WorldWideScience

Sample records for continuous gps stations

  1. Current Land Subsidence in Tianjin, China Recorded by Three Continuous GPS stations (2010-2014)

    Science.gov (United States)

    Jia, X.; Jing, Q.; Yan, B.; Yu, J.; Gan, W.; Wang, G.

    2014-12-01

    In the past two decades, Global Positioning System (GPS) technologies have been frequently applied to urban subsidence studies, both as a complement, and an alternative to conventional surveying methods. These studies have demonstrated that high-accuracy GPS techniques are an efficient tool in tracking long-term land subsidence. A great number of Continuously Operating Reference GPS Stations (CORS) have been installed in China during the past five years. Considerable land subsidence has been observed from CORS stations installed in several large cities. This study investigated GPS time series observed at three CORS in Tianjin: TJBD (2010-2014), TJBH (2010-2014), and TJWQ (2010-2014). Tianjin is one of the largest cities that is experiencing severe land subsidence problems in China. The observations at the three GPS sites indicate different subsidence rates. The average subsidence rate over four years are 0.2 cm/year at TJBD, 2 cm/year at TJBH, and 4.4 cm/year at TJWQ. The GPS station TJBD is located at Baodi, Tianjin. This area is the least economically developed and have the smallest population compared to the other two areas. Over 80% of water usage in Baodi is for agriculture and only less than 15% is from groundwater. The rapid subsidence at TJBH and TJWQ were caused by huge groundwater withdrawals associate with rapid urban and industrial developments in Binhai and Wuqing. Wuqing district, with a unique location advantage called "Corridor of Beijing and Tianjin", has been experiencing major urbanization. The population has reached 1,053,300 and the water usage has reached 350 million cubic meters in 2012. Over 25% of water usage is from groundwater. Significant annual and half-annual seasonal ground surface fluctuation has been observed from all three GPS stations. The peak-to-peak amplitude of the annual signal is 1.5 cm.

  2. Present day geodynamics in Iceland monitored by a permanent network of continuous GPS stations

    Science.gov (United States)

    Völksen, Christof; Árnadóttir, Thóra; Geirsson, Halldór; Valsson, Guðmundur

    2009-12-01

    Iceland is located on the Mid-Atlantic Ridge and thereby offers a rare opportunity to study crustal movements at a divergent plate boundary. Iceland is not only characterized by the divergence of the Eurasian and North American Plates, as several active volcanoes are located on the island. Moderate size earthquakes occur in the transform zones, causing measurable crustal deformation. In 1999 the installation of a permanent network of continuous GPS stations (ISGPS) was initiated in order to observe deformation due to unrest in the Hengill volcanic system and at the Katla volcano. The ISGPS network has been enlarged over the years and consists today of more than 25 CGPS stations. Most of the stations are located along the plate boundary, where most of the active deformation takes place. Uplift due to post-glacial rebound due to the melting of the largest glacier in Europe, Vatnajökull, is also detected by the ISGPS network. This study presents results from analysis of 9 years of data from the ISGPS network, in the global reference frame PDR05, which has been evaluated by the Potsdam-Dresden-Reprocessing group with reprocessed GPS data only. We thus determine subsidence or land uplift in a global frame. The horizontal station velocities clearly show spreading across the plate boundary of about 20 mm/a. Stations in the vicinity of the glacier Vatnajökull indicate uplift in the range of 12 mm/a, while a station in the central part of Iceland shows uplift rates of about 25 mm/a. Tide gauge readings in Reykjavik and current subsidence rates observed with CGPS agree also quite well.

  3. TLALOCNet continuous GPS-Met Array in Mexico supporting the 2017 NAM GPS Hydrometeorological Network.

    Science.gov (United States)

    Cabral-Cano, E.; Salazar-Tlaczani, L.; Adams, D. K.; Vivoni, E. R.; Grutter, M.; Serra, Y. L.; DeMets, C.; Galetzka, J.; Feaux, K.; Mattioli, G. S.; Miller, M. M.

    2017-12-01

    TLALOCNet is a network of continuous GPS and meteorology stations in Mexico to study atmospheric and solid earth processes. This recently completed network spans most of Mexico with a strong coverage emphasis on southern and western Mexico. This network, funded by NSF, CONACyT and UNAM, recently built 40 cGPS-Met sites to EarthScope Plate Boundary Observatory standards and upgraded 25 additional GPS stations. TLALOCNet provides open and freely available raw GPS data, and high frequency surface meteorology measurements, and time series of daily positions. This is accomplished through the development of the TLALOCNet data center (http://tlalocnet.udg.mx) that serves as a collection and distribution point. This data center is based on UNAVCO's Dataworks-GSAC software and also works as part of UNAVCO's seamless archive for discovery, sharing, and access to GPS data. The TLALOCNet data center also contains contributed data from several regional GPS networks in Mexico for a total of 100+ stations. By using the same protocols and structure as the UNAVCO and other COCONet regional data centers, the scientific community has the capability of accessing data from the largest Mexican GPS network. This archive provides a fully queryable and scriptable GPS and Meteorological data retrieval point. In addition, real-time 1Hz streams from selected TLALOCNet stations are available in BINEX, RTCM 2.3 and RTCM 3.1 formats via the Networked Transport of RTCM via Internet Protocol (NTRIP) for real-time seismic and weather forecasting applications. TLALOCNet served as a GPS-Met backbone for the binational Mexico-US North American Monsoon GPS Hydrometeorological Network 2017 campaign experiment. This innovative experiment attempts to address water vapor source regions and land-surface water vapor flux contributions to precipitation (i.e., moisture recycling) during the 2017 North American Monsoon in Baja California, Sonora, Chihuahua, and Arizona. Models suggest that moisture recycling is

  4. Geoscience Australia Continuous Global Positioning System (CGPS) Station Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Ruddick, R. [Geoscience Australia, Symonston (Australia); Twilley, B. [Geoscience Australia, Symonston (Australia)

    2016-03-01

    This station formed part of the Australian Regional GPS Network (ARGN) and South Pacific Regional GPS Network (SPRGN), which is a network of continuous GPS stations operating within Australia and its Territories (including Antarctica) and the Pacific. These networks support a number of different science applications including maintenance of the Geospatial Reference Frame, both national and international, continental and tectonic plate motions, sea level rise, and global warming.

  5. Mw 8.5 BENGKULU EARTHQUAKES FROM CONTINUOUS GPS DATA

    Directory of Open Access Journals (Sweden)

    W. A. W. Aris

    2016-09-01

    Full Text Available The Mw 8.5 Bengkulu earthquake of 30 September 2007 and the Mw8.6 28 March 2005 are considered amongst large earthquake ever recorded in Southeast Asia. The impact into tectonic deformation was recorded by a network of Global Positioning System (GPS Continuously Operating Reference Station (CORS within southern of Sumatra and west-coast of Peninsular Malaysia. The GPS data from the GPS CORS network has been deployed to investigate the characteristic of postseismic deformation due to the earthquakes. Analytical logarithmic and exponential function was applied to investigate the deformation decay period of postseismic deformation. This investigation provides a preliminary insight into postseismic cycle along the Sumatra subduction zone in particular and on the dynamics Peninsular Malaysia in general.

  6. GPS deformation measurements at Olkiluoto in 2013

    International Nuclear Information System (INIS)

    Nyberg, S.; Kallio, U.; Koivula, H.

    2014-08-01

    The Finnish Geodetic Institute has monitored crustal deformations since mid-1990s at Olkiluoto, Kivetty and Romuvaara. The research was focused on the Olkiluoto area in 2001, when Olkiluoto was chosen to the site for the final disposal facility of the spent nuclear fuel. The work and the results of the GPS deformation monitoring at Olkiluoto in 2013 are presented. The measurement consisted of two GPS measurement campaigns, observations at local permanent stations and control markers measurements at four stations. In spring six new stations were set up for permanent tracking. In total 12 permanent stations were operating continuously from April to the end of the year. The residual time series of the stations showed periodic trends up to 3 mm in height and 1 mm in horizontal component relative to the GPS1 station. A few stations were still measured as campaign-based and analysed baseline by baseline. The data from permanent stations (GPS1-GPS9, and GPS13) were included. The analysis of the inner network based on campaign sessions showed very small motions as in previous years: 75 % of change rates are smaller than 0.10 mm/y. Roughly one third of the change rates could be considered statistically significant at 1 % significance level. Statistically significant change rates were estimated for baselines from GPS1 and GPS5. The trends and strains differed at some baselines clearly from the earlier analysis because of different troposphere modelling. The results of the outer network showed the largest difference on the baseline GPS1-GPS11 where the trend decreased from -0.42 mm/y to -0.28 mm/y. The strain pattern of the outer network shows an eastwards motion of GPS1. The estimated strains for the baselines east of GPS1 were -0.03/-0.04 ppm/y. The control marker measurements were carried at the stations GPS1, GPS2, GPS4 and GPS6. A comparison of the results with the previous measurements showed that the distance between control markers at GPS6 continues to increase. Also

  7. GPS deformation measurements at Olkiluoto in 2013

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, S.; Kallio, U.; Koivula, H. [Finnish Geodetic Institute, Masala (Finland)

    2014-08-15

    The Finnish Geodetic Institute has monitored crustal deformations since mid-1990s at Olkiluoto, Kivetty and Romuvaara. The research was focused on the Olkiluoto area in 2001, when Olkiluoto was chosen to the site for the final disposal facility of the spent nuclear fuel. The work and the results of the GPS deformation monitoring at Olkiluoto in 2013 are presented. The measurement consisted of two GPS measurement campaigns, observations at local permanent stations and control markers measurements at four stations. In spring six new stations were set up for permanent tracking. In total 12 permanent stations were operating continuously from April to the end of the year. The residual time series of the stations showed periodic trends up to 3 mm in height and 1 mm in horizontal component relative to the GPS1 station. A few stations were still measured as campaign-based and analysed baseline by baseline. The data from permanent stations (GPS1-GPS9, and GPS13) were included. The analysis of the inner network based on campaign sessions showed very small motions as in previous years: 75 % of change rates are smaller than 0.10 mm/y. Roughly one third of the change rates could be considered statistically significant at 1 % significance level. Statistically significant change rates were estimated for baselines from GPS1 and GPS5. The trends and strains differed at some baselines clearly from the earlier analysis because of different troposphere modelling. The results of the outer network showed the largest difference on the baseline GPS1-GPS11 where the trend decreased from -0.42 mm/y to -0.28 mm/y. The strain pattern of the outer network shows an eastwards motion of GPS1. The estimated strains for the baselines east of GPS1 were -0.03/-0.04 ppm/y. The control marker measurements were carried at the stations GPS1, GPS2, GPS4 and GPS6. A comparison of the results with the previous measurements showed that the distance between control markers at GPS6 continues to increase. Also

  8. A System to Produce Precise Global GPS Network Solutions for all Geodetic GPS Stations in the World

    Science.gov (United States)

    Blewitt, G.; Kreemer, C. W.

    2010-12-01

    We have developed an end-to-end system that automatically seeks and routinely retrieves geodetic GPS data from ~5000 stations (currently) around the globe, reduces the data into unique, daily global network solutions, and produces high precision time series for station coordinates ready for time-series analysis, geophysical modeling and interpretation. Moreover, “carrier range” data are produced for all stations, enabling epoch-by-epoch tracking of individual station motions by precise point positioning for investigation of sub-daily processes, such as post-seismic after-slip and ocean tidal loading. Solutions are computed in a global reference frame aligned to ITRF, and optionally in user-specified continental-scale reference frames that can filter out common-mode signals to enhance regional strain anomalies. We describe the elements of this system, the underlying signal processing theory, the products, operational statistics, and scientific applications of our system. The system is fundamentally based on precise point positioning using JPL's GIPSY OASIS II software, coupled with ambiguity resolution and a global network adjustment of ~300,000 parameters per day using our newly developed Ambizap3 software. The system is designed to easily and efficiently absorb stations that deliver data very late, by recycling prior computations in the network adjustment, such that the resulting network solution is identical to starting from scratch. Thus, it becomes possible to trawl continuously the Internet for late arriving data, or for newly discovered data, and seamlessly update all GPS station time series using the new information content. As new stations are added to the processing archive, automated e-mail requests are made to H.-G. Scherneck's server at Chalmers University to compute ocean loading coefficients used by the station motion model. Rinex file headers are parsed and compared with alias tables in order to infer the correct receiver type and antenna

  9. Realistic Noise Assessment and Strain Analysis of Iranian Permanent GPS Stations

    Science.gov (United States)

    Razeghi, S. M.; Amiri Simkooei, A. A.; Sharifi, M. A.

    2012-04-01

    To assess noise characteristics of Iranian Permanent GPS Stations (IPGS), northwestern part of this network namely Azerbaijan Continuous GPS Station (ACGS), was selected. For a realistic noise assessment it is required to model all deterministic signals of the GPS time series by means of least squares harmonic estimation (LS-HE) and derive all periodic behavior of the series. After taking all deterministic signals into account, the least squares variance component estimation (LS-VCE) is used to obtain a realistic noise model (white noise plus flicker noise) of the ACGS. For this purpose, one needs simultaneous GPS time series for which a multivariate noise assessment is applied. Having determined realistic noise model, a realistic strain analysis of the network is obtained for which one relies on the finite element methods. Finite element is now considered to be a new functional model and the new stochastic model is given based on the multivariate noise assessment using LS-VCE. The deformation rates of the components along with their full covariance matries are input to the strain analysis. Further, the results are also provided using a pure white noise model. The normalized strains for these two models show that the strain parameters derived from a realistic noise model are less significant than those derived from the white model. This could be either due to the short time span of the time series used or due to the intrinsic behavior of the strain parameters in the ACGS. Longer time series are required to further elaborate this issue.

  10. Feasibility of Construction of the Continuously Operating Geodetic GPS Network of Sinaloa, Mexico

    Science.gov (United States)

    Vazquez, G. E.; Jacobo, C.

    2011-12-01

    This research is based on the study and analysis of feasibility for the construction of the geodetic network for GPS continuous operation for Sinaloa, hereafter called (RGOCSIN). A GPS network of continuous operation is defined as that materialized structure physically through permanent monuments where measurements to the systems of Global Positioning (GPS) is performed continuously throughout a region. The GPS measurements in this network are measurements of accuracy according to international standards to define its coordinates, thus constituting the basic structure of geodetic referencing for a country. In this context is that in the near future the RGOCSIN constitutes a system state only accurate and reliable georeferencing in real-time (continuous and permanent operation) and will be used for different purposes; i.e., in addition to being fundamental basis for any lifting topographic or geodetic survey, and other areas such as: (1) Different construction processes (control and monitoring of engineering works); (2) Studies of deformation of the Earth's crust (before and after a seismic event); (3) GPS meteorology (weather forecasting); (4) Demarcation projects (natural and political); (5) Establishment of bases to generate mapping (necessary for the economic and social development of the state); (6) Precision agriculture (optimization of economic resources to the various crops); (7) Geographic information systems (Organization and planning activities associated with the design and construction of public services); (8) Urban growth (possible settlements in the appropriate form and taking care of the environmental aspect), among others. However there are criteria and regulations according to the INEGI (Instituto Nacional de Estadística y Geografía, http://www.inegi.org.mx/) that must be met; even for this stage of feasibility of construction that sees this project as a first phase. The fundamental criterion to be taken into account according to INEGI is a

  11. The application of GPS time information in the telemetry ground station

    International Nuclear Information System (INIS)

    Zhang Songtao; Zhang Yusong; Sun Xiurui

    2001-01-01

    GPS time information is a kind of practicable information resource that can be shared all over the world. Now it is the most accurate wireless time information. The major of this paper is the application information of GPS time information in telemetry. The main point introduces how to make use of the GPS time information to produce GPS-IRIG-B time code for proving ground and how to send time information to related equipment in telemetry ground station

  12. WGS 84 Coordinate Validation and Improvement for the NIMA and Air Force GPS Tracking Stations

    National Research Council Canada - National Science Library

    Cunningham, James

    1996-01-01

    Using 10 days of Global Positioning System (GPS) pseudorange and carrier phase data collected in 1995 from 31 stations and 24 Block II/IIA satellites, estimates of GPS clocks, orbits, and tracking station coordinates were generated...

  13. Subsidence and Fault Displacement Along the Long Point Fault Derived from Continuous GPS Observations (2012-2017)

    Science.gov (United States)

    Tsibanos, V.; Wang, G.

    2017-12-01

    The Long Point Fault located in Houston Texas is a complex system of normal faults which causes significant damage to urban infrastructure on both private and public property. This case study focuses on the 20-km long fault using high accuracy continuously operating global positioning satellite (GPS) stations to delineate fault movement over five years (2012 - 2017). The Long Point Fault is the longest active fault in the greater Houston area that damages roads, buried pipes, concrete structures and buildings and creates a financial burden for the city of Houston and the residents who live in close vicinity to the fault trace. In order to monitor fault displacement along the surface 11 permanent and continuously operating GPS stations were installed 6 on the hanging wall and 5 on the footwall. This study is an overview of the GPS observations from 2013 to 2017. GPS positions were processed with both relative (double differencing) and absolute Precise Point Positioning (PPP) techniques. The PPP solutions that are referred to IGS08 reference frame were transformed to the Stable Houston Reference Frame (SHRF16). Our results show no considerable horizontal displacements across the fault, but do show uneven vertical displacement attributed to regional subsidence in the range of (5 - 10 mm/yr). This subsidence can be associated to compaction of silty clays in the Chicot and Evangeline aquifers whose water depths are approximately 50m and 80m below the land surface (bls). These levels are below the regional pre-consolidation head that is about 30 to 40m bls. Recent research indicates subsidence will continue to occur until the aquifer levels reach the pre-consolidation head. With further GPS observations both the Long Point Fault and regional land subsidence can be monitored providing important geological data to the Houston community.

  14. Software Defined GPS Receiver for International Space Station

    Science.gov (United States)

    Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee

    2011-01-01

    JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.

  15. Climate-driven vertical acceleration of Icelandic crust measured by continuous GPS geodesy

    KAUST Repository

    Compton, Kathleen

    2015-02-06

    © 2015 The Authors. Earth\\'s present-day response to enhanced glacial melting resulting from climate change can be measured using Global Positioning System (GPS) technology. We present data from 62 continuously operating GPS instruments in Iceland. Statistically significant upward velocity and accelerations are recorded at 27 GPS stations, predominantly located in the Central Highlands region of Iceland, where present-day thinning of the Iceland ice caps results in velocities of more than 30mm/yr and uplift accelerations of 1-2mm/yr2. We use our acceleration estimates to back calculate to a time of zero velocity, which coincides with the initiation of ice loss in Iceland from ice mass balance calculations and Arctic warming trends. We show, through a simple inversion, a direct relationship between ice mass balance measurements and vertical position and show that accelerated unloading is required to reproduce uplift observations for a simple elastic layer over viscoelastic half-space model.

  16. Climate-driven vertical acceleration of Icelandic crust measured by continuous GPS geodesy

    KAUST Repository

    Compton, Kathleen; Bennett, Richard A.; Hreinsdó ttir, Sigrú n

    2015-01-01

    © 2015 The Authors. Earth's present-day response to enhanced glacial melting resulting from climate change can be measured using Global Positioning System (GPS) technology. We present data from 62 continuously operating GPS instruments in Iceland. Statistically significant upward velocity and accelerations are recorded at 27 GPS stations, predominantly located in the Central Highlands region of Iceland, where present-day thinning of the Iceland ice caps results in velocities of more than 30mm/yr and uplift accelerations of 1-2mm/yr2. We use our acceleration estimates to back calculate to a time of zero velocity, which coincides with the initiation of ice loss in Iceland from ice mass balance calculations and Arctic warming trends. We show, through a simple inversion, a direct relationship between ice mass balance measurements and vertical position and show that accelerated unloading is required to reproduce uplift observations for a simple elastic layer over viscoelastic half-space model.

  17. Progress in SLR-GPS co-location at San Juan (Argentina) station

    Science.gov (United States)

    Luis, Hernan; Rojas, Alvis; Adarvez, Sonia; Quinteros, Johana; Cobos, Pablo; Aracena, Andrés; Pacheco, Ana M.; Podestá, Ricardo; Actis, Eloy V.; Li, Jinzeng; Yin, Zhiqiang; Wang, Rui; Huang, Dongping; Márquez, Raúl

    2012-08-01

    From February, 2006, performing a Cooperation Agreement with National Astronomical Observatories of China (NAOC) of the Chinese Academy of Sciences (CAS), Observatorio Astronómico Félix Aguilar (OAFA) of Universidad Nacional de San Juan (UNSJ) is operating a SLR System (ILRS 7406 Station). From the beginning of 2012 a GPS Aztech - Micro Z CGRS is operative at the same place, which made the SLR - GPS co - location possible. The prior objective is to reach co - location between both techniques, so the Station became of 1st order in ITRF net. For that we study and adopt an appropriate strategy to select and place Survey Control Points that ensures higher precision in determination of 3D vectors between the selected reference point s. Afterwards we perform translocation tasks of receptor and antenna checking that the GPS verifies builder standards. Then we design and compensate survey control network, by means of software of our own draught. We expect to obtain definitive local ties with precision better than 3 mm, as suggested by IERS for co - located stations. There are very few stations with co - located spatial techniques in the Southern Hemisphere, so it is of great importance to have one in Argentina for improve our participation in IERS on the new realizations of ITRF from now on.

  18. Deployment of Autonomous GPS Stations in Marie Byrd Land, Antartica

    Science.gov (United States)

    Donnellan, A.; Luyendyk, B.; Smith, M.; Dace, G.

    1999-01-01

    During the 1998-1999 Antarctic field season, we installed three autonomous GPS stations in Marie Byrd Land, West Antarctica to measure glacio-isostatic rebound and rates of spreading across the West Antartic Rift System.

  19. Continuous GPS observations in Tohoku University and recovery effort after the 2011 off the Pacific coast of Tohoku Earthquake

    Science.gov (United States)

    Demachi, T.; Miura, S.; Ohta, Y.; Tachibana, K.; Ueki, S.; Sato, T.; Ohzono, M.; Umino, N.

    2012-04-01

    The nation-wide GPS observation network which is named GPS Earth Observation Network System (GEONET) has been established by the Geospatial Information Authority of Japan (GSI) (Miyazaki et al., 1997). The network composed more than 1,200 stations with baseline length is about 20-25 km. Tohoku University has also conducted continuous GPS observations since 1987 in the Tohoku district, Northeastern Japan (Miura et al., 1993). Recently, to investigate short-length crustal deformations such as volcanic deformation, co- and post-seismic deformation of M6-7 class earthquakes and inter-seismic deformations, we have deployed continuous GPS observation stations to complement the location of GEONET stations (Miura et al. 2000, 2002, and 2004). We installed GPS receiver, PC for data logging (ALIX series, PC Engines GmbH) and re-booter (e.g., WATCH BOOT nino, Meikyo Electric Co., Ltd.) in each station. We have secure and stable online access to each station from our university (Sendai city, Japan) using IP-VPN over fixed telephone lines (FLET'S Office service, Nippon Telegraph and Telephone East Corp.). Through this network, the data are transferred to our university and we can restart the devices if the devices hang up. Since 2010, we have tried to use on-line system through internet by prepaid mobile data-communication (b-mobile3G and b-mobileSIM U300, Japan Communications Inc.) in eight observation stations. Compared with the FLET'S Office service, we can conveniently and inexpensively establish wherever the mobile phone service is provided. The two stations are located in volcanoes, we activate the network system for an hour in every day using motor time switch, because of these devices are operated by limited DC power supplies through solar cell. In other six stations, we can use commercial AC power supplies, so that data connections are always available. On March 11, 2011, the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) occurred and a huge tsunami caused

  20. Continuing medical education and burnout among Danish GPs

    DEFF Research Database (Denmark)

    Brøndt, Anders; Sokolowski, Ineta; Olesen, Frede

    2008-01-01

    BACKGROUND: There has been minimal research into continuing medical education (CME) and its association with burnout among GPs. AIM: The aim of this study was to investigate the association between participating in CME and experiencing burnout in a sample of Danish GPs. DESIGN OF STUDY: Cross......-sectional questionnaire study. SETTING: All 458 active GPs in 2004, in the County of Aarhus, Denmark were invited to participate. METHOD: Data on CME activities were obtained for all GPs and linked to burnout which was measured using the Maslach Burnout Inventory - Human Services Survey. The relationship between CME...... activity and burnout was calculated as prevalence ratios (PR) in a generalised linear model. RESULTS: In total, 379 (83.5%) GPs returned the questionnaire. The prevalence of burnout was about 25%, and almost 3% suffered from 'high burnout'. A total of 344 (92.0%) GPs were members of a CME group...

  1. Horizontal Displacement Vector Analysis in Ujong Muloh GPS Station (UMLH) Sumatra Island on March 27 – April 25, 2012

    Science.gov (United States)

    Pamungkas, S. S.; Koesuma, S.; Legowo, Budi

    2018-03-01

    Sumatra Island is an area that has high tectonic activities. This is because the island of Sumatra is located in two major plates of the world, the Indo-Australian plate and the Eurasia plate. The subduction zone causes Sumatra to deform from time to time. The deformation of Sumatra Island can be observed by continuous recording coordinates using the GPS Station. Continous-GPS (C-GPS) in Sumatra Island is named Sumatran GPS Array (SuGAr), one of them named UMLH. The UMLH GPS station used to observe the displacement in the Aceh City of Sumatra Island, is located in Ujung Muloh. The changes of GPS coordinate recording data can represent the deformation pattern that occurred in Sumatra. On April 11, 2012, according to USGS data, there had been an earthquake in the city of Aceh about 8.6 at coordinates of 2.433°N, 93.072°E. The purpose of this research is to analyze the horizontal displacement due to the occurrence of the earthquake. Data processing is carried out using software GAMIT/GLOBK. The magnitude of the displacement of Sumatra Island before the earthquake, during the earthquake, and after the quake on component X were respectively: 0.04 mm/day, 56.63 mm/day, and 8.28 mm/day; while on component Y were respectively: 0.03 mm/day, 23.78 mm/day, and 1.22 mm/day. The direction of displacement was 253.8° towards Southwest with the assumption that 0° was in the North.

  2. Present day crustal deformation of the Italian peninsula observed by permanent GPS stations

    Science.gov (United States)

    Devoti, Roberto; Esposito, Alessandra; Galvani, Alessandro; Pietrantonio, Grazia; Pisani, Anna Rita; Riguzzi, Federica; Sepe, Vincenzo

    2010-05-01

    Italian penisula is a crucial area in the Mediterranean region to understand the active deformation processes along Nubia-Eurasia plate boundary. We present the velocity and strain rate fields of the Italian area derived from continuous GPS observations of more than 300 sites in the time span 1998-2009. The GPS networks were installed and managed by different institutions and for different purposes; altogether they cover the whole country with a mean inter-site distance of about 50 km and provide a valuable source of data to map the present day kinematics of the region. The data processing is performed by BERNESE software ver. 5.0, adopting a distributed session approach, with more than 10 clusters, sharing common stations, each of them consisting of about 40 stations. Daily loosely constrained solutions are routinely produced for each cluster and then combined into a network daily loose solution. Subsequently daily solutions are transformed on the chosen reference frame and the constrained time series are fitted using the complete covariance matrix, simultaneously estimating site velocities together with annual signals and sporadic offsets at epochs of instrumental changes. In this work we provide an updated detailed picture of the horizontal and vertical kinematics (velocity maps) and deformation pattern (strain rate maps) of the Italian area. The results show several crustal domains characterized by different velocity rates and styles of deformation.

  3. USGS Menlo Park GPS Data Processing Techniques and Derived North America Velocity Field (Invited)

    Science.gov (United States)

    Svarc, J. L.; Murray-Moraleda, J. R.; Langbein, J. O.

    2010-12-01

    The U.S. Geological Survey in Menlo Park routinely conducts repeated GPS surveys of geodetic markers throughout the western United States using dual-frequency geodetic GPS receivers. We combine campaign, continuous, and semi-permanent data to present a North America fixed velocity field for regions in the western United States. Mobile campaign-based surveys require less up-front investment than permanently monumented and telemetered GPS systems, and hence have achieved a broad and dense spatial coverage. The greater flexibility and mobility comes at the cost of greater uncertainties in individual daily position solutions. We also routinely process continuous GPS data collected at PBO stations operated by UNAVCO along with data from other continuous GPS networks such as BARD, PANGA, and CORS operated by other agencies. We have broken the Western US into several subnetworks containing approximately 150-250 stations each. The data are processed using JPL’s GIPSY-OASIS II release 5.0 software using a modified precise positioning strategy (Zumberge and others, 1997). We use the “ambizap” code provided by Geoff Blewitt (Blewitt, 2008) to fix phase ambiguities in continuous networks. To mitigate the effect of common mode noise we use the positions of stations in the network with very long, clean time series (i.e. those with no large outliers or offsets) to transform all position estimates into “regionally filtered” results following the approach of Hammond and Thatcher (2007). Velocity uncertainties from continuously operated GPS stations tend to be about 3 times smaller than those from campaign data. Langbein (2004) presents a maximum likelihood method for fitting a time series employing a variety of temporal noise models. We assume that GPS observations are contaminated by a combination of white, flicker, and random walk noise. For continuous and semi-permanent time series longer than 2 years we estimate these values, otherwise we fix the amplitudes of these

  4. Comparison of equatorial GPS-TEC observations over an African station and an American station during the minimum and ascending phases of solar cycle 24

    Directory of Open Access Journals (Sweden)

    A. O. Akala

    2013-11-01

    Full Text Available GPS-TEC data were observed at the same local time at two equatorial stations on both longitudes: Lagos (6.52° N, 3.4° E, 3.04° S magnetic latitude, Nigeria; and Pucallpa (8.38° S, 74.57° W, 4.25° N magnetic latitude, Peru during the minimum (2009, 2010 and ascending (2011 phases of solar cycle 24. These data were grouped into daily, seasonal and solar activity sets. The day-to-day variations in vertical TEC (VTEC recorded the maximum during 14:00–16:00 LT and minimum during 04:00–06:00 LT at both longitudes. Seasonally, during solar minimum, maximum VTEC values were observed during March equinox and minimum during solstices. However, during the ascending phase of the solar activity, the maximum values were recorded during the December solstice and minimum during the June solstice. VTEC also increased with solar activity at both longitudes. On longitude by longitude comparison, the African GPS station generally recorded higher VTEC values than the American GPS station. Furthermore, harmonic analysis technique was used to extract the annual and semi-annual components of the amplitudes of the TEC series at both stations. The semi-annual variations dominated the TEC series over the African equatorial station, while the annual variations dominated those over the American equatorial station. The GPS-TEC-derived averages for non-storm days were compared with the corresponding values derived by the IRI-2007 with the NeQuick topside option. The NeQuick option of IRI-2007 showed better performance at the American sector than the African sector, but generally underestimating TEC during the early morning hours at both longitudes.

  5. Deformation analysis of Aceh April 11th 2012 earthquake using GPS observation data

    Science.gov (United States)

    Maulida, Putra; Meilano, Irwan; Sarsito, Dina A.; Susilo

    2015-04-01

    This research tries to estimate the co-seismic deformation of intraplate earthquake occurred off northern Sumatra coast which is about 100-200 km southwest of Sumatrasubduction zone. The earthquake mechanism was strike-slip with magnitude 8.6 and triggering aftershock with magnitude 8.2 two hours later. We estimated the co-seismic deformation by using the GPS (Global Positioning System) continuous data along western Sumatra coast. The GPS observation derived from Sumatran GPS Array (SuGAr) and Geospatial Information Agency (BIG). For data processing we used GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) to estimate the co-seismic deformation. From the GPS daily solution, the result shows that the earthquake caused displacement for the GPS stations in Sumatra. GPS stations in northern Sumatra showed the displacement to the northeast with the average displacement was 15 cm. The biggest displacement was found at station BSIM which is located at Simeuleu Island off north west Sumatra coast. GPS station in middle part of Sumatra, the displacement was northwest. The earthquake also caused subsidence for stations in northern Sumatra, but from the time series there was not sign of subsidence was found at middle part of Sumatra. In addition, the effect of the earthquake was worldwide and affected the other GPS Stations around Hindia oceanic.

  6. Deformation analysis of Aceh April 11{sup th} 2012 earthquake using GPS observation data

    Energy Technology Data Exchange (ETDEWEB)

    Maulida, Putra, E-mail: putra.maulida@gmail.com [Bandung Institute of Technology (ITB), Jalan Ganesha 10, Bandung 40132 (Indonesia); Meilano, Irwan; Sarsito, Dina A. [Bandung Institute of Technology (ITB), Jalan Ganesha 10, Bandung 40132 (Indonesia); Geodesy Research Group, geodesy and geomatic Engineering, ITB (Indonesia); Susilo [Bandung Institute of Technology (ITB), Jalan Ganesha 10, Bandung 40132 (Indonesia); Geospatial Information Agency (BIG) (Indonesia)

    2015-04-24

    This research tries to estimate the co-seismic deformation of intraplate earthquake occurred off northern Sumatra coast which is about 100-200 km southwest of Sumatrasubduction zone. The earthquake mechanism was strike-slip with magnitude 8.6 and triggering aftershock with magnitude 8.2 two hours later. We estimated the co-seismic deformation by using the GPS (Global Positioning System) continuous data along western Sumatra coast. The GPS observation derived from Sumatran GPS Array (SuGAr) and Geospatial Information Agency (BIG). For data processing we used GPS Analyze at Massachusetts Institute of Technology (GAMIT) software and Global Kalman Filter (GLOBK) to estimate the co-seismic deformation. From the GPS daily solution, the result shows that the earthquake caused displacement for the GPS stations in Sumatra. GPS stations in northern Sumatra showed the displacement to the northeast with the average displacement was 15 cm. The biggest displacement was found at station BSIM which is located at Simeuleu Island off north west Sumatra coast. GPS station in middle part of Sumatra, the displacement was northwest. The earthquake also caused subsidence for stations in northern Sumatra, but from the time series there was not sign of subsidence was found at middle part of Sumatra. In addition, the effect of the earthquake was worldwide and affected the other GPS Stations around Hindia oceanic.

  7. Integrating stations from the North America Gravity Database into a local GPS-based land gravity survey

    Science.gov (United States)

    Shoberg, Thomas G.; Stoddard, Paul R.

    2013-01-01

    The ability to augment local gravity surveys with additional gravity stations from easily accessible national databases can greatly increase the areal coverage and spatial resolution of a survey. It is, however, necessary to integrate such data seamlessly with the local survey. One challenge to overcome in integrating data from national databases is that these data are typically of unknown quality. This study presents a procedure for the evaluation and seamless integration of gravity data of unknown quality from a national database with data from a local Global Positioning System (GPS)-based survey. The starting components include the latitude, longitude, elevation and observed gravity at each station location. Interpolated surfaces of the complete Bouguer anomaly are used as a means of quality control and comparison. The result is an integrated dataset of varying quality with many stations having GPS accuracy and other reliable stations of unknown origin, yielding a wider coverage and greater spatial resolution than either survey alone.

  8. GPS-seismograms reveal amplified shaking in California's San Joaquin Delta region

    Science.gov (United States)

    Johanson, I. A.

    2014-12-01

    The March 10, 2014, the Mw6.8 Ferndale earthquake occurred off the coast of Northern California, near the Mendocino Triple Junction. Aftershocks suggest a northeast striking fault plane for the strike-slip earthquake, oriented such that the California coast is roughly perpendicular to the rupture plane. Consequently, large amplitude Love waves were observed at seismic stations and continuous GPS stations throughout Northern California. While GPS is less sensitive then broadband instruments, in Northern California their station density is much higher, potentially providing valuable detail. A total of 269 GPS stations that have high-rate (1 sps) data available were used to generate GPS-seismograms. These include stations from the Bay Area Regional Deformation (BARD) network, the Plate Boundary Observatory (PBO, operated by UNAVCO), and the USGS, Menlo Park. The Track software package was used to generate relative displacements between pairs of stations, determined using Delaunay triangulation. This network-based approach allows for higher precision than absolute positioning, because common noise sources, in particular atmospheric noise, are cancelled out. A simple least-squares network adjustment with a stable centroid constraint is performed to transform the mesh of relative motions into absolute motions at individual GPS stations. This approach to generating GPS-seismograms is validated by the good agreement between time series records at 16 BARD stations that are co-located with broadband seismometers from the Berkeley Digital Seismic Network (BDSN). While the distribution of peak dynamic displacements is dominated in long periods by the radiation pattern, at shorter periods other patterns become visible. In particular, stations in the San Joaquin Delta (SJD) region show higher peak dynamic displacements than those in surrounding areas, as well as longer duration shaking. SJD stations also have higher dynamic displacements on the radial component than surrounding

  9. An Introduction to the Tibet cGPS pilot project: TigiCAS

    Science.gov (United States)

    Zhang, Z.; Liu, J.; Galetzka, J.; Avouac, J.; Tapponnier, P.; Zeng, L.; Gan, W.; Shen, Z.; Wang, M.

    2007-12-01

    The convergence between India and Eurasia is the¡¡prototype of continental collision in action. Compared¡¡to geological history and fault kinematics studies, the present-day, regional pattern of strain-partitioning¡¡is still inadequately known. Among limited geodetic¡¡efforts in the past decade or two, most have been focused¡¡on refining measurements of the current crustal¡¡shortening rate across the Himalaya. The vast region¡¡immediately to the north is sparsely instrumented, with only one continuous GPS station (Lhasa) within¡¡the plateau proper. Campaign stations are few and¡¡ill-positioned, mostly along major roads, providing¡¡poor constraints on present-day slip-rates on individual¡¡active faults. The extant GPS network configuration is thus still insufficient to discriminate between block vs continuum deformation. In November 2006, the¡¡Chinese Academy of Sciences led a pilot program and¡¡installed 6 continuous GPS stations in southern Tibet, crossing the NS-trending normal fault systems and¡¡complementing the Nepal cGPS profiles. We present¡¡here the new sites, preliminary data processing results, and the spatial relationship with ongoing or planned¡¡continuous GPS sites from a couple of other projects. Together with such projects, TigiCAS will provide¡¡a substantial increase in geodetic data in the¡¡Himalayan-Tibet convergent belt in the next few¡¡years, and lead to a better understanding of¡¡contemporary deformation of the region.

  10. Topo-Iberia GPS network: installation complete

    Science.gov (United States)

    Khazaradze, G.

    2009-04-01

    As part of the project, titled "Geociencias en Iberia: Estudios integrados de topografía y evolución 4D: Topo-Iberia", we have established a network of 26 continuous GPS stations, covering the Spanish part of the Iberian Peninsula (22 stations) and Morocco (4 stations). A major objective behind the establishment of this array is to monitor millimeter level deformation of the crust due to the collision of African and Eurasian (including Iberian) tectonic plates. More specific goals of the project include the identification of the areas and/or specific seismic faults which exhibit higher deformation rates, which could imply an increased seismic hazard in these specific areas. The network has been designed as two X-shaped transects crossing the peninsula from NE to SW and NW to SE, with relatively coarse distribution of the stations, superimposed with denser coverage in the seismically active areas of the Betics, Pyrenees and Cantabrian chains. The majority of the built monuments consist of 1.5-1.8 m tall concrete pillars of 40 cm in diameter anchored to the bedrock using iron rebars. One station in Huesca was built according the UNAVCO's short drilled braced monument (SDBM) specifications. All the monuments were equipped with the SCIGN leveling mounts to ensure the precise antenna alignment and re-alignment in case of the antenna replacement, as well as, tamper resistance of the monument mark. In places were the snow accumulation was possible the antennas were covered with plastic radomes. The instrumentation used is Trimble NetRS dual-frequency receivers with choke-ring antennas. The communication is mainly via cellular telephone system. As of December 2008, the network installation has been competed and all the stations are fully operational. Here we report the milestones of the installation of the network and, as well as, present the first preliminary results of the analysis of the data. Besides the newly established Topo-Iberia CGPS stations, we have included

  11. Strain Variation along Cimandiri Fault, West Java Based on Continuous and Campaign GPS Observation From 2006-2016

    Science.gov (United States)

    Safitri, A. A.; Meilano, I.; Gunawan, E.; Abidin, H. Z.; Efendi, J.; Kriswati, E.

    2018-03-01

    The Cimandiri fault which is running in the direction from Pelabuhan Ratu to Padalarang is the longest fault in West Java with several previous shallow earthquakes in the last 20 years. By using continues and campaign GPS observation from 2006-2016, we obtain the deformation pattern along the fault through the variation of strain tensor. We use the velocity vector of GPS station which is fixed in stable International Terrestrial Reference Frame 2008 to calculate horizontal strain tensor. Least Square Collocation is applied to produce widely dense distributed velocity vector and optimum scale factor for the Least Square Weighting matrix. We find that the strain tensor tend to change from dominantly contraction in the west to dominantly extension to the east of fault. Both the maximum shear strain and dilatation show positive value along the fault and increasing from the west to the east. The findings of strain tensor variation along Cimandiri Fault indicate the post seismic effect of the 2006 Java Earthquake.

  12. GPS Time Series Analysis of Southern California Associated with the 2010 M7.2 El Mayor/Cucapah Earthquake

    Science.gov (United States)

    Granat, Robert; Donnellan, Andrea

    2011-01-01

    The Magnitude 7.2 El-Mayor/Cucapah earthquake the occurred in Mexico on April 4, 2012 was well instrumented with continuous GPS stations in California. Large Offsets were observed at the GPS stations as a result of deformation from the earthquake providing information about the co-seismic fault slip as well as fault slip from large aftershocks. Information can also be obtained from the position time series at each station.

  13. Quality analysis of the campaign GPS stations observation in Northeast and North China

    Directory of Open Access Journals (Sweden)

    Yaxuan Hu

    2016-03-01

    Full Text Available TEQC is used to check the observations quality of 173 GPS campaign stations in the Northeast and North China. Each station was observed with an occupation of 4 days. The quality of the 692 data files is analyzed by the ratio of overall observations to possible observations, MP1, MP2 and the ratio of observations to slips. The reasons for multipath and cycle slips can be derived from the photos taken in the field. The results show that the coverage of trees and buildings/structures, and the interference of high-voltage power lines near the stations are the main reasons. In a small area, the horizontal velocity field in the period 2011–2013 is exemplified, where the magnitudes and directions of the 4 stations' rates are clearly different with that of other stations. It seems that the error caused by the worse environment cannot be mitigated through post processing. Therefore, these conclusions can help the establishment of GNSS stations, measurements, data processing and formulating standards in future.

  14. Relative navigation and attitude determination using a GPS/INS integrated system near the International Space Station

    Science.gov (United States)

    Um, Jaeyong

    2001-08-01

    The Space Integrated GPS/INS (SIGI) sensor is the primary navigation and attitude determination source for the International Space Station (ISS). The SIGI was successfully demonstrated on-orbit for the first time in the SIGI Orbital Attitude Readiness (SOAR) demonstration on the Space Shuttle Atlantis in May 2000. Numerous proximity operations near the ISS have been and will be performed over the lifetime of the Station. The development of an autonomous relative navigation system is needed to improve the safety and efficiency of vehicle operations near the ISS. A hardware simulation study was performed for the GPS-based relative navigation using the state vector difference approach and the interferometric approach in the absence of multipath. The interferometric approach, where the relative states are estimated directly, showed comparable results for a 1 km baseline. One of the most pressing current technical issues is the design of an autonomous relative navigation system in the proximity of the ISS, where GPS signals are blocked and maneuvers happen frequently. An integrated GPS/INS system is investigated for the possibility of a fully autonomous relative navigation system. Another application of GPS measurements is determination of the vehicle's orientation in space. This study used the SOAR experiment data to characterize the SICI's on-orbit performance for attitude determination. A cold start initialization algorithm was developed for integer ambiguity resolution in any initial orientation. The original algorithm that was used in the SIGI had an operational limitation in the integer ambiguity resolution, which was developed for terrestrial applications, and limited its effectiveness in space. The new algorithm was tested using the SOAR data and has been incorporated in the current SIGI flight software. The attitude estimation performance was examined using two different GPS/INS integration algorithms. The GPS/INS attitude solution using the SOAR data was as

  15. Research on Single Base-Station Distance Estimation Algorithm in Quasi-GPS Ultrasonic Location System

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X C; Su, S J; Wang, Y K; Du, J B [Instrument Department, College of Mechatronics Engineering and Automation, National University of Defense Technology, ChangSha, Hunan, 410073 (China)

    2006-10-15

    In order to identify each base-station in quasi-GPS ultrasonic location system, a unique pseudo-random code is assigned to each base-station. This article primarily studies the distance estimation problem between Autonomous Guide Vehicle (AGV) and single base-station, and then the ultrasonic spread-spectrum distance measurement Time Delay Estimation (TDE) model is established. Based on the above model, the envelope correlation fast TDE algorithm based on FFT is presented and analyzed. It shows by experiments that when the m sequence used in the received signal is as same as the reference signal, there will be a sharp correlation value in their envelope correlation function after they are processed by the above algorithm; otherwise, the will be no prominent correlation value. So, the AGV can identify each base-station easily.

  16. Research on Single Base-Station Distance Estimation Algorithm in Quasi-GPS Ultrasonic Location System

    International Nuclear Information System (INIS)

    Cheng, X C; Su, S J; Wang, Y K; Du, J B

    2006-01-01

    In order to identify each base-station in quasi-GPS ultrasonic location system, a unique pseudo-random code is assigned to each base-station. This article primarily studies the distance estimation problem between Autonomous Guide Vehicle (AGV) and single base-station, and then the ultrasonic spread-spectrum distance measurement Time Delay Estimation (TDE) model is established. Based on the above model, the envelope correlation fast TDE algorithm based on FFT is presented and analyzed. It shows by experiments that when the m sequence used in the received signal is as same as the reference signal, there will be a sharp correlation value in their envelope correlation function after they are processed by the above algorithm; otherwise, the will be no prominent correlation value. So, the AGV can identify each base-station easily

  17. January 30, 1997 eruptive event on Kilauea Volcano, Hawaii, as monitored by continuous GPS

    Science.gov (United States)

    Owen, S.; Segall, P.; Lisowski, M.; Miklius, Asta; Murray, M.; Bevis, M.; Foster, J.

    2000-01-01

    A continuous Global Positioning System (GPS) network on Kilauea Volcano captured the most recent fissure eruption in Kilauea's East Rift Zone (ERZ) in unprecedented spatial and temporal detail. The short eruption drained the lava pond at Pu'u O' o, leading to a two month long pause in its on-going eruption. Models of the GPS data indicate that the intrusion's bottom edge extended to only 2.4 km. Continuous GPS data reveal rift opening 8 hours prior to the eruption. Absence of precursory summit inflation rules out magma storage overpressurization as the eruption's cause. We infer that stresses in the shallow rift created by the continued deep rift dilation and slip on the south flank decollement caused the rift intrusion.

  18. 'Two sides of the coin'--the value of personal continuity to GPs: a qualitative interview study.

    Science.gov (United States)

    Ridd, Matthew; Shaw, Alison; Salisbury, Chris

    2006-08-01

    Continuity is thought to be important to GPs but the values behind this are unknown. To explore the values that doctors working in general practice attach to continuity of patient care and to outline how these values are applied in practice. In-depth qualitative interview with 24 GPs in England. Participants were purposefully sampled according to personal and practice characteristics. Analysis was thematic, drawing on the constant comparative method. The majority of doctors valued doctor-patient, or personal, continuity in their everyday work. It was most valued in patients with serious, complex or psychological problems. GPs believed that through their personal knowledge of the patient and the doctor-patient relationship, personal continuity enabled them to provide higher quality care. However, the benefits of personal continuity were balanced against problems, and GPs identified personal, professional and external constraints that limited its provision. GPs seemed to have resolved the tension between the benefits, limits and constraints they described by accepting an increased reliance on continuity being provided within teams. Personal continuity may offer important benefits to doctors and patients, but we do not know how unique its values are. In particular, it is not clear whether the same benefits can be achieved within teams, the level at which continuity is increasingly being provided. The relative advantages and limits of the different means of delivering continuity need to be better understood, before further policy changes that affect personal continuity are introduced.

  19. GPS operations at Olkiluoto in 2011

    International Nuclear Information System (INIS)

    Koivula, H.; Kallio, U.; Nyberg, S.; Jokela, J.; Poutanen, M.

    2012-06-01

    less than the uncertainty of GPS-distances and since 2006 there seems to be no difference at all. In 2010 the four new concrete pillars (GPS16, GPS17, GPS18 and GPS19) were built in Olkiluoto. The control measurements at new pillar points were carried out in July 2011. The purpose of the measurements is to determine horizontal angles and distances between pillars and control points. The distances between pillars and control markers are 5-14 m. Besides the control markers each new pillar has two prism holders and the levelling bolt established on the pillar cylinder wall. There is no need in future to remove the antenna during control measurements. FGI we will continue geodetic observations at Olkiluoto, Kivetty and Romuvaara. The Olkiluoto network is under major modernization for permanent tracking during upcoming years. The first new permanent station GPS16 became operational on 16th of December 2011. The old Olkiluoto local GPS network - including those pillars not yet tracking permanently - will be measured biannually as thus far, as well as the EDM baseline. We will also carry out measurements at Kivetty and Romuvaara every second or third year supposing the improvement of the visibility of the points of those networks. (orig.)

  20. GPS operations at Olkiluoto in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Koivula, H.; Kallio, U.; Nyberg, S.; Jokela, J.; Poutanen, M. [Finnish Geodetic Institute, Masala (Finland)

    2012-06-15

    . It is less than the uncertainty of GPS-distances and since 2006 there seems to be no difference at all. In 2010 the four new concrete pillars (GPS16, GPS17, GPS18 and GPS19) were built in Olkiluoto. The control measurements at new pillar points were carried out in July 2011. The purpose of the measurements is to determine horizontal angles and distances between pillars and control points. The distances between pillars and control markers are 5-14 m. Besides the control markers each new pillar has two prism holders and the levelling bolt established on the pillar cylinder wall. There is no need in future to remove the antenna during control measurements. FGI we will continue geodetic observations at Olkiluoto, Kivetty and Romuvaara. The Olkiluoto network is under major modernization for permanent tracking during upcoming years. The first new permanent station GPS16 became operational on 16th of December 2011. The old Olkiluoto local GPS network - including those pillars not yet tracking permanently - will be measured biannually as thus far, as well as the EDM baseline. We will also carry out measurements at Kivetty and Romuvaara every second or third year supposing the improvement of the visibility of the points of those networks. (orig.)

  1. Effect of removing the common mode errors on linear regression analysis of noise amplitudes in position time series of a regional GPS network & a case study of GPS stations in Southern California

    Science.gov (United States)

    Jiang, Weiping; Ma, Jun; Li, Zhao; Zhou, Xiaohui; Zhou, Boye

    2018-05-01

    The analysis of the correlations between the noise in different components of GPS stations has positive significance to those trying to obtain more accurate uncertainty of velocity with respect to station motion. Previous research into noise in GPS position time series focused mainly on single component evaluation, which affects the acquisition of precise station positions, the velocity field, and its uncertainty. In this study, before and after removing the common-mode error (CME), we performed one-dimensional linear regression analysis of the noise amplitude vectors in different components of 126 GPS stations with a combination of white noise, flicker noise, and random walking noise in Southern California. The results show that, on the one hand, there are above-moderate degrees of correlation between the white noise amplitude vectors in all components of the stations before and after removal of the CME, while the correlations between flicker noise amplitude vectors in horizontal and vertical components are enhanced from un-correlated to moderately correlated by removing the CME. On the other hand, the significance tests show that, all of the obtained linear regression equations, which represent a unique function of the noise amplitude in any two components, are of practical value after removing the CME. According to the noise amplitude estimates in two components and the linear regression equations, more accurate noise amplitudes can be acquired in the two components.

  2. Rail inspection system based on iGPS

    Science.gov (United States)

    Fu, Xiaoyan; Wang, Mulan; Wen, Xiuping

    2018-05-01

    Track parameters include gauge, super elevation, cross level and so on, which could be calculated through the three-dimensional coordinates of the track. The rail inspection system based on iGPS (indoor/infrared GPS) was composed of base station, receiver, rail inspection frame, wireless communication unit, display and control unit and data processing unit. With the continuous movement of the inspection frame, the system could accurately inspect the coordinates of rail; realize the intelligent detection and precision measurement. According to principle of angle intersection measurement, the inspection model was structured, and detection process was given.

  3. Clustering of GPS velocities in the Mojave Block, southeastern California

    Science.gov (United States)

    Savage, James C.; Simpson, Robert W.

    2013-01-01

    We find subdivisions within the Mojave Block using cluster analysis to identify groupings in the velocities observed at GPS stations there. The clusters are represented on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. The most significant representation as judged by the gap test involves 4 clusters within the Mojave Block. The fault systems bounding the clusters from east to west are 1) the faults defining the eastern boundary of the Northeast Mojave Domain extended southward to connect to the Hector Mine rupture, 2) the Calico-Paradise fault system, 3) the Landers-Blackwater fault system, and 4) the Helendale-Lockhart fault system. This division of the Mojave Block is very similar to that proposed by Meade and Hager. However, no cluster boundary coincides with the Garlock Fault, the northern boundary of the Mojave Block. Rather, the clusters appear to continue without interruption from the Mojave Block north into the southern Walker Lane Belt, similar to the continuity across the Garlock Fault of the shear zone along the Blackwater-Little Lake fault system observed by Peltzer et al. Mapped traces of individual faults in the Mojave Block terminate within the block and do not continue across the Garlock Fault [Dokka and Travis, ].

  4. Present kinematics of the Tjornes Fracture Zone, North Iceland, from campaign and continuous GPS measurements

    KAUST Repository

    Metzger, S.

    2012-11-19

    The Tjörnes Fracture Zone (TFZ), North Iceland, is a 120 km transform offset of the Mid-Atlantic-Ridge that accommodates 18 mm yr−1 plate motion on two parallel transform structures and connects the offshore Kolbeinsey Ridge in the north to the on-shore Northern Volcanic Zone (NVZ) in the south. This transform zone is offshore except for a part of the right-lateral strike-slip Húsavík-Flatey fault (HFF) system that lies close to the coastal town of Húsavík, inducing a significant seismic risk to its inhabitants. In our previous work we constrained the locking depth and slip-rate of the HFF using 4 yr of continuous GPS measurements and found that the accumulated slip-deficit on the fault is equivalent to a Mw6.8 ± 0.1 earthquake, assuming a complete stress release in the last major earthquakes in 1872 and a steady accumulation since then. In this paper we improve our previous analysis by adding 44 campaign GPS (EGPS) data points, which have been regularly observed since 1997. We extract the steady-state interseismic velocities within the TFZ by correcting the GPS data for volcanic inflation of Theistareykir—the westernmost volcano of the NVZ—using a model with a magma volume increase of 25 × 106 m3, constrained by InSAR time-series analysis results. The improved velocity field based on 58 GPS stations confirms the robustness of our previous model and allows to better constrain the free model parameters. For the HFF we find a slightly shallower locking depth of ∼6.2 km and a slightly higher slip-rate of ∼6.8 mm yr−1 that again result in the same seismic potential equivalent to a Mw6.8 earthquake. The much larger number of GPS velocities improves the statistically estimated model parameter uncertainties by a factor of two, when compared to our previous study, a result that we validate using Bayesian estimation.

  5. Constraints on dike propagation from continuous GPS measurements

    Science.gov (United States)

    Segall, P.; Cervelli, Peter; Owen, S.; Lisowski, M.; Miklius, Asta

    2001-01-01

    The January 1997 East Rift Zone eruption on Kilauea volcano, Hawaii, occurred within a network of continuous Global Positioning System (GPS) receivers. The GPS measurements reveal the temporal history of deformation during dike intrusion, beginning ??? 8 hours prior to the onset of the eruption. The dike volume as a function of time, estimated from the GPS data using elastic Green's functions for a homogeneous half-space, shows that only two thirds of the final dike volume accumulated prior to the eruption and the rate of volume change decreased with time. These observations are inconsistent with simple models of dike propagation, which predict accelerating dike volume up to the time of the eruption and little or no change thereafter. Deflationary tilt changes at Kilauea summit mirror the inferred dike volume history, suggesting that the rate of dike propagation is limited by flow of magma into the dike. A simple, lumped parameter model of a coupled dike magma chamber system shows that the tendency for a dike to end in an eruption (rather than intrusion) is favored by high initial dike pressures, compressional stress states, large, compressible magma reservoirs, and highly conductive conduits linking the dike and source reservoirs. Comparison of model predictions to the observed dike volume history, the ratio of erupted to intruded magma, and the deflationary history of the summit magma chamber suggest that most of the magma supplied to the growing dike came from sources near to the eruption through highly conductive conduits. Interpretation is complicated by the presence of multiple source reservoirs, magma vesiculation and cooling, as well as spatial variations in dike-normal stress. Reinflation of the summit magma chamber following the eruption was measured by GPS and accompanied a rise in the level of the Pu'u O'o lava lake. For a spheroidal chamber these data imply a summit magma chamber volume of ??? 20 km3, consistent with recent estimates from seismic

  6. GPS coordinate time series measurements in Ontario and Quebec, Canada

    Science.gov (United States)

    Samadi Alinia, Hadis; Tiampo, Kristy F.; James, Thomas S.

    2017-06-01

    New precise network solutions for continuous GPS (cGPS) stations distributed in eastern Ontario and western Québec provide constraints on the regional three-dimensional crustal velocity field. Five years of continuous observations at fourteen cGPS sites were analyzed using Bernese GPS processing software. Several different sub-networks were chosen from these stations, and the data were processed and compared to in order to select the optimal configuration to accurately estimate the vertical and horizontal station velocities and minimize the associated errors. The coordinate time series were then compared to the crustal motions from global solutions and the optimized solution is presented here. A noise analysis model with power-law and white noise, which best describes the noise characteristics of all three components, was employed for the GPS time series analysis. The linear trend, associated uncertainties, and the spectral index of the power-law noise were calculated using a maximum likelihood estimation approach. The residual horizontal velocities, after removal of rigid plate motion, have a magnitude consistent with expected glacial isostatic adjustment (GIA). The vertical velocities increase from subsidence of almost 1.9 mm/year south of the Great Lakes to uplift near Hudson Bay, where the highest rate is approximately 10.9 mm/year. The residual horizontal velocities range from approximately 0.5 mm/year, oriented south-southeastward, at the Great Lakes to nearly 1.5 mm/year directed toward the interior of Hudson Bay at stations adjacent to its shoreline. Here, the velocity uncertainties are estimated at less than 0.6 mm/year for the horizontal component and 1.1 mm/year for the vertical component. A comparison between the observed velocities and GIA model predictions, for a limited range of Earth models, shows a better fit to the observations for the Earth model with the smallest upper mantle viscosity and the largest lower mantle viscosity. However, the

  7. A Demonstration of GPS Landslide Monitoring Using Online Positioning User Service (OPUS)

    Science.gov (United States)

    Wang, G.

