. Lack of expertise is one of the key barriers to counseling obese patients. We evaluated the comparative efficacy of three alternative continuing education (CE) meetings on weight management. Methods: We designed a randomized controlled trial…

  2. Absolutely Continuous Spectrum for Random Schrödinger Operators on the Fibonacci and Similar Tree-strips

    Energy Technology Data Exchange (ETDEWEB)

    Sadel, Christian, E-mail: Christian.Sadel@ist.ac.at [University of British Columbia, Mathematics Department (Canada)

    2014-12-15

    We consider cross products of finite graphs with a class of trees that have arbitrarily but finitely long line segments, such as the Fibonacci tree. Such cross products are called tree-strips. We prove that for small disorder random Schrödinger operators on such tree-strips have purely absolutely continuous spectrum in a certain set.

  3. Random matrix theory for analyzing the brain functional network in attention deficit hyperactivity disorder

    Science.gov (United States)

    Wang, Rong; Wang, Li; Yang, Yong; Li, Jiajia; Wu, Ying; Lin, Pan

    2016-11-01

    Attention deficit hyperactivity disorder (ADHD) is the most common childhood neuropsychiatric disorder and affects approximately 6 -7 % of children worldwide. Here, we investigate the statistical properties of undirected and directed brain functional networks in ADHD patients based on random matrix theory (RMT), in which the undirected functional connectivity is constructed based on correlation coefficient and the directed functional connectivity is measured based on cross-correlation coefficient and mutual information. We first analyze the functional connectivity and the eigenvalues of the brain functional network. We find that ADHD patients have increased undirected functional connectivity, reflecting a higher degree of linear dependence between regions, and increased directed functional connectivity, indicating stronger causality and more transmission of information among brain regions. More importantly, we explore the randomness of the undirected and directed functional networks using RMT. We find that for ADHD patients, the undirected functional network is more orderly than that for normal subjects, which indicates an abnormal increase in undirected functional connectivity. In addition, we find that the directed functional networks are more random, which reveals greater disorder in causality and more chaotic information flow among brain regions in ADHD patients. Our results not only further confirm the efficacy of RMT in characterizing the intrinsic properties of brain functional networks but also provide insights into the possibilities RMT offers for improving clinical diagnoses and treatment evaluations for ADHD patients.

  4. A Markov model for the temporal dynamics of balanced random networks of finite size

    Science.gov (United States)

    Lagzi, Fereshteh; Rotter, Stefan

    2014-01-01

    The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between

  5. Bi-Criteria System Optimum Traffic Assignment in Networks With Continuous Value of Time

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2013-04-01

    Full Text Available For an elastic demand transportation network with continuously distributed value of time, the system disutility can be measured either in time units or in cost units. The user equilibrium model and the system optimization model are each formulated in two different criteria. The conditions required for making the system optimum link flow pattern equivalent to the user equilibrium link flow pattern are derived. Furthermore, a bi-objective model has been developed which minimizes simultaneously the system travel time and the system travel cost. The existence of a pricing scheme with anonymous link tolls which can decentralize a Pareto system optimum into the user equilibrium has been investigated.

  6. Prospective randomized trial to assess effects of continuing hormone therapy on cerebral function in postmenopausal women at risk for dementia.

    Directory of Open Access Journals (Sweden)

    Natalie L Rasgon

    Full Text Available The objective of this study was to examine the effects of estrogen-based hormone therapy (HT on regional cerebral metabolism in postmenopausal women (mean age = 58, SD = 5 at risk for development of dementia. The prospective clinical trial design included pre- and post-intervention neuroimaging of women randomized to continue (HT+ or discontinue (HT- therapy following an average of 10 years of use. The primary outcome measure was change in brain metabolism during the subsequent two years, as assessed with fluorodeoxyglucose-18 positron emission tomography (FDG-PET. Longitudinal FDG-PET data were available for 45 study completers. Results showed that women randomized to continue HT experienced relative preservation of frontal and parietal cortical metabolism, compared with women randomized to discontinue HT. Women who discontinued 17-β estradiol (17βE-based HT, as well as women who continued conjugated equine estrogen (CEE-based HT, exhibited significant decline in metabolism of the precuneus/posterior cingulate cortical (PCC area. Significant decline in PCC metabolism was additionally seen in women taking concurrent progestins (with either 17βE or CEE. Together, these findings suggest that among postmenopausal subjects at risk for developing dementia, regional cerebral cortical metabolism is relatively preserved for at least two years in women randomized to continue HT, compared with women randomized to discontinue HT. In addition, continuing unopposed 17βE therapy is associated specifically with preservation of metabolism in PCC, known to undergo the most significant decline in the earliest stages of Alzheimer's disease.ClinicalTrials.gov NCT00097058.

  7. Asymmetric continuous-time neural networks without local traps for solving constraint satisfaction problems.

    Directory of Open Access Journals (Sweden)

    Botond Molnár

    Full Text Available There has been a long history of using neural networks for combinatorial optimization and constraint satisfaction problems. Symmetric Hopfield networks and similar approaches use steepest descent dynamics, and they always converge to the closest local minimum of the energy landscape. For finding global minima additional parameter-sensitive techniques are used, such as classical simulated annealing or the so-called chaotic simulated annealing, which induces chaotic dynamics by addition of extra terms to the energy landscape. Here we show that asymmetric continuous-time neural networks can solve constraint satisfaction problems without getting trapped in non-solution attractors. We concentrate on a model solving Boolean satisfiability (k-SAT, which is a quintessential NP-complete problem. There is a one-to-one correspondence between the stable fixed points of the neural network and the k-SAT solutions and we present numerical evidence that limit cycles may also be avoided by appropriately choosing the parameters of the model. This optimal parameter region is fairly independent of the size and hardness of instances, this way parameters can be chosen independently of the properties of problems and no tuning is required during the dynamical process. The model is similar to cellular neural networks already used in CNN computers. On an analog device solving a SAT problem would take a single operation: the connection weights are determined by the k-SAT instance and starting from any initial condition the system searches until finding a solution. In this new approach transient chaotic behavior appears as a natural consequence of optimization hardness and not as an externally induced effect.

  8. Continuity of care in the Health Care Network: negotiation between users and professionals

    Directory of Open Access Journals (Sweden)

    Maria Denise Schimith

    2014-12-01

    Full Text Available This study aimed to identify the negotiation and shared decision-making between professionals and users in a Family Health Unit and its influence on the continuity of care in the Health Care Network. Qualitative research created from a case study. One conducted 19 interviews, observation and document research. It was developed in a city in the countryside of Rio Grande do Sul, Brazil, in 2012. The results show that decisions used to happen unilaterally and that users and professionals looked for alternative ways to the continuity of care. It was not possible to identify the negotiation between professional and users and it was noticed that the user was alone looking for access. It is understood that primary care in the city researched needs to take responsibility for users and their access.

  9. Continuous subcutaneous hydrocortisone infusion therapy in Addison's disease: a randomized, placebo-controlled clinical trial.

    Science.gov (United States)

    Gagliardi, Lucia; Nenke, Marni A; Thynne, Tilenka R J; von der Borch, Jenny; Rankin, Wayne A; Henley, David E; Sorbello, Jane; Inder, Warrick J; Torpy, David J

    2014-11-01

    Patients with Addison's disease (AD) report impaired subjective health status (SHS). Since cortisol exhibits a robust circadian cycle that entrains other biological clocks, impaired SHS may be due to the noncircadian cortisol profile achieved with conventional glucocorticoid replacement. Continuous subcutaneous hydrocortisone infusion (CSHI) reproduces a circadian cortisol profile, but its effects on SHS have not been objectively evaluated. The aim of this study was to determine the effect of CSHI on SHS in AD. This was a multicentre, double-blind, placebo-controlled trial of CSHI vs oral glucocorticoid therapy. Participants received in random order 4 weeks of: CSHI and oral placebo, and subcutaneous placebo and oral hydrocortisone, separated by a 2-week washout period. SHS was assessed using the Short-Form 36 (SF-36), General Health Questionnaire (GHQ-28), Fatigue Scale (FS), Gastrointestinal Symptom Rating Scale (GSRS); and Addison's Quality of Life Questionnaire (AddiQoL). Participants were asked their (blinded) treatment preference. Twenty-four hour urine free cortisol (UFC) and diurnal salivary cortisol collections compared cortisol exposure during each treatment. Ten participants completed the study. Baseline SHS scores (mean ± SE) were consistent with mild impairment: SF-36 physical component summary 48.4 (± 2.4), mental component summary 53.3 (± 3.0); GHQ-28 18.1 (± 3.3); GSRS 3.7 (± 1.6), and AddiQoL 94.7 (± 3.7). FS was similar to other AD cohorts 13.5 (± 1.0) (P = 0.82). UFC between treatments was not different (P = 0.87). The salivary cortisol at 0800 h was higher during CSHI (P = 0.03), but not at any other time points measured. There was no difference between the treatments in the SHS assessments. Five participants preferred CSHI, four oral hydrocortisone, and one was uncertain. Biochemical measurements indicate similar cortisol exposure during each treatment period, although a more circadian pattern was evident during CSHI. CSHI does not

  10. Diffusion of epicenters of earthquake aftershocks, Omori's law, and generalized continuous-time random walk models

    International Nuclear Information System (INIS)

    Helmstetter, A.; Sornette, D.

    2002-01-01

    The epidemic-type aftershock sequence (ETAS) model is a simple stochastic process modeling seismicity, based on the two best-established empirical laws, the Omori law (power-law decay ∼1/t 1+θ of seismicity after an earthquake) and Gutenberg-Richter law (power-law distribution of earthquake energies). In order to describe also the space distribution of seismicity, we use in addition a power-law distribution ∼1/r 1+μ of distances between triggered and triggering earthquakes. The ETAS model has been studied for the last two decades to model real seismicity catalogs and to obtain short-term probabilistic forecasts. Here, we present a mapping between the ETAS model and a class of CTRW (continuous time random walk) models, based on the identification of their corresponding master equations. This mapping allows us to use the wealth of results previously obtained on anomalous diffusion of CTRW. After translating into the relevant variable for the ETAS model, we provide a classification of the different regimes of diffusion of seismic activity triggered by a mainshock. Specifically, we derive the relation between the average distance between aftershocks and the mainshock as a function of the time from the mainshock and of the joint probability distribution of the times and locations of the aftershocks. The different regimes are fully characterized by the two exponents θ and μ. Our predictions are checked by careful numerical simulations. We stress the distinction between the 'bare' Omori law describing the seismic rate activated directly by a mainshock and the 'renormalized' Omori law taking into account all possible cascades from mainshocks to aftershocks of aftershock of aftershock, and so on. In particular, we predict that seismic diffusion or subdiffusion occurs and should be observable only when the observed Omori exponent is less than 1, because this signals the operation of the renormalization of the bare Omori law, also at the origin of seismic diffusion in

  11. Supporting Dynamic Adaptive Streaming over HTTP in Wireless Meshed Networks using Random Linear Network Coding

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Pedersen, Morten Videbæk; Roetter, Daniel Enrique Lucani

    2014-01-01

    This work studies the potential and impact of the FRANC network coding protocol for delivering high quality Dynamic Adaptive Streaming over HTTP (DASH) in wireless networks. Although DASH aims to tailor the video quality rate based on the available throughput to the destination, it relies...

  12. TLALOCNet continuous GPS-Met Array in Mexico supporting the 2017 NAM GPS Hydrometeorological Network.

    Science.gov (United States)

    Cabral-Cano, E.; Salazar-Tlaczani, L.; Adams, D. K.; Vivoni, E. R.; Grutter, M.; Serra, Y. L.; DeMets, C.; Galetzka, J.; Feaux, K.; Mattioli, G. S.; Miller, M. M.

    2017-12-01

    TLALOCNet is a network of continuous GPS and meteorology stations in Mexico to study atmospheric and solid earth processes. This recently completed network spans most of Mexico with a strong coverage emphasis on southern and western Mexico. This network, funded by NSF, CONACyT and UNAM, recently built 40 cGPS-Met sites to EarthScope Plate Boundary Observatory standards and upgraded 25 additional GPS stations. TLALOCNet provides open and freely available raw GPS data, and high frequency surface meteorology measurements, and time series of daily positions. This is accomplished through the development of the TLALOCNet data center (http://tlalocnet.udg.mx) that serves as a collection and distribution point. This data center is based on UNAVCO's Dataworks-GSAC software and also works as part of UNAVCO's seamless archive for discovery, sharing, and access to GPS data. The TLALOCNet data center also contains contributed data from several regional GPS networks in Mexico for a total of 100+ stations. By using the same protocols and structure as the UNAVCO and other COCONet regional data centers, the scientific community has the capability of accessing data from the largest Mexican GPS network. This archive provides a fully queryable and scriptable GPS and Meteorological data retrieval point. In addition, real-time 1Hz streams from selected TLALOCNet stations are available in BINEX, RTCM 2.3 and RTCM 3.1 formats via the Networked Transport of RTCM via Internet Protocol (NTRIP) for real-time seismic and weather forecasting applications. TLALOCNet served as a GPS-Met backbone for the binational Mexico-US North American Monsoon GPS Hydrometeorological Network 2017 campaign experiment. This innovative experiment attempts to address water vapor source regions and land-surface water vapor flux contributions to precipitation (i.e., moisture recycling) during the 2017 North American Monsoon in Baja California, Sonora, Chihuahua, and Arizona. Models suggest that moisture recycling is

  13. Relay-aided multi-cell broadcasting with random network coding

    DEFF Research Database (Denmark)

    Lu, Lu; Sun, Fan; Xiao, Ming

    2010-01-01

    We investigate a relay-aided multi-cell broadcasting system using random network codes, where the focus is on devising efficient scheduling algorithms between relay and base stations. Two scheduling algorithms are proposed based on different feedback strategies; namely, a one-step scheduling...

  14. Scaling laws for file dissemination in P2P networks with random contacts

    NARCIS (Netherlands)

    Nunez-Queija, R.; Prabhu, B.

    2008-01-01

    In this paper we obtain the scaling law for the mean broadcast time of a file in a P2P network with an initial population of N nodes. In the model, at Poisson rate λ a node initiates a contact with another node chosen uniformly at random. This contact is said to be successful if the contacted node

  15. Scaling laws for file dissemination in P2P networks with random contacts

    NARCIS (Netherlands)

    Núñez-Queija, R.; Prabhu, B.

    2008-01-01

    In this paper we obtain the scaling law for the mean broadcast time of a file in a P2P network with an initial population of N nodes. In the model, at Poisson rate lambda a node initiates a contact with another node chosen uniformly at random. This contact is said to be successful if the contacted

  16. On the use of spin glass concepts in random automata networks

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, E N; Parga, N

    1988-06-01

    We apply concepts and techniques developed in the context of the mean-field theory of spin glasses to networks of random automata. This approach, proposed recently by Derrida and Flyvbjerg, may be useful in understanding the multivalley structure of the Kauffman model.

  17. Continuous Timescale Long-Short Term Memory Neural Network for Human Intent Understanding

    Directory of Open Access Journals (Sweden)

    Zhibin Yu

    2017-08-01

    Full Text Available Understanding of human intention by observing a series of human actions has been a challenging task. In order to do so, we need to analyze longer sequences of human actions related with intentions and extract the context from the dynamic features. The multiple timescales recurrent neural network (MTRNN model, which is believed to be a kind of solution, is a useful tool for recording and regenerating a continuous signal for dynamic tasks. However, the conventional MTRNN suffers from the vanishing gradient problem which renders it impossible to be used for longer sequence understanding. To address this problem, we propose a new model named Continuous Timescale Long-Short Term Memory (CTLSTM in which we inherit the multiple timescales concept into the Long-Short Term Memory (LSTM recurrent neural network (RNN that addresses the vanishing gradient problem. We design an additional recurrent connection in the LSTM cell outputs to produce a time-delay in order to capture the slow context. Our experiments show that the proposed model exhibits better context modeling ability and captures the dynamic features on multiple large dataset classification tasks. The results illustrate that the multiple timescales concept enhances the ability of our model to handle longer sequences related with human intentions and hence proving to be more suitable for complex tasks, such as intention recognition.

  18. Emerging tools for continuous nutrient monitoring networks: Sensors advancing science and water resources protection

    Science.gov (United States)

    Pellerin, Brian; Stauffer, Beth A; Young, Dwane A; Sullivan, Daniel J.; Bricker, Suzanne B.; Walbridge, Mark R; Clyde, Gerard A; Shaw, Denice M

    2016-01-01

    Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well-known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as an example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real-time nutrient data. The concurrent emergence of new tools to integrate, manage and share large data sets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous nutrient monitoring to rapidly move forward. We highlight several near-term opportunities for Federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large-scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation’s water resources.

  19. A scalable and continuous-upgradable optical wireless and wired convergent access network.

    Science.gov (United States)

    Sung, J Y; Cheng, K T; Chow, C W; Yeh, C H; Pan, C-L

    2014-06-02

    In this work, a scalable and continuous upgradable convergent optical access network is proposed. By using a multi-wavelength coherent comb source and a programmable waveshaper at the central office (CO), optical millimeter-wave (mm-wave) signals of different frequencies (from baseband to > 100 GHz) can be generated. Hence, it provides a scalable and continuous upgradable solution for end-user who needs 60 GHz wireless services now and > 100 GHz wireless services in the future. During the upgrade, user only needs to upgrade their optical networking unit (ONU). A programmable waveshaper is used to select the suitable optical tones with wavelength separation equals to the desired mm-wave frequency; while the CO remains intact. The centralized characteristics of the proposed system can easily add any new service and end-user. The centralized control of the wavelength makes the system more stable. Wired data rate of 17.45 Gb/s and w-band wireless data rate up to 3.36 Gb/s were demonstrated after transmission over 40 km of single-mode fiber (SMF).

  20. Optimizing Diamond Structured Automobile Supply Chain Network Towards a Robust Business Continuity Management

    Directory of Open Access Journals (Sweden)

    Abednico Montshiwa

    2016-02-01

    Full Text Available This paper presents an optimized diamond structured automobile supply chain network towards a robust Business Continuity Management model. The model is necessitated by the nature of the automobile supply chain. Companies in tier two are centralized and numerically limited and have to supply multiple tier one companies with goods and services. The challenge with this supply chain structure is the inherent risks in the supply chain. Once supply chain disruption takes place at tier 2 level, the whole supply chain network suffers huge loses. To address this challenge, the paper replaces Risk Analysis with Risk Ranking and it introduces Supply Chain Cooperation (SCC to the traditional Business Continuity Plan (BCP concept. The paper employed three statistical analysis techniques (correlation analysis, regression analysis and Smart PLS 3.0 calculations. In this study, correlation and regression analysis results on risk rankings, SCC and Business Impact Analysis were significant, ascertaining the value of the model. The multivariate data analysis calculations demonstrated that SCC has a positive total significant effect on risk rankings and BCM while BIA has strongest positive effects on all BCP factors. Finally, sensitivity analysis demonstrated that company size plays a role in BCM.

  1. Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain

    Science.gov (United States)

    Gruber, A.; Crow, W. T.; Dorigo, W. A.

    2018-02-01

    Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model-based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two-dimensional (2-D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground-based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2-D system is compared to that obtained from the 1-D assimilation of remote sensing retrievals to assess the value of ground-based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite-based surface soil moisture retrievals.

  2. A Distributed Approach to Continuous Monitoring of Constrained k-Nearest Neighbor Queries in Road Networks

    Directory of Open Access Journals (Sweden)

    Hyung-Ju Cho

    2012-01-01

    Full Text Available Given two positive parameters k and r, a constrained k-nearest neighbor (CkNN query returns the k closest objects within a network distance r of the query location in road networks. In terms of the scalability of monitoring these CkNN queries, existing solutions based on central processing at a server suffer from a sudden and sharp rise in server load as well as messaging cost as the number of queries increases. In this paper, we propose a distributed and scalable scheme called DAEMON for the continuous monitoring of CkNN queries in road networks. Our query processing is distributed among clients (query objects and server. Specifically, the server evaluates CkNN queries issued at intersections of road segments, retrieves the objects on the road segments between neighboring intersections, and sends responses to the query objects. Finally, each client makes its own query result using this server response. As a result, our distributed scheme achieves close-to-optimal communication costs and scales well to large numbers of monitoring queries. Exhaustive experimental results demonstrate that our scheme substantially outperforms its competitor in terms of query processing time and messaging cost.

  3. Indian-ink perfusion based method for reconstructing continuous vascular networks in whole mouse brain.

    Directory of Open Access Journals (Sweden)

    Songchao Xue

    Full Text Available The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm(3 for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously.

  4. Sequentially switching cell assemblies in random inhibitory networks of spiking neurons in the striatum.

    Science.gov (United States)

    Ponzi, Adam; Wickens, Jeff

    2010-04-28

    The striatum is composed of GABAergic medium spiny neurons with inhibitory collaterals forming a sparse random asymmetric network and receiving an excitatory glutamatergic cortical projection. Because the inhibitory collaterals are sparse and weak, their role in striatal network dynamics is puzzling. However, here we show by simulation of a striatal inhibitory network model composed of spiking neurons that cells form assemblies that fire in sequential coherent episodes and display complex identity-temporal spiking patterns even when cortical excitation is simply constant or fluctuating noisily. Strongly correlated large-scale firing rate fluctuations on slow behaviorally relevant timescales of hundreds of milliseconds are shown by members of the same assembly whereas members of different assemblies show strong negative correlation, and we show how randomly connected spiking networks can generate this activity. Cells display highly irregular spiking with high coefficients of variation, broadly distributed low firing rates, and interspike interval distributions that are consistent with exponentially tailed power laws. Although firing rates vary coherently on slow timescales, precise spiking synchronization is absent in general. Our model only requires the minimal but striatally realistic assumptions of sparse to intermediate random connectivity, weak inhibitory synapses, and sufficient cortical excitation so that some cells are depolarized above the firing threshold during up states. Our results are in good qualitative agreement with experimental studies, consistent with recently determined striatal anatomy and physiology, and support a new view of endogenously generated metastable state switching dynamics of the striatal network underlying its information processing operations.

  5. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  6. Self-organizing path integration using a linked continuous attractor and competitive network: path integration of head direction.

    Science.gov (United States)

    Stringer, Simon M; Rolls, Edmund T

    2006-12-01

    A key issue is how networks in the brain learn to perform path integration, that is update a represented position using a velocity signal. Using head direction cells as an example, we show that a competitive network could self-organize to learn to respond to combinations of head direction and angular head rotation velocity. These combination cells can then be used to drive a continuous attractor network to the next head direction based on the incoming rotation signal. An associative synaptic modification rule with a short term memory trace enables preceding combination cell activity during training to be associated with the next position in the continuous attractor network. The network accounts for the presence of neurons found in the brain that respond to combinations of head direction and angular head rotation velocity. Analogous networks in the hippocampal system could self-organize to perform path integration of place and spatial view representations.

  7. Finite-time stability of neutral-type neural networks with random time-varying delays

    Science.gov (United States)

    Ali, M. Syed; Saravanan, S.; Zhu, Quanxin

    2017-11-01

    This paper is devoted to the finite-time stability analysis of neutral-type neural networks with random time-varying delays. The randomly time-varying delays are characterised by Bernoulli stochastic variable. This result can be extended to analysis and design for neutral-type neural networks with random time-varying delays. On the basis of this paper, we constructed suitable Lyapunov-Krasovskii functional together and established a set of sufficient linear matrix inequalities approach to guarantee the finite-time stability of the system concerned. By employing the Jensen's inequality, free-weighting matrix method and Wirtinger's double integral inequality, the proposed conditions are derived and two numerical examples are addressed for the effectiveness of the developed techniques.

  8. Random vs. Combinatorial Methods for Discrete Event Simulation of a Grid Computer Network

    Science.gov (United States)

    Kuhn, D. Richard; Kacker, Raghu; Lei, Yu

    2010-01-01

    This study compared random and t-way combinatorial inputs of a network simulator, to determine if these two approaches produce significantly different deadlock detection for varying network configurations. Modeling deadlock detection is important for analyzing configuration changes that could inadvertently degrade network operations, or to determine modifications that could be made by attackers to deliberately induce deadlock. Discrete event simulation of a network may be conducted using random generation, of inputs. In this study, we compare random with combinatorial generation of inputs. Combinatorial (or t-way) testing requires every combination of any t parameter values to be covered by at least one test. Combinatorial methods can be highly effective because empirical data suggest that nearly all failures involve the interaction of a small number of parameters (1 to 6). Thus, for example, if all deadlocks involve at most 5-way interactions between n parameters, then exhaustive testing of all n-way interactions adds no additional information that would not be obtained by testing all 5-way interactions. While the maximum degree of interaction between parameters involved in the deadlocks clearly cannot be known in advance, covering all t-way interactions may be more efficient than using random generation of inputs. In this study we tested this hypothesis for t = 2, 3, and 4 for deadlock detection in a network simulation. Achieving the same degree of coverage provided by 4-way tests would have required approximately 3.2 times as many random tests; thus combinatorial methods were more efficient for detecting deadlocks involving a higher degree of interactions. The paper reviews explanations for these results and implications for modeling and simulation.

  9. Present day geodynamics in Iceland monitored by a permanent network of continuous GPS stations

    Science.gov (United States)

    Völksen, Christof; Árnadóttir, Thóra; Geirsson, Halldór; Valsson, Guðmundur

    2009-12-01

    Iceland is located on the Mid-Atlantic Ridge and thereby offers a rare opportunity to study crustal movements at a divergent plate boundary. Iceland is not only characterized by the divergence of the Eurasian and North American Plates, as several active volcanoes are located on the island. Moderate size earthquakes occur in the transform zones, causing measurable crustal deformation. In 1999 the installation of a permanent network of continuous GPS stations (ISGPS) was initiated in order to observe deformation due to unrest in the Hengill volcanic system and at the Katla volcano. The ISGPS network has been enlarged over the years and consists today of more than 25 CGPS stations. Most of the stations are located along the plate boundary, where most of the active deformation takes place. Uplift due to post-glacial rebound due to the melting of the largest glacier in Europe, Vatnajökull, is also detected by the ISGPS network. This study presents results from analysis of 9 years of data from the ISGPS network, in the global reference frame PDR05, which has been evaluated by the Potsdam-Dresden-Reprocessing group with reprocessed GPS data only. We thus determine subsidence or land uplift in a global frame. The horizontal station velocities clearly show spreading across the plate boundary of about 20 mm/a. Stations in the vicinity of the glacier Vatnajökull indicate uplift in the range of 12 mm/a, while a station in the central part of Iceland shows uplift rates of about 25 mm/a. Tide gauge readings in Reykjavik and current subsidence rates observed with CGPS agree also quite well.

  10. Characterizing steady states of genome-scale metabolic networks in continuous cell cultures.

    Directory of Open Access Journals (Sweden)

    Jorge Fernandez-de-Cossio-Diaz

    2017-11-01

    Full Text Available In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.

  11. Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array.

    Science.gov (United States)

    Li, Chuantao; Chen, Fuming; Qi, Fugui; Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi

    2016-01-01

    It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor's respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person's head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors.