    2011-12-01

    Global Positioning System (GPS) technologies have been frequently applied to landslide study, both as a complement, and as an alternative to conventional surveying methods. However, most applications of GPS for landslide monitoring have been limited to the academic community for research purposes. High-accuracy GPS has not been widely equipped in geotechnical companies and used by technicians. The main issue that limits the applications of GPS in the practice of high-accuracy landslide monitoring is the complexity of GPS data processing. This study demonstrated an approach using the Online Positioning User Service (OPUS) (http://www.ngs.noaa.gov/OPUS) provided by the National Geodetic Survey (NGS) of National Oceanic and Atmospheric Administration (NOAA) to process GPS data and conduct long-term landslide monitoring in the Puerto Rico and Virgin Islands Region. Continuous GPS data collected at a creeping landslide site during two years were used to evaluate different scenarios for landslide surveying: continuous or campaign, long duration or short duration, morning or afternoon (different weather conditions). OPUS uses Continuously Operating Reference Station (CORS) managed by NGS (http://www.ngs.noaa.giv/CORS/) as references and user data as a rover to solve a position. There are 19 CORS permanent GPS stations in the Puerto Rico and Virgin Islands region. The dense GPS network provides a precise and reliable reference frame for subcentimeter-accuracy landslide monitoring in this region. Our criterion for the accuracy was the root-mean-square (RMS) of OPUS solutions over a 2-year period with respect to true landslide displacement time series overt the same period. The true landslide displacements were derived from a single-baseline (130 m) GPS processing by using 24-hour continuous data. If continuous GPS surveying is performed in the field, then OPUS static processing can provide 0.6 cm horizontal and 1.1 cm vertical precision with few outliers. If repeated

  8. Continental-scale water fluxes from continuous GPS observations of Earth surface loading

    Science.gov (United States)

    Borsa, A. A.; Agnew, D. C.; Cayan, D. R.

    2015-12-01

    After more than a decade of observing annual oscillations of Earth's surface from seasonal snow and water loading, continuous GPS is now being used to model time-varying terrestrial water fluxes on the local and regional scale. Although the largest signal is typically due to the seasonal hydrological cycle, GPS can also measure subtle surface deformation caused by sustained wet and dry periods, and to estimate the spatial distribution of the underlying terrestrial water storage changes. The next frontier is expanding this analysis to the continental scale and paving the way for incorporating GPS models into the National Climate Assessment and into the observational infrastructure for national water resource management. This will require reconciling GPS observations with predictions from hydrological models and with remote sensing observations from a suite of satellite instruments (e.g. GRACE, SMAP, SWOT). The elastic Earth response which transforms surface loads into vertical and horizontal displacements is also responsible for the contamination of loading observations by tectonic and anthropogenic transients, and we discuss these and other challenges to this new application of GPS.

  9. Present kinematics of the Tjornes Fracture Zone, North Iceland, from campaign and continuous GPS measurements

    KAUST Repository

    Metzger, S.; Jonsson, Sigurjon; Danielsen, G.; Hreinsdottir, S.; Jouanne, F.; Giardini, D.; Villemin, T.

    2012-01-01

    The improved velocity field based on 58 GPS stations confirms the robustness of our previous model and allows to better constrain the free model parameters. For the HFF we find a slightly shallower locking depth of ∼6.2 km and a slightly higher slip-rate of ∼6.8 mm yr−1 that again result in the same seismic potential equivalent to a Mw6.8 earthquake. The much larger number of GPS velocities improves the statistically estimated model parameter uncertainties by a factor of two, when compared to our previous study, a result that we validate using Bayesian estimation.

  10. Thirteen years of integrated precipitable water derived by GPS at Mario Zucchelli Station, Antarctica

    Directory of Open Access Journals (Sweden)

    Pierguido Sarti

    2013-06-01

    Full Text Available Since 1998, the Italian Antarctic Programme has been funding space geodetic activities based on the use of episodic and permanent global positioning system (GPS observations. As well as their exploitation in geodynamics, these data can be used to sense the atmosphere and to retrieve and monitor its water vapor content and variations. The surface pressure p and temperature Ts at the GPS tracking sites are necessary to compute the zenith hydrostatic delay (ZHD, and consequently, the precipitable water. At sites where no surface information is recorded, the p and Ts values can be retrieved from, e.g., global numerical weather prediction models. Alternatively, the site-specific ZHD values can be computed by interpolation of the ZHD values provided in a grid model (2.5° × 2.0°. We have processed the data series of the permanent GPS site TNB1 (Mario Zucchelli Station, Antarctica from 1998 to 2010, with the purpose of comparing the use of grid ZHD values as an alternative to the use of real surface records. With these approaches, we estimate almost 7 × 104 hourly values of precipitable water over 13 years, and we find discrepancies that vary between 1.8 (±0.2 mm in summer and 3.3 (±0.5 mm in winter. In addition, the discrepancies of the two solutions show a clear seasonal dependency. Radiosounding measurements were used to derive an independent series of precipitable water. These agree better with the GPS precipitable water derived from real surface data. However, the GPS precipitable water time series is dry biased, as it is ca. 77% of the total moisture measured by the radiosoundings. Both the GPS and radiosounding observations are processed through the most up-to-date strategies, to reduce known systematic errors.

  11. Breadth of Scientific Activities and Network Station Specifications in the International GPS Service (IGS)

    Science.gov (United States)

    Moore, A. W.; Neilan, R. E.; Springer, T. A.; Reigber, Ch.

    2000-01-01

    A strong multipurpose aspect of the International GPS Service (IGS) is revealed by a glance at the titles of current projects and working groups within the IGS: IGS/BIPM Time Transfer Project; Ionosphere Working Group; Troposphere Working Group; International GLONASS Experiment; Working Group on Low-Earth Orbiter Missions; and Tide Gauges, CGPS, and the IGS. The IGS network infrastructure, in large part originally commissioned for geodynamical investigations, has proved to be a valuable asset in developing application-oriented subnetworks whose requirements overlap the characteristics of existing IGS stations and future station upgrades. Issues encountered thus far in the development of multipurpose or multitechnique IGS projects as well as future possibilities will be reviewed.

  12. GPS Tomography: Water Vapour Monitoring for Germany

    Science.gov (United States)

    Bender, Michael; Dick, Galina; Wickert, Jens; Raabe, Armin

    2010-05-01

    Ground based GPS atmosphere sounding provides numerous atmospheric quantities with a high temporal resolution for all weather conditions. The spatial resolution of the GPS observations is mainly given by the number of GNSS satellites and GPS ground stations. The latter could considerably be increased in the last few years leading to more reliable and better resolved GPS products. New techniques such as the GPS water vapour tomography gain increased significance as data from large and dense GPS networks become available. The GPS tomography has the potential to provide spatially resolved fields of different quantities operationally, i. e. the humidity or wet refractivity as required for meteorological applications or the refraction index which is important for several space based observations or for precise positioning. The number of German GPS stations operationally processed by the GFZ in Potsdam was recently enlarged to more than 300. About 28000 IWV observations and more than 1.4 millions of slant total delay data are now available per day with a temporal resolution of 15 min and 2.5 min, respectively. The extended network leads not only to a higher spatial resolution of the tomographically reconstructed 3D fields but also to a much higher stability of the inversion process and with that to an increased quality of the results. Under these improved conditions the GPS tomography can operate continuously over several days or weeks without applying too tight constraints. Time series of tomographically reconstructed humidity fields will be shown and different initialisation strategies will be discussed: Initialisation with a simple exponential profile, with a 3D humidity field extrapolated from synoptic observations and with the result of the preceeding reconstruction. The results are compared to tomographic reconstructions initialised with COSMO-DE analyses and to the corresponding model fields. The inversion can be further stabilised by making use of independent

  13. GPS crustal deformation of the Eastern Betics and its relationship with the Lorca earthquake; Deformacion cortical de las Beticas Orientales observada mediante GPS y su relacion con el terremoto de Lorca

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria, A.; Khazaradze, G.; Asensio, E.; Garate, J.; Surinach, E.

    2012-07-01

    On May 11{sup t}h of 2011, a seismic series occurred near the city of Lorca (Murcia). The main earthquake of magnitude Mw 5.2 has been attributed to the Alhama de Murcia Fault, one of the most active faults in the SE Iberian Peninsula. We analyzed data from 5 GPS campaigns of the CuaTeNeo network conducted between 1997 and 2011. The velocities of the stations closest to the Alhama de Murcia Fault show the reverse and strike-slip direction of motion. Stations located on the southeastern side of the fault have the maximum velocities in the area (between 1.4 and 1.8 mm/yr), oriented towards NNW direction, obliquely to the trace of the fault. The kinematics of the fault and the strain rate directions obtained from the CuaTeNeo network GPS measurements matches the calculated focal mechanism of Lorca earthquake. Detailed analysis of the time-series from the continuous GPS station at the Lorca city allows the detection of co-seismic offset of {approx}6 mm to the North. Keywords: crustal deformation, GPS, Betics, Lorca earthquake. (Author) 20 refs.

  14. Crustal deformation pattern of the Morocco-Iberian area: constraints from 14 years of GPS measurements

    Science.gov (United States)

    Palano, Mimmo; González, Pablo; Fernandez, Josè

    2014-05-01

    We present an improved rendition of crustal motion field of the Morocco-Iberian area, based on an extensive GPS dataset covering about 14 years of observations from 1999.00 up to 2013.79 in order to provide a detailed spatial resolution of geodetic velocity and strain-rate fields. In particular, we included all available data from public continuous GPS stations, considering also data coming from networks developed mainly for mapping, engineering and cadastre purposes. In addition to continuous GPS sites, we included data from 31 episodic GPS sites located in Morocco with surveys spanning the 1999-2006 time interval, whose data are available through the UNAVCO archive (www.unavco.org). All GPS data were processed by using the GAMIT/GLOBK software, taking into account precise ephemerides from the IGS (International GNSS Service; http://igscb.jpl.nasa.gov) and Earth orientation parameters from the International Earth Rotation Service (http://www.iers.org). To improve the overall configuration of the network and tie the regional measurements to an external global reference frame, data coming from more than 25 continuously operating global tracking stations, largely from the IGS and EUREF permanent networks, were introduced in the processing. All stations were organized (and processed) into seven sub-networks of about 40-50 sites each, on average, sharing a few common sites to provide ties between them. Finally, by using the GLORG module of GLOBK, the GAMIT-solutions and their full covariance matrices were combined to estimated a consistent set of positions and velocities in the ITRF2008 reference frame by minimizing the horizontal velocity of the continuously operating global tracking stations mentioned above. To adequately investigate the crustal deformation pattern over the study area, we aligned our estimated GPS velocities to an Eurasian and a Nubian fixed reference frames. In addition, by taking into account the observed GPS horizontal velocity field and

  15. GPS Modeling and Analysis. Summary of Research: GPS Satellite Axial Ratio Predictions

    Science.gov (United States)

    Axelrad, Penina; Reeh, Lisa

    2002-01-01

    This report outlines the algorithms developed at the Colorado Center for Astrodynamics Research to model yaw and predict the axial ratio as measured from a ground station. The algorithms are implemented in a collection of Matlab functions and scripts that read certain user input, such as ground station coordinates, the UTC time, and the desired GPS (Global Positioning System) satellites, and compute the above-mentioned parameters. The position information for the GPS satellites is obtained from Yuma almanac files corresponding to the prescribed date. The results are displayed graphically through time histories and azimuth-elevation plots.

  16. Crustal deformations at permanent GPS sites in Denmark

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Knudsen, Per; Tscherning, Carl Christian

    2005-01-01

    The National Survey and Cadastre (KMS) is responsible for the geodetic definition of the reference network in Denmark. Permanent GPS stations play an important role in the monitoring and maintenance of the geodetic network. During 1998 and 1999 KMS established three permanent GPS station in Denma...

  17. Deformation-strain field in Sichuan and its surrounding areas based on GPS data

    Directory of Open Access Journals (Sweden)

    Fuchao Chen

    2015-05-01

    Full Text Available The strain rate in Sichuan and its surrounding areas, and the activity rate and strain rate in two block boundary fault zones were calculated according to the block movement parameters estimated using the station speed obtained from regional GPS station observation data in these areas for 2009–2011 and GPS continuous station data for 2011–2013. The movement field characteristics in these areas were analyzed with the Sichuan Basin as the reference. Results show that the principal strain rate and maximum shear strain rate of the Bayan Har block were the largest, followed by those of the Sichuan–Yunnan block and Sichuan Basin. The deep normal strain rate in the Longmenshan fault zone was compressive and large over the study period. The normal strain rate in the Xianshuihe fault zone was tensile.

  18. Continuing Inflation at Three Sisters Volcanic Center, Central Oregon Cascade Range, USA, From GPS, InSAR, and Leveling Observations

    Science.gov (United States)

    Lisowski, M.; Dzurisin, D.; Wicks, C. W.

    2007-12-01

    Uplift of a broad area centered ~5 km west of South Sister volcano in central Oregon started sometime after fall 1996, accelerated after fall 1998, and was continuing when last surveyed with GPS and leveling in fall 2006. Surface displacements were measured whenever possible since 1992 with satellite radar interferometry (InSAR), annually since 2001 with GPS and leveling campaigns, and with a continuous GPS station since 2001. The average maximum displacement rate from InSAR was 3 to 5 cm/yr during 1998--2001 and ~1.4 cm/yr during 2004--2006. The other three datasets show a similar pattern, i.e., surface dilation and uplift rates decreased over time but deformation continued through 2006. Our best-fit model is a spherical point pressure (Mogi) source located 6.0--6.5 km below the surface and 4.5--5 km west-southwest of the summit of South Sister volcano. Any marginal improvement gained by using a more complicated source shape is not constrained by the data. This same model fits the deformation data for 2001--2003 and 2003--2006 equally well, so there is no indication that the location or shape of the source has changed. However, the source inflation rate has decreased exponentially since 2001 with a 1/e decay time of about 4 years. The net increase in source volume from the beginning of the episode (~1997) through 2006 was 60 × 106 m3 ± 10 × 106 m3. The only unusual seismicity near the deforming area was a swarm of about 300 small earthquakes on March 23- -26, 2004 ---the first notable seismicity for at least two decades. Timing of the swarm generally coincides with slowing of surface deformation, but any link between the two, if one exists, is not understood. Similar episodes in the past probably would have gone unnoticed if, as we suspect, most were small intrusions that do not culminate in eruptions.

  19. Multiscale GPS tomography during COPS: validation and applications

    Science.gov (United States)

    Champollion, Cédric; Flamant, Cyrille; Masson, Frédéric; Gégout, Pascal; Boniface, Karen; Richard, Evelyne

    2010-05-01

    Accurate 3D description of the water vapour field is of interest for process studies such as convection initiation. None of the current techniques (LIDAR, satellite, radio soundings, GPS) can provide an all weather continuous 3D field of moisture. The combination of GPS tomography with radio-soundings (and/or LIDAR) has been used for such process studies using both advantages of vertically resolved soundings and high temporal density of GPS measurements. GPS tomography has been used at short scale (10 km horizontal resolution but in a 50 km² area) for process studies such as the ESCOMPTE experiment (Bastin et al., 2005) and at larger scale (50 km horizontal resolution) during IHOP_2002. But no extensive statistical validation has been done so far. The overarching goal of the COPS field experiment is to advance the quality of forecasts of orographically induced convective precipitation by four-dimensional observations and modeling of its life cycle for identifying the physical and chemical processes responsible for deficiencies in QPF over low-mountain regions. During the COPS field experiment, a GPS network of about 100 GPS stations has been continuously operating during three months in an area of 500 km² in the East of France (Vosges Mountains) and West of Germany (Black Forest). If the mean spacing between the GPS is about 50 km, an East-West GPS profile with a density of about 10 km is dedicated to high resolution tomography. One major goal of the GPS COPS experiment is to validate the GPS tomography with different spatial resolutions. Validation is based on additional radio-soundings and airborne / ground-based LIDAR measurement. The number and the high quality of vertically resolved water vapor observations give an unique data set for GPS tomography validation. Numerous tests have been done on real data to show the type water vapor structures that can be imaging by GPS tomography depending of the assimilation of additional data (radio soundings), the

  20. GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters

    Science.gov (United States)

    Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory

    2013-01-01

    Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational weather models in the U.S.

  1. Analysis of Regional GPS Networks in Eastern Ontario

    Science.gov (United States)

    Samadi Alinia, H.; Tiampo, K. F.

    2014-12-01

    Although stable, intraplate region of eastern Canada is considered low rate deformation area in the North American plate, the retreat of large ice sheets during deglaciation in the last 20 ka has resulted in horizontal and vertical deformation of the Earth's in eastern Ontario. Present-day glacial isostatic adjustment (GIA) uplift rates approach 10 mm/yr or more at Hudson Bay and decrease with distance southeastward. Current GIA models forecast that the hinge line between uplift to the northwest and subsidence to the southeast lies somewhere near the Saint Lawrence valley in eastern Canada [Tushingham and Peltier, 1991; Peltier, 2002]. Employing continuous Global Positioning System (cGPS) observations and high precision tools for processing and then analyzing each component of derived time series are important tools to monitor the associated regional crustal deformation with good accuracies. Here we describe the analysis of coordinate time series of cGPS stations scattered sparsely throughout southeastern Ontario and between Ottawa and the east coast of Hudson Bay. Here, the two most reliable local networks, each including 4 to 6 reference stations, were selected for analysis. Data for period of approximately five years, 2008-2012.9, was processed with Bernese 5.0 over several campaigns. Individual cGPS coordinate time series were generated for each station and basic parameters, such as mean, variance and repeatability, were estimated. The time series are corrected with respect to the rigid plate motion and seasonal variations and advanced time series analysis techniques, including spectral analysis and principal component analysis were implemented. Post-processing of the time series reproduces the general GIA spatial pattern. Results also show that the vertical velocities of all stations in the solution are consistent with the GIA model uplift rate and are consistent with other cGPS sites in eastern Canada and increases from north of lake of Ontario (approximately

  2. GPS operations at Olkiluoto in 2009

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M.; Ahola, J. (Finnish Geodetic Institute, Masala (Finland))

    2010-06-15

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. One pillar in the investigation area belongs to the Finnish permanent GPS network, FinnRef. 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than +-0.20 mm/a. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. Changes in he difference between the GPS and EDM results indicate the systematic change in GPS results. No corrections based on only one baseline were not applied to GPS vectors. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. Four new permanent stations will be established in summer 2010 at Olkiluoto. We have automated the processing of the campaign data by using the Bernese processing engine (BPE) together with our own Perl scripts. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is located in Cities of Pori and Rauma and their neighbouring municipalities. Two new pillars

  3. GPS operations at Olkiluoto in 2009

    International Nuclear Information System (INIS)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M.; Ahola, J.

    2010-06-01

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. One pillar in the investigation area belongs to the Finnish permanent GPS network, FinnRef. 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ±0.20 mm/a. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. Changes in he difference between the GPS and EDM results indicate the systematic change in GPS results. No corrections based on only one baseline were not applied to GPS vectors. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. Four new permanent stations will be established in summer 2010 at Olkiluoto. We have automated the processing of the campaign data by using the Bernese processing engine (BPE) together with our own Perl scripts. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is located in Cities of Pori and Rauma and their neighbouring municipalities. Two new pillars

  4. Short-term variations of Icelandic ice cap mass inferred from cGPS coordinate time series

    DEFF Research Database (Denmark)

    Compton, Kathleen; Bennett, Richard A.; Hreinsdóttir, Sigrún

    2017-01-01

    As the global climate changes, understanding short-term variations in water storage is increasingly important. Continuously operating Global Positioning System (cGPS) stations in Iceland record annual periodic motion—the elastic response to winter accumulation and spring melt seasons—with peak-to...

  5. Communication plan of GPS monitoring system based on the Internet

    Science.gov (United States)

    Xing, Xiangpeng; Liu, Zhenan; Bao, Yuanlu

    2005-11-01

    In GPS monitoring system, wireless communications network is necessary to keep base station in contact with mobile stations. Public communications network and personal communications network can't work well all the time. In this article, an economical communications network that can be competent for communication of GPS monitoring system is introduced. Personal communications network is used in this GPS monitoring system. In order to enlarge the coverage area and to expand the capacity of the personal communications network, the concept of cellular radio system is introduced. Because only the non-adjacent cells can use the same frequency channel, handoff of mobile station is extremely important when it goes in another cell. The mobile station of the system will know its own longitude and latitude by receiving data from GPS satellites all the time, so it can change its working frequency channel according to its position. Internet, instead of personal communication cable, is used to connect the base stations. So the communications network has the advantage of public communications network and personal one.

  6. Forsmark site investigation. A deformation analysis of the Forsmark GPS monitoring network from 2005 to 2009

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Lars; Ljungberg, Annika (Caliterra AB (Sweden))

    2010-10-15

    The objective of the study is to identify possible movements in the bedrock within and outside the candidate area at Forsmark. Seven physically stable stations were built in the Forsmark area in the autumn of 2005. Stations were established within a ten-kilometer radius. The stations were placed in three different areas separated by regional deformation zones: NE of the Singoe zone, within the candidate area, and SW of the Forsmark zone. Data have been collected in eighteen campaigns, each with a duration of about five days, from November 2005 to December 2009. Stations consist of a stainless steel rod fixed in the bedrock on which the GPS antenna mounts. Each station has dedicated GPS equipment only used at the specific site. Sets consist of a GPS receiver collecting raw GPS data and a choke ring antenna linked to the receiver using a coaxial cable. The receivers and antennas are dual frequency high precision geodetic grade. During each campaign the GPS receiver saves a reading every second for the duration of the five days campaign. The antennas remain mounted on the stations during the entire project, whereas all other equipment is in place at the station only during the campaigns. The measurements were related to the SWEPOS network stations Lovoe, Uppsala and Maartsbo that are defined as stations with stable fundaments by the National Land Survey of Sweden (Lantmaeteriet). This report deals with altogether 18 campaigns. The first 13 campaigns were performed during the period November 2005 to August 2008. However, the number of campaigns has been extended by adding a fourth year to the project. Optimization of the data processing depends on the properties of the entire data set comprising a period of four years. We divided the data into periods of 24 hours with each period processed as a separate session in the Bernese post processing software, after which we analyzed the residuals to conclude that data are of the expected quality. The entire data set from four

  7. GPS Time Series and Geodynamic Implications for the Hellenic Arc Area, Greece

    Science.gov (United States)

    Hollenstein, Ch.; Heller, O.; Geiger, A.; Kahle, H.-G.; Veis, G.

    The quantification of crustal deformation and its temporal behavior is an important contribution to earthquake hazard assessment. With GPS measurements, especially from continuous operating stations, pre-, co-, post- and interseismic movements can be recorded and monitored. We present results of a continuous GPS network which has been operated in the Hellenic Arc area, Greece, since 1995. In order to obtain coordinate time series of high precision which are representative for crustal deformation, a main goal was to eliminate effects which are not of tectonic origin. By applying different steps of improvement, non-tectonic irregularities were reduced significantly, and the precision could be improved by an average of 40%. The improved time series are used to study the crustal movements in space and time. They serve as a base for the estimation of velocities and for the visualization of the movements in terms of trajectories. Special attention is given to large earthquakes (M>6), which occurred near GPS sites during the measuring time span.

  8. Continuous professional development for GPs

    DEFF Research Database (Denmark)

    Kjaer, N K; Steenstrup, A P; Pedersen, L B

    2014-01-01

    out to identify GPs' current use of CPD and to explore the motives behind their choices. METHODS: A mixed-methods study with a combined qualitative and quantitative approach was used. In 2012, two focus group interviews were conducted, followed up the same year by an online questionnaire sent to 1079...

  9. Vertical Displacements Driven by Groundwater Storage Changes in the North China Plain Detected by GPS Observations

    Directory of Open Access Journals (Sweden)

    Renli Liu

    2018-02-01

    Full Text Available The North China Plain (NCP has been experiencing the most severe groundwater depletion in China, leading to a broad region of vertical motions of the Earth’s surface. This paper explores the seasonal and linear trend variations of surface vertical displacements caused by the groundwater changes in NCP from 2009 to 2013 using Global Positioning System (GPS and Gravity Recovery and Climate Experiment (GRACE techniques. Results show that the peak-to-peak amplitude of GPS-derived annual variation is about 3.7~6.0 mm and is highly correlated (R > 0.6 for most selected GPS stations with results from GRACE, which would confirm that the vertical displacements of continuous GPS (CGPS stations are mainly caused by groundwater storage (GWS changes in NCP, since GWS is the dominant component of total water storage (TWS anomalies in this area. The linear trends of selected bedrock-located IGS CGPS stations reveal the distinct GWS changes in period of 2009–2010 (decrease and 2011–2013 (rebound, which are consistent with results from GRACE-derived GWS anomalies and in situ GWS observations. This result implies that the rate of groundwater depletion in NCP has slowed in recent years. The impacts of geological condition (bedrock or sediment of CGPS stations to their results are also investigated in this study. Contrasted with the slight linear rates (−0.69~1.5 mm/a of bedrock-located CGPS stations, the linear rates of sediment-located CGPS stations are between −44 mm/a and −17 mm/a. It is due to the opposite vertical displacements induced by the Earth surface’s porous and elastic response to groundwater depletion. Besides, the distinct renewal characteristics of shallow and deep groundwater in NCP are discussed. The GPS-based vertical displacement time series, to some extent, can reflect the quicker recovery of shallow unconfined groundwater than the deep confined groundwater in NCP; through one month earlier to attain the maximum height for CGPS

  10. The International GPS Service (IGS) as a Continuous Reference System for Precise GPS Positioning

    Science.gov (United States)

    Neilan, Ruth; Heflin, Michael; Watkins, Michael; Zumberge, James

    1996-01-01

    The International GPS Service for Geodynamics (IGS) is an organization which operates under the auspices of the International Association of Geodesy (IAG) and has been operational since January 1994. The primary objective of the IGS is to provide precise GPS data and data products to support geodetic and geophysical research activities.

  11. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2010

    International Nuclear Information System (INIS)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M.

    2011-11-01

    larger compared to the inner network (max 0.42 ± 0.07 mm/a for GPS1-GPS11) but more uncertain due to shorter time series. At Kivetty one third of the change rates could be considered as statistically significant, and the maximum change rate was 0.18 ± 0.03 mm/a for GPS3-GPS4. The horizontal velocities were of the same order of magnitude as in the Olkiluoto network. At Romuvaara the change rates were of the same order of magnitude than in Kivetty and Olkiluoto (less than 0.2 mm/a), but none of the change rates were statistically significant. After four control marker measurement campaigns we can estimate the reproducibility of our angle and distance measurements in micro networks. The standard deviations of horizontal angles, height differences and distances in our micro networks were 0.0028 gon, 0.0007 m and 0.0005 m respectively. As a conclusion of the control measurements we cannot say anything about possible deformations of the pillars - the precision of our observations is not sufficient for the purpose, but we can ensure that any bigger damages have not happened at any pillar. According to the nine years long time series of EDM measurements GPS gives us on the average 1.3 mm longer distances between pillars GPS7 and GPS8 than EDM. The reason for the difference is unmodelled or dismodelled offsets in GPS observations and the scale difference between GPS and EDM. The trends of EDM and GPS distance time series are similar. FGI will continue geodetic observations at Olkiluoto, Kivetty and Romuvaara. The Olkiluoto network is under major modernization for permanent tracking during upcoming years. We aim to start the permanent tracking in four new stations and four old stations in autumn 2011. (orig.)

  12. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M. [Finnish Geodetic Institute, Masala (Finland)

    2011-11-15

    are larger compared to the inner network (max 0.42 {+-} 0.07 mm/a for GPS1-GPS11) but more uncertain due to shorter time series. At Kivetty one third of the change rates could be considered as statistically significant, and the maximum change rate was 0.18 {+-} 0.03 mm/a for GPS3-GPS4. The horizontal velocities were of the same order of magnitude as in the Olkiluoto network. At Romuvaara the change rates were of the same order of magnitude than in Kivetty and Olkiluoto (less than 0.2 mm/a), but none of the change rates were statistically significant. After four control marker measurement campaigns we can estimate the reproducibility of our angle and distance measurements in micro networks. The standard deviations of horizontal angles, height differences and distances in our micro networks were 0.0028 gon, 0.0007 m and 0.0005 m respectively. As a conclusion of the control measurements we cannot say anything about possible deformations of the pillars - the precision of our observations is not sufficient for the purpose, but we can ensure that any bigger damages have not happened at any pillar. According to the nine years long time series of EDM measurements GPS gives us on the average 1.3 mm longer distances between pillars GPS7 and GPS8 than EDM. The reason for the difference is unmodelled or dismodelled offsets in GPS observations and the scale difference between GPS and EDM. The trends of EDM and GPS distance time series are similar. FGI will continue geodetic observations at Olkiluoto, Kivetty and Romuvaara. The Olkiluoto network is under major modernization for permanent tracking during upcoming years. We aim to start the permanent tracking in four new stations and four old stations in autumn 2011. (orig.)

  13. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    Science.gov (United States)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  14. GPS IPW as a Meteorological Parameter and Climate Global Change Indicator

    Science.gov (United States)

    Kruczyk, M.; Liwosz, T.

    2011-12-01

    Paper focuses on comprehensive investigation of the GPS derived IPW (Integrated Precipitable Water, also IWV) as a geophysical tool. GPS meteorology is now widely acknowledged indirect method of atmosphere sensing. First we demonstrate GPS IPW quality. Most thorough inter-technique comparisons of directly measured IPW are attainable only for some observatories (note modest percentage of GPS stations equipped with meteorological devices). Nonetheless we have managed to compare IPW series derived from GPS tropospheric solutions (ZTD mostly from IGS and EPN solutions) and some independent techniques. IPW values from meteorological sources we used are: radiosoundings, sun photometer and input fields of numerical weather prediction model. We can treat operational NWP models as meteorological database within which we can calculate IWV for all GPS stations independently from network of direct measurements (COSMO-LM model maintained by Polish Institute of Meteorology and Water Management was tried). Sunphotometer (CIMEL-318, Central Geophysical Observatory IGF PAS, Belsk, Poland) data seems the most genuine source - so we decided for direct collocation of GPS measurements and sunphotometer placing permanent GPS receiver on the roof of Belsk Observatory. Next we analyse IPW as geophysical parameter: IPW demonstrates some physical effects evoked by station location (height and series correlation coefficient as a function of distance) and weather patterns like dominant wind directions (in case of neighbouring stations). Deficiency of surface humidity data to model IPW is presented for different climates. This inadequacy and poor humidity data representation in NWP model extremely encourages investigating information exchange potential between Numerical Model and GPS network. The second and most important aspect of this study concerns long series of IPW (daily averaged) which can serve as climatological information indicator (water vapour role in climate system is hard to

  15. Combined GPS/GLONASS Precise Point Positioning with Fixed GPS Ambiguities

    Science.gov (United States)

    Pan, Lin; Cai, Changsheng; Santerre, Rock; Zhu, Jianjun

    2014-01-01

    Precise point positioning (PPP) technology is mostly implemented with an ambiguity-float solution. Its performance may be further improved by performing ambiguity-fixed resolution. Currently, the PPP integer ambiguity resolutions (IARs) are mainly based on GPS-only measurements. The integration of GPS and GLONASS can speed up the convergence and increase the accuracy of float ambiguity estimates, which contributes to enhancing the success rate and reliability of fixing ambiguities. This paper presents an approach of combined GPS/GLONASS PPP with fixed GPS ambiguities (GGPPP-FGA) in which GPS ambiguities are fixed into integers, while all GLONASS ambiguities are kept as float values. An improved minimum constellation method (MCM) is proposed to enhance the efficiency of GPS ambiguity fixing. Datasets from 20 globally distributed stations on two consecutive days are employed to investigate the performance of the GGPPP-FGA, including the positioning accuracy, convergence time and the time to first fix (TTFF). All datasets are processed for a time span of three hours in three scenarios, i.e., the GPS ambiguity-float solution, the GPS ambiguity-fixed resolution and the GGPPP-FGA resolution. The results indicate that the performance of the GPS ambiguity-fixed resolutions is significantly better than that of the GPS ambiguity-float solutions. In addition, the GGPPP-FGA improves the positioning accuracy by 38%, 25% and 44% and reduces the convergence time by 36%, 36% and 29% in the east, north and up coordinate components over the GPS-only ambiguity-fixed resolutions, respectively. Moreover, the TTFF is reduced by 27% after adding GLONASS observations. Wilcoxon rank sum tests and chi-square two-sample tests are made to examine the significance of the improvement on the positioning accuracy, convergence time and TTFF. PMID:25237901

  16. Combined GPS/GLONASS Precise Point Positioning with Fixed GPS Ambiguities

    Directory of Open Access Journals (Sweden)

    Lin Pan

    2014-09-01

    Full Text Available Precise point positioning (PPP technology is mostly implemented with an ambiguity-float solution. Its performance may be further improved by performing ambiguity-fixed resolution. Currently, the PPP integer ambiguity resolutions (IARs are mainly based on GPS-only measurements. The integration of GPS and GLONASS can speed up the convergence and increase the accuracy of float ambiguity estimates, which contributes to enhancing the success rate and reliability of fixing ambiguities. This paper presents an approach of combined GPS/GLONASS PPP with fixed GPS ambiguities (GGPPP-FGA in which GPS ambiguities are fixed into integers, while all GLONASS ambiguities are kept as float values. An improved minimum constellation method (MCM is proposed to enhance the efficiency of GPS ambiguity fixing. Datasets from 20 globally distributed stations on two consecutive days are employed to investigate the performance of the GGPPP-FGA, including the positioning accuracy, convergence time and the time to first fix (TTFF. All datasets are processed for a time span of three hours in three scenarios, i.e., the GPS ambiguity-float solution, the GPS ambiguity-fixed resolution and the GGPPP-FGA resolution. The results indicate that the performance of the GPS ambiguity-fixed resolutions is significantly better than that of the GPS ambiguity-float solutions. In addition, the GGPPP-FGA improves the positioning accuracy by 38%, 25% and 44% and reduces the convergence time by 36%, 36% and 29% in the east, north and up coordinate components over the GPS-only ambiguity-fixed resolutions, respectively. Moreover, the TTFF is reduced by 27% after adding GLONASS observations. Wilcoxon rank sum tests and chi-square two-sample tests are made to examine the significance of the improvement on the positioning accuracy, convergence time and TTFF.

  17. Standardization of GPS data processing

    International Nuclear Information System (INIS)

    Park, Pil Ho

    2001-06-01

    A nationwide GPS network has been constructed with about 60 permanent GPS stations after late 1990s in Korea. For using the GPS in variety of application area like crustal deformation, positioning, or monitoring upper atmosphere, it is necessary to have ability to process the data precisely. Now Korea Astronomy Observatory has the precise GPS data processing technique in Korea because it is difficult to understand characteristics of the parameters we want to estimate, resolve the integer ambiguity, and analyze many errors. There are three reliable GPS data processing software in the world ; Bernese(University of Berne), GIPSY-OASIS(JPL), GAMIT(MIT). These software allow us to achieve millimeter accuracy in the horizontal position and about 1 cm accuracy vertically even for regional networks with a diameter of several thousand kilometers. But we established the standard of GPS data processing using Bernese as main tool and GIPSY O ASIS as side

  18. Dynamic strain and rotation ground motions of the 2011 Tohoku earthquake from dense high-rate GPS observations in Taiwan

    Science.gov (United States)

    Huang, B. S.; Rau, R. J.; Lin, C. J.; Kuo, L. C.

    2017-12-01

    Seismic waves generated by the 2011 Mw 9.0 Tohoku, Japan earthquake were well recorded by continuous GPS in Taiwan. Those GPS were operated in one hertz sampling rate and densely distributed in Taiwan Island. Those continuous GPS observations and the precise point positioning technique provide an opportunity to estimate spatial derivatives from absolute ground motions of this giant teleseismic event. In this study, we process and investigate more than one and half hundred high-rate GPS displacements and its spatial derivatives, thus strain and rotations, to compare to broadband seismic and rotational sensor observations. It is shown that continuous GPS observations are highly consistent with broadband seismic observations during its surface waves across Taiwan Island. Several standard Geodesy and seismic array analysis techniques for spatial gradients have been applied to those continuous GPS time series to determine its dynamic strain and rotation time histories. Results show that those derivate GPS vertical axis ground rotations are consistent to seismic array determined rotations. However, vertical rotation-rate observations from the R1 rotational sensors have low resolutions and could not compared with GPS observations for this special event. For its dese spatial distribution of GPS stations in Taiwan Island, not only wavefield gradient time histories at individual site was obtained but also 2-D spatial ground motion fields were determined in this study also. In this study, we will report the analyzed results of those spatial gradient wavefields of the 2011 Tohoku earthquake across Taiwan Island and discuss its geological implications.

  19. Fortaleza Station Report for 2012

    Science.gov (United States)

    Kaufmann, Pierre; Pereira de Lucena, A. Macilio; Sombra da Silva, Adeildo

    2013-01-01

    This is a brief report about the activities carried out at the Fortaleza geodetic VLBI station (ROEN: R´adio Observat´orio Espacial do Nordeste), located in Eus´ebio, CE, Brazil, during the period from January until December 2012. The observing activities were resumed in May after the major maintenance that comprised the azimuth bearing replacement. The total observational experiments consisted of 103 VLBI sessions and continuous GPS monitoring recordings.

  20. Determination of semi-diurnal ocean tide loading constituents using GPS in Alaska

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Tscherning, C.C.

    2001-01-01

    During the past years, the accuracy of relative positioning using differential GPS (DGPS) has been improved significantly. The present accuracy of DGPS allows us to directly estimate the differential amplitudes and Greenwich phase lags of the main semi-diurnal ocean tide loading constituents (S-2......, K-2, M-2 and N-2). For this purpose a test is carried out using two GPS stations in Alaska. One station, Chi3, is located on an island in the Gulf of Alaska, while the second station, Fair, is located far away from the coastal areas. Processing hourly GPS solutions for the baseline between Fair...

  1. Retrieving Precipitable Water Vapor Data Using GPS Zenith Delays and Global Reanalysis Data in China

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    2016-05-01

    Full Text Available GPS has become a very effective tool to remotely sense precipitable water vapor (PWV information, which is important for weather forecasting and nowcasting. The number of geodetic GNSS stations set up in China has substantially increased over the last few decades. However, GPS PWV derivation requires surface pressure to calculate the precise zenith hydrostatic delay and weighted mean temperature to map the zenith wet delay to precipitable water vapor. GPS stations without collocated meteorological sensors can retrieve water vapor using standard atmosphere parameters, which lead to a decrease in accuracy. In this paper, a method of interpolating NWP reanalysis data to site locations for generating corresponding meteorological elements is explored over China. The NCEP FNL dataset provided by the NCEP (National Centers for Environmental Prediction and over 600 observed stations from different sources was selected to assess the quality of the results. A one-year experiment was performed in our study. The types of stations selected include meteorological sites, GPS stations, radio sounding stations, and a sun photometer station. Compared with real surface measurements, the accuracy of the interpolated surface pressure and air temperature both meet the requirements of GPS PWV derivation in most areas; however, the interpolated surface air temperature exhibits lower precision than the interpolated surface pressure. At more than 96% of selected stations, PWV differences caused by the differences between the interpolation results and real measurements were less than 1.0 mm. Our study also indicates that relief amplitude exerts great influence on the accuracy of the interpolation approach. Unsatisfactory interpolation results always occurred in areas of strong relief. GPS PWV data generated from interpolated meteorological parameters are consistent with other PWV products (radio soundings, the NWP reanalysis dataset, and sun photometer PWV data. The

  2. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  3. Crustal Deformation During the 2011 Volanic Crisis of El Hierro, Canary Islands, Revealed by Continuous GPS Observation

    Science.gov (United States)

    Sagiya, T.; Barrancos Martinez, J.; Calvo, D.; Padron, E.; Hernandez, G. H.; Hernández, P. A.; Perez Rodriguez, N.; Suárez, J. M. P.

    2012-04-01

    Seismo-volcnic activity of El Hierro started in the middle of July of 2011 and resulted in the active submarine eruption after October 12 south off La Restinga, the southern tip of the island. We have been operating one continuous GPS site on the island since 2004. Responding to the activity, we quickly installed 5 more GPS sites. Including another site operated by the Canary Islands Cartograhical Service (GRAFCAN) for a cartographic purpose, we have been monitoring 7 GPS sites equipped with dual-frequency receivers. We present the result of our crustal deformation monitoring and the magmatic activity inferred from the deformation data. In accordance with the deformation pattern, we divide the volcanic activity in 2011 into 4 stages. The first stage is from the middle of July to middle of September, during which steady magmatic inflation is estimated at the center of the island. The inflated volume of the first stage is estimated to be about 1.3 X 107 m3 at the depth of about 5km. The second stage, which continued until the first submarine eruption on October 12, is characterized by the accelerated deformation due to the upward as well as southward migration of magma. Additional inflation of about 2.1 X 107 m3 occurred in the depth range of 1-2km. The third stage continued for about 3 weeks after the first submarine eruption. During this stage, submarine eruption continues while no significant surface deformation is observed. It is considered magma supply from a deeper magma chamber continued during this 3 weeks period. Therefore, the total inflation volume during the first two stages gives the minimum estimate for the total magma volume. Since the beginning of November 2011, many GPS sites started subsiding. However, this deflation pattern is quite different from those in the shallow inflation stages. Horizontal deformation during this 4th stage is not significant, implying that deflation is occurring below the moho.

  4. Relation of decorrelated transionospheric GPS signal fluctuations from two stations in the northern anomaly crest region with equatorial ionospheric dynamics

    Science.gov (United States)

    Paul, K. S.; Paul, A.

    2017-05-01

    The ionosphere around the northern crest of the equatorial ionization anomaly (EIA) and beyond exhibits rapid temporal as well as spatial development of ionization density irregularities during postsunset hours. A GPS campaign was conducted during September 2012 and April 2013 from the Institute of Radio Physics and Electronics, Calcutta (22.58°N, 88.38°E geographic; magnetic dip: 32°N), and North Bengal University (NBU), Siliguri (26.72°N, 88.39°E geographic, magnetic dip: 39.49°N) in India in order to assess and quantify differences, if any, in the nature of carrier to noise ratio (C/N0) fluctuations observed on the same satellite link around the same time interval from these stations. Significant decorrelation of the received signals was found when tracking the same satellite vehicle (SV) link from these stations during periods of scintillations. Low values of correlation coefficient of C/N0 at L1 frequency recorded on the same SV link at these two stations were found to correspond with high irregularity characteristic velocities. North-south spatial displacement rates of the impact of ionospheric irregularities were calculated based on coordinated GPS observations which followed an increasing trend with irregularity characteristic velocities measured at VHF. Values of characteristic velocities in excess of 36 m/s were also found to result in large receiver position deviations 3.5-4.0 m during periods of scintillations. Information related to time lag associated with occurrence of scintillations on the same SV link observed from two stations could be useful for improving performance of transionospheric satellite-based position determination techniques.

  5. Physical applications of GPS geodesy: a review.

    Science.gov (United States)

    Bock, Yehuda; Melgar, Diego

    2016-10-01

    Geodesy, the oldest science, has become an important discipline in the geosciences, in large part by enhancing Global Positioning System (GPS) capabilities over the last 35 years well beyond the satellite constellation's original design. The ability of GPS geodesy to estimate 3D positions with millimeter-level precision with respect to a global terrestrial reference frame has contributed to significant advances in geophysics, seismology, atmospheric science, hydrology, and natural hazard science. Monitoring the changes in the positions or trajectories of GPS instruments on the Earth's land and water surfaces, in the atmosphere, or in space, is important for both theory and applications, from an improved understanding of tectonic and magmatic processes to developing systems for mitigating the impact of natural hazards on society and the environment. Besides accurate positioning, all disturbances in the propagation of the transmitted GPS radio signals from satellite to receiver are mined for information, from troposphere and ionosphere delays for weather, climate, and natural hazard applications, to disturbances in the signals due to multipath reflections from the solid ground, water, and ice for environmental applications. We review the relevant concepts of geodetic theory, data analysis, and physical modeling for a myriad of processes at multiple spatial and temporal scales, and discuss the extensive global infrastructure that has been built to support GPS geodesy consisting of thousands of continuously operating stations. We also discuss the integration of heterogeneous and complementary data sets from geodesy, seismology, and geology, focusing on crustal deformation applications and early warning systems for natural hazards.

  6. Application of GPS in a high precision engineering survey network

    International Nuclear Information System (INIS)

    Ruland, R.; Leick, A.

    1985-04-01

    A GPS satellite survey was carried out with the Macrometer to support construction at the Stanford Linear Accelerator Center (SLAC). The network consists of 16 stations of which 9 stations were part of the Macrometer network. The horizontal and vertical accuracy of the GPS survey is estimated to be 1 to 2 mm and 2 to 3 mm respectively. The horizontal accuracy of the terrestrial survey, consisting of angles and distances, equals that of the GPS survey only in the ''loop'' portion of the network. All stations are part of a precise level network. The ellipsoidal heights obtained from the GPS survey and the orthometric heights of the level network are used to compute geoid undulations. A geoid profile along the linac was computed by the National Geodetic Survey in 1963. This profile agreed with the observed geoid within the standard deviation of the GPS survey. Angles and distances were adjusted together (TERRA), and all terrestrial observations were combined with the GPS vector observations in a combination adjustment (COMB). A comparison of COMB and TERRA revealed systematic errors in the terrestrial solution. A scale factor of 1.5 ppM +- .8 ppM was estimated. This value is of the same magnitude as the over-all horizontal accuracy of both networks. 10 refs., 3 figs., 5 tabs

  7. Research in Application of Geodetic GPS Receivers in Time Synchronization

    Science.gov (United States)

    Zhang, Q.; Zhang, P.; Sun, Z.; Wang, F.; Wang, X.

    2018-04-01

    In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV) which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV) is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability) cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns). In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km) were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2-4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even there will be at least

  8. RESEARCH IN APPLICATION OF GEODETIC GPS RECEIVERS IN TIME SYNCHRONIZATION

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2018-04-01

    Full Text Available In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns. In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2–4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even

  9. Enhancing the accuracy of GPS point positioning by converting the single frequency data to dual frequency data

    Directory of Open Access Journals (Sweden)

    Aly M. El-naggar

    2011-09-01

    Full Text Available The global positioning system (GPS has been used to support a wide variety of applications, such as high-accuracy positioning and navigation. Differential GPS techniques can largely eliminate common-mode errors between the reference and the rover GPS stations resulting from ionospheric and tropospheric refraction and delays, satellite and receiver clock biases, and orbital errors [1]. The ionospheric delay in the propagation of global positioning system (GPS signals is one of the main sources of error in GPS precise positioning and navigation. A dual-frequency GPS receiver can eliminate (to the first order the ionospheric delay through a linear combination of the L1 and L2 observations [2]. The most significant effect of ionospheric delay appear in case of using single frequency data. In this paper the single frequency data of concerned station are converted to dual frequency data by employing dual frequency data from 11 regional GPS stations distributed around it. Total electron content (TEC was calculated at every GPS station to produce the mathematical model of TEC which is a function of latitude (Φ and longitude (λ. By using this mathematical model the values of TEC and L2 can be predicted at the single frequency GPS station for each satellite, after that the comparison between predicted and observation values of TEC and L2 was performed. The estimation method and test results of the proposed method indicates that the difference between predicted and observation values is very small.

  10. Development of GPS data remote retrieval system using wireless LAN

    Directory of Open Access Journals (Sweden)

    Koichiro Doi

    2012-11-01

    Full Text Available A remote retrieval system, using a wireless LAN, was developed to retrieve dual-frequency GPS data. The system consists of a ground observation unit (comprising a dual-frequency GPS logger and a data transmission unit and a data retrieval unit. In this system, we use the ZigBee communication protocol to transmit control commands (2.4 GHz, 250 Kbps and a wireless LAN communication to transmit GPS data (2.4 GHz, 54 Mbps. Data of every 30 seconds to transmit to the data retrieval unit are re-sampled from 1-second data at 00 UT each day. We conducted three data-transmission tests with the system: (1 a ground data retrieval test, (2 a data retrieval test from the atmosphere of a few hundred meters high using a small unmanned aircraft, and (3 actual GPS-data retrieval tests from a GPS buoy deployed on sea ice at Nisi-no-ura Cove, Syowa Station, Antarctica. In test (1, we successfully received all the data from the ground observation unit when situated at distances of less than 400 m from the data retrieval unit. In test (2, we obtained approximately 24.5 MB of data from the aircraft at heights of less than 250 m. In test (3, we obtained approximately 23.5 MB of data from the GPS buoy within 10 minutes. The proposed system has the advantage of enabling continuous measurements without aborting the measurement at the data retrievals.

  11. Supporting EarthScope Cyber-Infrastructure with a Modern GPS Science Data System

    Science.gov (United States)

    Webb, F. H.; Bock, Y.; Kedar, S.; Jamason, P.; Fang, P.; Dong, D.; Owen, S. E.; Prawirodirjo, L.; Squibb, M.

    2008-12-01

    Building on NASA's investment in the measurement of crustal deformation from continuous GPS, we are developing and implementing a Science Data System (SDS) that will provide mature, long-term Earth Science Data Records (ESDR's). This effort supports NASA's Earth Surface and Interiors (ESI) focus area and provide NASA's component to the EarthScope PBO. This multi-year development is sponsored by NASA's Making Earth System data records for Use in Research Environments (MEaSUREs) program. The SDS integrates the generation of ESDRs with data analysis and exploration, product generation, and modeling tools based on daily GPS data that include GPS networks in western North America and a component of NASA's Global GPS Network (GGN) for terrestrial reference frame definition. The system is expandable to multiple regional and global networks. The SDS builds upon mature data production, exploration, and analysis algorithms developed under NASA's REASoN, ACCESS, and SENH programs. This SDS provides access to positions, time series, velocity fields, and strain measurements derived from continuous GPS data obtained at tracking stations in both the Plate Boundary Observatory and other regional Western North America GPS networks, dating back to 1995. The SDS leverages the IT and Web Services developments carried out under the SCIGN/REASoN and ACCESS projects, which have streamlined access to data products for researchers and modelers, and which have created a prototype an on-the-fly interactive research environment through a modern data portal, GPS Explorer. This IT system has been designed using modern IT tools and principles in order to be extensible to any geographic location, scale, natural hazard, and combination of geophysical sensor and related data. We have built upon open GIS standards, particularly those of the OGC, and have used the principles of Web Service-based Service Oriented Architectures to provide scalability and extensibility to new services and capabilities.

  12. Real-Time GPS Monitoring for Earthquake Rapid Assessment in the San Francisco Bay Area

    Science.gov (United States)

    Guillemot, C.; Langbein, J. O.; Murray, J. R.

    2012-12-01

    The U.S. Geological Survey Earthquake Science Center has deployed a network of eight real-time Global Positioning System (GPS) stations in the San Francisco Bay area and is implementing software applications to continuously evaluate the status of the deformation within the network. Real-time monitoring of the station positions is expected to provide valuable information for rapidly estimating source parameters should a large earthquake occur in the San Francisco Bay area. Because earthquake response applications require robust data access, as a first step we have developed a suite of web-based applications which are now routinely used to monitor the network's operational status and data streaming performance. The web tools provide continuously updated displays of important telemetry parameters such as data latency and receive rates, as well as source voltage and temperature information within each instrument enclosure. Automated software on the backend uses the streaming performance data to mitigate the impact of outages, radio interference and bandwidth congestion on deformation monitoring operations. A separate set of software applications manages the recovery of lost data due to faulty communication links. Displacement estimates are computed in real-time for various combinations of USGS, Plate Boundary Observatory (PBO) and Bay Area Regional Deformation (BARD) network stations. We are currently comparing results from two software packages (one commercial and one open-source) used to process 1-Hz data on the fly and produce estimates of differential positions. The continuous monitoring of telemetry makes it possible to tune the network to minimize the impact of transient interruptions of the data flow, from one or more stations, on the estimated positions. Ongoing work is focused on using data streaming performance history to optimize the quality of the position, reduce drift and outliers by switching to the best set of stations within the network, and

  13. Improvement of tsunami detection in timeseries data of GPS buoys with the Continuous Wavelet Transform

    Science.gov (United States)

    Chida, Y.; Takagawa, T.

    2017-12-01

    The observation data of GPS buoys which are installed in the offshore of Japan are used for monitoring not only waves but also tsunamis in Japan. The real-time data was successfully used to upgrade the tsunami warnings just after the 2011 Tohoku earthquake. Huge tsunamis can be easily detected because the signal-noise ratio is high enough, but moderate tsunami is not. GPS data sometimes include the error waveforms like tsunamis because of changing accuracy by the number and the position of GPS satellites. To distinguish the true tsunami waveforms from pseudo-tsunami ones is important for tsunami detection. In this research, a method to reduce misdetections of tsunami in the observation data of GPS buoys and to increase the efficiency of tsunami detection was developed.Firstly, the error waveforms were extracted by using the indexes of position dilution of precision, reliability of GPS satellite positioning and satellite number for calculation. Then, the output from this procedure was used for the Continuous Wavelet Transform (CWT) to analyze the time-frequency characteristics of error waveforms and real tsunami waveforms.We found that the error waveforms tended to appear when the accuracy of GPS buoys positioning was low. By extracting these waveforms, it was possible to decrease about 43% error waveforms without the reduction of the tsunami detection rate. Moreover, we found that the amplitudes of power spectra obtained from the error waveforms and real tsunamis were similar in the component of long period (4-65 minutes), on the other hand, the amplitude in the component of short period (< 1 minute) obtained from the error waveforms was significantly larger than that of the real tsunami waveforms. By thresholding of the short-period component, further extraction of error waveforms became possible without a significant reduction of tsunami detection rate.

  14. Short-term variations of Icelandic ice cap mass inferred from cGPS coordinate time series

    DEFF Research Database (Denmark)

    Compton, Kathleen; Bennett, Richard A.; Hreinsdóttir, Sigrún

    2017-01-01

    As the global climate changes, understanding short-term variations in water storage is increasingly important. Continuously operating Global Positioning System (cGPS) stations in Iceland record annual periodic motion—the elastic response to winter accumulation and spring melt seasons—with peak-to...... insulation in response to tephra deposition following volcanic eruptions, processes that are not resolved with once or twice-yearly stake measurements....

  15. An alpha particle detector based on a GPS mosaic scintillator plate for continuous air monitoring in plutonium handling facilities

    International Nuclear Information System (INIS)

    Kaneko, Junichi H.; Izaki, Kenji; Toui, Kouhei; Shimaoka, Takehiro; Morishita, Yuki; Tsubota, Youichi; Higuchi, Mikio

    2016-01-01

    An alpha particle detector was developed for continuous air monitoring of radioactive contamination in working chambers at plutonium handling facilities. A 5-cm-square Gd 2 Si 2 O 7 :Ce (cerium-doped gadolinium pyro-silicate, GPS:Ce) mosaic scintillator plate for alpha particle measurements was fabricated from GPS single-crystal grains of around 550 μm diameter; the GPS grains were made of a GPS polycrystalline body grown using a top seeded solution method. The scintillator layer thickness was approximately 100 μm. The surface filling rate of the GPS grains was ca. 62%. To suppress the influence of non-uniformity of pulse heights of a photomultiplier tube, a central part of ∅ 40 mm of a 76-mm-diameter photomultiplier tube was used. In addition, 3 mm thick high-transmission glass was used as a substrate of the scintillator plate. The detector achieved energy resolution of 13% for 5.5 MeV alpha particles, detection efficiency of 61% and a radon progeny nuclide reduction ratio of 64.5%. A new alpha particle detector was developed to achieve a high radon progeny nuclide reduction ratio approaching that of a silicon semiconductor detector, with high resistance to electromagnetic noise and corrosion. - Highlights: • An alpha particle detector was developed for continuous air monitoring. • The detector comprises a mosaic scintillator plate and a photomultiplier tube. • A 5-cm-square GPS mosaic scintillator plate was fabricated. • Its respective energy resolution and detection efficiency were 13 and 61%. • The radon progeny nuclide reduction ratio of the developed detector was 64.5%.

  16. Real-time clock and orbit calculation of the GPS satellite constellation based on observation data of RTIGS-station network

    International Nuclear Information System (INIS)

    Thaler, G.

    2011-01-01

    from the RTIGS stations. For both calculation steps the principle of Kalman-Filtering is used. All calculated real-time clock corrections and orbit solutions are stored in standardised product les (clock-rinex, orbit-SP3) but also transmitted in real-time within a continuous data stream to support real-time positioning applications. Comparisons of the RTIGU-Control products with for example the precise IGS products show the signicant increase of quality of the RTIGU-Control real-time clock products in relation to the predicted IGU clock corrections. The standard deviation of the real-time clock values lies in the region of about 0.30.5 nanoseconds. This value seems rather realistic using code-smoothed observations with a standard deviation of 1.52 dm. One of the main elds of use of real-time orbit and clock products is the precise positioning and navigation of GNSS receivers without building baselines to adjacient GNSS reference stations (zero-dierence). A suitable approach for doing this is the so called algorithm of Precise Point Positioning or PPP. PPP uses additionally to appropriate models accounting for a number of inuences eecting the GNSS observations precise satellite orbit and clock informations. Using the real-time clock correction terms of RTIGU-Control together with the predicted IGU orbit solutions the huge potential of applying this type of real-time products to global PPP solutions becomes visible (Real-Time PPP, RTPPP). Test measurements have shown a positioning accuracy of a state of the art GPS receiver in the region of 0.30.5 meters. The development of RTIGU-Control is the rst step in the eld of providing precise real-time satellite clock and orbit parameters. This PHD-thesis has shown the great potential of using this real-time products for near real-time postprocessing or real-time positioning algorithms. (author) [de

  17. Vertical land motion along the coast of Louisiana: Integrating satellite altimetry, tide gauge and GPS

    Science.gov (United States)

    Dixon, T. H.; A Karegar, M.; Uebbing, B.; Kusche, J.; Fenoglio-Marc, L.

    2017-12-01

    Coastal Louisiana is experiencing the highest rate of relative sea-level rise in North America due to the combination of sea-level rise and subsidence of the deltaic plain. The land subsidence in this region is studied using various techniques, with continuous GPS site providing high temporal resolution. Here, we use high resolution tide-gauge data and advanced processing of satellite altimetry to derive vertical displacements time series at NOAA tide-gauge stations along the coast (Figure 1). We apply state-of-the-art retracking techniques to process raw altimetry data, allowing high accuracy on range measurements close to the coast. Data from Jason-1, -2 and -3, Envisat, Saral and Cryosat-2 are used, corrected for solid Earth tide, pole tide and tidal ocean loading, using background models consistent with the GPS processing technique. We reprocess the available GPS data using precise point positioning and estimate the rate uncertainty accounting for correlated noise. The displacement time series are derived by directly subtracting tide-gauge data from the altimetry sea-level anomaly data. The quality of the derived displacement rates is evaluated in Grand Isle, Amerada Pass and Shell Beach where GPS data are available adjacent to the tide gauges. We use this technique to infer vertical displacement at tide gauges in New Orleans (New Canal Station) and Port Fourchon and Southwest Pass along the coastline.