  12. Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array

    Science.gov (United States)

    Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi

    2016-01-01

    It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor’s respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person’s head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors. PMID:27073860

  13. Research on Some Bus Transport Networks with Random Overlapping Clique Structure

    International Nuclear Information System (INIS)

    Yang Xuhua; Sun Youxian; Wang Bo; Wang Wanliang

    2008-01-01

    On the basis of investigating the statistical data of bus transport networks of three big cities in China, we propose that each bus route is a clique (maximal complete subgraph) and a bus transport network (BTN) consists of a lot of cliques, which intensively connect and overlap with each other. We study the network properties, which include the degree distribution, multiple edges' overlapping time distribution, distribution of the overlap size between any two overlapping cliques, distribution of the number of cliques that a node belongs to. Naturally, the cliques also constitute a network, with the overlapping nodes being their multiple links. We also research its network properties such as degree distribution, clustering, average path length, and so on. We propose that a BTN has the properties of random clique increment and random overlapping clique, at the same time, a BTN is a small-world network with highly clique-clustered and highly clique-overlapped. Finally, we introduce a BTN evolution model, whose simulation results agree well with the statistical laws that emerge in real BTNs

  14. Mean-field Theory for Some Bus Transport Networks with Random Overlapping Clique Structure

    International Nuclear Information System (INIS)

    Yang Xuhua; Sun Bao; Wang Bo; Sun Youxian

    2010-01-01

    Transport networks, such as railway networks and airport networks, are a kind of random network with complex topology. Recently, more and more scholars paid attention to various kinds of transport networks and try to explore their inherent characteristics. Here we study the exponential properties of a recently introduced Bus Transport Networks (BTNs) evolution model with random overlapping clique structure, which gives a possible explanation for the observed exponential distribution of the connectivities of some BTNs of three major cities in China. Applying mean-field theory, we analyze the BTNs model and prove that this model has the character of exponential distribution of the connectivities, and develop a method to predict the growth dynamics of the individual vertices, and use this to calculate analytically the connectivity distribution and the exponents. By comparing mean-field based theoretic results with the statistical data of real BTNs, we observe that, as a whole, both of their data show similar character of exponential distribution of the connectivities, and their exponents have same order of magnitude, which show the availability of the analytical result of this paper. (general)

  15. Engineering Online and In-person Social Networks for Physical Activity: A Randomized Trial

    Science.gov (United States)

    Rovniak, Liza S.; Kong, Lan; Hovell, Melbourne F.; Ding, Ding; Sallis, James F.; Ray, Chester A.; Kraschnewski, Jennifer L.; Matthews, Stephen A.; Kiser, Elizabeth; Chinchilli, Vernon M.; George, Daniel R.; Sciamanna, Christopher N.

    2016-01-01

    Background Social networks can influence physical activity, but little is known about how best to engineer online and in-person social networks to increase activity. Purpose To conduct a randomized trial based on the Social Networks for Activity Promotion model to assess the incremental contributions of different procedures for building social networks on objectively-measured outcomes. Methods Physically inactive adults (n = 308, age, 50.3 (SD = 8.3) years, 38.3% male, 83.4% overweight/obese) were randomized to 1 of 3 groups. The Promotion group evaluated the effects of weekly emailed tips emphasizing social network interactions for walking (e.g., encouragement, informational support); the Activity group evaluated the incremental effect of adding an evidence-based online fitness walking intervention to the weekly tips; and the Social Networks group evaluated the additional incremental effect of providing access to an online networking site for walking, and prompting walking/activity across diverse settings. The primary outcome was mean change in accelerometer-measured moderate-to-vigorous physical activity (MVPA), assessed at 3 and 9 months from baseline. Results Participants increased their MVPA by 21.0 mins/week, 95% CI [5.9, 36.1], p = .005, at 3 months, and this change was sustained at 9 months, with no between-group differences. Conclusions Although the structure of procedures for targeting social networks varied across intervention groups, the functional effect of these procedures on physical activity was similar. Future research should evaluate if more powerful reinforcers improve the effects of social network interventions. Trial Registration Number NCT01142804 PMID:27405724

  16. Engineering Online and In-Person Social Networks for Physical Activity: A Randomized Trial.

    Science.gov (United States)

    Rovniak, Liza S; Kong, Lan; Hovell, Melbourne F; Ding, Ding; Sallis, James F; Ray, Chester A; Kraschnewski, Jennifer L; Matthews, Stephen A; Kiser, Elizabeth; Chinchilli, Vernon M; George, Daniel R; Sciamanna, Christopher N

    2016-12-01

    Social networks can influence physical activity, but little is known about how best to engineer online and in-person social networks to increase activity. The purpose of this study was to conduct a randomized trial based on the Social Networks for Activity Promotion model to assess the incremental contributions of different procedures for building social networks on objectively measured outcomes. Physically inactive adults (n = 308, age, 50.3 (SD = 8.3) years, 38.3 % male, 83.4 % overweight/obese) were randomized to one of three groups. The Promotion group evaluated the effects of weekly emailed tips emphasizing social network interactions for walking (e.g., encouragement, informational support); the Activity group evaluated the incremental effect of adding an evidence-based online fitness walking intervention to the weekly tips; and the Social Networks group evaluated the additional incremental effect of providing access to an online networking site for walking as well as prompting walking/activity across diverse settings. The primary outcome was mean change in accelerometer-measured moderate-to-vigorous physical activity (MVPA), assessed at 3 and 9 months from baseline. Participants increased their MVPA by 21.0 min/week, 95 % CI [5.9, 36.1], p = .005, at 3 months, and this change was sustained at 9 months, with no between-group differences. Although the structure of procedures for targeting social networks varied across intervention groups, the functional effect of these procedures on physical activity was similar. Future research should evaluate if more powerful reinforcers improve the effects of social network interventions. The trial was registered with the ClinicalTrials.gov (NCT01142804).

  17. Effects of the randomly distributed magnetic field on the phase diagrams of the Ising Nanowire II: Continuous distributions

    International Nuclear Information System (INIS)

    Akıncı, Ümit

    2012-01-01

    The effect of the random magnetic field distribution on the phase diagrams and ground state magnetizations of the Ising nanowire has been investigated with effective field theory with correlations. Gaussian distribution has been chosen as a random magnetic field distribution. The variation of the phase diagrams with that distribution parameters has been obtained and some interesting results have been found such as disappearance of the reentrant behavior and first order transitions which appear in the case of discrete distributions. Also for single and double Gaussian distributions, ground state magnetizations for different distribution parameters have been determined which can be regarded as separate partially ordered phases of the system. - Highlights: ► We give the phase diagrams of the Ising nanowire under the continuous randomly distributed magnetic field. ► Ground state magnetization values obtained. ► Different partially ordered phases observed.

  18. Continuous Time Random Walk and different diffusive regimes - doi: 10.4025/actascitechnol.v34i2.11521

    Directory of Open Access Journals (Sweden)

    Haroldo Valetin Ribeiro

    2012-03-01

    Full Text Available We investigate how it is possible to obtain different diffusive regimes from the Continuous Time Random Walk (CTRW approach performing suitable changes for the waiting time and jumping distributions in order to get two or more regimes for the same diffusive process. We also obtain diffusion-like equations related to these processes and investigate the connection of the results with anomalous diffusion. 

  19. Implementation and Performance Evaluation of Distributed Cloud Storage Solutions using Random Linear Network Coding

    DEFF Research Database (Denmark)

    Fitzek, Frank; Toth, Tamas; Szabados, Áron

    2014-01-01

    This paper advocates the use of random linear network coding for storage in distributed clouds in order to reduce storage and traffic costs in dynamic settings, i.e. when adding and removing numerous storage devices/clouds on-the-fly and when the number of reachable clouds is limited. We introduce...... various network coding approaches that trade-off reliability, storage and traffic costs, and system complexity relying on probabilistic recoding for cloud regeneration. We compare these approaches with other approaches based on data replication and Reed-Solomon codes. A simulator has been developed...... to carry out a thorough performance evaluation of the various approaches when relying on different system settings, e.g., finite fields, and network/storage conditions, e.g., storage space used per cloud, limited network use, and limited recoding capabilities. In contrast to standard coding approaches, our...

  20. Representing Degree Distributions, Clustering, and Homophily in Social Networks With Latent Cluster Random Effects Models.

    Science.gov (United States)

    Krivitsky, Pavel N; Handcock, Mark S; Raftery, Adrian E; Hoff, Peter D

    2009-07-01

    Social network data often involve transitivity, homophily on observed attributes, clustering, and heterogeneity of actor degrees. We propose a latent cluster random effects model to represent all of these features, and we describe a Bayesian estimation method for it. The model is applicable to both binary and non-binary network data. We illustrate the model using two real datasets. We also apply it to two simulated network datasets with the same, highly skewed, degree distribution, but very different network behavior: one unstructured and the other with transitivity and clustering. Models based on degree distributions, such as scale-free, preferential attachment and power-law models, cannot distinguish between these very different situations, but our model does.

  1. Dynamic Load Balanced Clustering using Elitism based Random Immigrant Genetic Approach for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    K. Mohaideen Pitchai

    2017-07-01

    Full Text Available Wireless Sensor Network (WSN consists of a large number of small sensors with restricted energy. Prolonged network lifespan, scalability, node mobility and load balancing are important needs for several WSN applications. Clustering the sensor nodes is an efficient technique to reach these goals. WSN have the characteristics of topology dynamics because of factors like energy conservation and node movement that leads to Dynamic Load Balanced Clustering Problem (DLBCP. In this paper, Elitism based Random Immigrant Genetic Approach (ERIGA is proposed to solve DLBCP which adapts to topology dynamics. ERIGA uses the dynamic Genetic Algorithm (GA components for solving the DLBCP. The performance of load balanced clustering process is enhanced with the help of this dynamic GA. As a result, the ERIGA achieves to elect suitable cluster heads which balances the network load and increases the lifespan of the network.

  2. Randomized trial of prongs or mask for nasal continuous positive airway pressure in preterm infants.

    LENUS (Irish Health Repository)

    Kieran, Emily A

    2012-11-01

    To determine whether nasal continuous positive airway pressure (NCPAP) given with nasal prongs compared with nasal mask reduces the rate of intubation and mechanical ventilation in preterm infants within 72 hours of starting therapy.

  3. Diffusion in random networks: Asymptotic properties, and numerical and engineering approximations

    Science.gov (United States)

    Padrino, Juan C.; Zhang, Duan Z.

    2016-11-01

    The ensemble phase averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of a set of pockets connected by tortuous channels. Inside a channel, we assume that fluid transport is governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. The so-called dual porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain, whose solution is sought numerically. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt- 1 / 4 rather than xt- 1 / 2 as in the traditional theory. This early time sub-diffusive similarity can be explained by random walk theory through the network. In addition, by applying concepts of fractional calculus, we show that, for small time, the governing equation reduces to a fractional diffusion equation with known solution. We recast this solution in terms of special functions easier to compute. Comparison of the numerical and exact solutions shows excellent agreement.

  4. Random sampling of elementary flux modes in large-scale metabolic networks.

    Science.gov (United States)

    Machado, Daniel; Soons, Zita; Patil, Kiran Raosaheb; Ferreira, Eugénio C; Rocha, Isabel

    2012-09-15

    The description of a metabolic network in terms of elementary (flux) modes (EMs) provides an important framework for metabolic pathway analysis. However, their application to large networks has been hampered by the combinatorial explosion in the number of modes. In this work, we develop a method for generating random samples of EMs without computing the whole set. Our algorithm is an adaptation of the canonical basis approach, where we add an additional filtering step which, at each iteration, selects a random subset of the new combinations of modes. In order to obtain an unbiased sample, all candidates are assigned the same probability of getting selected. This approach avoids the exponential growth of the number of modes during computation, thus generating a random sample of the complete set of EMs within reasonable time. We generated samples of different sizes for a metabolic network of Escherichia coli, and observed that they preserve several properties of the full EM set. It is also shown that EM sampling can be used for rational strain design. A well distributed sample, that is representative of the complete set of EMs, should be suitable to most EM-based methods for analysis and optimization of metabolic networks. Source code for a cross-platform implementation in Python is freely available at http://code.google.com/p/emsampler. dmachado@deb.uminho.pt Supplementary data are available at Bioinformatics online.

  5. Influence network linkages across implementation strategy conditions in a randomized controlled trial of two strategies for scaling up evidence-based practices in public youth-serving systems.

    Science.gov (United States)

    Palinkas, Lawrence A; Holloway, Ian W; Rice, Eric; Brown, C Hendricks; Valente, Thomas W; Chamberlain, Patricia

    2013-11-14

    Given the importance of influence networks in the implementation of evidence-based practices and interventions, it is unclear whether such networks continue to operate as sources of information and advice when they are segmented and disrupted by randomization to different implementation strategy conditions. The present study examines the linkages across implementation strategy conditions of social influence networks of leaders of youth-serving systems in 12 California counties participating in a randomized controlled trial of community development teams (CDTs) to scale up use of an evidence-based practice. Semi-structured interviews were conducted with 38 directors, assistant directors, and program managers of county probation, mental health, and child welfare departments. A web-based survey collected additional quantitative data on information and advice networks of study participants. A mixed-methods approach to data analysis was used to create a sociometric data set (n = 176) to examine linkages between treatment and standard conditions. Of those network members who were affiliated with a county (n = 137), only 6 (4.4%) were directly connected to a member of the opposite implementation strategy condition; 19 (13.9%) were connected by two steps or fewer to a member of the opposite implementation strategy condition; 64 (46.7%) were connected by three or fewer steps to a member of the opposite implementation strategy condition. Most of the indirect steps between individuals who were in different implementation strategy conditions were connections involving a third non-county organizational entity that had an important role in the trial in keeping the implementation strategy conditions separate. When these entities were excluded, the CDT network exhibited fewer components and significantly higher betweenness centralization than did the standard condition network. Although the integrity of the RCT in this instance was not compromised by study participant influence

  6. Modelling the continuous cooling transformation diagram of engineering steels using neural networks. Part I. Phase regions

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, P.J. van der; Wang, J. [Delft Univ. of Technology (Netherlands); Sietsma, J.; Zwaag, S. van der [Delft Univ. of Technology, Lab. for Materials Science (Netherlands)

    2002-12-01

    A neural network model for the calculation of the phase regions of the continuous cooling transformation (CCT) diagram of engineering steels has been developed. The model is based on experimental CCT diagrams of 459 low-alloy steels, and calculates the CCT diagram as a function of composition and austenitisation temperature. In considering the composition, 9 alloying elements are taken into account. The model reproduces the original diagrams rather accurately, with deviations that are not larger than the average experimental inaccuracy of the experimental diagrams. Therefore, it can be considered an adequate alternative to the experimental determination of the CCT diagram of a certain steel within the composition range used. The effects of alloying elements can be quantified, either individually or in combination, with the model. Nonlinear composition dependencies are observed. (orig.)

  7. Introduction to focus issue: Synchronization in large networks and continuous media—data, models, and supermodels

    Science.gov (United States)

    Duane, Gregory S.; Grabow, Carsten; Selten, Frank; Ghil, Michael

    2017-12-01

    The synchronization of loosely coupled chaotic systems has increasingly found applications to large networks of differential equations and to models of continuous media. These applications are at the core of the present Focus Issue. Synchronization between a system and its model, based on limited observations, gives a new perspective on data assimilation. Synchronization among different models of the same system defines a supermodel that can achieve partial consensus among models that otherwise disagree in several respects. Finally, novel methods of time series analysis permit a better description of synchronization in a system that is only observed partially and for a relatively short time. This Focus Issue discusses synchronization in extended systems or in components thereof, with particular attention to data assimilation, supermodeling, and their applications to various areas, from climate modeling to macroeconomics.

  8. Introduction to focus issue: Synchronization in large networks and continuous media-data, models, and supermodels.

    Science.gov (United States)

    Duane, Gregory S; Grabow, Carsten; Selten, Frank; Ghil, Michael

    2017-12-01

    The synchronization of loosely coupled chaotic systems has increasingly found applications to large networks of differential equations and to models of continuous media. These applications are at the core of the present Focus Issue. Synchronization between a system and its model, based on limited observations, gives a new perspective on data assimilation. Synchronization among different models of the same system defines a supermodel that can achieve partial consensus among models that otherwise disagree in several respects. Finally, novel methods of time series analysis permit a better description of synchronization in a system that is only observed partially and for a relatively short time. This Focus Issue discusses synchronization in extended systems or in components thereof, with particular attention to data assimilation, supermodeling, and their applications to various areas, from climate modeling to macroeconomics.

  9. Framework and implementation of a continuous network-wide health monitoring system for roadways

    Science.gov (United States)

    Wang, Ming; Birken, Ralf; Shahini Shamsabadi, Salar

    2014-03-01

    According to the 2013 ASCE report card America's infrastructure scores only a D+. There are more than four million miles of roads (grade D) in the U.S. requiring a broad range of maintenance activities. The nation faces a monumental problem of infrastructure management in the scheduling and implementation of maintenance and repair operations, and in the prioritization of expenditures within budgetary constraints. The efficient and effective performance of these operations however is crucial to ensuring roadway safety, preventing catastrophic failures, and promoting economic growth. There is a critical need for technology that can cost-effectively monitor the condition of a network-wide road system and provide accurate, up-to-date information for maintenance activity prioritization. The Versatile Onboard Traffic Embedded Roaming Sensors (VOTERS) project provides a framework and the sensing capability to complement periodical localized inspections to continuous network-wide health monitoring. Research focused on the development of a cost-effective, lightweight package of multi-modal sensor systems compatible with this framework. An innovative software infrastructure is created that collects, processes, and evaluates these large time-lapse multi-modal data streams. A GIS-based control center manages multiple inspection vehicles and the data for further analysis, visualization, and decision making. VOTERS' technology can monitor road conditions at both the surface and sub-surface levels while the vehicle is navigating through daily traffic going about its normal business, thereby allowing for network-wide frequent assessment of roadways. This deterioration process monitoring at unprecedented time and spatial scales provides unique experimental data that can be used to improve life-cycle cost analysis models.

  10. Biomimicry of symbiotic multi-species coevolution for discrete and continuous optimization in RFID networks

    Directory of Open Access Journals (Sweden)

    Na Lin

    2017-03-01

    Full Text Available In recent years, symbiosis as a rich source of potential engineering applications and computational model has attracted more and more attentions in the adaptive complex systems and evolution computing domains. Inspired by different symbiotic coevolution forms in nature, this paper proposed a series of multi-swarm particle swarm optimizers called PS2Os, which extend the single population particle swarm optimization (PSO algorithm to interacting multi-swarms model by constructing hierarchical interaction topologies and enhanced dynamical update equations. According to different symbiotic interrelationships, four versions of PS2O are initiated to mimic mutualism, commensalism, predation, and competition mechanism, respectively. In the experiments, with five benchmark problems, the proposed algorithms are proved to have considerable potential for solving complex optimization problems. The coevolutionary dynamics of symbiotic species in each PS2O version are also studied respectively to demonstrate the heterogeneity of different symbiotic interrelationships that effect on the algorithm’s performance. Then PS2O is used for solving the radio frequency identification (RFID network planning (RNP problem with a mixture of discrete and continuous variables. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.

  11. Biomimicry of symbiotic multi-species coevolution for discrete and continuous optimization in RFID networks.

    Science.gov (United States)

    Lin, Na; Chen, Hanning; Jing, Shikai; Liu, Fang; Liang, Xiaodan

    2017-03-01

    In recent years, symbiosis as a rich source of potential engineering applications and computational model has attracted more and more attentions in the adaptive complex systems and evolution computing domains. Inspired by different symbiotic coevolution forms in nature, this paper proposed a series of multi-swarm particle swarm optimizers called PS 2 Os, which extend the single population particle swarm optimization (PSO) algorithm to interacting multi-swarms model by constructing hierarchical interaction topologies and enhanced dynamical update equations. According to different symbiotic interrelationships, four versions of PS 2 O are initiated to mimic mutualism, commensalism, predation, and competition mechanism, respectively. In the experiments, with five benchmark problems, the proposed algorithms are proved to have considerable potential for solving complex optimization problems. The coevolutionary dynamics of symbiotic species in each PS 2 O version are also studied respectively to demonstrate the heterogeneity of different symbiotic interrelationships that effect on the algorithm's performance. Then PS 2 O is used for solving the radio frequency identification (RFID) network planning (RNP) problem with a mixture of discrete and continuous variables. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.

  12. An MPCC Formulation and Its Smooth Solution Algorithm for Continuous Network Design Problem

    Directory of Open Access Journals (Sweden)

    Guangmin Wang

    2017-12-01

    Full Text Available Continuous network design problem (CNDP is searching for a transportation network configuration to minimize the sum of the total system travel time and the investment cost of link capacity expansions by considering that the travellers follow a traditional Wardrop user equilibrium (UE to choose their routes. In this paper, the CNDP model can be formulated as mathematical programs with complementarity constraints (MPCC by describing UE as a non-linear complementarity problem (NCP. To address the difficulty resulting from complementarity constraints in MPCC, they are substituted by the Fischer-Burmeister (FB function, which can be smoothed by the introduction of the smoothing parameter. Therefore, the MPCC can be transformed into a well-behaved non-linear program (NLP by replacing the complementarity constraints with a smooth equation. Consequently, the solver such as LINDOGLOBAL in GAMS can be used to solve the smooth approximate NLP to obtain the solution to MPCC for modelling CNDP. The numerical experiments on the example from the literature demonstrate that the proposed algorithm is feasible.

  13. Influence of individual rationality on continuous double auction markets with networked traders

    Science.gov (United States)

    Zhang, Junhuan

    2018-04-01

    This paper investigates the influence of individual rationality of buyers and sellers on continuous double auction market outcomes in terms of the proportion of boundedly-rational buyers and sellers. The individual rationality is discussed in a social network artificial stock market model by embedding network formation and information set. Traders automatically select the most profitable trading strategy based on individual and social learning of the profits and trading strategies of themselves and their neighbors, and submit orders to markets. The results show that (i) a higher proportion of boundedly-rational sellers induces a higher market price, higher sellers' profits and a higher market efficiency; (ii) a higher proportion of boundedly-rational sellers induces a lower number of trades and lower buyers' profits; (iii) a higher proportion of boundedly-rational buyers induces a lower market price, a lower number of trades, and lower sellers' profits; (iv) a higher proportion of boundedly-rational buyers induces higher buyers' profits and a higher market efficiency.

  14. A Markov random walk under constraint for discovering overlapping communities in complex networks

    International Nuclear Information System (INIS)

    Jin, Di; Yang, Bo; Liu, Dayou; He, Dongxiao; Liu, Jie; Baquero, Carlos

    2011-01-01

    The detection of overlapping communities in complex networks has motivated recent research in relevant fields. Aiming to address this problem, we propose a Markov-dynamics-based algorithm, called UEOC, which means 'unfold and extract overlapping communities'. In UEOC, when identifying each natural community that overlaps, a Markov random walk method combined with a constraint strategy, which is based on the corresponding annealed network (degree conserving random network), is performed to unfold the community. Then, a cutoff criterion with the aid of a local community function, called conductance, which can be thought of as the ratio between the number of edges inside the community and those leaving it, is presented to extract this emerged community from the entire network. The UEOC algorithm depends on only one parameter whose value can be easily set, and it requires no prior knowledge of the hidden community structures. The proposed UEOC has been evaluated both on synthetic benchmarks and on some real-world networks, and has been compared with a set of competing algorithms. The experimental result has shown that UEOC is highly effective and efficient for discovering overlapping communities

  15. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression

    Directory of Open Access Journals (Sweden)

    Paul eMiller

    2013-05-01

    Full Text Available Randomly connected recurrent networks of excitatory groups of neurons can possess a multitude of attractor states. When the internal excitatory synapses of these networks are depressing, the attractor states can be destabilized with increasing input. This leads to an itinerancy, where with either repeated transient stimuli, or increasing duration of a single stimulus, the network activity advances through sequences of attractor states. We find that the resulting network state, which persists beyond stimulus offset, can encode the number of stimuli presented via a distributed representation of neural activity with non-monotonic tuning curves for most neurons. Increased duration of a single stimulus is encoded via different distributed representations, so unlike an integrator, the network distinguishes separate successive presentations of a short stimulus from a single presentation of a longer stimulus with equal total duration. Moreover, different amplitudes of stimulus cause new, distinct activity patterns, such that changes in stimulus number, duration and amplitude can be distinguished from each other. These properties of the network depend on dynamic depressing synapses, as they disappear if synapses are static. Thus short-term synaptic depression allows a network to store separately the different dynamic properties of a spatially constant stimulus.

  16. An adaptive random search for short term generation scheduling with network constraints.

    Directory of Open Access Journals (Sweden)

    J A Marmolejo

    Full Text Available This paper presents an adaptive random search approach to address a short term generation scheduling with network constraints, which determines the startup and shutdown schedules of thermal units over a given planning horizon. In this model, we consider the transmission network through capacity limits and line losses. The mathematical model is stated in the form of a Mixed Integer Non Linear Problem with binary variables. The proposed heuristic is a population-based method that generates a set of new potential solutions via a random search strategy. The random search is based on the Markov Chain Monte Carlo method. The main key of the proposed method is that the noise level of the random search is adaptively controlled in order to exploring and exploiting the entire search space. In order to improve the solutions, we consider coupling a local search into random search process. Several test systems are presented to evaluate the performance of the proposed heuristic. We use a commercial optimizer to compare the quality of the solutions provided by the proposed method. The solution of the proposed algorithm showed a significant reduction in computational effort with respect to the full-scale outer approximation commercial solver. Numerical results show the potential and robustness of our approach.

  17. Price Formation Modelling by Continuous-Time Random Walk: An Empirical Study

    Directory of Open Access Journals (Sweden)

    Frédéric Délèze

    2015-01-01

    Full Text Available Markovian and non-Markovian\tmodels are presented to\tmodel the futures\tmarket price formation.\tWe show that\tthe\twaiting-time\tand\tthe\tsurvival\tprobabilities\thave\ta\tsignificant\timpact\ton\tthe\tprice\tdynamics.\tThis\tstudy tests\tanalytical\tsolutions\tand\tpresent\tnumerical\tresults for the\tprobability\tdensity function\tof the\tcontinuoustime random\twalk\tusing\ttick-by-tick\tquotes\tprices\tfor\tthe\tDAX\t30\tindex\tfutures.

  18. Structure and Randomness of Continuous-Time, Discrete-Event Processes

    Science.gov (United States)

    Marzen, Sarah E.; Crutchfield, James P.

    2017-10-01

    Loosely speaking, the Shannon entropy rate is used to gauge a stochastic process' intrinsic randomness; the statistical complexity gives the cost of predicting the process. We calculate, for the first time, the entropy rate and statistical complexity of stochastic processes generated by finite unifilar hidden semi-Markov models—memoryful, state-dependent versions of renewal processes. Calculating these quantities requires introducing novel mathematical objects (ɛ -machines of hidden semi-Markov processes) and new information-theoretic methods to stochastic processes.

  19. HIGH QUALITY FACADE SEGMENTATION BASED ON STRUCTURED RANDOM FOREST, REGION PROPOSAL NETWORK AND RECTANGULAR FITTING

    Directory of Open Access Journals (Sweden)

    K. Rahmani

    2018-05-01

    Full Text Available In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF, Region Proposal Network (RPN based on a Convolutional Neural Network (CNN as well as rectangular fitting optimization. Our main contribution is that we employ features created by the RPN as channels in the SRF.We empirically show that this is very effective especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods. Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.

  20. Increased 1-year continuation of DMPA among women randomized to self-administration: results from a randomized controlled trial at Planned Parenthood.

    Science.gov (United States)

    Kohn, Julia E; Simons, Hannah R; Della Badia, Lisa; Draper, Elissa; Morfesis, Johanna; Talmont, Elizabeth; Beasley, Anitra; McDonald, Melanie; Westhoff, Carolyn L

    2018-03-01

    Self-administration of subcutaneous depot medroxyprogesterone acetate (DMPA-sc) is feasible, acceptable, and effective. Our objective was to compare one-year continuation of DMPA-sc between women randomized to self-administration versus clinic administration. We randomized 401 females ages 15-44 requesting DMPA at clinics in Texas and New Jersey to self-administration or clinic administration in a 1:1 allocation. Clinic staff taught participants randomized to self-administration to self-inject and observed the first injection; participants received instructions, a sharps container, and three doses for home use. Participants randomized to clinic administration received usual care. All participants received DMPA-sc at no cost and injection reminders via text message or email. We conducted follow-up surveys at six and 12 months. Three hundred thirty-six participants (84%) completed the 12-month survey; 316 completed both follow-up surveys (an 80% response rate excluding eight withdrawals). Participants ranged in age from 16-44. One-year DMPA continuous use was 69% in the self-administration group and 54% in the clinic group (p=.005). There were three self-reported pregnancies during the study period, all occurred in the clinic group; all three women had discontinued DMPA and one reported her pregnancy as intended. Among the self-administration group, 97% reported that self-administration was very or somewhat easy; 87% would recommend self-administration of DMPA-sc to a friend. Among the clinic group, 52% reported interest in self-administration in the future. Satisfaction was similar between groups. No serious adverse events were reported. DMPA self-administration improves contraceptive continuation and is a feasible and acceptable option for women and adolescents. Self-administration of subcutaneous DMPA can improve contraceptive access, autonomy, and continuation, and is a feasible and acceptable option for women and adolescents. It should be made widely available

  1. Continuous Dropout.

    Science.gov (United States)

    Shen, Xu; Tian, Xinmei; Liu, Tongliang; Xu, Fang; Tao, Dacheng

    2017-10-03

    Dropout has been proven to be an effective algorithm for training robust deep networks because of its ability to prevent overfitting by avoiding the co-adaptation of feature detectors. Current explanations of dropout include bagging, naive Bayes, regularization, and sex in evolution. According to the activation patterns of neurons in the human brain, when faced with different situations, the firing rates of neurons are random and continuous, not binary as current dropout does. Inspired by this phenomenon, we extend the traditional binary dropout to continuous dropout. On the one hand, continuous dropout is considerably closer to the activation characteristics of neurons in the human brain than traditional binary dropout. On the other hand, we demonstrate that continuous dropout has the property of avoiding the co-adaptation of feature detectors, which suggests that we can extract more independent feature detectors for model averaging in the test stage. We introduce the proposed continuous dropout to a feedforward neural network and comprehensively compare it with binary dropout, adaptive dropout, and DropConnect on Modified National Institute of Standards and Technology, Canadian Institute for Advanced Research-10, Street View House Numbers, NORB, and ImageNet large scale visual recognition competition-12. Thorough experiments demonstrate that our method performs better in preventing the co-adaptation of feature detectors and improves test performance.

  2. An Eco-Driving Advisory System for Continuous Signalized Intersections by Vehicular Ad Hoc Network

    Directory of Open Access Journals (Sweden)

    Wei-Hsun Lee

    2018-01-01

    Full Text Available With the vehicular ad hoc network (VANET technology which support vehicle-to-vehicle (V2V and vehicle to road side unit (V2R/R2V communications, vehicles can preview the intersection signal plan such as signal countdown message. In this paper, an ecodriving advisory system (EDAS is proposed to reduce CO2 emissions and energy consumption by letting the vehicle continuously pass through multiple intersections with the minimum possibilities of stops. We extend the isolated intersection model to multiple continuous intersections scenario. A hybrid method combining three strategies including maximized throughput model (MTM, smooth speed model (SSM, and minimized acceleration and deceleration (MinADM is designed, and it is compared with related works maximized throughput model (MaxTM, open traffic light control model (OTLCM, and predictive cruise control (PCC models. Some issues for the practical application including safe car following, queue clearing, and gliding mode are discussed and conquered. Simulation results show that the proposed model outperforms OTLCM 25.1%~81.2% in the isolated intersection scenario for the CO2 emissions and 20.5%~84.3% in averaged travel time. It also performs better than the compared PCC model in CO2 emissions (19.9%~31.2% as well as travel time (24.5%~35.9% in the multiple intersections scenario.

  3. Social network intervention in patients with schizophrenia and marked social withdrawal: a randomized controlled study.

    Science.gov (United States)

    Terzian, Emanuela; Tognoni, Gianni; Bracco, Renata; De Ruggieri, Edoardo; Ficociello, Rita Angela; Mezzina, Roberto; Pillo, Giuseppe

    2013-11-01

    To evaluate the efficacy and feasibility of actions intended to implement or improve patients' social network within the Italian National Health Service community mental health services. We conducted a randomized clinical trial through a network of 47 community mental health services on patients with a diagnosis in the schizophrenia spectrum (F20 in the International Classification of Diseases, 10th Revision), who were young (aged younger than 45 years), and with a poor social network (less than 5 relationships). In addition to routine treatments, for the experimental group, the staff identified possible areas of interest for individual patients and proposed social activities taking place outside the services' resources and with members of the community. The main outcome was an improvement in the patients' social network; secondary end points were clinical outcome, abilities of daily living, and work. One- and 2-year outcomes of 345 and 327, respectively, of the 357 patients randomized were analyzed by intention-to-treat. A social network improvement was observed at year 1 in 25% of the patients allocated to routine treatment and in 39.9% of those allocated to the experimental arm (OR 2.0, 95% CI 1.3 to 3.1; adjusted OR 2.4, 95% CI 1.4 to 3.9). The difference remained statistically significant at year 2. No significant differences emerged for any of the other end points. However, patients with 1 or more other areas of improvement at year 1 and 2 showed a statistically significant social network improvement. The activation of social networks as an activity integrated with standard psychiatric care is practicable, without added economic and organizational costs, and appears to produce an effect persisting well beyond its implementation.

  4. Cognitive-behavioral therapy as continuation treatment to sustain response after electroconvulsive therapy in depression: a randomized controlled trial.

    Science.gov (United States)

    Brakemeier, Eva-Lotta; Merkl, Angela; Wilbertz, Gregor; Quante, Arnim; Regen, Francesca; Bührsch, Nicole; van Hall, Franziska; Kischkel, Eva; Danker-Hopfe, Heidi; Anghelescu, Ion; Heuser, Isabella; Kathmann, Norbert; Bajbouj, Malek

    2014-08-01

    Although electroconvulsive therapy (ECT) is the most effective acute antidepressant intervention, sustained response rates are low. It has never been systematically assessed whether psychotherapy, continuation ECT, or antidepressant medication is the most efficacious intervention to maintain initial treatment response. In a prospective, randomized clinical trial, 90 inpatients with major depressive disorder (MDD) were treated with right unilateral ultra-brief acute ECT. Electroconvulsive therapy responders received 6 months guideline-based antidepressant medication (MED) and were randomly assigned to add-on therapy with cognitive-behavioral group therapy (CBT-arm), add-on therapy with ultra-brief pulse continuation electroconvulsive therapy (ECT-arm), or no add-on therapy (MED-arm). After the 6 months of continuation treatment, patients were followed-up for another 6 months. The primary outcome parameter was the proportion of patients who remained well after 12 months. Of 90 MDD patients starting the acute phase, 70% responded and 47% remitted to acute ECT. After 6 months of continuation treatment, significant differences were observed in the three treatment arms with sustained response rates of 77% in the CBT-arm, 40% in the ECT-arm, and 44% in the MED-arm. After 12 months, these differences remained stable with sustained response rates of 65% in the CBT-arm, 28% in the ECT-arm, and 33% in the MED-arm. These results suggest that ultra-brief pulse ECT as a continuation treatment correlates with low sustained response rates. However, the main finding implicates cognitive-behavioral group therapy in combination with antidepressants might be an effective continuation treatment to sustain response after successful ECT in MDD patients. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. A randomized trial of automated intermittent ropivacaine administration vs. continuous infusion in an interscalene catheter

    DEFF Research Database (Denmark)

    Oxlund, J; Clausen, A H; Venø, S

    2018-01-01

    . Patients were allocated to either automated intermittent boluses with 16 mg ropivacaine every 2 h combined with patient-controlled administration or to a conventional regimen of continuous infusion of 8 mg/h (4 ml/h) of ropivacaine combined with patient controlled administration (2 ml, lockout time 30 min...

  6. Analysis in nuclear power accident emergency based on random network and particle swarm optimization

    International Nuclear Information System (INIS)

    Gong Dichen; Fang Fang; Ding Weicheng; Chen Zhi

    2014-01-01

    The GERT random network model of nuclear power accident emergency was built in this paper, and the intelligent computation was combined with the random network based on the analysis of Fukushima nuclear accident in Japan. The emergency process was divided into the series link and parallel link, and the parallel link was the part of series link. The overall allocation of resources was firstly optimized, and then the parallel link was analyzed. The effect of the resources for emergency used in different links was analyzed, and it was put forward that the corresponding particle velocity vector was limited under the condition of limited emergency resources. The resource-constrained particle swarm optimization was obtained by using velocity projection matrix to correct the motion of particles. The optimized allocation of resources in emergency process was obtained and the time consumption of nuclear power accident emergency was reduced. (authors)

  7. Dynamics of random Boolean networks under fully asynchronous stochastic update based on linear representation.

    Directory of Open Access Journals (Sweden)

    Chao Luo

    Full Text Available A novel algebraic approach is proposed to study dynamics of asynchronous random Boolean networks where a random number of nodes can be updated at each time step (ARBNs. In this article, the logical equations of ARBNs are converted into the discrete-time linear representation and dynamical behaviors of systems are investigated. We provide a general formula of network transition matrices of ARBNs as well as a necessary and sufficient algebraic criterion to determine whether a group of given states compose an attractor of length[Formula: see text] in ARBNs. Consequently, algorithms are achieved to find all of the attractors and basins in ARBNs. Examples are showed to demonstrate the feasibility of the proposed scheme.

  8. Feasibility of Construction of the Continuously Operating Geodetic GPS Network of Sinaloa, Mexico

    Science.gov (United States)

    Vazquez, G. E.; Jacobo, C.

    2011-12-01

    This research is based on the study and analysis of feasibility for the construction of the geodetic network for GPS continuous operation for Sinaloa, hereafter called (RGOCSIN). A GPS network of continuous operation is defined as that materialized structure physically through permanent monuments where measurements to the systems of Global Positioning (GPS) is performed continuously throughout a region. The GPS measurements in this network are measurements of accuracy according to international standards to define its coordinates, thus constituting the basic structure of geodetic referencing for a country. In this context is that in the near future the RGOCSIN constitutes a system state only accurate and reliable georeferencing in real-time (continuous and permanent operation) and will be used for different purposes; i.e., in addition to being fundamental basis for any lifting topographic or geodetic survey, and other areas such as: (1) Different construction processes (control and monitoring of engineering works); (2) Studies of deformation of the Earth's crust (before and after a seismic event); (3) GPS meteorology (weather forecasting); (4) Demarcation projects (natural and political); (5) Establishment of bases to generate mapping (necessary for the economic and social development of the state); (6) Precision agriculture (optimization of economic resources to the various crops); (7) Geographic information systems (Organization and planning activities associated with the design and construction of public services); (8) Urban growth (possible settlements in the appropriate form and taking care of the environmental aspect), among others. However there are criteria and regulations according to the INEGI (Instituto Nacional de Estadística y Geografía, http://www.inegi.org.mx/) that must be met; even for this stage of feasibility of construction that sees this project as a first phase. The fundamental criterion to be taken into account according to INEGI is a

  9. Vibrational spectra of four-coordinated random networks with periodic boundary conditions

    International Nuclear Information System (INIS)

    Guttman, L.

    1976-01-01

    Examples of perfectly four-coordinated networks satisfying periodic boundary conditions are constructed by a pseudo-random process, starting from a crystalline region. The unphysical features (high density, large deviations from the tetrahedral bond-angle) are removed by systematic modification of the bonding scheme. The vibrational spectra are calculated, using a valence-force potential, and the neutron scattering is computed by a phonon-expansion approximation

  10. Fault-tolerant topology in the wireless sensor networks for energy depletion and random failure

    International Nuclear Information System (INIS)

    Liu Bin; Dong Ming-Ru; Yin Rong-Rong; Yin Wen-Xiao

    2014-01-01

    Nodes in the wireless sensor networks (WSNs) are prone to failure due to energy depletion and poor environment, which could have a negative impact on the normal operation of the network. In order to solve this problem, in this paper, we build a fault-tolerant topology which can effectively tolerate energy depletion and random failure. Firstly, a comprehensive failure model about energy depletion and random failure is established. Then an improved evolution model is presented to generate a fault-tolerant topology, and the degree distribution of the topology can be adjusted. Finally, the relation between the degree distribution and the topological fault tolerance is analyzed, and the optimal value of evolution model parameter is obtained. Then the target fault-tolerant topology which can effectively tolerate energy depletion and random failure is obtained. The performances of the new fault tolerant topology are verified by simulation experiments. The results show that the new fault tolerant topology effectively prolongs the network lifetime and has strong fault tolerance. (general)

  11. Mutual trust method for forwarding information in wireless sensor networks using random secret pre-distribution

    Directory of Open Access Journals (Sweden)

    Chih-Hsueh Lin

    2016-04-01

    Full Text Available In wireless sensor networks, sensing information must be transmitted from sensor nodes to the base station by multiple hopping. Every sensor node is a sender and a relay node that forwards the sensing information that is sent by other nodes. Under an attack, the sensing information may be intercepted, modified, interrupted, or fabricated during transmission. Accordingly, the development of mutual trust to enable a secure path to be established for forwarding information is an important issue. Random key pre-distribution has been proposed to establish mutual trust among sensor nodes. This article modifies the random key pre-distribution to a random secret pre-distribution and incorporates identity-based cryptography to establish an effective method of establishing mutual trust for a wireless sensor network. In the proposed method, base station assigns an identity and embeds n secrets into the private secret keys for every sensor node. Based on the identity and private secret keys, the mutual trust method is utilized to explore the types of trust among neighboring sensor nodes. The novel method can resist malicious attacks and satisfy the requirements of wireless sensor network, which are resistance to compromising attacks, masquerading attacks, forger attacks, replying attacks, authentication of forwarding messages, and security of sensing information.

  12. Distributed Synchronization in Networks of Agent Systems With Nonlinearities and Random Switchings.

    Science.gov (United States)

    Tang, Yang; Gao, Huijun; Zou, Wei; Kurths, Jürgen

    2013-02-01

    In this paper, the distributed synchronization problem of networks of agent systems with controllers and nonlinearities subject to Bernoulli switchings is investigated. Controllers and adaptive updating laws injected in each vertex of networks depend on the state information of its neighborhood. Three sets of Bernoulli stochastic variables are introduced to describe the occurrence probabilities of distributed adaptive controllers, updating laws and nonlinearities, respectively. By the Lyapunov functions method, we show that the distributed synchronization of networks composed of agent systems with multiple randomly occurring nonlinearities, multiple randomly occurring controllers, and multiple randomly occurring updating laws can be achieved in mean square under certain criteria. The conditions derived in this paper can be solved by semi-definite programming. Moreover, by mathematical analysis, we find that the coupling strength, the probabilities of the Bernoulli stochastic variables, and the form of nonlinearities have great impacts on the convergence speed and the terminal control strength. The synchronization criteria and the observed phenomena are demonstrated by several numerical simulation examples. In addition, the advantage of distributed adaptive controllers over conventional adaptive controllers is illustrated.

  13. Endogenous fields enhanced stochastic resonance in a randomly coupled neuronal network

    International Nuclear Information System (INIS)

    Deng, Bin; Wang, Lin; Wang, Jiang; Wei, Xi-le; Yu, Hai-tao

    2014-01-01

    Highlights: • We study effects of endogenous fields on stochastic resonance in a neural network. • Stochastic resonance can be notably enhanced by endogenous field feedback. • Endogenous field feedback delay plays a vital role in stochastic resonance. • The parameters of low-passed filter play a subtle role in SR. - Abstract: Endogenous field, evoked by structured neuronal network activity in vivo, is correlated with many vital neuronal processes. In this paper, the effects of endogenous fields on stochastic resonance (SR) in a randomly connected neuronal network are investigated. The network consists of excitatory and inhibitory neurons and the axonal conduction delays between neurons are also considered. Numerical results elucidate that endogenous field feedback results in more rhythmic macroscope activation of the network for proper time delay and feedback coefficient. The response of the network to the weak periodic stimulation can be notably enhanced by endogenous field feedback. Moreover, the endogenous field feedback delay plays a vital role in SR. We reveal that appropriately tuned delays of the feedback can either induce the enhancement of SR, appearing at every integer multiple of the weak input signal’s oscillation period, or the depression of SR, appearing at every integer multiple of half the weak input signal’s oscillation period for the same feedback coefficient. Interestingly, the parameters of low-passed filter which is used in obtaining the endogenous field feedback signal play a subtle role in SR

  14. Topology determines force distributions in one-dimensional random spring networks

    Science.gov (United States)

    Heidemann, Knut M.; Sageman-Furnas, Andrew O.; Sharma, Abhinav; Rehfeldt, Florian; Schmidt, Christoph F.; Wardetzky, Max

    2018-02-01

    Networks of elastic fibers are ubiquitous in biological systems and often provide mechanical stability to cells and tissues. Fiber-reinforced materials are also common in technology. An important characteristic of such materials is their resistance to failure under load. Rupture occurs when fibers break under excessive force and when that failure propagates. Therefore, it is crucial to understand force distributions. Force distributions within such networks are typically highly inhomogeneous and are not well understood. Here we construct a simple one-dimensional model system with periodic boundary conditions by randomly placing linear springs on a circle. We consider ensembles of such networks that consist of N nodes and have an average degree of connectivity z but vary in topology. Using a graph-theoretical approach that accounts for the full topology of each network in the ensemble, we show that, surprisingly, the force distributions can be fully characterized in terms of the parameters (N ,z ) . Despite the universal properties of such (N ,z ) ensembles, our analysis further reveals that a classical mean-field approach fails to capture force distributions correctly. We demonstrate that network topology is a crucial determinant of force distributions in elastic spring networks.

  15. Energy utilization associated with regular activity breaks and continuous physical activity: A randomized crossover trial.

    Science.gov (United States)

    Fenemor, S P; Homer, A R; Perry, T L; Skeaff, C M; Peddie, M C; Rehrer, N J

    2018-06-01

    To quantify and compare energy utilization associated with prolonged sitting alone, or interrupted with regular activity breaks and/or an additional bout of continuous physical activity. Thirty six adults (11 males, BMI 24.1 ± 4.6) completed four interventions: (1) prolonged sitting (SIT), (2) sitting with 2-min of walking every 30 min (RAB), (3) prolonged sitting with 30-min of continuous walking at the end of the day (SIT + PA), (4) a combination of the activities in (2) and (3) above (RAB + PA). All walking was at a speed and incline corresponding to 60% V̇O 2max . Energy utilization over 7 h for each intervention was estimated using indirect calorimetry. Compared to SIT, SIT + PA increased total energy utilization by 709 kJ (95% CI 485-933 kJ), RAB by 863 kJ (95% CI 638-1088 kJ), and RAB + PA by 1752 kJ (95% CI 1527-1927 kJ) (all p energy utilization between SIT + PA and RAB, however, post-physical activity energy utilization in RAB was 632 kJ greater than SIT + PA (95% CI 561-704 kJ; p energy utilization compared to a single bout of continuous activity; however the total energy utilization is similar. Combining activity breaks with a longer continuous bout of activity will further enhance energy utilization, and in the longer term, may positively affect weight management of a greater magnitude than either activity pattern performed alone. ANZCTR12614000624684. Copyright © 2018 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  16. Theoretical characterization of the topology of connected carbon nanotubes in random networks

    International Nuclear Information System (INIS)

    Heitz, Jerome; Leroy, Yann; Hebrard, Luc; Lallement, Christophe

    2011-01-01

    In recent years, a lot of attention has been paid to carbon nanotube (CNT) networks and their applications to electronic devices. Many studies concentrate on the percolation threshold and the characterization of the conduction in such materials. Nevertheless, no theoretical study has yet attempted to characterize the CNT features inside finite size CNT networks. We present a theoretical approach based on geometrical and statistical considerations. We demonstrate the possibility of explicitly determining some relations existing between two neighbor CNTs and their contact efficiency in random networks of identical CNTs. We calculate the contact probability of rigid identical CNTs and we obtain a probability of 0.2027, which turns out to be independent of the CNT density. Based on this probability, we establish also the dependence of the number of contacts per CNT as a function of the CNT density. All the theoretical results are validated by very good agreement with Monte Carlo simulations.

  17. Optimal system size for complex dynamics in random neural networks near criticality

    Energy Technology Data Exchange (ETDEWEB)

    Wainrib, Gilles, E-mail: wainrib@math.univ-paris13.fr [Laboratoire Analyse Géométrie et Applications, Université Paris XIII, Villetaneuse (France); García del Molino, Luis Carlos, E-mail: garciadelmolino@ijm.univ-paris-diderot.fr [Institute Jacques Monod, Université Paris VII, Paris (France)

    2013-12-15

    In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices.

  18. Optimal system size for complex dynamics in random neural networks near criticality

    International Nuclear Information System (INIS)

    Wainrib, Gilles; García del Molino, Luis Carlos

    2013-01-01

    In this article, we consider a model of dynamical agents coupled through a random connectivity matrix, as introduced by Sompolinsky et al. [Phys. Rev. Lett. 61(3), 259–262 (1988)] in the context of random neural networks. When system size is infinite, it is known that increasing the disorder parameter induces a phase transition leading to chaotic dynamics. We observe and investigate here a novel phenomenon in the sub-critical regime for finite size systems: the probability of observing complex dynamics is maximal for an intermediate system size when the disorder is close enough to criticality. We give a more general explanation of this type of system size resonance in the framework of extreme values theory for eigenvalues of random matrices

  19. Therapeutic effect of continuous exercise training program on serum creatinine concentration in men with hypertension: a randomized controlled trial.

    Science.gov (United States)

    Sikiru, L; Okoye, G C

    2014-09-01

    Creatinine (Cr) has been implicated as an independent predictor of hypertension and exercise has been reported as adjunct therapy for hypertension. The purpose of the present study was to investigate the effect of continuous training programme on blood pressure and serum creatinine concentration in black African subjects with hypertension. Three hundred and fifty seven male patients with mild to moderate (systolic blood pressure [SBP] between 140-180 & diastolic blood pressure [DBP] between 90-109 mmHg) essential hypertension were age matched and randomly grouped into continuous & control groups. The continuous group involved in an 8 weeks continuous training (60-79% HR reserve) of between 45 minutes to 60 minutes, 3 times per week, while the control group remain sedentary. SBP, DBP, VO2max, serum Cr, body mass index (BMI), waist hip ratio (WHR) and percent (%) body fat. Analysis of covariance (ANCOVA) and Pearson correlation tests were used in data analysis. Findings of the study revealed significant decreased effects of continuous training programme on SBP, DBP, Cr, BMI, WHR, % body fat and significant increase in VO2max at pexercise training as a multi-therapy in the down regulation of blood pressure, serum Cr, body size and body fat in hypertension.

  20. Revisiting random walk based sampling in networks: evasion of burn-in period and frequent regenerations.

    Science.gov (United States)

    Avrachenkov, Konstantin; Borkar, Vivek S; Kadavankandy, Arun; Sreedharan, Jithin K

    2018-01-01

    In the framework of network sampling, random walk (RW) based estimation techniques provide many pragmatic solutions while uncovering the unknown network as little as possible. Despite several theoretical advances in this area, RW based sampling techniques usually make a strong assumption that the samples are in stationary regime, and hence are impelled to leave out the samples collected during the burn-in period. This work proposes two sampling schemes without burn-in time constraint to estimate the average of an arbitrary function defined on the network nodes, for example, the average age of users in a social network. The central idea of the algorithms lies in exploiting regeneration of RWs at revisits to an aggregated super-node or to a set of nodes, and in strategies to enhance the frequency of such regenerations either by contracting the graph or by making the hitting set larger. Our first algorithm, which is based on reinforcement learning (RL), uses stochastic approximation to derive an estimator. This method can be seen as intermediate between purely stochastic Markov chain Monte Carlo iterations and deterministic relative value iterations. The second algorithm, which we call the Ratio with Tours (RT)-estimator, is a modified form of respondent-driven sampling (RDS) that accommodates the idea of regeneration. We study the methods via simulations on real networks. We observe that the trajectories of RL-estimator are much more stable than those of standard random walk based estimation procedures, and its error performance is comparable to that of respondent-driven sampling (RDS) which has a smaller asymptotic variance than many other estimators. Simulation studies also show that the mean squared error of RT-estimator decays much faster than that of RDS with time. The newly developed RW based estimators (RL- and RT-estimators) allow to avoid burn-in period, provide better control of stability along the sample path, and overall reduce the estimation time. Our

  1. Faster Blood Flow Rate Does Not Improve Circuit Life in Continuous Renal Replacement Therapy: A Randomized Controlled Trial.

    Science.gov (United States)

    Fealy, Nigel; Aitken, Leanne; du Toit, Eugene; Lo, Serigne; Baldwin, Ian

    2017-10-01

    To determine whether blood flow rate influences circuit life in continuous renal replacement therapy. Prospective randomized controlled trial. Single center tertiary level ICU. Critically ill adults requiring continuous renal replacement therapy. Patients were randomized to receive one of two blood flow rates: 150 or 250 mL/min. The primary outcome was circuit life measured in hours. Circuit and patient data were collected until each circuit clotted or was ceased electively for nonclotting reasons. Data for clotted circuits are presented as median (interquartile range) and compared using the Mann-Whitney U test. Survival probability for clotted circuits was compared using log-rank test. Circuit clotting data were analyzed for repeated events using hazards ratio. One hundred patients were randomized with 96 completing the study (150 mL/min, n = 49; 250 mL/min, n = 47) using 462 circuits (245 run at 150 mL/min and 217 run at 250 mL/min). Median circuit life for first circuit (clotted) was similar for both groups (150 mL/min: 9.1 hr [5.5-26 hr] vs 10 hr [4.2-17 hr]; p = 0.37). Continuous renal replacement therapy using blood flow rate set at 250 mL/min was not more likely to cause clotting compared with 150 mL/min (hazards ratio, 1.00 [0.60-1.69]; p = 0.68). Gender, body mass index, weight, vascular access type, length, site, and mode of continuous renal replacement therapy or international normalized ratio had no effect on clotting risk. Continuous renal replacement therapy without anticoagulation was more likely to cause clotting compared with use of heparin strategies (hazards ratio, 1.62; p = 0.003). Longer activated partial thromboplastin time (hazards ratio, 0.98; p = 0.002) and decreased platelet count (hazards ratio, 1.19; p = 0.03) were associated with a reduced likelihood of circuit clotting. There was no difference in circuit life whether using blood flow rates of 250 or 150 mL/min during continuous renal replacement therapy.