  18. Quality control of GPS deformation data from Forsmark and analysis of crustal deformation in the local scale

    International Nuclear Information System (INIS)

    Ekman, Lennart; Ekman, Mats

    2013-03-01

    A network comprising seven GPS stations was established at Forsmark, Sweden, within about 10 km radius from the centre of the investigation area for a final repository for spent nuclear fuel with the purpose of monitoring slow rock motion. During the period November 2005 to December 2009, GPS data were collected in eighteen intermittent measurement campaigns, each with a duration of between three and seven days. As shown in Gustafson and Ljungberg (2010), the data expose a considerable scatter, indicating a non-linear variability of the GPS baseline velocities. However, the commission narrated in Gustafson and Ljungberg (2010) was restricted to account only for the field performance of the GPS measurement campaign and to present the resulting measurement data per se, merely supplemented with a linear regression solution for the baseline motions. The preliminary interpretation of GPS data in Gustafson and Ljungberg (2010) was in the present report followed by a closer examination where the non-linear variability is modelled as sinusoidal. Evidence for sinusoidal variations were also found in resulting data from GPS measurements at the Aespoe/Laxemar area at Oskarshamn (Sjoeberg et al. 2004), as well as in GPS data from several sites in western, middle and north-eastern Finland (Ollikainen et al. 2004, Ahola et al. 2008, Poutanen et al. 2010). We here postulate that the baseline velocities are characterized by a long-term linear drift superposed by a non-linear sinusoidal motion. This was modelled in two steps. Initially an Auto Regressive (AR) model was applied and the linear trends between the GPS stations were estimated. In a second step, an Auto Regressive Moving Average (ARMA) model was estimated for (almost) all baselines. The residuals between the original data and the one-step predictor for the ARMA model were then used to estimate new linear trends for the baselines. Our analysis of the Forsmark GPS data indicates relative motions more than 10 times slower

  19. Quality control of GPS deformation data from Forsmark and analysis of crustal deformation in the local scale

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, Lennart; Ekman, Mats [LE Geokonsult AB, Baelinge (Sweden)

    2013-03-15

    A network comprising seven GPS stations was established at Forsmark, Sweden, within about 10 km radius from the centre of the investigation area for a final repository for spent nuclear fuel with the purpose of monitoring slow rock motion. During the period November 2005 to December 2009, GPS data were collected in eighteen intermittent measurement campaigns, each with a duration of between three and seven days. As shown in Gustafson and Ljungberg (2010), the data expose a considerable scatter, indicating a non-linear variability of the GPS baseline velocities. However, the commission narrated in Gustafson and Ljungberg (2010) was restricted to account only for the field performance of the GPS measurement campaign and to present the resulting measurement data per se, merely supplemented with a linear regression solution for the baseline motions. The preliminary interpretation of GPS data in Gustafson and Ljungberg (2010) was in the present report followed by a closer examination where the non-linear variability is modelled as sinusoidal. Evidence for sinusoidal variations were also found in resulting data from GPS measurements at the Aespoe/Laxemar area at Oskarshamn (Sjoeberg et al. 2004), as well as in GPS data from several sites in western, middle and north-eastern Finland (Ollikainen et al. 2004, Ahola et al. 2008, Poutanen et al. 2010). We here postulate that the baseline velocities are characterized by a long-term linear drift superposed by a non-linear sinusoidal motion. This was modelled in two steps. Initially an Auto Regressive (AR) model was applied and the linear trends between the GPS stations were estimated. In a second step, an Auto Regressive Moving Average (ARMA) model was estimated for (almost) all baselines. The residuals between the original data and the one-step predictor for the ARMA model were then used to estimate new linear trends for the baselines. Our analysis of the Forsmark GPS data indicates relative motions more than 10 times slower

  20. Combining GPS measurements and IRI model predictions

    International Nuclear Information System (INIS)

    Hernandez-Pajares, M.; Juan, J.M.; Sanz, J.; Bilitza, D.

    2002-01-01

    The free electrons distributed in the ionosphere (between one hundred and thousands of km in height) produce a frequency-dependent effect on Global Positioning System (GPS) signals: a delay in the pseudo-orange and an advance in the carrier phase. These effects are proportional to the columnar electron density between the satellite and receiver, i.e. the integrated electron density along the ray path. Global ionospheric TEC (total electron content) maps can be obtained with GPS data from a network of ground IGS (international GPS service) reference stations with an accuracy of few TEC units. The comparison with the TOPEX TEC, mainly measured over the oceans far from the IGS stations, shows a mean bias and standard deviation of about 2 and 5 TECUs respectively. The discrepancies between the STEC predictions and the observed values show an RMS typically below 5 TECUs (which also includes the alignment code noise). he existence of a growing database 2-hourly global TEC maps and with resolution of 5x2.5 degrees in longitude and latitude can be used to improve the IRI prediction capability of the TEC. When the IRI predictions and the GPS estimations are compared for a three month period around the Solar Maximum, they are in good agreement for middle latitudes. An over-determination of IRI TEC has been found at the extreme latitudes, the IRI predictions being, typically two times higher than the GPS estimations. Finally, local fits of the IRI model can be done by tuning the SSN from STEC GPS observations

  1. Using GPS to Detect Imminent Tsunamis

    Science.gov (United States)

    Song, Y. Tony

    2009-01-01

    A promising method of detecting imminent tsunamis and estimating their destructive potential involves the use of Global Positioning System (GPS) data in addition to seismic data. Application of the method is expected to increase the reliability of global tsunami-warning systems, making it possible to save lives while reducing the incidence of false alarms. Tsunamis kill people every year. The 2004 Indian Ocean tsunami killed about 230,000 people. The magnitude of an earthquake is not always a reliable indication of the destructive potential of a tsunami. The 2004 Indian Ocean quake generated a huge tsunami, while the 2005 Nias (Indonesia) quake did not, even though both were initially estimated to be of the similar magnitude. Between 2005 and 2007, five false tsunami alarms were issued worldwide. Such alarms result in negative societal and economic effects. GPS stations can detect ground motions of earthquakes in real time, as frequently as every few seconds. In the present method, the epicenter of an earthquake is located by use of data from seismometers, then data from coastal GPS stations near the epicenter are used to infer sea-floor displacements that precede a tsunami. The displacement data are used in conjunction with local topographical data and an advanced theory to quantify the destructive potential of a tsunami on a new tsunami scale, based on the GPS-derived tsunami energy, much like the Richter Scale used for earthquakes. An important element of the derivation of the advanced theory was recognition that horizontal sea-floor motions contribute much more to generation of tsunamis than previously believed. The method produces a reliable estimate of the destructive potential of a tsunami within minutes typically, well before the tsunami reaches coastal areas. The viability of the method was demonstrated in computational tests in which the method yielded accurate representations of three historical tsunamis for which well-documented ground

  2. SLR and GPS spatial techniques in ITRF. Argentine results.

    Science.gov (United States)

    Actis, Eloy Vicente; Huang, Dongping; Márquez, Raúl; Adarvez, Sonia; Flores, Matías; Brizuela, Diego; Nievas, Jesica; Podestá, Ricardo; Pacheco, Ana M.; Rojas, Hernán Alvis; Yin, Zhiqiang; Li, Jinzeng; Han, Yanben; Liu, Weidong; Wang, Rui

    2012-08-01

    Along the late 30 years spatial geodetic techniques enable us to measure horizontal and vertical deformations of the Earth’s surface with a very high precision. Performing this task we made Satellite Laser Ranging (SLR), and Global Positioning System (GPS) observations in South America ILRS 7406 Station placed at Observatorio Astronómico Félix Aguilar (OAFA) in San Juan, Argentina, accomplishing a Cooperation Agreement between CAS - NAOC and OAFA - UNSJ. Trough LAGEOS II Satellite observations we obtain rectangular coordinates of San Juan ILRS Station in the Terrestrial Reference Frame (ITR 2000), standing out that Argentine Station data were included in the late arrangements ITRF given by International Earth Rotation and Reference System Service (IERS). Spatial and temporary variations of the epoch 2010 - 2011 were evaluated finding out remarkable displacements, of about a half meter, related with seismic events on the region. We confirm these deformations by means of GP S determinations referred to Permanent GPS Station placed nearby the SLR Station.

  3. Compaction of Aquifer at Different Depths: Observations from a Vertical GPS Array in the Coastal Center of the University of Houston, Texas

    Science.gov (United States)

    Lee, D.; Kearns, T.; Yang, L.; Wang, G.

    2014-12-01

    Houston and the surrounding Harris County have experienced the detrimental effects of subsidence even prior to World War II, to the extent that the land along Galveston Bay had sunk as much as 20 feet since 1906. One dramatic example is the Brownwood subdivision, a coastal community in Baytown where continuous flooding due to subsidence forced the area to be deemed unlivable and consequently abandoned. Thus, Houston's changes in groundwater and compaction of its aquifers are of relatively high concern to those in the public (infrastructure), private (oil & gas), and international (Port of Houston Authority) sectors. One of the key questions related to the subsidence issue in Houston area is what are the contributions of sediments at different depths, and what particularly is the contribution from shallow sediments? To address these questions, University of Houston has installed a vertical GPS array in the UH Coastal Center in March 2014. The GPS array includes four permanent GPS stations with the antenna pole foundations anchored at different depths below ground surface (-10 m, -7m, -4m, 0 m). A special, double-pipe GPS antenna monument was designed for GPS stations with the array. This project was funded by an NSF grant and a UH internal grant. Five groundwater wells with the depths ranging from 2 m to 100 m below the ground surface were also installed at the UH Coastal Center site. This study will investigate continuous GPS and groundwater level measurements (March-November, 2014) at the UHCC site. It is expected that the GPS array will provide total information on subsidence as well as compaction of aquifers within different depth ranges (0 to -4m, -4 to -7 m, -7 to -10m, and below -10 m). Correlation of land subsidence and groundwater fluctuation will also be investigated.

  4. Estimation of Slip Distribution of the 2007 Bengkulu Earthquake from GPS Observation Using Least Squares Inversion Method

    Directory of Open Access Journals (Sweden)

    Moehammad Awaluddin

    2012-07-01

    Full Text Available Continuous Global Positioning System (GPS observations showed significant crustal displacements as a result of the Bengkulu earthquake occurring on September 12, 2007. A maximum horizontal displacement of 2.11 m was observed at PRKB station, while the vertical component at BSAT station was uplifted with a maximum of 0.73 m, and the vertical component at LAIS station was subsided by -0.97 m. The method of adding more constraint on the inversion for the Bengkulu earthquake slip distribution from GPS observations can help solve a least squares inversion with an under-determined condition. Checkerboard tests were performed to help conduct the weighting for constraining the inversion. The inversion calculation of the Bengkulu earthquake slip distribution yielded in an optimum value of slip distribution by giving a weight of smoothing constraint of 0.001 and a weight of slip value constraint = 0 at the edge of the earthquake rupture area. A maximum coseismic slip of the optimal inversion calculation was 5.12 m at the lower area of PRKB and BSAT stations. The seismic moment calculated from the optimal slip distribution was 7.14 x 1021 Nm, which is equivalent to a magnitude of 8.5.

  5. Applying the Water Vapor Radiometer to Verify the Precipitable Water Vapor Measured by GPS

    Directory of Open Access Journals (Sweden)

    Ta-Kang Yeh

    2014-01-01

    Full Text Available Taiwan is located at the land-sea interface in a subtropical region. Because the climate is warm and moist year round, there is a large and highly variable amount of water vapor in the atmosphere. In this study, we calculated the Zenith Wet Delay (ZWD of the troposphere using the ground-based Global Positioning System (GPS. The ZWD measured by two Water Vapor Radiometers (WVRs was then used to verify the ZWD that had been calculated using GPS. We also analyzed the correlation between the ZWD and the precipitation data of these two types of station. Moreover, we used the observational data from 14 GPS and rainfall stations to evaluate three cases. The offset between the GPS-ZWD and the WVR-ZWD ranged from 1.31 to 2.57 cm. The correlation coefficient ranged from 0.89 to 0.93. The results calculated from GPS and those measured using the WVR were very similar. Moreover, when there was no rain, light rain, moderate rain, or heavy rain, the flatland station ZWD was 0.31, 0.36, 0.38, or 0.40 m, respectively. The mountain station ZWD exhibited the same trend. Therefore, these results have demonstrated that the potential and strength of precipitation in a region can be estimated according to its ZWD values. Now that the precision of GPS-ZWD has been confirmed, this method can eventually be expanded to the more than 400 GPS stations in Taiwan and its surrounding islands. The near real-time ZWD data with improved spatial and temporal resolution can be provided to the city and countryside weather-forecasting system that is currently under development. Such an exchange would fundamentally improve the resources used to generate weather forecasts.

  6. Transition of NOAA's GPS-Met Data Acquisition and Processing System to the Commercial Sector

    Science.gov (United States)

    Jackson, M. E.; Holub, K.; Callahan, W.; Blatt, S.

    2014-12-01

    In April of 2014, NOAA/OAR/ESRL Global Systems Division (GSD) and Trimble, in collaboration with Earth Networks, Inc. (ENI) signed a Cooperative Research and Development Agreement (CRADA) to transfer the existing NOAA GPS-Met Data Acquisition and Processing System (GPS-Met DAPS) technology to a commercial Trimble/ENI partnership. NOAA's GPS-Met DAPS is currently operated in a pseudo-operational mode but has proven highly reliable and running at over 95% uptime. The DAPS uses the GAMIT software to ingest dual frequency carrier phase GPS/GNSS observations and ancillary information such as real-time satellite orbits to estimate the zenith-scaled tropospheric (ZTD) signal delays and, where surface MET data are available, retrieve integrated precipitable water vapor (PWV). The NOAA data and products are made available to end users in near real-time. The Trimble/ENI partnership will use the Trimble Pivot™ software with the Atmosphere App to calculate zenith tropospheric (ZTD), tropospheric slant delay, and integrated precipitable water vapor (PWV). Evaluation of the Trimble software is underway starting with a comparison of ZTD and PWV values determined from GPS stations located near NOAA Radiosonde Observation (Upper-Air Observation) launch sites. A success metric was established that requires Trimble's PWV estimates to match ESRL/GSD's to within 1.5 mm 95% of the time, which corresponds to a ZTD uncertainty of less than 10 mm 95% of the time. Initial results indicate that Trimble/ENI data meet and exceed the ZTD metric, but for some stations PWV estimates are out of specification. These discrepancies are primarily due to how offsets between MET and GPS stations are handled and are easily resolved. Additional test networks are proposed that include low terrain/high moisture variability stations, high terrain/low moisture variability stations, as well as high terrain/high moisture variability stations. We will present results from further testing along with a timeline

  7. A New Technique to Observe ENSO Activity via Ground-Based GPS Receivers

    Science.gov (United States)

    Suparta, Wayan; Iskandar, Ahmad; Singh, Mandeep Singh Jit

    In an attempt to study the effects of global climate change in the tropics for improving global climate model, this paper aims to detect the ENSO events, especially El Nino phase by using ground-based GPS receivers. Precipitable water vapor (PWV) obtained from the Global Positioning System (GPS) Meteorology measurements in line with the sea surface temperature anomaly (SSTa) are used to connect their response to El Niño activity. The data gathered from four selected stations over the Southeast Asia, namely PIMO (Philippines), KUAL (Malaysia), NTUS (Singapore) and BAKO (Indonesia) for the year of 2009/2010 were processed. A strong correlation was observed for PIMO station with a correlation coefficient of -0.90, significantly at the 99 % confidence level. In general, the relationship between GPS PWV and SSTa at all stations on a weekly basis showed with a negative correlation. The negative correlation indicates that during the El Niño event, the PWV variation was in decreased trend. Decreased trend of PWV value is caused by a dry season that affected the GPS signals in the ocean-atmospheric coupling. Based on these promising results, we can propose that the ground-based GPS receiver is capable used to monitor ENSO activity and this is a new prospective method that previously unexplored.

  8. Comparison of the precision of three commonly used GPS models

    Directory of Open Access Journals (Sweden)

    E Chavoshi

    2016-04-01

    Full Text Available Introduction: Development of science in various fields has caused change in the methods to determine geographical location. Precision farming involves new technology that provides the opportunity for farmers to change in factors such as nutrients, soil moisture available to plants, soil physical and chemical characteristics and other factors with the spatial resolution of less than a centimeter to several meters to monitor and evaluate. GPS receivers based on precision farming operations specified accuracies are used in the following areas: 1 monitoring of crop and soil sampling (less than one meter accuracy 2 use of fertilizer, pesticide and seed work (less than half a meter accuracy 3 Transplantation and row cultivation (precision of less than 4 cm (Perez et al., 2011. In one application of GPS in agriculture, route guidance precision farming tractors in the fields was designed to reduce the transmission error that deviate from the path specified in the range of 50 to 300 mm driver informed and improved way to display (Perez et al., 2011. In another study, the system automatically guidance, based on RTK-GPS technology, precision tillage operations was used between and within the rows very close to the drip irrigation pipe and without damage to their crops at a distance of 50 mm (Abidine et al., 2004. In another study, to compare the accuracy and precision of the receivers, 5 different models of Trimble Mark GPS devices from 15 stations were mapped, the results indicated that minimum error was related to Geo XT model with an accuracy of 91 cm and maximum error was related to Pharos model with an accuracy of 5.62 m (Kindra et al., 2006. Due to the increasing use of GPS receivers in agriculture as well as the lack of trust on the real accuracy and precision of receivers, this study aimed to compare the positioning accuracy and precision of three commonly used GPS receivers models used to specify receivers with the lowest error for precision

  9. Variations of TEC near the Indian Equatorial Ionospheric anomaly (EIA) stations by GPS measurements during descending phase of solar activity (2005 -2009)

    Science.gov (United States)

    Kumar, Sanjay; Singh, Abhay Kumar

    The dual frequency Global Positioning System (GPS) data recorded at Varanasi (geographic latitude 250, 16 N longitude 820, 59 E) and Kanpur (geographic latitude 260, 30 N longitude 800, 12 E) stations, near the equatorial ionosphere anomaly (EIA) in India, have been analyzed to retrieve total electron content (TEC). The daily peak value of vertical total electron content (VTEC) has been utilized to study the variability of EIA. Present paper studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on EIA. It has been found that EIA yield their maximum values during the equinox months and minimum during summer and winter. The correlations of EIA with solar as well as geomagnetic indices have been also discussed. Key words: Total electron contents (TECs), EIA, GPS.

  10. Accuracy of Single Frequency GPS Observations Processing In Near Real-time With Use of Code Predicted Products

    Science.gov (United States)

    Wielgosz, P. A.

    In this year, the system of active geodetic GPS permanent stations is going to be estab- lished in Poland. This system should provide GPS observations for a wide spectrum of users, especially it will be a great opportunity for surveyors. Many of surveyors still use cheaper, single frequency receivers. This paper focuses on processing of single frequency GPS observations only. During processing of such observations the iono- sphere plays an important role, so we concentrated on the influence of the ionosphere on the positional coordinates. Twenty consecutive days of GPS data from 2001 year were processed to analyze the accuracy of a derived three-dimensional relative vec- tor position between GPS stations. Observations from two Polish EPN/IGS stations: BOGO and JOZE were used. In addition to, a new test station - IGIK was created. In this paper, the results of single frequency GPS observations processing in near real- time are presented. Baselines of 15, 27 and 42 kilometers and sessions of 1, 2, 3, 4, and 6 hours long were processed. While processing we used CODE (Centre for Orbit De- termination in Europe, Bern, Switzerland) predicted products: orbits and ionosphere info. These products are available in real-time and enable near real-time processing. Software Bernese v. 4.2 for Linux and BPE (Bernese Processing Engine) mode were used. These results are shown with a reference to dual frequency weekly solution (the best solution). Obtained GPS positional time and GPS baseline length dependency accuracy is presented for single frequency GPS observations.

  11. Seasonal Mass Changes and Crustal Vertical Deformations Constrained by GPS and GRACE in Northeastern Tibet

    Directory of Open Access Journals (Sweden)

    Yuanjin Pan

    2016-08-01

    Full Text Available Surface vertical deformation includes the Earth’s elastic response to mass loading on or near the surface. Continuous Global Positioning System (CGPS stations record such deformations to estimate seasonal and secular mass changes. We used 41 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs, in northeastern Tibet. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution around northeastern Tibet. The GPS-derived result is then assessed in terms of the mass changes observed in northeastern Tibet. The GPS-derived common mode vertical change and the stacked Gravity Recovery and Climate Experiment (GRACE mass change are consistent, suggesting that the seasonal surface mass variation is caused by changes in the hydrological, atmospheric and non-tidal ocean loads. The annual peak-to-peak surface mass changes derived from GPS and GRACE results show seasonal oscillations in mass loads, and the corresponding amplitudes are between 3 and 35 mm/year. There is an apparent gradually increasing gravity between 0.1 and 0.9 μGal/year in northeast Tibet. Crustal vertical deformation is determined after eliminating the surface load effects from GRACE, without considering Glacial Isostatic Adjustment (GIA contribution. It reveals crustal uplift around northeastern Tibet from the corrected GPS vertical velocity. The unusual uplift of the Longmen Shan fault indicates tectonically sophisticated processes in northeastern Tibet.

  12. Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station

    Science.gov (United States)

    Sivavaraprasad, G.; Venkata Ratnam, D.

    2017-07-01

    Ionospheric delay is one of the major atmospheric effects on the performance of satellite-based radio navigation systems. It limits the accuracy and availability of Global Positioning System (GPS) measurements, related to critical societal and safety applications. The temporal and spatial gradients of ionospheric total electron content (TEC) are driven by several unknown priori geophysical conditions and solar-terrestrial phenomena. Thereby, the prediction of ionospheric delay is challenging especially over Indian sub-continent. Therefore, an appropriate short/long-term ionospheric delay forecasting model is necessary. Hence, the intent of this paper is to forecast ionospheric delays by considering day to day, monthly and seasonal ionospheric TEC variations. GPS-TEC data (January 2013-December 2013) is extracted from a multi frequency GPS receiver established at K L University, Vaddeswaram, Guntur station (geographic: 16.37°N, 80.37°E; geomagnetic: 7.44°N, 153.75°E), India. An evaluation, in terms of forecasting capabilities, of three ionospheric time delay models - an Auto Regressive Moving Average (ARMA) model, Auto Regressive Integrated Moving Average (ARIMA) model, and a Holt-Winter's model is presented. The performances of these models are evaluated through error measurement analysis during both geomagnetic quiet and disturbed days. It is found that, ARMA model is effectively forecasting the ionospheric delay with an accuracy of 82-94%, which is 10% more superior to ARIMA and Holt-Winter's models. Moreover, the modeled VTEC derived from International Reference Ionosphere, IRI (IRI-2012) model and new global TEC model, Neustrelitz TEC Model (NTCM-GL) have compared with forecasted VTEC values of ARMA, ARIMA and Holt-Winter's models during geomagnetic quiet days. The forecast results are indicating that ARMA model would be useful to set up an early warning system for ionospheric disturbances at low latitude regions.

  13. GPS Operations at Olkiluoto, Kivetty and Romuvaara in 2005

    International Nuclear Information System (INIS)

    Ahola, J.; Ollikainen, M.; Koivula, H.; Jokela, J.

    2006-07-01

    The GPS based deformation studies has been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. Twenty GPS measurement campaigns have been carried out at Olkiluoto since 1995, and fourteen campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ± 0.22 mm/a. There are no statistically signicant movements at Kivetty and Romuvaara expect one pillar at Romuvaara. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. The local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliable (maximum velocity is - 0.25 mm/a ± 0.025 mm/a). The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments simultaneously with the GPS observations. The comparison between the GPS and EDM results to show a possible scale error of the GPS. The GPS network at Olkiluoto was enlarged in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari, both north from Olkiluoto. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed five times since 2003, but the time series are still too short for reliable deformation studies. Including the new pillars the local

  14. Application of Seasonal Trend Loess to GPS data in Cascadia

    Science.gov (United States)

    Bal, A.; Bartlow, N. M.

    2016-12-01

    Plate Boundary Observatory GPS stations provide crucial data for the study of slow slip events and volcanic hazards in the Cascadia region. However, these GPS stations also record seasonal changes in deformation caused by hydrologic, atmospheric, and other seasonal loading. Removing these signals is necessary for accurately modeling the tectonic sources of deformation. Traditionally, seasonal trends in data been accounted for by fitting and removing sine curves from the data. However, not all seasonal trends follow a sinusoidal shape. Seasonal Trend Loess, or STL, is a filtering procedure for a decomposing a time series into trend, seasonal, and remainder components (Cleveland et. al, Journal of Official Statistics, 1990). STL has a simple design that consists of a sequence of applications of the loess smoother which allows for fast computation of large amounts of trend and seasonal smoothing. STL allows for non-sinusoidal shapes in seasonal deformation signals, and allows for evolution of seasonal signals over time. We applied Seasonal Trend Loess to GPS data from the Cascadia region. We compared our results to a traditional sine wave fit for seasonal removal at selected stations, including stations with slow slip event and volcanic signals. We hope that the STL method may be able to more accurately differentiate seasonal and tectonic deformation signals.

  15. Near real-time GPS applications for tsunami early warning systems

    Directory of Open Access Journals (Sweden)

    C. Falck

    2010-02-01

    Full Text Available GPS (Global Positioning System technology is widely used for positioning applications. Many of them have high requirements with respect to precision, reliability or fast product delivery, but usually not all at the same time as it is the case for early warning applications. The tasks for the GPS-based components within the GITEWS project (German Indonesian Tsunami Early Warning System, Rudloff et al., 2009 are to support the determination of sea levels (measured onshore and offshore and to detect co-seismic land mass displacements with the lowest possible latency (design goal: first reliable results after 5 min. The completed system was designed to fulfil these tasks in near real-time, rather than for scientific research requirements. The obtained data products (movements of GPS antennas are supporting the warning process in different ways. The measurements from GPS instruments on buoys allow the earliest possible detection or confirmation of tsunami waves on the ocean. Onshore GPS measurements are made collocated with tide gauges or seismological stations and give information about co-seismic land mass movements as recorded, e.g., during the great Sumatra-Andaman earthquake of 2004 (Subarya et al., 2006. This information is important to separate tsunami-caused sea height movements from apparent sea height changes at tide gauge locations (sensor station movement and also as additional information about earthquakes' mechanisms, as this is an essential information to predict a tsunami (Sobolev et al., 2007.

    This article gives an end-to-end overview of the GITEWS GPS-component system, from the GPS sensors (GPS receiver with GPS antenna and auxiliary systems, either onshore or offshore to the early warning centre displays. We describe how the GPS sensors have been installed, how they are operated and the methods used to collect, transfer and process the GPS data in near real-time. This includes the sensor system design, the communication

  16. Accuracy of velocities from repeated GPS surveys: relative positioning is concerned

    Science.gov (United States)

    Duman, Huseyin; Ugur Sanli, D.

    2016-04-01

    Over more than a decade, researchers have been interested in studying the accuracy of GPS positioning solutions. Recently, reporting the accuracy of GPS velocities has been added to this. Researchers studying landslide motion, tectonic motion, uplift, sea level rise, and subsidence still report results from GPS experiments in which repeated GPS measurements from short sessions are used. This motivated some other researchers to study the accuracy of GPS deformation rates/velocities from various repeated GPS surveys. In one of the efforts, the velocity accuracy was derived from repeated GPS static surveys using short observation sessions and Precise Point Positioning mode of GPS software. Velocities from short GPS sessions were compared with the velocities from 24 h sessions. The accuracy of velocities was obtained using statistical hypothesis testing and quantifying the accuracy of least squares estimation models. The results reveal that 45-60 % of the horizontal and none of the vertical solutions comply with the results from 24 h solutions. We argue that this case in which the data was evaluated using PPP should also apply to the case in which the data belonging to long GPS base lengths is processed using fundamental relative point positioning. To test this idea we chose the two IGS stations ANKR and NICO and derive their velocities from the reference stations held fixed in the stable EURASIAN plate. The University of Bern's GNSS software BERNESE was used to produce relative positioning solutions, and the results are compared with those of GIPSY/OASIS II PPP results. First impressions indicate that it is worth designing a global experiment and test these ideas in detail.

  17. Global Surface Mass Variations from Continuous GPS Observations and Satellite Altimetry Data

    Directory of Open Access Journals (Sweden)

    Xinggang Zhang

    2017-09-01

    Full Text Available The Gravity Recovery and Climate Experiment (GRACE mission is able to observe the global large-scale mass and water cycle for the first time with unprecedented spatial and temporal resolution. However, no other time-varying gravity fields validate GRACE. Furthermore, the C20 of GRACE is poor, and no GRACE data are available before 2002 and there will likely be a gap between the GRACE and GRACE-FOLLOW-ON mission. To compensate for GRACE’s shortcomings, in this paper, we provide an alternative way to invert Earth’s time-varying gravity field, using a priori degree variance as a constraint on amplitudes of Stoke’s coefficients up to degree and order 60, by combining continuous GPS coordinate time series and satellite altimetry (SA mean sea level anomaly data from January 2003 to December 2012. Analysis results show that our estimated zonal low-degree gravity coefficients agree well with those of GRACE, and large-scale mass distributions are also investigated and assessed. It was clear that our method effectively detected global large-scale mass changes, which is consistent with GRACE observations and the GLDAS model, revealing the minimums of annual water cycle in the Amazon in September and October. The global mean mass uncertainty of our solution is about two times larger than that of GRACE after applying a Gaussian spatial filter with a half wavelength at 500 km. The sensitivity analysis further shows that ground GPS observations dominate the lower-degree coefficients but fail to contribute to the higher-degree coefficients, while SA plays a complementary role at higher-degree coefficients. Consequently, a comparison in both the spherical harmonic and geographic domain confirms our global inversion for the time-varying gravity field from GPS and Satellite Altimetry.

  18. Modeling environmental bias and computing velocity field from data of Terra Nova Bay GPS network in Antarctica by means of a quasi-observation processing approach

    Science.gov (United States)

    Casula, Giuseppe; Dubbini, Marco; Galeandro, Angelo

    2007-01-01

    A semi-permanent GPS network of about 30 vertices has been installed at Terra Nova Bay (TNB) near Ross Sea in Antarctica. A permanent GPS station TNB1 based on an Ashtech Z-XII dual frequency P-code GPS receiver with ASH700936D_M Choke Ring Antenna has been mounted on a reinforced concrete pillar built on bedrock since October 1998 and has recorded continuously up to the present. The semi-permanent network has been routinely surveyed every summer using high quality dual frequency GPS receivers with 24 hour sessions at 15 sec rate; data, metadata and solutions will be available to the scientific community at (http://www.geodant.unimore.it). We present the results of a distributed session approach applied to processing GPS data of the TNB GPS network, and based on Gamit/Globk 10.2-3 GPS analysis software. The results are in good agreement with other authors' computations and with many of the theoretical models.

  19. Combining low-cost GPS receivers with upGPR to derive continuously liquid water content, snow height and snow water equivalent in Alpine snow covers

    Science.gov (United States)

    Koch, Franziska; Schmid, Lino; Prasch, Monika; Heilig, Achim; Eisen, Olaf; Schweizer, Jürg; Mauser, Wolfram

    2015-04-01

    The temporal evolution of Alpine snowpacks is important for assessing water supply, hydropower generation, flood predictions and avalanche forecasts. Especially in high mountain regions with an extremely varying topography, it is until now often difficult to derive continuous and non-destructive information on snow parameters. Since autumn 2012, we are running a new low-cost GPS (Global Positioning System) snow measurement experiment at the high alpine study site Weissfluhjoch (2450 m a.s.l.) in Switzerland. The globally and freely broadcasted GPS L1-band (1.57542 GHz) was continuously recorded with GPS antennas, which are installed at the ground surface underneath the snowpack. GPS raw data, containing carrier-to-noise power density ratio (C/N0) as well as elevation and azimuth angle information for each time step of 1 s, was stored and analyzed for all 32 GPS satellites. Since the dielectric permittivity of an overlying wet snowpack influences microwave radiation, the bulk volumetric liquid water content as well as daily melt-freeze cycles can be derived non-destructively from GPS signal strength losses and external snow height information. This liquid water content information is qualitatively in good accordance with meteorological and snow-hydrological data and quantitatively highly agrees with continuous data derived from an upward-looking ground-penetrating radar (upGPR) working in a similar frequency range. As a promising novelty, we combined the GPS signal strength data with upGPR travel-time information of active impulse radar rays to the snow surface and back from underneath the snow cover. This combination allows determining liquid water content, snow height and snow water equivalent from beneath the snow cover without using any other external information. The snow parameters derived by combining upGPR and GPS data are in good agreement with conventional sensors as e.g. laser distance gauges or snow pillows. As the GPS sensors are cheap, they can easily

  20. Continued Trenchward Procession of Upper Plate GPS Sites Following the 2012 Mw 7.6 Nicoya Earthquake

    Science.gov (United States)

    Hobbs, T. E.; Newman, A. V.; Protti, M.

    2015-12-01

    When studying subduction zone deformation one is often forced to consider a region significantly landward of the trench. The Nicoya Peninsula in Costa Rica presents a unique opportunity to obtain rich datasets from land in relatively close proximity to an active megathrust. A recent moment magnitude (Mw) 7.6 earthquake in September 2012 on this portion of the Middle America Trench affords an opportunity to constrain the ongoing postseismic deformation on the subduction interface between the Cocos and Caribbean plates. GPS campaigns occupying 22 sites were undertaken immediately following the earthquake in September-December 2012 and most recently in March 2015. Combined with data from a network of 17 continuous GPS in the region, we analyze the spatial and temporal changes in the postseismic velocity field. Another campaign is planned for 2017, in conjunction with our ongoing analysis of the continuous GPS network. After 2.5 years, campaign GPS results indicate significant trenchward motion of at least 7 cm, relative to a fixed Caribbean plate, for all sites up to the volcanic chain. Maximum values of 22 cm are observed above and updip of the coseismic rupture zone. The trench-parallel component of the displacement field is small, with few deviations between sites. Together these observations are substantially more self-similar over a larger region than what was observed for the coseismic offset. This implies that there may be a low stress differential across the upper plate, suggesting that the subduction interface environment, including the mainshock and surrounding area, has remained relatively weak following the earthquake. By utilizing a dense and long-term geodetic network we will report on initial modeling that aims to characterize the evolution of afterslip. The effect of regional aftershocks, including an Mw 6.5 in October 2012, and viscoelastic mantle relaxation will be considered to establish the necessity of such effects in robustly accounting for

  1. Integration of X-band SAR interferometry, continuous and periodic D-GPS and in-place inclinometers to characterize and monitor a deep-seated earthslide in the Dolomites (Italy)

    Science.gov (United States)

    Mulas, Marco; Corsini, Alessandro; Soldati, Mauro; Marcato, Gianluca; Pasuto, Alessandro; Crespi, Mattia; Mazzoni, Augusto; Benedetti, Elisa; Branzanti, Mara; Manunta, Michele; Ojha, Chandrakanta; Chinellato, Giulia; Cuozzo, Giovanni; Costa, Armin; Monsorno, Roberto; Thiebes, Benni; Piantelli, Elena; Magnani, Massimo; Meroni, Marco; Mair, Volkmar

    2015-04-01

    antennas. COSMO-SkyMed X-Band SAR acquisitions started on October 2013 and are ongoing with a temporal resolution of 16 days using STRIPMAP (HIMAGE) measuring mode. Discontinuous D-GPS Fast-Static surveys are scheduled with a triple frequency: annual for 24 points outside recent activation areas, monthly for 13 points in the active zone and a bi-weekly for 6 points located in the most active zone. Displacement high-frequency data are acquired thank to the installation of 3 Dual-Frequency GPS in permanent acquisition that have been located in the accumulation, track and source zone of the active portion of the landslide. High frequency data are also obtained by the two inclinometers operating in continuous acquisition located across the main slide surface at 48 m depth into a 90 m borehole drilled in the accumulation zone. A piezometer installed in the source zone and the meteorological station of Piz La Ila (3 km far away) of the Autonomous Province of Bolzano complete the system. The poster presents the infrastructural details of the monitoring network, the technical characteristics of data acquisition systems, the data processing procedures and the latest ongoing results.

  2. Study of movement of the western and central belts of Peninsular Malaysia using GPS data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, Siti Hafizah; Samsudin, Abdul Rahim [Geology Programme, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    Since the large earthquakes in Sumatera and Nias, there were some tremors incidents at Bukit Tinggi. Therefore, a study on the earth’s crust movement and the effects of the earthquake in Indonesia on the tectonic blocks of Peninsular Malaysia have been carried out using GPS data analysis. GPS data from five MyRTKnet stations within Peninsular Malaysia have been analyzed to monitor the movement of two major tectonic blocks of Peninsular Malaysia which are the western belt represented by the Behrang (BEHR) and UPM Serdang (UPMS) stations and the central belt represented by Bentong (BENT), Jerantut (JRNT) and Temerloh (TLOH) stations. GPS data recorded from 2005 to 2010 were analysed based on horizontal and vertical displacements of the respective stations by using Trimble Business Centre (TBC) software. Based on the results of accumulated displacements of recorded GPS data from January 2006 to December 2013, it shows that the western belt which represented by UPMS has shifted 0.096m towards northwest with changes of ellipsoidal height of +0.030m while the central belt which represented by TLOH has shifted 0.080m towards northwest with changes of ellipsoidal height of −0.015m. Meanwhile, BENT station which is located on the Bentong-Raub suture zone turns to its original position as well as JRNT station. However, BEHR station which are located in western belt do not show any movements. All of these movements may be due to the influence of reactive faults in the stations area stimulated by several large earthquakes that occurred in 2005 to 2010. Study on using the GPS data analysis and combine with integrated geophysical methods are necessary to understand in detail about the tectonic evolution of Peninsular Malaysia.

  3. Global (50°S–50°N) distribution of water vapor observed by COSMIC GPS RO: Comparison with GPS radiosonde, NCEP, ERA-Interim, and JRA-25 reanalysis data sets

    CSIR Research Space (South Africa)

    Kishore, P

    2011-08-01

    Full Text Available In this study, global (50°S–50°N) distribution of water vapor is investigated using COSMIC GPS RO measurements. Detailed comparisons have been made between COSMIC and high resolution GPS radiosonde measurements across 13 tropical stations and model...

  4. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    Science.gov (United States)

    The Pierre Auger Collaboration

    2016-01-01

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a ``beacon transmitter'' which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.

  5. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    International Nuclear Information System (INIS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E.J.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.

    2016-01-01

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a ''beacon transmitter'' which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA

  6. New method of GPS orbit determination from GCPS network for the purpose of DOP calculations

    Directory of Open Access Journals (Sweden)

    Aly M. El-naggar

    2012-06-01

    Full Text Available The accuracy of GPS measurement satisfies the requirements of some applications, but many applications require an improvement of GPS measurement accuracy. For precise positioning by GPS, it is necessary to perform GPS mission planning. The GPS mission planning is a pre-survey task in which the values of Dilution Of Precision (DOP should be predicted for the observation points, this task should determine the best observation periods which meet the project requirements. The main purpose of this work is to study a rather simple but still fairly accurate algorithm to determine the artificial satellite orbits for the purpose of DOP calculation. The orbit determination algorithm proposed in this paper is implemented by using several reference stations and calculated the orbits by new algorithm; inverse GPS. Inverse GPS means that reference stations are considered as satellites and satellite as receiver. This new algorithm used to calculate the satellite orbit which is mainly used to calculate the DOP. A comparison is done between the estimated PDOP by using satellite coordinates from new method and from the SP3 (Standard Product # 3 file.

  7. Analysis of Seasonal Signal in GPS Short-Baseline Time Series

    Science.gov (United States)

    Wang, Kaihua; Jiang, Weiping; Chen, Hua; An, Xiangdong; Zhou, Xiaohui; Yuan, Peng; Chen, Qusen

    2018-04-01

    Proper modeling of seasonal signals and their quantitative analysis are of interest in geoscience applications, which are based on position time series of permanent GPS stations. Seasonal signals in GPS short-baseline (paper, to better understand the seasonal signal in GPS short-baseline time series, we adopted and processed six different short-baselines with data span that varies from 2 to 14 years and baseline length that varies from 6 to 1100 m. To avoid seasonal signals that are overwhelmed by noise, each of the station pairs is chosen with significant differences in their height (> 5 m) or type of the monument. For comparison, we also processed an approximately zero baseline with a distance of pass-filtered (BP) noise is valid for approximately 40% of the baseline components, and another 20% of the components can be best modeled by a combination of the first-order Gauss-Markov (FOGM) process plus white noise (WN). The TEM displacements are then modeled by considering the monument height of the building structure beneath the GPS antenna. The median contributions of TEM to the annual amplitude in the vertical direction are 84% and 46% with and without additional parts of the monument, respectively. Obvious annual signals with amplitude > 0.4 mm in the horizontal direction are observed in five short-baselines, and the amplitudes exceed 1 mm in four of them. These horizontal seasonal signals are likely related to the propagation of daily/sub-daily TEM displacement or other signals related to the site environment. Mismodeling of the tropospheric delay may also introduce spurious seasonal signals with annual amplitudes of 5 and 2 mm, respectively, for two short-baselines with elevation differences greater than 100 m. The results suggest that the monument height of the additional part of a typical GPS station should be considered when estimating the TEM displacement and that the tropospheric delay should be modeled cautiously, especially with station pairs with

  8. Variation of GPS-TEC in a low latitude Indian region during the year 2012 and 2013

    Science.gov (United States)

    Patel, Nilesh C.; Karia, Sheetal P.; Pathak, Kamlesh N.

    2018-05-01

    The paper is based on the ionospheric variations in terms of vertical total electron content (VTEC) for the period from January 2012 to December 2013 based on the analysis of dual frequency signals from the Global Positioning System (GPS) satellites recorded at ground stations Surat (21.16°N, 72.78°E Geog.), situated under the northern crest of the equatorial ionization anomaly region (EIA) and other three International GNSS Service (IGS) stations Bangalore (13.02°N, 77.57°E Geog.), Hyderabad (17.25°N, 78.30°E Geog.), and Lucknow (26.91°N, 80.95°E Geog.) in India. We describe the diurnal and seasonal characteristics. It was observed that GPS-TEC reaches its maximum value between 12:00 and 16:00 IST. Further, Seasonal variations of GPS-TEC is categorized into four seasons, i.e., March equinox (February, March, and April), June solstice (May, June, and July), September equinox (August, September, and October) and December solstice (November, December and January). The forenoon rate of production in Lucknow (beyond EIA crest) is faster than Bangalore, Hyderabad and Surat station. It is found that September equinox shows GPS-TEC slightly higher than the March equinox, followed by June solstice and the lowest GPS-TEC are in winter solstice at four stations. The equinoctial asymmetry clearly observed in the current study. Also GPS-TEC shows a semiannual variation.

  9. Mapping the Coastline Limits of the Mexican State Sinaloa Using GPS

    Science.gov (United States)

    Vazquez, G. E.

    2007-12-01

    This research work presents the delimitation of the coastline limits of Sinaloa (one of the richest states of northwestern Mexico). In order to achieve this big task, it was required to use GPS (Global Positioning System) together with leveling spirit measurements. Based on the appropriate selection of the cited measurement techniques, the objective was to map the Sinaloa's state coastline to have the cartography of approximate 1600 km of littoral. The GPS measurements were performed and referred with respect to a GPS network located across the state. This GPS network consists of at least one first-order-site at each of the sixteen counties that constitute the state, and three to four second-order-sites of the ten counties of the state surrounded by sea. The leveling spirit measurements were referred to local benchmarks pre-established by the Mexican agency SEMARNAT (SEcretaría Del Medio Ambiente y Recursos NATurales). Within the main specifications of the GPS measurements and equipment, we used geodetic-dual-frequency GPS receivers in kinematic mode for both base stations (first and second order sites of the GPS state network) and rover stations (points forming the state littoral) with 5-sec log-rate interval and 10 deg cut-off angle. The GPS data processing was performed using the commercial software Trimble Geomatics Office (TGO) with Double Differences (DD) in post-processing mode. To this point, the field measurements had been totally covered including the cartography (scale 1:1000) and this includes the specifications and appropriate labeling according to the Mexican norm NOM-146-SEMARNAT-2005.

  10. High-precision coseismic displacement estimation with a single-frequency GPS receiver

    Science.gov (United States)

    Guo, Bofeng; Zhang, Xiaohong; Ren, Xiaodong; Li, Xingxing

    2015-07-01

    To improve the performance of Global Positioning System (GPS) in the earthquake/tsunami early warning and rapid response applications, minimizing the blind zone and increasing the stability and accuracy of both the rapid source and rupture inversion, the density of existing GPS networks must be increased in the areas at risk. For economic reasons, low-cost single-frequency receivers would be preferable to make the sparse dual-frequency GPS networks denser. When using single-frequency GPS receivers, the main problem that must be solved is the ionospheric delay, which is a critical factor when determining accurate coseismic displacements. In this study, we introduce a modified Satellite-specific Epoch-differenced Ionospheric Delay (MSEID) model to compensate for the effect of ionospheric error on single-frequency GPS receivers. In the MSEID model, the time-differenced ionospheric delays observed from a regional dual-frequency GPS network to a common satellite are fitted to a plane rather than part of a sphere, and the parameters of this plane are determined by using the coordinates of the stations. When the parameters are known, time-differenced ionospheric delays for a single-frequency GPS receiver could be derived from the observations of those dual-frequency receivers. Using these ionospheric delay corrections, coseismic displacements of a single-frequency GPS receiver can be accurately calculated based on time-differenced carrier-phase measurements in real time. The performance of the proposed approach is validated using 5 Hz GPS data collected during the 2012 Nicoya Peninsula Earthquake (Mw 7.6, 2012 September 5) in Costa Rica. This shows that the proposed approach improves the accuracy of the displacement of a single-frequency GPS station, and coseismic displacements with an accuracy of a few centimetres are achieved over a 10-min interval.

  11. Precise Orbit Determination of GPS Satellites Using Phase Observables

    Directory of Open Access Journals (Sweden)

    Myung-Kook Jee

    1997-12-01

    Full Text Available The accuracy of user position by GPS is heavily dependent upon the accuracy of satellite position which is usually transmitted to GPS users in radio signals. The real-time satellite position information directly obtained from broadcast ephimerides has the accuracy of 3 x 10 meters which is very unsatisfactory to measure 100km baseline to the accuracy of less than a few mili-meters. There are globally at present seven orbit analysis centers capable of generating precise GPS ephimerides and their orbit quality is of the order of about 10cm. Therefore, precise orbit model and phase processing technique were reviewed and consequently precise GPS ephimerides were produced after processing the phase observables of 28 global GPS stations for 1 day. Initial 6 orbit parameters and 2 solar radiation coefficients were estimated using batch least square algorithm and the final results were compared with the orbit of IGS, the International GPS Service for Geodynamics.

  12. Auditing GPs' prescribing habits : Cardiovascular prescribing frequently continues medication initiated by specialists

    NARCIS (Netherlands)

    de Vries, C.S; van Diepen, N.M; de Jong-van den Berg, L T W

    Objective: To determine to what extent general practitioners' (GPs) prescribing behaviour is a result of repeat prescribing of medication which has been initiated by specialists. Method: During a 4-week period, pharmacists identified GPs' prescriptions for a large group of cardiovascular drugs.

  13. Where on Earth am I? Don't Worry,. GPS Satellites will Guide you ...

    Indian Academy of Sciences (India)

    ordinate frame shown is the reference frame used by GPS, it is called earth .... the satellite clock offsets five monitoring stations are spread over the earth ..... (P 2) GPS receiver for armoured vehicles (on the right is auxiliary display). ( P 3) GPS ...

  14. Uncertainty estimation of the velocity model for stations of the TrigNet GPS network

    Science.gov (United States)

    Hackl, M.; Malservisi, R.; Hugentobler, U.

    2010-12-01

    Satellite based geodetic techniques - above all GPS - provide an outstanding tool to measure crustal motions. They are widely used to derive geodetic velocity models that are applied in geodynamics to determine rotations of tectonic blocks, to localize active geological features, and to estimate rheological properties of the crust and the underlying asthenosphere. However, it is not a trivial task to derive GPS velocities and their uncertainties from positioning time series. In general time series are assumed to be represented by linear models (sometimes offsets, annual, and semi-annual signals are included) and noise. It has been shown that error models accounting only for white noise tend to underestimate the uncertainties of rates derived from long time series and that different colored noise components (flicker noise, random walk, etc.) need to be considered. However, a thorough error analysis including power spectra analyses and maximum likelihood estimates is computationally expensive and is usually not carried out for every site, but the uncertainties are scaled by latitude dependent factors. Analyses of the South Africa continuous GPS network TrigNet indicate that the scaled uncertainties overestimate the velocity errors. So we applied a method similar to the Allan Variance that is commonly used in the estimation of clock uncertainties and is able to account for time dependent probability density functions (colored noise) to the TrigNet time series. Comparisons with synthetic data show that the noise can be represented quite well by a power law model in combination with a seasonal signal in agreement with previous studies, which allows for a reliable estimation of the velocity error. Finally, we compared these estimates to the results obtained by spectral analyses using CATS. Small differences may originate from non-normal distribution of the noise.

  15. Inferring Large-Scale Terrestrial Water Storage Through GRACE and GPS Data Fusion in Cloud Computing Environments

    Science.gov (United States)

    Rude, C. M.; Li, J. D.; Gowanlock, M.; Herring, T.; Pankratius, V.

    2016-12-01

    Surface subsidence due to depletion of groundwater can lead to permanent compaction of aquifers and damaged infrastructure. However, studies of such effects on a large scale are challenging and compute intensive because they involve fusing a variety of data sets beyond direct measurements from groundwater wells, such as gravity change measurements from the Gravity Recovery and Climate Experiment (GRACE) or surface displacements measured by GPS receivers. Our work therefore leverages Amazon cloud computing to enable these types of analyses spanning the entire continental US. Changes in groundwater storage are inferred from surface displacements measured by GPS receivers stationed throughout the country. Receivers located on bedrock are anti-correlated with changes in water levels from elastic deformation due to loading, while stations on aquifers correlate with groundwater changes due to poroelastic expansion and compaction. Correlating linearly detrended equivalent water thickness measurements from GRACE with linearly detrended and Kalman filtered vertical displacements of GPS stations located throughout the United States helps compensate for the spatial and temporal limitations of GRACE. Our results show that the majority of GPS stations are negatively correlated with GRACE in a statistically relevant way, as most GPS stations are located on bedrock in order to provide stable reference locations and measure geophysical processes such as tectonic deformations. Additionally, stations located on the Central Valley California aquifer show statistically significant positive correlations. Through the identification of positive and negative correlations, deformation phenomena can be classified as loading or poroelastic expansion due to changes in groundwater. This method facilitates further studies of terrestrial water storage on a global scale. This work is supported by NASA AIST-NNX15AG84G (PI: V. Pankratius) and Amazon.

  16. Earth tide effects on kinematic/static GPS positioning in Denmark and Greenland

    DEFF Research Database (Denmark)

    Xu, G.C.; Knudsen, Per

    2000-01-01

    A detailed Study of the Earth tide effects on the GPS kinematic/static positioning is presented in this paper by using theoretical Earth tide computation and practical GPS data processing. Tidal effects could reach up to 30 cm in Denmark and Greenland depending on the measuring time...... and the position of reference station. With a baseline less than 80 km, the difference of the Earth tide effects could reach more than 5 mm. So, in precise applications of GPS positioning, the Earth tide effect has to be taken into account even for a relative small local GPS network. Several examples are given...... for demonstrating that the Earth tide effects can be viewed by GPS surveying. They are given through static GPS data static processing, static GPS data kinematic processing, and airborne kinematic GPS data processing. In these cases, the Earth tide effects can be subtracted from the GPS results. The determination...

  17. Study of the GPS inter-frequency calibration of timing receivers

    Science.gov (United States)

    Defraigne, P.; Huang, W.; Bertrand, B.; Rovera, D.

    2018-02-01

    When calibrating Global Positioning System (GPS) stations dedicated to timing, the hardware delays of P1 and P2, the P(Y)-codes on frequencies L1 and L2, are determined separately. In the international atomic time (TAI) network the GPS stations of the time laboratories are calibrated relatively against reference stations. This paper aims at determining the consistency between the P1 and P2 hardware delays (called dP1 and dP2) of these reference stations, and to look at the stability of the inter-signal hardware delays dP1-dP2 of all the stations in the network. The method consists of determining the dP1-dP2 directly from the GPS pseudorange measurements corrected for the frequency-dependent antenna phase center and the frequency-dependent ionosphere corrections, and then to compare these computed dP1-dP2 to the calibrated values. Our results show that the differences between the computed and calibrated dP1-dP2 are well inside the expected combined uncertainty of the two quantities. Furthermore, the consistency between the calibrated time transfer solution obtained from either single-frequency P1 or dual-frequency P3 for reference laboratories is shown to be about 1.0 ns, well inside the 2.1 ns uB uncertainty of a time transfer link based on GPS P3 or Precise Point Positioning. This demonstrates the good consistency between the P1 and P2 hardware delays of the reference stations used for calibration in the TAI network. The long-term stability of the inter-signal hardware delays is also analysed from the computed dP1-dP2. It is shown that only variations larger than 2 ns can be detected for a particular station, while variations of 200 ps can be detected when differentiating the results between two stations. Finally, we also show that in the differential calibration process as used in the TAI network, using the same antenna phase center or using different positions for L1 and L2 signals gives maximum differences of 200 ps on the hardware delays of the separate

  18. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2008

    International Nuclear Information System (INIS)

    Kallio, U.; Ahola, J.; Koivula, H.; Jokela, J.; Poutanen, M.

    2009-09-01

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. A total of 26 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 17 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than 0.20 mm/a. The networks of Kivetty and Romuvaara are quite stable expect one pillar at Romuvaara. There are seven pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. The comparison between the GPS and EDM results can help to fix a possible scale error of the GPS measurements. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is

  19. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2007

    International Nuclear Information System (INIS)

    Ahola, J.; Koivula, H.; Jokela, J.

    2008-05-01

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. 24 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 16 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ± 0.20 mm/a. The networks of Kivetty and Romuvaara are quite stabile expect one pillar at Romuvaara. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined (maximum velocity is -0.22 mm/a ± 0.02 mm/a). The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments simultaneously with the GPS observations. The comparison between the GPS and EDM results can solve a possible scale error of the GPS. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003, but the time series are still too short for reliable deformation studies. The local crustal deformations have been studied in GeoSatakunta project, too. This

  20. Sea level change along the Black Sea coast from satellite altimetry, tide gauge and GPS observations

    Directory of Open Access Journals (Sweden)

    Nevin B. Avsar

    2016-01-01

    Full Text Available Sea level change affects human living conditions, particularly ocean coasts. However, sea level change is still unclear along the Black Sea coast due to lack of in-situ measurements and low resolution satellite data. In this paper, sea level change along the Black Sea coast is investigated from joint satellite altimetry, tide gauge (TG and Global Positioning System (GPS observations. The linear trend and seasonal components of sea level change are estimated at 8 TG stations (Amasra, Igneada, Trabzon-II, Sinop, Sile, Poti, Tuapse, and Batumi located along the Black Sea coast, which are compared with Satellite Altimetry and GPS. At the tide gauge stations with long-term records such as Poti (about 21 years and Tuapse (about 19 years, the results obtained from the satellite altimetry and tide gauge observations show a remarkably good agreement. While some big differences are existed between Satellite Altimetry and TG at other stations, after adding vertical motion from GPS, correlation coefficients of the trend have been greatly improved from 0.37 to 0.99 at 3 co-located GPS and TG stations (Trabzon-II, Sinop and Sile.

  1. Surface Temperature and Precipitation Affecting GPS Signals Before the 2009 L'Aquila Earthquake (Central Italy).

    Science.gov (United States)

    Crescentini, L.; Amoruso, A.; Chiaraluce, L.

    2017-12-01

    This work focuses on GPS time series recorded before the Mw 6.1 earthquake which struck Central Italy in April 2009. It shows how environmental noise effects may be subtle and relevant when investigating relatively small strain signals and how the availability of data from weather stations and water level sensors co-located with GPS stations may provide critical information which must be taken into consideration while dealing with deformation signals.The preparatory phase of a large earthquake may include both seismic (foreshocks) and aseismic (slow slip event, SSE) deforming episodes but, unlike afterslip, no slow event has yet been recorded before moderate earthquakes, even when they occurred close to high-sensitivity strain meters. An exception to this seems to be represented by the 2009 earthquake. The main shock was preceded by a foreshock sequence lasting 6 months; it has been claimed that an analysis of continuous GPS data shows that during the foreshock sequence a 5.9 Mw SSE occurred along a decollement located beneath the reactivated normal fault system. This hypothesized SSE, that started in the middle of February 2009 and lasted for almost two weeks, would have eventually loaded the largest foreshock and the main shock.We show that the strain signal that the SSE would have generated at two laser strainmeters operating at about 20 km NE from the SSE source was essentially undetected. On the contrary, a transient signal is present in temperature and precipitation time series recorded close to the GPS station, MTTO, that has largest signal referred to the SSE, implying that these contaminated the GPS record. This interpretation is corroborated by the strong similarity, during the coldest winter months, between the displacement data of MTTO and a linear combination of filtered temperature and precipitation data, mimicking simple heat conduction and snow accumulation/removal processes. Such a correlation between displacement and environmental data is missing

  2. National Geospatial Data Asset (NGDA) Continuously Operating Reference Stations (CORS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Geodetic Survey (NGS), an office of NOAA's National Ocean Service, manages a network of Continuously Operating Reference Stations (CORS) that provide...

  3. Monitoreo de la calidad de datos GPS continuo: la estacion UNSJ (San Juan, Argentina

    Directory of Open Access Journals (Sweden)

    Alfredo Herrada

    2010-06-01

    Full Text Available Como parte de la red de referencia de operación continua de Argentina, la estación GPS (Global Positioning System denominada UNSJ (Universidad Nacional de San Juan fue establecida en la ciudad de San Juan el 6 de Marzo de 2007. Los datos registrados de UNSJ son ampliamente utilizados en aplicaciones catastrales, y sirven como base para la definición de los marcos de referencia geodésicos nacional y regional. Como una componente fundamental de la infraestructura geodésica, resulta conveniente un eficiente control de calidad de los datos crudos y el monitoreo de la estabilidad de una estación GPS de referencia. En este trabajo se presentan los resultados del control de calidad de las observaciones UNSJ luego de dos anos de operación. Para contro l ar y caracterizar el desempeno del receptor GPS y además el medio ambiente de la estación, se eligieron cuatro índices. Ellos son el número de observaciones, multicamino en L1, multicamino en L2 y ocurrencia de saltos de ciclos. También, se evaluó la estabilidad de largo término de la estación UNSJ a través del análisis de las series temporales de las coordenadas semanales provistas por los centros de cálculo SIRGAS (Sistema de Referencia Geocéntrico para las Américas. Completa este estudio el análisis de las coordenadas calculadas por distintos servicios de procesamiento disponibles en Internet. Nuestros resultados indican que durante el período analizado, el funcionamiento de la estación UNSJ fue satisfactorio, produciendo índices de calidad que son aceptables para estándares internacionales.As a part of the Argentine continuously operating reference station network, a GPS (Global Positioning System station named UNSJ (Universidad Nacional de San Juan was established in San Juan city on 6th March 2007. The recorded data of UNSJ are widely applied to cadastral surveys and serve as the basis for defining national and regional geodetic reference frames. As a key component of the

  4. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2006

    International Nuclear Information System (INIS)

    Ahola, J.; Koivula, H.; Poutanen, M.; Jokela, J.