  2. Blastocyst utilization rates after continuous culture in two commercial single-step media: a prospective randomized study with sibling oocytes.

    Science.gov (United States)

    Sfontouris, Ioannis A; Kolibianakis, Efstratios M; Lainas, George T; Venetis, Christos A; Petsas, George K; Tarlatzis, Basil C; Lainas, Tryfon G

    2017-10-01

    The aim of this study is to determine whether blastocyst utilization rates are different after continuous culture in two different commercial single-step media. This is a paired randomized controlled trial with sibling oocytes conducted in infertility patients, aged ≤40 years with ≥10 oocytes retrieved assigned to blastocyst culture and transfer. Retrieved oocytes were randomly allocated to continuous culture in either Sage one-step medium (Origio) or Continuous Single Culture (CSC) medium (Irvine Scientific) without medium renewal up to day 5 post oocyte retrieval. Main outcome measure was the proportion of embryos suitable for clinical use (utilization rate). A total of 502 oocytes from 33 women were randomly allocated to continuous culture in either Sage one-step medium (n = 250) or CSC medium (n = 252). Fertilization was performed by either in vitro fertilization or intracytoplasmic sperm injection, and embryo transfers were performed on day 5. Two patients had all blastocysts frozen due to the occurrence of severe ovarian hyperstimulation syndrome. Fertilization and cleavage rates, as well as embryo quality on day 3, were similar in the two media. Blastocyst utilization rates (%, 95% CI) [55.4% (46.4-64.1) vs 54.7% (44.9-64.6), p = 0.717], blastocyst formation rates [53.6% (44.6-62.5) vs 51.9 (42.2-61.6), p = 0.755], and proportion of good quality blastocysts [36.8% (28.1-45.4) vs 36.1% (27.2-45.0), p = 0.850] were similar in Sage one-step and CSC media, respectively. Continuous culture of embryos in Sage one-step and CSC media is associated with similar blastocyst development and utilization rates. Both single-step media appear to provide adequate support during in vitro preimplantation embryo development. Whether these observations are also valid for other continuous single medium protocols remains to be determined. NCT02302638.

  3. Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles.

    Science.gov (United States)

    Prezel, Elea; Elie, Auréliane; Delaroche, Julie; Stoppin-Mellet, Virginie; Bosc, Christophe; Serre, Laurence; Fourest-Lieuvin, Anne; Andrieux, Annie; Vantard, Marylin; Arnal, Isabelle

    2018-01-15

    In neurons, microtubule networks alternate between single filaments and bundled arrays under the influence of effectors controlling their dynamics and organization. Tau is a microtubule bundler that stabilizes microtubules by stimulating growth and inhibiting shrinkage. The mechanisms by which tau organizes microtubule networks remain poorly understood. Here, we studied the self-organization of microtubules growing in the presence of tau isoforms and mutants. The results show that tau's ability to induce stable microtubule bundles requires two hexapeptides located in its microtubule-binding domain and is modulated by its projection domain. Site-specific pseudophosphorylation of tau promotes distinct microtubule organizations: stable single microtubules, stable bundles, or dynamic bundles. Disease-related tau mutations increase the formation of highly dynamic bundles. Finally, cryo-electron microscopy experiments indicate that tau and its variants similarly change the microtubule lattice structure by increasing both the protofilament number and lattice defects. Overall, our results uncover novel phosphodependent mechanisms governing tau's ability to trigger microtubule organization and reveal that disease-related modifications of tau promote specific microtubule organizations that may have a deleterious impact during neurodegeneration. © 2018 Prezel, Elie, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Continuous transversus abdominis plane block vs intermittent bolus for analgesia after abdominal surgery: a randomized trial

    Directory of Open Access Journals (Sweden)

    Rao Kadam V

    2017-07-01

    Full Text Available Vasanth Rao Kadam,1 Roelof M Van Wijk,1 John L Moran,2 Shantan Ganesh,3 A Kumar,1 Rajesh Sethi,1 Patricia Williams2,4 1Department of Anaesthesia, The Queen Elizabeth Hospital, School of Medicine, University of Adelaide, Adelaide, SA, 2Intensive Care Unit, The Queen Elizabeth Hospital, School of Medicine, University of Adelaide, Adelaide, SA, 3Department of Surgery, The Queen Elizabeth Hospital, School of Medicine, University of Adelaide, Adelaide, SA, 4Department of Epidemiology and Preventive Medicine, School Public Health and Preventive Medicine, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia Background: Continuous and intermittent bolus techniques of transversus abdominis plane (TAP blocks have been used for analgesia after abdominal surgery. Although both are effective, there are no studies comparing them. The aim of this study is to compare analgesia and cost-effectiveness between these groups.Methods: After obtaining ethical approval, 20 American Society of Anesthesiologists ASA grade I to III patients undergoing elective abdominal surgery were recruited with 10 patients allocated to each arm. Bilateral ultrasound-guided TAP blocks were performed with an initial bolus of 0.5% ropivacaine 20 mL per side, followed by catheter insertion. After surgery, the continuous infusion group received 0.2% ropivacaine 8 mL/hour on each side and the intermittent bolus group received doses of 0.2% ropivacaine 20 mL per side every 8 hours for 48 hours. Both groups received intravenous fentanyl patient-controlled analgesia and regular oral paracetamol. Parameters recorded included numerical rating scores for pain and post-operative analgesic consumption at baseline (time 0 and at 1 hour, 1 day and 2 days post-operatively. The duration of catheter insertion, complications, patient satisfaction and information regarding costs were also recorded. Patient satisfaction was assessed utilizing a 4-point

  5. Effect of continuous oral suctioning on the development of ventilator-associated pneumonia: a pilot randomized controlled trial.

    Science.gov (United States)

    Chow, Meyrick C M; Kwok, Shu-Man; Luk, Hing-Wah; Law, Jenny W H; Leung, Bartholomew P K

    2012-11-01

    Both continuous and intermittent aspiration of subglottic secretions by means of specially designed endotracheal tubes containing a separate dorsal lumen that opens into the subglottic region have been shown to be useful in reducing ventilator-associated pneumonia (VAP). However, the high cost of these tubes restricts their use. The aim of this pilot randomized controlled trial was to test the effect of a low-cost device (saliva ejector) for continuous oral suctioning (COS) on the incidence of VAP in patients receiving mechanical ventilation. The study was conducted in the six-bed medical-surgical ICU of a hospital with over 400 beds that provides comprehensive medical services to the public. The design of this study was a parallel-group randomized controlled trial. While both the experimental and control groups used the conventional endotracheal tube, the saliva ejector was only applied to patients assigned to the experimental group. The device was put between the patient's cheek and teeth, and then connected to 100mmHg of suction for the continuous drainage of saliva. Fourteen patients were randomized to receive COS and 13 patients were randomized to the control group. The two groups were similar in demographics, reasons for intubation, co-morbidity, and risk factors for acquiring VAP. VAP was found in 3 patients (23.1%; 71 episodes of VAP per 1000 ventilation days) receiving COS and in 10 patients (83.3%; 141 episodes of VAP per 1000 ventilation days) in the control group (relative risk, 0.28; 95% confidence interval, 0.10-0.77; p=0.003). The duration of mechanical ventilation in the experimental group was 3.2 days (SD 1.3), while that in the control group was 5.9 days (SD 2.8) (p=0.009); and the length of ICU stay was 4.8 days (SD 1.6) versus 9.8 days (SD 6.3) for the experimental and control groups, respectively (p=0.019). Continuous clearance of oral secretion by the saliva ejector may have an important role to play in reducing the rate of VAP, decreasing the

  6. Highlights and Opportunities from Continuous Access to Gas Hydrates Sites at Ocean Networks Canada's NEPTUNE Observatory

    Science.gov (United States)

    Scherwath, M.; Heesemann, M.; Riedel, M.; Thomsen, L.; Roemer, M.; Chatzievangelou, D.; Purser, A.

    2017-12-01

    Since 2009 Ocean Networks Canada provides permanent access and continuous data in near real-time from two prominent gas hydrates research sites at the Northern Cascadia Margin, Barkley Canyon and Clayoquot Slope off Vancouver Island, through power and communication cables directly from shore. We show data highlights from the seafloor crawler Wally, the world's first internet operated vehicle, in a field of hydrate mounds and outcropping gas hydrates, and its co-located sonars and state-of-the-ocean sensors and Barkley Canyon. For example, spectacular views from the benthic communities and their changes over time are captured by video. At Clayoquot Slope highly active gas seep fields are monitored with a rotating multibeam sonar and various other environmental sensors. In addition, newly installed geodetic sensors as well as an instrumented borehole in that area are now online and provide additional data on subduction-related deformation and potential links to gas discharge. These show-case examples highlight the benefits of co-located experiments that enable interdisciplinary research and also the ability for high-power and -bandwidth long-term monitoring at remote seafloor locations, that over time will provide baselines for environmental monitoring together with natural variability and potential long-term trends.

  7. Capturing the Flatness of a peer-to-peer lending network through random and selected perturbations

    Science.gov (United States)

    Karampourniotis, Panagiotis D.; Singh, Pramesh; Uparna, Jayaram; Horvat, Emoke-Agnes; Szymanski, Boleslaw K.; Korniss, Gyorgy; Bakdash, Jonathan Z.; Uzzi, Brian

    Null models are established tools that have been used in network analysis to uncover various structural patterns. They quantify the deviance of an observed network measure to that given by the null model. We construct a null model for weighted, directed networks to identify biased links (carrying significantly different weights than expected according to the null model) and thus quantify the flatness of the system. Using this model, we study the flatness of Kiva, a large international crownfinancing network of borrowers and lenders, aggregated to the country level. The dataset spans the years from 2006 to 2013. Our longitudinal analysis shows that flatness of the system is reducing over time, meaning the proportion of biased inter-country links is growing. We extend our analysis by testing the robustness of the flatness of the network in perturbations on the links' weights or the nodes themselves. Examples of such perturbations are event shocks (e.g. erecting walls) or regulatory shocks (e.g. Brexit). We find that flatness is unaffected by random shocks, but changes after shocks target links with a large weight or bias. The methods we use to capture the flatness are based on analytics, simulations, and numerical computations using Shannon's maximum entropy. Supported by ARL NS-CTA.

  8. Distribution of orientation selectivity in recurrent networks of spiking neurons with different random topologies.

    Science.gov (United States)

    Sadeh, Sadra; Rotter, Stefan

    2014-01-01

    Neurons in the primary visual cortex are more or less selective for the orientation of a light bar used for stimulation. A broad distribution of individual grades of orientation selectivity has in fact been reported in all species. A possible reason for emergence of broad distributions is the recurrent network within which the stimulus is being processed. Here we compute the distribution of orientation selectivity in randomly connected model networks that are equipped with different spatial patterns of connectivity. We show that, for a wide variety of connectivity patterns, a linear theory based on firing rates accurately approximates the outcome of direct numerical simulations of networks of spiking neurons. Distance dependent connectivity in networks with a more biologically realistic structure does not compromise our linear analysis, as long as the linearized dynamics, and hence the uniform asynchronous irregular activity state, remain stable. We conclude that linear mechanisms of stimulus processing are indeed responsible for the emergence of orientation selectivity and its distribution in recurrent networks with functionally heterogeneous synaptic connectivity.

  9. Design and testing of a unique randomized gravity, continuous flow bioreactor

    Science.gov (United States)

    Lassiter, Carroll B.

    1993-01-01

    high concentrations of oxygen into the culture medium. The system described allows for continuous, on line sampling for production of product without disturbing fluid and particle dynamics in the reaction chamber. It provides for the introduction of substrate, or control substances after cell adaptation to simulated microgravity has been accomplished. The reactor system provides for the nondisruptive, continuous flow replacement of nutrient and removal of product. On line monitoring and control of growth conditions such as pH and nutrient status are provided. A rotating distribution valve allows cessation of growth chamber rotation, thereby preserving the simulated microgravity conditions over longer periods of time.

  10. Printing continuously graded interpenetrating polymer networks of acrylate/epoxy by manipulating cationic network formation during stereolithography

    Directory of Open Access Journals (Sweden)

    W. Li

    2016-12-01

    Full Text Available Ultra-violet (UV laser assisted stereolithography is used to print graded interpenetrating polymer networks (IPNs by controlling network formation. Unlike the traditional process where structural change in IPNs is achieved by varying the feeding ratio of monomers or polymer precursors, in this demonstration property is changed by controlled termination of network formation. A photo-initiated process is used to construct IPNs by a combination of radical and cationic network formation in an acrylate/epoxy system. The extent of the cationic network formation is used to control the final properties of the system. Rapid-Scan Fourier Transformation Infrared Spectroscopy (RS-FTIR is used to track the curing kinetics of the two networks and identify key parameters to control the final properties. Atomic force microscopy (AFM and differential scanning calorimetry (DSC confirm the formation of homogenous IPNs, whereas nano-indentation indicates that properties vary with the extent of cationic network formation. The curing characteristics are used to design and demonstrate printing of graded IPNs that show two orders of magnitude variation in mechanical properties in the millimeter scale.

  11. Evaluating the impact of continuous quality improvement methods at hospitals in Tanzania: a cluster-randomized trial.

    Science.gov (United States)

    Kamiya, Yusuke; Ishijma, Hisahiro; Hagiwara, Akiko; Takahashi, Shizu; Ngonyani, Henook A M; Samky, Eleuter

    2017-02-01

    To evaluate the impact of implementing continuous quality improvement (CQI) methods on patient's experiences and satisfaction in Tanzania. Cluster-randomized trial, which randomly allocated district-level hospitals into treatment group and control group, was conducted. Sixteen district-level hospitals in Kilimanjaro and Manyara regions of Tanzania. Outpatient exit surveys targeting totally 3292 individuals, 1688 in the treatment and 1604 in the control group, from 3 time-points between September 2011 and September 2012. Implementation of the 5S (Sort, Set, Shine, Standardize, Sustain) approach as a CQI method at outpatient departments over 12 months. Cleanliness, waiting time, patient's experience, patient's satisfaction. The 5S increased cleanliness in the outpatient department, patients' subjective waiting time and overall satisfaction. However, negligible effects were confirmed for patient's experiences on hospital staff behaviours. The 5S as a CQI method is effective in enhancing hospital environment and service delivery; that are subjectively assessed by outpatients even during the short intervention period. Nevertheless, continuous efforts will be needed to connect CQI practices with the further improvement in the delivery of quality health care. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  12. Empirical comparison of four baseline covariate adjustment methods in analysis of continuous outcomes in randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Zhang S

    2014-07-01

    Full Text Available Shiyuan Zhang,1 James Paul,2 Manyat Nantha-Aree,2 Norman Buckley,2 Uswa Shahzad,2 Ji Cheng,2 Justin DeBeer,5 Mitchell Winemaker,5 David Wismer,5 Dinshaw Punthakee,5 Victoria Avram,5 Lehana Thabane1–41Department of Clinical Epidemiology and Biostatistics, 2Department of Anesthesia, McMaster University, Hamilton, ON, Canada; 3Biostatistics Unit/Centre for Evaluation of Medicines, St Joseph's Healthcare - Hamilton, Hamilton, ON, Canada; 4Population Health Research Institute, Hamilton Health Science/McMaster University, 5Department of Surgery, Division of Orthopaedics, McMaster University, Hamilton, ON, CanadaBackground: Although seemingly straightforward, the statistical comparison of a continuous variable in a randomized controlled trial that has both a pre- and posttreatment score presents an interesting challenge for trialists. We present here empirical application of four statistical methods (posttreatment scores with analysis of variance, analysis of covariance, change in scores, and percent change in scores, using data from a randomized controlled trial of postoperative pain in patients following total joint arthroplasty (the Morphine COnsumption in Joint Replacement Patients, With and Without GaBapentin Treatment, a RandomIzed ControlLEd Study [MOBILE] trials.Methods: Analysis of covariance (ANCOVA was used to adjust for baseline measures and to provide an unbiased estimate of the mean group difference of the 1-year postoperative knee flexion scores in knee arthroplasty patients. Robustness tests were done by comparing ANCOVA with three comparative methods: the posttreatment scores, change in scores, and percentage change from baseline.Results: All four methods showed similar direction of effect; however, ANCOVA (-3.9; 95% confidence interval [CI]: -9.5, 1.6; P=0.15 and the posttreatment score (-4.3; 95% CI: -9.8, 1.2; P=0.12 method provided the highest precision of estimate compared with the change score (-3.0; 95% CI: -9.9, 3.8; P=0

  13. Continuous-Time Random Walk Models of DNA Electrophoresis in a Post Array: II. Mobility and Sources of Band Broadening

    Science.gov (United States)

    Olson, Daniel W.; Dutta, Sarit; Laachi, Nabil; Tian, Mingwei; Dorfman, Kevin D.

    2011-01-01

    Using the two-state, continuous-time random walk model, we develop expressions for the mobility and the plate height during DNA electrophoresis in an ordered post array that delineate the contributions due to (i) the random distance between collisions and (ii) the random duration of a collision. These contributions are expressed in terms of the means and variances of the underlying stochastic processes, which we evaluate from a large ensemble of Brownian dynamics simulations performed using different electric fields and molecular weights in a hexagonal array of 1 μm posts with a 3 μm center-to-center distance. If we fix the molecular weight, we find that the collision frequency governs the mobility. In contrast, the average collision duration is the most important factor for predicting the mobility as a function of DNA size at constant Péclet number. The plate height is reasonably well-described by a single post rope-over-pulley model, provided that the extension of the molecule is small. Our results only account for dispersion inside the post array and thus represent a theoretical lower bound on the plate height in an actual device. PMID:21290387

  14. Features of Random Metal Nanowire Networks with Application in Transparent Conducting Electrodes

    KAUST Repository

    Maloth, Thirupathi

    2017-05-01

    Among the alternatives to conventional Indium Tin Oxide (ITO) used in making transparent conducting electrodes, the random metal nanowire (NW) networks are considered to be superior offering performance at par with ITO. The performance is measured in terms of sheet resistance and optical transmittance. However, as the electrical properties of such random networks are achieved thanks to a percolation network, a minimum size of the electrodes is needed so it actually exceeds the representative volume element (RVE) of the material and the macroscopic electrical properties are achieved. There is not much information about the compatibility of this minimum RVE size with the resolution actually needed in electronic devices. Furthermore, the efficiency of NWs in terms of electrical conduction is overlooked. In this work, we address the above industrially relevant questions - 1) The minimum size of electrodes that can be made based on the dimensions of NWs and the material coverage. For this, we propose a morphology based classification in defining the RVE size and we also compare the same with that is based on macroscopic electrical properties stabilization. 2) The amount of NWs that do not participate in electrical conduction, hence of no practical use. The results presented in this thesis are a design guide to experimentalists to design transparent electrodes with more optimal usage of the material.

  15. Continual observation on crop leaf area index using wireless sensors network

    International Nuclear Information System (INIS)

    Jiao, Sihong

    2014-01-01

    Crop structural parameter, i.e. leaf area index(LAI), is the main factor that can effect the solar energy re-assignment in the canopy. An automatic measuring system which is designed on the basis of wireless sensors network(WSN) is present in this paper. The system is comprised of two types of node. One is the measurement nodes which measured solar irradiance and were deployed beneath and above the canopy respectively, and another is a sink node which was used to collect data from the other measurement nodes. The measurement nodes also have ability to repeater data from one node to another and finally transfer signal to the sink node. Then the collected data of sink node are transferred to the data center through GPRS network. Using the field data collected by WSN, canopy structural parameters can be calculated using the direct transmittance which is the ratio of sun radiation captured by the measurement node beneath and above the canopy on different sun altitude angles. The proposed WSN measurement systems which is consisted of about 45 measurement node was deployed in the Heihe watershed to continually observe the crop canopy structural parameters from 25 June to 24 August 2012. To validate the performance of the WSN measured crop structural parameters, the LAI values were also measured by LAI2000. The field preliminary validation results show that the designed system can capture the varies of solar direct canopy transmittance on different time in a day, which is the basis to calculate the target canopy structural parameters. The validation results reveal that the measured LAI values derived from our propose measurement system have acceptable correlation coefficient(R2 from 0.27 to 0.96 and averaged value 0.42) with those derived from LAI2000. So it is a promising way in the agriculture application to utilize the proposed system and thus will be an efficient way to measure the crop structural parameters in the large spatial region and on the long time series

  16. Unanticipated Effect of a Randomized Peer Network Intervention on Depressive Symptoms among Young Methamphetamine Users in Thailand

    Science.gov (United States)

    German, D.; Sutcliffe, C. G.; Sirirojn, B.; Sherman, S. G.; Latkin, C. A.; Aramrattana, A.; Celentano, D. D.

    2012-01-01

    We examined the effect on depressive symptoms of a peer network-oriented intervention effective in reducing sexual risk behavior and methamphetamine (MA) use. Current Thai MA users aged 18-25 years and their drug and/or sex network members enrolled in a randomized controlled trial with 4 follow-ups over 12 months. A total of 415 index participants…

  17. A virtual remote sensing observation network for continuous, near-real-time monitoring of atmospheric instability

    Science.gov (United States)

    Toporov, Maria; Löhnert, Ulrich; Potthast, Roland; Cimini, Domenico; De Angelis, Francesco

    2017-04-01

    Short-term forecasts of current high-resolution numerical weather prediction models still have large deficits in forecasting the exact temporal and spatial location of severe, locally influenced weather such as summer-time convective storms or cool season lifted stratus or ground fog. Often, the thermodynamic instability - especially in the boundary layer - plays an essential role in the evolution of weather events. While the thermodynamic state of the atmosphere is well measured close to the surface (i.e. 2 m) by in-situ sensors and in the upper troposphere by satellite sounders, the planetary boundary layer remains a largely under-sampled region of the atmosphere where only sporadic information from radiosondes or aircraft observations is available. The major objective of the presented DWD-funded project ARON (Extramural Research Programme) is to overcome this observational gap and to design an optimized network of ground based microwave radiometers (MWR) and compact Differential Absorption Lidars (DIAL) for a continuous, near-real-time monitoring of temperature and humidity in the atmospheric boundary layer in order to monitor thermodynamic (in)stability. Previous studies showed, that microwave profilers are well suited for continuously monitoring the temporal development of atmospheric stability (i.e. Cimini et al., 2015) before the initiation of deep convection, especially in the atmospheric boundary layer. However, the vertical resolution of microwave temperature profiles is best in the lowest kilometer above the surface, decreasing rapidly with increasing height. In addition, humidity profile retrievals typically cannot be resolved with more than two degrees of freedom for signal, resulting in a rather poor vertical resolution throughout the troposphere. Typical stability indices used to assess the potential of convection rely on temperature and humidity values not only in the region of the boundary layer but also in the layers above. Therefore, satellite

  18. Distributed Constrained Stochastic Subgradient Algorithms Based on Random Projection and Asynchronous Broadcast over Networks

    Directory of Open Access Journals (Sweden)

    Junlong Zhu

    2017-01-01

    Full Text Available We consider a distributed constrained optimization problem over a time-varying network, where each agent only knows its own cost functions and its constraint set. However, the local constraint set may not be known in advance or consists of huge number of components in some applications. To deal with such cases, we propose a distributed stochastic subgradient algorithm over time-varying networks, where the estimate of each agent projects onto its constraint set by using random projection technique and the implement of information exchange between agents by employing asynchronous broadcast communication protocol. We show that our proposed algorithm is convergent with probability 1 by choosing suitable learning rate. For constant learning rate, we obtain an error bound, which is defined as the expected distance between the estimates of agent and the optimal solution. We also establish an asymptotic upper bound between the global objective function value at the average of the estimates and the optimal value.

  19. Fisher information at the edge of chaos in random Boolean networks.

    Science.gov (United States)

    Wang, X Rosalind; Lizier, Joseph T; Prokopenko, Mikhail

    2011-01-01

    We study the order-chaos phase transition in random Boolean networks (RBNs), which have been used as models of gene regulatory networks. In particular we seek to characterize the phase diagram in information-theoretic terms, focusing on the effect of the control parameters (activity level and connectivity). Fisher information, which measures how much system dynamics can reveal about the control parameters, offers a natural interpretation of the phase diagram in RBNs. We report that this measure is maximized near the order-chaos phase transitions in RBNs, since this is the region where the system is most sensitive to its parameters. Furthermore, we use this study of RBNs to clarify the relationship between Shannon and Fisher information measures.

  20. Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks

    Directory of Open Access Journals (Sweden)

    Thierry Moudiki

    2018-03-01

    Full Text Available We are interested in obtaining forecasts for multiple time series, by taking into account the potential nonlinear relationships between their observations. For this purpose, we use a specific type of regression model on an augmented dataset of lagged time series. Our model is inspired by dynamic regression models (Pankratz 2012, with the response variable’s lags included as predictors, and is known as Random Vector Functional Link (RVFL neural networks. The RVFL neural networks have been successfully applied in the past, to solving regression and classification problems. The novelty of our approach is to apply an RVFL model to multivariate time series, under two separate regularization constraints on the regression parameters.

  1. Random Linear Network Coding is Key to Data Survival in Highly Dynamic Distributed Storage

    DEFF Research Database (Denmark)

    Sipos, Marton A.; Fitzek, Frank; Roetter, Daniel Enrique Lucani

    2015-01-01

    Distributed storage solutions have become widespread due to their ability to store large amounts of data reliably across a network of unreliable nodes, by employing repair mechanisms to prevent data loss. Conventional systems rely on static designs with a central control entity to oversee...... and control the repair process. Given the large costs for maintaining and cooling large data centers, our work proposes and studies the feasibility of a fully decentralized systems that can store data even on unreliable and, sometimes, unavailable mobile devices. This imposes new challenges on the design...... as the number of available nodes varies greatly over time and keeping track of the system's state becomes unfeasible. As a consequence, conventional erasure correction approaches are ill-suited for maintaining data integrity. In this highly dynamic context, random linear network coding (RLNC) provides...

  2. Event-triggered synchronization for reaction-diffusion complex networks via random sampling

    Science.gov (United States)

    Dong, Tao; Wang, Aijuan; Zhu, Huiyun; Liao, Xiaofeng

    2018-04-01

    In this paper, the synchronization problem of the reaction-diffusion complex networks (RDCNs) with Dirichlet boundary conditions is considered, where the data is sampled randomly. An event-triggered controller based on the sampled data is proposed, which can reduce the number of controller and the communication load. Under this strategy, the synchronization problem of the diffusion complex network is equivalently converted to the stability of a of reaction-diffusion complex dynamical systems with time delay. By using the matrix inequality technique and Lyapunov method, the synchronization conditions of the RDCNs are derived, which are dependent on the diffusion term. Moreover, it is found the proposed control strategy can get rid of the Zeno behavior naturally. Finally, a numerical example is given to verify the obtained results.