    2007-05-01

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. 22 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 15 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ± 0.22 mm/a. The networks of Kivetty and Romuvaara are quite stabile expect one pillar at Romuvaara. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined (maximum velocity is -0.23 mm/a ± 0.023 mm/a). The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments simultaneously with the GPS observations. The comparison between the GPS and EDM results can solve a possible scale error of the GPS. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003, but the time series are still too short for reliable deformation studies. The local crustal deformations have been studied in GeoSatakunta project, too. This

  5. Ionospheric Remote Sensing using GPS Radio Occultation and Ultraviolet Photometry aboard the ISS

    Science.gov (United States)

    Budzien, S. A.; Powell, S. P.; O'Hanlon, B.; Humphreys, T.; Bishop, R. L.; Stephan, A. W.; Gross, J.; Chakrabarti, S.

    2017-12-01

    The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) experiment launched to the International Space Station (ISS) on February 19, 2017 as part of the Space Test Program Houston #5 payload (STP-H5). After early orbit testing, GROUP-C began routine science operations in late April. GROUP-C includes a high-sensitivity far-ultraviolet photometer measuring horizontal nighttime ionospheric gradients and an advanced software-defined GPS receiver providing ionospheric electron density profiles, scintillation measurements, and lower atmosphere profiles. GROUP-C and a companion experiment, the Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES), offer a unique capability to study spatial and temporal variability of the thermosphere and ionosphere using multi-sensor approaches, including ionospheric tomography. Data are collected continuously across low- and mid-latitudes as the ISS orbit precesses through all local times every 60 days. The GROUP-C GPS sensor routinely collects dual-frequency GPS occultations, makes targeted raw signal captures of GPS and Galileo occultations, and includes multiple antennas to characterize multipath in the ISS environment. The UV photometer measures the 135.6 nm ionospheric recombination airglow emision along the nightside orbital track. We present the first analysis of ionospheric observations, discuss the challenges and opportunities of remote sensing from the ISS platform, and explore how these new data help address questions regarding the complex and dynamic features of the low and middle latitude ionosphere-thermosphere relevant to the upcoming GOLD and ICON missions.

  6. GPS Water Vapor Tomography Based on Accurate Estimations of the GPS Tropospheric Parameters

    Science.gov (United States)

    Champollion, C.; Masson, F.; Bock, O.; Bouin, M.; Walpersdorf, A.; Doerflinger, E.; van Baelen, J.; Brenot, H.

    2003-12-01

    The Global Positioning System (GPS) is now a common technique for the retrieval of zenithal integrated water vapor (IWV). Further applications in meteorology need also slant integrated water vapor (SIWV) which allow to precisely define the high variability of tropospheric water vapor at different temporal and spatial scales. Only precise estimations of IWV and horizontal gradients allow the estimation of accurate SIWV. We present studies developed to improve the estimation of tropospheric water vapor from GPS data. Results are obtained from several field experiments (MAP, ESCOMPTE, OHM-CV, IHOP, .). First IWV are estimated using different GPS processing strategies and results are compared to radiosondes. The role of the reference frame and the a priori constraints on the coordinates of the fiducial and local stations is generally underestimated. It seems to be of first order in the estimation of the IWV. Second we validate the estimated horizontal gradients comparing zenith delay gradients and single site gradients. IWV, gradients and post-fit residuals are used to construct slant integrated water delays. Validation of the SIWV is under progress comparing GPS SIWV, Lidar measurements and high resolution meteorological models (Meso-NH). A careful analysis of the post-fit residuals is needed to separate tropospheric signal from multipaths. The slant tropospheric delays are used to study the 3D heterogeneity of the troposphere. We develop a tomographic software to model the three-dimensional distribution of the tropospheric water vapor from GPS data. The software is applied to the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers operated in southern France. Three inversions have been successfully compared to three successive radiosonde launches. Good resolution is obtained up to heights of 3000 m.

  7. Environmental radiation monitoring system with GPS (global positioning system)

    International Nuclear Information System (INIS)

    Komoto, Itsuro

    2000-01-01

    This system combines a radiation monitoring car with GPS and a data processor (personal computer). It distributes the position information acquired through GPS to the data such as measured environmental radiation dose rate and energy spectrum. It also displays and edits the data for each measuring position on a map. Transmitting the data to the power station through mobile phone enables plan managers to easily monitor the environmental radiation dose rate nearby and proper emergency monitoring. (author)

  8. Ionospheric correction for spaceborne single-frequency GPS based ...

    Indian Academy of Sciences (India)

    The Klobuchar model was used to compute ionospheric delays for the dlft station, and .... dual-frequency GPS receivers; therefore, the iono- ... The mapping function is defined as the ratio of .... eter in the processing of an extended set of single.

  9. Comparison of GPS and GRACE hydrological loading signatures in Myanmar, India, Bangladesh, and Bhutan

    Science.gov (United States)

    Materna, K.; Feng, L.; Lindsey, E. O.; Hill, E.; Burgmann, R.

    2017-12-01

    The elastic response of the lithosphere to surface mass redistributions produces significant deformation that can be observed in geodetic time series. This deformation is especially pronounced in Southeast Asia, where the annual monsoon produces large-amplitude hydrological loads. The MIBB network of 20 continuous GPS stations in Myanmar, India, Bangladesh, and Bhutan, operational since 2012, provides an opportunity to study the earth's response to these loads. In this study, we use GRACE gravity products as an estimate of surface water distribution, and input these estimates into an elastic loading calculation. We compare the predicted deformation with that observed with GPS. We find that elastic loading from the GRACE gravity field is able to explain the phase and the peak-to-peak amplitude (typically 2-3 cm) of the vertical GPS oscillations in northeast India and central Myanmar. GRACE-based corrections reduce the RMS scatter of the GPS data by 30%-45% in these regions. However, this approach does not capture all of the variation in central Bangladesh and southern Myanmar. Local hydrological effects, non-tidal ocean loads, poroelastic deformation, or differences in elastic properties may explain discrepancies between the GPS and GRACE signals in these places. The results of our calculations have practical implications for campaign GPS measurements in Myanmar, which make up the majority of geodetic measurements at this point. We may be able to reduce errors in campaign measurements and increase the accuracy of velocity estimates by correcting for hydrologic signals with GRACE data. The results also have potential implications for crustal rheology in Southeast Asia.

  10. Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations

    Science.gov (United States)

    Montenbruck, Oliver; Hackel, Stefan; Jäggi, Adrian

    2017-11-01

    The Sentinel-3 mission takes routine measurements of sea surface heights and depends crucially on accurate and precise knowledge of the spacecraft. Orbit determination with a targeted uncertainty of less than 2 cm in radial direction is supported through an onboard Global Positioning System (GPS) receiver, a Doppler Orbitography and Radiopositioning Integrated by Satellite instrument, and a complementary laser retroreflector for satellite laser ranging. Within this study, the potential of ambiguity fixing for GPS-only precise orbit determination (POD) of the Sentinel-3 spacecraft is assessed. A refined strategy for carrier phase generation out of low-level measurements is employed to cope with half-cycle ambiguities in the tracking of the Sentinel-3 GPS receiver that have so far inhibited ambiguity-fixed POD solutions. Rather than explicitly fixing double-difference phase ambiguities with respect to a network of terrestrial reference stations, a single-receiver ambiguity resolution concept is employed that builds on dedicated GPS orbit, clock, and wide-lane bias products provided by the CNES/CLS (Centre National d'Études Spatiales/Collecte Localisation Satellites) analysis center of the International GNSS Service. Compared to float ambiguity solutions, a notably improved precision can be inferred from laser ranging residuals. These decrease from roughly 9 mm down to 5 mm standard deviation for high-grade stations on average over low and high elevations. Furthermore, the ambiguity-fixed orbits offer a substantially improved cross-track accuracy and help to identify lateral offsets in the GPS antenna or center-of-mass (CoM) location. With respect to altimetry, the improved orbit precision also benefits the global consistency of sea surface measurements. However, modeling of the absolute height continues to rely on proper dynamical models for the spacecraft motion as well as ground calibrations for the relative position of the altimeter reference point and the CoM.

  11. GPS data processing of networks with mixed single- and dual-frequency receivers for deformation monitoring

    Science.gov (United States)

    Zou, X.; Deng, Z.; Ge, M.; Dick, G.; Jiang, W.; Liu, J.

    2010-07-01

    In order to obtain crustal deformations of higher spatial resolution, existing GPS networks must be densified. This densification can be carried out using single-frequency receivers at moderate costs. However, ionospheric delay handling is required in the data processing. We adapt the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) for GPS networks with mixed single- and dual-frequency receivers. The SEID model is modified to utilize the observations from the three nearest dual-frequency reference stations in order to avoid contaminations from more remote stations. As data of only three stations are used, an efficient missing data constructing approach with polynomial fitting is implemented to minimize data losses. Data from large scale reference networks extended with single-frequency receivers can now be processed, based on the adapted SEID model. A new data processing scheme is developed in order to make use of existing GPS data processing software packages without any modifications. This processing scheme is evaluated using a sub-network of the German SAPOS network. The results verify that the new scheme provides an efficient way to densify existing GPS networks with single-frequency receivers.

  12. Review of current GPS methodologies for producing accurate time series and their error sources

    Science.gov (United States)

    He, Xiaoxing; Montillet, Jean-Philippe; Fernandes, Rui; Bos, Machiel; Yu, Kegen; Hua, Xianghong; Jiang, Weiping

    2017-05-01

    The Global Positioning System (GPS) is an important tool to observe and model geodynamic processes such as plate tectonics and post-glacial rebound. In the last three decades, GPS has seen tremendous advances in the precision of the measurements, which allow researchers to study geophysical signals through a careful analysis of daily time series of GPS receiver coordinates. However, the GPS observations contain errors and the time series can be described as the sum of a real signal and noise. The signal itself can again be divided into station displacements due to geophysical causes and to disturbing factors. Examples of the latter are errors in the realization and stability of the reference frame and corrections due to ionospheric and tropospheric delays and GPS satellite orbit errors. There is an increasing demand on detecting millimeter to sub-millimeter level ground displacement signals in order to further understand regional scale geodetic phenomena hence requiring further improvements in the sensitivity of the GPS solutions. This paper provides a review spanning over 25 years of advances in processing strategies, error mitigation methods and noise modeling for the processing and analysis of GPS daily position time series. The processing of the observations is described step-by-step and mainly with three different strategies in order to explain the weaknesses and strengths of the existing methodologies. In particular, we focus on the choice of the stochastic model in the GPS time series, which directly affects the estimation of the functional model including, for example, tectonic rates, seasonal signals and co-seismic offsets. Moreover, the geodetic community continues to develop computational methods to fully automatize all phases from analysis of GPS time series. This idea is greatly motivated by the large number of GPS receivers installed around the world for diverse applications ranging from surveying small deformations of civil engineering structures (e

  13. Surface deformation analysis over Vrancea seismogenic area through radar and GPS geospatial data

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Serban, Florin S.; Teleaga, Delia M.; Mateciuc, Doru N.

    2017-10-01

    Time series analysis of GPS (Global Positioning Systems) and InSAR (Interferometric Synthetic Aperture Radar) data are important tools for Earth's surface deformation assessment, which can result from a wide range of geological phenomena like as earthquakes, landslides or ground water level changes. The aim of this paper was to identify several types of earthquake precursors that might be observed from geospatial data in Vrancea seismogenic region in Romania. Continuous GPS Romanian network stations and few field campaigns data recorded between 2005-2012 years revealed a displacement of about 5 or 6 millimeters per year in horizontal direction relative motion, and a few millimeters per year in vertical direction. In order to assess possible deformations due to earthquakes and respectively for possible slow deformations, have been used also time series Sentinel 1 satellite data available for Vrancea zone during October 2014 till October 2016 to generate two types of interferograms (short-term and medium- term). During investigated period were not recorded medium or strong earthquakes, so interferograms over test area revealed small displacements on vertical direction (subsidence or uplifts) of 5-10 millimeters per year. Based on GPS continuous network data and satellite Sentinel 1 results, different possible tectonic scenarios were developed. The localization of horizontal and vertical motions, fault slip, and surface deformation of the continental blocks provides new information, in support of different geodynamic models for Vrancea tectonic active region in Romania and Europe.

  14. Real-time source deformation modeling through GNSS permanent stations at Merapi volcano (Indonesia

    Science.gov (United States)

    Beauducel, F.; Nurnaning, A.; Iguchi, M.; Fahmi, A. A.; Nandaka, M. A.; Sumarti, S.; Subandriyo, S.; Metaxian, J. P.

    2014-12-01

    Mt. Merapi (Java, Indonesia) is one of the most active and dangerous volcano in the world. A first GPS repetition network was setup and periodically measured since 1993, allowing detecting a deep magma reservoir, quantifying magma flux in conduit and identifying shallow discontinuities around the former crater (Beauducel and Cornet, 1999;Beauducel et al., 2000, 2006). After the 2010 centennial eruption, when this network was almost completely destroyed, Indonesian and Japanese teams installed a new continuous GPS network for monitoring purpose (Iguchi et al., 2011), consisting of 3 stations located at the volcano flanks, plus a reference station at the Yogyakarta Observatory (BPPTKG).In the framework of DOMERAPI project (2013-2016) we have completed this network with 5 additional stations, which are located on the summit area and volcano surrounding. The new stations are 1-Hz sampling, GNSS (GPS + GLONASS) receivers, and near real-time data streaming to the Observatory. An automatic processing has been developed and included in the WEBOBS system (Beauducel et al., 2010) based on GIPSY software computing precise daily moving solutions every hour, and for different time scales (2 months, 1 and 5 years), time series and velocity vectors. A real-time source modeling estimation has also been implemented. It uses the depth-varying point source solution (Mogi, 1958; Williams and Wadge, 1998) in a systematic inverse problem model exploration that displays location, volume variation and 3-D probability map.The operational system should be able to better detect and estimate the location and volume variations of possible magma sources, and to follow magma transfer towards the surface. This should help monitoring and contribute to decision making during future unrest or eruption.

  15. Locking depth and slip-rate of the Húsavík Flatey fault, North Iceland, derived from continuous GPS data 2006-2010

    KAUST Repository

    Metzger, Sabrina

    2011-11-01

    Located at the northern shore of Iceland, the Tjörnes Fracture Zone (TFZ) is a 120 km offset in the mid-Atlantic Ridge that connects the offshore Kolbeinsey Ridge to the on-land Northern Volcanic Zone. This transform zone is seismically one of the most active areas in Iceland, exposing the population to a significant risk. However, the kinematics of the mostly offshore area with its complex tectonics have not been adequately resolved and the seismic potential of the two main transform structures within the TFZ, the Grímsey Oblique Rift (GOR) and the Húsavík Flatey Fault (HFF) in particular, is not well known. In summer 2006, we expanded the number of continuous GPS (CGPS) stations in the area from 4 to 14. The resulting GPS velocities after four years of data collection show that the TFZ accommodates the full plate motion as it is predicted by the MORVEL plate motion model. In addition, ENVISAT interferograms reveal a transient uplift signal at the nearby Theistareykir central volcano with a maximum line-of-sight uplift of 3 cm between summers of 2007 and 2008. We use a combination of an interseismic backslip and a Mogi model in a homogeneous, elastic half-space to describe the kinematics within the TFZ. With a non-linear optimization approach we fit the GPS observations and estimate the key model parameters and their uncertainties, which are (among others) the locking depth, the partition of the transform motion between the two transform structures within the TFZ and the slip rate on the HFF. We find a shallow locking depth of 6.3+1.7- 1.2 km and transform motion that is accommodated 34 ± 3 per cent by the HFF and 66 ± 3 per cent by the GOR, resulting in a slip velocity of 6.6 ± 0.6 mm yr-1 for the HFF. Assuming steady accumulation since the last two large M6.5 earthquakes in 1872 the seismic potential of the fault is equivalent to a Mw6.8 ± 0.1 event.

  16. Influence of Ephemeris Error on GPS Single Point Positioning Accuracy

    Science.gov (United States)

    Lihua, Ma; Wang, Meng

    2013-09-01

    The Global Positioning System (GPS) user makes use of the navigation message transmitted from GPS satellites to achieve its location. Because the receiver uses the satellite's location in position calculations, an ephemeris error, a difference between the expected and actual orbital position of a GPS satellite, reduces user accuracy. The influence extent is decided by the precision of broadcast ephemeris from the control station upload. Simulation analysis with the Yuma almanac show that maximum positioning error exists in the case where the ephemeris error is along the line-of-sight (LOS) direction. Meanwhile, the error is dependent on the relationship between the observer and spatial constellation at some time period.

  17. An accurate Kriging-based regional ionospheric model using combined GPS/BeiDou observations

    Science.gov (United States)

    Abdelazeem, Mohamed; Çelik, Rahmi N.; El-Rabbany, Ahmed

    2018-01-01

    In this study, we propose a regional ionospheric model (RIM) based on both of the GPS-only and the combined GPS/BeiDou observations for single-frequency precise point positioning (SF-PPP) users in Europe. GPS/BeiDou observations from 16 reference stations are processed in the zero-difference mode. A least-squares algorithm is developed to determine the vertical total electron content (VTEC) bi-linear function parameters for a 15-minute time interval. The Kriging interpolation method is used to estimate the VTEC values at a 1 ° × 1 ° grid. The resulting RIMs are validated for PPP applications using GNSS observations from another set of stations. The SF-PPP accuracy and convergence time obtained through the proposed RIMs are computed and compared with those obtained through the international GNSS service global ionospheric maps (IGS-GIM). The results show that the RIMs speed up the convergence time and enhance the overall positioning accuracy in comparison with the IGS-GIM model, particularly the combined GPS/BeiDou-based model.

  18. Evaluating the Correctness of Airborne Laser Scanning Data Heights Using Vehicle-Based RTK and VRS GPS Observations

    Directory of Open Access Journals (Sweden)

    Martin Vermeer

    2011-08-01

    Full Text Available In this study, we describe a system in which a GPS receiver mounted on the roof of a car is used to provide reference information to evaluate the elevation accuracy and georeferencing of airborne laser scanning (ALS point clouds. The concept was evaluated in the Klaukkala test area where a number of roads were traversed to collect real-time kinematic data. Two test cases were evaluated, including one case using the real-time kinematic (RTK method with a dedicated GPS base station at a known benchmark in the area and another case using the GNSSnet virtual reference station service (VRS. The utility of both GPS methods was confirmed. When all test data were included, the mean difference between ALS data and GPS-based observations was −2.4 cm for both RTK and VRS GPS cases. The corresponding dispersions were ±4.5 cm and ±5.9 cm, respectively. In addition, our examination did not reveal the presence of any significant rotation between ALS and GPS data.

  19. Co-location satellite GPS and SLR geodetic techniques at the Felix Aguilar Astronomical Observatory of San Juan, Argentina

    Science.gov (United States)

    Podestá, R.; Pacheco, A. M.; Alvis Rojas, H.; Quinteros, J.; Podestá, F.; Albornoz, E.; Navarro, A.; Luna, M.

    2018-01-01

    This work shows the strategy followed for the co-location of the Satellite Laser Ranging (SLR) ILRS 7406 telescope and the antenna of the permanent Global Positioning System (GPS) station, located at the Félix Aguilar Astronomical Observatory (OAFA) in San Juan, Argentina. The accomplishment of the co-location consisted in the design, construction, measurement, adjustment and compensation of a geodesic net between the stations SLR and GPS, securing support points solidly built in the soil. The co-location allows the coordinates of the station to be obtained by combining the data of both SLR and GPS techniques, achieving a greater degree of accuracy than individually. The International Earth Rotation and Reference Systems Service (IERS) considers the co-located stations as the most valuable and important points for the maintenance of terrestrial reference systems and their connection with the celestial ones. The 3 mm precision required by the IERS has been successfully achieved.

  20. Validation of GPS atmospheric water vapor with WVR data in satellite tracking mode

    Science.gov (United States)

    Shangguan, M.; Heise, S.; Bender, M.; Dick, G.; Ramatschi, M.; Wickert, J.

    2015-01-01

    Slant-integrated water vapor (SIWV) data derived from GPS STDs (slant total delays), which provide the spatial information on tropospheric water vapor, have a high potential for assimilation to weather models or for nowcasting or reconstruction of the 3-D humidity field with tomographic techniques. Therefore, the accuracy of GPS STD is important, and independent observations are needed to estimate the quality of GPS STD. In 2012 the GFZ (German Research Centre for Geosciences) started to operate a microwave radiometer in the vicinity of the Potsdam GPS station. The water vapor content along the line of sight between a ground station and a GPS satellite can be derived from GPS data and directly measured by a water vapor radiometer (WVR) at the same time. In this study we present the validation results of SIWV observed by a ground-based GPS receiver and a WVR. The validation covers 184 days of data with dry and wet humidity conditions. SIWV data from GPS and WVR generally show good agreement with a mean bias of -0.4 kg m-2 and an rms (root mean square) of 3.15 kg m-2. The differences in SIWV show an elevation dependent on an rms of 7.13 kg m-2 below 15° but of 1.76 kg m-2 above 15°. Nevertheless, this elevation dependence is not observed regarding relative deviations. The relation between the differences and possible influencing factors (elevation angles, pressure, temperature and relative humidity) are analyzed in this study. Besides the elevation, dependencies between the atmospheric humidity conditions, temperature and the differences in SIWV are found.

  1. Determination of Vertical Velocity Field of Southernmost Longitudinal Valley in Eastern Taiwan: A Joint Analysis of Leveling and GPS Measurements

    Directory of Open Access Journals (Sweden)

    Horng-Yue Chen

    2012-01-01

    Full Text Available In order to provide a detailed vertical velocity field in southernmost Longitudinal Valley where shows a complex three-fault system at the plate suture between Philippine Sea plate and Eurasia, we conducted leveling and GPS measurements, compiled data from previous surveys and combined them into a single data set. We compiled precise leveling results from 1984 to 2009, include 5 E-W trending and one N-S trending routes. We calculated the GPS vertical component from 10 continuous stations and from 89 campaign-mode stations from 1995 to 2010. The interseismic vertical rates are estimated by removing the co- and post-seismic effects of major large regional and nearby earthquakes. A stable continuous station S104 in the study area was adopted as the common reference station. We finally establish a map of the interseismic vertical velocity field. The interseismic vertical deformation was mainly accommodated by creeping/thrusting along two east-dipping strands of the three-fault system: the Luyeh and Lichi faults. The most dominant uplift of 30 mm yr-1 occurs at the hanging wall of the Lichi fault on the western Coastal Range. However the rate diminishes away from the fault in the hanging wall. The Quaternary tablelands inside of the Longitudinal Valley reveals uplift with a rate of 5 - 10 mm yr-1. Outside of the tablelands, the rest of the Longitudinal Valley flat area indicates substantial subsidence of -10 to -20 mm yr-1. Finally, it appears that the west-dipping blind fault under the eastern side of the Central Range does not play a significant role on interseismic deformation with subsidence rate of -5 to -10 mm yr-1.

  2. Toward Continuous GPS Carrier-Phase Time Transfer: Eliminating the Time Discontinuity at an Anomaly.

    Science.gov (United States)

    Yao, Jian; Levine, Judah; Weiss, Marc

    2015-01-01

    The wide application of Global Positioning System (GPS) carrier-phase (CP) time transfer is limited by the problem of boundary discontinuity (BD). The discontinuity has two categories. One is "day boundary discontinuity," which has been studied extensively and can be solved by multiple methods [1-8]. The other category of discontinuity, called "anomaly boundary discontinuity (anomaly-BD)," comes from a GPS data anomaly. The anomaly can be a data gap (i.e., missing data), a GPS measurement error (i.e., bad data), or a cycle slip. Initial study of the anomaly-BD shows that we can fix the discontinuity if the anomaly lasts no more than 20 min, using the polynomial curve-fitting strategy to repair the anomaly [9]. However, sometimes, the data anomaly lasts longer than 20 min. Thus, a better curve-fitting strategy is in need. Besides, a cycle slip, as another type of data anomaly, can occur and lead to an anomaly-BD. To solve these problems, this paper proposes a new strategy, i.e., the satellite-clock-aided curve fitting strategy with the function of cycle slip detection. Basically, this new strategy applies the satellite clock correction to the GPS data. After that, we do the polynomial curve fitting for the code and phase data, as before. Our study shows that the phase-data residual is only ~3 mm for all GPS satellites. The new strategy also detects and finds the number of cycle slips by searching the minimum curve-fitting residual. Extensive examples show that this new strategy enables us to repair up to a 40-min GPS data anomaly, regardless of whether the anomaly is due to a data gap, a cycle slip, or a combination of the two. We also find that interference of the GPS signal, known as "jamming", can possibly lead to a time-transfer error, and that this new strategy can compensate for jamming outages. Thus, the new strategy can eliminate the impact of jamming on time transfer. As a whole, we greatly improve the robustness of the GPS CP time transfer.

  3. Tightly-coupled real-time analysis of GPS and accelerometer data for translational and rotational ground motions and application to earthquake and tsunami early warning

    Science.gov (United States)

    Geng, J.; Bock, Y.; Melgar, D.; Hasse, J.; Crowell, B. W.

    2013-12-01

    High-rate GPS can play an important role in earthquake early warning (EEW) systems for large (>M6) events by providing permanent displacements immediately as they are achieved, to be used in source inversions that can be repeatedly updated as more information becomes available. This is most valuable to implement at a site very near the potential source rupture, where broadband seismometers are likely to clip, and accelerometer data cannot be objectively integrated to produce reliable displacements in real time. At present, more than 525 real-time GPS stations have been established in western North America, which are being integrated into EEW systems. Our analysis technique relies on a tightly-coupled combination of GPS and accelerometer data, an extension of precise point positioning with ambiguity resolution (PPP-AR). We operate a PPP service based on North American stations available through the IGS and UNAVCO/PBO. The service provides real-time satellite clock and fractional-cycle bias products that allow us to position individual client stations in the zone of deformation. The service reference stations are chosen to be further than 200 km from the primary zones of tectonic deformation in the western U.S. to avoid contamination of the satellite products during a large seismic event. At client stations, accelerometer data are applied as tight constraints on the positions between epochs in PPP-AR, which improves cycle-slip repair and rapid ambiguity resolution after GPS outages. Furthermore, we estimate site displacements, seismic velocities, and coseismic ground tilts to facilitate the analysis of ground motion characteristics and the inversion for source mechanisms. The seismogeodetic displacement and velocity waveforms preserves the detection of P wave arrivals, and provides P-wave arrival displacement that is key new information for EEW. Our innovative solution method for coseismic tilts mitigates an error source that has continually plagued strong motion

  4. Precision GPS orbit determination strategies for an earth orbiter and geodetic tracking system

    Science.gov (United States)

    Lichten, Stephen M.; Bertiger, Willy I.; Border, James S.

    1988-01-01

    Data from two 1985 GPS field tests were processed and precise GPS orbits were determined. With a combined carrier phase and pseudorange, the 1314-km repeatability improves substantially to 5 parts in 10 to the 9th (0.6 cm) in the north and 2 parts in 10 to the 8th (2-3 cm) in the other components. To achieve these levels of repeatability and accuracy, it is necessary to fine-tune the GPS solar radiation coefficients and ground station zenith tropospheric delays.

  5. Validation of MODIS integrated water vapor product against reference GPS data at the Iberian Peninsula

    Science.gov (United States)

    Vaquero-Martínez, Javier; Antón, Manuel; Ortiz de Galisteo, José Pablo; Cachorro, Victoria E.; Costa, Maria João; Román, Roberto; Bennouna, Yasmine S.

    2017-12-01

    In this work, the water vapor product from MODIS (MODerate-resolution Imaging Spectroradiometer) instrument, on-board Aqua and Terra satellites, is compared against GPS water vapor data from 21 stations in the Iberian Peninsula as reference. GPS water vapor data is obtained from ground-based receiver stations which measure the delay caused by water vapor in the GPS microwave signals. The study period extends from 2007 until 2012. Regression analysis in every GPS station show that MODIS overestimates low integrated water vapor (IWV) data and tends to underestimate high IWV data. R2 shows a fair agreement, between 0.38 and 0.71. Inter-quartile range (IQR) in every station is around 30-45%. The dependence on several parameters was also analyzed. IWV dependence showed that low IWV are highly overestimated by MODIS, with high IQR (low precision), sharply decreasing as IWV increases. Regarding dependence on solar zenith angle (SZA), performance of MODIS IWV data decreases between 50° and 90°, while night-time MODIS data (infrared) are quite stable. The seasonal cycles of IWV and SZA cause a seasonal dependence on MODIS performance. In summer and winter, MODIS IWV tends to overestimate the reference IWV value, while in spring and autumn the tendency is to underestimate. Low IWV from coastal stations is highly overestimated (∼60%) and quite imprecise (IQR around 60%). On the contrary, high IWV data show very little dependence along seasons. Cloud-fraction (CF) dependence was also studied, showing that clouds display a negligible impact on IWV over/underestimation. However, IQR increases with CF, except in night-time satellite values, which are quite stable.

  6. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models.

    Science.gov (United States)

    Afifi, Akram; El-Rabbany, Ahmed

    2015-06-19

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada's GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference.

  7. Transition of NOAA's GPS-Met Data Acquisition and Processing System to the Commercial Sector: Inital Results

    Science.gov (United States)

    Jackson, Michael; Blatt, Stephan; Holub, Kirk

    2015-04-01

    In April of 2014, NOAA/OAR/ESRL Global Systems Division (GSD) and Trimble, in collaboration with Earth Networks, Inc. (ENI) signed a Cooperative Research and Development Agreement (CRADA) to transfer the existing NOAA GPS-Met Data Acquisition and Processing System (GPS-Met DAPS) technology to a commercial Trimble/ENI partnership. NOAA's GPS-Met DAPS is currently operated in a pseudo-operational mode but has proven highly reliable and running at over 95% uptime. The DAPS uses the GAMIT software to ingest dual frequency carrier phase GPS/GNSS observations and ancillary information such as real-time satellite orbits to estimate the zenith-scaled tropospheric (ZTD) signal delays and, where surface MET data are available, retrieve integrated precipitable water vapor (PWV). The NOAA data and products are made available to end users in near real-time. The Trimble/ENI partnership will use the Trimble Pivot™ software with the Atmosphere App to calculate zenith tropospheric (ZTD), tropospheric slant delay, and integrated precipitable water vapor (PWV). Evaluation of the Trimble software is underway starting with a comparison of ZTD and PWV values determined from four sub networks of GPS stations located 1. near NOAA Radiosonde Observation (Upper-Air Observation) launch sites; 2. Stations with low terrain/high moisture variability (Gulf Coast); 3. Stations with high terrain/low moisture variability (Southern California); and 4. Stations with high terrain/high moisture variability (high terrain variability elev. > 1000m). For each network GSD and T/ENI run the same stations for 30 days, compare results, and perform an evaluation of the long-term solution accuracy, precision and reliability. Metrics for success include T/ENI PWV estimates within 1.5 mm of ESRL/GSD's estimates 95% of the time (ZTD uncertainty of less than 10 mm 95% of the time). The threshold for allowable variations in ZTD between NOAA GPS-Met and T/ENI processing are 10mm. The CRADA 1&2 Trimble processing

  8. GPS/MEMS IMU/Microprocessor Board for Navigation

    Science.gov (United States)

    Gender, Thomas K.; Chow, James; Ott, William E.

    2009-01-01

    A miniaturized instrumentation package comprising a (1) Global Positioning System (GPS) receiver, (2) an inertial measurement unit (IMU) consisting largely of surface-micromachined sensors of the microelectromechanical systems (MEMS) type, and (3) a microprocessor, all residing on a single circuit board, is part of the navigation system of a compact robotic spacecraft intended to be released from a larger spacecraft [e.g., the International Space Station (ISS)] for exterior visual inspection of the larger spacecraft. Variants of the package may also be useful in terrestrial collision-detection and -avoidance applications. The navigation solution obtained by integrating the IMU outputs is fed back to a correlator in the GPS receiver to aid in tracking GPS signals. The raw GPS and IMU data are blended in a Kalman filter to obtain an optimal navigation solution, which can be supplemented by range and velocity data obtained by use of (l) a stereoscopic pair of electronic cameras aboard the robotic spacecraft and/or (2) a laser dynamic range imager aboard the ISS. The novelty of the package lies mostly in those aspects of the design of the MEMS IMU that pertain to controlling mechanical resonances and stabilizing scale factors and biases.

  9. Comparison of a low and a middle latitude GPS-TEC in Africa during ...

    African Journals Online (AJOL)

    In this work, we compared TEC values at Libreville (a low latitude station) with Sutherland (a middle latitude station) over Africa using Global Positioning System (GPS) receivers during high solar activity (HSA), moderate solar activity (MSA) and low solar activity (LSA). Apart from our confirmation that high, moderate and low ...

  10. GPS measurements in Satakunta area

    International Nuclear Information System (INIS)

    Poutanen, M.; Nyberg, S.; Ahola, J.

    2010-10-01

    The Finnish Geodetic Institute, the Geological Survey of Finland, Posiva Ltd and municipalities in the district of Satakunta launched the GeoSatakunta research program in 2002 to carry out interdisciplinary studies on regional bedrock stress field and to apply the results e.g. in land use planning in the Satakunta area. The area was chosen for many reasons. Its geological diversity, extensive multi-disciplinary data coverage, and various interests of participants made the area suitable for the project. The purpose of the GPS observations is to get detailed information on recent crustal deformations in the area. The Finnish Geodetic Institute maintains e.g. national GPS network, FinnRef, and since 1995 a local research network in the Olkiluoto area. The Satakunta network differs from these, and this is the first time to obtain such detailed information of a regional network in Finland. The Satakunta GPS network consists of 13 concrete pillars for episodic GPS campaigns and the Olkiluoto permanent GPS station in the FinnRef network. The distances between the concrete pillars are 10-15 km, and the sites were chosen in a co-operation with the Geological Survey of Finland taking into account the geological structures in the area. The City of Pori made the final reconnaissance in the field and constructed eight pillars in 2003. The original network was expanded in 2005-2006 in Eurajoki and Rauma, and at the City of Rauma joined the co-operation. The five new pillars join the previous Olkiluoto network into the Satakunta network. There have been three annual GPS campaigns in 2003-2008. Time series of the Satakunta network are shorter than in the Olkiluoto network, and also the distances are longer. Therefore, the same accuracy than in Olkiluoto has not yet achieved. However, mm-sized movements can be excluded. Estimated velocities were small (0.2 mm/a) and mostly statistically insignificant because of relatively short time series. In this publication we describe the

  11. Applications of GPS technologies to field sports.

    Science.gov (United States)

    Aughey, Robert J

    2011-09-01

    Global positioning system (GPS) technology was made possible after the invention of the atomic clock. The first suggestion that GPS could be used to assess the physical activity of humans followed some 40 y later. There was a rapid uptake of GPS technology, with the literature concentrating on validation studies and the measurement of steady-state movement. The first attempts were made to validate GPS for field sport applications in 2006. While GPS has been validated for applications for team sports, some doubts continue to exist on the appropriateness of GPS for measuring short high-velocity movements. Thus, GPS has been applied extensively in Australian football, cricket, hockey, rugby union and league, and soccer. There is extensive information on the activity profile of athletes from field sports in the literature stemming from GPS, and this includes total distance covered by players and distance in velocity bands. Global positioning systems have also been applied to detect fatigue in matches, identify periods of most intense play, different activity profiles by position, competition level, and sport. More recent research has integrated GPS data with the physical capacity or fitness test score of athletes, game-specific tasks, or tactical or strategic information. The future of GPS analysis will involve further miniaturization of devices, longer battery life, and integration of other inertial sensor data to more effectively quantify the effort of athletes.

  12. GPS horizontal deformation model in the southern region of the Iberian Peninsula and northern Africa (SPINA)

    International Nuclear Information System (INIS)

    Rosado Moscoso, B.; Fernández-Ros, A.; Jiménez Jiménez, A.; Berrocoso Domínguez, M.

    2017-01-01

    Global Navigation Satellite System (GNSS), and in particular Global Positioning System (GPS) technology provides a powerful tool for studying geodynamic processes. As a consequence of GPS studies, it is now possible to analyze the interaction between tectonic plates in order to evaluate and establish the characteristics of their boundaries. In this study, our main interest is to focus on the time series analysis obtained from observations of GNSS-GPS satellites. Each GPS observation session provides topocentric geodetic coordinates (east, north, elevation) of the permanent stations that constitute the geodetic network established for this purpose. This paper shows a detailed topocentric coordinate time-series study for sites belonging to what we call the SPINA network, which stands for south of the Iberian Peninsula, north of Africa region. The series under study are processed by techniques of relative positioning with respect to the IGS (International GNSS Service) reference station located in Villafranca. These times series have been analyzed using filter processes, harmonic adjustments and wavelets. A surface velocity field is derived from the time series of daily solutions for each station, whose observations span 8 years or longer. This allows us to obtain a horizontal displacement model to show the regional geodynamic main characteristics. [es

  13. Development of the Plate Boundary Observatory GPS Low Latency Salton Trough Radio Network

    Science.gov (United States)

    Walls, C.; Miller, S.; Wilson, B.; Lawrence, S.; Arnitz, E.

    2008-05-01

    UNAVCO is developing a 20 GPS station low latency radio network that spans the San Andreas and San Jacinto faults in the region of highest strain in southern California and the narrowest part of the North America-Pacific plate boundary. The Salton Trough Radio Network (STRN) is instrumented with Ethernet bridge Intuicom EB6+ (900 MHz) radios to transmit a high rate low latency data stream from each permanent GPS site for the purpose of the following: 1) telemeter 15 second data (1 MB/day/station) to the Plate Boundary Observatory archive, 2) accommodate the timely download of 1 and 5 sample per second data following large earthquakes (4 MB/hour/station), and 3) test the UStream of 1Hz BINEX and RTCM data. Three of four phases have been completed. Office radio testing yielded transfer rates of 30-50 KB/s with subsecond latency while streaming 1 Hz data. Latency climbed to ~1.8 seconds while simultaneously streaming 1 Hz and downloading hourly 1 and 5 sample per second data files. Field testing demonstrated rates on the order of 30 KB/s. At present the radios are installed and have transfer rates of 10-40 KB/s between sites that span 10-32 km. The final phase will be the installation of the main telemetry relay where master radios will be connected to a high speed ISP near the town of Brawley. The high-rate low latency UStream data will be available to researchers who are developing prototype earthquake early warning systems in Southern California. A goal of the STRN is to make the data available rapidly enough for GPS-derived coseismic and dynamic displacements to be integrated into early warning system earthquake models. The improved earthquake models will better assist emergency response. UStream data will also aid surveyors who wish to use PBO GPS stations as permanent, high-quality base stations in real-time kinematic surveys.

  14. Planning in the Continuous Operations Environment of the International Space Station

    Science.gov (United States)

    Maxwell, Theresa; Hagopian, Jeff

    1996-01-01

    The continuous operation planning approach developed for the operations planning of the International Space Station (ISS) is reported on. The approach was designed to be a robust and cost-effective method. It separates ISS planning into two planning functions: long-range planning for a fixed length planning horizon which continually moves forward as ISS operations progress, and short-range planning which takes a small segment of the long-range plan and develops a detailed operations schedule. The continuous approach is compared with the incremental approach, the short and long-range planning functions are described, and the benefits and challenges of implementing a continuous operations planning approach for the ISS are summarized.

  15. Observations on the Reliability of Rubidium Frequency Standards on Block 2/2A GPS Satellites

    Science.gov (United States)

    Dieter, Gary L.

    1996-01-01

    Currently, the block 2/2A Global Positioning System (GPS) satellites are equipped with two rubidium frequency standards. These frequency standards were originally intended to serve as the back-ups to two cesium frequency standards. As the constellation ages, the master Control Station is forced to initialize and increasing number or rubidium frequency standards. Unfortunately the operational use of these frequency standards has not lived up to initial expectations. Although the performance of these rubidium frequency standards has met and even exceeded GPS requirements, their reliability has not. The number of unscheduled outage times and the short operational lifetimes of the rubidium frequency standards compare poorly to the track record of the cesium frequency standards. Only a small number of rubidium frequency standards have actually been made operational. Of these, a large percentage have exhibited poor reliability. If this trend continues, it is unlikely that the rubidium frequency standards will help contribute to the navigation payload meeting program specification.

  16. Comprehensive seismic monitoring of the Cascadia megathrust with real-time GPS

    Science.gov (United States)

    Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.; Webb, F.

    2013-12-01

    We have developed a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone based on 1- and 5-second point position estimates computed within the ITRF08 reference frame. A Kalman filter stream editor that uses a geometry-free combination of phase and range observables to speed convergence while also producing independent estimation of carrier phase biases and ionosphere delay pre-cleans raw satellite measurements. These are then analyzed with GIPSY-OASIS using satellite clock and orbit corrections streamed continuously from the International GNSS Service (IGS) and the German Aerospace Center (DLR). The resulting RMS position scatter is less than 3 cm, and typical latencies are under 2 seconds. Currently 31 coastal Washington, Oregon, and northern California stations from the combined PANGA and PBO networks are analyzed. We are now ramping up to include all of the remaining 400+ stations currently operating throughout the Cascadia subduction zone, all of which are high-rate and telemetered in real-time to CWU. These receivers span the M9 megathrust, M7 crustal faults beneath population centers, several active Cascades volcanoes, and a host of other hazard sources. To use the point position streams for seismic monitoring, we have developed an inter-process client communication package that captures, buffers and re-broadcasts real-time positions and covariances to a variety of seismic estimation routines running on distributed hardware. An aggregator ingests, re-streams and can rebroadcast up to 24 hours of point-positions and resultant seismic estimates derived from the point positions to application clients distributed across web. A suite of seismic monitoring applications has also been written, which includes position time series analysis, instantaneous displacement vectors, and peak ground displacement contouring and mapping. We have also implemented a continuous estimation of finite-fault slip along the Cascadia megathrust

  17. GPS measurements along the North Anatolian fault zone ont he Mid-Anatolia segment

    Science.gov (United States)

    Yavasoglu, H.; Team

    2003-04-01

    the first campaign, SNGR (Sungurlu) and IHGZ (Ilhangazi) and for the second campaign IHGZ (Ihsangazi) and ALAC (Alaca) stations were selected as continuous stations to control the network against any error and connect the measurements that are observed at the different times. The duration of measurement in each day was about 8 hours with an interval of 15 seconds. All stations were observed at least three days. 4. CONCLUSION The GPS measurements for the first and second campaigns are processed by using GAMIT/GLOBK software package. The results given for GPS measurements still need to be examined against the gross errors might be caused by antenna types for those are not or new in IGS standard tables with the antenna height measurements. As the first two campaigns results; • Sungurlu fault has a height velocity as NAF, • There is anomaly at the station of the Ihsangazi, • Velocity of NAF has been calculated about 2 cm.

  18. On Chinese National Continuous Operating Reference Station System of GNSS

    Directory of Open Access Journals (Sweden)

    CHEN Junyong

    2007-11-01

    Full Text Available Objective: Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System can maintain a accurate, 3D, geocentric and dynamic reference coordinate frame in the corresponding area, can provide positioning and navigation service. It can also serve for the meteorology, geodynamics, earthquake monitoring and Location Based services (LBS etc in the same area. Until now, our country can’t provide a facing National CORS System serving for every profession and trade, and the national sharing platform of CORS System resources has not been established. So this paper discusses some valuable insight how to construct the National CORS System in China. Method: Constructing goal、Service object、CORS distribution、CORS geographic、geology and communication environment and other factors, are major considerations for the Constructing the National CORS System. Moreover, constructing GNSS CORS is more specific, mainly from four aspects, namely site-selection、civil construction、security measures and equipment-selection for consideration. Outcome: The project of the Constructing Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System in china is put forward, and is discussed from goal、principle、project and other for construction. Some meaning thought how to construct the National CORS System is submitted Conclusion: The Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System in china is the lack of a unified planning and design in the national level. So far, the national CORS system serving all walks of life has not been provided, and the national sharing platform of CORS System resources has not been established The primary mission of the Global navigation satellite system (GNSS Continuous Operating Reference Station (CORS System in china is as follows: using data set of GNSS and receiving, transport, process, integration, transmit information and

  19. Comparison of GLONASS and GPS Time Transfers

    Science.gov (United States)

    Daly, P.; Koshelyaevsky, N. B.; Lewandowski, W.; Petit, G.; Thomas, C.

    1993-01-01

    The Russian global space navigation system GLONASS could provide a technique similar to GPS for international time comparison. The main limitation to its use for time transfer is the lack of commercially available time receivers. The University of Leeds built a GPS/GLONASS receiver five years ago and since then has provided continuous information about GLONASS time and its comparison with GPS time. For the last two years the VNIIFTRI and several other Russian time laboratories have used Russian-built GLONASS navigation receivers for time comparisons. Since June 1991, the VNIIFTRI has operated a GPS time receiver which offers, for the first time, an opportunity for the direct comparison of time transfers using GPS and GLONASS. This seven-month experiment shows that even with relatively imprecise data recording and processing, in terms of time metrology, GLONASS can provide continental time transfer at a level of several tens of nanoseconds.

  20. Development of Continuous Speed Profile Using GPS at Johor Federal Roads F0050

    Directory of Open Access Journals (Sweden)

    Prasetijo Joewono

    2016-01-01

    Full Text Available Road accidents are one of the most relevant issues in today’s society. It causes hundreds of accidents every year from over the world. Every year 1.2 million of people are killed and between 20 and 50 million people are offended due to the road accidents. Three main types of accidents in Malaysia is collision with passenger cars, collisions with other motorcycles and single-motorcycle accidents. F0050 is ranked the district with the highest road fatalities in Johor for five consecutive years. Motorcyclists and their pillion riders were the highest contributors – 60% or 648 fatalities, followed by car drivers and passengers numbering 266 fatalities. One reason of accident occurrence can be lack of road design consistency which most drivers make fewer errors in the vicinity of geometric features. Geometric design consistency is emerging as an important component in highway design relate to the safety performance. The result shows the continuous speed profiles along F0050. Since motorcyclist have a higher fatality per distance traveled, this study will develop the potential relationship between design consistency which is represented by continuous speed profiles by using Global Positioning System (GPS.

  1. Global GPS Ionospheric Modelling Using Spherical Harmonic Expansion Approach

    Directory of Open Access Journals (Sweden)

    Byung-Kyu Choi

    2010-12-01

    Full Text Available In this study, we developed a global ionosphere model based on measurements from a worldwide network of global positioning system (GPS. The total number of the international GPS reference stations for development of ionospheric model is about 100 and the spherical harmonic expansion approach as a mathematical method was used. In order to produce the ionospheric total electron content (TEC based on grid form, we defined spatial resolution of 2.0 degree and 5.0 degree in latitude and longitude, respectively. Two-dimensional TEC maps were constructed within the interval of one hour, and have a high temporal resolution compared to global ionosphere maps which are produced by several analysis centers. As a result, we could detect the sudden increase of TEC by processing GPS observables on 29 October, 2003 when the massive solar flare took place.

  2. An investigation of airborne GPS/INS for high accuracy position and velocity determination

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H.; Cannon, M.E. [Calgary Univ., AB (Canada). Dept. of Geomatics Engineering; Owen, T.E.; Meindl, M.A. [Sandia National Labs., Albuquerque, NM (United States)

    1993-12-31

    An airborne test using a differential GPS-INS system in a Twin Otter was conducted by Sandia National Laboratories to assess the feasibility of using the integrated system for cm-level position and cm/s velocity. The INS is a miniaturized ring-laser gyro IMU jointly developed by Sandia and Honeywell while the GPS system consists of the NovAtel GPSCard{trademark}. INS position, velocity and attitude data were computed using Sandia`s SANDAC flight computer system and logged at 4 Hz and GPS data was acquired at a 1 Hz rate. The mission was approximately 2.5 hours in duration and the aircraft reached separations of up to 19 km from the base station. The data was post-processed using a centralized Kalman filter approach in which the double differenced carrier phase measurements are used to update the INS data. The INS position is in turn used to detect and correct GPS carrier phase cycle slips and also to bridge GPS outages. Results are presented for the GPS-only case and also for integrated GPS/INS.

  3. Improved vertical displacements induced by a refined thermal expansion model and its quantitative analysis in GPS height time series

    Science.gov (United States)

    Wang, Kaihua; Chen, Hua; Jiang, Weiping; Li, Zhao; Ma, Yifang; Deng, Liansheng

    2018-04-01

    There are apparent seasonal variations in GPS height time series, and thermal expansion is considered to be one of the potential geophysical contributors. The displacements introduced by thermal expansion are usually derived without considering the annex height and underground part of the monument (e.g. located on roof or top of the buildings), which may bias the geophysical explanation of the seasonal oscillation. In this paper, the improved vertical displacements are derived by a refined thermal expansion model where the annex height and underground depth of the monument are taken into account, and then 560 IGS stations are adopted to validate the modeled thermal expansion (MTE) displacements. In order to evaluate the impact of thermal expansion on GPS heights, the MTE displacements of 80 IGS stations with less data discontinuities are selected to compare with their observed GPS vertical (OGV) displacements with the modeled surface loading (MSL) displacements removed in advance. Quantitative analysis results show the maximum annual and semiannual amplitudes of the MTE are 6.65 mm (NOVJ) and 0.51 mm (IISC), respectively, and the maximum peak-to-peak oscillation of the MTE displacements can be 19.4 mm. The average annual amplitude reductions are 0.75 mm and 1.05 mm respectively after removing the MTE and MSL displacements from the OGV, indicating the seasonal oscillation induced by thermal expansion is equivalent to >75% of the impact of surface loadings. However, there are rarely significant reductions for the semiannual amplitude. Given the result in this study that thermal expansion can explain 17.3% of the annual amplitude in GPS heights on average, it must be precisely modeled both in GPS precise data processing and GPS time series analysis, especially for those stations located in the middle and high latitudes with larger annual temperature oscillation, or stations with higher monument.

  4. Continuing inflation at Three Sisters volcanic center, central Oregon Cascade Range, USA, from GPS, leveling, and InSAR observations

    Science.gov (United States)

    Dzurisin, Daniel; Lisowski, Michael; Wicks, Charles W.

    2009-12-01

    Uplift of a broad area centered ~6 km west of the summit of South Sister volcano started in September 1997 (onset estimated from model discussed in this paper) and was continuing when surveyed in August 2006. Surface displacements were measured whenever possible since August 1992 with satellite radar interferometry (InSAR), annually since August 2001 with GPS and leveling surveys, and with continuous GPS since May 2001. The average maximum displacement rate from InSAR decreased from 3-5 cm/yr during 1998-2001 to ~1.4 cm/yr during 2004-2006. The other datasets show a similar pattern, i.e., surface uplift and extension rates decreased over time but deformation continued through August 2006. Our best-fit model to the deformation data is a vertical, prolate, spheroidal point-pressure source located 4.9-5.4 km below the surface. The source inflation rate decreased exponentially during 2001-2006 with a 1/ e decay time of 5.3 ± 1.1 years. The net increase in source volume from September 1997 to August 2006 was 36.5-41.9 x 106 m3. A swarm of ~300 small ( M max = 1.9) earthquakes occurred beneath the deforming area in March 2004; no other unusual seismicity has been noted. Similar deformation episodes in the past probably would have gone unnoticed if, as we suspect, most are small intrusions that do not culminate in eruptions.

  5. The use of vertical and horizontal surface displacements at EPOS GNSS stations in Greenland to study ice sheet mass balance

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas

    2014-01-01

    The European Plate Observing System (EPOS) includes e.g. seismic and geodetic permanent national monitoring networks on a European scale. The main purpose is to create data platforms for monitoring and study geophysics processes like earthquakes, volcanoes, surface dynamics and tectonics. Here we...... present data from arctic GNSS stations included in the EPOS network. The arctic EPOS GNSS network consists of 16 continuous GPS stations spread across Greenland. This network is able to map the velocity fields associated with, plate motion, postglacial rebound and improve our understanding of tectonic...

  6. Remote reference processing in MT survey using GPS clock; MT ho ni okeru GPS wo mochiita jikoku doki system

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, K; Inoue, J; Takasugi, S [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Kosuge, S [DRICO Co. Ltd., Tokyo (Japan)

    1996-05-01

    A report is given about the application of a synchronizing system using clock signals from GPS satellites to a remote reference method which is a technique to reject noise from the MT method. This system uses the C/A code out of the L1 band waves from NAVSTAR/GPS satellites. The new system was operated in MT method-using investigations conducted at China Peninsula, Aichi Prefecture, and Izu Peninsula, Shizuoka Prefecture, with the reference points placed several 100km away in Iwate Prefecture on both occasions. It was found as the result that it is basically possible to catch signals from the GPS at any place, that the signals are accurate enough to be applied to time synchronization for the MT method, and that the signals assure a far remote reference method with a separation of several 100km between the sites involved. The referencing process at high frequencies whose feasibility had been doubted proved a success when highly correlated signals were exchanged between two stations over a distance of several 100km. 5 refs., 9 figs.

  7. 75 FR 8928 - Announcement of IS-GPS-200, IS-GPS-705, IS-GPS-800 Interface Control Working Group (ICWG...

    Science.gov (United States)

    2010-02-26

    ... DEPARTMENT OF DEFENSE Department of the Air Force Announcement of IS-GPS-200, IS-GPS-705, IS-GPS... document/s IS-GPS-200E (NAVSTAR GPS Space Segment/Navigation User Interfaces), IS-GPS-705A (NAVSTAR GPS Space Segment/User Segment L5 Interfaces), and IS-GPS-800A (NAVSTAR GPS Space Segment/User Segment L1C...

  8. GPS Time Synchronization in School-Network Cosmic Ray Detectors

    Science.gov (United States)

    Berns, H.-G.; Burnett, T. H.; Gran, R.; Wilkes, R. J.

    2004-06-01

    The QuarkNet DAQ card for school-network cosmic ray detectors provides a low-cost alternative to using standard particle and nuclear physics fast pulse electronics modules. The board, which can be produced at a cost of less than $500.00 (USD), produces trigger time and pulse edge time data for 2- to 4-fold coincidence levels via a universal RS232 serial port interface, usable with any PC. Individual detector stations, each consisting of four scintillation counter modules, front-end electronics, and a GPS receiver, produce a stream of data in form of ASCII text strings in identifiable set of formats for different functions. The card includes a low-cost GPS receiver module, which permits time-stamping event triggers to about 50 nanosecond accuracy in UTC between widely separated sites. The technique used for obtaining precise GPS time employs the 1PPS signal, which is not normally available to users of the commercial GPS module. We had the stock model slightly custom-modified to access this signal. The method for deriving time values was adapted from methods developed for the K2K long-baseline neutrino experiment. Performance of the low-cost GPS module used is compared to that of a more expensive unit with known quality.

  9. Ionospheric Response to the Total Solar Eclipse of 22 July 2009 as Deduced from VLBI and GPS Data

    Science.gov (United States)

    Guo, L.; Shu, F. C.; Zheng, W. M.; Kondo, T.; Ichikawa, R.; Hasegawa, S.; Sekido, M.

    2010-01-01

    A total solar eclipse occurred over China at latitudes of about 30 N on the morning of 22 July 2009, providing a unique opportunity to investigate the influence of the sun on the earth's upper ionosphere. GPS observations from Shanghai GPS Local Network and VLBI observations from stations Shanghai, Urumqi, and Kashima were used to observe the response of TEC to the total solar eclipse. From the GPS data reduction, the sudden decrease of TEC at the time of the eclipse, amounting to 2.8 TECU, and gradual increase of TEC after the eclipse were found by analyzing the diurnal variations. More distinctly, the variations of TEC were studied along individual satellite passes. The delay in reaching the minimum level of TEC with the maximum phase of eclipse was 5-10 min. Besides, we also compared the ionospheric activity derived from different VLBI stations with the GPS results and found a strong correlation between them.

  10. Strategy for the detection of vertical movements in historical environments from fast high-precision GPS measurements

    International Nuclear Information System (INIS)

    Pesci, Arianna; Casula, Giuseppe; Teza, Giordano; Bonali, Elena; Boschi, Enzo

    2012-01-01

    A continuous global positioning system station (CGPS) provides accurate coordinate time series, while episodic GPS stations (EGPSs), which operate throughout short measurement sessions, are generally used to improve the monitoring spatial density. In an urban environment, EGPSs are typically equipped with removable mounts (topographical tripod or bipod). In this paper, a method is proposed to evaluate vertical surface motions by means of differential measurements of removable mount EGPSs with respect to a nearby reference CGPS. For each day, the correct position of this CGPS is used as reference for the quick differential EGPS measurements to allow the correction of their positions. The method is applied to evaluate subsidence in the centre of Bologna, which is characterized by significant vertical movements, probably related to seasonal climatic effects, and where these movements differ significantly even among closely spaced locations. (paper)

  11. Online continuing medical education (CME) for GPs: does it work? A systematic review.

    Science.gov (United States)

    Thepwongsa, Isaraporn; Kirby, Catherine N; Schattner, Peter; Piterman, Leon

    2014-10-01

    Numerous studies have assessed the effectiveness of online continuing medical education (CME) designed to improve healthcare professionals' care of patients. The effects of online educational interventions targeted at general practitioners (GP), however, have not been systematically reviewed. A computer search was conducted through seven databases for studies assessing changes in GPs' knowledge and practice, or patient outcomes following an online educational intervention. Eleven studies met the eligibility criteria. Most studies (8/11, 72.7%) found a significant improvement in at least one of the following outcomes: satisfaction, knowledge or practice change. There was little evidence for the impact of online CME on patient outcomes. Variability in study design, characteristics of online and outcome measures limited conclusions on the effects of online CME. Online CME could improve GP satisfaction, knowledge and practices but there are very few well-designed studies that focus on this delivery method of GP education.

  12. Hacking GPS

    CERN Document Server

    Kingsley-Hughes, Kathie

    2005-01-01

    * This is the "user manual" that didn't come with any of the 30 million GPS receivers currently in use, showing readers how to modify, tweak, and hack their GPS to take it to new levels!* Crazy-cool modifications include exploiting secret keycodes, revealing hidden features, building power cords and cables, hacking the battery and antenna, protecting a GPS from impact and falls, making a screen protector, and solar-powering a GPS* Potential power users will take the function and performance of their GPS to a whole new level by hacking into the firmware and hacking into a PC connection with a GPS* Fear not! Any potentially dangerous mod (to the device) is clearly labeled, with precautions listed that should be taken* Game time! Readers can check out GPS games, check into hacking geocaching, and even use a GPS as a metal detector

  13. Chilean Antarctic Stations on King George Island

    Directory of Open Access Journals (Sweden)

    Katsutada Kaminuma

    2000-07-01

    Full Text Available The purpose of my visit to Chilean Antarctic Stations was to assess the present status of geophysical observations and research, as the South Shetland Island, West Antarctica, where the stations are located, are one of the most active tectonic regions on the Antarctic plate. The Instituto Antartico Chileno (INACH kindly gave me a chance to stay in Frei/Escudero Bases as an exchange scientist under the Antarctic Treaty for two weeks in January 2000. I stayed in Frei Base as a member of a geological survey group named "Tectonic Evolution of the Antarctic Peninsula" which was organized by Prof. F. Herve, University of Chile, from January 05 to 19,2000. All my activity in the Antarctic was organized by INACH. During my stay in Frei Base, I also visited Bellingshausen (Russian, Great Wall (China and Artigas (Uruguay stations. All these stations are located within walking distance of Frei Base. King Sejong Station (Korea, located 10km east from Frei Base, and Jubany Base (Argentine, another 6km south-east from King Sejong Station, were also visited with the aid of a zodiac boat that was kindly operated for us by King Sejong Station. All stations except Escudero Base carry out meteorological observations. The seismological observations in Frei Base are operated by Washington State University of the U. S. monitoring of earthquake activity and three-component geomagnetic observations are done at King Sejong and Great Wall stations. Earth tide is monitored at Artigas Base. Continuous monitoring of GPS and gravity change are planned at King Sejong Station in the near future. Scientific research activities of each country in the area in the 1999/2000 Antarctic summer season were studied and the logistic ability of all stations was also assessed for our future international cooperation.