  3. Analysis and Optimization of Sparse Random Linear Network Coding for Reliable Multicast Services

    DEFF Research Database (Denmark)

    Tassi, Andrea; Chatzigeorgiou, Ioannis; Roetter, Daniel Enrique Lucani

    2016-01-01

    Point-to-multipoint communications are expected to play a pivotal role in next-generation networks. This paper refers to a cellular system transmitting layered multicast services to a multicast group of users. Reliability of communications is ensured via different random linear network coding (RLNC......) techniques. We deal with a fundamental problem: the computational complexity of the RLNC decoder. The higher the number of decoding operations is, the more the user's computational overhead grows and, consequently, the faster the battery of mobile devices drains. By referring to several sparse RLNC...... techniques, and without any assumption on the implementation of the RLNC decoder in use, we provide an efficient way to characterize the performance of users targeted by ultra-reliable layered multicast services. The proposed modeling allows to efficiently derive the average number of coded packet...

  4. Equilibrium Model of Discrete Dynamic Supply Chain Network with Random Demand and Advertisement Strategy

    Directory of Open Access Journals (Sweden)

    Guitao Zhang

    2014-01-01

    Full Text Available The advertisement can increase the consumers demand; therefore it is one of the most important marketing strategies in the operations management of enterprises. This paper aims to analyze the impact of advertising investment on a discrete dynamic supply chain network which consists of suppliers, manufactures, retailers, and demand markets associated at different tiers under random demand. The impact of advertising investment will last several planning periods besides the current period due to delay effect. Based on noncooperative game theory, variational inequality, and Lagrange dual theory, the optimal economic behaviors of the suppliers, the manufactures, the retailers, and the consumers in the demand markets are modeled. In turn, the supply chain network equilibrium model is proposed and computed by modified project contraction algorithm with fixed step. The effectiveness of the model is illustrated by numerical examples, and managerial insights are obtained through the analysis of advertising investment in multiple periods and advertising delay effect among different periods.

  5. A novel root-index based prioritized random access scheme for 5G cellular networks

    Directory of Open Access Journals (Sweden)

    Taehoon Kim

    2015-12-01

    Full Text Available Cellular networks will play an important role in realizing the newly emerging Internet-of-Everything (IoE. One of the challenging issues is to support the quality of service (QoS during the access phase, while accommodating a massive number of machine nodes. In this paper, we show a new paradigm of multiple access priorities in random access (RA procedure and propose a novel root-index based prioritized random access (RIPRA scheme that implicitly embeds the access priority in the root index of the RA preambles. The performance evaluation shows that the proposed RIPRA scheme can successfully support differentiated performance for different access priority levels, even though there exist a massive number of machine nodes.

  6. Current flow in random resistor networks: the role of percolation in weak and strong disorder.

    Science.gov (United States)

    Wu, Zhenhua; López, Eduardo; Buldyrev, Sergey V; Braunstein, Lidia A; Havlin, Shlomo; Stanley, H Eugene

    2005-04-01

    We study the current flow paths between two edges in a random resistor network on a L X L square lattice. Each resistor has resistance e(ax) , where x is a uniformly distributed random variable and a controls the broadness of the distribution. We find that: (a) The scaled variable u identical with u congruent to L/a(nu) , where nu is the percolation connectedness exponent, fully determines the distribution of the current path length l for all values of u . For u > 1, the behavior corresponds to the weak disorder limit and l scales as l approximately L, while for u < 1 , the behavior corresponds to the strong disorder limit with l approximately L(d(opt) ), where d(opt) =1.22+/-0.01 is the optimal path exponent. (b) In the weak disorder regime, there is a length scale xi approximately a(nu), below which strong disorder and critical percolation characterize the current path.

  7. Non-fragile observer design for discrete-time genetic regulatory networks with randomly occurring uncertainties

    International Nuclear Information System (INIS)

    Banu, L Jarina; Balasubramaniam, P

    2015-01-01

    This paper investigates the problem of non-fragile observer design for a class of discrete-time genetic regulatory networks (DGRNs) with time-varying delays and randomly occurring uncertainties. A non-fragile observer is designed, for estimating the true concentration of mRNAs and proteins from available measurement outputs. One important feature of the results obtained that are reported here is that the parameter uncertainties are assumed to be random and their probabilities of occurrence are known a priori. On the basis of the Lyapunov–Krasovskii functional approach and using a convex combination technique, a delay-dependent estimation criterion is established for DGRNs in terms of linear matrix inequalities (LMIs) that can be efficiently solved using any available LMI solver. Finally numerical examples are provided to substantiate the theoretical results. (paper)

  8. Universal principles governing multiple random searchers on complex networks: The logarithmic growth pattern and the harmonic law

    Science.gov (United States)

    Weng, Tongfeng; Zhang, Jie; Small, Michael; Harandizadeh, Bahareh; Hui, Pan

    2018-03-01

    We propose a unified framework to evaluate and quantify the search time of multiple random searchers traversing independently and concurrently on complex networks. We find that the intriguing behaviors of multiple random searchers are governed by two basic principles—the logarithmic growth pattern and the harmonic law. Specifically, the logarithmic growth pattern characterizes how the search time increases with the number of targets, while the harmonic law explores how the search time of multiple random searchers varies relative to that needed by individual searchers. Numerical and theoretical results demonstrate these two universal principles established across a broad range of random search processes, including generic random walks, maximal entropy random walks, intermittent strategies, and persistent random walks. Our results reveal two fundamental principles governing the search time of multiple random searchers, which are expected to facilitate investigation of diverse dynamical processes like synchronization and spreading.

  9. The performance of integrated health care networks in continuity of care: a qualitative multiple case study of COPD patients

    Directory of Open Access Journals (Sweden)

    Sina Waibel

    2015-07-01

    Full Text Available Background: Integrated health care networks (IHN are promoted in numerous countries as a response to fragmented care delivery by providing a coordinated continuum of services to a defined population. However, evidence on their effectiveness and outcome is scarce, particularly considering continuity across levels of care; that is the patient's experience of connected and coherent care received from professionals of the different care levels over time. The objective was to analyse the chronic obstructive pulmonary disease (COPD patients’ perceptions of continuity of clinical management and information across care levels and continuity of relation in IHN of the public health care system of Catalonia.Methods: A qualitative multiple case study was conducted, where the cases are COPD patients. A theoretical sample was selected in two stages: (1 study contexts: IHN and (2 study cases consisting of COPD patients. Data were collected by means of individual, semi-structured interviews to the patients, their general practitioners and pulmonologists and review of records. A thematic content analysis segmented by IHN and cases with a triangulation of sources and analysists was carried out.Results: COPD patients of all networks perceived that continuity of clinical management was existent due to clear distribution of roles for COPD care across levels, rapid access to care during exacerbations and referrals to secondary care when needed; nevertheless, patients of some networks highlighted too long waiting times to non-urgent secondary care. Physicians generally agreed with patients, however, also indicated unclear distribution of roles, some inadequate referrals and long waiting times to primary care in some networks. Concerning continuity of information, patients across networks considered that their clinical information was transferred across levels via computer and that physicians also used informal communication mechanisms (e-mail, telephone; whereas

  10. RRW: repeated random walks on genome-scale protein networks for local cluster discovery

    Directory of Open Access Journals (Sweden)

    Can Tolga

    2009-09-01

    Full Text Available Abstract Background We propose an efficient and biologically sensitive algorithm based on repeated random walks (RRW for discovering functional modules, e.g., complexes and pathways, within large-scale protein networks. Compared to existing cluster identification techniques, RRW implicitly makes use of network topology, edge weights, and long range interactions between proteins. Results We apply the proposed technique on a functional network of yeast genes and accurately identify statistically significant clusters of proteins. We validate the biological significance of the results using known complexes in the MIPS complex catalogue database and well-characterized biological processes. We find that 90% of the created clusters have the majority of their catalogued proteins belonging to the same MIPS complex, and about 80% have the majority of their proteins involved in the same biological process. We compare our method to various other clustering techniques, such as the Markov Clustering Algorithm (MCL, and find a significant improvement in the RRW clusters' precision and accuracy values. Conclusion RRW, which is a technique that exploits the topology of the network, is more precise and robust in finding local clusters. In addition, it has the added flexibility of being able to find multi-functional proteins by allowing overlapping clusters.

  11. Size-dependent mechanical properties of 2D random nanofibre networks

    International Nuclear Information System (INIS)

    Lu, Zixing; Zhu, Man; Liu, Qiang

    2014-01-01

    The mechanical properties of nanofibre networks (NFNs) are size dependent with respect to different fibre diameters. In this paper, a continuum model is developed to reveal the size-dependent mechanical properties of 2D random NFNs. Since such size-dependent behaviours are attributed to different micromechanical mechanisms, the surface effects and the strain gradient (SG) effects are, respectively, introduced into the mechanical analysis of NFNs. Meanwhile, a modified fibre network model is proposed, in which the axial, bending and shearing deformations are incorporated. The closed-form expressions of effective modulus and Poisson's ratio are obtained for NFNs. Different from the results predicted by conventional fibre network model, the present model predicts the size-dependent mechanical properties of NFNs. It is found that both surface effects and SG effects have significant influences on the effective mechanical properties. Moreover, the present results show that the shearing deformation of fibre segment is also crucial to precisely evaluate the effective mechanical properties of NFNs. This work mainly aims to provide an insight into the micromechanical mechanisms of NFNs. Besides, this work is also expected to provide a more accurate theoretical model for 2D fibre networks. (paper)

  12. Topology-selective jamming of fully-connected, code-division random-access networks

    Science.gov (United States)

    Polydoros, Andreas; Cheng, Unjeng

    1990-01-01

    The purpose is to introduce certain models of topology selective stochastic jamming and examine its impact on a class of fully-connected, spread-spectrum, slotted ALOHA-type random access networks. The theory covers dedicated as well as half-duplex units. The dominant role of the spatial duty factor is established, and connections with the dual concept of time selective jamming are discussed. The optimal choices of coding rate and link access parameters (from the users' side) and the jamming spatial fraction are numerically established for DS and FH spreading.

  13. Variances as order parameter and complexity measure for random Boolean networks

    International Nuclear Information System (INIS)

    Luque, Bartolo; Ballesteros, Fernando J; Fernandez, Manuel

    2005-01-01

    Several order parameters have been considered to predict and characterize the transition between ordered and disordered phases in random Boolean networks, such as the Hamming distance between replicas or the stable core, which have been successfully used. In this work, we propose a natural and clear new order parameter: the temporal variance. We compute its value analytically and compare it with the results of numerical experiments. Finally, we propose a complexity measure based on the compromise between temporal and spatial variances. This new order parameter and its related complexity measure can be easily applied to other complex systems

  14. Variances as order parameter and complexity measure for random Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Luque, Bartolo [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Ballesteros, Fernando J [Observatori Astronomic, Universitat de Valencia, Ed. Instituts d' Investigacio, Pol. La Coma s/n, E-46980 Paterna, Valencia (Spain); Fernandez, Manuel [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain)

    2005-02-04

    Several order parameters have been considered to predict and characterize the transition between ordered and disordered phases in random Boolean networks, such as the Hamming distance between replicas or the stable core, which have been successfully used. In this work, we propose a natural and clear new order parameter: the temporal variance. We compute its value analytically and compare it with the results of numerical experiments. Finally, we propose a complexity measure based on the compromise between temporal and spatial variances. This new order parameter and its related complexity measure can be easily applied to other complex systems.

  15. Anisotropic generalization of Stinchcombe's solution for the conductivity of random resistor networks on a Bethe lattice

    Science.gov (United States)

    Semeriyanov, F.; Saphiannikova, M.; Heinrich, G.

    2009-11-01

    Our study is based on the work of Stinchcombe (1974 J. Phys. C: Solid State Phys. 7 179) and is devoted to the calculations of average conductivity of random resistor networks placed on an anisotropic Bethe lattice. The structure of the Bethe lattice is assumed to represent the normal directions of the regular lattice. We calculate the anisotropic conductivity as an expansion in powers of the inverse coordination number of the Bethe lattice. The expansion terms retained deliver an accurate approximation of the conductivity at resistor concentrations above the percolation threshold. We make a comparison of our analytical results with those of Bernasconi (1974 Phys. Rev. B 9 4575) for the regular lattice.

  16. Anisotropic generalization of Stinchcombe's solution for the conductivity of random resistor networks on a Bethe lattice

    International Nuclear Information System (INIS)

    Semeriyanov, F; Saphiannikova, M; Heinrich, G

    2009-01-01

    Our study is based on the work of Stinchcombe (1974 J. Phys. C: Solid State Phys. 7 179) and is devoted to the calculations of average conductivity of random resistor networks placed on an anisotropic Bethe lattice. The structure of the Bethe lattice is assumed to represent the normal directions of the regular lattice. We calculate the anisotropic conductivity as an expansion in powers of the inverse coordination number of the Bethe lattice. The expansion terms retained deliver an accurate approximation of the conductivity at resistor concentrations above the percolation threshold. We make a comparison of our analytical results with those of Bernasconi (1974 Phys. Rev. B 9 4575) for the regular lattice.

  17. Influence of Rotary Instrumentation with Continuous Irrigation on Pain and Neuropeptide Release Levels: A Randomized Clinical Trial.

    Science.gov (United States)

    Bıçakcı, Hazal; Çapar, İsmail Davut; Genç, Selin; İhtiyar, Alperen; Sütçü, Recep

    2016-11-01

    The first objective was to determine correlation among various experimental and clinical pain measurement procedures. The second objective was to evaluate the influence of rotary instrumentation with continuous irrigation on pain and neuropeptide release levels. Forty patients who had preoperative pain at the levels of 3-8 on the visual analogue scale were included. Gingival crevicular fluid (GCF) samples were collected. Patients were randomly assigned to 2 treatment groups, the standard preparation group and the preparation with continuous irrigation group. Apical fluid samples (AFS) were collected after instrumentation. In the second visit, the patients' pain levels were recorded, and GCF and AFS were obtained. Substance P, calcitonin-gene related peptide (CGRP), interleukin (IL)-1β, and IL-10 levels were analyzed from the GCF and AFS samples. For comparison between groups, the Mann-Whitney test was used (P Rotary preparation with continuous irrigation has not been more effective than the standard preparation method for reducing pain. Because of determination of the correlation between CGRP and IL-10 with percussion pain, these neuropeptides can be used in further studies. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  18. Comparative efficacy of continuous and pulse dose terbinafine regimes in toenail dermatophytosis: A randomized double-blind trial.

    Science.gov (United States)

    Yadav, Pravesh; Singal, Archana; Pandhi, Deepika; Das, Shukla

    2015-01-01

    Dermatophytes are the most frequently implicated agents in toenail onychomycosis and oral terbinafine has shown the best cure rates in this condition. The pharmacokinetics of terbinafine favors its efficacy in pulse dosing. To compare the efficacy of terbinafine in continuous and pulse dosing schedules in the treatment of toenail dermatophytosis. Seventy-six patients of potassium hydroxide (KOH) and culture positive dermatophyte toenail onychomycosis were randomly allocated to two treatment groups receiving either continuous terbinafine 250 mg daily for 12 weeks or 3 pulses of terbinafine (each of 500 mg daily for a week) repeated every 4 weeks. Patients were followed up at 4, 8 and 12 weeks during treatment and post-treatment at 24 weeks. At each visit, a KOH mount and culture were performed. In each patient, improvement in a target nail was assessed using a clinical score; total scores for all nails and global assessments by physician and patient were also recorded. Mycological, clinical and complete cure rates, clinical effectivity and treatment failure rates were then compared. The declines in target nail and total scores from baseline were significant at each follow-up visit in both the treatment groups. However, the inter-group difference was statistically insignificant. The same was true for global assessment indices, clinical effectivity as well as clinical, mycological, and complete cure rates. The short follow-up in our study may have led to lower cure rates being recorded. Terbinafine in pulse dosing is as effective as continuous dosing in the treatment of dermatophyte toenail onychomycosis.

  19. A prospective randomized comparison of continuous hemihepatic with intermittent total hepatic inflow occlusion in hepatectomy for liver tumors.

    Science.gov (United States)

    Liang, Guanlin; Wen, Tianfu; Yan, Lunan; Li, B O; Wu, Guochang; Yang, Jian; Lu, Bo; Chen, Zheyu; Liao, Zhixue; Ran, Shun; Yu, Zhang

    2009-01-01

    To evaluate whether continuous hemihepatic inflow occlusion (HHO) during hepatectomy can be safer than and be as effective as intermittent total hepatic inflow occlusion (THO) in reducing blood loss. Eighty patients undergoing liver resections were included in a prospective randomized study comparing the intra- and postoperative course under THO (n=40) or HHO (n=40). THO was performed with periods of 20 minutes of occlusion and 5 minutes of releasing, while HHO was performed with continuous occlusion. The surface area of liver transection, amount of blood loss, measurements of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and postoperative evolution were recorded. The two groups were similar at entry in terms of preoperative liver function and in the proportion of patients experiencing major hepatectomy. The total ischemic time of the two groups was similar (p=0.37), but the operative time in the THO group was longer than in the HHO group (p=0.02). No significant difference was found between the HHO and THO group in blood loss during liver parenchyma transection (p=0.14), the elevations of ALT and AST on the first postoperative day (ALT: p=0.12; AST: p=0.66) and postoperative morbidity (p=0.35). On the basis of our findings, if it is feasible, continuous HHO is recommended for complex liver resection.

  20. Corporate and supply chain network governance of third party logistics service providers: Effects on buyers’ intention to continue the relationship

    Directory of Open Access Journals (Sweden)

    Salih Börteçine Avci

    2017-06-01

    Full Text Available This study focuses on the impact of corporate governance, supply chain network governance and competencies such as sales and logistics competence on buyers’ intention to relationship continuity. A total number of 258 questionnaires were distributed to Turkish manufacturing firms, selected using cross-sectional sampling method from the Istanbul and Edirne Chamber of Commerce and Industry in Turkey. The data of survey was analysed using PLS-SEM model with WARP PLS 5.0 software. Our findings indicate that corporate governance and supply chain network governance seem to have a positive effect on sales competence and logistics competence, and together, they influence buyers’ intention to relationship continuity. In this respect, the outcomes of this study may provide valuable insights for the third-party logistics (3PL literature in terms of buyers’ intention to relationship continuity.

  1. Effects of a Social Network HIV/STD Prevention Intervention for Men Who Have Sex with Men in Russia and Hungary: A Randomized Controlled Trial

    Science.gov (United States)

    Amirkhanian, Yuri A.; Kelly, Jeffrey A.; Takacs, Judit; McAuliffe, Timothy L.; Kuznetsova, Anna V.; Toth, Tamas P.; Mocsonaki, Laszlo; DiFranceisco, Wayne J.; Meylakhs, Anastasia

    2015-01-01

    Objective To test a novel social network HIV risk reduction intervention for MSM in Russia and Hungary, where same-sex behavior is stigmatized and men may best be reached through their social network connections. Design A 2-arm trial with 18 sociocentric networks of MSM randomized to the social network intervention or standard HIV/STD testing/counseling. Setting St. Petersburg, Russia and Budapest, Hungary. Participants 18 “seeds” from community venues invited the participation of their MSM friends who, in turn, invited their own MSM friends into the study, a process that continued outward until eighteen 3-ring sociocentric networks (mean size=35 members, n=626) were recruited. Intervention Empirically-identified network leaders were trained and guided to convey HIV prevention advice to other network members. Main Outcome and Measures Changes in sexual behavior from baseline to 3- and 12-month followup, with composite HIV/STD incidence measured at 12-months to corroborate behavior changes. Results There were significant reductions between baseline, first followup, and second followup in the intervention versus comparison arm for proportion of men engaging in any unprotected anal intercourse (P=.04); UAI with a nonmain partner (P=.04); and UAI with multiple partners (P=.002). The mean percentage of unprotected AI acts significantly declined (P=.001), as well as the mean number of UAI acts among men who initially had multiple partners (P=.05). Biological HIV/STD incidence was 15% in comparison condition networks and 9% in intervention condition networks. Conclusions Even where same-sex behavior is stigmatized, it is possible to reach MSM and deliver HIV prevention through their social networks. PMID:25565495

  2. Stability Analysis of Continuous-Time and Discrete-Time Quaternion-Valued Neural Networks With Linear Threshold Neurons.

    Science.gov (United States)

    Chen, Xiaofeng; Song, Qiankun; Li, Zhongshan; Zhao, Zhenjiang; Liu, Yurong

    2018-07-01

    This paper addresses the problem of stability for continuous-time and discrete-time quaternion-valued neural networks (QVNNs) with linear threshold neurons. Applying the semidiscretization technique to the continuous-time QVNNs, the discrete-time analogs are obtained, which preserve the dynamical characteristics of their continuous-time counterparts. Via the plural decomposition method of quaternion, homeomorphic mapping theorem, as well as Lyapunov theorem, some sufficient conditions on the existence, uniqueness, and global asymptotical stability of the equilibrium point are derived for the continuous-time QVNNs and their discrete-time analogs, respectively. Furthermore, a uniform sufficient condition on the existence, uniqueness, and global asymptotical stability of the equilibrium point is obtained for both continuous-time QVNNs and their discrete-time version. Finally, two numerical examples are provided to substantiate the effectiveness of the proposed results.

  3. Continuous vs. blocks of physiotherapy for motor development in children with cerebral palsy and similar syndromes: A prospective randomized study.

    Science.gov (United States)

    Brunner, Anne-Louise; Rutz, Erich; Juenemann, Stephanie; Brunner, Reinald

    2014-12-01

    To determine whether physiotherapy is more effective when applied in blocks or continuously in children with cerebral palsy (CP). A prospective randomized cross-over design study compared the effect of regular physiotherapy (baseline) with blocks of physiotherapy alternating with no physiotherapy over one year. Thirty-nine institutionalized children with CP and clinically similar syndromes (6-16 years old, Gross Motor Function Classification Scale II-IV) were included. During the first scholastic year, group A received regular physiotherapy, group B blocks of physiotherapy and vice versa in the second year. The Gross Motor Function Measure 66 (GMFM-66) was the outcome measure. Thirteen children in each group completed the study. GMFM-66 improved (p Physiotherapy may be more effective when provided regularly rather than in blocks.

  4. Transport properties of the continuous-time random walk with a long-tailed waiting-time density

    International Nuclear Information System (INIS)

    Weissman, H.; Havlin, S.; Weiss, G.H.

    1989-01-01

    The authors derive asymptotic properties of the propagator p(r, t) of a continuous-time random walk (CTRW) in which the waiting time density has the asymptotic form ψ(t) ∼ T α /t α+1 when t >> T and 0 = ∫ 0 ∞ τψ(τ)dτ is finite. One is that the asymptotic behavior of p(0, t) is demonstrated by the waiting time at the origin rather than by the dimension. The second difference is that in the presence of a field p(r, t) no longer remains symmetric around a moving peak. Rather, it is shown that the peak of this probability always occurs at r = 0, and the effect of the field is to break the symmetry that occurs when < ∞. Finally, they calculate similar properties, although in not such great detail, for the case in which the single-step jump probabilities themselves have an infinite mean

  5. Continued Development and Implementation of the Universal Network Interface Device (UNID) II, Digital Engineering Laboratory Network (DELNET) Volume 1.

    Science.gov (United States)

    1984-12-01

    3. It is assuied that the network software design as J,!veloed functions properly. Sum.mary of Current Knowlede [re aost tip to late sumfnary of the...conversations with the program management staff regarding multi-user and multi-level security issues related to the Integrated-Service/Agency Automated

  6. Continuous time random walk model with asymptotical probability density of waiting times via inverse Mittag-Leffler function

    Science.gov (United States)

    Liang, Yingjie; Chen, Wen

    2018-04-01

    The mean squared displacement (MSD) of the traditional ultraslow diffusion is a logarithmic function of time. Recently, the continuous time random walk model is employed to characterize this ultraslow diffusion dynamics by connecting the heavy-tailed logarithmic function and its variation as the asymptotical waiting time density. In this study we investigate the limiting waiting time density of a general ultraslow diffusion model via the inverse Mittag-Leffler function, whose special case includes the traditional logarithmic ultraslow diffusion model. The MSD of the general ultraslow diffusion model is analytically derived as an inverse Mittag-Leffler function, and is observed to increase even more slowly than that of the logarithmic function model. The occurrence of very long waiting time in the case of the inverse Mittag-Leffler function has the largest probability compared with the power law model and the logarithmic function model. The Monte Carlo simulations of one dimensional sample path of a single particle are also performed. The results show that the inverse Mittag-Leffler waiting time density is effective in depicting the general ultraslow random motion.

  7. A randomized controlled trial testing a social network intervention to promote physical activity among adolescents.

    Science.gov (United States)

    van Woudenberg, Thabo J; Bevelander, Kirsten E; Burk, William J; Smit, Crystal R; Buijs, Laura; Buijzen, Moniek

    2018-04-23

    The current study examined the effectiveness of a social network intervention to promote physical activity among adolescents. Social network interventions utilize peer influence to change behavior by identifying the most influential individuals within social networks (i.e., influence agents), and training them to promote the target behavior. A total of 190 adolescents (46.32% boys; M age = 12.17, age range: 11-14 years) were randomly allocated to either the intervention or control condition. In the intervention condition, the most influential adolescents (based on peer nominations of classmates) in each classroom were trained to promote physical activity among their classmates. Participants received a research smartphone to complete questionnaires and an accelerometer to measure physical activity (steps per day) at baseline, and during the intervention one month later. A multilevel model tested the effectiveness of the intervention, controlling for clustering of data within participants and days. No intervention effect was observed, b = .04, SE = .10, p = .66. This was one of the first studies to test whether physical activity in adolescents could be promoted via influence agents, and the first social network intervention to use smartphones to do so. Important lessons and implications are discussed concerning the selection criterion of the influence agents, the use of smartphones in social network intervention, and the rigorous analyses used to control for confounding factors. Dutch Trial Registry (NTR): NTR6173 . Registered 5 October 2016 Study procedures were approved by the Ethics Committee of the Radboud University (ECSW2014-100614-222).

  8. Multiple ECG Fiducial Points-Based Random Binary Sequence Generation for Securing Wireless Body Area Networks.

    Science.gov (United States)

    Zheng, Guanglou; Fang, Gengfa; Shankaran, Rajan; Orgun, Mehmet A; Zhou, Jie; Qiao, Li; Saleem, Kashif

    2017-05-01

    Generating random binary sequences (BSes) is a fundamental requirement in cryptography. A BS is a sequence of N bits, and each bit has a value of 0 or 1. For securing sensors within wireless body area networks (WBANs), electrocardiogram (ECG)-based BS generation methods have been widely investigated in which interpulse intervals (IPIs) from each heartbeat cycle are processed to produce BSes. Using these IPI-based methods to generate a 128-bit BS in real time normally takes around half a minute. In order to improve the time efficiency of such methods, this paper presents an ECG multiple fiducial-points based binary sequence generation (MFBSG) algorithm. The technique of discrete wavelet transforms is employed to detect arrival time of these fiducial points, such as P, Q, R, S, and T peaks. Time intervals between them, including RR, RQ, RS, RP, and RT intervals, are then calculated based on this arrival time, and are used as ECG features to generate random BSes with low latency. According to our analysis on real ECG data, these ECG feature values exhibit the property of randomness and, thus, can be utilized to generate random BSes. Compared with the schemes that solely rely on IPIs to generate BSes, this MFBSG algorithm uses five feature values from one heart beat cycle, and can be up to five times faster than the solely IPI-based methods. So, it achieves a design goal of low latency. According to our analysis, the complexity of the algorithm is comparable to that of fast Fourier transforms. These randomly generated ECG BSes can be used as security keys for encryption or authentication in a WBAN system.

  9. A special purpose computer for the calculation of the electric conductivity of a random resistor network

    International Nuclear Information System (INIS)

    Hajjar, Mansour

    1987-01-01

    The special purpose computer PERCOLA is designed for long numerical simulations on a percolation problem in Statistical Mechanics of disordered media. Our aim is to improve the actual values of the critical exponents characterizing the behaviour of random resistance networks at percolation threshold. The architecture of PERCOLA is based on an efficient iterative algorithm used to compute the electric conductivity of such networks. The calculator has the characteristics of a general purpose 64 bits floating point micro-programmable computer that can run programs for various types of problems with a peak performance of 25 Mflops. This high computing speed is a result of the pipeline architecture based on internal parallelism and separately micro-code controlled units such as: data memories, a micro-code memory, ALUs and multipliers (both WEITEK components), various data paths, a sequencer (ANALOG DEVICES component), address generators and a random number generator. Thus, the special purpose computer runs percolation problem program 10 percent faster than the supercomputer CRAY XMP. (author) [fr

  10. Physical states in the canonical tensor model from the perspective of random tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Narain, Gaurav [The Institute for Fundamental Study “The Tah Poe Academia Institute”,Naresuan University, Phitsanulok 65000 (Thailand); Sasakura, Naoki [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Sato, Yuki [National Institute for Theoretical Physics,School of Physics and Centre for Theoretical Physics,University of the Witwartersrand, WITS 2050 (South Africa)

    2015-01-07

    Tensor models, generalization of matrix models, are studied aiming for quantum gravity in dimensions larger than two. Among them, the canonical tensor model is formulated as a totally constrained system with first-class constraints, the algebra of which resembles the Dirac algebra of general relativity. When quantized, the physical states are defined to be vanished by the quantized constraints. In explicit representations, the constraint equations are a set of partial differential equations for the physical wave-functions, which do not seem straightforward to be solved due to their non-linear character. In this paper, after providing some explicit solutions for N=2,3, we show that certain scale-free integration of partition functions of statistical systems on random networks (or random tensor networks more generally) provides a series of solutions for general N. Then, by generalizing this form, we also obtain various solutions for general N. Moreover, we show that the solutions for the cases with a cosmological constant can be obtained from those with no cosmological constant for increased N. This would imply the interesting possibility that a cosmological constant can always be absorbed into the dynamics and is not an input parameter in the canonical tensor model. We also observe the possibility of symmetry enhancement in N=3, and comment on an extension of Airy function related to the solutions.

  11. Effect of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk: A randomized 1-year trial.

    Science.gov (United States)

    Sundfør, T M; Svendsen, M; Tonstad, S

    2018-07-01

    Long-term adherence to conventional weight-loss diets is limited while intermittent fasting has risen in popularity. We compared the effects of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk factors in adults with abdominal obesity and ≥1 additional component of metabolic syndrome. In total 112 participants (men [50%] and women [50%]) aged 21-70 years with BMI 30-45 kg/m 2 (mean 35.2 [SD 3.7]) were randomized to intermittent or continuous energy restriction. A 6-month weight-loss phase including 10 visits with dieticians was followed by a 6-month maintenance phase without additional face-to-face counselling. The intermittent energy restriction group was advised to consume 400/600 kcal (female/male) on two non-consecutive days. Based on dietary records both groups reduced energy intake by ∼26-28%. Weight loss was similar among participants in the intermittent and continuous energy restriction groups (8.0 kg [SD 6.5] versus 9.0 kg [SD 7.1]; p = 0.6). There were favorable improvements in waist circumference, blood pressure, triglycerides and HDL-cholesterol with no difference between groups. Weight regain was minimal and similar between the intermittent and continuous energy restriction groups (1.1 kg [SD 3.8] versus 0.4 kg [SD 4.0]; p = 0.6). Intermittent restriction participants reported higher hunger scores than continuous restriction participants on a subjective numeric rating scale (4.7 [SD 2.2] vs 3.6 [SD 2.2]; p = 0.002). Both intermittent and continuous energy restriction resulted in similar weight loss, maintenance and improvements in cardiovascular risk factors after one year. However, feelings of hunger may be more pronounced during intermittent energy restriction. www.clinicaltrials.govNCT02480504. Copyright © 2018 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine

  12. PUFKEY: a high-security and high-throughput hardware true random number generator for sensor networks.

    Science.gov (United States)

    Li, Dongfang; Lu, Zhaojun; Zou, Xuecheng; Liu, Zhenglin

    2015-10-16

    Random number generators (RNG) play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF) elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST) randomness tests and is resilient to a wide range of security attacks.

  13. PUFKEY: A High-Security and High-Throughput Hardware True Random Number Generator for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dongfang Li

    2015-10-01

    Full Text Available Random number generators (RNG play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST randomness tests and is resilient to a wide range of security attacks.

  14. Resistance and resistance fluctuations in random resistor networks under biased percolation.

    Science.gov (United States)

    Pennetta, Cecilia; Reggiani, L; Trefán, Gy; Alfinito, E

    2002-06-01

    We consider a two-dimensional random resistor network (RRN) in the presence of two competing biased processes consisting of the breaking and recovering of elementary resistors. These two processes are driven by the joint effects of an electrical bias and of the heat exchange with a thermal bath. The electrical bias is set up by applying a constant voltage or, alternatively, a constant current. Monte Carlo simulations are performed to analyze the network evolution in the full range of bias values. Depending on the bias strength, electrical failure or steady state are achieved. Here we investigate the steady state of the RRN focusing on the properties of the non-Ohmic regime. In constant-voltage conditions, a scaling relation is found between /(0) and V/V(0), where is the average network resistance, (0) the linear regime resistance, and V0 the threshold value for the onset of nonlinearity. A similar relation is found in constant-current conditions. The relative variance of resistance fluctuations also exhibits a strong nonlinearity whose properties are investigated. The power spectral density of resistance fluctuations presents a Lorentzian spectrum and the amplitude of fluctuations shows a significant non-Gaussian behavior in the prebreakdown region. These results compare well with electrical breakdown measurements in thin films of composites and of other conducting materials.

  15. Asymptotic Analysis of Large Cooperative Relay Networks Using Random Matrix Theory

    Directory of Open Access Journals (Sweden)

    H. Poor

    2008-04-01

    Full Text Available Cooperative transmission is an emerging communication technology that takes advantage of the broadcast nature of wireless channels. In cooperative transmission, the use of relays can create a virtual antenna array so that multiple-input/multiple-output (MIMO techniques can be employed. Most existing work in this area has focused on the situation in which there are a small number of sources and relays and a destination. In this paper, cooperative relay networks with large numbers of nodes are analyzed, and in particular the asymptotic performance improvement of cooperative transmission over direction transmission and relay transmission is analyzed using random matrix theory. The key idea is to investigate the eigenvalue distributions related to channel capacity and to analyze the moments of this distribution in large wireless networks. A performance upper bound is derived, the performance in the low signal-to-noise-ratio regime is analyzed, and two approximations are obtained for high and low relay-to-destination link qualities, respectively. Finally, simulations are provided to validate the accuracy of the analytical results. The analysis in this paper provides important tools for the understanding and the design of large cooperative wireless networks.

  16. Simulating ensembles of nonlinear continuous time dynamical systems via active ultra wideband wireless network

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, Alexander S.; Yemelyanov, Ruslan Yu. [V.A. Kotelnikov Institute of Radio Engineering and Electronics of the RAS Mokhovaya 11-7, Moscow, 125009 (Russian Federation); Moscow Institute of Physics and Technology (State University) 9 Institutskiy per., Dolgoprudny, Moscow, 141700 (Russian Federation); Gerasimov, Mark Yu. [V.A. Kotelnikov Institute of Radio Engineering and Electronics of the RAS Mokhovaya 11-7, Moscow, 125009 (Russian Federation); Itskov, Vadim V. [Moscow Institute of Physics and Technology (State University) 9 Institutskiy per., Dolgoprudny, Moscow, 141700 (Russian Federation)

    2016-06-08

    The paper deals with a new multi-element processor platform assigned for modelling the behaviour of interacting dynamical systems, i.e., active wireless network. Experimentally, this ensemble is implemented in an active network, the active nodes of which include direct chaotic transceivers and special actuator boards containing microcontrollers for modelling the dynamical systems and an information display unit (colored LEDs). The modelling technique and experimental results are described and analyzed.

  17. Protocol adherence for continuously titrated interventions in randomized trials: an overview of the current methodology and case study

    Directory of Open Access Journals (Sweden)

    F. Lauzier

    2017-07-01

    Full Text Available Abstract Background The standard definition for protocol adherence is the proportion of all scheduled doses that are delivered. In clinical research, this definition has several limitations when evaluating protocol adherence in trials that study interventions requiring continuous titration. Discussion Building upon a specific case study, we analyzed a recent trial of a continuously titrated intervention to assess the impact of different definitions of protocol deviations on the interpretation of protocol adherence. The OVATION pilot trial was an open-label randomized controlled trial of higher (75–80 mmHg versus lower (60–65 mmHg mean arterial pressure (MAP targets for vasopressor therapy in shock. In this trial, potential protocol deviations were defined as MAP values outside the targeted range for >4 consecutive hours during vasopressor therapy without synchronous and consistent adjustments of vasopressor doses. An adjudication committee reviewed each potential deviation to determine if it was clinically-justified or not. There are four reasons for this contextual measurement and reporting of protocol adherence. First, between-arm separation is a robust measure of adherence to complex protocols. Second, adherence assessed by protocol deviations varies in function of the definition of deviations and the frequency of measurements. Third, distinguishing clinically-justified vs. not clinically-justified protocol deviations acknowledges clinically sensible bedside decision-making and offers a clear terminology before the trial begins. Finally, multiple metrics exist to report protocol deviations, which provides different information but complementary information on protocol adherence. Conclusions In trials of interventions requiring continuous titration, metrics used for defining protocol deviations have a considerable impact on the interpretation of protocol adherence. Definitions for protocol deviations should be prespecified and correlated

  18. Protocol adherence for continuously titrated interventions in randomized trials: an overview of the current methodology and case study.

    Science.gov (United States)

    Lauzier, F; Adhikari, N K; Seely, A; Koo, K K Y; Belley-Côté, E P; Burns, K E A; Cook, D J; D'Aragon, F; Rochwerg, B; Kho, M E; Oczkowksi, S J W; Duan, E H; Meade, M O; Day, A G; Lamontagne, F

    2017-07-17

    The standard definition for protocol adherence is the proportion of all scheduled doses that are delivered. In clinical research, this definition has several limitations when evaluating protocol adherence in trials that study interventions requiring continuous titration. Building upon a specific case study, we analyzed a recent trial of a continuously titrated intervention to assess the impact of different definitions of protocol deviations on the interpretation of protocol adherence. The OVATION pilot trial was an open-label randomized controlled trial of higher (75-80 mmHg) versus lower (60-65 mmHg) mean arterial pressure (MAP) targets for vasopressor therapy in shock. In this trial, potential protocol deviations were defined as MAP values outside the targeted range for >4 consecutive hours during vasopressor therapy without synchronous and consistent adjustments of vasopressor doses. An adjudication committee reviewed each potential deviation to determine if it was clinically-justified or not. There are four reasons for this contextual measurement and reporting of protocol adherence. First, between-arm separation is a robust measure of adherence to complex protocols. Second, adherence assessed by protocol deviations varies in function of the definition of deviations and the frequency of measurements. Third, distinguishing clinically-justified vs. not clinically-justified protocol deviations acknowledges clinically sensible bedside decision-making and offers a clear terminology before the trial begins. Finally, multiple metrics exist to report protocol deviations, which provides different information but complementary information on protocol adherence. In trials of interventions requiring continuous titration, metrics used for defining protocol deviations have a considerable impact on the interpretation of protocol adherence. Definitions for protocol deviations should be prespecified and correlated with between-arm separation, if it can be measured.

  19. More randomized and resilient in the topological properties of functional brain networks in patients with major depressive disorder.

    Science.gov (United States)

    Li, Huaizhou; Zhou, Haiyan; Yang, Yang; Wang, Haiyuan; Zhong, Ning

    2017-10-01

    Previous studies have reported the enhanced randomization of functional brain networks in patients with major depressive disorder (MDD). However, little is known about the changes of key nodal attributes for randomization, the resilience of network, and the clinical significance of the alterations. In this study, we collected the resting-state functional MRI data from 19 MDD patients and 19 healthy control (HC) individuals. Graph theory analysis showed that decreases were found in the small-worldness, clustering coefficient, local efficiency, and characteristic path length (i.e., increase of global efficiency) in the network of MDD group compared with HC group, which was consistent with previous findings and suggested the development toward randomization in the brain network in MDD. In addition, the greater resilience under the targeted attacks was also found in the network of patients with MDD. Furthermore, the abnormal nodal properties were found, including clustering coefficients and nodal efficiencies in the left orbital superior frontal gyrus, bilateral insula, left amygdala, right supramarginal gyrus, left putamen, left posterior cingulate cortex, left angular gyrus. Meanwhile, the correlation analysis showed that most of these abnormal areas were associated with the clinical status. The observed increased randomization and resilience in MDD might be related to the abnormal hub nodes in the brain networks, which were attacked by the disease pathology. Our findings provide new evidence to indicate that the weakening of specialized regions and the enhancement of whole brain integrity could be the potential endophenotype of the depressive pathology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Existence and global exponential stability of periodic solution to BAM neural networks with periodic coefficients and continuously distributed delays

    International Nuclear Information System (INIS)

    Zhou Tiejun; Chen Anping; Zhou Yuyuan

    2005-01-01

    By using the continuation theorem of coincidence degree theory and Liapunov function, we obtain some sufficient criteria to ensure the existence and global exponential stability of periodic solution to the bidirectional associative memory (BAM) neural networks with periodic coefficients and continuously distributed delays. These results improve and generalize the works of papers [J. Cao, L. Wang, Phys. Rev. E 61 (2000) 1825] and [Z. Liu, A. Chen, J. Cao, L. Huang, IEEE Trans. Circuits Systems I 50 (2003) 1162]. An example is given to illustrate that the criteria are feasible

  1. Existence and global exponential stability of periodic solution to BAM neural networks with periodic coefficients and continuously distributed delays

    Science.gov (United States)

    Zhou, distributed delays [rapid communication] T.; Chen, A.; Zhou, Y.

    2005-08-01

    By using the continuation theorem of coincidence degree theory and Liapunov function, we obtain some sufficient criteria to ensure the existence and global exponential stability of periodic solution to the bidirectional associative memory (BAM) neural networks with periodic coefficients and continuously distributed delays. These results improve and generalize the works of papers [J. Cao, L. Wang, Phys. Rev. E 61 (2000) 1825] and [Z. Liu, A. Chen, J. Cao, L. Huang, IEEE Trans. Circuits Systems I 50 (2003) 1162]. An example is given to illustrate that the criteria are feasible.

  2. CONTINUING EDUCATION TEACHER OF INDIGENOUS AND NON-INDIGENOUS MEDIATED SOCIAL NETWORK ON THE INTERNET: A PERSPECTIVE INTERCULTURAL

    Directory of Open Access Journals (Sweden)

    Maria Cristina Lima Paniago Lopes

    2013-04-01

    Full Text Available This research aims to analyze continuous training of teachers indigenous and non-indigenous, mediated by a social network on Ning called Internet under an intercultural perspective. This social network has come up as a virtual community as they have been established emotional ties, webs of connections and relationships between its participants. This is a qualitative research and collaborative in the sense that the experiences of researchers and teachers are valued and shared within a social context. The results show that participants in the group continuing of education, despite their difficulties using the technology itself and with little technological infrastructure, they see these virtual spaces as a possibility for new discoveries, creations and knowledge production, not forsaking the customs, traditions and their own culture.

  3. Mindfulness Meditation Training and Executive Control Network Resting State Functional Connectivity: A Randomized Controlled Trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Creswell, J David

    Mindfulness meditation training has been previously shown to enhance behavioral measures of executive control (e.g., attention, working memory, cognitive control), but the neural mechanisms underlying these improvements are largely unknown. Here, we test whether mindfulness training interventions foster executive control by strengthening functional connections between dorsolateral prefrontal cortex (dlPFC)-a hub of the executive control network-and frontoparietal regions that coordinate executive function. Thirty-five adults with elevated levels of psychological distress participated in a 3-day randomized controlled trial of intensive mindfulness meditation or relaxation training. Participants completed a resting state functional magnetic resonance imaging scan before and after the intervention. We tested whether mindfulness meditation training increased resting state functional connectivity (rsFC) between dlPFC and frontoparietal control network regions. Left dlPFC showed increased connectivity to the right inferior frontal gyrus (T = 3.74), right middle frontal gyrus (MFG) (T = 3.98), right supplementary eye field (T = 4.29), right parietal cortex (T = 4.44), and left middle temporal gyrus (T = 3.97, all p < .05) after mindfulness training relative to the relaxation control. Right dlPFC showed increased connectivity to right MFG (T = 4.97, p < .05). We report that mindfulness training increases rsFC between dlPFC and dorsal network (superior parietal lobule, supplementary eye field, MFG) and ventral network (right IFG, middle temporal/angular gyrus) regions. These findings extend previous work showing increased functional connectivity among brain regions associated with executive function during active meditation by identifying specific neural circuits in which rsFC is enhanced by a mindfulness intervention in individuals with high levels of psychological distress. Clinicaltrials.gov,NCT01628809.

  4. Randomized Trial of a Social Networking Intervention for Cancer-Related Distress.

    Science.gov (United States)

    Owen, Jason E; O'Carroll Bantum, Erin; Pagano, Ian S; Stanton, Annette

    2017-10-01

    Web and mobile technologies appear to hold promise for delivering evidence-informed and evidence-based intervention to cancer survivors and others living with trauma and other psychological concerns. Health-space.net was developed as a comprehensive online social networking and coping skills training program for cancer survivors living with distress. The purpose of this study was to evaluate the effects of a 12-week social networking intervention on distress, depression, anxiety, vigor, and fatigue in cancer survivors reporting high levels of cancer-related distress. We recruited 347 participants from a local cancer registry and internet, and all were randomized to either a 12-week waiting list control group or to immediate access to the intervention. Intervention participants received secure access to the study website, which provided extensive social networking capabilities and coping skills training exercises facilitated by a professional facilitator. Across time, the prevalence of clinically significant depression symptoms declined from 67 to 34 % in both conditions. The health-space.net intervention had greater declines in fatigue than the waitlist control group, but the intervention did not improve outcomes for depression, trauma-related anxiety symptoms, or overall mood disturbance. For those with more severe levels of anxiety at baseline, greater engagement with the intervention was associated with higher levels of symptom reduction over time. The intervention resulted in small but significant effects on fatigue but not other primary or secondary outcomes. Results suggest that this social networking intervention may be most effective for those who have distress that is not associated with high levels of anxiety symptoms or very poor overall psychological functioning. The trial was registered with the ClinicalTrials.gov database ( ClinicalTrials.gov #NCT01976949).

  5. Dynamic fair node spectrum allocation for ad hoc networks using random matrices

    Science.gov (United States)

    Rahmes, Mark; Lemieux, George; Chester, Dave; Sonnenberg, Jerry

    2015-05-01

    Dynamic Spectrum Access (DSA) is widely seen as a solution to the problem of limited spectrum, because of its ability to adapt the operating frequency of a radio. Mobile Ad Hoc Networks (MANETs) can extend high-capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact, cognitive radio employs spectrum sensing to facilitate the identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, while secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate fair path use of the DSA-discovered links. Utilization of high-resolution geospatial data layers in RF propagation analysis is directly applicable. Random matrix theory (RMT) is useful in simulating network layer usage in nodes by a Wishart adjacency matrix. We use the Dijkstra algorithm for discovering ad hoc network node connection patterns. We present a method for analysts to dynamically allocate node-node path and link resources using fair division. User allocation of limited resources as a function of time must be dynamic and based on system fairness policies. The context of fair means that first available request for an asset is not envied as long as it is not yet allocated or tasked in order to prevent cycling of the system. This solution may also save money by offering a Pareto efficient repeatable process. We use a water fill queue algorithm to include Shapley value marginal contributions for allocation.

  6. Neuronal Networks in Children with Continuous Spikes and Waves during Slow Sleep

    Science.gov (United States)

    Siniatchkin, Michael; Groening, Kristina; Moehring, Jan; Moeller, Friederike; Boor, Rainer; Brodbeck, Verena; Michel, Christoph M.; Rodionov, Roman; Lemieux, Louis; Stephani, Ulrich

    2010-01-01

    Epileptic encephalopathy with continuous spikes and waves during slow sleep is an age-related disorder characterized by the presence of interictal epileptiform discharges during at least greater than 85% of sleep and cognitive deficits associated with this electroencephalography pattern. The pathophysiological mechanisms of continuous spikes and…

  7. Effects of placebo-controlled continuous and pulsed ultrasound treatments on carpal tunnel syndrome: a randomized trial

    Directory of Open Access Journals (Sweden)

    Onur Armagan

    2014-08-01

    Full Text Available OBJECTIVE: The aim of this placebo-controlled study was to evaluate the effects of pulsed and continuous ultrasound treatments combined with splint therapy on patients with mild and moderate idiopathic carpal tunnel syndrome. METHODS: The study included 46 carpal tunnel syndrome patients who were randomly divided into 3 groups. The first group (n = 15 received a 0 W/cm2 ultrasound treatment (placebo; the second group (n = 16 received a 1.0 W/cm2 continuous ultrasound treatment and the third group (n = 15 received a 1.0 W/cm2 1:4 pulsed ultrasound treatment 5 days a week for a total of 15 sessions. All patients also wore night splints during treatment period. Pre-treatment and post-treatment Visual Analogue Scale, Symptom Severity Scale and Functional Status Scale scores, median nerve motor conduction velocity and distal latency and sensory conduction velocities of the median nerve in the 2nd finger and palm were compared. Clinicaltrials.gov: NCT02054247. RESULTS: There were significant improvements in all groups in terms of the post-treatment Functional Status Scale score (p<0.05 for all groups, Symptom Severity Scale score (first group: p<0.05, second group: p<0.01, third group: p<0.001 and Visual Analogue Scale score (first and third groups: p<0.01, second group: p<0.001. Sensory conduction velocities improved in the second and third groups (p<0.01. Distal latency in the 2nd finger showed improvement only in the third group (p<0.01 and action potential latency in the palm improved only in the second group (p<0.05. CONCLUSION: The results of this study suggest that splinting therapy combined with placebo and pulsed or continuous ultrasound have similar effects on clinical improvement. Patients treated with continuous and pulsed ultrasound showed electrophysiological improvement; however, the results were not superior to those of the placebo.

  8. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software.

    Science.gov (United States)

    Jacomy, Mathieu; Venturini, Tommaso; Heymann, Sebastien; Bastian, Mathieu

    2014-01-01

    Gephi is a network visualization software used in various disciplines (social network analysis, biology, genomics...). One of its key features is the ability to display the spatialization process, aiming at transforming the network into a map, and ForceAtlas2 is its default layout algorithm. The latter is developed by the Gephi team as an all-around solution to Gephi users' typical networks (scale-free, 10 to 10,000 nodes). We present here for the first time its functioning and settings. ForceAtlas2 is a force-directed layout close to other algorithms used for network spatialization. We do not claim a theoretical advance but an attempt to integrate different techniques such as the Barnes Hut simulation, degree-dependent repulsive force, and local and global adaptive temperatures. It is designed for the Gephi user experience (it is a continuous algorithm), and we explain which constraints it implies. The algorithm benefits from much feedback and is developed in order to provide many possibilities through its settings. We lay out its complete functioning for the users who need a precise understanding of its behaviour, from the formulas to graphic illustration of the result. We propose a benchmark for our compromise between performance and quality. We also explain why we integrated its various features and discuss our design choices.

  9. Quorum system and random based asynchronous rendezvous protocol for cognitive radio ad hoc networks

    Directory of Open Access Journals (Sweden)

    Sylwia Romaszko

    2013-12-01

    Full Text Available This paper proposes a rendezvous protocol for cognitive radio ad hoc networks, RAC2E-gQS, which utilizes (1 the asynchronous and randomness properties of the RAC2E protocol, and (2 channel mapping protocol, based on a grid Quorum System (gQS, and taking into account channel heterogeneity and asymmetric channel views. We show that the combination of the RAC2E protocol with the grid-quorum based channel mapping can yield a powerful RAC2E-gQS rendezvous protocol for asynchronous operation in a distributed environment assuring a rapid rendezvous between the cognitive radio nodes having available both symmetric and asymmetric channel views. We also propose an enhancement of the protocol, which uses a torus QS for a slot allocation, dealing with the worst case scenario, a large number of channels with opposite ranking lists.

  10. Online Distributed Learning Over Networks in RKH Spaces Using Random Fourier Features

    Science.gov (United States)

    Bouboulis, Pantelis; Chouvardas, Symeon; Theodoridis, Sergios

    2018-04-01

    We present a novel diffusion scheme for online kernel-based learning over networks. So far, a major drawback of any online learning algorithm, operating in a reproducing kernel Hilbert space (RKHS), is the need for updating a growing number of parameters as time iterations evolve. Besides complexity, this leads to an increased need of communication resources, in a distributed setting. In contrast, the proposed method approximates the solution as a fixed-size vector (of larger dimension than the input space) using Random Fourier Features. This paves the way to use standard linear combine-then-adapt techniques. To the best of our knowledge, this is the first time that a complete protocol for distributed online learning in RKHS is presented. Conditions for asymptotic convergence and boundness of the networkwise regret are also provided. The simulated tests illustrate the performance of the proposed scheme.

  11. Nonlinear random resistor diode networks and fractal dimensions of directed percolation clusters.

    Science.gov (United States)

    Stenull, O; Janssen, H K

    2001-07-01

    We study nonlinear random resistor diode networks at the transition from the nonpercolating to the directed percolating phase. The resistor-like bonds and the diode-like bonds under forward bias voltage obey a generalized Ohm's law V approximately I(r). Based on general grounds such as symmetries and relevance we develop a field theoretic model. We focus on the average two-port resistance, which is governed at the transition by the resistance exponent straight phi(r). By employing renormalization group methods we calculate straight phi(r) for arbitrary r to one-loop order. Then we address the fractal dimensions characterizing directed percolation clusters. Via considering distinct values of the nonlinearity r, we determine the dimension of the red bonds, the chemical path, and the backbone to two-loop order.

  12. Logarithmic corrections to scaling in critical percolation and random resistor networks.

    Science.gov (United States)

    Stenull, Olaf; Janssen, Hans-Karl

    2003-09-01

    We study the critical behavior of various geometrical and transport properties of percolation in six dimensions. By employing field theory and renormalization group methods we analyze fluctuation induced logarithmic corrections to scaling up to and including the next-to-leading order correction. Our study comprehends the percolation correlation function, i.e., the probability that two given points are connected, and some of the fractal masses describing percolation clusters. To be specific, we calculate the mass of the backbone, the red bonds, and the shortest path. Moreover, we study key transport properties of percolation as represented by the random resistor network. We investigate the average two-point resistance as well as the entire family of multifractal moments of the current distribution.