  14. GPS observations of coseismic deformation following the 2016, August 24, Mw 6 Amatrice earthquake (central Italy: data, analysis and preliminary fault model

    Directory of Open Access Journals (Sweden)

    Daniele Cheloni

    2016-11-01

    Full Text Available We used continuous Global Positioning System (GPS measurements to infer the fault geometry and the amount of coseismic slip associated to the August 24, 2016 Mw 6 Amatrice earthquake. We realized a three dimensional coseismic displacement field by combining different geodetic solutions generated by three independent analyses of the raw GPS observations. The coseismic deformation field described in this work aims at representing a consensus solution that minimizes the systematic biases potentially present in the individual geodetic solutions. Because of the limited number of stations available we modeled the measured coseismic displacements using a uniform slip model, deriving the geometry and kinematics of the causative fault, finding good agreement between our geodetically derived fault plane and other seismological and geological observations.

  15. Precise orbit determination of Multi-GNSS constellation including GPS GLONASS BDS and GALIEO

    Science.gov (United States)

    Dai, Xiaolei

    2014-05-01

    In addition to the existing American global positioning system (GPS) and the Russian global navigation satellite system (GLONASS), the new generation of GNSS is emerging and developing, such as the Chinese BeiDou satellite navigation system (BDS) and the European GALILEO system. Multi-constellation is expected to contribute to more accurate and reliable positioning and navigation service. However, the application of multi-constellation challenges the traditional precise orbit determination (POD) strategy that was designed usually for single constellation. In this contribution, we exploit a more rigorous multi-constellation POD strategy for the ongoing IGS multi-GNSS experiment (MGEX) where the common parameters are identical for each system, and the frequency- and system-specified parameters are employed to account for the inter-frequency and inter-system biases. Since the authorized BDS attitude model is not yet released, different BDS attitude model are implemented and their impact on orbit accuracy are studied. The proposed POD strategy was implemented in the PANDA (Position and Navigation Data Analyst) software and can process observations from GPS, GLONASS, BDS and GALILEO together. The strategy is evaluated with the multi-constellation observations from about 90 MGEX stations and BDS observations from the BeiDou experimental tracking network (BETN) of Wuhan University (WHU). Of all the MGEX stations, 28 stations record BDS observation, and about 80 stations record GALILEO observations. All these data were processed together in our software, resulting in the multi-constellation POD solutions. We assessed the orbit accuracy for GPS and GLONASS by comparing our solutions with the IGS final orbit, and for BDS and GALILEO by overlapping our daily orbit solution. The stability of inter-frequency bias of GLONASS and inter-system biases w.r.t. GPS for GLONASS, BDS and GALILEO were investigated. At last, we carried out precise point positioning (PPP) using the multi

  16. The performance of GPS time and frequency transfer: comment on ‘A detailed comparison of two continuous GPS carrier-phase time transfer techniques’

    Science.gov (United States)

    Petit, Gérard; Defraigne, Pascale

    2016-06-01

    The paper ‘A detailed comparison of two continuous GPS carrier-phase time transfer techniques’ (Yao et al 2015 Metrologia 52 666) presents the revised RINEX-shift (RRS) method, a technique using ‘classical precise point positioning (PPP)’ solutions on sliding batches and aiming at providing continuous time links. The authors claim the superiority of the RRS technique with respect to ‘classical PPP’ in terms of frequency stability and solving for discontinuities due to data gaps. It is shown here that these conclusions do not rely on physical principles, and are erroneous as they are driven by misinterpreted or corrupted PPP solutions. Using state-of-the-art PPP computation on the same data sets used in Yao et al’s paper (2015 Metrologia 52 666), we show that the stability of RRS is at best similar to that of ‘classical PPP’ (within statistical uncertainties). Furthermore, the RRS method of removing discontinuities in case of data gaps by interpolating the phase data should not be applied systematically as it can cause erroneous clock solutions when the data gaps are associated with a true phase discontinuity.

  17. Central and South America GPS geodesy - CASA Uno

    Science.gov (United States)

    Kellogg, James N.; Dixon, Timothy H.

    1990-01-01

    In January 1988, scientists from over 25 organizations in 13 countries and territories cooperated in the largest GPS campaign in the world to date. A total of 43 GPS receivers collected approximately 590 station-days of data in American Samoa, Australia, Canada, Colombia, Costa Rica, Ecuador, New Zealand, Norway, Panama, Sweden, United States, West Germany, and Venezuela. The experiment was entitled CASA Uno. Scientific goals of the project include measurements of strain in the northern Andes, subduction rates for the Cocos and Nazca plates beneath Central and South America, and relative motion between the Caribbean plate and South America. A second set of measurements are planned in 1991 and should provide preliminary estimates of crustal deformation and plate motion rates in the region.

  18. A different approach to the analysis of GPS scintillations data

    International Nuclear Information System (INIS)

    Forte, B.; Radicella, S.M.; Ezquer, R.G.

    2001-09-01

    Amplitude scintillations data from GPS have been analyzed. The objective is to estimate the impact of ionospheric scintillations at Satellite-Based Augmentation System (SBAS) Ranging and Integrity Monitoring Station (RIMS) level and at GPS user level. For this purpose a new approach to the problem has been considered. Data have been studied from the point of view of the impact of scintillations on the calculation of VTEC at pierce points and ionospheric grid points. An ionospheric grid of 5 deg. by 5 deg. surface squares has been assumed. From geometrical considerations and taking into account the basic principle to compute VTEC at grid points, with the data analyzed it is shown that very seldom scintillations can affect the calculation of a grid point VTEC. Data from all the RIMS and for the entire GPS satellites network must be analyzed simultaneously to describe a realistic scenario for the impact of scintillations on SBAS. Finally, GPS scintillation data have been analyzed at user level: service availability problems have been encountered. (author)

  19. Robust GPS autonomous signal quality monitoring

    Science.gov (United States)

    Ndili, Awele Nnaemeka

    The Global Positioning System (GPS), introduced by the U.S. Department of Defense in 1973, provides unprecedented world-wide navigation capabilities through a constellation of 24 satellites in global orbit, each emitting a low-power radio-frequency signal for ranging. GPS receivers track these transmitted signals, computing position to within 30 meters from range measurements made to four satellites. GPS has a wide range of applications, including aircraft, marine and land vehicle navigation. Each application places demands on GPS for various levels of accuracy, integrity, system availability and continuity of service. Radio frequency interference (RFI), which results from natural sources such as TV/FM harmonics, radar or Mobile Satellite Systems (MSS), presents a challenge in the use of GPS, by posing a threat to the accuracy, integrity and availability of the GPS navigation solution. In order to use GPS for integrity-sensitive applications, it is therefore necessary to monitor the quality of the received signal, with the objective of promptly detecting the presence of RFI, and thus provide a timely warning of degradation of system accuracy. This presents a challenge, since the myriad kinds of RFI affect the GPS receiver in different ways. What is required then, is a robust method of detecting GPS accuracy degradation, which is effective regardless of the origin of the threat. This dissertation presents a new method of robust signal quality monitoring for GPS. Algorithms for receiver autonomous interference detection and integrity monitoring are demonstrated. Candidate test statistics are derived from fundamental receiver measurements of in-phase and quadrature correlation outputs, and the gain of the Active Gain Controller (AGC). Performance of selected test statistics are evaluated in the presence of RFI: broadband interference, pulsed and non-pulsed interference, coherent CW at different frequencies; and non-RFI: GPS signal fading due to physical blockage and

  20. Relationships between GPS-signal propagation errors and EISCAT observations

    Directory of Open Access Journals (Sweden)

    N. Jakowski

    1996-12-01

    Full Text Available When travelling through the ionosphere the signals of space-based radio navigation systems such as the Global Positioning System (GPS are subject to modifications in amplitude, phase and polarization. In particular, phase changes due to refraction lead to propagation errors of up to 50 m for single-frequency GPS users. If both the L1 and the L2 frequencies transmitted by the GPS satellites are measured, first-order range error contributions of the ionosphere can be determined and removed by difference methods. The ionospheric contribution is proportional to the total electron content (TEC along the ray path between satellite and receiver. Using about ten European GPS receiving stations of the International GPS Service for Geodynamics (IGS, the TEC over Europe is estimated within the geographic ranges -20°≤ λ ≤40°E and 32.5°≤ Φ ≤70°N in longitude and latitude, respectively. The derived TEC maps over Europe contribute to the study of horizontal coupling and transport proces- ses during significant ionospheric events. Due to their comprehensive information about the high-latitude ionosphere, EISCAT observations may help to study the influence of ionospheric phenomena upon propagation errors in GPS navigation systems. Since there are still some accuracy limiting problems to be solved in TEC determination using GPS, data comparison of TEC with vertical electron density profiles derived from EISCAT observations is valuable to enhance the accuracy of propagation-error estimations. This is evident both for absolute TEC calibration as well as for the conversion of ray-path-related observations to vertical TEC. The combination of EISCAT data and GPS-derived TEC data enables a better understanding of large-scale ionospheric processes.

  1. Ionospheric threats to the integrity of airborne GPS users

    Science.gov (United States)

    Datta-Barua, Seebany

    The Global Positioning System (GPS) has both revolutionized and entwined the worlds of aviation and atmospheric science. As the largest and most unpredictable source of GPS positioning error, the ionospheric layer of the atmosphere, if left unchecked, can endanger the safety, or "integrity," of the single frequency airborne user. An augmentation system is a differential-GPS-based navigation system that provides integrity through independent ionospheric monitoring by reference stations. However, the monitor stations are not in general colocated with the user's GPS receiver. The augmentation system must protect users from possible ionosphere density variations occurring between its measurements and the user's. This study analyzes observations from ionospherically active periods to identify what types of ionospheric disturbances may cause threats to user safety if left unmitigated. This work identifies when such disturbances may occur using a geomagnetic measure of activity and then considers two disturbances as case studies. The first case study indicates the need for a non-trivial threat model for the Federal Aviation Administration's Local Area Augmentation System (LAAS) that was not known prior to the work. The second case study uses ground- and space-based data to model an ionospheric disturbance of interest to the Federal Aviation Administration's Wide Area Augmentation System (WAAS). This work is a step in the justification for, and possible future refinement of, one of the WAAS integrity algorithms. For both WAAS and LAAS, integrity threats are basically caused by events that may be occurring but are unobservable. Prior to the data available in this solar cycle, events of such magnitude were not known to be possible. This work serves as evidence that the ionospheric threat models developed for WARS and LAAS are warranted and that they are sufficiently conservative to maintain user integrity even under extreme ionospheric behavior.

  2. Directional Networking in GPS Denied Environments - Time Synchronization

    Science.gov (United States)

    2016-03-14

    RF-based measurements to synchronize time and measure node range.  Satellite Doppler: Using Doppler measurements from multiple satellites along...with satellite catalog data to determine time and position.  LTE : Use existing LTE base-stations for time and position.  Differential GPS: A...Opportunistic Signals: Opportunistically take advantage of existing RF signals (i.e., FM radio, DTV, LTE , etc.) transmitted from known locations

  3. 47 CFR 87.151 - Special requirements for differential GPS receivers.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Special requirements for differential GPS receivers. 87.151 Section 87.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... differential GPS receivers. (a) The receiver shall achieve a message failure rate less than or equal to one...

  4. Advancing Technology: GPS and GIS Outreach Training for Agricultural Producers

    Science.gov (United States)

    Flynn, Allison; Arnold, Shannon

    2010-01-01

    The use of the Global Positioning System (GPS) and Global Information Systems (GIS) has made significant impacts on agricultural production practices. However, constant changes in the technologies require continuing educational updates. The outreach program described here introduces the operation, use, and applications of GPS receivers and GIS…

  5. Re-investigation of slip rate along the southern part of the Sumatran Fault Zone using SuMo GPS network

    Science.gov (United States)

    Hermawan, I.; Lubis, A. M.; Sahputra, R.; Hill, E.; Sieh, K.; Feng, L.; Salman, R.; Hananto, N.

    2015-12-01

    The Sumatran Fault Zone (SFZ) accommodates a significant component of the strike-slip motion of oblique convergence along the Sumatra subduction zone. Previous studies have suggested that the slip rates of the SFZ increase from south to north. However, recent work shows that the slip rates may not vary along the SFZ [Bradley et al., 2015]. New data are needed to help confirm these results, and to assess slip-rate variability and fault segmentation in more detail. This information is vital for seismic hazard assessment for the region. We have therefore installed and operated the SuMo (Sumatran Fault Monitoring) network, a dense GPS campaign network focused around the SFZ. From 2013-2015 we selected and installed 32 GPS monuments over the southern part of the SFZ. The network comprises of three transects. The first transect is around the location of the great 1900 earthquake, at the Musi segment. Two transects cover the Manna segment, which saw its last great earthquake in 1893, and the Kumering segment, which saw two great earthquakes in 1933 (M 7.5) and 1994 (M 7.0). We have now conducted three GPS campaign surveys for these stations (3-4 days of measurement for each occupation site), and established 5 semi-permanent cGPS stations in the area. The processed data show that the campaigns sites are still too premature to be used for estimating slip rates, but from the preliminary results for the semi-permanent stations we may see our first signal of deformation. More data from future survey campaigns will help us to estimated revised slip rates. In addition to the science goals for our project, we are this year starting a project called "SuMo Goes to School," which will aim to disseminate information on our science to the schools that house the SuMo GPS stations. The SuMo project also achieves capacity building by training students from Bengkulu University in geodesy and campaign GPS survey techniques.

  6. Rapid Modeling of and Response to Large Earthquakes Using Real-Time GPS Networks (Invited)

    Science.gov (United States)

    Crowell, B. W.; Bock, Y.; Squibb, M. B.

    2010-12-01

    Real-time GPS networks have the advantage of capturing motions throughout the entire earthquake cycle (interseismic, seismic, coseismic, postseismic), and because of this, are ideal for real-time monitoring of fault slip in the region. Real-time GPS networks provide the perfect supplement to seismic networks, which operate with lower noise and higher sampling rates than GPS networks, but only measure accelerations or velocities, putting them at a supreme disadvantage for ascertaining the full extent of slip during a large earthquake in real-time. Here we report on two examples of rapid modeling of recent large earthquakes near large regional real-time GPS networks. The first utilizes Japan’s GEONET consisting of about 1200 stations during the 2003 Mw 8.3 Tokachi-Oki earthquake about 100 km offshore Hokkaido Island and the second investigates the 2010 Mw 7.2 El Mayor-Cucapah earthquake recorded by more than 100 stations in the California Real Time Network. The principal components of strain were computed throughout the networks and utilized as a trigger to initiate earthquake modeling. Total displacement waveforms were then computed in a simulated real-time fashion using a real-time network adjustment algorithm that fixes a station far away from the rupture to obtain a stable reference frame. Initial peak ground displacement measurements can then be used to obtain an initial size through scaling relationships. Finally, a full coseismic model of the event can be run minutes after the event, given predefined fault geometries, allowing emergency first responders and researchers to pinpoint the regions of highest damage. Furthermore, we are also investigating using total displacement waveforms for real-time moment tensor inversions to look at spatiotemporal variations in slip.

  7. UNAVCO GPS High-Rate and Real-Time Products and Services: Building a next generation geodetic network.

    Science.gov (United States)

    Mencin, David; Meertens, Charles; Mattioli, Glen; Feaux, Karl; Looney, Sara; Sievers, Charles; Austin, Ken

    2013-04-01

    Recent advances in GPS technology and data processing are providing position estimates with centimeter-level precision at high-rate (1-5 Hz) and low latency (transforming rapid event characterization, early warning, as well as hazard mitigation and response. Other scientific and operational applications for high-rate GPS also include glacier and ice sheet motions, tropospheric modeling, and better constraints on the dynamics of space weather. UNAVCO, through community input and the recent Plate Boundary Observatory (PBO) NSF-ARRA Cascadia initiative, has nearly completed the process of upgrading a total of 373 PBO GPS sites to real-time high-rate capability and these streams are now being archived in the UNAVCO data center. Further, through the UNAVCO core proposal (GAGE), currently under review at NSF, UNAVCO has proposed upgrading a significant portion of the ~1100 GPS stations that PBO currently operates to real-time high-rate capability to address community science and operational needs. In addition, in collaboration with NOAA, 74 of these stations will provide meteorological data in real-time, primarily to support watershed and flood analyses for regional early-warning systems related to NOAA's work with California Department of Water Resources. In preparation for this increased emphasis on high-rate GPS data, UNAVCO hosted an NSF funded workshop in Boulder, CO on March 26-28, 2012, which brought together 70 participants representing a spectrum of research fields with a goal to develop a community plan for the use of real-time GPS data products within the UNAVCO and EarthScope communities. These data products are expected to improve and expand the use of real-time, high-rate GPS data over the next decade.

  8. Feasibility study and technical proposal for long-term observations of bedrock stability with gps

    International Nuclear Information System (INIS)

    Ruizhi Chen; Kakkuri, J.

    1994-01-01

    In order to study the regional crustal deformation pattern in the territory of Finland, the Finnish Geodetic Institute is establishing the Finnish Permanent GPS Network, which is part of the Fennoscandian Permanent GPS Network. The Finnish GPS Network consists of a 12 stations located in different geological structures. The operation procedure of the network is described in the report. Feasibility study for monitoring the bedrock stability at local scale was performed. The study was carried out on the basis of an experiment on a baseline of 1041 metres. Twelve artificial movements ranging from 1 mm to 22 mm were generated with a precision-manufactured screw drive (with an accuracy of better than +-0.05 mm). The artificial movements were then detected with the GPS measurements. A preliminary analysis of the GPS data shows that the maximum difference between the GPS detected movements and the artificial movements is 0.9 mm with a standard deviation of +-0.46 mm. The observation time for reaching such accuracy is about 55 minutes. Three GPS networks were preliminarily designed for the radioactive waste disposal investigation sites of Olkiluoto, Kivetty and Romuvaara. Detailed research plan for achieving the best possible result from GPS measurements was proposed. (58 refs., 25 figs., 1 tab.)

  9. Integrated navigation of aerial robot for GPS and GPS-denied environment

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Min, Hongkyu; Nonami, Kenzo; Wada, Tetsuya

    2016-01-01

    In this study, novel robust navigation system for aerial robot in GPS and GPS- denied environments is proposed. Generally, the aerial robot uses position and velocity information from Global Positioning System (GPS) for guidance and control. However, GPS could not be used in several environments, for example, GPS has huge error near buildings and trees, indoor, and so on. In such GPS-denied environment, Laser Detection and Ranging (LIDER) sensor based navigation system have generally been used. However, LIDER sensor also has an weakness, and it could not be used in the open outdoor environment where GPS could be used. Therefore, it is desired to develop the integrated navigation system which is seamlessly applied to GPS and GPS-denied environments. In this paper, the integrated navigation system for aerial robot using GPS and LIDER is developed. The navigation system is designed based on Extended Kalman Filter, and the effectiveness of the developed system is verified by numerical simulation and experiment. (paper)

  10. The local ionospheric modeling by integration ground GPS observations and satellite altimetry data

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Sharifi

    2017-01-01

    Full Text Available The free electrons in the ionosphere have a strong impact on the propagation of radio waves. When the signals pass through the ionosphere, both their group and phase velocity are disturbed. Several space geodetic techniques such as satellite altimetry, low Earth orbit (LEO satellite and very long baseline interferometry (VLBI can be used to model the total electron content. At present, the classical input data for development of ionospheric models are based on dual-frequency GPS observations, However, a major problem with this observation type is the nonuniform distribution of the terrestrial GPS reference stations with large gaps notably over the sea surface and ocean where only some single stations are located on islands, leading to lower the precision of the model over these areas. In these regions the dual-frequency satellite altimeters provide precise information about the parameters of the ionosphere. Combination of GPS and satellite altimetry observations allows making best use of the advantages of their different spatial and temporal distributions. In this study, the local ionosphere modeling was done by the combination of space geodetic observations using spherical Slepian function. The combination of the data from ground GPS observations over the western part of the USA and the altimetry mission Jason-2 was performed on the normal equation level in the least-square procedure and a least-square variance component estimation (LS-VCE was applied to take into account the different accuracy levels of the observations. The integrated ionosphere model is more accurate and more reliable than the results derived from the ground GPS observations over the oceans.

  11. Assessing the Performance of GPS Precise Point Positioning Under Different Geomagnetic Storm Conditions during Solar Cycle 24

    Directory of Open Access Journals (Sweden)

    Xiaomin Luo

    2018-06-01

    Full Text Available The geomagnetic storm, which is an abnormal space weather phenomenon, can sometimes severely affect GPS signal propagation, thereby impacting the performance of GPS precise point positioning (PPP. However, the investigation of GPS PPP accuracy over the global scale under different geomagnetic storm conditions is very limited. This paper for the first time presents the performance of GPS dual-frequency (DF and single-frequency (SF PPP under moderate, intense, and super storms conditions during solar cycle 24 using a large data set collected from about 500 international GNSS services (IGS stations. The global root mean square (RMS maps of GPS PPP results show that stations with degraded performance are mainly distributed at high-latitude, and the degradation level generally depends on the storm intensity. The three-dimensional (3D RMS of GPS DF PPP for high-latitude during moderate, intense, and super storms are 0.393 m, 0.680 m and 1.051 m, respectively, with respect to only 0.163 m on quiet day. RMS errors of mid- and low-latitudes show less dependence on the storm intensities, with values less than 0.320 m, compared to 0.153 m on quiet day. Compared with DF PPP, the performance of GPS SF PPP is inferior regardless of quiet or disturbed conditions. The degraded performance of GPS positioning during geomagnetic storms is attributed to the increased ionospheric disturbances, which have been confirmed by our global rate of TEC index (ROTI maps. Ionospheric disturbances not only lead to the deteriorated ionospheric correction but also to the frequent cycle-slip occurrence. Statistical results show that, compared with that on quiet day, the increased cycle-slip occurrence are 13.04%, 56.52%, and 69.57% under moderate, intense, and super storms conditions, respectively.

  12. Study of Alternative GPS Network Meteorological Sensors in Taiwan: Case Studies of the Plum Rains and Typhoon Sinlaku

    Directory of Open Access Journals (Sweden)

    Kwo-Hwa Chen

    2009-06-01

    Full Text Available Plum rains and typhoons are important weather systems in the Taiwan region. They can cause huge economic losses, but they are also considered as important water resources as they strike Taiwan annually and fill the reservoirs around the island. There are many meteorological sensors available for investigating the characteristics of weather and climate systems. Recently, the use of GPS as an alternative meteorological sensor has become popular due to the catastrophic impact of global climate change. GPS provides meteorological parameters mainly from the atmosphere. Precise Point Positioning (PPP is a proven algorithm that has attracted attention in GPS related studies. This study uses GPS measurements collected at more than fifty reference stations of the e-GPS network in Taiwan. The first data set was collected from June 1st 2008 to June 7th 2008, which corresponds to the middle of the plum rain season in Taiwan. The second data set was collected from September 11th to September 17th 2008 during the landfall of typhoon Sinlaku. The data processing strategy is to process the measurements collected at the reference stations of the e-GPS network using the PPP technique to estimate the zenith tropospheric delay (ZTD values of the sites; thus, the correlations between the ZTD values and the variation of rainfall during the plum rains and typhoon are analyzed. In addition, several characteristics of the meteorological events are identified using spatial and temporal analyses of the ZTD values estimated with the GPS network PPP technique.

  13. GPS Composite Clock Analysis

    OpenAIRE

    Wright, James R.

    2008-01-01

    The GPS composite clock defines GPS time, the timescale used today in GPS operations. GPS time is illuminated by examination of its role in the complete estimation and control problem relative to UTC/TAI. The phase of each GPS clock is unobservable from GPS pseudorange measurements, and the mean phase of the GPS clock ensemble (GPS time) is unobservable. A new and useful observability definition is presented, together with new observability theorems, to demonstrate explicitly that GPS time is...

  14. Comparison of observed and modeled seasonal crustal vertical displacements derived from multi-institution GPS and GRACE solutions

    Science.gov (United States)

    Gu, Yanchao; Fan, Dongming; You, Wei

    2017-07-01

    Eleven GPS crustal vertical displacement (CVD) solutions for 110 IGS08/IGS14 core stations provided by the International Global Navigation Satellite Systems Service Analysis Centers are compared with seven Gravity Recovery and Climate Experiment (GRACE)-modeled CVD solutions. The results of the internal comparison of the GPS solutions from multiple institutions imply large uncertainty in the GPS postprocessing. There is also evidence that GRACE solutions from both different institutions and different processing approaches (mascon and traditional spherical harmonic coefficients) show similar results, suggesting that GRACE can provide CVD results of good internal consistency. When the uncertainty of the GPS data is accounted for, the GRACE data can explain as much as 50% of the actual signals and more than 80% of the GPS annual signals. Our study strongly indicates that GRACE data have great potential to correct the nontidal loading in GPS time series.

  15. USGS earthquake hazards program (EHP) GPS use case : earthquake early warning (EEW) and shake alert

    Science.gov (United States)

    2017-03-30

    GPS Adjacent Band Workshop VI RTCA Inc., Washington D.C., 30 March 2017. USGS GPS receiver use case - Real-Time GPS for EEW -Continued: CRITICAL EFFECT - The GNSS component of the Shake Alert system augments the inertial sensors and is especial...

  16. Real-time GPS seismology using a single receiver: method comparison, error analysis and precision validation

    Science.gov (United States)

    Li, Xingxing

    2014-05-01

    Earthquake monitoring and early warning system for hazard assessment and mitigation has traditional been based on seismic instruments. However, for large seismic events, it is difficult for traditional seismic instruments to produce accurate and reliable displacements because of the saturation of broadband seismometers and problematic integration of strong-motion data. Compared with the traditional seismic instruments, GPS can measure arbitrarily large dynamic displacements without saturation, making them particularly valuable in case of large earthquakes and tsunamis. GPS relative positioning approach is usually adopted to estimate seismic displacements since centimeter-level accuracy can be achieved in real-time by processing double-differenced carrier-phase observables. However, relative positioning method requires a local reference station, which might itself be displaced during a large seismic event, resulting in misleading GPS analysis results. Meanwhile, the relative/network approach is time-consuming, particularly difficult for the simultaneous and real-time analysis of GPS data from hundreds or thousands of ground stations. In recent years, several single-receiver approaches for real-time GPS seismology, which can overcome the reference station problem of the relative positioning approach, have been successfully developed and applied to GPS seismology. One available method is real-time precise point positioning (PPP) relied on precise satellite orbit and clock products. However, real-time PPP needs a long (re)convergence period, of about thirty minutes, to resolve integer phase ambiguities and achieve centimeter-level accuracy. In comparison with PPP, Colosimo et al. (2011) proposed a variometric approach to determine the change of position between two adjacent epochs, and then displacements are obtained by a single integration of the delta positions. This approach does not suffer from convergence process, but the single integration from delta positions to

  17. Seasonal Hydrological Loading in Southern Tibet Detected by Joint Analysis of GPS and GRACE.

    Science.gov (United States)

    Zou, Rong; Wang, Qi; Freymueller, Jeffrey T; Poutanen, Markku; Cao, Xuelian; Zhang, Caihong; Yang, Shaomin; He, Ping

    2015-12-04

    In southern Tibet, ongoing vertical and horizontal motions due to the collision between India and Eurasia are monitored by large numbers of global positioning system (GPS) continuous and campaign sites installed in the past decade. Displacements measured by GPS usually include tectonic deformation as well as non-tectonic, time-dependent signals. To estimate the regional long-term tectonic deformation using GPS more precisely, seasonal elastic deformation signals associated with surface loading must be removed from the observations. In this study, we focus on seasonal variation in vertical and horizontal motions of southern Tibet by performing a joint analysis of GRACE (Gravity Recovery and Climate Experiment) and GPS data, not only using continuous sites but also GPS campaign-mode sites. We found that the GPS-observed and GRACE-modeled seasonal oscillations are in good agreements, and a seasonal displacement model demonstrates that the main reason for seasonal variations in southern Tibet is from the summer monsoon and its precipitation. The biggest loading appears from July to August in the summer season. Vertical deformations observed by GPS and modeled by GRACE are two to three times larger than horizontal oscillations, and the north components demonstrate larger amplitudes than the east components. We corrected the GPS position time series using the GRACE-modeled seasonal variations, which gives significant reductions in the misfit and weighted root-mean-squares (WRMS). Misfit (χ2 divided by degree of freedom) reductions for campaign sites range between 20% and 56% for the vertical component, and are much smaller for the horizontal components. Moreover, time series of continuous GPS (cGPS) sites near the 2015 Nepal earthquakes must be corrected using appropriate models of seasonal loading for analyzing postseismic deformation to avoid biasing estimates of the postseismic relaxation.

  18. Cryospheric monitoring with new low power RTK dGPS systems

    Science.gov (United States)

    Martinez, K.; Hart, J. K.; Bragg, G. M.; Curry, J. S.

    2017-12-01

    Differential GPS is often used to measure the movement of glaciers. It requires data to be recorded at a fixed base station as well as the moving rover unit, followed by post-processing in order to compute the rover's positions. The typical dGPS units used consume considerable power and the recording times are often around one hour per reading. While this provides very precise (typically millimetre) precision it comes at a cost of power used and the data is rather large to send offsite regularly. Real-time kinematic modes of dGPS are typically used for rapid mapping and autonomous vehicles. New devices are lower cost and smaller size. They also provide a fix within a few minutes, which can be transmitted home. We describe the design, deployment and preliminary results of two tracking systems to monitor ice movement. The first used a normal GPS and Iridium satellite messaging to track the movement of a Greenland iceberg which calved from the Nattivit Apusiiat glacier (south west Greenland). This system followed the iceberg as it flowed 660 km south along the coast of Greenland. The second system was installed in Iceland to track the movement of glaciers using 2 different dGPS systems. A low power ARM Cortex M4-based controller ran Python code to schedule dGPS activity periodically and gather fixes. An Iridium short messaging unit (Rockblock) was used to transmit RTK location fixes. The aim was to experiment with the use of RTK dGPS as an alternative to recordings to measure how the glaciers responded to small scale changes in temperature and precipitation throughout the year.

  19. GPS Installation Progress in the Northern California Region of the Plate Boundary Observatory Coyle, B., Basset, A., Williams, T., Enders, M., Feaux, K., Jackson, M.

    Science.gov (United States)

    Coyle, B.; Basset, A.; Enders, M.; Williams, T.; Feaux, K.; Jackson, M.

    2005-12-01

    The Plate Boundary Observatory (PBO) is the geodetic component of the NSF funded EarthScope Project . The final PBO GPS network will comprise 875 continuously operating GPS stations installed throughout the Western US and Alaska. There are 435 stations planned for California with 229 of these in Northern California (NCA). This poster will present the past year's progress of GPS installations in NCA. At the end of the first year of the Project, PBO NCA installed 12 stations. During the second year, another 56 were installed for a total of 68 stations including 18 SDBM, and 50 DDBM. We have sited 128 stations, submitted 112 permit applications and received 73 permits. A particularly important statistic for planning our schedules is the time lag between reconnaissance and permit accepted; our average thus far is 137 days. We have been particularly successful locating stations on Caltrans Rights of Way with 20 Stations built, 3 sites permitted and 5 permits pending. Other land use partners include: East Bay Regional Parks - 8 Stations built and 2 sites permitted, Bureau of Land Management - 5 Stations built, 3 permits pending, Water Municipalities - 4 Stations built, 3 sites permitted and 4 permits pending, and Airports - 4 Stations built and 3 permits pending. Highlights from last year: On September 28, 2004 a Mw 6.0 earthquake occurred on the San Andreas Fault seven miles southeast of the town of Parkfield, CA. Field crews from the Northern and Southern California offices of PBO began the site reconnaissance and permitting process the day after the earthquake and installation of the first Station was begun within 36 hours and completed the following day. In total, 5 Stations were installed by the first week of November. On June 14, 2045 a Mw 7.1 earthquake occurred on the Gorda Plate, approximately 100 miles NW of Eureka. PBO stations, P158, P162, P169 and P170, recorded coseismic deformation associated with this event. We plan to have 127 stations built by the end

  20. Kalman filter implementation for small satellites using constraint GPS data

    Science.gov (United States)

    Wesam, Elmahy M.; Zhang, Xiang; Lu, Zhengliang; Liao, Wenhe

    2017-06-01

    Due to the increased need for autonomy, an Extended Kalman Filter (EKF) has been designed to autonomously estimate the orbit using GPS data. A propagation step models the satellite dynamics as a two body with J2 (second zonal effect) perturbations being suitable for orbits in altitudes higher than 600 km. An onboard GPS receiver provides continuous measurement inputs. The continuity of measurements decreases the errors of the orbit determination algorithm. Power restrictions are imposed on small satellites in general and nanosatellites in particular. In cubesats, the GPS is forced to be shut down most of the mission’s life time. GPS is turned on when experiments like atmospheric ones are carried out and meter level accuracy for positioning is required. This accuracy can’t be obtained by other autonomous sensors like magnetometer and sun sensor as they provide kilometer level accuracy. Through simulation using Matlab and satellite tool kit (STK) the position accuracy is analyzed after imposing constrained conditions suitable for small satellites and a very tight one suitable for nanosatellite missions.

  1. Processing horizontal networks measured by integrated terrestrial and GPS technologies

    Directory of Open Access Journals (Sweden)

    Vincent Jakub

    2003-09-01

    Full Text Available Local horizontal networks in which GPS and terrestrial measurements (TER are done are often established at present. Iin other networks, the previous terrestrial measurements can be completed with quantities from contemporary GPS observations (tunnel nets, mining nets with surface and underground parts and other long-shaped nets.The processing of such heterobeneous (GPS, TER networks whose terrestrial measurements are performed as point coordinate measurements (∆X, ∆Y using (geodetic total stationIn is presented in this paper. In such network structures it is then available:- the values ∆X, ∆Y from TER observations which are transformed in the plane of S-JTSK for adjustement,- the values ∆X, ∆Y in the plane S-JTSK that can be obtained by 3D transformation of WGS84 netpoint coordinates from GPS observations to corresponding coordinates S-JTSK.For common adjusting all the ∆X, ∆Y, some elements of the network geometry (e.g. distances should be measured by both methods (GPS, TER. This approach makes possible an effective homogenisation of both network parts what is equivalent to saying that an expressive influence reduction on local frame realizations of S-JTSK in the whole network can be made.Results of network processing obtained in proposed manner are acceptable in general and they are equivalent (accuracy, reliability to results of another processing methods.

  2. Geocenter variations derived from a combined processing of LEO- and ground-based GPS observations

    Science.gov (United States)

    Männel, Benjamin; Rothacher, Markus

    2017-08-01

    GNSS observations provided by the global tracking network of the International GNSS Service (IGS, Dow et al. in J Geod 83(3):191-198, 2009) play an important role in the realization of a unique terrestrial reference frame that is accurate enough to allow a detailed monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board low earth orbiters (LEOs) is a promising way to further improve the realization of the terrestrial reference frame and the estimation of geocenter coordinates, GPS satellite orbits and Earth rotation parameters. To assess the scope of the improvement on the geocenter coordinates, we processed a network of 53 globally distributed and stable IGS stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of 3 years (2010-2012). To ensure fully consistent solutions, the zero-difference phase observations of the ground stations and LEOs were processed in a common least-squares adjustment, estimating all the relevant parameters such as GPS and LEO orbits, station coordinates, Earth rotation parameters and geocenter motion. We present the significant impact of the individual LEO and a combination of all four LEOs on the geocenter coordinates. The formal errors are reduced by around 20% due to the inclusion of one LEO into the ground-only solution, while in a solution with four LEOs LEO-specific characteristics are significantly reduced. We compare the derived geocenter coordinates w.r.t. LAGEOS results and external solutions based on GPS and SLR data. We found good agreement in the amplitudes of all components; however, the phases in x- and z-direction do not agree well.

  3. VLBI and GPS-based Time-Transfer Using CONT08 Data

    Science.gov (United States)

    Rieck, Carsten; Haas, Ruediger; Jaldehag, Kenneth; Jahansson, Jan

    2010-01-01

    One important prerequisite for geodetic Very Long Baseline Interferometry (VLBI) is the use of frequency standards with excellent short term stability. This makes VLBI stations, which are often co-located with Global Navigation Satellite System (GNSS) receiving stations, interesting for studies of time- and frequency-transfer techniques. We present an assessment of VLBI time-transfer based on the data of the two week long consecutive IVS CONT08 VLBI campaign by using GPS Carrier Phase (GPSCP). CONT08 was a 15 day long campaign in August 2008 that involved eleven VLBI stations on five continents. For CONT08 we estimated the worst case VLBI frequency link stability between the stations of Onsala and Wettzell to 1e-15 at one day. Comparisons with GPSCP confirm the VLBI results. We also identify time-transfer related challenges of the VLBI technique as used today.

  4. Gnss Geodetic Monitoring as Support of Geodynamics Research in Colombia, South America

    Science.gov (United States)

    Mora-Paez, H.; Acero-Patino, N.; Rodriguez-Zuluaga, J. S.; Diederix, H.; Bohorquez-Orozco, O. P.; Martinez-Diaz, G. P.; Diaz-Mila, F.; Giraldo-Londono, L. S.; Cardozo-Giraldo, S.; Vasquez-Ospina, A. F.; Lizarazo, S. C.

    2013-05-01

    To support the geodynamics research at the northwestern corner of South America, GEORED, the acronym for "Geodesia: Red de Estudios de Deformación" has been adopted for the Project "Implementation of the National GNSS Network for Geodynamics" carried out by the Colombian Geological Survey, (SGC), formerly INGEOMINAS. Beginning in 2007, discussions within the GEORED group led to a master plan for the distribution of the base permanent GPS/GNSS station array and specific areas of interest for campaign site construction. The use of previously identified active faults as preferred structures along which stresses are transferred through the deformational area led to the idea of segmentation of the North Andes within Colombia into 20 tectonic sub-blocks. Each of the 20 sub-blocks is expected to have, at least, three-four permanent GPS/GNSS stations within the block along with construction of campaign sites along the boundaries. Currently, the GEORED Network is managing 46 continuously including: 40 GEORED GPS/GNSS continuously operating stations; 4 GNSS continuously operating stations provided by the COCONet (Continuously Operating Caribbean GPS Observational Network) Project; the Bogotá IGS GPS station (BOGT), installed in 1994 under the agreement between JPL-NASA and the SGC; and the San Andres Island station, installed in 2007 under the MOU between UCAR and the SGC. In addition to the permanent installations, more than 230 GPS campaign sites have been constructed and are being occupied one time per year. The Authority of the Panama Canal and the Escuela Politecnica de Quito have also provided data of 4 and 5 GPS/GNSS stations respectively. The GPS data are processed using the GIPSY-OASIS II software, and the GPS time series of daily station positions give fundamental information for both regional and local geodynamics studies. Until now, we have obtained 100 quality vector velocities for Colombia, 23 of them as part of the permanent network. The GPS/GNSS stations

  5. Near Real-Time Processing and Archiving of GPS Surveys for Crustal Motion Monitoring

    Science.gov (United States)

    Crowell, B. W.; Bock, Y.

    2008-12-01

    We present an inverse instantaneous RTK method for rapidly processing and archiving GPS data for crustal motion surveys that gives positional accuracy similar to traditional post-processing methods. We first stream 1 Hz data from GPS receivers over Bluetooth to Verizon XV6700 smartphones equipped with Geodetics, Inc. RTD Rover software. The smartphone transmits raw receiver data to a real-time server at the Scripps Orbit and Permanent Array Center (SOPAC) running RTD Pro. At the server, instantaneous positions are computed every second relative to the three closest base stations in the California Real Time Network (CRTN), using ultra-rapid orbits produced by SOPAC, the NOAATrop real-time tropospheric delay model, and ITRF2005 coordinates computed by SOPAC for the CRTN stations. The raw data are converted on-the-fly to RINEX format at the server. Data in both formats are stored on the server along with a file of instantaneous positions, computed independently at each observation epoch. The single-epoch instantaneous positions are continuously transmitted back to the field surveyor's smartphone, where RTD Rover computes a median position and interquartile range for each new epoch of observation. The best-fit solution is the last median position and is available as soon as the survey is completed. We describe how we used this method to process 1 Hz data from the February, 2008 Imperial Valley GPS survey of 38 geodetic monuments established by Imperial College, London in the 1970's, and previously measured by SOPAC using rapid-static GPS methods in 1993, 1999 and 2000, as well as 14 National Geodetic Survey (NGS) monuments. For redundancy, each monument was surveyed for about 15 minutes at least twice and at staggered intervals using two survey teams operating autonomously. Archiving of data and the overall project at SOPAC is performed using the PGM software, developed by the California Spatial Reference Center (CSRC) for the National Geodetic Survey (NGS). The

  6. An analysis of the Aespoe crustal motion-monitoring network observed by GPS in 2000, 2001 and 2002

    International Nuclear Information System (INIS)

    Sjoeberg, Lars E.; Ming Pan; Asenjo, Erick

    2002-07-01

    A feasibility study of using GPS technology for monitoring possible crustal 'creep' motions as part of the long-term site investigations for the decision on site location of nuclear waste disposal has been carried out in an established test network near Oskarshamn in the south east of Sweden. The network, consisting of 7 points, is located in an approximate area of 15 x 15 km, and two possibly active faults in the crust cross the area. The points are realized by steel pegs, installed and cemented into boreholes in the bedrock, and the GPS antennas are mounted directly on top of the steel pegs by so-called forced centring, i.e. repeatedly without any centring bias. The GPS data were measured 3 times per year, or in total at 6 epochs, between June 2000 and February 2002. At each epoch GPS receivers occupied all 7 sites for at least 48 hours of measurement. In addition, data from the nearest SWEPOS GPS station at Oskarshamn was used as a reference for the analysis. In general the observations performed well without many problems. The Bernese GPS software version 4.2 was used to adjust the data. First, the adjustment was performed epoch by epoch to determine site coordinates and baseline lengths. The achieved coordinate standard error is of the order of 1 mm. The baseline evolutions were found to be less than 1 mm/yr, except for the long baseline to the SWEPOS station, which reached 2 mm/yr. However, as the corresponding standard errors are of the order of 0.5 and 1 mm/yr, respectively, the estimated baseline velocities are not significant, but the hypothesis of zero-velocities holds. Further data from future GPS campaigns may change or confirm this conclusion. Second, the GPS software was used to merge the epoch-wise results into final site coordinates and their temporal variations. A special theoretical investigation by linear regression was carried out to estimate a scale factor of the formal standard errors of coordinates and their temporal changes provided by the

  7. Geomagnetic Storm Impact On GPS Code Positioning

    Science.gov (United States)

    Uray, Fırat; Varlık, Abdullah; Kalaycı, İbrahim; Öǧütcü, Sermet

    2017-04-01

    This paper deals with the geomagnetic storm impact on GPS code processing with using GIPSY/OASIS research software. 12 IGS stations in mid-latitude were chosen to conduct the experiment. These IGS stations were classified as non-cross correlation receiver reporting P1 and P2 (NONCC-P1P2), non-cross correlation receiver reporting C1 and P2 (NONCC-C1P2) and cross-correlation (CC-C1P2) receiver. In order to keep the code processing consistency between the classified receivers, only P2 code observations from the GPS satellites were processed. Four extreme geomagnetic storms October 2003, day of the year (DOY), 29, 30 Halloween Storm, November 2003, DOY 20, November 2004, DOY 08 and four geomagnetic quiet days in 2005 (DOY 92, 98, 99, 100) were chosen for this study. 24-hour rinex data of the IGS stations were processed epoch-by-epoch basis. In this way, receiver clock and Earth Centered Earth Fixed (ECEF) Cartesian Coordinates were solved for a per-epoch basis for each day. IGS combined broadcast ephemeris file (brdc) were used to partly compensate the ionospheric effect on the P2 code observations. There is no tropospheric model was used for the processing. Jet Propulsion Laboratory Application Technology Satellites (JPL ATS) computed coordinates of the stations were taken as true coordinates. The differences of the computed ECEF coordinates and assumed true coordinates were resolved to topocentric coordinates (north, east, up). Root mean square (RMS) errors for each component were calculated for each day. The results show that two-dimensional and vertical accuracy decreases significantly during the geomagnetic storm days comparing with the geomagnetic quiet days. It is observed that vertical accuracy is much more affected than the horizontal accuracy by geomagnetic storm. Up to 50 meters error in vertical component has been observed in geomagnetic storm day. It is also observed that performance of Klobuchar ionospheric correction parameters during geomagnetic storm

  8. Episodic inflation of Akutan volcano, Alaska revealed from GPS and InSAR time series

    Science.gov (United States)

    DeGrandpre, K.; Lu, Z.; Wang, T.

    2016-12-01

    Akutan volcano is one of the most active volcanoes located long the Aleutian arc. At least 27 eruptions have been noted since 1790 and an intense swarm of volcano-tectonic earthquakes occurred in 1996. Surface deformation after the 1996 earthquake sequence has been studied using GPS and Interferometric Synthetic Aperture Radar (InSAR) separately, yet models created from these datasets require different mechanisms to produce the observed surface deformation: an inflating Mogi source results in the best approximation of displacement observed from GPS data, whereas an opening dyke is the best fit to deformation measured from InSAR. A recent study using seismic data revealed complex magmatic structures beneath the caldera, suggesting that the surface deformation may reflect more complicated mechanisms that cannot be estimated using one type of data alone. Here we integrate the surface deformation measured from GPS and InSAR to better understand the magma plumbing system beneath Akutan volcano. GPS time-series at 12 stations from 2006 to 2016 were analyzed, and two transient episodes of inflation in 2008 and 2014 were detected. These GPS stations are, however, too sparse to reveal the spatial distribution of the surface deformation. In order to better define the spatial extent of this inflation four tracks of Envisat data acquired during 2003-2010 and one track of TerraSAR-X data acquired from 2010 to 2016 were processed to produce high-resolution maps of surface deformation. These deformation maps show a consistently uplifting area on the northwestern flank of the volcano. We inverted for the source parameters required to produce the inflation using GPS, InSAR, and a dataset of GPS and InSAR measurements combined, to find that a deep Mogi source below a shallow dyke fit these datasets best. From the TerraSAR-X data, we were also able to measure the subsidence inside the summit caldera due to fumarole activity to be as high as 10 mm/yr. The complex spatial and temporal

  9. Calibrating coseismic coastal land-level changes during the 2014 Iquique (Mw=8.2) earthquake (northern Chile) with leveling, GPS and intertidal biota.

    Science.gov (United States)

    Jaramillo, Eduardo; Melnick, Daniel; Baez, Juan Carlos; Montecino, Henry; Lagos, Nelson A; Acuña, Emilio; Manzano, Mario; Camus, Patricio A

    2017-01-01

    The April 1st 2014 Iquique earthquake (MW 8.1) occurred along the northern Chile margin where the Nazca plate is subducted below the South American continent. The last great megathrust earthquake here, in 1877 of Mw ~8.8 opened a seismic gap, which was only partly closed by the 2014 earthquake. Prior to the earthquake in 2013, and shortly after it we compared data from leveled benchmarks, deployed campaign GPS instruments, continuous GPS stations and estimated sea levels using the upper vertical level of rocky shore benthic organisms including algae, barnacles, and mussels. Land-level changes estimated from mean elevations of benchmarks indicate subsidence along a ~100-km stretch of coast, ranging from 3 to 9 cm at Corazones (18°30'S) to between 30 and 50 cm at Pisagua (19°30'S). About 15 cm of uplift was measured along the southern part of the rupture at Chanabaya (20°50'S). Land-level changes obtained from benchmarks and campaign GPS were similar at most sites (mean difference 3.7±3.2 cm). Higher differences however, were found between benchmarks and continuous GPS (mean difference 8.5±3.6 cm), possibly because sites were not collocated and separated by several kilometers. Subsidence estimated from the upper limits of intertidal fauna at Pisagua ranged between 40 to 60 cm, in general agreement with benchmarks and GPS. At Chanavaya, the magnitude and sense of displacement of the upper marine limit was variable across species, possibly due to species-dependent differences in ecology. Among the studied species, measurements on lithothamnioid calcareous algae most closely matched those made with benchmarks and GPS. When properly calibrated, rocky shore benthic species may be used to accurately measure land-level changes along coasts affected by subduction earthquakes. Our calibration of those methods will improve their accuracy when applied to coasts lacking pre-earthquake data and in estimating deformation during pre-instrumental earthquakes.

  10. GPS time series at Campi Flegrei caldera (2000-2013

    Directory of Open Access Journals (Sweden)

    Prospero De Martino

    2014-05-01

    Full Text Available The Campi Flegrei caldera is an active volcanic system associated to a high volcanic risk, and represents a well known and peculiar example of ground deformations (bradyseism, characterized by intense uplift periods, followed by subsidence phases with some episodic superimposed mini-uplifts. Ground deformation is an important volcanic precursor, and, its continuous monitoring, is one of the main tool for short time forecast of eruptive activity. This paper provides an overview of the continuous GPS monitoring of the Campi Flegrei caldera from January 2000 to July 2013, including network operations, data recording and processing, and data products. In this period the GPS time series allowed continuous and accurate tracking of ground deformation of the area. Seven main uplift episodes were detected, and during each uplift period, the recurrent horizontal displacement pattern, radial from the “caldera center”, suggests no significant change in deformation source geometry and location occurs. The complete archive of GPS time series at Campi Flegrei area is reported in the Supplementary materials. These data can be usefull for the scientific community in improving the research on Campi Flegrei caldera dynamic and hazard assessment.

  11. Ground deformation effects from the M6 earthquakes (2014-2015) on Cephalonia-Ithaca Islands (Western Greece) deduced by GPS observations

    Science.gov (United States)

    Sakkas, Vassilis; Lagios, Evangelos

    2017-03-01

    The implications of the earthquakes that took place in the central Ionian Islands in 2014 (Cephalonia, M w6.1, M w5.9) and 2015 (Lefkas, M w6.4) are described based on repeat measurements of the local GPS networks in Cephalonia and Ithaca, and the available continuous GPS stations in the broader area. The Lefkas earthquake occurred on a branch of the Cephalonia Transform Fault, affecting Cephalonia with SE displacements gradually decreasing from north ( 100 mm) to south ( 10 mm). This earthquake revealed a near N-S dislocation boundary separating Paliki Peninsula in western Cephalonia from the rest of the island, as well as another NW-SE trending fault that separates kinematically the northern and southern parts of Paliki. Strain field calculations during the interseismic period (2014-2015) indicate compression between Ithaca and Cephalonia, while extension appears during the following co-seismic period (2015-2016) including the 2015 Lefkas earthquake. Additional tectonically active zones with differential kinematic characteristics were also identified locally.

  12. A study of El Niño-Southern oscillation impacts to the South China Sea region using ground-based GPS receiver

    International Nuclear Information System (INIS)

    Suparta, Wayan; Iskandar, Ahmad; Singh, Mandeep Singh Jit; Ali, Mohd Alauddin Mohd; Yatim, Baharudin; Tangang, Fredolin

    2013-01-01

    We observe an ENSO activity by using ground-based GPS receiver as an effort to study the effects of global warming and climate change in the tropical region. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) meteorology in line with the sea surface temperature anomaly (SSTa) is used to indicate their response on ENSO activities. The PWV data used in this study was taken from the station at Universiti Malaysia Sabah, Kota Kinabalu (UMSK) over 2011, together with NTUS station (in the Singapore), PIMO (in Philippines) and BAKO (in Indonesia) are also compared. The relationship between PWV and SSTa at all stations on weekly basis exhibited modest with correlation coefficients between −0.30 and −0.78 significantly at the 99% confidence level. The negative correlation indicates that during a La Niña phase, the PWV is increased when the sea surface temperatures getting cold causes warm air mass in the central Pacific moved to west Pacific. The increased of PWV causes the GPS signals will be getting slower.

  13. A study of El Niño-Southern oscillation impacts to the South China Sea region using ground-based GPS receiver

    Science.gov (United States)

    Suparta, Wayan; Iskandar, Ahmad; Singh Jit Singh, Mandeep; Alauddin Mohd Ali, Mohd; Yatim, Baharudin; Tangang, Fredolin

    2013-04-01

    We observe an ENSO activity by using ground-based GPS receiver as an effort to study the effects of global warming and climate change in the tropical region. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) meteorology in line with the sea surface temperature anomaly (SSTa) is used to indicate their response on ENSO activities. The PWV data used in this study was taken from the station at Universiti Malaysia Sabah, Kota Kinabalu (UMSK) over 2011, together with NTUS station (in the Singapore), PIMO (in Philippines) and BAKO (in Indonesia) are also compared. The relationship between PWV and SSTa at all stations on weekly basis exhibited modest with correlation coefficients between -0.30 and -0.78 significantly at the 99% confidence level. The negative correlation indicates that during a La Niña phase, the PWV is increased when the sea surface temperatures getting cold causes warm air mass in the central Pacific moved to west Pacific. The increased of PWV causes the GPS signals will be getting slower.

  14. Multichannel Singular Spectrum Analysis in the Estimates of Common Environmental Effects Affecting GPS Observations

    Science.gov (United States)

    Gruszczynska, Marta; Rosat, Severine; Klos, Anna; Gruszczynski, Maciej; Bogusz, Janusz

    2018-03-01

    We described a spatio-temporal analysis of environmental loading models: atmospheric, continental hydrology, and non-tidal ocean changes, based on multichannel singular spectrum analysis (MSSA). We extracted the common annual signal for 16 different sections related to climate zones: equatorial, arid, warm, snow, polar and continents. We used the loading models estimated for a set of 229 ITRF2014 (International Terrestrial Reference Frame) International GNSS Service (IGS) stations and discussed the amount of variance explained by individual modes, proving that the common annual signal accounts for 16, 24 and 68% of the total variance of non-tidal ocean, atmospheric and hydrological loading models, respectively. Having removed the common environmental MSSA seasonal curve from the corresponding GPS position time series, we found that the residual station-specific annual curve modelled with the least-squares estimation has the amplitude of maximum 2 mm. This means that the environmental loading models underestimate the seasonalities observed by the GPS system. The remaining signal present in the seasonal frequency band arises from the systematic errors which are not of common environmental or geophysical origin. Using common mode error (CME) estimates, we showed that the direct removal of environmental loading models from the GPS series causes an artificial loss in the CME power spectra between 10 and 80 cycles per year. When environmental effect is removed from GPS series with MSSA curves, no influence on the character of spectra of CME estimates was noticed.

  15. Detection test of wireless network signal strength and GPS positioning signal in underground pipeline

    Science.gov (United States)

    Li, Li; Zhang, Yunwei; Chen, Ling

    2018-03-01

    In order to solve the problem of selecting positioning technology for inspection robot in underground pipeline environment, the wireless network signal strength and GPS positioning signal testing are carried out in the actual underground pipeline environment. Firstly, the strength variation of the 3G wireless network signal and Wi-Fi wireless signal provided by China Telecom and China Unicom ground base stations are tested, and the attenuation law of these wireless signals along the pipeline is analyzed quantitatively and described. Then, the receiving data of the GPS satellite signal in the pipeline are tested, and the attenuation of GPS satellite signal under underground pipeline is analyzed. The testing results may be reference for other related research which need to consider positioning in pipeline.

  16. Monitoring the bedrock stability in Olkiluoto. Summary of campaign based GPS measurements in 1996-2011

    International Nuclear Information System (INIS)

    Nyberg, S.; Kallio, U.; Haekli, P.; Jokela, J.; Koivula, H.; Saaranen, V.; Rouhiainen, P.

    2013-12-01

    The Finnish Geodetic Institute has monitored crustal deformations in Olkiluoto since mid-1990s. This is a final report of campaign based GPS measurements carried out in 1996-2011. The aim of the research has been monitoring the bedrock stability in the Olkiluoto area. The research were started in 1995, when a local GPS network of ten pillars, called inner network, was established on Olkiluoto Island. The research area was expanded in 2003- 2005 with four new pillars (outer network) established at 5-10 km distances from the inner network. One of the pillar points is the Olkiluoto permanent GPS station. Regular biannual measurement campaigns have been carried out on other pillar points

  17. 3-D Spatial Analysis of Deformation at Ikpoba Dam From GPS Data ...

    African Journals Online (AJOL)

    In this study, analysis of the measurement data obtained by differential GPS at the Ikpoba River Dam was carried out. The measurement system consisted of 19 control and reference stations. DGPS data were collected during two measurement campaigns carried out in 2008 and 2009 respectively using five dual frequency ...

  18. Coseismic deformation of the 2001 El Salvador and 2002 Denali fault earthquakes from GPS geodetic measurements

    Science.gov (United States)

    Hreinsdottir, Sigrun

    2005-07-01

    GPS geodetic measurements are used to study two major earthquakes, the 2001 MW 7.7 El Salvador and 2002 MW 7.9 Denali Fault earthquakes. The 2001 MW 7.7 earthquake was a normal fault event in the subducting Cocos plate offshore El Salvador. Coseismic displacements of up to 15 mm were measured at permanent GPS stations in Central America. The GPS data were used to constrain the location of and slip on the normal fault. One month later a MW 6.6 strike-slip earthquake occurred in the overriding Caribbean plate. Coulomb stress changes estimated from the M W 7.7 earthquake suggest that it triggered the MW 6.6 earthquake. Coseismic displacement from the MW 6.6 earthquake, about 40 mm at a GPS station in El Salvador, indicates that the earthquake triggered additional slip on a fault close to the GPS station. The MW 6.6 earthquake further changed the stress field in the overriding Caribbean plate, with triggered seismic activity occurring west and possibly also to the east of the rupture in the days to months following the earthquake. The MW 7.9 Denali Fault earthquake ruptured three faults in the interior of Alaska. It initiated with a thrust motion on the Susitna Glacier fault but then ruptured the Denali and Totschunda faults with predominantly right-lateral strike-slip motion unilaterally from west to east. GPS data measured in the two weeks following the earthquake suggest a complex coseismic rupture along the faults with two main regions of moment release along the Denali fault. A large amount of additional data were collected in the year following the earthquake which greatly improved the resolution on the fault, revealing more details of the slip distribution. We estimate a total moment release of 6.81 x 1020 Nm in the earthquake with a M W 7.2 thrust subevent on Susitna Glacier fault. The slip on the Denali fault is highly variable, with 4 main pulses of moment release. The largest moment pulse corresponds to a MW 7.5 subevent, about 40 km west of the Denali

  19. Investigation of Noises in GPS Time Series: Case Study on Epn Weekly Solutions

    Science.gov (United States)

    Klos, Anna; Bogusz, Janusz; Figurski, Mariusz; Kosek, Wieslaw; Gruszczynski, Maciej

    2014-05-01

    The noises in GPS time series are stated to be described the best by the combination of white (Gaussian) and power-law processes. They are mainly the effect of mismodelled satellite orbits, Earth orientation parameters, atmospheric effects, antennae phase centre effects, or of monument instability. Due to the fact, that velocities of permanent stations define the kinematic reference frame, they have to fulfil the requirement of being stable at 0.1 mm/yr. The previously performed researches showed, that the wrong assumption of noise model leads to the underestimation of velocities and their uncertainties from 2 up to even 11, especially in the Up direction. This presentation focuses on more than 200 EPN (EUREF Permanent Network) stations from the area of Europe with various monument types (concrete pillars, buildings, metal masts, with or without domes, placed on the ground or on the rock) and coordinates of weekly changes (GPS weeks 0834-1459). The topocentric components (North, East, Up) in ITRF2005 which come from the EPN Re-Processing made by the Military University of Technology Local Analysis Centre (MUT LAC) were processed with Maximum Likelihood Estimation (MLE) using CATS software. We have assumed the existence of few combinations of noise models (these are: white, flicker and random walk noise with integer spectral indices and power-law noise models with fractional spectral indices) and investigated which of them EPN weekly time series are likely to follow. The results show, that noises in GPS time series are described the best by the combination of white and flicker noise model. It is strictly related to the so-called common mode error (CME) that is spatially correlated error being one of the dominant error source in GPS solutions. We have assumed CME as spatially uniform, what was a good approximation for stations located hundreds of kilometres one to another. Its removal with spatial filtering reduces the amplitudes of white and flicker noise by a

  20. Jason-1 and Jason-2 POD Using GPS

    Science.gov (United States)

    Melachroinos, Stavros; Lemoine, Frank G.; Zelensky, Nikita P.; Rowlands, David D.; Luthcke, Scott B.; Beckley, Brian D.

    2012-01-01

    The Jason-2 satellite, launched in June 2008, is the latest follow-on to the successful Jason-1 altimetry satellite mission launched in December 7, 2001. Both, Jason-2 and Jason-1 are equipped with a GPS dual-frequency receiver, a laser retroreflector array, and a DORIS receiver for precise orbit determination (POD). A series of dynamic and reduced-dynamic Jason-2 orbits computed at NASA GSFC, based on GPS-only data and the std0905 standards, have been completed till cy74through cycle 74 using the IGS05 framework. These orbits, now publicly available, have been shown to agree radially at 1 cm RMS with the GSFC std0905 SLR/DORIS orbits and in comparison with orbits produced by JPL, ESA and CNES. In this paper, we describe the implementation of the IGS08 and repro1 framework for the Jason-2 and Jason-1 GPS POD processing with the NASA GSFC GEODYN software. . In our updated GPS POD, ambiguity fixing and updated time variable and static gravity fields. We also evaluate the implementation of non-tidal and degree-1 loading displacement as forward modeling to the tracking stations. Reduced-dynamic versus dynamic orbit differences are used to characterize the remaining force model errors and TRF instability. In particular, we assess their consistency radially and the stability of the altimeter satellite reference frame in the North/South direction as a proxy to assess the consistency of the reference frame.

  1. Investigation of the seismo-ionospheric effects on the base of GPS/GLONASS measurements

    Science.gov (United States)

    Zakharenkova, I.; Cherniak, Iu.; Shagimuratov, I.; Suslova, O.

    2012-04-01

    During last years the monitoring of the ionospheric effects of different origin is carried out mainly with use of Global Navigating Satellite Systems (GPS / GLONASS). By means of measurements of the signals temporal delays it is possible to do the mapping of total electron content (TEC) in a column of unit cross section through the Earth's ionosphere and investigate its temporal evolution depended on the variations of electron concentration (NmF2) in the F2 ionospheric region. In the given report we present results of analysis of spatial-temporal variability of the ionosphere during the earthquake preparation phase for several major earthquakes which took place in Japan. It was revealed that for considered events mainly positive TEC anomalies appeared 1-5 days prior to the earthquake. The enhancement of electron concentration reached the value of 30-70% relative to the quiet geomagnetic conditions. In order to analyze the revealed effects in more details it was additionally involved data of GPS TEC values over GPS stations located at different distances from earthquake epicenters and data of vertical sounding of the ionosphere (NICT database). The hourly values of critical frequency of ionospheric F2 and Es layers were obtained from manually scaled ionograms recorded at Japanese ionospheric sounding stations Wakkanai, Kokubunji and Yamagawa. Acknowledgments. We acknowledge the IGS community for providing GPS permanent data and WDC for Ionosphere, Tokyo, National Institute of Information and Communications Technology (NICT) for providing ionosonde data. This work was supported by Russian Federation President grant MK-2058.2011.5.

  2. GPS-derived crustal deformation in Azerbaijan

    Science.gov (United States)

    Safarov, Rafig; Mammadov, Samir; Kadirov, Fakhraddin

    2017-04-01

    Crustal deformations of the Earth's crust in Azerbaijan were studied based on GPS measurements. The GPS velocity vectors for Azerbaijan, Iran, Georgia, and Armenia were used in order to estimate the deformation rates. It is found that compression is observable along the Greater Caucasus, in Gobustan, the Kura depression, Nakhchyvan Autonomous Republic, and adjacent areas of Iran. The axes of compression/contraction of the crust in the Greater Caucasus region are oriented in the S-NE direction. The maximum strain rate is observed in the zone of mud volcanism at the SHIK site (Shykhlar), which is marked by a sharp change in the direction of the compression axes (SW-NE). It is revealed that the deformation field also includes the zones where strain rates are very low. These zones include the Caspian-Guba and northern Gobustan areas, characterized by extensive development of mud volcanism. The extension zones are confined to the Lesser Caucasus and are revealed in the Gyadabei (GEDA) and Shusha (SHOU) areas. The analysis of GPS data for the territory of Azerbaijan and neighboring countries reveals the heterogeneous patterns of strain field in the region. This fact suggests that the block model is most adequate for describing the structure of the studied region. The increase in the number of GPS stations would promote increasing the degree of detail in the reconstructions of the deformation field and identifying the microplate boundaries.It is concluded that the predominant factor responsible for the eruption of mud volcanoes is the intensity of gasgeneration processes in the earth's interior, while deformation processes play the role of a trigger. The zone of the epicenters of strong earthquakes is correlated to the gradient zone in the crustal strain rates.

  3. Absolute GPS Positioning Using Genetic Algorithms

    Science.gov (United States)

    Ramillien, G.

    A new inverse approach for restoring the absolute coordinates of a ground -based station from three or four observed GPS pseudo-ranges is proposed. This stochastic method is based on simulations of natural evolution named genetic algorithms (GA). These iterative procedures provide fairly good and robust estimates of the absolute positions in the Earth's geocentric reference system. For comparison/validation, GA results are compared to the ones obtained using the classical linearized least-square scheme for the determination of the XYZ location proposed by Bancroft (1985) which is strongly limited by the number of available observations (i.e. here, the number of input pseudo-ranges must be four). The r.m.s. accuracy of the non -linear cost function reached by this latter method is typically ~10-4 m2 corresponding to ~300-500-m accuracies for each geocentric coordinate. However, GA can provide more acceptable solutions (r.m.s. errors < 10-5 m2), even when only three instantaneous pseudo-ranges are used, such as a lost of lock during a GPS survey. Tuned GA parameters used in different simulations are N=1000 starting individuals, as well as Pc=60-70% and Pm=30-40% for the crossover probability and mutation rate, respectively. Statistical tests on the ability of GA to recover acceptable coordinates in presence of important levels of noise are made simulating nearly 3000 random samples of erroneous pseudo-ranges. Here, two main sources of measurement errors are considered in the inversion: (1) typical satellite-clock errors and/or 300-metre variance atmospheric delays, and (2) Geometrical Dilution of Precision (GDOP) due to the particular GPS satellite configuration at the time of acquisition. Extracting valuable information and even from low-quality starting range observations, GA offer an interesting alternative for high -precision GPS positioning.

  4. Differences between Practice Patterns of Conventional and Naturopathic GPs in Germany.

    Science.gov (United States)

    Laux, Gunter; Musselmann, Berthold; Kiel, Marion; Szecsenyi, Joachim; Joos, Stefanie

    2016-01-01

    Limited evidence exists whether practice patterns of general practitioners (GPs) who have additionally completed training in naturopathy are different from those of conventional GPs. We aimed to assess and compare practice patterns of GPs in conventional and naturopathic GPs. Routine data from 41 GPs (31 with and 11 without additional qualification in NP, respectively) and 180,789 patients, drawn from the CONTinuous morbidity registration Epidemiologic NeTwork (CONTENT)-registry and collected between 2009 and 2014, were used. To assess practice patterns determinants of (non-)phytopharmaceutical prescriptions, referrals and hospitalizations were analyzed using mixed-effects Poisson regression models. As explanatory variables, the qualification of the GP in NM, the age group and sex of the patient, as well as bivariate interactions between these variables were considered. GPs additionally qualified in naturopathy exhibited higher rates of phytopharmaceutical prescriptions (pGPs. This association was not observed with respect to non-phytopharmaceutical prescriptions. However, interaction effects between qualification and age group as well as sex were present with respect to both phytopharmaceutical and non-phytopharmaceutical prescriptions (all pGPs could be subject to certain age groups and sex. However, the magnitude of these differences seem to be rather small.

  5. TerraSAR-X precise orbit determination with real-time GPS ephemerides

    Science.gov (United States)

    Wermuth, Martin; Hauschild, Andre; Montenbruck, Oliver; Kahle, Ralph

    TerraSAR-X is a German Synthetic Aperture Radar (SAR) satellite, which was launched in June 2007 from Baikonour. Its task is to acquire radar images of the Earth's surface. In order to locate the radar data takes precisely, the satellite is equipped with a high-quality dual-frequency GPS receiver -the Integrated Geodetic and Occultation Receiver (IGOR) provided by the GeoForschungsZentrum Potsdam (GFZ). Using GPS observations from the IGOR instrument in a reduced dynamic precise orbit determination (POD), the German Space Operations Center (DLR/GSOC) is computing rapid and science orbit products on a routine basis. The rapid orbit products arrive with a latency of about one hour after data reception with an accuracy of 10-20 cm. Science orbit products are computed with a latency of five days achieving an accuracy of about 5cm (3D-RMS). For active and future Earth observation missions, the availability of near real-time precise orbit information is becoming more and more important. Other applications of near real-time orbit products include the processing of GNSS radio occulation measurements for atmospheric sounding as well as altimeter measurements of ocean surface heights, which are nowadays employed in global weather and ocean circulation models with short latencies. For example after natural disasters it is necessary to evaluate the damage by satellite images as soon as possible. The latency and quality of POD results is mainly driven by the availability of precise GPS ephemerides. In order to have high-quality GPS ephemerides available at real-time, GSOC has developed the real-time clock estimation system RETICLE. The system receives NTRIP-data streams with GNSS observations from the global tracking network of IGS in real-time. Using the known station position, RETICLE estimates precise GPS satellite clock offsets and drifts based on the most recent available IGU predicted orbits. The clock offset estimates have an accuracy of better than 0.3 ns and are

  6. Clustering of velocities in a GPS network spanning the Sierra Nevada Block, the northern Walker Lane Belt, and the Central Nevada Seismic Belt, California-Nevada

    Science.gov (United States)

    Savage, James C.; Simpson, Robert W.

    2013-01-01

    The deformation across the Sierra Nevada Block, the Walker Lane Belt, and the Central Nevada Seismic Belt (CNSB) between 38.5°N and 40.5°N has been analyzed by clustering GPS velocities to identify coherent blocks. Cluster analysis determines the number of clusters required and assigns the GPS stations to the proper clusters. The clusters are shown on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. Four significant clusters are identified. Those clusters are strips separated by (from west to east) the Mohawk Valley-Genoa fault system, the Pyramid Lake-Wassuk fault system, and the Central Nevada Seismic Belt. The strain rates within the westernmost three clusters approximate simple right-lateral shear (~13 nstrain/a) across vertical planes roughly parallel to the cluster boundaries. Clustering does not recognize the longitudinal segmentation of the Walker Lane Belt into domains dominated by either northwesterly trending, right-lateral faults or northeasterly trending, left-lateral faults.

  7. Evaluation of a regional real-time precise positioning system based on GPS/BeiDou observations in Australia

    Science.gov (United States)

    Ding, Wenwu; Tan, Bingfeng; Chen, Yongchang; Teferle, Felix Norman; Yuan, Yunbin

    2018-02-01

    The performance of real-time (RT) precise positioning can be improved by utilizing observations from multiple Global Navigation Satellite Systems (GNSS) instead of one particular system. Since the end of 2012, BeiDou, independently established by China, began to provide operational services for users in the Asia-Pacific regions. In this study, a regional RT precise positioning system is developed to evaluate the performance of GPS/BeiDou observations in Australia in providing high precision positioning services for users. Fixing three hourly updated satellite orbits, RT correction messages are generated and broadcasted by processing RT observation/navigation data streams from the national network of GNSS Continuously Operating Reference Stations in Australia (AUSCORS) at the server side. At the user side, RT PPP is realized by processing RT data streams and the RT correction messages received. RT clock offsets, for which the accuracy reached 0.07 and 0.28 ns for GPS and BeiDou, respectively, can be determined. Based on these corrections, an accuracy of 12.2, 30.0 and 45.6 cm in the North, East and Up directions was achieved for the BeiDou-only solution after 30 min while the GPS-only solution reached 5.1, 15.3 and 15.5 cm for the same components at the same time. A further improvement of 43.7, 36.9 and 45.0 percent in the three directions, respectively, was achieved for the combined GPS/BeiDou solution. After the initialization process, the North, East and Up positioning accuracies were 5.2, 8.1 and 17.8 cm, respectively, for the BeiDou-only solution, while 1.5, 3.0, and 4.7 cm for the GPS-only solution. However, we only noticed a 20.9% improvement in the East direction was obtained for the GPS/BeiDou solution, while no improvements in the other directions were detected. It is expected that such improvements may become bigger with the increasing accuracy of the BeiDou-only solution.

  8. Optimalisasi Kinerja (Internet Protocol) Ip Clock Pada Jaringan Base Transceiver Station (Bts)

    OpenAIRE

    Budiyanto, Setiyo; Saputra, Apipi

    2016-01-01

    Pada sistem komunikasi GSM (Global System for Mobile), BTS (Base Transceiver Station) merupakan jantung dari sebuah cell site layanan telekomunikasi. BTS merupakan perangkat pemancar dan penerima yang menangani akses radio dan berinteraksi langsung dengan Mobile Station (MS) melalui air interface. Sebuah optimasi kinerja ip clock pada base transceiver station (BTS) metode untuk sinkronisasi jaringan untuk jam global yang berasal dari jam GPS diakuisisi oleh sejumlah BTS. IP clock didistribusi...

  9. Global Application of TaiWan Ionospheric Model to Single-Frequency GPS Positioning

    Science.gov (United States)

    Macalalad, E.; Tsai, L. C.; Wu, J.

    2012-04-01

    Ionospheric delay is one the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. For single-frequency receivers, this delay is usually removed using ionospheric models. Two of them are the Klobuchar, or broadcast, model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, called the TaiWan Ionosphere Model, is used. It was used to calculate the slant total electron content (STEC) between receiver and GPS satellites to correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to determine a more accurate position of the receiver. Observations were made in July 2, 2011(Kp index = 0-2) in five randomly selected sites across the globe, four of which are IGS stations (station ID: cnmr, coso, irkj and morp) while the other is a low-cost single-frequency receiver located in Chungli City, Taiwan (ID: isls). It was illustrated that TEC maps generated using TWIM exhibited a detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for single-frequency static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models for all stations. The average %error of the corrections made by Klobuchar, GIM and TWIM in DRMS are 3.88%, 0.78% and 17.45%, respectively. While the average %error in VRMS for Klobuchar, GIM and TWIM are 53.55%, 62.09%, 66.02%, respectively. This shows the capability of TWIM to provide a good global 3-dimensional ionospheric model.

  10. PRELIMINARY ESTIMATION OF POSTSEISMIC DEFORMATION PARAMETERS FROM CONTINUOUS GPS DATA IN KOREA PENINSULA AND IEODO AFTER THE 2011 TOHOKU-OKI MW9.0 EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    W. A. W. Aris

    2016-09-01

    Full Text Available This paper describes utilization of GPS data in Korea Peninsula and IEODO ocean research station for investigation of postseismic deformation characteristic after the 2011 Tohoku-oki Mw9.0 Earthquake. Analytical logarithmic and exponential functions were used to evaluate the postseismic deformation parameters. The results found that the data in Korea Peninsula and IEODO during periods of mid-2011 – mid-2014 are fit better using logarithmic function with deformation decay at 134.5 ±0.1 days than using the exponential function. The result also clearly indicates that further investigation into postseismic deformation over longer data span should be taken into account to explain tectonic deformation over the region.

  11. Single-Receiver GPS Phase Bias Resolution

    Science.gov (United States)

    Bertiger, William I.; Haines, Bruce J.; Weiss, Jan P.; Harvey, Nathaniel E.

    2010-01-01

    Existing software has been modified to yield the benefits of integer fixed double-differenced GPS-phased ambiguities when processing data from a single GPS receiver with no access to any other GPS receiver data. When the double-differenced combination of phase biases can be fixed reliably, a significant improvement in solution accuracy is obtained. This innovation uses a large global set of GPS receivers (40 to 80 receivers) to solve for the GPS satellite orbits and clocks (along with any other parameters). In this process, integer ambiguities are fixed and information on the ambiguity constraints is saved. For each GPS transmitter/receiver pair, the process saves the arc start and stop times, the wide-lane average value for the arc, the standard deviation of the wide lane, and the dual-frequency phase bias after bias fixing for the arc. The second step of the process uses the orbit and clock information, the bias information from the global solution, and only data from the single receiver to resolve double-differenced phase combinations. It is called "resolved" instead of "fixed" because constraints are introduced into the problem with a finite data weight to better account for possible errors. A receiver in orbit has much shorter continuous passes of data than a receiver fixed to the Earth. The method has parameters to account for this. In particular, differences in drifting wide-lane values must be handled differently. The first step of the process is automated, using two JPL software sets, Longarc and Gipsy-Oasis. The resulting orbit/clock and bias information files are posted on anonymous ftp for use by any licensed Gipsy-Oasis user. The second step is implemented in the Gipsy-Oasis executable, gd2p.pl, which automates the entire process, including fetching the information from anonymous ftp

  12. Study of the active deformation of Mitidja (Tell Atlas, Algeria) by GPS

    Science.gov (United States)

    Bacha, Wahab; Masson, Frederic; Yelles-Chaouche, Abdelkrim; Lammali, Kamel; Bellik, Amar; Hamai, Lamine

    2013-04-01

    A network was created in the Mitidja region around the capital Algiers (Algeria). It has been established to study the deformation of the region and the slow operation of flaws in it. The network was installed by a distribution of GPS stations according to structural domains existing in the region. Twelve bases spread across the study area, have been installed. The measurements were acquired by performing four measurement campaigns in 2006, 2007, 2009 and 2010, with sessions over a month of action. This work allowed the installation of a geodetic network of regional monitoring by methodology GPS in the zone of Mitidja (Tellian Atlas, Algeria). Four observation campaigns were carried out on this area with session's superiors in one month of measurements. The treatment was carried out with software GAMIT-GLOBK, the network is attached to several world stations IGS treated between 2000-2010, indexed in a precise frame of reference ITRF05. The results presented in this memory show a deformation in shortening ≤ 0.5 mm/an in the plain of Mitidja and the surrounding Solid masses.

  13. New advantages of the combined GPS and GLONASS observations for high-latitude ionospheric irregularities monitoring: case study of June 2015 geomagnetic storm

    Science.gov (United States)

    Cherniak, Iurii; Zakharenkova, Irina

    2017-05-01

    Monitoring, tracking and nowcasting of the ionospheric plasma density disturbances using dual-frequency measurements of the Global Positioning System (GPS) signals are effectively carried out during several decades. Recent rapid growth and modernization of the ground-based segment gives an opportunity to establish a great database consisting of more than 6000 stations worldwide which provide GPS signals measurements with an open access. Apart of the GPS signals, at least two-third of these stations receive simultaneously signals transmitted by another Global Navigation Satellite System (GNSS)—the Russian system GLONASS. Today, GLONASS signal measurements are mainly used in navigation and geodesy only and very rarely for ionosphere research. We present the first results demonstrating advantages of using several independent but compatible GNSS systems like GPS and GLONASS for improvement of the permanent monitoring of the high-latitude ionospheric irregularities. For the first time, the high-resolution two-dimensional maps of ROTI perturbation were made using not only GPS but also GLONASS measurements. We extend the use of the ROTI maps for analyzing ionospheric irregularities distribution. We demonstrate that the meridional slices of the ROTI maps can be effectively used to study the occurrence and temporal evolution of the ionospheric irregularities. The meridional slices of the geographical sectors with a high density of the GPS and GLONASS measurements can represent spatio-temporal dynamics of the intense ionospheric plasma density irregularities with very high resolution, and they can be effectively used for detailed study of the space weather drivers on the processes of the ionospheric irregularities generation, development and their lifetimes. Using a representative database of 5800 ground-based GNSS stations located worldwide, we have investigated the occurrence of the high-latitude ionospheric plasma density irregularities during the geomagnetic storm of

  14. A GPS and modelling study of deformation in northern Central America

    Science.gov (United States)

    Rodriguez, M.; DeMets, C.; Rogers, R.; Tenorio, C.; Hernandez, D.

    2009-09-01

    We use GPS measurements at 37 stations in Honduras and El Salvador to describe active deformation of the western end of the Caribbean Plate between the Motagua fault and Central American volcanic arc. All GPS sites located in eastern Honduras move with the Caribbean Plate, in accord with geologic evidence for an absence of neotectonic deformation in this region. Relative to the Caribbean Plate, the other stations in the study area move west to west-northwest at rates that increase gradually from 3.3 +/- 0.6 mm yr-1 in central Honduras to 4.1 +/- 0.6 mm yr-1 in western Honduras to as high as 11-12 mm yr-1 in southern Guatemala. The site motions are consistent with slow westward extension that has been inferred by previous authors from the north-striking grabens and earthquake focal mechanisms in this region. We examine the factors that influence the regional deformation by comparing the new GPS velocity field to velocity fields predicted by finite element models (FEMs) that incorporate the regional plate boundary faults and known plate motions. Our modelling suggests that the obliquely convergent (~20°) direction of Caribbean-North American Plate motion relative to the Motagua fault west of 90°W impedes the ENE-directed motion of the Caribbean Plate in southern Guatemala, giving rise to extension in southern Guatemala and western Honduras. The FEM predictions agree even better with the measured velocities if the plate motion west of the Central American volcanic arc is forced to occur over a broad zone rather than along a single throughgoing plate boundary fault. Our analysis confirms key predictions of a previous numerical model for deformation in this region, and also indicates that the curvature of the Motagua fault causes significant along-strike changes in the orientations of the principal strain-rate axes in the fault borderlands, in accord with earthquake focal mechanisms and conclusions reached in a recent synthesis of the structural and morphologic data

  15. Using GPS Imaging to Unravel Vertical Land Motions in the Interior Pacific Northwest

    Science.gov (United States)

    Overacker, J.; Hammond, W. C.; Kraner, M.; Blewitt, G.

    2017-12-01

    result of vertical velocity field plotted over topographic relief map. Red is up, blue is down. GPS station locations are shown in green. Greatest amount of subsidence shown by GPS Imaging appear uncorrelated with topographic features.

  16. High-Precision, Continuous GPS Data Reveals Seasonal Groundwater Influence on the Deformation of the Salmon Falls Landslide, a Slow-Moving, Rotational Feature in Central Idaho

    Science.gov (United States)

    Lauer, I. H.; Crosby, B. T.

    2017-12-01

    The development of predictive tools for landslide initiation and deformation serve both the natural hazard and geomorphic communities. Founded on both field observations and physical laws, these tools require a mechanistic understanding of the connection between forcing and response. Water has a well-documented influence on slope stability, impacting both soil plasticity and pore water pressure. High precision, high frequency GPS measurements of deformation paired with similar frequency water table measurements enable new insight into the lag and sensitivity present in the coupled hillslope-groundwater system, especially in the rotational domain, which is underrepresented in current literature. Our study explores the influence of groundwater on a slow-moving, deep-seated, rotational slide in southern Idaho using daily, mm precision GPS positions and contemporaneous groundwater levels measurements in adjacent wells, lakes, and streams. Seven semi-permanent GPS stations are spatially distributed across the slide and record three-dimensional velocities up to 11 cm/yr, which compare well with historical measurements from the early 2000's. Water level loggers are located in a rough cross-section through the study area and documents rises in water level during spring 2017 and a subsequent 1.5m drop in the following summer. We hypothesize a correlation of groundwater levels and landslide velocity, which varies seasonally and spatially across the body of the slide. We will present whether deformation is spatially contemporaneous or initiate in one region and propagates down-feature. We will also discuss whether temporal lag exists between water level change and deformation and if hysteresis complicates correlation between forcing and response. Results will bolster the breadth of case-studies available for this landslide morphology and provide regional land managers with predictors for increased landslide activity and associated hazards, such as rockfall or landslide dam

  17. Evolution of offshore wind waves tracked by surface drifters with a point-positioning GPS sensor

    Science.gov (United States)

    Komatsu, K.

    2009-12-01

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, momentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious disasters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal regions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and direction sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the

  18. Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals

    Science.gov (United States)

    Liu, Lin; Larson, Kristine M.

    2018-02-01

    Conventional benchmark-based survey and Global Positioning System (GPS) have been used to measure surface elevation changes over permafrost areas, usually once or a few times a year. Here we use reflected GPS signals to measure temporal changes of ground surface elevation due to dynamics of the active layer and near-surface permafrost. Applying the GPS interferometric reflectometry technique to the multipath signal-to-noise ratio data collected by a continuously operating GPS receiver mounted deep in permafrost in Barrow, Alaska, we can retrieve the vertical distance between the antenna and reflecting surface. Using this unique kind of observables, we obtain daily changes of surface elevation during July and August from 2004 to 2015. Our results show distinct temporal variations at three timescales: regular thaw settlement within each summer, strong interannual variability that is characterized by a sub-decadal subsidence trend followed by a brief uplift trend, and a secular subsidence trend of 0.26 ± 0.02 cm year-1 during 2004 and 2015. This method provides a new way to fully utilize data from continuously operating GPS sites in cold regions for studying dynamics of the frozen ground consistently and sustainably over a long time.

  19. Comparison of two-way satellite time transfer and GPS common-view time transfer between OCA and TUG

    Science.gov (United States)

    Kirchner, Dieter; Thyr, U.; Ressler, H.; Robnik, R.; Grudler, P.; Baumont, Francoise S.; Veillet, Christian; Lewandowski, Wlodzimierz W.; Hanson, W.; Clements, A.

    1992-01-01

    For about one year the time scales UTC(OCA) and UTC(TUG) were compared by means of GPS and two-way satellite time transfer. At the end of the experiment both links were independently 'calibrated' by measuring the differential delays of the GPS receivers and of the satellite earth stations by transportation of a GPS receiver and of one of the satellite terminals. The results obtained by both methods differ by about 3 ns, but reveal a seasonal variation of about 8 ns peak-to-peak which is likely the result of a temperature-dependence of the delays of the GPS receivers used. For the comparison of both methods the stabilities of the timescales are of great importance. Unfortunately, during the last three months of the experiment a less stable clock had to be used for the generation of UTC(TUG).

  20. Assessment of long-range kinematic GPS positioning errors by comparison with airborne laser altimetry and satellite altimetry

    DEFF Research Database (Denmark)

    Zhang, X.H.; Forsberg, René

    2007-01-01

    Long-range airborne laser altimetry and laser scanning (LIDAR) or airborne gravity surveys in, for example, polar or oceanic areas require airborne kinematic GPS baselines of many hundreds of kilometers in length. In such instances, with the complications of ionospheric biases, it can be a real...... challenge for traditional differential kinematic GPS software to obtain reasonable solutions. In this paper, we will describe attempts to validate an implementation of the precise point positioning (PPP) technique on an aircraft without the use of a local GPS reference station. We will compare PPP solutions...... of the Arctic Ocean north of Greenland, near-coincident in time and space with the ICESat satellite laser altimeter. Both of these flights were more than 800 km long. Comparisons between different GPS methods and four different software packages do not suggest a clear preference for any one, with the heights...

  1. Self reported involvement in emergency medicine among GPs in Norway.

    Science.gov (United States)

    Hjortdahl, Magnus; Zakariassen, Erik; Halvorsen, Peder A

    2018-04-10

    To examine general practitioners' (GPs') perception of their role in emergency medicine and participation in emergency services including ambulance call outs, and the characteristics of the GPs and casualty clinics associated with the GPs' involvement in emergency medicine. Cross-sectional online survey. General practice. General practitioners in Norway (n = 1002). Proportion of GPs perceiving that they have a large role in emergency medicine, regularly being on call, and the proportion of ambulance callouts with GP participation. Forty six percent of the GPs indicated that they play a large role in emergency medicine, 63 percent of the GPs were regularly on call, and 28 percent responded that they usually took part in ambulance call outs. Multivariable logistic regression analyses indicated that these outcomes were strongly associated with participation in multidisciplinary training. Furthermore, the main outcomes were associated with traits commonly seen at smaller casualty clinics such as those with an absence of nursing personnel and extra physicians, and based on the distance to the hospital. Our findings suggest that GPs play an important role in emergency medicine. Multidisciplinary team training may be important for their continued involvement in prehospital emergencies. Key Points   Health authorities and other stakeholders have raised concerns about general practitioner's (GPs) participation in emergency medicine, but few have studied opinions and perceptions among the GPs themselves.   • Norwegian GPs report playing a large role in emergency medicine, regularly being on call, and taking part in selected ambulance call outs.   • A higher proportion of GPs who took part in team training perceived themselves as playing a large role in emergency medicine, regularly being on call, and taking part in ambulance call outs.   • These outcomes were also associated with attributes commonly seen at smaller casualty clinics.

  2. Convergence Time and Positioning Accuracy Comparison between BDS and GPS Precise Point Positioning

    Directory of Open Access Journals (Sweden)

    ZHANG Xiaohong

    2015-03-01

    Full Text Available BDS/GPS data from MGEX were processed by TriP 2.0 software developed at Wuhan University. Both static and kinematic float PPP are tested by adopting precise satellite orbits and clocks provided by Research Center of GNSS, Wuhan University. The results show that the convergence time of BDS static PPP is about 80min while kinematic PPP is about 100min. For 3h observations, static positioning accuracy of 5 cm and kinematic positioning accuracy of 8 cm in horizontal, about 12 cm in vertical can be achieved. Similar to GPS PPP, precision in east component is worse than north. At present, BDS PPP needs longer convergence time than GPS PPP to reach an absolute positioning accuracy of cm~dm due to the lack of global tracking stations and the limited accuracy of orbit and clock products.

  3. Characterizing the spatial and temporal activities of free-ranging cows from GPS data

    Science.gov (United States)

    Electronic tracking provides a unique way to document animal behavior on a continuous basis. This manuscript describes how uncorrected 1 s GPS fixes can be used to characterize the rate of cow travel (m·s-1) into stationary, foraging and walking activities. Cows instrumented with GPS devices were ...

  4. GPS-based tracking system for TOPEX orbit determination

    Science.gov (United States)

    Melbourne, W. G.

    1984-01-01

    A tracking system concept is discussed that is based on the utilization of the constellation of Navstar satellites in the Global Positioning System (GPS). The concept involves simultaneous and continuous metric tracking of the signals from all visible Navstar satellites by approximately six globally distributed ground terminals and by the TOPEX spacecraft at 1300-km altitude. Error studies indicate that this system could be capable of obtaining decimeter position accuracies and, most importantly, around 5 cm in the radial component which is key to exploiting the full accuracy potential of the altimetric measurements for ocean topography. Topics covered include: background of the GPS, the precision mode for utilization of the system, past JPL research for using the GPS in precision applications, the present tracking system concept for high accuracy satellite positioning, and results from a proof-of-concept demonstration.

  5. GPS Monitoring of Surface Change During and Following the Fortuitous Occurrence of the M(sub w) = 7.3 Landers Earthquake in our Network

    Science.gov (United States)

    Miller, M. Meghan

    1998-01-01

    Accomplishments: (1) Continues GPS monitoring of surface change during and following the fortuitous occurrence of the M(sub w) = 7.3 Landers earthquake in our network, in order to characterize earthquake dynamics and accelerated activity of related faults as far as 100's of kilometers along strike. (2) Integrates the geodetic constraints into consistent kinematic descriptions of the deformation field that can in turn be used to characterize the processes that drive geodynamics, including seismic cycle dynamics. In 1991, we installed and occupied a high precision GPS geodetic network to measure transform-related deformation that is partitioned from the Pacific - North America plate boundary northeastward through the Mojave Desert, via the Eastern California shear zone to the Walker Lane. The onset of the M(sub w) = 7.3 June 28, 1992, Landers, California, earthquake sequence within this network poses unique opportunities for continued monitoring of regional surface deformation related to the culmination of a major seismic cycle, characterization of the dynamic behavior of continental lithosphere during the seismic sequence, and post-seismic transient deformation. During the last year, we have reprocessed all three previous epochs for which JPL fiducial free point positioning products available and are queued for the remaining needed products, completed two field campaigns monitoring approx. 20 sites (October 1995 and September 1996), begun modeling by development of a finite element mesh based on network station locations, and developed manuscripts dealing with both the Landers-related transient deformation at the latitude of Lone Pine and the velocity field of the whole experiment. We are currently deploying a 1997 observation campaign (June 1997). We use GPS geodetic studies to characterize deformation in the Mojave Desert region and related structural domains to the north, and geophysical modeling of lithospheric behavior. The modeling is constrained by our

  6. The approach associated with the continued operation of the Calder Hall and Chapelcross nuclear power stations to 50 years

    International Nuclear Information System (INIS)

    Ayres, G.

    1996-01-01

    Calder Hall was the world's first commercial nuclear power station, commencing operation in 1956, and with its sister station at Chapelcross has operated successfully, with consistently high load factors, for approximately 40 years. The first part of this paper reviews the operating history of the stations. Secondly, the paper will briefly describe both the work carried out under the Long Term Safety Review which has supported operation to 40 years and the work being carried out as part of a Periodic Safety Review to support continued operation of both stations to 50 years. The commercial improvements, some of which, of course, do have some nuclear safety significance, will be briefly described in the context of operating within what is increasingly becoming a demanding privatized electricity market in the United Kingdom. Finally, potential life limiting features will be identified and the monitoring programmes described leading to the conclusion that there is no reason why the stations should not continue to operate to at least 50 years. (author). 4 refs

  7. The use of the AOA TTR-4P GPS receiver in operation at the BIPM for real-time restitution of GPS time

    Science.gov (United States)

    Thomas, Claudine

    1994-01-01

    The Global Positioning System is an outstanding tool for the dissemination of time. Using mono-channel C/A-code GPS time receivers, the restitution of GPS time through the satellite constellation presents a peak-to-peak discrepancy of several tens of nanoseconds without SA but may be as high as several hundreds of nanoseconds with SA. As a consequence, civil users are more and more interested in implementing hardware and software methods for efficient restitution of GPS time, especially in the framework of the project of a real-time prediction of UTC (UTCp) which could be available in the form of time differences (UTCp - GPS time). Previous work, for improving the real-time restitution of GPS time with SA, to the level obtained without SA, focused on the implementation of a Kalman filter based on past data and updated at each new observation. An alternative solution relies upon the statistical features of the noise brought about by SA; it has already been shown that the SA noise is efficiently reduced by averaging data from numerous satellites observed simultaneously over a sufficiently long time. This method was successfully applied to data from a GPS time receiver, model AOA TTR-4P, connected to the cesium clock kept at the BIPM. This device, a multi-channel, dual frequency, P-code GPS time receiver, is one of the first TTR-4P units in operation in a civil laboratory. Preliminary comparative studies of this new equipment with conventional GPS time receivers are described in this paper. The results of an experimental restitution of GPS time, obtained in June 1993, are also detailed: 3 to 6 satellites were observed simultaneously with a sample interval of 15 s, an efficient smoothing of SA noise was realized by averaging data on all observed satellites over more than 1 hour. When the GPS system is complete in 1994, 8 satellites will be observable continuously from anywhere in the world and the same level of uncertainty will be obtained using a shorter averaging

  8. Work continues on Destiny, the U.S. Lab module, in the Space Station Processing Facility

    Science.gov (United States)

    1999-01-01

    In the Space Station Processing Facility (SSPF), work continues on the U.S. Lab module, Destiny, which is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Destiny shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM) and Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The SRTM is targeted for launch on mission STS-99 in September 1999. Leonardo is scheduled to launch on mission STS- 102 in June 2000.

  9. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS

    DEFF Research Database (Denmark)

    Yuan, Y.; Tscherning, C.C.; Knudsen, Per

    2006-01-01

    A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) lambda of the ionospheric pierce point (IPP....... The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM...

  10. The evolution of OPUS: A set of web-based GPS processing tools offered by the National Geodetic Survey

    Science.gov (United States)

    Weston, Dr.; Mader, Dr.; Schenewerk, Dr.

    2012-04-01

    The Online Positioning User Service (OPUS) is a suite of web-based GPS processing tools that were initially developed by the National Geodetic Survey approximately eleven years ago. The first version, known as OPUS static (OPUS-S), processes L1 and L2 carrier-phase data in native receiver and RINEX formats. Datasets submitted to OPUS-S must be between two and 48 hours in duration and pass several quality control steps before being passed onto the positioning algorithm. OPUS-S was designed to select five nearby CORS to form baselines that are processed independently. The best three solutions are averaged to produce a final set of coordinates. The current version of OPUS-S has been optimized to accept and process GPS data from any location in the continental United States, Alaska, Hawaii and the Caribbean. OPUS Networks (OPUS-Net), one of the most recently developed versions and currently in beta testing, has many of the same processing characteristics and dataset requirements as OPUS-S but with one significant difference. OPUS-Net selects up to 10 IGS reference sites and three regional CORS to perform a simultaneous least squares adjustment with the user-submitted data. The CORS stations are primarily used to better estimate the troposphere while the position of the unknown station and the three CORS reference stations are determined from the more precisely known and monitored IGS reference stations. Additional enhancements to OPUS-Net are the implementation of absolute antenna patterns and ocean tides (FES2004), using reference station coordinates in IGS08 reference frame, as well as using improved phase ambiguity integer fixing and troposphere modeling (GPT and GMF a priori models). OPUS Projects, the final version of OPUS to be reviewed in this paper, is a complete web-based, GPS data processing and analysis environment. The main idea behind OPUS Projects is that one or more managers can define numerous, independent GPS projects. Each newly defined project is

  11. Investigating source directivity for the 2012 Ml5.9 Emilia (Northern Italy) earthquake by jointly using High-rate GPS and Strong motion data

    Science.gov (United States)

    Avallone, A.; Herrero, A.; Latorre, D.; Rovelli, A.; D'Anastasio, E.

    2012-12-01

    On May, 20th 2012, the Ferrara and Modena provinces (Emilia Romagna, Northern Italy) were struck by a moderate magnitude earthquake (Ml 5.9). The focal mechanism is consistent with a ~E-W-striking thrust fault. The mainshock was recorded by 29 high-rate sampling (1-Hz) continuous GPS (HRGPS) stations belonging to scientific or commercial networks and by 55 strong motion (SM) stations belonging to INGV (Istituto Nazionale di Geofisica e Vulcanologia) and RAN (Rete Accelerometrica Nazionale) networks, respectively. The spatial distribution of both HRGPS and SM stations with respect to the mainshock location allows a satisfactory azimuthal coverage of the area. To investigate directivity effects during the mainshock occurrence, we analyze the spatial variation of the peak ground displacement (PGD) measured either for HRGPS or SM sites, using different methods. For each HRGPS and SM site, we rotated the horizontal time series to the azimuth direction and we estimated the GPS-related and the SM-related peak ground displacement (G-PGD and S-PGD, respectively) retrieved by transverse component. However, in contrast to GPS displacements, the double integration of the SM data can be affected by the presence of drifts and, thus, they have to be corrected by quasi-manual procedures. To more properly compare the G-PGDs to the S-PGDs, we used the response spectrum. A response spectrum is simply the response of a series of oscillators of varying natural frequency, that are forced into motion by the same input. The asymptotic value of the displacement response spectrum is the peak ground displacement. Thus, for each HRGPS and SM site, we computed the value of this asymptotic trend (G-PGDrs and S-PGDrs, respectively). This method allows simple automatic procedures. The consistency of the PGDs derived from HRGPS and SM is also evaluated for sites where the two instruments are collocated. The PGDs obtained by the two different methods and the two different data types suggest a

  12. Studies on Anthropogenic Impact on Water Quality in Hilo (Hawaii) Bay and Mapping the Study Stations Using Geospatial Technologies

    Science.gov (United States)

    Cartier, A. J.; Williams, M. S.; Adolf, J.; Sriharan, S.

    2015-12-01

    Hilo Bay has uncharacteristically brown waters compared to other waters found in Hawai'i. The majority of the freshwater entering Hilo Bay is from storm and surface water runoff. The anthropogenic impact on water quality at Hilo Bay is due to sediment entrance, cesspools (Bacteria), and invasive species (Albizia). This poster presentation will focus on the water quality and phytoplankton collected on a weekly basis at a buoy positioned one meter from the shore of Hilo Bay, preserving the phytoplankton intact, concentrating and dehydrating the sample with ethanol, and viewing the phytoplankton with a scanning electron microscope (Hitachi S-3400NII). The GPS (Global Positioning System) points were collected at the sampling stations. Three transects on three separate dates were performed in Hilo Bay with salinity, percent dissolved oxygen, turbidity, secchi depth, temperature, and chlorophyll fluorescence data collected at each sampling station. A consistent trend observed in all transects was as distance from the river increased turbidity decreased and salinity increased. The GPS data on June 30, 2015 showed a major correlation between stations and their distance from shore. There is a decrease in the turbidity but not the temperature for these stations. The GPS points collected on July 7, 2015 at thirteen stations starting with station one being at the shore to the water, showed that the salinity concentration fluctuate noticeably at the first 6 stations. As we proceed further away from the shore, the salinity concentration increases from stations seven through thirteen. The water temperature shows little variation throughout the thirteen stations. The turbidity level was high at the shore and shows a noticeable drop at station thirteen.

  13. Positioning performance of the NTCM model driven by GPS Klobuchar model parameters

    Science.gov (United States)

    Hoque, Mohammed Mainul; Jakowski, Norbert; Berdermann, Jens

    2018-03-01

    Users of the Global Positioning System (GPS) utilize the Ionospheric Correction Algorithm (ICA) also known as Klobuchar model for correcting ionospheric signal delay or range error. Recently, we developed an ionosphere correction algorithm called NTCM-Klobpar model for single frequency GNSS applications. The model is driven by a parameter computed from GPS Klobuchar model and consecutively can be used instead of the GPS Klobuchar model for ionospheric corrections. In the presented work we compare the positioning solutions obtained using NTCM-Klobpar with those using the Klobuchar model. Our investigation using worldwide ground GPS data from a quiet and a perturbed ionospheric and geomagnetic activity period of 17 days each shows that the 24-hour prediction performance of the NTCM-Klobpar is better than the GPS Klobuchar model in global average. The root mean squared deviation of the 3D position errors are found to be about 0.24 and 0.45 m less for the NTCM-Klobpar compared to the GPS Klobuchar model during quiet and perturbed condition, respectively. The presented algorithm has the potential to continuously improve the accuracy of GPS single frequency mass market devices with only little software modification.

  14. Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results

    Science.gov (United States)

    Walpersdorf, A.; Bock, O.; Doerflinger, E.; Masson, F.; van Baelen, J.; Somieski, A.; Bürki, B.

    The experiment GPS/H 2O involving 17 GPS receivers has been operated for two weeks in June 2001 in a dense network around Marseille. This project was integrated into the ESCOMPTE campaign. This paper will focus on the GPS analysis in preparation of the tomographic inversion of GPS slant delays. As first results, GPS tropospheric parameters zenith delays and horizontal gradients have been extracted. For a first visualization of the humidity field overlying the network, zenith delays have been transformed into precipitable water. Successive humidity fields are presented for a period of sudden drop in humidity, indicating some spatial resolution in the small network. The time series of horizontal gradients evaluated at individual sites are compared to correlated zenith delay variations over the whole network (horizontal gradient of zenith delays), showing that in the small size network horizontal atmospheric structure is reflected by both types of parameters. To compare these two quantities, scaling of zenith delays due to different station altitudes was necessary. In this way, a GPS internal validation of the individual gradients by comparison with the horizontal gradient of zenith delays has been established. Differential features along transects across the network indicate a good spatial resolution of tropospheric phenomena, encouraging for the further tomographic exploitation of the data. Moreover, individual and zenith delay gradients weight differently atmospheric horizontal gradients occurring at different heights. This different sensitivity has been used for a first identification of a vertical atmospheric structure from GPS tropospheric delays, by observing an inclined frontal zone crossing the network.

  15. Determining of the phase centre of the real position of GPS receiver antenna

    Directory of Open Access Journals (Sweden)

    Eva Pisoňová

    2007-06-01

    Full Text Available By continued improvement of measurement methods producers of GPS (Global Positioning System apparatus will be maybe once upon a time effective to minimize a difference of the phase centre from the geometrical one, because it is probably impossible to make the GPS receiver antenna with zero eccentricity of the phase centre. In the last analysis, we do not prevent from a manufacturing error by any way in eliminate of the possible measurement errors.In the paper there is presented the measurement testing practice with aim of the phase centre real position determining of several in a market available GPS receivers in the paper. Investigation up to what standard the GPS receiver antenna phase centre variation achieves to float in an inaccuracy into GPS measurements. Testing was realized on the temporary testing baseline closely village Badín at Banská Bystrica in the Central Slovak Region. GPS receivers Locus Survey System (Ashtech, ProMark2 (Ashtech were tested.

  16. DOTD standards for GPS data collection accuracy : research project capsule.

    Science.gov (United States)

    2013-12-01

    Global Navigational Satellite Systems (GNSS), which includes GPS technologies : maintained by the United States, are used extensively throughout government : and industry. These technologies continue to revolutionize positional data : collection acti...

  17. Characteristics of offshore extreme wind-waves detected by surface drifters with a low-cost GPS wave sensor

    Science.gov (United States)

    Komatsu, Kosei

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, mo-mentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious dis-asters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal re-gions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and di-rection sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by

  18. MIVIS image geocoding experience on merging position attitude system data and public domain GPS stream (ASI-GeoDAF

    Directory of Open Access Journals (Sweden)

    S. Pignatti

    2006-06-01

    Full Text Available The use of airborne scanners involves geo-referencing problems, which are difficult because of the need to know the exact platform position and attitude for each scan line. The errors of the onboard navigation system are normally corrected using ground control point on the image. This post-processing correction procedure is too long in case of multiple flight campaigns, and besides it implies the need to have available 1:10000 orthophotoimages or maps in digital format. To optimize the above procedure a new method to correct MIVIS navigational data in the post-processing phase has been implemented. The procedure takes into consideration the GPS stream in Rinex format of common knowledge and findable on the web, acquired at the ground stations of the Geodetic Data Archiving Facilities provided by ASI. The application of this correction entails the assumption that the environmental variables affecting both onboard and geodetic GPS equally affect the position measurements. The airborne data correction was carried out merging the two data sets (onboard and ground station GPS to achieve a more precise aircraft trajectory. The present study compares the geo-coded images obtained by means of the two post-processing methods.

  19. Estimation of sea level variations with GPS/GLONASS-reflectometry technique

    Science.gov (United States)

    Padokhin, A. M.; Kurbatov, G. A.; Andreeva, E. S.; Nesterov, I. A.; Nazarenko, M. O.; Berbeneva, N. A.; Karlysheva, A. V.

    2017-11-01

    In the present paper we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSSreceiver, which are based on the multipath propagation effects caused by the reflection of navigational signals from the sea surface. Such multipath propagation results in the appearance of the interference pattern in the Signal-to-Noise Ratio (SNR) of GNSS signals at small satellite elevation angles, which parameters are determined by the wavelength of the navigational signal and height of the antenna phase center above the reflecting sea surface. In current work we used GPS and GLONASS signals and measurements at two working frequencies of both systems to study sea level variations which almost doubles the amount of observations compared to GPS-only tide gauge. For UNAVCO sc02 station and collocated Friday Harbor NOAA tide gauge we show good agreement between GNSS-reflectometry and traditional mareograph sea level data.

  20. MIDAS robust trend estimator for accurate GPS station velocities without step detection

    Science.gov (United States)

    Blewitt, Geoffrey; Kreemer, Corné; Hammond, William C.; Gazeaux, Julien

    2016-03-01

    Automatic estimation of velocities from GPS coordinate time series is becoming required to cope with the exponentially increasing flood of available data, but problems detectable to the human eye are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity. Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen median trend estimator, for which the ordinary version is the median of slopes vij = (xj-xi)/(tj-ti) computed between all data pairs i > j. For normally distributed data, Theil-Sen and least squares trend estimates are statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical tests using GPS data in the rigid North American plate interior show ±0.23 mm/yr root-mean-square (RMS) accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of ±0.33 mm/yr horizontal, ±1.1 mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

  1. Origin and Evolution of the Yellowstone Hotspot from Seismic-GPS Imaging and Geodynamic Modeling

    Science.gov (United States)

    Smith, R. B.; Jordan, M.; Puskas, C. M.; Farrell, J.; Waite, G. P.

    2006-12-01

    The Yellowstone hotspot resulted from interaction of a mantle plume with the overriding North America plate. This feature and related processes have influenced a large part of the western U.S., producing the 16 Ma Yellowstone-Snake River Plain-Newberry silicic-basalt volcanic field (YSRPN). We integrate results from a multi-institution experiment that deployed 80 seismic stations and 160 campaign and 21 permanent GPS stations for 1999-2003. Crust and mantle velocity models were derived from inversion of teleseismic and local earthquake data. Kinematic and dynamic models were derived from inversion of GPS velocities constrained by stresses associated the topography and the +15 m geoid anomaly. Tomography revealed a P- and S-wave low-velocity body at depths of 8-16 km beneath the caldera that is interpreted as partial melt of 8-15% that feeds the youthful Yellowstone volcanic field. Volume changes in the magma chamber are responsible for GPS-measured episodes of uplift and subsidence of the caldera at decadal scales with average rates of ~20 mm/yr but much higher short-term rates of up to 80 mm/yr. An upper-mantle low-velocity body was imaged by inverting teleseismic data constrained by the geoid structure, crustal structure, and the upper mantle discontinuities. This low P and S velocity body extends from 80 km to ~250 km directly beneath Yellowstone and then continues to 650 km with unexpected tilt to the west at ~60°. The tilt is consistent with the ascent of the buoyant magma entrained in eastward return-flow of the upper mantle. We estimate this body has an excess temperature from 85K to 120K, depending on the water content and with up to 1.5% melt. Using the inclined plume-geometry and plate motion history, we extrapolate the Yellowstone mantle source southwestward ~800 km as a plume-head in oceanic lithosphere centered beneath the Columbia Plateau basalt field at 16 Ma. Magma ascent was truncated there by the passage of thicker continental lithosphere over

  2. GPs' perceptions of workload in England: a qualitative interview study.

    Science.gov (United States)

    Croxson, Caroline Hd; Ashdown, Helen F; Hobbs, Fd Richard

    2017-02-01

    GPs report the lowest levels of morale among doctors, job satisfaction is low, and the GP workforce is diminishing. Workload is frequently cited as negatively impacting on commitment to a career in general practice, and many GPs report that their workload is unmanageable. To gather an in-depth understanding of GPs' perceptions and attitudes towards workload. All GPs working within NHS England were eligible. Advertisements were circulated via regional GP e-mail lists and national social media networks in June 2015. Of those GPs who responded, a maximum-variation sample was selected until data saturation was reached. Semi-structured, qualitative interviews were conducted. Data were analysed thematically. In total, 171 GPs responded, and 34 were included in this study. GPs described an increase in workload over recent years, with current working days being long and intense, raising concerns over the wellbeing of GPs and patients. Full-time partnership was generally not considered to be possible, and many participants felt workload was unsustainable, particularly given the diminishing workforce. Four major themes emerged to explain increased workload: increased patient needs and expectations; a changing relationship between primary and secondary care; bureaucracy and resources; and the balance of workload within a practice. Continuity of care was perceived as being eroded by changes in contracts and working patterns to deal with workload. This study highlights the urgent need to address perceived lack of investment and clinical capacity in general practice, and suggests that managing patient expectations around what primary care can deliver, and reducing bureaucracy, have become key issues, at least until capacity issues are resolved. © British Journal of General Practice 2017.

  3. GPS Water Vapor Tomography: First results from the ESCOMPTE Field Experiment

    Science.gov (United States)

    Masson, F.; Champollion, C.; Bouin, M.-N.; Walpersdorf, A.; van Baelen, J.; Doerflinger, E.; Bock, O.

    2003-04-01

    We develop a tomographic software to model the spatial distribution of the tropospheric water vapor from GPS data. First we present simulations based on a real GPS station distribution and simple tropospheric models, which prove the potentiality of the method. Second we apply the software to the ESCOMPTE data. During the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers has been operated for two weeks within a 20 km x 20 km area around Marseille (Southern France). The network extends from the sea level to the top of the Etoile chain (~700 m high). The input data are the slant delay values obtained by combining the estimated zenith delay values with the horizontal gradients. The effect of the initial tropospheric water vapor model, the number and thickness of the layers of the model, the a priori model and data covariance and some other parameters will be discussed. Simultaneously water vapor radiometer, solar spectrometer, Raman lidar and radiosondes have been deployed to get a data set usable for comparison with the tomographic inversion results and validation of the method. Comparison with meteorological models (MesoNH - Meteo-France) will be shown.

  4. Pressure during decision making of continuous sedation in end-of-life situations in Dutch general practice

    Science.gov (United States)

    2012-01-01

    Background Little is known about pressure from patients or relatives on physician’s decision making of continuous palliative sedation. We aim to describe experienced pressure by general practitioners (GPs) in cases of continuous sedation after the introduction of the Dutch practice guideline, using a questionnaire survey. Methods A sample of 918 Dutch GPs were invited to fill out a questionnaire about their last patient under continuous sedation. Cases in which GPs experienced pressure from the patient, relatives or other persons were compared to those without pressure. Results 399 of 918 invite GPs (43%) returned the questionnaire and 250 provided detailed information about their most recent case of continuous sedation. Forty-one GPs (16%) indicated to have experienced pressure from the patient, relatives or colleagues. In GPs younger than 50, guideline knowledge was not related to experienced pressure, whereas in older GPs, 15% with and 36% without guideline knowledge reported pressure. GPs experienced pressure more often when patients had psychological symptoms (compared to physical symptoms only) and when patients had a longer estimated life expectancy. A euthanasia request of the patient coincided with a higher prevalence of pressure for GPs without, but not for GPs with previous experience with euthanasia. GPs who experienced pressure had consulted a palliative consultation team more often than GPs who did not experience pressure. Conclusion One in six GPs felt pressure from patients or relatives to start sedation. This pressure was related to guideline knowledge, especially in older GPs, longer life expectancy and the presence of a euthanasia request, especially for GPs without previous experience of euthanasia. PMID:22759834

  5. Comparison of GPS derived TEC with the TEC predicted by IRI 2012 model in the southern Equatorial Ionization Anomaly crest within the Eastern Africa region

    Science.gov (United States)

    Sulungu, Emmanuel D.; Uiso, Christian B. S.; Sibanda, Patrick

    2018-04-01

    We have compared the TEC obtained from the IRI-2012 model with the GPS derived TEC data recorded within southern crest of the EIA in the Eastern Africa region using the monthly means of the 5 international quiet days for equinoxes and solstices months for the period of 2012 - 2013. GPS-derived TEC data have been obtained from the Africa array and IGS network of ground based dual-frequency GPS receivers from four stations (Kigali (1.95°S, 30.09°E; Geom. Lat. 11.63°S), Malindi (2.99°S, 40.19°E; Geom. Lat. 12.42°S), Mbarara (0.60°S, 30.74°E; Geom. Lat. 10.22°S) and Nairobi (1.22°S, 36.89°E; Geom. Lat. 10.69°S)) located within the EIA crest in this region. All the three options for topside Ne of IRI-2012 model and ABT-2009 for bottomside thickness have been used to compute the IRI TEC. Also URSI coefficients were considered in this study. These results are compared with the TEC estimated from GPS measurements. Correlation Coefficients between the two sets of data, the Root-Mean Square Errors (RMSE) of the IRI-TEC from the GPS-TEC, and the percentage RMSE of the IRI-TEC from the GPS-TEC have been computed. Our general results show that IRI-2012 model with all three options overestimates the GPS-TEC for all seasons and at all stations, and IRI-2001 overestimates GPS-TEC more compared with other options. IRI-Neq and IRI-01-corr are closely matching in most of the time. The observation also shows that, GPS TEC are underestimated by TEC from IRI model during noon hours, especially during equinoctial months. Further, GPS-TEC values and IRI-TEC values using all the three topside Ne options show very good correlation (above 0.8). On the other hand, the TEC using IRI-Neq and IRI-01- corr had smaller deviations from the GPS-TEC compared to the IRI-2001.

  6. A New Algorithm for ABS/GPS Integration Based on Fuzzy-Logic in Vehicle Navigation System

    Directory of Open Access Journals (Sweden)

    Ali Amin Zadeh

    2011-10-01

    Full Text Available GPS based vehicle navigation systems have difficulties in tracking vehicles in urban canyons due to poor satellite availability. ABS (Antilock Brake System Navigation System consists of self-contained optical encoders mounted on vehicle wheels that can continuously provide accurate short-term positioning information. In this paper, a new concept regarding GPS/ABS integration, based on Fuzzy Logic is presented. The proposed algorithm is used to identify GPS position accuracy based on environment and vehicle dynamic knowledge. The GPS is used as reference during the time it is in a good condition and replaced by ABS positioning system when GPS information is unreliable. We compare our proposed algorithm with other common algorithm in real environment. Our results show that the proposed algorithm can significantly improve the stability and reliability of ABS/GPS navigation system.

  7. GPS-based ionospheric tomography with a constrained adaptive ...

    Indian Academy of Sciences (India)

    According to the continuous smoothness of the variations of ionospheric electron density (IED) among neighbouring voxels, Gauss weighted function is introduced to constrain the tomography system in the new method. It can resolve the dependence on the initial values for those voxels without any GPS rays traversing them ...