  13. Engineering applications of fpgas chaotic systems, artificial neural networks, random number generators, and secure communication systems

    CERN Document Server

    Tlelo-Cuautle, Esteban; de la Fraga, Luis Gerardo

    2016-01-01

    This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will b...

  14. Knee strength retention and analgesia with continuous perineural fentanyl infusion after total knee replacement: randomized controlled trial.

    Science.gov (United States)

    Mangar, Devanand; Karlnoski, Rachel A; Sprenker, Collin J; Downes, Katheryne L; Taffe, Narrene; Wainwright, Robert; Gustke, Kenneth; Bernasek, Thomas L; Camporesi, Enrico

    2014-04-01

    Despite providing adequate pain relief, a femoral nerve block can induce postoperative muscle weakness after total knee arthoplasty (TKA). Fentanyl has been shown to have peripheral effects but has not been used as a perineural infusate alone after TKA. Sixty patients scheduled for TKA were randomized to one of three blinded groups: a continuous 24 h infusion of either fentanyl 3 μg/ml, ropivacaine 0.1%, or 0.9% normal saline through a femoral nerve sheath catheter at 10 ml/h. The main outcome was maximum voluntary isometric contraction (MVIC) in the quadriceps femoris (knee extension), measured by a handheld dynamometer (Nm/kg). Other variables assessed were preoperative and postoperative visual analog scale (VAS) scores, hamstrings MVIC (knee flexion), active range of motion of the operative knee, distance ambulated, incidence of knee buckling, supplemental morphine usage, postoperative side effects, and serum fentanyl levels. Quadriceps MVIC values were significantly greater in the fentanyl group compared to the group that received ropivacaine (median values, 0.08 vs. 0.03 Nm/kg; p = 0.028). The incidence of postoperative knee buckling upon ambulation was higher in the ropivacaine group compared to the fentanyl group, although not statistically significant (40% vs. 15 %, respectively; p = 0.077). VAS scores while ambulating were not significantly different between the fentanyl group and the ropivacaine group (p = 0.270). Postoperative morphine consumption, nausea and vomiting, and resting VAS scores were similar among the three groups. A continuous perineural infusion of fentanyl produced greater strength retention than ropivacaine post-TKA.

  15. A prospective, randomized, blinded-endpoint, controlled study - continuous epidural infusion versus programmed intermittent epidural bolus in labor analgesia

    Directory of Open Access Journals (Sweden)

    Joana Nunes

    Full Text Available Abstract Background: There is evidence that administration of a programmed intermittent epidural bolus (PIEB compared to continuous epidural infusion (CEI leads to greater analgesia efficacy and maternal satisfaction with decreased anesthetic interventions. Methods: In this study, 166 women with viable pregnancies were included. After an epidural loading dose of 10 mL with Ropivacaine 0.16% plus Sufentanil 10 µg, parturient were randomly assigned to one of three regimens: A - Ropivacaine 0.15% plus Sufentanil 0.2 µg/mL solution as continuous epidural infusion (5 mL/h, beginning immediately after the initial bolus; B - Ropivacaine 0.1% plus Sufentanil 0.2 µg/mL as programmed intermittent epidural bolus and C - Same solution as group A as programmed intermittent epidural bolus. PIEB regimens were programmed as 10 mL/h starting 60 min after the initial bolus. Rescue boluses of 5 mL of the same solution were administered, with the infusion pump. We evaluated maternal satisfaction using a verbal numeric scale from 0 to 10. We also evaluated adverse, maternal and neonatal outcomes. Results: We analyzed 130 pregnants (A = 60; B = 33; C = 37. The median verbal numeric scale for maternal satisfaction was 8.8 in group A; 8.6 in group B and 8.6 in group C (p = 0.83. We found a higher caesarean delivery rate in group A (56.7%; p = 0.02. No differences in motor block, instrumental delivery rate and neonatal outcomes were observed. Conclusions: Maintenance of epidural analgesia with programmed intermittent epidural bolus is associated with a reduced incidence of caesarean delivery with equally high maternal satisfaction and no adverse outcomes.

  16. A prospective, randomized, blinded-endpoint, controlled study - continuous epidural infusion versus programmed intermittent epidural bolus in labor analgesia.

    Science.gov (United States)

    Nunes, Joana; Nunes, Sara; Veiga, Mariano; Cortez, Mara; Seifert, Isabel

    2016-01-01

    There is evidence that administration of a programmed intermittent epidural bolus (PIEB) compared to continuous epidural infusion (CEI) leads to greater analgesia efficacy and maternal satisfaction with decreased anesthetic interventions. In this study, 166 women with viable pregnancies were included. After an epidural loading dose of 10mL with Ropivacaine 0.16% plus Sufentanil 10μg, parturient were randomly assigned to one of three regimens: A - Ropivacaine 0.15% plus Sufentanil 0.2μg/mL solution as continuous epidural infusion (5mL/h, beginning immediately after the initial bolus); B - Ropivacaine 0.1% plus Sufentanil 0.2μg/mL as programmed intermittent epidural bolus and C - Same solution as group A as programmed intermittent epidural bolus. PIEB regimens were programmed as 10mL/h starting 60min after the initial bolus. Rescue boluses of 5mL of the same solution were administered, with the infusion pump. We evaluated maternal satisfaction using a verbal numeric scale from 0 to 10. We also evaluated adverse, maternal and neonatal outcomes. We analyzed 130 pregnants (A=60; B=33; C=37). The median verbal numeric scale for maternal satisfaction was 8.8 in group A; 8.6 in group B and 8.6 in group C (p=0.83). We found a higher caesarean delivery rate in group A (56.7%; p=0.02). No differences in motor block, instrumental delivery rate and neonatal outcomes were observed. Maintenance of epidural analgesia with programmed intermittent epidural bolus is associated with a reduced incidence of caesarean delivery with equally high maternal satisfaction and no adverse outcomes. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  17. Effect of Continuous Motion Parameter Feedback on Laparoscopic Simulation Training: A Prospective Randomized Controlled Trial on Skill Acquisition and Retention.

    Science.gov (United States)

    Buescher, Julian Frederik; Mehdorn, Anne-Sophie; Neumann, Philipp-Alexander; Becker, Felix; Eichelmann, Ann-Kathrin; Pankratius, Ulrich; Bahde, Ralf; Foell, Daniel; Senninger, Norbert; Rijcken, Emile

    To investigate the effect of motion parameter feedback on laparoscopic basic skill acquisition and retention during a standardized box training curriculum. A Lap-X Hybrid laparoscopic simulator was designed to provide individual and continuous motion parameter feedback in a dry box trainer setting. In a prospective controlled trial, surgical novices were randomized into 2 groups (regular box group, n = 18, and Hybrid group, n = 18) to undergo an identical 5-day training program. In each group, 7 standardized tasks on laparoscopic basic skills were completed twice a day on 4 consecutive days in fixed pairs. Additionally, each participant performed a simulated standard laparoscopic cholecystectomy before (day 1) and after training (day 5) on a LAP Mentor II virtual reality (VR) trainer, allowing an independent control of skill progress in both groups. A follow-up assessment of skill retention was performed after 6 weeks with repetition of both the box tasks and VR cholecystectomy. Muenster University Hospital Training Center, Muenster, Germany. Medical students without previous surgical experience. Laparoscopic skills in both groups improved significantly during the training period, measured by the overall task performance time. The 6 week follow-up showed comparable skill retention in both groups. Evaluation of the VR cholecystectomies demonstrated significant decrease of operation time (p Simulation training on both trainers enables reliable acquisition of laparoscopic basic skills. Furthermore, individual and continuous motion feedback improves laparoscopic skill enhancement significantly in several aspects. Thus, training systems with feedback of motion parameters should be considered to achieve long-term improvement of motion economy among surgical trainees. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  18. Effects of Intermittent Versus Continuous Walking on Distance Walked and Fatigue in Persons With Multiple Sclerosis: A Randomized Crossover Trial.

    Science.gov (United States)

    Karpatkin, Herb; Cohen, Evan T; Rzetelny, Adam; Parrott, J Scott; Breismeister, Breanne; Hartman, Ryan; Luu, Ronald; Napolione, Danielle

    2015-07-01

    Fatigue is a common, disabling symptom experienced by persons with multiple sclerosis (MS). Evidence shows that intermittent exercise is associated in improved performance and negligible fatigue. The purpose of this study was to examine whether subjects with MS walk greater distances with less fatigue under intermittent (INT) or continuous (CONT) walking condition. Twenty-seven subjects with MS (median Extended Disability Severity Scale 3.5, interquartile range 1.6) walked in the CONT (ie, 6 uninterrupted minutes) and INT (ie, three 2-minute walking bouts) conditions in a randomized crossover. Distance was measured for the entire 6-minute walking period and each 2-minute increment. Fatigue was measured as the difference in a visual analog scale of fatigue (ΔVAS-F) immediately preceding and following each trial. Participants walked greater distances in the INT condition compared to the CONT condition (P = 0.005). There was a significant interaction of walking condition and time (P walked in the INT condition changed across time. ΔVAS-F was significantly lower in the INT condition than in the CONT condition (P = 0.036). Subjects with MS walked farther, and with less fatigue, when walking intermittently rather than continuously. Persons with MS may be able to tolerate a greater dose of walking training if the walking bouts are intermittent. Further study to determine the benefits of a walking exercise program using intermittent walking is recommended.Video Abstract available for additional insights from the authors (Supplemental Digital Content 1, http://links.lww.com/JNPT/A103).

  19. Surgical interventions to treat humerus shaft fractures: A network meta-analysis of randomized controlled trials.

    Directory of Open Access Journals (Sweden)

    Jia-Guo Zhao

    Full Text Available There are three main surgical techniques to treat humeral shaft fractures: open reduction and plate fixation (ORPF, intramedullary nail (IMN fixation, and minimally invasive percutaneous osteosynthesis (MIPO. We performed a network meta-analysis to compare three surgical procedures, including ORPF, IMN fixation, and MIPO, to provide the optimum treatment for humerus shaft fractures.MEDLINE, EMBASE, Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, and Cochrane library were researched for reports published up to May 2016. We only included randomized controlled trials (RCTs comparing two or more of the three surgical procedures, including the ORPF, IMN, and MIPO techniques, for humeral shaft fractures in adults. The methodological quality was evaluated based on the Cochrane risk of bias tool. We used WinBUGS1.4 to conduct this Bayesian network meta-analysis. We used the odd ratios (ORs with 95% confidence intervals (CIs to calculate the dichotomous outcomes and analyzed the percentages of the surface under the cumulative ranking curve.Seventeen eligible publications reporting 16 RCTs were included in this study. Eight hundred and thirty-two participants were randomized to receive one of three surgical procedures. The results showed that shoulder impingement occurred more commonly in the IMN group than with either ORPF (OR, 0.13; 95% CI, 0.03-0.37 or MIPO fixation (OR, 0.08; 95% CI, 0.00-0.69. Iatrogenic radial nerve injury occurred more commonly in the ORPF group than in the MIPO group (OR, 11.09; 95% CI, 1.80-124.20. There were no significant differences among the three procedures in nonunion, delayed union, and infection.Compared with IMN and ORPF, MIPO technique is the preferred treatment method for humeral shaft fractures.

  20. Ensemble of Neural Network Conditional Random Fields for Self-Paced Brain Computer Interfaces

    Directory of Open Access Journals (Sweden)

    Hossein Bashashati

    2017-07-01

    Full Text Available Classification of EEG signals in self-paced Brain Computer Interfaces (BCI is an extremely challenging task. The main difficulty stems from the fact that start time of a control task is not defined. Therefore it is imperative to exploit the characteristics of the EEG data to the extent possible. In sensory motor self-paced BCIs, while performing the mental task, the user’s brain goes through several well-defined internal state changes. Applying appropriate classifiers that can capture these state changes and exploit the temporal correlation in EEG data can enhance the performance of the BCI. In this paper, we propose an ensemble learning approach for self-paced BCIs. We use Bayesian optimization to train several different classifiers on different parts of the BCI hyper- parameter space. We call each of these classifiers Neural Network Conditional Random Field (NNCRF. NNCRF is a combination of a neural network and conditional random field (CRF. As in the standard CRF, NNCRF is able to model the correlation between adjacent EEG samples. However, NNCRF can also model the nonlinear dependencies between the input and the output, which makes it more powerful than the standard CRF. We compare the performance of our algorithm to those of three popular sequence labeling algorithms (Hidden Markov Models, Hidden Markov Support Vector Machines and CRF, and to two classical classifiers (Logistic Regression and Support Vector Machines. The classifiers are compared for the two cases: when the ensemble learning approach is not used and when it is. The data used in our studies are those from the BCI competition IV and the SM2 dataset. We show that our algorithm is considerably superior to the other approaches in terms of the Area Under the Curve (AUC of the BCI system.

  1. Support or competition? How online social networks increase physical activity: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Jingwen Zhang, PhD

    2016-12-01

    Full Text Available To identify what features of online social networks can increase physical activity, we conducted a 4-arm randomized controlled trial in 2014 in Philadelphia, PA. Students (n = 790, mean age = 25.2 at an university were randomly assigned to one of four conditions composed of either supportive or competitive relationships and either with individual or team incentives for attending exercise classes. The social comparison condition placed participants into 6-person competitive networks with individual incentives. The social support condition placed participants into 6-person teams with team incentives. The combined condition with both supportive and competitive relationships placed participants into 6-person teams, where participants could compare their team's performance to 5 other teams' performances. The control condition only allowed participants to attend classes with individual incentives. Rewards were based on the total number of classes attended by an individual, or the average number of classes attended by the members of a team. The outcome was the number of classes that participants attended. Data were analyzed using multilevel models in 2014. The mean attendance numbers per week were 35.7, 38.5, 20.3, and 16.8 in the social comparison, the combined, the control, and the social support conditions. Attendance numbers were 90% higher in the social comparison and the combined conditions (mean = 1.9, SE = 0.2 in contrast to the two conditions without comparison (mean = 1.0, SE = 0.2 (p = 0.003. Social comparison was more effective for increasing physical activity than social support and its effects did not depend on individual or team incentives.

  2. Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach.

    Science.gov (United States)

    Chandrasekar, A; Rakkiyappan, R; Cao, Jinde

    2015-10-01

    This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. The array of neural networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly unknown transition probabilities such that the coupled neural network is synchronized with mixed time-delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities. Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly coupled neural networks with partly unknown transition probabilities. By making use of Kronecker product and some useful integral inequalities, a novel Lyapunov-Krasovskii functional was designed for handling the coupled neural network with mixed delay and then impulsive synchronization criteria are solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Vague Plague -The continual innovation and spread of BPR and IT in Enterprise Networks

    DEFF Research Database (Denmark)

    Koch, Christian

    1998-01-01

    The empirical point of departure of this article is the erosion of enterprise boundaries, which create new conditions for enterprise actors, i.e. they are to an increasing extent forced to operate in networks. They are confronted with a number of unstable and developing change drivers. The focus ...... as a "plague" like SAP R/3, are actually reshaped by the enterprises....

  4. From continuous improvement to collaborative improvement: scope, scale, skill and social networking in collaborative improvement

    NARCIS (Netherlands)

    Middel, H.G.A.; Groen, Arend J.; Fisscher, O.A.M.

    2004-01-01

    More than ever, companies are challenged to improve their performance and respond quickly and accurately to changes within the market. As competitive battlefield is moving towards the level of networks of organisations, the individual firm is an inadequate entity for identifying improvements.

  5. Random access procedures and radio access network (RAN) overload control in standard and advanced long-term evolution (LTE and LTE-A) networks

    DEFF Research Database (Denmark)

    Kiilerich Pratas, Nuno; Thomsen, Henning; Popovski, Petar

    2015-01-01

    In this chapter, we describe and discuss the current LTE random access procedure and the Radio Access Network Load Control solution within LTE/LTE-A. We provide an overview of the several considered load control solutions and give a detailed description of the standardized Extended Access Class B...

  6. Scaling of peak flows with constant flow velocity in random self-similar networks

    Directory of Open Access Journals (Sweden)

    R. Mantilla

    2011-07-01

    Full Text Available A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E and φ(E that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E and φ(E and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit

  7. Scaling of peak flows with constant flow velocity in random self-similar networks

    Science.gov (United States)

    Troutman, Brent M.; Mantilla, Ricardo; Gupta, Vijay K.

    2011-01-01

    A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs) with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E) and φ(E) that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E) and φ(E) and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E) and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit hydrograph theory and flow dynamics. Our results provide a reference framework to study scaling exponents under more complex scenarios

  8. Automated classification of seismic sources in a large database: a comparison of Random Forests and Deep Neural Networks.

    Science.gov (United States)

    Hibert, Clement; Stumpf, André; Provost, Floriane; Malet, Jean-Philippe

    2017-04-01

    In the past decades, the increasing quality of seismic sensors and capability to transfer remotely large quantity of data led to a fast densification of local, regional and global seismic networks for near real-time monitoring of crustal and surface processes. This technological advance permits the use of seismology to document geological and natural/anthropogenic processes (volcanoes, ice-calving, landslides, snow and rock avalanches, geothermal fields), but also led to an ever-growing quantity of seismic data. This wealth of seismic data makes the construction of complete seismicity catalogs, which include earthquakes but also other sources of seismic waves, more challenging and very time-consuming as this critical pre-processing stage is classically done by human operators and because hundreds of thousands of seismic signals have to be processed. To overcome this issue, the development of automatic methods for the processing of continuous seismic data appears to be a necessity. The classification algorithm should satisfy the need of a method that is robust, precise and versatile enough to be deployed to monitor the seismicity in very different contexts. In this study, we evaluate the ability of machine learning algorithms for the analysis of seismic sources at the Piton de la Fournaise volcano being Random Forest and Deep Neural Network classifiers. We gather a catalog of more than 20,000 events, belonging to 8 classes of seismic sources. We define 60 attributes, based on the waveform, the frequency content and the polarization of the seismic waves, to parameterize the seismic signals recorded. We show that both algorithms provide similar positive classification rates, with values exceeding 90% of the events. When trained with a sufficient number of events, the rate of positive identification can reach 99%. These very high rates of positive identification open the perspective of an operational implementation of these algorithms for near-real time monitoring of

  9. Effects of Random Environment on a Self-Organized Critical System: Renormalization Group Analysis of a Continuous Model

    Directory of Open Access Journals (Sweden)

    Antonov N.V.

    2016-01-01

    Full Text Available We study effects of the random fluid motion on a system in a self-organized critical state. The latter is described by the continuous stochastic model proposed by Hwa and Kardar [Phys. Rev. Lett. 62: 1813 (1989]. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝ δ(t − t′/k⊥d-1+ξ , where k⊥ = |k⊥| and k⊥ is the component of the wave vector, perpendicular to a certain preferred direction – the d-dimensional generalization of the ensemble introduced by Avellaneda and Majda [Commun. Math. Phys. 131: 381 (1990]. Using the field theoretic renormalization group we show that, depending on the relation between the exponent ξ and the spatial dimension d, the system reveals different types of large-scale, long-time scaling behaviour, associated with the three possible fixed points of the renormalization group equations. They correspond to ordinary diffusion, to passively advected scalar field (the nonlinearity of the Hwa–Kardar model is irrelevant and to the “pure” Hwa–Kardar model (the advection is irrelevant. For the special case ξ = 2(4 − d/3 both the nonlinearity and the advection are important. The corresponding critical exponents are found exactly for all these cases.

  10. Correlation of electron transport and photocatalysis of nanocrystalline clusters studied by Monte-Carlo continuity random walking.

    Science.gov (United States)

    Liu, Baoshun; Li, Ziqiang; Zhao, Xiujian

    2015-02-21

    In this research, Monte-Carlo Continuity Random Walking (MC-RW) model was used to study the relation between electron transport and photocatalysis of nano-crystalline (nc) clusters. The effects of defect energy disorder, spatial disorder of material structure, electron density, and interfacial transfer/recombination on the electron transport and the photocatalysis were studied. Photocatalytic activity is defined as 1/τ from a statistical viewpoint with τ being the electron average lifetime. Based on the MC-RW simulation, a clear physical and chemical "picture" was given for the photocatalytic kinetic analysis of nc-clusters. It is shown that the increase of defect energy disorder and material spatial structural disorder, such as the decrease of defect trap number, the increase of crystallinity, the increase of particle size, and the increase of inter-particle connection, can enhance photocatalytic activity through increasing electron transport ability. The increase of electron density increases the electron Fermi level, which decreases the activation energy for electron de-trapping from traps to extending states, and correspondingly increases electron transport ability and photocatalytic activity. Reducing recombination of electrons and holes can increase electron transport through the increase of electron density and then increases the photocatalytic activity. In addition to the electron transport, the increase of probability for electrons to undergo photocatalysis can increase photocatalytic activity through the increase of the electron interfacial transfer speed.

  11. Neural-Fuzzy Digital Strategy of Continuous-Time Nonlinear Systems Using Adaptive Prediction and Random-Local-Optimization Design

    Directory of Open Access Journals (Sweden)

    Zhi-Ren Tsai

    2013-01-01

    Full Text Available A tracking problem, time-delay, uncertainty and stability analysis of a predictive control system are considered. The predictive control design is based on the input and output of neural plant model (NPM, and a recursive fuzzy predictive tracker has scaling factors which limit the value zone of measured data and cause the tuned parameters to converge to obtain a robust control performance. To improve the further control performance, the proposed random-local-optimization design (RLO for a model/controller uses offline initialization to obtain a near global optimal model/controller. Other issues are the considerations of modeling error, input-delay, sampling distortion, cost, greater flexibility, and highly reliable digital products of the model-based controller for the continuous-time (CT nonlinear system. They are solved by a recommended two-stage control design with the first-stage (offline RLO and second-stage (online adaptive steps. A theorizing method is then put forward to replace the sensitivity calculation, which reduces the calculation of Jacobin matrices of the back-propagation (BP method. Finally, the feedforward input of reference signals helps the digital fuzzy controller improve the control performance, and the technique works to control the CT systems precisely.

  12. Correlated continuous time random walks: combining scale-invariance with long-range memory for spatial and temporal dynamics

    International Nuclear Information System (INIS)

    Schulz, Johannes H P; Chechkin, Aleksei V; Metzler, Ralf

    2013-01-01

    Standard continuous time random walk (CTRW) models are renewal processes in the sense that at each jump a new, independent pair of jump length and waiting time are chosen. Globally, anomalous diffusion emerges through scale-free forms of the jump length and/or waiting time distributions by virtue of the generalized central limit theorem. Here we present a modified version of recently proposed correlated CTRW processes, where we incorporate a power-law correlated noise on the level of both jump length and waiting time dynamics. We obtain a very general stochastic model, that encompasses key features of several paradigmatic models of anomalous diffusion: discontinuous, scale-free displacements as in Lévy flights, scale-free waiting times as in subdiffusive CTRWs, and the long-range temporal correlations of fractional Brownian motion (FBM). We derive the exact solutions for the single-time probability density functions and extract the scaling behaviours. Interestingly, we find that different combinations of the model parameters lead to indistinguishable shapes of the emerging probability density functions and identical scaling laws. Our model will be useful for describing recent experimental single particle tracking data that feature a combination of CTRW and FBM properties. (paper)

  13. Feasibility of scenario-based simulation training versus traditional workshops in continuing medical education: a randomized controlled trial

    Science.gov (United States)

    Kerr, Brendan; Hawkins, Trisha Lee-Ann; Herman, Robert; Barnes, Sue; Kaufmann, Stephanie; Fraser, Kristin; Ma, Irene W. Y.

    2013-01-01

    Introduction Although simulation-based training is increasingly used for medical education, its benefits in continuing medical education (CME) are less established. This study seeks to evaluate the feasibility of incorporating simulation-based training into a CME conference and compare its effectiveness with the traditional workshop in improving knowledge and self-reported confidence. Methods Participants (N=27) were group randomized to either a simulation-based workshop or a traditional case-based workshop. Results Post-training, knowledge assessment score neither did increase significantly in the traditional group (d=0.13; p=0.76) nor did significantly decrease in the simulation group (d= − 0.44; p=0.19). Self-reported comfort in patient assessment parameters increased in both groups (psimulation-based training was not associated with benefits in knowledge acquisition, knowledge retention, or comfort in patient assessment. It was associated with superior outcomes in comfort in patient management, but this benefit may be short-lived. Further studies are required to better define the conditions under which simulation-based training is beneficial. PMID:23870304

  14. Frequency decoding of periodically timed action potentials through distinct activity patterns in a random neural network

    International Nuclear Information System (INIS)

    Reichenbach, Tobias; Hudspeth, A J

    2012-01-01

    Frequency discrimination is a fundamental task of the auditory system. The mammalian inner ear, or cochlea, provides a place code in which different frequencies are detected at different spatial locations. However, a temporal code based on spike timing is also available: action potentials evoked in an auditory-nerve fiber by a low-frequency tone occur at a preferred phase of the stimulus—they exhibit phase locking—and thus provide temporal information about the tone's frequency. Humans employ this temporal information for discrimination of low frequencies. How might such temporal information be read out in the brain? Here we employ statistical and numerical methods to demonstrate that recurrent random neural networks in which connections between neurons introduce characteristic time delays, and in which neurons require temporally coinciding inputs for spike initiation, can perform sharp frequency discrimination when stimulated with phase-locked inputs. Although the frequency resolution achieved by such networks is limited by the noise in phase locking, the resolution for realistic values reaches the tiny frequency difference of 0.2% that has been measured in humans. (paper)

  15. Randomly biased investments and the evolution of public goods on interdependent networks

    Science.gov (United States)

    Chen, Wei; Wu, Te; Li, Zhiwu; Wang, Long

    2017-08-01

    Deciding how to allocate resources between interdependent systems is significant to optimize efficiency. We study the effects of heterogeneous contribution, induced by such interdependency, on the evolution of cooperation, through implementing the public goods games on two-layer networks. The corresponding players on different layers try to share a fixed amount of resources as the initial investment properly. The symmetry breaking of investments between players located on different layers is able to either prevent investments from, or extract them out of the deadlock. Results show that a moderate investment heterogeneity is best favorable for the evolution of cooperation, and random allocation of investment bias suppresses the cooperators at a wide range of the investment bias and the enhancement effect. Further studies on time evolution with different initial strategy configurations show that the non-interdependent cooperators along the interface of interdependent cooperators also are an indispensable factor in facilitating cooperative behavior. Our main results are qualitatively unchanged even diversifying investment bias that is subject to uniform distribution. Our study may shed light on the understanding of the origin of cooperative behavior on interdependent networks.

  16. Heave motion prediction of a large barge in random seas by using artificial neural network

    Science.gov (United States)

    Lee, Hsiu Eik; Liew, Mohd Shahir; Zawawi, Noor Amila Wan Abdullah; Toloue, Iraj

    2017-11-01

    This paper describes the development of a multi-layer feed forward artificial neural network (ANN) to predict rigid heave body motions of a large catenary moored barge subjected to multi-directional irregular waves. The barge is idealized as a rigid plate of finite draft with planar dimensions 160m (length) and 100m (width) which is held on station using a six point chain catenary mooring in 50m water depth. Hydroelastic effects are neglected from the physical model as the chief intent of this study is focused on large plate rigid body hydrodynamics modelling using ANN. Even with this assumption, the computational requirements for time domain coupled hydrodynamic simulations of a moored floating body is considerably costly, particularly if a large number of simulations are required such as in the case of response based design (RBD) methods. As an alternative to time consuming numerical hydrodynamics, a regression-type ANN model has been developed for efficient prediction of the barge's heave responses to random waves from various directions. It was determined that a network comprising of 3 input features, 2 hidden layers with 5 neurons each and 1 output was sufficient to produce acceptable predictions within 0.02 mean squared error. By benchmarking results from the ANN with those generated by a fully coupled dynamic model in OrcaFlex, it is demonstrated that the ANN is capable of predicting the barge's heave responses with acceptable accuracy.