  8. Video-Aided GPS/INS Positioning and Attitude Determination

    National Research Council Canada - National Science Library

    Brown, Alison; Silva, Randy

    2006-01-01

    ... precise positioning and attitude information to be maintained, even during periods of extended GPS dropouts. This relies on information extracted from the video images of reference points and features to continue to update the inertial navigation solution. In this paper, the principles of the video-update method aredescribed.

  9. Deformation derived from GPS geodesy associated with Bárðarbunga 2014 rifting event in Iceland

    KAUST Repository

    Ofeigsson, Benedikt Gunnar; Hreinsdó ttir, Sigrú n; Sigmundsson, Freysteinn; Frið riksdó ttir, Hildur; Parks, Michelle; Dumont, Stephanie; Á rnadó ttir, Þ ó ra; Geirsson, Halldó r; Hooper, Andrew; Roberts, Matthew; Bennett, Rick; Sturkell, Erik; Jó nsson, Sigurjó n|

    2015-01-01

    On August 16, 2014 an intense seismic swarm started below the eastern part of Bárðarbunga Caldera in the north-western corner of Vatnajökull ice-cap, Iceland, marking the onset of the first rifting event in Iceland since the Krafla fires (1975-1984). The migration of the seismicity was corroborated by ground deformation in areas outside the ice cap and on nunataks within the ice cap suggesting a lateral propagation of magma, from the Bárðabunga system. The sesimicity migrated out of the caldera forming a dyke with roughly three segments, changing direction each time until August 28 when the migration stopped around 10 km south of Askja Volcano, eventually leading to a short lived eruption in Holuhraun north of Dyngjujökull. A second fissure eruption started in Holuhraun on August 31 which is still ongoing at the time of this writing. In the months prior to the onset of the activity, subtle signs of inflation where observed on continuous GPS sites around the Bárðarbunga indicating a volume increase in the roots of the volcanic system. When the activity started on August 16, the deformation pattern indicated a simultaneous deflation centered within the caldera and a lateral growth of a dyke also reflected in the migration of seismicity along segments of variable strike. A maximum widening of 1.3 m occurred between stations on opposite sides of the dyke spaced 25 km apart. Significant movements where detected on GPS site more then 80 km away from the tip of dyke. Displacements indicated the fastest rate of widening at any time in the most distal segment of the dyke throughout its evolution. After the dyke stopped propagating, the inflation continued, decaying exponentialy with time. On September 4, five days into the second fissure eruption, the movements associated with the dyke where no longer significant. As the fissure eruption continues, a slowly decaying contraction is observed around the Bárðarbunga central volcano, both shown in the piston like

  10. Deformation derived from GPS geodesy associated with Bárðarbunga 2014 rifting event in Iceland

    KAUST Repository

    Ofeigsson, Benedikt Gunnar

    2015-04-01

    On August 16, 2014 an intense seismic swarm started below the eastern part of Bárðarbunga Caldera in the north-western corner of Vatnajökull ice-cap, Iceland, marking the onset of the first rifting event in Iceland since the Krafla fires (1975-1984). The migration of the seismicity was corroborated by ground deformation in areas outside the ice cap and on nunataks within the ice cap suggesting a lateral propagation of magma, from the Bárðabunga system. The sesimicity migrated out of the caldera forming a dyke with roughly three segments, changing direction each time until August 28 when the migration stopped around 10 km south of Askja Volcano, eventually leading to a short lived eruption in Holuhraun north of Dyngjujökull. A second fissure eruption started in Holuhraun on August 31 which is still ongoing at the time of this writing. In the months prior to the onset of the activity, subtle signs of inflation where observed on continuous GPS sites around the Bárðarbunga indicating a volume increase in the roots of the volcanic system. When the activity started on August 16, the deformation pattern indicated a simultaneous deflation centered within the caldera and a lateral growth of a dyke also reflected in the migration of seismicity along segments of variable strike. A maximum widening of 1.3 m occurred between stations on opposite sides of the dyke spaced 25 km apart. Significant movements where detected on GPS site more then 80 km away from the tip of dyke. Displacements indicated the fastest rate of widening at any time in the most distal segment of the dyke throughout its evolution. After the dyke stopped propagating, the inflation continued, decaying exponentialy with time. On September 4, five days into the second fissure eruption, the movements associated with the dyke where no longer significant. As the fissure eruption continues, a slowly decaying contraction is observed around the Bárðarbunga central volcano, both shown in the piston like

  11. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS.

    Science.gov (United States)

    Ren, Xiaodong; Zhang, Xiaohong; Xie, Weiliang; Zhang, Keke; Yuan, Yongqiang; Li, Xingxing

    2016-09-15

    The emergence of China's Beidou, Europe's Galileo and Russia's GLONASS satellites has multiplied the number of ionospheric piercing points (IPP) offered by GPS alone. This provides great opportunities for deriving precise global ionospheric maps (GIMs) with high resolution to improve positioning accuracy and ionospheric monitoring capabilities. In this paper, the GIM is developed based on multi-GNSS (GPS, GLONASS, BeiDou and Galileo) observations in the current multi-constellation condition. The performance and contribution of multi-GNSS for ionospheric modelling are carefully analysed and evaluated. Multi-GNSS observations of over 300 stations from the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) networks for two months are processed. The results show that the multi-GNSS GIM products are better than those of GIM products based on GPS-only. Differential code biases (DCB) are by-products of the multi-GNSS ionosphere modelling, the corresponding standard deviations (STDs) are 0.06 ns, 0.10 ns, 0.18 ns and 0.15 ns for GPS, GLONASS, BeiDou and Galileo, respectively in satellite, and the STDs for the receiver are approximately 0.2~0.4 ns. The single-frequency precise point positioning (SF-PPP) results indicate that the ionospheric modelling accuracy of the proposed method based on multi-GNSS observations is better than that of the current dual-system GIM in specific areas.

  12. Establishment of Karadeniz Technical University Permanent GNSS Station as Reactivated of TRAB IGS Station

    Directory of Open Access Journals (Sweden)

    Kazancı Selma Zengin

    2017-12-01

    Full Text Available In recent years, Global Navigation Satellite Systems (GNSS have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC in order to troposphere monitoring. The project titled “Using Regional GNSS Networks to Strengthen Severe Weather Prediction” was accepted to the scientifi c and technological research council of Turkey (TUBITAK. With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.

  13. Establishment of Karadeniz Technical University Permanent GNSS Station as Reactivated of TRAB IGS Station

    Science.gov (United States)

    Kazancı, Selma Zengin; Kayıkçı, Emine Tanır

    2017-12-01

    In recent years, Global Navigation Satellite Systems (GNSS) have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN) stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC) KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC) in order to troposphere monitoring. The project titled "Using Regional GNSS Networks to Strengthen Severe Weather Prediction" was accepted to the scientifi c and technological research council of Turkey (TUBITAK). With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.

  14. Forecasting Space Weather-Induced GPS Performance Degradation Using Random Forest

    Science.gov (United States)

    Filjar, R.; Filic, M.; Milinkovic, F.

    2017-12-01

    Space weather and ionospheric dynamics have a profound effect on positioning performance of the Global Satellite Navigation System (GNSS). However, the quantification of that effect is still the subject of scientific activities around the world. In the latest contribution to the understanding of the space weather and ionospheric effects on satellite-based positioning performance, we conducted a study of several candidates for forecasting method for space weather-induced GPS positioning performance deterioration. First, a 5-days set of experimentally collected data was established, encompassing the space weather and ionospheric activity indices (including: the readings of the Sudden Ionospheric Disturbance (SID) monitors, components of geomagnetic field strength, global Kp index, Dst index, GPS-derived Total Electron Content (TEC) samples, standard deviation of TEC samples, and sunspot number) and observations of GPS positioning error components (northing, easting, and height positioning error) derived from the Adriatic Sea IGS reference stations' RINEX raw pseudorange files in quiet space weather periods. This data set was split into the training and test sub-sets. Then, a selected set of supervised machine learning methods based on Random Forest was applied to the experimentally collected data set in order to establish the appropriate regional (the Adriatic Sea) forecasting models for space weather-induced GPS positioning performance deterioration. The forecasting models were developed in the R/rattle statistical programming environment. The forecasting quality of the regional forecasting models developed was assessed, and the conclusions drawn on the advantages and shortcomings of the regional forecasting models for space weather-caused GNSS positioning performance deterioration.

  15. Pressure during decision making of continuous sedation in end-of-life situations in Dutch general practice

    Directory of Open Access Journals (Sweden)

    Blanker Marco H

    2012-07-01

    Full Text Available Abstract Background Little is known about pressure from patients or relatives on physician’s decision making of continuous palliative sedation. We aim to describe experienced pressure by general practitioners (GPs in cases of continuous sedation after the introduction of the Dutch practice guideline, using a questionnaire survey. Methods A sample of 918 Dutch GPs were invited to fill out a questionnaire about their last patient under continuous sedation. Cases in which GPs experienced pressure from the patient, relatives or other persons were compared to those without pressure. Results 399 of 918 invite GPs (43% returned the questionnaire and 250 provided detailed information about their most recent case of continuous sedation. Forty-one GPs (16% indicated to have experienced pressure from the patient, relatives or colleagues. In GPs younger than 50, guideline knowledge was not related to experienced pressure, whereas in older GPs, 15% with and 36% without guideline knowledge reported pressure. GPs experienced pressure more often when patients had psychological symptoms (compared to physical symptoms only and when patients had a longer estimated life expectancy. A euthanasia request of the patient coincided with a higher prevalence of pressure for GPs without, but not for GPs with previous experience with euthanasia. GPs who experienced pressure had consulted a palliative consultation team more often than GPs who did not experience pressure. Conclusion One in six GPs felt pressure from patients or relatives to start sedation. This pressure was related to guideline knowledge, especially in older GPs, longer life expectancy and the presence of a euthanasia request, especially for GPs without previous experience of euthanasia.

  16. Detecting Traffic Anomalies in Urban Areas Using Taxi GPS Data

    Directory of Open Access Journals (Sweden)

    Weiming Kuang

    2015-01-01

    Full Text Available Large-scale GPS data contain hidden information and provide us with the opportunity to discover knowledge that may be useful for transportation systems using advanced data mining techniques. In major metropolitan cities, many taxicabs are equipped with GPS devices. Because taxies operate continuously for nearly 24 hours per day, they can be used as reliable sensors for the perceived traffic state. In this paper, the entire city was divided into subregions by roads, and taxi GPS data were transformed into traffic flow data to build a traffic flow matrix. In addition, a highly efficient anomaly detection method was proposed based on wavelet transform and PCA (principal component analysis for detecting anomalous traffic events in urban regions. The traffic anomaly is considered to occur in a subregion when the values of the corresponding indicators deviate significantly from the expected values. This method was evaluated using a GPS dataset that was generated by more than 15,000 taxies over a period of half a year in Harbin, China. The results show that this detection method is effective and efficient.

  17. Increase of Carrier-to-Noise Ratio in GPS Receivers Caused by Continuous-Wave Interference

    Directory of Open Access Journals (Sweden)

    J. Li

    2016-09-01

    Full Text Available The increased use of personal private devices (PPDs is drawing greater attention to the effects of continuous-wave interference (CWI on the performance of global positioning system (GPS receivers. The effective carrier-to-noise density ratio (C/N0, an essential index of GNSS receiver performance, is studied in this paper. Receiver tracking performance deteriorates in the presence of interference. Hence, the effective C/N0, which measures tracking performance, decreases. However, simulations and bench tests have shown that the effective C/N0 may increase in the presence of CWI. The reason is that a sinusoidal signal is induced by the CWI in the correlator and may be tracked by the carrier tracking loop. Thus, the effective carrier power depends on the power of the signal induced by the CWI, and the effective C/N0 increases with the power of the CWI. The filtering of the CWI in the carrier tracking loop correlator and its effect on the phase locked loop (PLL tracking performance are analyzed. A mathematical model of the effect of the CWI on the effective C/N0 is derived. Simulation results show that the proposed model is more accurate than existing models, especially when the jam-to-signal ratio (JSR is greater than 30 dBc.

  18. Software for Generating Troposphere Corrections for InSAR Using GPS and Weather Model Data

    Science.gov (United States)

    Moore, Angelyn W.; Webb, Frank H.; Fishbein, Evan F.; Fielding, Eric J.; Owen, Susan E.; Granger, Stephanie L.; Bjoerndahl, Fredrik; Loefgren, Johan; Fang, Peng; Means, James D.; hide

    2013-01-01

    Atmospheric errors due to the troposphere are a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging. This software generates tropospheric delay maps that can be used to correct atmospheric artifacts in InSAR data. The software automatically acquires all needed GPS (Global Positioning System), weather, and Digital Elevation Map data, and generates a tropospheric correction map using a novel algorithm for combining GPS and weather information while accounting for terrain. Existing JPL software was prototypical in nature, required a MATLAB license, required additional steps to acquire and ingest needed GPS and weather data, and did not account for topography in interpolation. Previous software did not achieve a level of automation suitable for integration in a Web portal. This software overcomes these issues. GPS estimates of tropospheric delay are a source of corrections that can be used to form correction maps to be applied to InSAR data, but the spacing of GPS stations is insufficient to remove short-wavelength tropospheric artifacts. This software combines interpolated GPS delay with weather model precipitable water vapor (PWV) and a digital elevation model to account for terrain, increasing the spatial resolution of the tropospheric correction maps and thus removing short wavelength tropospheric artifacts to a greater extent. It will be integrated into a Web portal request system, allowing use in a future L-band SAR Earth radar mission data system. This will be a significant contribution to its technology readiness, building on existing investments in in situ space geodetic networks, and improving timeliness, quality, and science value of the collected data

  19. A novel fusion methodology to bridge GPS outages for land vehicle positioning

    International Nuclear Information System (INIS)

    Chen, Wei; Li, Xu; Song, Xiang; Xu, Qimin; Li, Bin; Song, Xianghui

    2015-01-01

    Many intelligent transportation system applications require accurate, reliable, and continuous vehicle position information whether in open-sky environments or in Global Positioning System (GPS) denied environments. However, there remains a challenging task for land vehicles to achieve such positioning performance using low-cost sensors, especially microelectromechanical system (MEMS) sensors. In this paper, a novel and cost-effective fusion methodology to bridge GPS outages is proposed and applied in the Inertial Navigation System (INS)/GPS/ compass integrated positioning system. In the implementation of the proposed methodology, a key data preprocessing algorithm is first developed to eliminate the noise in inertial sensors in order to provide more accurate information for subsequent modeling. Then, a novel hybrid strategy incorporating the designed autoregressive model (AR model)-based forward estimator (ARFE) with Kalman filter (KF) is presented to predict the INS position errors during GPS outages. To verify the feasibility and effectiveness of the proposed methodology, real road tests with various scenarios were performed. The proposed methodology illustrates significant improvement in positioning accuracy during GPS outages. (paper)

  20. Indoor Positioning Using GPS Revisited

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Blunck, Henrik; Godsk, Torben

    2010-01-01

    It has been considered a fact that GPS performs too poorly inside buildings to provide usable indoor positioning. We analyze results of a measurement campaign to improve on the understanding of indoor GPS reception characteristics. The results show that using state-of-the-art receivers GPS...... low signal-to-noise ratios, multipath phenomena or bad satellite constellation geometry. We have also measured the indoor performance of embedded GPS receivers in mobile phones which provided lower availability and accuracy than state-of-the-art ones. Finally, we consider how the GPS performance...

  1. A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe

    Science.gov (United States)

    van Dam, T.; Wahr, J.; LavalléE, David

    2007-03-01

    We compare approximately 3 years of GPS height residuals (with respect to the International Terrestrial Reference Frame) with predictions of vertical surface displacements derived from the Gravity Recovery and Climate Experiment (GRACE) gravity fields for stations in Europe. An annual signal fit to the residual monthly heights, corrected for atmospheric pressure and barotropic ocean loading effects, should primarily represent surface displacements due to long-wavelength variations in water storage. A comparison of the annual height signal from GPS and GRACE over Europe indicates that at most sites, the annual signals do not agree in amplitude or phase. We find that unlike the annual signal predicted from GRACE, the annual signal in the GPS heights is not coherent over the region, displaying significant variability from site to site. Confidence in the GRACE data and the unlikely possibility of large-amplitude small-scale features in the load field not captured by the GRACE data leads us to conclude that some of the discrepancy between the GPS and GRACE observations is due to technique errors in the GPS data processing. This is evidenced by the fact that the disagreement between GPS and GRACE is largest at coastal sites, where mismodeling of the semidiurnal ocean tidal loading signal can result in spurious annual signals.

  2. Pengembangan Sistem Navigasi Otomatis Pada UAV (Unmanned Aerial Vehicle dengan GPS(Global Positioning System Waypoint

    Directory of Open Access Journals (Sweden)

    Rahmad Hidayat

    2017-01-01

    Full Text Available UAV adalah salah satu wahana tanpa awak di udara yang mana dapat terbang tanpa pilot, menggunakan gaya aerodinamik untuk menghasilkan gaya angkat (lift, dapat terbang secara autonomous atau dioperasikan dengan radio kontrol. UAV digunakan untuk berbagai keperluan baik di lingkup militer maupun sipil. Pada tugas akhir ini dirancang dan direalisasikan pengembangan sistem navigasi otomatis pada UAV dengan GPS waypoint. Sistem ini menggunakan kontrol manual dan autopilot. Pada mode manual, pengguna secara manual mengendalikan pergerakan pesawat melalui radio kontroler sedangkan pada mode autopilot pesawat dikendalikan oleh mikrokontroler Arduino Mega 2560 yang mengolah data-data sensor IMU (Inertial Measurement Unit yang didalamnya terdapat gyroscope dan accelerometer, GPS dan barometric altimeter sehingga dapat terbang secara otomatis dengan sesuai waypoint GPS yang dimasukkan. Mikrokontroler menerima dan menolah data dari sensor dan menghasilkan keluaran untuk menggerakkan servo aktuator. Pengolahan data dari sensor menggunakan kontrol PID (Proportional Integral Derivative. Pesawat akan terkoneksi dengan ground station melalui perangkat telemetri untuk mengirimkan data penerbangan ke darat. Sistem navigasi ini diharapkan dapat secara tepat mengarahkan pesawat menuju satu titik atau lebih dengan toleransi kesalahan ≤ 30 meter pada ketinggian 30-100 meter. Selain itu pesawat diharapkan dapat terbang dengan radius ± 2 km dari ground station. Hasil dari pengujian dapat dilaksanakan kontrol manual dan otomatis pada UAV melalui 5 channel (aileron, elevator, throttle, rudder dan saklar. Distorsi pada kontrol manual diminimalisir dengan memperbesar faktor pembagi sinyal PWM sebesar 50μs-100μs. Kontrol otomatis dapat menstabilkan sikap pesawat di udara (sudut roll 45° dan sudut pitch 30° Setting Kp 1,2 dan Ki 0,01, setting Kp navigasi GPS 0,2 Ki 0,01 dan Kd 4 dengan sudut roll maksimal 15°.

  3. Seismic and GPS constraints on the dynamics and kinematics of the Yellowstone volcanic field

    Science.gov (United States)

    Smith, R. B.; Farrell, J.; Jordan, M.; Puskas, C.; Waite, G. P.

    2007-12-01

    The seismically and volcanically Yellowstone hotspot resulted from interaction of a mantle plume with the overriding North America plate. This feature and related processes have modified continental lithosphere producing the Yellowstone-Snake River Plain-Newberry silicic volcanic field (YSRPN) system, with its NE volcanically active Yellowstone volcanic field. The size and accessibility of the Yellowstone area has allowed a range of geophysical experiments including earthquake monitoring and seismic and GPS imaging of this system. Seismicity is dominated by small-magnitude normal- to oblique-slip faulting earthquake swarms with shallow focal depths, maximum of ~5 km, restricted by high temperatures and a weak elastic layer. There is developing evidence of non-double couple events. Outside the caldera, earthquakes are deeper, ~20 km, and capable of M 7+ earthquakes. We integrate the results from a multi-institution experiment that recorded data from 110 seismic stations and 180 GPS stations for 1999-2004. The tomographic images confirm the existence of a low Vp-body beneath the Yellowstone caldera at depths greater than 8 km, possibly representing hot, crystallizing magma. A key result of our study is a volume of anomalously low Vp and Vp/Vs in the northwestern part of the volcanic field at shallow depths of stress field inverted from seismic and GPS data is dominated by regional SW extension with superimposed volumetric expansion and uplift from local volcanic sources. Mantle tomography derived from integrated inversion of teleseismic and local earthquake data constrained by geoid, crustal structure, discontinuity structure reveals an upper-mantle low P and S velocity body extends from 80 km to ~250 km directly beneath Yellowstone and then continues to 650 km with unexpected westward tilt to the west at ~60° with a 1% to 2% melt. This geometry is consistent with the ascent of the buoyant magma entrained in eastward return-flow of the upper mantle. Some remaining

  4. Ionospheric earthquake effects detection based on Total Electron Content (TEC) GPS Correlation

    Science.gov (United States)

    Sunardi, Bambang; Muslim, Buldan; Eka Sakya, Andi; Rohadi, Supriyanto; Sulastri; Murjaya, Jaya

    2018-03-01

    Advances in science and technology showed that ground-based GPS receiver was able to detect ionospheric Total Electron Content (TEC) disturbances caused by various natural phenomena such as earthquakes. One study of Tohoku (Japan) earthquake, March 11, 2011, magnitude M 9.0 showed TEC fluctuations observed from GPS observation network spread around the disaster area. This paper discussed the ionospheric earthquake effects detection using TEC GPS data. The case studies taken were Kebumen earthquake, January 25, 2014, magnitude M 6.2, Sumba earthquake, February 12, 2016, M 6.2 and Halmahera earthquake, February 17, 2016, M 6.1. TEC-GIM (Global Ionosphere Map) correlation methods for 31 days were used to monitor TEC anomaly in ionosphere. To ensure the geomagnetic disturbances due to solar activity, we also compare with Dst index in the same time window. The results showed anomalous ratio of correlation coefficient deviation to its standard deviation upon occurrences of Kebumen and Sumba earthquake, but not detected a similar anomaly for the Halmahera earthquake. It was needed a continous monitoring of TEC GPS data to detect the earthquake effects in ionosphere. This study giving hope in strengthening the earthquake effect early warning system using TEC GPS data. The method development of continuous TEC GPS observation derived from GPS observation network that already exists in Indonesia is needed to support earthquake effects early warning systems.

  5. Contribution of various microenvironments to the daily personal exposure to ultrafine particles: Personal monitoring coupled with GPS tracking

    Science.gov (United States)

    Bekö, Gabriel; Kjeldsen, Birthe Uldahl; Olsen, Yulia; Schipperijn, Jasper; Wierzbicka, Aneta; Karottki, Dorina Gabriela; Toftum, Jørn; Loft, Steffen; Clausen, Geo

    2015-06-01

    Exposure to ultrafine particles (UFP) may have adverse health effects. Central monitoring stations do not represent the personal exposure to UFP accurately. Few studies have previously focused on personal exposure to UFP. Sixty non-smoking residents living in Copenhagen, Denmark were asked to carry a backpack equipped with a portable monitor, continuously recording particle number concentrations (PN), in order to measure the real-time individual exposure over a period of ˜48 h. A GPS logger was carried along with the particle monitor and allowed us to estimate the contribution of UFP exposure occurring in various microenvironments (residence, during active and passive transport, other indoor and outdoor environments) to the total daily exposure. On average, the fractional contribution of each microenvironment to the daily integrated personal exposure roughly corresponded to the fractions of the day the subjects spent in each microenvironment. The home environment accounted for 50% of the daily personal exposure. Indoor environments other than home or vehicles contributed with ˜40%. The highest median UFP concentration was obtained during passive transport (vehicles). However, being in transit or outdoors contributed 5% or less to the daily exposure. Additionally, the subjects recorded in a diary the periods when they were at home. With this approach, 66% of the total daily exposure was attributable to the home environment. The subjects spent 28% more time at home according to the diary, compared to the GPS. These results may indicate limitations of using diaries, but also possible inaccuracy and miss-classification in the GPS data.

  6. IMPELEMENTASI SISTEM PEMANTAUAN OBJEK BERGERAK DENGAN MEMANFAATKAN FREKUENSI RADIO MENGGUNAKAN GPS (GLOBAL POSITIONING SYSTEM

    Directory of Open Access Journals (Sweden)

    Budi Triandi

    2010-05-01

    Full Text Available GPS was developed by the United States Department of Defense as a reliable means for accurate navigation. The system provides highly accurate position and velocity information and precise time on a continuous global basis to an unlimited number of properly equipped users. By using combined GPS receiver and microcontroller together with radio system, we can design a monitoring system for our vehicles and display the result on the computer. This system consists of a master module that transmits and receives signals from computer and two slave modules to collect GPS data from vehicles. The result of experiment shows that this system is able to track the vehicle on digital map with accuracy as high as 95%.Keywords: GPS, microcontroller, monitoring, RF

  7. The views and experiences of female GPs on professional practice and career support.

    Science.gov (United States)

    Wedderburn, Clare; Scallan, Samantha; Whittle, Clare; Curtis, Anthony

    2013-09-01

    National GP demographic data demonstrate an increasing 'feminisation' of the workforce. With female GP specialty trainees continuing to outnumber males, this trend is set to continue. The changing composition of the workforce presents challenges in terms of how best to support the long-term career and educational development needs of this sector of the workforce in an evolving healthcare context. The aim of this work was to capture female GPs' experiences of working in general practice and their expectations concerning their career and educational development. Participants were surveyed and completed a semi-structured questionnaire, which generated qualitative and quantitative data. The sample comprised GP registrars, principals and sessionals. This study has generated an important dataset on working patterns, educational experiences and long-term career intentions of female GPs. Despite increased representation in the GP workforce, female GPs (particularly those with young children) appear less likely to be involved in education and training than their male counterparts, and even less likely to be involved in roles linked to primary care trusts, medico-political issues, hospital service delivery, special clinical interests or deanery education management. younger GPs reported significantly more difficulties in managing their childcare needs than older colleagues. Marital status, number of children and employment status did not moderate the effect of these difficulties. Female GPs reported working more hours with increasing age, but were not necessarily represented in a range of educational and/or training posts as a consequence.

  8. CORS911:Real-Time Subsidence Monitoring of the Napoleonville Salt Dome Sinkhole Using GPS

    Science.gov (United States)

    Kent, J. D.

    2013-12-01

    The sinkhole associated with the Napoleonville salt dome in Assumption Parish, Louisiana, threatens the stability of Highway 70 - a state maintained route. To mitigate the potential damaging effects to the highway and address issues of public safety, a program of research and decision support has been implemented to provide long-term measurements of the surface stability using continuous operating GPS reference stations (CORS). Four CORS sites were installed in the vicinity of the sinkhole to measure the horizontal and vertical motions of each site relative to each other and a fixed location outside the study area. Differential motions measured by a integrity monitoring software are summarized for response agencies tasked with ensuring public safety and stability of the Highway, a designated hurricane evacuation route. Implementation experience and intermediate findings will be shared and discussed. Strategies for monitoring random and systematic biases detected in the system are presented. Figure depicting the location of CORS sites used to monitor surface stability along Highway 70 near the Bayou Corne Sinkhole.

  9. GPS and Galileo Developments on Board the International Space Station With the Space Communications and Navigation (SCaN) Testbed

    Science.gov (United States)

    Pozzobon, Oscar; Fantinato, Samuele; Dalla Chiara, Andrea; Gamba, Giovanni; Crisci, Massimo; Giordana, Pietro; Enderle, Werner; Chelmins, David; Sands, Obed S.; Clapper, Carolyn J.; hide

    2016-01-01

    The Space Communications and Navigation (SCaN) is a facility developed by NASA and hosted on board the International Space Station (ISS) on an external truss since 2013.It has the objective of testing navigation and communication experimentations with a Software Defined Radio (SDR) approach, which permits software updates for testing new experimentations.NASA has developed the Space Telecommunications Radio System (STRS) architecture standard for SDRs used in space and ground-based platforms to provide commonality among radio developments to provide enhanced capability. The hardware is equipped with both L band front-end radios and the NASA space network communicates with it using S-band, Ku-band and Ka-band links.In May 2016 Qascom started GARISS (GPS and Galileo Receiver for the ISS), an activity of experimentation in collaboration with ESA and NASA that has the objective to develop and validate the acquisition and processing of combined GPS and Galileo signals on board the ISS SCaN testbed. This paper has the objective to present the mission, and provide preliminary details about the challenges in the design, development and verification of the waveform that will be installed on equipment with limited resources. GARISS is also the first attempt to develop a waveform for the ISS as part of an international collaboration between US and Europe. Although the final mission objective is to target dual frequency processing, initial operations will foresee a single frequency processing. Initial results and trade-off between the two options, as well as the final decision will be presented and discussed. The limited resources on board the SCaN with respect to the challenging requirements to acquire and track contemporaneously two satellite navigation systems, with different modulations and data structure, led to the need to assess the possibility of aiding from ground through the S-band. This option would allow assistance to the space receiver in order to provide

  10. GPS: Public Utility or Software Platform

    Science.gov (United States)

    2016-09-01

    train for GPS loss, encourage use of GPS signal integrity monitors , develop in- vehicle GPS backups, and evaluate the range of radio...literature prevent the full quantification of exactly how vulnerable GPS is to service interruption. This thesis used constant comparison analysis to...criticality, resilience, and vulnerability. This methodology overcomes research limitations by using GPS system design, operations, and policies as

  11. Establishing a mobile automatic monitoring station for emergency response

    International Nuclear Information System (INIS)

    Fang, Hsin-Fa

    2008-01-01

    Full text: A radiological/nuclear emergency event may cause environmental contamination. The emergency response works always need to plan an environmental survey programme incorporating the assessment results to see what is happening. The places where are assessed to have the highest radioactive contamination/radiation dose will catch more concern and need continuous monitoring. It will cause unnecessary dangers and dose to command that personnel conduct surveying in such places when the radiological/nuclear accident become more severe. A mobile automatic monitoring station has been established for emergency response by INER (Institute of Nuclear Energy Research) to solve the problem practically. The monitoring station involves a HPIC to monitor radiation dose, an anemometer to monitor wind speed and direction, a GPS to get position data, a GPRS/3G communication module to send monitoring and positioning data to the monitoring centre where can show the monitoring result directly on a map shown on the computer. These instruments are integrated in a trailer easy to be towed to the place need to be monitored. The electric power of the station is supplied by s a solar power energy system. It can supply the station working at least 10 days without extra electric power supply designed based on the expected time length of a nuclear power plant event. The HPIC is very sensitive and stable that can discriminate a 10 nSv/hr increasing of dose rate with the monitoring time period every ten seconds. Where the radiological dispersion device events happened is not predictable, it is difficult to get suitable wind monitoring data to assess the result of radiological dispersion device events. The anemometer added on the station can provide the real time wind monitoring data to help assessment works. (author)

  12. Analysis of South Atlantic Anomaly perturbations on Sentinel-3A Ultra Stable Oscillator. Impact on DORIS phase measurement and DORIS station positioning

    Science.gov (United States)

    Jalabert, Eva; Mercier, Flavien

    2018-07-01

    DORIS measurements rely on the precise knowledge of the embedded oscillator which is called the Ultra Stable Oscillator (DORIS USO). The important radiations in the South Atlantic Anomaly (SAA) perturb the USO behavior by causing rapid frequency variations when the satellite is flying through the SAA. These variations are not taken into account in standard DORIS processing, since the USO is modelled as a third degree polynomial over 7-10 days. Therefore, there are systematic measurements errors when the satellite passes through SAA. In standard GNSS processing, the clock is directly estimated at each epoch. On Sentinel-3A, the GPS receiver and the DORIS receiver use the same USO. It is thus possible to estimate the behavior of the USO using GPS measurements. This estimated USO behavior can be used in the DORIS processing, instead of the third degree polynomial, hence allowing an estimation of the orbit sensitivity to these USO anomalies. This study shows two main results. First, the SAA effect on the DORIS USO is observed well using GPS measurements. Second, the USO behavior observed with GPS can be used to mitigate the SAA effect. Indeed, when used in Sentinel-3A processing, the resulting DORIS orbit shows improved phase measurements and station positioning for stations inside the SAA (Arequipa and Cachoeira). The phase measurements residuals are improved by up to 10 cm, and station vertical positioning (i.e. on the estimated Up component in the North-East-Up station frame) is improved by up to a few centimeters. However, the orbit itself is not sensitive to the correction because only two stations (out of almost 60) are SAA-sensitive on Sentinel-3A.

  13. GPS/INS Sensor Fusion Using GPS Wind up Model

    Science.gov (United States)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  14. Efficient GPS Position Determination Algorithms

    National Research Council Canada - National Science Library

    Nguyen, Thao Q

    2007-01-01

    ... differential GPS algorithm for a network of users. The stand-alone user GPS algorithm is a direct, closed-form, and efficient new position determination algorithm that exploits the closed-form solution of the GPS trilateration equations and works...

  15. Determination of recent horizontal crustal movements and deformations of African and Eurasian plates in western Mediterranean region using geodetic-GPS computations extended to 2006 (from 1997) related to NAFREF and AFREF frames.

    Science.gov (United States)

    Azzouzi, R.

    2009-04-01

    Western Mediterranean and especially on Morocco. Exploiting parameters of positions and dispersions of these stations within the 1997-2003 period, the motion and the interaction types of interaction between African and Eurasian tectonic plates can be estimated. Similarly, the crustal dynamic parameters of tension of these sites will be computed. The time occupation on repeated observations sites is at least 72 hours. The measurements are continuous on permanent stations. The precise ephemerides are used in GPS computations. The post-treatments are done using commercial and scientific softwares. The coordinates obtained for two consecutive periods to and t within a period of 8 years will be used by programs established for this purpose to estimate crustal dynamic parameters of tension as well as to evaluate the appropriate movements. Even crustal dynamic parameters will be determined on each sites of the GPS-Geodynamics network, whose interest of seismic investigations is very important. This will allow best knowledge of substantial seismic activities of the surrounding zones. It can be deduced by measuring the motions and their parameter tensions using GPS. These estimations will contribute on the earthquake prediction by supervising the strain accumulation and its release in the active areas. For the geodetically aspect the GPS-Geodynamics sites computed in the ITRF frame can be used with other similar ounces' of Africa country and some well selected and convenient IGS, EUREF stations..to determine first the NAFREF and the AFRER frames.

  16. Studying Landslide Displacements in Megamendung (Indonesia Using GPS Survey Method

    Directory of Open Access Journals (Sweden)

    Hasanuddin Z. Abidin

    2004-11-01

    Full Text Available Landslide is one of prominent geohazards that frequently affects Indonesia, especially in the rainy season. It destroys not only environment and property, but usually also causes deaths. Landslide monitoring is therefore very crucial and should be continuously done. One of the methods that can have a contribution in studying landslide phenomena is repeated GPS survey method. This paper presents and discusses the operational performances, constraints and results of GPS surveys conducted in a well known landslide prone area in West Java (Indonesia, namely Megamendung, the hilly region close to Bogor. Three GPS surveys involving 8 GPS points have been conducted, namely on April 2002, May 2003 and May 2004, respectively. The estimated landslide displacements in the area are relatively quite large in the level of a few dm to a few m. Displacements up to about 2-3 m were detected in the April 2002 to May 2003 period, and up to about 3-4 dm in the May 2003 to May 2004 period. In both periods, landslides in general show the northwest direction of displacements. Displacements vary both spatially and temporally. This study also suggested that in order to conclude the existence of real and significant displacements of GPS points, the GPS estimated displacements should be subjected to three types of testing namely: the congruency test on spatial displacements, testing on the agreement between the horizontal distance changes with the predicted direction of landslide displacement, and testing on the consistency of displacement directions on two consecutive periods.

  17. Very High-rate (50 Hz) GPS for Detection of Earthquake Ground Motions : How High Do We Need to Go?

    Science.gov (United States)

    Fang, R.

    2017-12-01

    The GPS variometric approach can measure displacements using broadcast ephemeris and a single receiver, with comparable precision to relative positioning and PPP within a short period of time. We evaluate the performance of the variometric approach to measure displacements using very high-rate (50 Hz) GPS data, which recorded from the 2013 Mw 6.6 Lushan earthquake and the 2011 Mw 9.0 Tohoku-Oki earthquake. To remove the nonlinear drift due to integration process, we present to apply a high-pass filter to reconstruct displacements using the variometric approach. Comparison between 50 Hz and 1 Hz coseismic displacements demonstrates that 1 Hz solutions often fail to faithfully manifest the seismic waves containing high-frequency (> 0.5 Hz) seismic signals, which is common for near-field stations during a moderate-magnitude earthquake. Therefore, in order to reconstruct near-field seismic waves caused by moderate or large earthquakes, it is helpful to equip monitoring stations with very high-rate GPS receivers. Results derived using the variometric approach are compared with PPP results. They display very good consistence within only a few millimeters both in static and seismic periods. High-frequency (above 10 Hz) noises of displacements derived using the variometric approach are smaller than PPP displacements in three components.

  18. Tidal Modulation of Ice Flow on Kangerdlugssuaq and Helheim Glaciers, East Greenland, from High-Rate GPS Measurements

    DEFF Research Database (Denmark)

    Hamilton, G. S.; Stearns, L. A.; Elosegui, P.

    knowledge of ice thickness and fjord bathymetry. Here, we use high-rate GPS measurements collected at sites within a few km of the calving fronts of Kangerdlugssuaq and Helheim glaciers to examine the effect of ocean tide on ice flow. Data were collected at 5-15 s sampling rate during several campaign...... appears to have a short floating tongue, based on an analysis of GPS data collected in June-August 2006 at several stations located at increasing distances from the calving front. Glacier uplift was in phase with measured and modeled tidal height, but attenuated rapidly beyond ~~1 km from the terminus. We...

  19. Equipamento microprocessado para geração de sinal de correção diferencial, em tempo real, para GPS Microprocessor-based equipment for real time generation of differential GPS correction signal

    Directory of Open Access Journals (Sweden)

    Thales C. B. Lima

    2006-08-01

    receiving the information generated by the GPS base. The other operates as output, sending the differential correction signal for the transmission system. The development of microprocessor-based equipment showed that it is possible the construction of a low cost private station for real time generation of differential GPS correction signal.

  20. GPS Position Time Series @ JPL

    Science.gov (United States)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  1. Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo

    Science.gov (United States)

    Li, Xingxing; Li, Xin; Yuan, Yongqiang; Zhang, Keke; Zhang, Xiaohong; Wickert, Jens

    2018-06-01

    This paper focuses on the precise point positioning (PPP) ambiguity resolution (AR) using the observations acquired from four systems: GPS, BDS, GLONASS, and Galileo (GCRE). A GCRE four-system uncalibrated phase delay (UPD) estimation model and multi-GNSS undifferenced PPP AR method were developed in order to utilize the observations from all systems. For UPD estimation, the GCRE-combined PPP solutions of the globally distributed MGEX and IGS stations are performed to obtain four-system float ambiguities and then UPDs of GCRE satellites can be precisely estimated from these ambiguities. The quality of UPD products in terms of temporal stability and residual distributions is investigated for GPS, BDS, GLONASS, and Galileo satellites, respectively. The BDS satellite-induced code biases were corrected for GEO, IGSO, and MEO satellites before the UPD estimation. The UPD results of global and regional networks were also evaluated for Galileo and BDS, respectively. As a result of the frequency-division multiple-access strategy of GLONASS, the UPD estimation was performed using a network of homogeneous receivers including three commonly used GNSS receivers (TRIMBLE NETR9, JAVAD TRE_G3TH DELTA, and LEICA). Data recorded from 140 MGEX and IGS stations for a 30-day period in January in 2017 were used to validate the proposed GCRE UPD estimation and multi-GNSS dual-frequency PPP AR. Our results show that GCRE four-system PPP AR enables the fastest time to first fix (TTFF) solutions and the highest accuracy for all three coordinate components compared to the single and dual system. An average TTFF of 9.21 min with 7{°} cutoff elevation angle can be achieved for GCRE PPP AR, which is much shorter than that of GPS (18.07 min), GR (12.10 min), GE (15.36 min) and GC (13.21 min). With observations length of 10 min, the positioning accuracy of the GCRE fixed solution is 1.84, 1.11, and 1.53 cm, while the GPS-only result is 2.25, 1.29, and 9.73 cm for the east, north, and vertical

  2. Semantic Enrichment of GPS Trajectories

    NARCIS (Netherlands)

    de Graaff, V.; van Keulen, Maurice; de By, R.A.

    2012-01-01

    Semantic annotation of GPS trajectories helps us to recognize the interests of the creator of the GPS trajectories. Automating this trajectory annotation circumvents the requirement of additional user input. To annotate the GPS traces automatically, two types of automated input are required: 1) a

  3. GPS detection of ionospheric perturbation before the 13 February 2001, El Salvador earthquake

    OpenAIRE

    V. V. Plotkin

    2003-01-01

    A large earthquake of M6.6 occurred on 13 February 2001 at 14:22:05 UT in El Salvador. We detected ionospheric perturbation before this earthquake using GPS data received from CORS network. Systematic decreases of ionospheric total electron content during two days before the earthquake onset were observed at set of stations near the earthquake location and probably in region of about 1000 km from epicenter. This result is consistent with t...

  4. Sensing Human Activity: GPS Tracking

    Science.gov (United States)

    van der Spek, Stefan; van Schaick, Jeroen; de Bois, Peter; de Haan, Remco

    2009-01-01

    The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands) for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research. PMID:22574061

  5. Sensing Human Activity: GPS Tracking

    Directory of Open Access Journals (Sweden)

    Remco de Haan

    2009-04-01

    Full Text Available The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research.

  6. Individual utilisation thresholds and exploring how GPs' knowledge of their patients affects diagnosis: a qualitative study in primary care.

    Science.gov (United States)

    Michiels-Corsten, Matthias; Bösner, Stefan; Donner-Banzhoff, Norbert

    2017-05-01

    One of the tenets of general practice is that continuity of care has a beneficial effect on patient care. However, little is known about how continuity can have an impact on the diagnostic reasoning of GPs. To explore GPs' diagnostic strategies by examining GPs' reflections on their patients' individual thresholds for seeking medical attention, how they arrive at their estimations, and which conclusions they draw. Qualitative study with 12 GPs in urban and rural practices in Germany. After each patient consultation GPs were asked to reflect on their diagnostic reasoning for that particular case. Qualitative and quantitative analyses of consultations and interview content were undertaken. A total of 295 primary care consultations were recorded, 134 of which contained at least one diagnostic episode. When elaborating on known patients, GPs frequently commented on how 'early' or 'late' in an illness progression a patient tended to consult. The probability of serious disease was accordingly regarded as high or low. This influenced GPs' behaviour regarding further investigations or referrals, as well as reassurance and watchful waiting. GPs' explanations for a patient's utilisation threshold comprised medical history, the patient's characteristics, family background, the media, and external circumstances. The concept of an individual threshold for the utilisation of primary care would explain how GPs use their knowledge of individual patients and their previous help-seeking behaviour for their diagnostic decision making. Whether the assumption behind this concept is valid, and whether its use improves diagnostic accuracy, remains to be investigated. © British Journal of General Practice 2017.

  7. Annual variations in GPS-measured vertical displacements near Upernavik Isstrøm (Greenland) and contributions from surface mass loading

    DEFF Research Database (Denmark)

    Liu, Lin; Khan, Shfaqat Abbas; van Dam, Tonie

    2017-01-01

    variability. Here we examine the annual changes of the vertical displacements measured at two GPS stations (SRMP and UPVK) near Upernavik Isstrøm in western Greenland. We model elastic loading displacements due to various surface mass loading including three non-ice components: atmospheric pressure, ocean...

  8. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  9. GPS Space Service Volume: Ensuring Consistent Utility Across GPS Design Builds for Space Users

    Science.gov (United States)

    Bauer, Frank H.; Parker, Joel Jefferson Konkl; Valdez, Jennifer Ellen

    2015-01-01

    GPS availability and signal strength originally specified for users on or near surface of Earth with transmitted power levels specified at edge-of-Earth, 14.3 degrees. Prior to the SSV specification, on-orbit performance of GPS varied from block build to block build (IIA, IIRM, IIF) due to antenna gain and beam width variances. Unstable on-orbit performance results in significant risk to space users. Side-lobe signals, although not specified, were expected to significantly boost GPS signal availability for users above the constellation. During GPS III Phase A, NASA noted significant discrepancies in power levels specified in GPS III specification documents, and measured on-orbit performance. To stabilize the signal for high altitude space users, NASA DoD team in 2003-2005 led the creation of new Space Service Volume (SSV) definition and specifications.

  10. Automated time activity classification based on global positioning system (GPS) tracking data.

    Science.gov (United States)

    Wu, Jun; Jiang, Chengsheng; Houston, Douglas; Baker, Dean; Delfino, Ralph

    2011-11-14

    Air pollution epidemiological studies are increasingly using global positioning system (GPS) to collect time-location data because they offer continuous tracking, high temporal resolution, and minimum reporting burden for participants. However, substantial uncertainties in the processing and classifying of raw GPS data create challenges for reliably characterizing time activity patterns. We developed and evaluated models to classify people's major time activity patterns from continuous GPS tracking data. We developed and evaluated two automated models to classify major time activity patterns (i.e., indoor, outdoor static, outdoor walking, and in-vehicle travel) based on GPS time activity data collected under free living conditions for 47 participants (N = 131 person-days) from the Harbor Communities Time Location Study (HCTLS) in 2008 and supplemental GPS data collected from three UC-Irvine research staff (N = 21 person-days) in 2010. Time activity patterns used for model development were manually classified by research staff using information from participant GPS recordings, activity logs, and follow-up interviews. We evaluated two models: (a) a rule-based model that developed user-defined rules based on time, speed, and spatial location, and (b) a random forest decision tree model. Indoor, outdoor static, outdoor walking and in-vehicle travel activities accounted for 82.7%, 6.1%, 3.2% and 7.2% of manually-classified time activities in the HCTLS dataset, respectively. The rule-based model classified indoor and in-vehicle travel periods reasonably well (Indoor: sensitivity > 91%, specificity > 80%, and precision > 96%; in-vehicle travel: sensitivity > 71%, specificity > 99%, and precision > 88%), but the performance was moderate for outdoor static and outdoor walking predictions. No striking differences in performance were observed between the rule-based and the random forest models. The random forest model was fast and easy to execute, but was likely less robust

  11. Study of ionospheric disturbances over the China mid- and low-latitude region with GPS observations

    Science.gov (United States)

    Ning, Yafei; Tang, Jun

    2018-01-01

    Ionospheric disturbances constitute the main restriction factor for precise positioning techniques based on global positioning system (GPS) measurements. Simultaneously, GPS observations are widely used to determine ionospheric disturbances with total electron content (TEC). In this paper, we present an analysis of ionospheric disturbances over China mid- and low-latitude area before and during the magnetic storm on 17 March 2015. The work analyses the variation of magnetic indices, the amplitude of ionospheric irregularities observed with four arrays of GPS stations and the influence of geomagnetic storm on GPS positioning. The results show that significant ionospheric TEC disturbances occurred between 10:30 and 12:00 UT during the main phase of the large storm, and the static position reliability for this period are little affected by these disturbances. It is observed that the positive and negative disturbances propagate southward along the meridian from mid-latitude to low-latitude regions. The propagation velocity is from about 200 to 700 m s-1 and the amplitude of ionospheric disturbances is from about 0.2 to 0.9 TECU min-1. Moreover, the position dilution of precession (PDOP) with static precise point positioning (PPP) on storm and quiet days is 1.8 and 0.9 cm, respectively. This study is based on the analysis of ionospheric variability with differential rate of vertical TEC (DROVT) and impact of ionospheric storm on positioning with technique of GPS PPP.

  12. The RING and Seismic Network: Data Acquisition of Co-located Stations

    Science.gov (United States)

    Falco, L.; Avallone, A.; Cattaneo, M.; Cecere, G.; Cogliano, R.; D'Agostino, N.; D'Ambrosio, C.; D'Anastasio, E.; Selvaggi, G.

    2007-12-01

    The plate boundary between Africa and Eurasia represents an interesting geodynamical region characterized by a complex pattern of deformation. First-order scientific problems regarding the existence of rigid blocks within the plate boundary, the present-day activity of the Calabrian subduction zone and the modes of release of seismic deformation are still awaiting for a better understanding. To address these issues, the INGV (Istituto Nazionale Geofisica e Vulcanlogia) deployed a permanent, integrated and real-time monitoring GPS network (RING) all over Italy. RING is now constituted by about 120 stations. The CGPS sites, acquiring at 1Hz and 30s sampling rate, are integrated either with broad band or very broad band seismometers and accelerometers for an improved definition of the seismically active regions. Most of the sites are connected to the acquisition centre (located in Rome and duplicated in Grottaminarda) through a satellite system (VSAT), while the remaining sites transmit data by Internet and classical phone connections. The satellite data transmission and the integration with seismic instruments makes this network one of the most innovative CGPS networks in Europe. The heterogeneity of the installed instrumentation, the transmission types and the increasing number of stations needed a central monitoring and acquisition system. A central acquisition system has been developed in Grottaminarda in southern Italy. Regarding the seismic monitoring we chose to use the open source system Earthworm, developed by USGS, with which we store waveforms and implement automatic localization of the seismic events occurring in the area. As most of the GPS sites are acquired by means of Nanometrics satellite technology, we developed a specific software (GpsView), written in Java, to monitor the state of health of those CGPS. This software receives GPS data from NaqsServer (Nanometrics acquisition system) and outputs information about the sites (i.e. approx position

  13. The SMS-GPS-Trip-Method

    DEFF Research Database (Denmark)

    Reinau, Kristian Hegner; Harder, Henrik; Weber, Michael

    2015-01-01

    This article presents a new method for collecting travel behavior data, based on a combination of GPS tracking and SMS technology, coined the SMS–GPS-Trip method. The state-of-the-art method for collecting data for activity based traffic models is a combination of travel diaries and GPS tracking...

  14. Interaction between subdaily Earth rotation parameters and GPS orbits

    Science.gov (United States)

    Panafidina, Natalia; Seitz, Manuela; Hugentobler, Urs

    2013-04-01

    In processing GPS observations the geodetic parameters like station coordinates and ERPs (Earth rotation parameters) are estimated w.r.t. the celestial reference system realized by the satellite orbits. The interactions/correlations between estimated GPS orbis and other parameters may lead to numerical problems with the solution and introduce systematic errors in the computed values: the well known correlations comprise 1) the correlation between the orbital parameters determining the orientation of the orbital plane in inertial space and the nutation and 2) in the case of estimating ERPs with subdaily resolution the correlation between retrograde diurnal polar motion and nutation (and so the respective orbital elements). In this contribution we study the interaction between the GPS orbits and subdaily model for the ERPs. Existing subdaily ERP model recommended by the IERS comprises ~100 terms in polar motion and ~70 terms in Universal Time at diurnal and semidiurnal tidal periods. We use a long time series of daily normal equation systems (NEQ) obtaine from GPS observations from 1994 till 2007 where the ERPs with 1-hour resolution are transformed into tidal terms and the influence of the tidal terms with different frequencies on the estimated orbital parameters is considered. We found that although there is no algebraic correlation in the NEQ between the individual orbital parameters and the tidal terms, the changes in the amplitudes of tidal terms with periods close to 24 hours can be better accmodated by systematic changes in the orbital parameters than for tidal terms with other periods. Since the variation in Earth rotation with the period of siderial day (23.93h, tide K1) in terrestrial frame has in inertial space the same period as the period of revolution of GPS satellites, the K1 tidal term in polar motion is seen by the satellites as a permanent shift. The tidal terms with close periods (from ~24.13h to ~23.80h) are seen as a slow rotation of the

  15. Generation of real-time mode high-resolution water vapor fields from GPS observations

    Science.gov (United States)

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  16. Refueling Stop Activity Detection and Gas Station Extraction Using Crowdsourcing Vehicle Trajectory Data

    Directory of Open Access Journals (Sweden)

    YANG Wei

    2017-07-01

    Full Text Available In view of the deficiencies of current surveying methods of gas station, an approach is proposed to extract gas station from vehicle traces. Firstly, the spatial-temporal characteristics of individual and collective refueling behavior of trajectory is analyzed from aspects of movement features and geometric patterns. Secondly, based on Stop/Move model, the velocity sequence linear clustering algorithm is proposed to extract refueling stop tracks. Finally, using the methods including Delaunay triangulation, Fourier shape recognition and semantic constraints to identify and extract gas station. An experiment using 7 days taxi GPS traces in Beijing verified the novel method. The experimental results of 482 gas stations are extracted and the correct rate achieves to 93.1%.

  17. Combining Real-Time Seismic and GPS Data for Earthquake Early Warning (Invited)

    Science.gov (United States)

    Boese, M.; Heaton, T. H.; Hudnut, K. W.

    2013-12-01

    Scientists at Caltech, UC Berkeley, the Univ. of SoCal, the Univ. of Washington, the US Geological Survey, and ETH Zurich have developed an earthquake early warning (EEW) demonstration system for California and the Pacific Northwest. To quickly determine the earthquake magnitude and location, 'ShakeAlert' currently processes and interprets real-time data-streams from ~400 seismic broadband and strong-motion stations within the California Integrated Seismic Network (CISN). Based on these parameters, the 'UserDisplay' software predicts and displays the arrival and intensity of shaking at a given user site. Real-time ShakeAlert feeds are currently shared with around 160 individuals, companies, and emergency response organizations to educate potential users about EEW and to identify needs and applications of EEW in a future operational warning system. Recently, scientists at the contributing institutions have started to develop algorithms for ShakeAlert that make use of high-rate real-time GPS data to improve the magnitude estimates for large earthquakes (M>6.5) and to determine slip distributions. Knowing the fault slip in (near) real-time is crucial for users relying on or operating distributed systems, such as for power, water or transportation, especially if these networks run close to or across large faults. As shown in an earlier study, slip information is also useful to predict (in a probabilistic sense) how far a fault rupture will propagate, thus enabling more robust probabilistic ground-motion predictions at distant locations. Finally, fault slip information is needed for tsunami warning, such as in the Cascadia subduction-zone. To handle extended fault-ruptures of large earthquakes in real-time, Caltech and USGS Pasadena are currently developing and testing a two-step procedure that combines seismic and geodetic data; in the first step, high-frequency strong-motion amplitudes are used to rapidly classify near-and far-source stations. Then, the location and

  18. Ocean Station Vessel

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean Station Vessels (OSV) or Weather Ships captured atmospheric conditions while being stationed continuously in a single location. While While most of the...

  19. Large-Strain Monitoring Above a Longwall Coal Mine With GPS and Seismic Measurements

    Science.gov (United States)

    Swanson, P. L.; Andreatta, V.; Meertens, C. M.; Krahenbuhl, T.; Kenner, B.

    2001-12-01

    As part of an effort to evaluate continuous GPS measurements for use in mine safety studies, a joint GPS-seismic experiment was conducted at an underground longwall coal mine near Paonia, Colorado in June, 2001. Seismic and deformation signals were measured using prototype low-cost monitoring systems as a longwall panel was excavated 150 m beneath the site. Data from both seismic and GPS instruments were logged onto low-power PC-104 Linux computers which were networked using a wireless LAN. The seismic system under development at NIOSH/SRL is based on multiple distributed 8-channel 24-bit A/D converters. The GPS system uses a serial single-frequency (L1) receiver and UNAVCO's "Jstream" Java data logging software. For this experiment, a continuously operating dual-frequency GPS receiver was installed 2.4 km away to serve as a reference site. In addition to the continuously operating sites, 10 benchmarks were surveyed daily with short "rapid-static" occupations in order to provide greater spatial sampling. Two single-frequency sites were located 35 meters apart on a relatively steep north-facing slope. As mining progressed from the east, net displacements of 1.2 meters to the north and 1.65 meters of subsidence were observed over a period of 6 days. The east component exhibited up to 0.45 meters of eastward displacement (toward the excavation) followed by reverse movement to the west. This cycle, observed approximately two days earlier at the eastern L1 site, is consistent with a change in surface strain from tension to compression as the excavation front passed underneath. As this strain "wave" propagated across the field site, surface deformation underwent a cycle of tension crack nucleation, crack opening (up to 15 cm normal displacements), subsequent crack closure, and production of low-angle-thrust compressional deformation features. Analysis of seismic results, surface deformation, and additional survey results are presented.

  20. Determining of the phase centre of the real position of GPS receiver antenna

    OpenAIRE

    Eva Pisoňová; Jozef Ornth; Vladimír Sedlák

    2007-01-01

    By continued improvement of measurement methods producers of GPS (Global Positioning System) apparatus will be maybe once upon a time effective to minimize a difference of the phase centre from the geometrical one, because it is probably impossible to make the GPS receiver antenna with zero eccentricity of the phase centre. In the last analysis, we do not prevent from a manufacturing error by any way in eliminate of the possible measurement errors.In the paper there is presented the measureme...

  1. Flexible Software Design for Korean WA-DGNSS Reference Station

    Directory of Open Access Journals (Sweden)

    Wan Sik Choi

    2013-03-01

    Full Text Available In this paper, we describe the software design results of WA-DGNSS reference station that will be constructed in Korea in the near future. Software design of the WRS (Wide area Reference Station is carried out by applying object oriented software methodology in order to provide flexibilities: easy of model change (namely ionospheric delay model etc and system addition (Galileo, GLONASS in addition to GPS etc. Software design results include the use case diagrams for the functions to be executed, the architecture diagram showing components and their relationships, the activity diagrams of behaviors and models among them, and class diagrams describing the attribute and operation.

  2. GPS, BDS and Galileo ionospheric correction models: An evaluation in range delay and position domain

    Science.gov (United States)

    Wang, Ningbo; Li, Zishen; Li, Min; Yuan, Yunbin; Huo, Xingliang

    2018-05-01

    The performance of GPS Klobuchar (GPSKlob), BDS Klobuchar (BDSKlob) and NeQuick Galileo (NeQuickG) ionospheric correction models are evaluated in the range delay and position domains over China. The post-processed Klobuchar-style (CODKlob) coefficients provided by the Center for Orbit Determination in Europe (CODE) and our own fitted NeQuick coefficients (NeQuickC) are also included for comparison. In the range delay domain, BDS total electrons contents (TEC) derived from 20 international GNSS Monitoring and Assessment System (iGMAS) stations and GPS TEC obtained from 35 Crust Movement Observation Network of China (CMONC) stations are used as references. Compared to BDS TEC during the short period (doy 010-020, 2015), GPSKlob, BDSKlob and NeQuickG can correct 58.4, 66.7 and 54.7% of the ionospheric delay. Compared to GPS TEC for the long period (doy 001-180, 2015), the three ionospheric models can mitigate the ionospheric delay by 64.8, 65.4 and 68.1%, respectively. For the two comparison cases, CODKlob shows the worst performance, which only reduces 57.9% of the ionospheric range errors. NeQuickC exhibits the best performance, which outperforms GPSKlob, BDSKlob and NeQuickG by 6.7, 2.1 and 6.9%, respectively. In the position domain, single-frequency stand point positioning (SPP) was conducted at the selected 35 CMONC sites using GPS C/A pseudorange with and without ionospheric corrections. The vertical position error of the uncorrected case drops significantly from 10.3 m to 4.8, 4.6, 4.4 and 4.2 m for GPSKlob, CODKlob, BDSKlob and NeQuickG, however, the horizontal position error (3.2) merely decreases to 3.1, 2.7, 2.4 and 2.3 m, respectively. NeQuickG outperforms GPSKlob and BDSKlob by 5.8 and 1.9% in vertical component, and by 25.0 and 3.2% in horizontal component.