  17. Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.

    Science.gov (United States)

    Fechter, Tobias; Adebahr, Sonja; Baltas, Dimos; Ben Ayed, Ismail; Desrosiers, Christian; Dolz, Jose

    2017-12-01

    Precise delineation of organs at risk is a crucial task in radiotherapy treatment planning for delivering high doses to the tumor while sparing healthy tissues. In recent years, automated segmentation methods have shown an increasingly high performance for the delineation of various anatomical structures. However, this task remains challenging for organs like the esophagus, which have a versatile shape and poor contrast to neighboring tissues. For human experts, segmenting the esophagus from CT images is a time-consuming and error-prone process. To tackle these issues, we propose a random walker approach driven by a 3D fully convolutional neural network (CNN) to automatically segment the esophagus from CT images. First, a soft probability map is generated by the CNN. Then, an active contour model (ACM) is fitted to the CNN soft probability map to get a first estimation of the esophagus location. The outputs of the CNN and ACM are then used in conjunction with a probability model based on CT Hounsfield (HU) values to drive the random walker. Training and evaluation were done on 50 CTs from two different datasets, with clinically used peer-reviewed esophagus contours. Results were assessed regarding spatial overlap and shape similarity. The esophagus contours generated by the proposed algorithm showed a mean Dice coefficient of 0.76 ± 0.11, an average symmetric square distance of 1.36 ± 0.90 mm, and an average Hausdorff distance of 11.68 ± 6.80, compared to the reference contours. These results translate to a very good agreement with reference contours and an increase in accuracy compared to existing methods. Furthermore, when considering the results reported in the literature for the publicly available Synapse dataset, our method outperformed all existing approaches, which suggests that the proposed method represents the current state-of-the-art for automatic esophagus segmentation. We show that a CNN can yield accurate estimations of esophagus location, and that

  18. Continuous country-wide rainfall observation using a large network of commercial microwave links: Challenges, solutions and applications

    Science.gov (United States)

    Chwala, Christian; Boose, Yvonne; Smiatek, Gerhard; Kunstmann, Harald

    2017-04-01

    Commercial microwave link (CML) networks have proven to be a valuable source for rainfall information over the last years. However, up to now, analysis of CML data was always limited to certain snapshots of data for historic periods due to limited data access. With the real-time availability of CML data in Germany (Chwala et al. 2016) this situation has improved significantly. We are continuously acquiring and processing data from 3000 CMLs in Germany in near real-time with one minute temporal resolution. Currently the data acquisition system is extended to 10000 CMLs so that the whole of Germany is covered and a continuous country-wide rainfall product can be provided. In this contribution we will elaborate on the challenges and solutions regarding data acquisition, data management and robust processing. We will present the details of our data acquisition system that we run operationally at the network of the CML operator Ericsson Germany to solve the problem of limited data availability. Furthermore we will explain the implementation of our data base, its web-frontend for easy data access and present our data processing algorithms. Finally we will showcase an application of our data in hydrological modeling and its potential usage to improve radar QPE. Bibliography: Chwala, C., Keis, F., and Kunstmann, H.: Real-time data acquisition of commercial microwave link networks for hydrometeorological applications, Atmos. Meas. Tech., 9, 991-999, doi:10.5194/amt-9-991-2016, 2016

  19. Effects of Hot-Hydrostatic Canned Extrusion on the Stock Utilization, Microstructure and Mechanical Properties of TiBw/TC4 Composites with Quasi-Continuous Network.

    Science.gov (United States)

    Feng, Yangju; Li, Bing; Cui, Guorong; Zhang, Wencong

    2017-10-25

    In-situ TiB whisker-reinforced Ti-6Al-4V (TC4) titanium matrix composites (TiBw/TC4) with quasi-continuous networks were successfully fabricated by vacuum hot-pressing sintering. The effects of the hot-hydrostatic canned extrusion on stock utilization, microstructure and mechanical properties of the TiBw/TC4 composites were investigated. It was satisfactory that the utilization of composites could be obviously improved by canned extrusion compared to that extruded without canned extrusion. The microstructure results showed that after canned extrusion the grain was refined and the TiB whiskers were distributed from a random array state to a state in which the whiskers were distributed along the extrusion direction. The properties testing results revealed that the tensile strength, the hardness and the ductility of the composites all significantly improved after extrusion due to the grain refinement and orientation of the TiB whisker caused by extrusion. Tensile fracture results showed that when the TiB whiskers were randomly distributed only part of them played a role in strengthening the matrix during the deformation process (as-sintered composites), while when the TiB whiskers were oriented all whiskers could strengthen the matrix during the tensile testing process (as-extruded composites).

  20. Inferring network structure in non-normal and mixed discrete-continuous genomic data.

    Science.gov (United States)

    Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran

    2018-03-01

    Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. © 2017, The International Biometric Society.

  1. Two-terminal reliability of a mobile ad hoc network under the asymptotic spatial distribution of the random waypoint model

    International Nuclear Information System (INIS)

    Chen, Binchao; Phillips, Aaron; Matis, Timothy I.

    2012-01-01

    The random waypoint (RWP) mobility model is frequently used in describing the movement pattern of mobile users in a mobile ad hoc network (MANET). As the asymptotic spatial distribution of nodes under a RWP model exhibits central tendency, the two-terminal reliability of the MANET is investigated as a function of the source node location. In particular, analytical expressions for one and two hop connectivities are developed as well as an efficient simulation methodology for two-terminal reliability. A study is then performed to assess the effect of nodal density and network topology on network reliability.

  2. Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells.

    Science.gov (United States)

    Xie, Shouyi; Ouyang, Zi; Jia, Baohua; Gu, Min

    2013-05-06

    Metal nanowire networks are emerging as next generation transparent electrodes for photovoltaic devices. We demonstrate the application of random silver nanowire networks as the top electrode on crystalline silicon wafer solar cells. The dependence of transmittance and sheet resistance on the surface coverage is measured. Superior optical and electrical properties are observed due to the large-size, highly-uniform nature of these networks. When applying the nanowire networks on the solar cells with an optimized two-step annealing process, we achieved as large as 19% enhancement on the energy conversion efficiency. The detailed analysis reveals that the enhancement is mainly caused by the improved electrical properties of the solar cells due to the silver nanowire networks. Our result reveals that this technology is a promising alternative transparent electrode technology for crystalline silicon wafer solar cells.

  3. Modelling the continuous cooling transformation diagram of engineering steels using neural networks. Part II. Microstructure and hardness

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, P.J. van der; Wang, J. [Delft Univ. of Technology (Netherlands); Sietsma, J.; Zwaag, S. van der [Delft Univ. of Technology, Lab. for Materials Science (Netherlands)

    2002-12-01

    The neural network model of Van der Wolk et al. (2002) describes the effect of composition on the phase regions of the continuous cooling transformation (CCT) diagram, yet does not consider the fractions of microstructural components and the hardness data that are often quoted in CCT diagrams. In the present paper, the construction of two more neural network models, one for the fractions of ferrite, pearlite, bainite and martensite in the microstructure, and one for the hardness after cooling, using the data of 338 and 412 diagrams, respectively. The accuracy of each model was found to be similar to the expected experimental error; moreover, the models were found to be mutually consistent, although they have been constructed independently. Furthermore, the trends in these properties for alloying elements can be quantified with the models, and are largely in line with metallurgical expectations. (orig.)

  4. Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution

    Science.gov (United States)

    Lu, Weizhao; Huang, Chunhui; Hou, Kun; Shi, Liting; Zhao, Huihui; Li, Zhengmei; Qiu, Jianfeng

    2018-05-01

    In continuous-variable quantum key distribution (CV-QKD), weak signal carrying information transmits from Alice to Bob; during this process it is easily influenced by unknown noise which reduces signal-to-noise ratio, and strongly impacts reliability and stability of the communication. Recurrent quantum neural network (RQNN) is an artificial neural network model which can perform stochastic filtering without any prior knowledge of the signal and noise. In this paper, a modified RQNN algorithm with expectation maximization algorithm is proposed to process the signal in CV-QKD, which follows the basic rule of quantum mechanics. After RQNN, noise power decreases about 15 dBm, coherent signal recognition rate of RQNN is 96%, quantum bit error rate (QBER) drops to 4%, which is 6.9% lower than original QBER, and channel capacity is notably enlarged.

  5. Network clustering analysis using mixture exponential-family random graph models and its application in genetic interaction data.

    Science.gov (United States)

    Wang, Yishu; Zhao, Hongyu; Deng, Minghua; Fang, Huaying; Yang, Dejie

    2017-08-24

    Epistatic miniarrary profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. It provides an incredible set of molecular tools and advanced technologies that should be efficiently understanding the relationship between the genotypes and phenotypes of individuals. However, the network information gained from EMAP cannot be fully exploited using the traditional statistical network models. Because the genetic network is always heterogeneous, for example, the network structure features for one subset of nodes are different from those of the left nodes. Exponentialfamily random graph models (ERGMs) are a family of statistical models, which provide a principled and flexible way to describe the structural features (e.g. the density, centrality and assortativity) of an observed network. However, the single ERGM is not enough to capture this heterogeneity of networks. In this paper, we consider a mixture ERGM (MixtureEGRM) networks, which model a network with several communities, where each community is described by a single EGRM.

  6. A Mixed-Methods Randomized Controlled Trial of Financial Incentives and Peer Networks to Promote Walking among Older Adults

    Science.gov (United States)

    Kullgren, Jeffrey T.; Harkins, Kristin A.; Bellamy, Scarlett L.; Gonzales, Amy; Tao, Yuanyuan; Zhu, Jingsan; Volpp, Kevin G.; Asch, David A.; Heisler, Michele; Karlawish, Jason

    2014-01-01

    Background: Financial incentives and peer networks could be delivered through eHealth technologies to encourage older adults to walk more. Methods: We conducted a 24-week randomized trial in which 92 older adults with a computer and Internet access received a pedometer, daily walking goals, and weekly feedback on goal achievement. Participants…

  7. A Fast Reactive Power Optimization in Distribution Network Based on Large Random Matrix Theory and Data Analysis

    Directory of Open Access Journals (Sweden)

    Wanxing Sheng

    2016-05-01

    Full Text Available In this paper, a reactive power optimization method based on historical data is investigated to solve the dynamic reactive power optimization problem in distribution network. In order to reflect the variation of loads, network loads are represented in a form of random matrix. Load similarity (LS is defined to measure the degree of similarity between the loads in different days and the calculation method of the load similarity of load random matrix (LRM is presented. By calculating the load similarity between the forecasting random matrix and the random matrix of historical load, the historical reactive power optimization dispatching scheme that most matches the forecasting load can be found for reactive power control usage. The differences of daily load curves between working days and weekends in different seasons are considered in the proposed method. The proposed method is tested on a standard 14 nodes distribution network with three different types of load. The computational result demonstrates that the proposed method for reactive power optimization is fast, feasible and effective in distribution network.

  8. Sensor Network-Based Localization for Continuous Tracking Applications: Implementation and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Franco Davoli

    2008-10-01

    Full Text Available The increasing interest in systems able to provide users with immersive services (e.g., domotics, context-aware applications, and immersive distance learning tools has encouraged the development of cheap and effective platforms aimed at tracking objects and people within a certain space. In this context, wireless sensor networks (WSNs can play a very important role, since specialized sensors can be fruitfully exploited in order to generate/receive signals by means of which the WSN can derive the position of nodes joined to the objects to be tracked. The paper presents an original localization platform that exploits a single-hop WSN, based on a Microchip MCU and a Cypress RF device, to track its moving nodes. Specifically, the nodes of the network are divided into three sets: the first set consists of anchor nodes that, according to the commands from the sink (the central node of the WSN, generate ultrasonic pulses. These pulses are received by the second set of (moving nodes, which estimate the pulse time trip and communicate it to the sink. Finally, the last set is constituted by general purpose nodes that collect any kind of data from the surrounding field. The sink gathers all the data, computes the position of moving nodes, and transfers information to external users on the Internet. The algorithms adopted to manage the network and to localize moving nodes are discussed. A working prototype based upon the hardware platform, software, and protocol described in this paper has been deployed and tested, and some results are shown. Simulation results of the localization system are presented to show system scalability.

  9. Multifractality, imperfect scaling and hydrological properties of rainfall time series simulated by continuous universal multifractal and discrete random cascade models

    Directory of Open Access Journals (Sweden)

    F. Serinaldi

    2010-12-01

    Full Text Available Discrete multiplicative random cascade (MRC models were extensively studied and applied to disaggregate rainfall data, thanks to their formal simplicity and the small number of involved parameters. Focusing on temporal disaggregation, the rationale of these models is based on multiplying the value assumed by a physical attribute (e.g., rainfall intensity at a given time scale L, by a suitable number b of random weights, to obtain b attribute values corresponding to statistically plausible observations at a smaller L/b time resolution. In the original formulation of the MRC models, the random weights were assumed to be independent and identically distributed. However, for several studies this hypothesis did not appear to be realistic for the observed rainfall series as the distribution of the weights was shown to depend on the space-time scale and rainfall intensity. Since these findings contrast with the scale invariance assumption behind the MRC models and impact on the applicability of these models, it is worth studying their nature. This study explores the possible presence of dependence of the parameters of two discrete MRC models on rainfall intensity and time scale, by analyzing point rainfall series with 5-min time resolution. Taking into account a discrete microcanonical (MC model based on beta distribution and a discrete canonical beta-logstable (BLS, the analysis points out that the relations between the parameters and rainfall intensity across the time scales are detectable and can be modeled by a set of simple functions accounting for the parameter-rainfall intensity relationship, and another set describing the link between the parameters and the time scale. Therefore, MC and BLS models were modified to explicitly account for these relationships and compared with the continuous in scale universal multifractal (CUM model, which is used as a physically based benchmark model. Monte Carlo simulations point out

  10. Transient modeling of non-Fickian transport and first-order reaction using continuous time random walk

    Science.gov (United States)

    Burnell, Daniel K.; Hansen, Scott K.; Xu, Jie

    2017-09-01

    Contaminants in groundwater may experience a broad spectrum of velocities and multiple rates of mass transfer between mobile and immobile zones during transport. These conditions may lead to non-Fickian plume evolution which is not well described by the advection-dispersion equation (ADE). Simultaneously, many groundwater contaminants are degraded by processes that may be modeled as first-order decay. It is now known that non-Fickian transport and reaction are intimately coupled, with reaction affecting the transport operator. However, closed-form solutions for these important scenarios have not been published for use in applications. In this paper, we present four new Green's function analytic solutions in the uncoupled, uncorrelated continuous time random walk (CTRW) framework for reactive non-Fickian transport, corresponding to the quartet of conservative tracer solutions presented by Kreft and Zuber (1978) for Fickian transport. These consider pulse injection for both resident and flux concentration combined with detection in both resident and flux concentration. A pair of solutions for resident concentration temporal pulses with detection in both flux and resident concentration is also presented. We also derive the relationship between flux and resident concentration for non-Fickian transport with first-order reaction for this CTRW formulation. An explicit discussion of employment of the new solutions to model transport with arbitrary upgradient boundary conditions as well as mobile-immobile mass transfer is then presented. Using the new solutions, we show that first-order reaction has no effect on the anomalous spatial spreading rate of concentration profiles, but produces breakthrough curves at fixed locations that appear to have been generated by Fickian transport. Under the assumption of a Pareto CTRW transition distribution, we present a variety of numerical simulations including results showing coherence of our analytic solutions and CTRW particle

  11. A randomized double-blind crossover comparison of continuous and intermittent subcutaneous administration of opioid for cancer pain.

    Science.gov (United States)

    Watanabe, Sharon; Pereira, Jose; Tarumi, Yoko; Hanson, John; Bruera, Eduardo

    2008-05-01

    ABSTRACT Although the preferred route of opioid administration is oral, patients with cancer often require an alternative route. Options include continuous subcutaneous infusion (CSCI) or regularly scheduled intermittent subcutaneous injections (ISCI). CSCI maintains steady drug levels, theoretically avoiding the "bolus effect" of nausea and sedation immediately post-dose, and breakthrough pain prior to the next dose. However, portable infusion pumps can be costly to use. The Edmonton Injector is an inexpensive portable device for ISCI. CSCI and ISCI have not been directly compared. The objective of this trial was to compare CSCI and ISCI of opioid for treatment of cancer pain. Patients were recruited from two tertiary palliative care units. Eligibility criteria included stable cancer pain requiring opioid therapy, need for parenteral route, and normal cognition. Patients were randomly assigned to receive opioid by CSCI by portable pump or ISCI by Edmonton Injector for 48 hours, followed by crossover to the alternative modality for 48 hours. During each phase, placebo was administered by the alternative modality. The study was closed after 12 patients were entered, due to slow accrual. Eleven patients completed the study. There were no differences between CSCI and ISCI in mean visual analogue score (VAS) for pain, nausea or drowsiness; categorical rating score of pain; number of breakthrough opioid doses per day; global rating of treatment effectiveness; or adverse effects. In all cases, patients and investigators expressed no preference for one modality over another. Further research is required to confirm that opioid administration by CSCI and ISCI provide similar analgesic and adverse effects.

  12. Feasibility of scenario-based simulation training versus traditional workshops in continuing medical education: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Brendan Kerr

    2013-07-01

    Full Text Available Introduction: Although simulation-based training is increasingly used for medical education, its benefits in continuing medical education (CME are less established. This study seeks to evaluate the feasibility of incorporating simulation-based training into a CME conference and compare its effectiveness with the traditional workshop in improving knowledge and self-reported confidence. Methods: Participants (N=27 were group randomized to either a simulation-based workshop or a traditional case-based workshop. Results: Post-training, knowledge assessment score neither did increase significantly in the traditional group (d=0.13; p=0.76 nor did significantly decrease in the simulation group (d= − 0.44; p=0.19. Self-reported comfort in patient assessment parameters increased in both groups (p<0.05 in all. However, only the simulation group reported an increase in comfort in patient management (d=1.1, p=0.051 for the traditional group and d=1.3; p= 0.0003 for the simulation group. At 1 month, comfort measures in the traditional group increased consistently over time while these measures in the simulation group increased post-workshop but decreased by 1 month, suggesting that some of the effects of training with simulation may be short lived. Discussion: The use of simulation-based training was not associated with benefits in knowledge acquisition, knowledge retention, or comfort in patient assessment. It was associated with superior outcomes in comfort in patient management, but this benefit may be short-lived. Further studies are required to better define the conditions under which simulation-based training is beneficial.

  13. Novel delay-distribution-dependent stability analysis for continuous-time recurrent neural networks with stochastic delay

    International Nuclear Information System (INIS)

    Wang Shen-Quan; Feng Jian; Zhao Qing

    2012-01-01

    In this paper, the problem of delay-distribution-dependent stability is investigated for continuous-time recurrent neural networks (CRNNs) with stochastic delay. Different from the common assumptions on time delays, it is assumed that the probability distribution of the delay taking values in some intervals is known a priori. By making full use of the information concerning the probability distribution of the delay and by using a tighter bounding technique (the reciprocally convex combination method), less conservative asymptotic mean-square stable sufficient conditions are derived in terms of linear matrix inequalities (LMIs). Two numerical examples show that our results are better than the existing ones. (general)

  14. Capacity Expansion and Reliability Evaluation on the Networks Flows with Continuous Stochastic Functional Capacity

    Directory of Open Access Journals (Sweden)

    F. Hamzezadeh

    2014-01-01

    Full Text Available In many systems such as computer network, fuel distribution, and transportation system, it is necessary to change the capacity of some arcs in order to increase maximum flow value from source s to sink t, while the capacity change incurs minimum cost. In real-time networks, some factors cause loss of arc’s flow. For example, in some flow distribution systems, evaporation, erosion or sediment in pipes waste the flow. Here we define a real capacity, or the so-called functional capacity, which is the operational capacity of an arc. In other words, the functional capacity of an arc equals the possible maximum flow that may pass through the arc. Increasing the functional arcs capacities incurs some cost. There is a certain resource available to cover the costs. First, we construct a mathematical model to minimize the total cost of expanding the functional capacities to the required levels. Then, we consider the loss of flow on each arc as a stochastic variable and compute the system reliability.

  15. Event-Based Impulsive Control of Continuous-Time Dynamic Systems and Its Application to Synchronization of Memristive Neural Networks.

    Science.gov (United States)

    Zhu, Wei; Wang, Dandan; Liu, Lu; Feng, Gang

    2017-08-18

    This paper investigates exponential stabilization of continuous-time dynamic systems (CDSs) via event-based impulsive control (EIC) approaches, where the impulsive instants are determined by certain state-dependent triggering condition. The global exponential stability criteria via EIC are derived for nonlinear and linear CDSs, respectively. It is also shown that there is no Zeno-behavior for the concerned closed loop control system. In addition, the developed event-based impulsive scheme is applied to the synchronization problem of master and slave memristive neural networks. Furthermore, a self-triggered impulsive control scheme is developed to avoid continuous communication between the master system and slave system. Finally, two numerical simulation examples are presented to illustrate the effectiveness of the proposed event-based impulsive controllers.

  16. Breast Cancer Chemoprevention: A Network Meta-Analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Mocellin, Simone; Pilati, Pierluigi; Briarava, Marta; Nitti, Donato

    2016-02-01

    Several agents have been advocated for breast cancer primary prevention. However, few of them appear effective, the associated severe adverse effects limiting their uptake. We performed a comprehensive search for randomized controlled trials (RCTs) reporting on the ability of chemoprevention agents (CPAs) to reduce the incidence of primary breast carcinoma. Using network meta-analysis, we ranked CPAs based simultaneously on efficacy and acceptability (an inverse measure of toxicity). All statistical tests were two-sided. We found 48 eligible RCTs, enrolling 271 161 women randomly assigned to receive either placebo or one of 21 CPAs. Aromatase inhibitors (anastrozole and exemestane, considered a single CPA class because of the lack of between-study heterogeneity; relative risk [RR] = 0.468, 95% confidence interval [CI] = 0.346 to 0.634), arzoxifene (RR = 0.415, 95% CI = 0.253 to 0.682), lasofoxifene (RR = 0.208, 95% CI = 0.079 to 0.544), raloxifene (RR = 0.572, 95% CI = 0.372 to 0.881), tamoxifen (RR = 0.708, 95% CI = 0.595 to 0.842), and tibolone (RR = 0.317, 95% CI = 0.127 to 0.792) were statistically significantly associated with a therapeutic effect, which was restricted to estrogen receptor-positive tumors of postmenopausal women (except for tamoxifen, which is active also during premenopause). Network meta-analysis ranking showed that the new selective estrogen receptor modulators (SERMs) arzoxifene, lasofoxifene, and raloxifene have the best benefit-risk ratio. Aromatase inhibitors and tamoxifen ranked second and third, respectively. These results provide physicians and health care regulatory agencies with RCT-based evidence on efficacy and acceptability of currently available breast cancer CPAs; at the same time, we pinpoint how much work still remains to be done before pharmacological primary prevention becomes a routine option to reduce the burden of this disease. © The Author 2015. Published by Oxford University Press. All rights reserved. For

  17. Oral appliance therapy versus nasal continuous positive airway pressure in obstructive sleep apnea: a randomized, placebo-controlled trial on psychological distress

    NARCIS (Netherlands)

    Aarab, Ghizlane; Nikolopoulou, Maria; Ahlberg, Jari; Heymans, Martijn W.; Hamburger, Hans L.; de Lange, Jan; Lobbezoo, Frank

    2017-01-01

    The aim of this randomized placebo-controlled trail was to compare the effects of an objectively titrated mandibular advancement device (MAD) with those of nasal continuous positive airway pressure (nCPAP) and an intraoral placebo device on symptoms of psychological distress in OSA patients. In a

  18. Insulin glulisine compared to insulin aspart and to insulin lispro administered by continuous subcutaneous insulin infusion in patients with type 1 diabetes: a randomized controlled trial

    NARCIS (Netherlands)

    van Bon, Arianne C.; Bode, Bruce W.; Sert-Langeron, Caroline; DeVries, J. Hans; Charpentier, Guillaume

    2011-01-01

    In a previous pilot study comparing insulin glulisine (GLU) with insulin aspart (ASP) administered by continuous subcutaneous insulin infusion (CSII), GLU-treated patients did show a trend toward fewer catheter occlusions compared with ASP-treated patients. Here we performed a randomized open-label,

  19. Percolation of interdependent network of networks

    International Nuclear Information System (INIS)

    Havlin, Shlomo; Stanley, H. Eugene; Bashan, Amir; Gao, Jianxi; Kenett, Dror Y.

    2015-01-01

    Complex networks appear in almost every aspect of science and technology. Previous work in network theory has focused primarily on analyzing single networks that do not interact with other networks, despite the fact that many real-world networks interact with and depend on each other. Very recently an analytical framework for studying the percolation properties of interacting networks has been introduced. Here we review the analytical framework and the results for percolation laws for a Network Of Networks (NONs) formed by n interdependent random networks. The percolation properties of a network of networks differ greatly from those of single isolated networks. In particular, because the constituent networks of a NON are connected by node dependencies, a NON is subject to cascading failure. When there is strong interdependent coupling between networks, the percolation transition is discontinuous (first-order) phase transition, unlike the well-known continuous second-order transition in single isolated networks. Moreover, although networks with broader degree distributions, e.g., scale-free networks, are more robust when analyzed as single networks, they become more vulnerable in a NON. We also review the effect of space embedding on network vulnerability. It is shown that for spatially embedded networks any finite fraction of dependency nodes will lead to abrupt transition

  20. Randomness in the network inhibits cooperation based on the bounded rational collective altruistic decision

    International Nuclear Information System (INIS)

    Ohdaira, Tetsushi

    2014-01-01

    Previous studies discussing cooperation employ the best decision that every player knows all information regarding the payoff matrix and selects the strategy of the highest payoff. Therefore, they do not discuss cooperation based on the altruistic decision with limited information (bounded rational altruistic decision). In addition, they do not cover the case where every player can submit his/her strategy several times in a match of the game. This paper is based on Ohdaira's reconsideration of the bounded rational altruistic decision, and also employs the framework of the prisoner's dilemma game (PDG) with sequential strategy. The distinction between this study and the Ohdaira's reconsideration is that the former covers the model of multiple groups, but the latter deals with the model of only two groups. Ohdaira's reconsideration shows that the bounded rational altruistic decision facilitates much more cooperation in the PDG with sequential strategy than Ohdaira and Terano's bounded rational second-best decision does. However, the detail of cooperation of multiple groups based on the bounded rational altruistic decision has not been resolved yet. This study, therefore, shows how randomness in the network composed of multiple groups affects the increase of the average frequency of mutual cooperation (cooperation between groups) based on the bounded rational altruistic decision of multiple groups. We also discuss the results of the model in comparison with related studies which employ the best decision. (paper)