  3. GPS horizontal deformation model in the southern region of the Iberian Peninsula and northern Africa (SPINA); Modelo de deformación horizontal GPS de la región sur de la Península Ibérica y norte de África (SPINA)

    Energy Technology Data Exchange (ETDEWEB)

    Rosado Moscoso, B.; Fernández-Ros, A.; Jiménez Jiménez, A.; Berrocoso Domínguez, M.

    2017-09-01

    Global Navigation Satellite System (GNSS), and in particular Global Positioning System (GPS) technology provides a powerful tool for studying geodynamic processes. As a consequence of GPS studies, it is now possible to analyze the interaction between tectonic plates in order to evaluate and establish the characteristics of their boundaries. In this study, our main interest is to focus on the time series analysis obtained from observations of GNSS-GPS satellites. Each GPS observation session provides topocentric geodetic coordinates (east, north, elevation) of the permanent stations that constitute the geodetic network established for this purpose. This paper shows a detailed topocentric coordinate time-series study for sites belonging to what we call the SPINA network, which stands for south of the Iberian Peninsula, north of Africa region. The series under study are processed by techniques of relative positioning with respect to the IGS (International GNSS Service) reference station located in Villafranca. These times series have been analyzed using filter processes, harmonic adjustments and wavelets. A surface velocity field is derived from the time series of daily solutions for each station, whose observations span 8 years or longer. This allows us to obtain a horizontal displacement model to show the regional geodynamic main characteristics. [Spanish] El Sistema Global de Navegación por Satélite (GNSS), y, en particular, el Sistema Global de Posicionamiento (GPS) proporcionan una importante herramienta en el estudio de los procesos geodinámicos. Como consecuencia de estos estudios, es posible analizar la interacción entre las placas tectónicas con el fin de evaluar y establecer las características de sus límites. Este trabajo se centra principalmente, en el análisis de series temporales obtenidas a partir de observaciones de los satélites GNSS-GPS en estaciones geodésicas permanentes ubicadas en la región sur de la Península Ibérica y norte de

  4. Tracking magma volume recovery at okmok volcano using GPS and an unscented kalman filter

    Science.gov (United States)

    Fournier, T.; Freymueller, Jeffrey T.; Cervelli, Peter

    2009-01-01

    Changes beneath a volcano can be observed through position changes in a GPS network, but distinguishing the source of site motion is not always straightforward. The records of continuous GPS sites provide a favorable data set for tracking magma migration. Dense campaign observations usually provide a better spatial picture of the overall deformation field, at the expense of an episodic temporal record. Combining these observations provides the best of both worlds. A Kalman filter provides a means for integrating discrete and continuous measurements and for interpreting subtle signals. The unscented Kalman filter (UKF) is a nonlinear method for time-dependent observations. We demonstrate the application of this technique to deformation data by applying it to GPS data collected at Okmok volcano. Seven years of GPS observations at Okmok are analyzed using a Mogi source model and the UKF. The deformation source at Okmok is relatively stable at 2.5 km depth below sea level, located beneath the center of the caldera, which means the surface deformation is caused by changes in the strength of the source. During the 7 years of GPS observations more than 0.5 m of uplift has occurred, a majority of that during the time period January 2003 to July 2004. The total volume recovery at Okmok since the last eruption in 1997 is ??60-80%. The UKF allows us to solve simultaneously for the time-dependence of the source strength and for the location without a priori information about the source. ?? 2009 by the American Geophysical Union.

  5. Development of automatic techniques for GPS data management

    International Nuclear Information System (INIS)

    Park, Pil Ho

    2001-06-01

    It is necessary for GPS center to establish automatization as effective management of GPS network including data gathering, data transformation, data backup, data sending to IGS (International GPS Service for geodynamics), and precise ephemerides gathering. The operating program of GPS center has been adopted at KCSC (Korea Cadastral Survey Corporation), NGI (National Geography Institute), MOMAF (Ministry of Maritime Affairs and Fisheries) without self-development of core technique. The automatic management of GPS network is consists of GPS data management and data processing. It is also fundamental technique, which should be accomplished by every GPS centers. Therefore, this study carried out analyzing of Japanese GPS center, which has accomplished automatization by module considering applicability for domestic GPS centers

  6. IMPELEMENTASI SISTEM PEMANTAUAN OBJEK BERGERAK DENGAN MEMANFAATKAN FREKUENSI RADIO MENGGUNAKAN GPS (GLOBAL POSITIONING SYSTEM)

    OpenAIRE

    Budi Triandi

    2010-01-01

    GPS was developed by the United States Department of Defense as a reliable means for accurate navigation. The system provides highly accurate position and velocity information and precise time on a continuous global basis to an unlimited number of properly equipped users. By using combined GPS receiver and microcontroller together with radio system, we can design a monitoring system for our vehicles and display the result on the computer. This system consists of a master module that transmits...

  7. GPS in Travel and Activity Surveys

    DEFF Research Database (Denmark)

    Nielsen, Thomas Alexander Sick; Hovgesen, Henrik Harder

    2004-01-01

    The use of GPS-positioning as a monitoring tool in travel and activity surveys opens up a range of possibilities. Using a personal GPS device, the locations and movements of respondents can be followed over a longer period of time. It will then be possible to analyse how the use of urban spaces...... are embedded in the wider context of activity patterns (work, school etc.). The general pattern of everyday itineraries, including route choice and time spent at different locations ?on the way? can also be analysed. If the personal GPS device is combined with an electronic questionnaire, for example...... area. The paper presents the possibilities in travel and activity surveys with GPS and electronic questionnaires. Demonstrative mapping of test data from passive GPS registration of Copenhagen respondents is presented. The different survey possibilities given a combination of GPS and PDA based...

  8. Cross-cultural differences in GPs' attitudes towards complementary and alternative medicine: a survey comparing regions of the UK and Germany.

    Science.gov (United States)

    Schmidt, K; Jacobs, P A; Barton, A

    2002-09-01

    To investigate whether there is a difference in general practitioners' attitudes towards CAM in the UK and Germany. A descriptive questionnaire was developed and sent to 97 GPs in the UK and 99 GPs in Germany. The overall response rate was 68%. German GPs showed a (non-significant) overall more positive attitude towards CAM than did British GPs. British GPs made more referrals to complementary practitioners. The most popular CAM therapies that UK GPs referred their patients to were chiropractic treatment, acupuncture and osteopathy. German GPs referred their patients mainly to acupuncture treatment, chiropractic treatment and herbal medicine. A significantly higher number of German GPs reported having practised as a CAM practitioner before and having personally used CAM themselves. Seventy percent of British GPs and 76% of German GPs thought it is safe to prescribe complementary medicine and therapies to patients. There are small national differences in referring patients to various CAM modalities. Both nations have an overall positive attitude toward and a high interest in CAM. Lack of scientific evidence and information on training opportunities were important points that were continuously raised by GPs in both countries.

  9. Continuous atmospheric monitoring of the injected CO2 behavior over geological storage sites using flux stations: latest technologies and resources

    Science.gov (United States)

    Burba, George; Madsen, Rodney; Feese, Kristin

    2014-05-01

    Flux stations have been widely used to monitor emission rates of CO2 from various ecosystems for climate research for over 30 years [1]. The stations provide accurate and continuous measurements of CO2 emissions with high temporal resolution. Time scales range from 20 times per second for gas concentrations, to 15-minute, hourly, daily, and multi-year periods. The emissions are measured from the upwind area ranging from thousands of square meters to multiple square kilometers, depending on the measurement height. The stations can nearly instantaneously detect rapid changes in emissions due to weather events, as well as changes caused by variations in human-triggered events (pressure leaks, control releases, etc.). Stations can also detect any slow changes related to seasonal dynamics and human-triggered low-frequency processes (leakage diffusion, etc.). In the past, station configuration, data collection and processing were highly-customized, site-specific and greatly dependent on "school-of-thought" practiced by a particular research group. In the last 3-5 years, due to significant efforts of global and regional CO2 monitoring networks (e.g., FluxNet, Ameriflux, Carbo-Europe, ICOS, etc.) and technological developments, the flux station methodology became fairly standardized and processing protocols became quite uniform [1]. A majority of current stations compute CO2 emission rates using the eddy covariance method, one of the most direct and defensible micrometeorological techniques [1]. Presently, over 600 such flux stations are in operation in over 120 countries, using permanent and mobile towers or moving platforms (e.g., automobiles, helicopters, and airplanes). Atmospheric monitoring of emission rates using such stations is now recognized as an effective method in regulatory and industrial applications, including carbon storage [2-8]. Emerging projects utilize flux stations to continuously monitor large areas before and after the injections, to locate and

  10. Factors associated with GPs' knowledge of their patients' socio-economic circumstances: a multilevel analysis.

    Science.gov (United States)

    Casanova, Ludovic; Ringa, Virginie; Bloy, Géraldine; Falcoff, Hector; Rigal, Laurent

    2015-12-01

    To determine appropriate management for individual patients, GPs are supposed to use their knowledge of the patient's socio-economic circumstances. To analyse factors associated with GPs' knowledge of these circumstances. Observational survey of GPs who were internship supervisors in the Paris metropolitan area. Each of 52 volunteer GPs completed a self-administered questionnaire about their own characteristics and randomly selected 70 patients from their patient list. Their knowledge was analysed as the agreement between the patients' and GPs' responses to questions about the patients' socio-economic characteristics in questionnaires completed by both groups. The association between agreement and the GPs' characteristics was analysed with a multilevel model adjusted for age, sex and the duration of the GP-patient relationship. Agreement varied according to the socio-economic characteristics considered (from 51% to 90%) and between GPs. Globally, the GPs overestimated their patients' socio-economic level. GP characteristics associated with better agreement were sex (female), long consultations, the use of paper records or an automatic reminder system and participation in continuing medical education and in meetings to discuss difficult cases. Knowledge of some patient characteristics, such as their complementary health insurance coverage or perceived financial situation, should be improved because their overestimation may lead to care that is too expensive and thus result in the patients' abandonment of the treatment. Besides determining ways to help GPs to organize their work more effectively, it is important to study methods to help doctors identify their patients' social-economic circumstances more accurately in daily practice. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. How does the workload and work activities of procedural GPs compare to non-procedural GPs?

    Science.gov (United States)

    Russell, Deborah J; McGrail, Matthew R

    2017-08-01

    To investigate patterns of Australian GP procedural activity and associations with: geographical remoteness and population size hours worked in hospitals and in total; and availability for on-call DESIGN AND PARTICIPANTS: National annual panel survey (Medicine in Australia: Balancing Employment and Life) of Australian GPs, 2011-2013. Self-reported geographical work location, hours worked in different settings, and on-call availability per usual week, were analysed against GP procedural activity in anaesthetics, obstetrics, surgery or emergency medicine. Analysis of 9301 survey responses from 4638 individual GPs revealed significantly increased odds of GP procedural activity in anaesthetics, obstetrics or emergency medicine as geographical remoteness increased and community population size decreased, albeit with plateauing of the effect-size from medium-sized (population 5000-15 000) rural communities. After adjusting for confounders, procedural GPs work more hospital and more total hours each week than non-procedural GPs. In 2011 this equated to GPs practising anaesthetics, obstetrics, surgery, and emergency medicine providing 8% (95%CI 0, 16), 13% (95%CI 8, 19), 8% (95%CI 2, 15) and 18% (95%CI 13, 23) more total hours each week, respectively. The extra hours are attributable to longer hours worked in hospital settings, with no reduction in private consultation hours. Procedural GPs also carry a significantly higher burden of on-call. The longer working hours and higher on-call demands experienced by rural and remote procedural GPs demand improved solutions, such as changes to service delivery models, so that long-term procedural GP careers are increasingly attractive to current and aspiring rural GPs. © 2016 National Rural Health Alliance Inc.

  12. Comparison of GLONASS and GPS time transfers between two west European time laboratories and VNIIFTRI

    Science.gov (United States)

    Daly, P.; Koshelyaevsky, N. B.; Lewandowski, Wlodzimierz; Petit, Gerard; Thomas, Claudine

    1992-01-01

    The University of Leeds built a Global Positioning System/Global Orbiting Navigation Satellite System (GPS/GLONASS) receiver about five years ago and since then has provided continuous information about GLONASS time and its comparison with GPS time. For the last two years, VNIIFTRI (All Union Institute for Physical, Technical and Radiotechnical Measurements) and some other Soviet time laboratories have used Soviet built GLONASS navigation receivers for time comparisons. Since June 1991, VNIIFTIR has been operating a GPS time receiver on loan from the BIPM (Bureau International des Poids et Mesures). This offered, for the first time, an opportunity for direct comparison of time transfers using GPS and GLONASS. This experiment shows that even with relatively imprecise data recording and processing, in terms of time metrology, GLONASS can provide continental time transfer at a level of several tens of nanoseconds.

  13. Tracking Small Satellites using Translated GPS

    OpenAIRE

    Lefevre, Don; Mulally, Daniel

    1991-01-01

    This paper discusses using translated GPS for tracking small satellites, the technical trade-offs involved, and the position and timing accuracies which are achievable using translated GPS. The Global Positioning System (GPS) uses the relative times-of-arrival of multiple spread-spectrum signals at an antenna to determine the position of the antenna. The system can also determine the time the antenna was at that position. The direct sequence spread spectrum signals are transmitted from GPS sa...

  14. Precise Positioning of BDS, BDS/GPS: Implications for Tsunami Early Warning in South China Sea

    Directory of Open Access Journals (Sweden)

    Kejie Chen

    2015-11-01

    Full Text Available Global Positioning System (GPS has been proved to be a powerful tool for measuring co-seismic ground displacements with an application to seismic source inversion. Whereas most of the tsunamis are triggered by large earthquakes, GPS can contribute to the tsunami early warning system (TEWS by helping to obtain tsunami source parameters in near real-time. Toward the end of 2012, the second phase of the BeiDou Navigation Satellite System (BDS constellation was accomplished, and BDS has been providing regional positioning service since then. Numerical results indicate that precision of BDS nowadays is equivalent to that of the GPS. Compared with a single Global Satellite Navigation System (GNSS, combined BDS/GPS real-time processing can improve accuracy and especially reliability of retrieved co-seismic displacements. In the present study, we investigate the potential of BDS to serve for the early warning system of tsunamis in the South China Sea region. To facilitate early warnings of tsunamis and forecasting capabilities in this region, we propose to distribute an array of BDS-stations along the Luzon Island (Philippines. By simulating an earthquake with Mw = 8 at the Manila trench as an example, we demonstrate that such an array will be able to detect earthquake parameters in real time with a high degree of accuracy and, hence, contribute to the fast and reliable tsunami early warning system in this region.

  15. Evidential recovery from GPS devices

    Directory of Open Access Journals (Sweden)

    Brian Cusack

    Full Text Available Global Positioning Systems (GPS have become more affordable, are now widely used in motor vehicles and in other frequently used applications. As a consequence GPS are increasingly becoming an important source of evidential data for digital forensic investigations. This paper acknowledges there are only disparate documents for the guidance of an investigator when extracting evidence form such systems. The focus of this paper is to provide the technical details of recovering artifacts from four GPS currently available to the New Zealand market. Navman brand GPS are used, following a forensically robust process. The steps of the process are described, results analysed and the associated risks are discussed. In addition, the paper discusses techniques related to the visual presentation of evidence suitable for Google Maps. Automation attempts to speed up the analysis to visualization steps are also included. The outcome is a road map that may assist digital forensic investigators develop GPS examination strategies for implementation in their own organizations.

  16. High Classification Rates for Continuous Cow Activity Recognition using Low-cost GPS Positioning Sensors and Standard Machine Learning Techniques

    DEFF Research Database (Denmark)

    Godsk, Torben; Kjærgaard, Mikkel Baun

    2011-01-01

    activities. By preprocessing the raw cow position data, we obtain high classification rates using standard machine learning techniques to recognize cow activities. Our objectives were to (i) determine to what degree it is possible to robustly recognize cow activities from GPS positioning data, using low...... and their activities manually logged to serve as ground truth. For our dataset we managed to obtain an average classification success rate of 86.2% of the four activities: eating/seeking (90.0%), walking (100%), lying (76.5%), and standing (75.8%) by optimizing both the preprocessing of the raw GPS data...

  17. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift

    Science.gov (United States)

    Blewitt, Geoffrey; Kreemer, Corné

    2016-01-01

    Abstract We introduce Global Positioning System (GPS) Imaging, a new technique for robust estimation of the vertical velocity field of the Earth's surface, and apply it to the Sierra Nevada Mountain range in the western United States. Starting with vertical position time series from Global Positioning System (GPS) stations, we first estimate vertical velocities using the MIDAS robust trend estimator, which is insensitive to undocumented steps, outliers, seasonality, and heteroscedasticity. Using the Delaunay triangulation of station locations, we then apply a weighted median spatial filter to remove velocity outliers and enhance signals common to multiple stations. Finally, we interpolate the data using weighted median estimation on a grid. The resulting velocity field is temporally and spatially robust and edges in the field remain sharp. Results from data spanning 5–20 years show that the Sierra Nevada is the most rapid and extensive uplift feature in the western United States, rising up to 2 mm/yr along most of the range. The uplift is juxtaposed against domains of subsidence attributable to groundwater withdrawal in California's Central Valley. The uplift boundary is consistently stationary, although uplift is faster over the 2011–2016 period of drought. Uplift patterns are consistent with groundwater extraction and concomitant elastic bedrock uplift, plus slower background tectonic uplift. A discontinuity in the velocity field across the southeastern edge of the Sierra Nevada reveals a contrast in lithospheric strength, suggesting a relationship between late Cenozoic uplift of the southern Sierra Nevada and evolution of the southern Walker Lane. PMID:27917328

  18. The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination

    Directory of Open Access Journals (Sweden)

    Jhen-Kai Liao

    2013-08-01

    Full Text Available The integration of an Inertial Navigation System (INS and the Global Positioning System (GPS is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC and tightly coupled (TC schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system.

  19. Work problems due to low back pain: what do GPs do? A questionnaire survey.

    Science.gov (United States)

    Coole, Carol; Watson, Paul J; Drummond, Avril

    2010-02-01

    Low back pain can affect work ability and remains a main cause of sickness absence. In the UK the GP is usually the first contact for patients seeking health care. The UK government intends that the GP will continue to be responsible for sickness certification and work advice. This role requires a considerable level of understanding of work rehabilitation, and effective communication between GPs, patients, employers and therapists. The aim of this study was to identify GPs' current practice in managing patients whose ability to work is affected by low back pain, and their perception of the support services required. A postal questionnaire of 441 GPs in the South Nottinghamshire area of the UK was carried out. Areas covered included referral patterns, sickness certification, and communication with therapists and employers. There was a 54.6% response rate. The majority of GPs (76.8%) reported that they did not take overall responsibility for managing the work problems of patients arising from low back pain. Few 'mainly agreed' that they initiated communication with employers (2.5%) and/or therapists (10.4%) regarding their patients' work. The results of this study demonstrate that most GPs do not readily engage in vocational rehabilitation and do not initiate contact with employers or other health care practitioners regarding patients' work problems. Thus the current government expectation that GPs are able to successfully manage this role may be unrealistic; considerable training and a change in the GPs' perception of their role will be required.

  20. GPS Imaging suggests links between climate, magmatism, seismicity, and tectonics in the Sierra Nevada-Long Valley Caldera-Walker Lane system, western United States

    Science.gov (United States)

    Hammond, W. C.; Blewitt, G.; Kreemer, C.; Smith, K.

    2017-12-01

    The Walker Lane is a region of complex active crustal transtension in the western Great Basin of the western United States, accommodating about 20% of the 50 mm/yr relative motion between the Pacific and North American plates. The Long Valley caldera lies in the central Walker Lane in eastern California, adjacent to the eastern boundary of the Sierra Nevada/Great Valley microplate, and experiences intermittent inflation, uplift, and volcanic unrest from the magma chamber that resides at middle crustal depths. Normal and transform faults accommodating regional tectonic transtension pass by and through the caldera, complicating the interpretation of the GPS-measured strain rate field, estimates of fault slip rates, and seismic hazard. Several dozen continuously recording GPS stations measure strain and uplift in the area with mm precision. They observe that the most recent episode of uplift at Long Valley began in mid-2011, continuing until late 2016, raising the surface by 100 mm in 6 years. The timing of the initiation of uplift coincides with the beginning of severe drought in California. Furthermore, the timing of a recent pause in uplift coincides with the very wet 2016-2017 winter, which saw approximately double normal snow pack. In prior studies, we showed that the timing of changes in geodetically measured uplift rate of the Sierra Nevada coincides with the timing of drought conditions in California, suggesting a link between hydrological loading and Sierra Nevada elevation. Here we take the analysis three steps further to show that changes in Sierra Nevada uplift rate coincide in time with 1) enhanced inflation at the Long Valley caldera, 2) shifts in the patterns and rates of horizontal tensor strain rate, and 3) seismicity patterns in the central Walker Lane. We use GPS solutions from the Nevada Geodetic Laboratory and the new GPS Imaging technique to produce robust animations of the time variable strain and uplift fields. The goals of this work are to

  1. Exploring the training and scope of practice of GPs in England, Germany and Spain.

    Science.gov (United States)

    Glonti, Ketevan; Struckmann, Verena; Alconada, Alvaro; Pettigrew, Luisa M; Hernandez-Santiago, Virginia; Minue, Sergio; Risso-Gill, Isabelle; McKee, Martin; Legido-Quigley, Helena

    2018-03-22

    To explore general practitioner (GP) training, continuing professional development, scope of practice, ethical issues and challenges in the working environment in three European countries. Qualitative study of 35 GPs from England, Germany and Spain working in urban primary care practices. Participants were recruited using convenience and snowball sampling techniques. Semi-structured interviews were recorded, transcribed and analysed by four independent researchers adopting a thematic approach. Entrance to and length of GP training differ between the three countries, while continuing professional development is required in all three, although with different characteristics. Key variations in the scope of practice include whether there is a gatekeeping role, whether GPs work in multidisciplinary teams or singlehandedly, the existence of appraisal processes, and the balance between administrative and clinical tasks. However, similar challenges, including the need to adapt to an ageing population, end-of-life care, ethical dilemmas, the impact of austerity measures, limited time for patients and gaps in coordination between primary and secondary care are experienced by GPs in all three countries. Primary health care variations have strong historical roots, derived from the different national experiences and the range of clinical services delivered by GPs. There is a need for an accessible source of information for GPs themselves and those responsible for safety and quality standards of the healthcare workforce. This paper maps out the current situation before Brexit is being implemented in the UK which could see many of the current EU arrangements and legislation to assure professional mobility between the UK and the rest of Europe dismantled. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  2. Validation of measured poleward TEC gradient using multi-station GPS with Artificial Neural Network based TEC model in low latitude region for developing predictive capability of ionospheric scintillation

    Science.gov (United States)

    Sur, D.; Paul, A.

    2017-12-01

    The equatorial ionosphere shows sharp diurnal and latitudinal Total Electron Content (TEC) variations over a major part of the day. Equatorial ionosphere also exhibits intense post-sunset ionospheric irregularities. Accurate prediction of TEC in these low latitudes is not possible from standard ionospheric models. An Artificial Neural Network (ANN) based Vertical TEC (VTEC) model has been designed using TEC data in low latitude Indian longitude sector for accurate prediction of VTEC. GPS TEC data from the stations Calcutta (22.58°N, 88.38°E geographic, magnetic dip 32°), Baharampore (24.09°N, 88.25°E geographic, magnetic dip 35°) and Siliguri (26.72°N, 88.39°E geographic; magnetic dip 40°) are used as training dataset for the duration of January 2007-September 2011. Poleward VTEC gradients from northern EIA crest to region beyond EIA crest have been calculated from measured VTEC and compared with that obtained from ANN based VTEC model. TEC data from Calcutta and Siliguri are used to compute VTEC gradients during April 2013 and August-September 2013. It has been observed that poleward VTEC gradient computed from ANN based TEC model has shown good correlation with measured values during vernal and autumnal equinoxes of high solar activity periods of 2013. Possible correlation between measured poleward TEC gradients and post-sunset scintillations (S4 ≥ 0.4) from northern crest of EIA has been observed in this paper. From the observation, a suitable threshold poleward VTEC gradient has been proposed for possible occurrence of post-sunset scintillations at northern crest of EIA along 88°E longitude. Poleward VTEC gradients obtained from ANN based VTEC model are used to forecast possible ionospheric scintillation after post-sunset period using the threshold value. It has been observed that these predicted VTEC gradients obtained from ANN based VTEC model can forecast post-sunset L-band scintillation with an accuracy of 67% to 82% in this dynamic low latitude

  3. Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography

    Science.gov (United States)

    Farah, Ashraf

    2018-03-01

    Global Positioning System (GPS) technology is ideally suited for inshore and offshore positioning because of its high accuracy and the short observation time required for a position fix. Precise point positioning (PPP) is a technique used for position computation with a high accuracy using a single GNSS receiver. It relies on highly accurate satellite position and clock data that can be acquired from different sources such as the International GNSS Service (IGS). PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of observations among other factors. PPP offers comparable accuracy to differential GPS with safe in cost and time. For many years, PPP users depended on GPS (American system) which considered the solely reliable system. GLONASS's contribution in PPP techniques was limited due to fail in maintaining full constellation. Yet, GLONASS limited observations could be integrated into GPS-based PPP to improve availability and precision. As GLONASS reached its full constellation early 2013, there is a wide interest in PPP systems based on GLONASS only and independent of GPS. This paper investigates the performance of kinematic PPP solution for the hydrographic applications in the Nile river (Aswan, Egypt) based on GPS, GLONASS and GPS/GLONASS constellations. The study investigates also the effect of using two different observation types; single-frequency and dual frequency observations from the tested constellations.

  4. UFIR Filtering for GPS-Based Tracking over WSNs with Delayed and Missing Data

    Directory of Open Access Journals (Sweden)

    Karen Uribe-Murcia

    2018-01-01

    Full Text Available In smart cities, vehicles tracking is organized to increase safety by localizing cars using the Global Positioning System (GPS. The GPS-based system provides accurate tracking but is also required to be reliable and robust. As a main estimator, we propose using the unbiased finite impulse response (UFIR filter, which meets these needs as being more robust than the Kalman filter (KF. The UFIR filter is developed for vehicle tracking in discrete-time state-space over wireless sensor networks (WSNs with time-stamped data discretely delayed on k-step-lags and missing data. The state-space model is represented in a way such that the UFIR filter, KF, and H∞ filter can be used universally. Applications are given for measurement data, which are cooperatively transferred from a vehicle to a central station through several nodes with k-step-lags. Better tracking performance of the UFIR filter is shown experimentally.

  5. Earth Surface Deformation in the North China Plain Detected by Joint Analysis of GRACE and GPS Data

    Science.gov (United States)

    Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C.K.; Li, Zhao

    2014-01-01

    Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1–4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1–2 mm/year and a correlation of 85.0%–98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements. PMID:25340454

  6. Earth surface deformation in the North China Plain detected by joint analysis of GRACE and GPS data.

    Science.gov (United States)

    Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C K; Li, Zhao

    2014-10-22

    Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1-4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1-2 mm/year and a correlation of 85.0%-98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements.

  7. GPS Ephemeris Message Broadcast Simulation

    National Research Council Canada - National Science Library

    Browne, Nathan J; Light, James J

    2005-01-01

    The warfighter constantly needs increased accuracy from GPS and a means to increasing this accuracy to the decimeter level is a broadcast ephemeris message containing GPS satellite orbit and clock corrections...

  8. Progress in using real-time GPS for seismic monitoring of the Cascadia megathrust

    Science.gov (United States)

    Szeliga, W. M.; Melbourne, T. I.; Santillan, V. M.; Scrivner, C.; Webb, F.

    2014-12-01

    We report on progress in our development of a comprehensive real-time GPS-based seismic monitoring system for the Cascadia subduction zone. This system is based on 1 Hz point position estimates computed in the ITRF08 reference frame. Convergence from phase and range observables to point position estimates is accelerated using a Kalman filter based, on-line stream editor. Positions are estimated using a short-arc approach and algorithms from JPL's GIPSY-OASIS software with satellite clock and orbit products from the International GNSS Service (IGS). The resulting positions show typical RMS scatter of 2.5 cm in the horizontal and 5 cm in the vertical with latencies below 2 seconds. To facilitate the use of these point position streams for applications such as seismic monitoring, we broadcast real-time positions and covariances using custom-built streaming software. This software is capable of buffering 24-hour streams for hundreds of stations and providing them through a REST-ful web interface. To demonstrate the power of this approach, we have developed a Java-based front-end that provides a real-time visual display of time-series, vector displacement, and contoured peak ground displacement. We have also implemented continuous estimation of finite fault slip along the Cascadia megathrust using an NIF approach. The resulting continuous slip distributions are combined with pre-computed tsunami Green's functions to generate real-time tsunami run-up estimates for the entire Cascadia coastal margin. This Java-based front-end is available for download through the PANGA website. We currently analyze 80 PBO and PANGA stations along the Cascadia margin and are gearing up to process all 400+ real-time stations operating in the Pacific Northwest, many of which are currently telemetered in real-time to CWU. These will serve as milestones towards our over-arching goal of extending our processing to include all of the available real-time streams from the Pacific rim. In addition

  9. Determining Sea-Level Rise and Coastal Subsidence in the Canadian Arctic Using a Dense GPS Velocity Field for North America

    Science.gov (United States)

    Craymer, M.; Forbes, D.; Henton, J.; Lapelle, E.; Piraszewski, M.; Solomon, S.

    2005-12-01

    With observed climate warming in the western Canadian Arctic and potential increases in regional sea level, we anticipate expansion of the coastal region subject to rising relative sea level and increased flooding risk. This is a concern for coastal communities such as Tuktoyaktuk and Sachs Harbour and for the design and safety of hydrocarbon production facilities on the Mackenzie Delta. To provide a framework in which to monitor these changes, a consistent velocity field has been determined from GPS observations throughout North America, including the Canadian Arctic Archipelago and the Mackenzie Delta region. An expanded network of continuous GPS sites and multi-epoch (episodic) sites has enabled an increased density that enhances the application to geophysical studies including the discrimination of crustal motion, other components of coastal subsidence, and sea-level rise. To obtain a dense velocity field consistent at all scales, we have combined weekly solutions of continuous GPS sites from different agencies in Canada and the USA, together with the global reference frame under the North American Reference Frame initiative. Although there is already a high density of continuous GPS sites in the conterminous United States, there are many fewer such sites in Canada. To make up for this lack of density, we have incorporated high-accuracy episodic GPS observations on stable monuments distributed throughout Canada. By combining up to ten years of repeated, episodic GPS observations at such sites, together with weekly solutions from the continuous sites, we have obtained a highly consistent velocity field with a significantly increased spatial sampling of crustal deformation throughout Canada. This exhibits a spatially coherent pattern of uplift and subsidence in Canada that is consistent with the expected rates of glacial isostatic adjustment. To determine the contribution of vertical motion to sea-level rise under climate warming in the Canadian Arctic, we have

  10. Decadal GPS Time Series and Velocity Fields Spanning the North American Continent and Beyond: New Data Products, Cyberinfrastructure and Case Studies from the EarthScope Plate Boundary Observatory (PBO) and Other Regional Networks

    Science.gov (United States)

    Phillips, D. A.; Herring, T.; Melbourne, T. I.; Murray, M. H.; Szeliga, W. M.; Floyd, M.; Puskas, C. M.; King, R. W.; Boler, F. M.; Meertens, C. M.; Mattioli, G. S.

    2017-12-01

    The Geodesy Advancing Geosciences and EarthScope (GAGE) Facility, operated by UNAVCO, provides a diverse suite of geodetic data, derived products and cyberinfrastructure services to support community Earth science research and education. GPS data and products including decadal station position time series and velocities are provided for 2000+ continuous GPS stations from the Plate Boundary Observatory (PBO) and other networks distributed throughout the high Arctic, North America, and Caribbean regions. The position time series contain a multitude of signals in addition to the secular motions, including coseismic and postseismic displacements, interseismic strain accumulation, and transient signals associated with hydrologic and other processes. We present our latest velocity field solutions, new time series offset estimate products, and new time series examples associated with various phenomena. Position time series, and the signals they contain, are inherently dependent upon analysis parameters such as network scaling and reference frame realization. The estimation of scale changes for example, a common practice, has large impacts on vertical motion estimates. GAGE/PBO velocities and time series are currently provided in IGS (IGb08) and North America (NAM08, IGb08 rotated to a fixed North America Plate) reference frames. We are reprocessing all data (1996 to present) as part of the transition from IGb08 to IGS14 that began in 2017. New NAM14 and IGS14 data products are discussed. GAGE/PBO GPS data products are currently generated using onsite computing clusters. As part of an NSF funded EarthCube Building Blocks project called "Deploying MultiFacility Cyberinfrastructure in Commercial and Private Cloud-based Systems (GeoSciCloud)", we are investigating performance, cost, and efficiency differences between local computing resources and cloud based resources. Test environments include a commercial cloud provider (Amazon/AWS), NSF cloud-like infrastructures within

  11. Real Time Monitoring of GPS-IGU orbits and clocks as a tool to disseminate corrections to GPS-Broadcast Ephemerides

    Science.gov (United States)

    Thaler, G.; Opitz, M.; Weber, R.

    2009-04-01

    Nowadays RTIGS and NTRIP have become standards for real time GNSS based positioning applications. The IGS (International GNSS Service) Real-Time Working Group disseminates via Internet (RTIGS) raw observation data of a subset of stations of the IGS network. This observation data can be used to establish a real-time integrity monitoring of the IGS predicted orbits (Ultra Rapid (IGU-) Orbits) and clocks, according to the recommendations of the IGS Workshop 2004 in Bern and in a further step correction terms for improving the accuracy of the GPS broadcast ephemerides can be calculated. The Institute for "Geodesy and Geophysics" of the TU-Vienna develops in cooperation with the IGS Real-Time Working Group the software "RTR- Control", which currently provides a real-time integrity monitoring of predicted IGU Satellite Clock Corrections to GPS Time. The real-time orbit calculation and monitoring of the predicted IGU satellite orbits is currently in a testing phase and will be operable in the near future. A kinematic model and calculated ranges to the satellites are combined in a KALMAN-Filter approach. Currently the most recent GPS- Satellite Clock Corrections are published in Real Time via Internet. A 24 - hour clock RINEX file and the IGU SP3 files modified for the associated clock corrections are stored on the ftp-server of the institute. To perform the task of calculating corrections to the broadcast ephemerides three programs are used, which are BNC (BKG Ntrip Client) and BNS (BKG Ntrip State Space Server) from BKG (Bundesamt für Kartographie und Geoinformation) as well as RTR-Control. BNC receives the GPS-broadcast ephemerides from the Ntrip-Caster and forwards them to BNS. RTR-Control calculates the satellite clocks and in future also the satellite orbits and forwards them in SP3-format to BNS. BNS calculates the correction terms to the broadcast ephemerides and delivers it in RTCM 3.x format (proprietary message 4056) back to the Ntrip-caster. Subsequently

  12. Error and Performance Analysis of MEMS-based Inertial Sensors with a Low-cost GPS Receiver

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2008-03-01

    Full Text Available Global Navigation Satellite Systems (GNSS, such as the Global Positioning System (GPS, have been widely utilized and their applications are becoming popular, not only in military or commercial applications, but also for everyday life. Although GPS measurements are the essential information for currently developed land vehicle navigation systems (LVNS, GPS signals are often unavailable or unreliable due to signal blockages under certain environments such as urban canyons. This situation must be compensated in order to provide continuous navigation solutions. To overcome the problems of unavailability and unreliability using GPS and to be cost and size effective as well, Micro Electro Mechanical Systems (MEMS based inertial sensor technology has been pushing for the development of low-cost integrated navigation systems for land vehicle navigation and guidance applications. This paper will analyze the characterization of MEMS based inertial sensors and the performance of an integrated system prototype of MEMS based inertial sensors, a low-cost GPS receiver and a digital compass. The influence of the stochastic variation of sensors will be assessed and modeled by two different methods, namely Gauss-Markov (GM and AutoRegressive (AR models, with GPS signal blockage of different lengths. Numerical results from kinematic testing have been used to assess the performance of different modeling schemes.

  13. High-precision GPS autonomous platforms for sea ice dynamics and physical oceanography

    Science.gov (United States)

    Elosegui, P.; Wilkinson, J.; Olsson, M.; Rodwell, S.; James, A.; Hagan, B.; Hwang, B.; Forsberg, R.; Gerdes, R.; Johannessen, J.; Wadhams, P.; Nettles, M.; Padman, L.

    2012-12-01

    Project "Arctic Ocean sea ice and ocean circulation using satellite methods" (SATICE), is the first high-rate, high-precision, continuous GPS positioning experiment on sea ice in the Arctic Ocean. The SATICE systems collect continuous, dual-frequency carrier-phase GPS data while drifting on sea ice. Additional geophysical measurements also collected include ocean water pressure, ocean surface salinity, atmospheric pressure, snow-depth, air-ice-ocean temperature profiles, photographic imagery, and others, enabling sea ice drift, freeboard, weather, ice mass balance, and sea-level height determination. Relatively large volumes of data from each buoy are streamed over a satellite link to a central computer on the Internet in near real time, where they are processed to estimate the time-varying buoy positions. SATICE system obtains continuous GPS data at sub-minute intervals with a positioning precision of a few centimetres in all three dimensions. Although monitoring of sea ice motions goes back to the early days of satellite observations, these autonomous platforms bring out a level of spatio-temporal detail that has never been seen before, especially in the vertical axis. These high-resolution data allows us to address new polar science questions and challenge our present understanding of both sea ice dynamics and Arctic oceanography. We will describe the technology behind this new autonomous platform, which could also be adapted to other applications that require high resolution positioning information with sustained operations and observations in the polar marine environment, and present results pertaining to sea ice dynamics and physical oceanography.

  14. Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading

    DEFF Research Database (Denmark)

    Nield, Grace A.; Barletta, Valentina Roberta; Bordoni, Andrea

    2014-01-01

    Since 1995 several ice shelves in the Northern Antarctic Peninsula have collapsed and triggered ice-mass unloading, invoking a solid Earth response that has been recorded at continuous GPS (cGPS) stations. A previous attempt to model the observation of rapid uplift following the 2002 breakup...... of the Palmer cGPS station since 2002 cannot be explained by elastic deformation alone. We apply a viscoelastic model with linear Maxwell rheology to predict uplift since 1995 and test the fit to the Palmer cGPS time series, finding a well constrained upper mantle viscosity but less sensitivity to lithospheric...... thickness. We further constrain the best fitting Earth model by including six cGPS stations deployed after 2009 (the LARISSA network), with vertical velocities in the range 1.7 to 14.9 mm/yr. This results in a best fitting Earth model with lithospheric thickness of 100–140 km and upper mantle viscosity of 6...

  15. Design and testing of a GPS/GSM collar prototype to combat cattle rustling

    Directory of Open Access Journals (Sweden)

    Francesco M. Tangorra

    2013-10-01

    Full Text Available Rustling is an age-old practice that was widespread in Italy until the first half of the 20th century. Today, incidents of cattle rustling are again being reported. However, the problem is not only found in Italy. It is also becoming a plague for ranchers in the US and is still rampant in East Africa. In Italy, the cattle rustling phenomena have usually been limited through the direct control of the herdsmen. Global positioning system (GPS and geographic information system (GIS combined technologies are increasingly applied for tracking and monitoring livestock with greater spatial and temporal resolution. However, so far, no case studies of the use of GPS technology to combat cattle rustling have been reported in the literature. The aim of this research was to develop a GPS/GSM (global system for mobile communication collar, using commercial hardware and implementing a specific software [ARVAshepherd 1.0; ARVAtec Srl, Rescaldina (MI, Italy] to track animals’ movements outside their grazing area and to signal when animals are straying outside virtual perimeters. A phase I study was conducted from January to June 2011 to build the GPS/GSM collar and to assess its performances in terms of GPS accuracy and precision, while a phase II study was conducted in July 2011 to test the GPS collar under real-life operating conditions. The static GPS positioning error achieved a circular error probable (50% and horizontal 95% accuracy of 1.462 m and 4.501 m, respectively. This is comparable with values obtained by other authors in static tests of a commercial GPS collar for grazing studies. In field tests, the system was able to identify the incorrect position of the cattle and the warning messages were sent promptly to the farmer, continuing until the animals had been repositioned inside the fence, thus highlighting the potential of the GPS/GSM collar as an anti-theft system.

  16. Implementing GPS into Pave-IR.

    Science.gov (United States)

    2009-03-01

    To further enhance the capabilities of the Pave-IR thermal segregation detection system developed at the Texas Transportation Institute, researchers incorporated global positioning system (GPS) data collection into the thermal profiles. This GPS capa...

  17. Features of High-Latitude Ionospheric Irregularities Development as Revealed by Ground-Based GPS Observations, Satellite-Borne GPS Observations and Satellite In Situ Measurements over the Territory of Russia during the Geomagnetic Storm on March 17-18, 2015

    Science.gov (United States)

    Zakharenkova, I. E.; Cherniak, Iu. V.; Shagimuratov, I. I.; Klimenko, M. V.

    2018-01-01

    The dynamic picture of the response of the high- and mid-latitude ionosphere to the strong geomagnetic disturbances on March 17-18, 2015, has been studied with ground-based and satellite observations, mainly, by transionospheric measurements of delays of GPS (Global Positioning System) signals. The advantages of the joint use of ground-based GPS measurements and GPS measurements on board of the Swarm Low-Earth-Orbit satellite mission for monitoring of the appearance of ionospheric irregularities over the territory of Russia are shown for the first time. The results of analysis of ground-based and space-borne GPS observations, as well as satellite, in situ measurements, revealed large-scale ionospheric plasma irregularities observed over the territory of Russia in the latitude range of 50°-85° N during the main phase of the geomagnetic storm. The most intense ionospheric irregularities were detected in the auroral zone and in the region of the main ionospheric trough (MIT). It has been found that sharp changes in the phase of the carrier frequency of the navigation signal from all tracked satellites were recorded at all GPS stations located to the North from 55° MLAT. The development of a deep MIT was related to dynamic processes in the subauroral ionosphere, in particular, with electric fields of the intense subauroral polarization stream. Analysis of the electron and ion density values obtained by instruments on board of the Swarm and DMSP satellites showed that the zone of highly structured auroral ionosphere extended at least to heights of 850-900 km.

  18. GPS Navigation and Tracking Device

    Directory of Open Access Journals (Sweden)

    Yahya Salameh Khraisat

    2011-10-01

    Full Text Available Since the introduction of GPS Navigation systems in the marketplace, consumers and businesses have been coming up with innovative ways to use the technology in their everyday life. GPS Navigation and Tracking systems keep us from getting lost when we are in strange locations, they monitor children when they are away from home, keep track of business vehicles and can even let us know where a philandering partner is at all times. Because of this we attend to build a GPS tracking device to solve the mentioned problems. Our work consists of the GPS module that collects data from satellites and calculates the position information before transmitting them to the user’s PC (of Navigation system or observers (of Tracking System using wireless technology (GSM.

  19. Derivation of some geometric parameters from GPS measurements

    Directory of Open Access Journals (Sweden)

    Marcel Mojzeš

    2005-11-01

    Full Text Available Combining GPS and terrestrial data requires a common coordinate system. When the original GPS vectors do not form a network, the 3D network adjustment can not be performed. In this case, in order to integrate the GPS measurements with the terrestrial observations and to perform a combined network adjustment, the GPS measurements should be transformed to this common system. The GPS measurements which are the usual output of the GPS post processing softwares are based on the WGS84 ellipsoid and the S-JTSK local datum is based on the Bessel ellipsoid. Thus, the reduction of measurements to the S-JTSK mapping plane can not be started from the measurements resulting from GPS post processing softwares because GPS and S-JTSK don’t have the same ellipsoid. Another view of this reduction will be described in this paper.

  20. The GPS Laser Retroreflector Array Project

    Science.gov (United States)

    Merkowitz, Stephen M.

    2012-01-01

    Systematic co-location in space through the precision orbit determination of GPS satellites via satellite laser ranging will contribute significantly towards improving the accuracy and stability of the international terrestrial reference frame. NASA recently formed the GPS Laser Retroreflector Array Project to develop and deliver retroreflectors for integration on the next generation of GPS satellites. These retroreflectors will be an important contributor to achieving a global accuracy of 1.0 mm and 0.1 mm/year stability in the international terrestrial reference frame. We report here the current status of the GPS Laser Retroreflector Array Project.

  1. Volcanic Surface Deformation in Dominica From GPS Geodesy: Results From the 2007 NSF- REU Site

    Science.gov (United States)

    Murphy, R.; James, S.; Styron, R. H.; Turner, H. L.; Ashlock, A.; Cavness, C.; Collier, X.; Fauria, K.; Feinstein, R.; Staisch, L.; Williams, B.; Mattioli, G. S.; Jansma, P. E.; Cothren, J.

    2007-12-01

    GPS measurements have been collected on the island of Dominica in the Lesser Antilles between 2001 and 2007, with five month-long campaigns completed in June of each year supported in part by a NSF REU Site award for the past two years. All GPS data were collected using dual-frequency, code-phase receivers and geodetic-quality antenna, primarily choke rings. Three consecutive 24 hr observation days were normally obtained for each site. Precise station positions were estimated with GIPSY-OASISII using an absolute point positioning strategy and final, precise orbits, clocks, earth orientation parameters, and x-files. All position estimates were updated to ITRF05 and a revised Caribbean Euler pole was used to place our observations in a CAR-fixed frame. Time series were created to determine the velocity of each station. Forward and inverse elastic half-space models with planar (i.e. dike) and Mogi (i.e. point) sources were investigated. Inverse modeling was completed using a downhill simplex method of function minimization. Selected site velocities were used to create appropriate models for specific regions of Dominica, which correspond to known centers of pre-historic volcanic or recent shallow, seismic activity. Because of the current distribution of GPS sites with robust velocity estimates, we limit our models to possible magmatic activity in the northern, proximal to the volcanic centers of Morne Diablotins and Morne aux Diables, and southern, proximal to volcanic centers of Soufriere and Morne Plat Pays, regions of the island. Surface deformation data from the northernmost sites may be fit with the development of a several km-long dike trending approximately northeast- southwest. Activity in the southern volcanic centers is best modeled by an expanding point source at approximately 1 km depth.

  2. SEXTANT - Station Explorer for X-ray Timing and Navigation Technology

    Science.gov (United States)

    Mitchell, Jason W.; Hasouneh, Munther Abdel Hamid; Winternitz, Luke M. B.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Arzoumanian, Zaven; Ray, Paul S.; Wood, Kent S.; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission, which is scheduled to launch in late 2016 and will be hosted as an externally attached payload on the International Space Station (ISS) via the ExPRESS Logistics Carrier (ELC). During NICER's 18-month baseline science mission to understand ultra-dense matter though observations of neutron stars in the soft X-ray band, SEXTANT will, for the first-time, demonstrate real-time, on-board X-ray pulsar navigation, which is a significant milestone in the quest to establish a GPS-like navigation capability that will be available throughout our Solar System and beyond. Along with NICER, SEXTANT has proceeded through Phase B, Mission Definition, and received numerous refinements in concept of operation, algorithms, flight software, ground system, and ground test capability. NICER/SEXTANT's Phase B work culminated in NASA's confirmation of NICER to Phase C, Design and Development, in March 2014. Recently, NICER/SEXTANT successfully passed its Critical Design Review and SEXTANT received continuation approval in September 2014. In this paper, we describe the X-ray pulsar navigation concept and provide a brief history of previous work, and then summarize the SEXTANT technology demonstration objective, hardware and software components, and development to date.

  3. Kinematics of the entire East African Rift from GPS velocities

    Science.gov (United States)

    Floyd, M.; King, R. W.

    2017-12-01

    Through a collaborative effort of the GeoPRISMS East Africa Rift GPS Working Group, we have collected and collated all of the publicly available continuous and survey-mode data for the entire rift system between 1994 and 2017 and processed these data as part of a larger velocity solution for Africa, Arabia and western Eurasia. We present here our velocity solution encompassing the major bounding plates and intervening terranes along the East African Rift from the Red Sea to the Malawi Rift and adjacent regions for GPS sites with data spans of at least 2.4 years, and north and east velocity uncertainties less than 1.5 mm/yr. To obtain realistic uncertainties for the velocity estimates, we attempted at each stage of the analysis to account for the character of the noise: During phase processing, we used an elevation-dependent weighting based on the phase residuals for each station; we then examined each position time series, removing outliers and reweighting appropriately to account for the white noise component of the errors; and e accounted for temporal correlations by estimating an equivalent random-walk magnitude for each continuous site and applying the median value (0.5 mm/√yr) to all survey-mode sites. We rigorously estimate relative rotation rates of Nubia, by choosing subset of well-determined sites such that the effective weights of western, northeastern and southern Africa were roughly equivalent, and Somalia, for which the estimate is dominated by three sites (MALI, RCMN, SEY1) whose uncertainties are a factor of 2-3 smaller than those of the other sites. For both plates, the weighted root-mean-square of the velocity residuals is 0.5 mm/yr. Our unified velocity solution provides a geodetic framework and constraints on the continental-scale kinematics of surface motions as well as more local effects both within and outside of the rift structures. Specific focus areas with denser coverage than previous fields include the Danakil block, the Afar Rift, the

  4. GPS and seismic constraints on the M = 7.3 2009 Swan Islands earthquake: implications for stress changes along the Motagua fault and other nearby faults

    Science.gov (United States)

    Graham, Shannon E.; DeMets, Charles; DeShon, Heather R.; Rogers, Robert; Maradiaga, Manuel Rodriguez; Strauch, Wilfried; Wiese, Klaus; Hernandez, Douglas

    2012-09-01

    We use measurements at 35 GPS stations in northern Central America and 25 seismometers at teleseismic distances to estimate the distribution of slip, source time function and Coulomb stress changes of the Mw = 7.3 2009 May 28, Swan Islands fault earthquake. This event, the largest in the region for several decades, ruptured the offshore continuation of the seismically hazardous Motagua fault of Guatemala, the site of the destructive Ms = 7.5 earthquake in 1976. Measured GPS offsets range from 308 millimetres at a campaign site in northern Honduras to 6 millimetres at five continuous sites in El Salvador. Separate inversions of geodetic and seismic data both indicate that up to ˜1 m of coseismic slip occurred along a ˜250-km-long rupture zone between the island of Roatan and the eastern limit of the 1976 M = 7.5 Motagua fault earthquake in Guatemala. Evidence for slip ˜250 km west of the epicentre is corroborated independently by aftershocks recorded by a local seismic network and by the high concentration of damage to structures in areas of northern Honduras adjacent to the western limit of the rupture zone. Coulomb stresses determined from the coseismic slip distribution resolve a maximum of 1 bar of stress transferred to the seismically hazardous Motagua fault and further indicate unclamping of normal faults along the northern shore of Honduras, where two M > 5 normal-faulting earthquakes and numerous small earthquakes were triggered by the main shock.

  5. Prescribing tamoxifen in primary care for the prevention of breast cancer: a national online survey of GPs' attitudes.

    Science.gov (United States)

    Smith, Samuel G; Foy, Robbie; McGowan, Jennifer A; Kobayashi, Lindsay C; DeCensi, Andrea; Brown, Karen; Side, Lucy; Cuzick, Jack

    2017-06-01

    The cancer strategy for England (2015-2020) recommends GPs prescribe tamoxifen for breast cancer primary prevention among women at increased risk. To investigate GPs' attitudes towards prescribing tamoxifen. In an online survey, GPs in England, Northern Ireland, and Wales ( n = 928) were randomised using a 2 × 2 between-subjects design to read one of four vignettes describing a healthy patient seeking a tamoxifen prescription. In the vignette, the hypothetical patient's breast cancer risk (moderate versus high) and the clinician initiating the prescription (GP prescriber versus secondary care clinician [SCC] prescriber) were manipulated in a 1:1:1:1 ratio. Outcomes were willingness to prescribe, comfort discussing harms and benefits, comfort managing the patient, factors affecting the prescribing decision, and awareness of tamoxifen and the National Institute for Health and Care Excellence (NICE) guideline CG164. Half (51.7%) of the GPs knew tamoxifen can reduce breast cancer risk, and one-quarter (24.1%) were aware of NICE guideline CG164. Responders asked to initiate prescribing (GP prescriber) were less willing to prescribe tamoxifen than those continuing a prescription initiated in secondary care (SCC prescriber) (68.9% versus 84.6%, P preventive therapy in secondary care before asking GPs to continue the patient's care may overcome some prescribing barriers. © British Journal of General Practice 2017.

  6. Down and Out at Pacaya Volcano: A Glimpse of Magma Storage and Diking as Interpreted From GPS Geodesy

    Science.gov (United States)

    Lechner, H. N.; Waite, G. P.; Wauthier, D. C.; Escobar-Wolf, R. P.; Lopez-Hetland, B.

    2017-12-01

    Geodetic data from an eight-station GPS network at Pacaya volcano Guatemala allows us to produce a simple analytical model of deformation sources associated with the 2010 eruption and the eruptive period in 2013-2014. Deformation signals for both eruptive time-periods indicate downward vertical and outward horizontal motion at several stations surrounding the volcano. The objective of this research was to better understand the magmatic plumbing system and sources of this deformation. Because this down-and-out displacement is difficult to explain with a single source, we chose a model that includes a combination of a dike and spherical source. Our modelling suggests that deformation is dominated the inflation of a shallow dike seated high within the volcanic edifice and deflation of a deeper, spherical source below the SW flank of the volcano. The source parameters for the dike feature are in good agreement with the observed orientation of recent vent emplacements on the edifice as well the horizontal displacement, while the parameters for a deeper spherical source accommodate the downward vertical motion. This study presents GPS observations at Pacaya dating back to 2009 and provides a glimpse of simple models of possible deformation sources.

  7. UK 2009-2010 repeat station report

    Directory of Open Access Journals (Sweden)

    Thomas J.G. Shanahan

    2013-03-01

    Full Text Available The British Geological Survey is responsible for conducting the UK geomagnetic repeat station programme. Measurements made at the UK repeat station sites are used in conjunction with the three UK magnetic observatories: Hartland, Eskdalemuir and Lerwick, to produce a regional model of the local field each year. The UK network of repeat stations comprises 41 stations which are occupied at approximately 3-4 year intervals. Practices for conducting repeat station measurements continue to evolve as advances are made in survey instrumentation and as the usage of the data continues to change. Here, a summary of the 2009 and 2010 UK repeat station surveys is presented, highlighting the measurement process and techniques, density of network, reduction process and recent results.

  8. Application of continuous seismic-reflection techniques to delineate paleochannels beneath the Neuse River at US Marine Corps Air Station, Cherry Point, North Carolina

    Science.gov (United States)

    Cardinell, Alex P.

    1999-01-01

    A continuous seismic-reflection profiling survey was conducted by the U.S. Geological Survey on the Neuse River near the Cherry Point Marine Corps Air Station during July 7-24, 1998. Approximately 52 miles of profiling data were collected during the survey from areas northwest of the Air Station to Flanner Beach and southeast to Cherry Point. Positioning of the seismic lines was done by using an integrated navigational system. Data from the survey were used to define and delineate paleochannel alignments under the Neuse River near the Air Station. These data also were correlated with existing surface and borehole geophysical data, including vertical seismic-profiling velocity data collected in 1995. Sediments believed to be Quaternary in age were identified at varying depths on the seismic sections as undifferentiated reflectors and lack the lateral continuity of underlying reflectors believed to represent older sediments of Tertiary age. The sediments of possible Quaternary age thicken to the southeast. Paleochannels of Quaternary age and varying depths were identified beneath the Neuse River estuary. These paleochannels range in width from 870 feet to about 6,900 feet. Two zones of buried paleochannels were identified in the continuous seismic-reflection profiling data. The eastern paleochannel zone includes two large superimposed channel features identified during this study and in re-interpreted 1995 land seismic-reflection data. The second paleochannel zone, located west of the first paleochannel zone, contains several small paleochannels near the central and south shore of the Neuse River estuary between Slocum Creek and Flanner Beach. This second zone of channel features may be continuous with those mapped by the U.S. Geological Survey in 1995 using land seismic-reflection data on the southern end of the Air Station. Most of the channels were mapped at the Quaternary-Tertiary sediment boundary. These channels appear to have been cut into the older sediments

  9. Precise GPS orbits for geodesy

    Science.gov (United States)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  10. GPS on Every Roof, GPS Sensor Network for Post-Seismic Building-Wise Damage Identification

    Directory of Open Access Journals (Sweden)

    Kenji Oguni

    2013-12-01

    Full Text Available Development of wireless sensor network equipped with GPS for post-seismic building-wise damage identification is presented in this paper. This system is called GPS on Every Roof. Sensor node equipped with GPS antenna and receiver is installed on the top of the roof of each and every building. The position of this sensor node is measured before and after earthquake. The final goal of this system is to i identify the displacement of the roof of each house and ii collect the information of displacement of the roof of the houses through wireless communication. Superposing this information on GIS, building-wise damage distribution due to earthquake can be obtained. The system overview, hardware and some of the key components of the system such as on-board GPS relative positioning algorithm to achieve the accuracy in the order of several centimeters are described in detail. Also, the results from a field experiment using a wireless sensor network with 39 sensor nodes are presented.

  11. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  12. goGPS: open source software for enhancing the accuracy of low-cost receivers by single-frequency relative kinematic positioning

    International Nuclear Information System (INIS)

    Realini, Eugenio; Reguzzoni, Mirko

    2013-01-01

    goGPS is a free and open source satellite positioning software package aiming to provide a collaborative platform for research and teaching purposes. It was first published in 2009 and since then several related projects are on-going. Its objective is the investigation of strategies for enhancing the accuracy of low-cost single-frequency GPS receivers, mainly by relative positioning with respect to a base station and by a tailored extended Kalman filter working directly on code and phase observations. In this paper, the positioning algorithms implemented in goGPS are presented, emphasizing the modularity of the software design; two specific strategies to support the navigation with low-cost receivers are also proposed and discussed, namely an empirical observation weighting function calibrated on the receiver signal-to-noise ratio and the inclusion of height information from a digital terrain model as an additional observation in the Kalman filter. The former is crucial when working with high-sensitivity receivers, while the latter can significantly improve the positioning in the vertical direction. The overall goGPS positioning accuracy is assessed by comparison with a dual-frequency receiver and with the positioning computed by a standard low-cost receiver. The benefits of the calibrated weighting function and the digital terrain model are investigated by an experiment in a dense urban environment. It comes out that the use of goGPS and low-cost receivers leads to results comparable with those obtained by higher level receivers; goGPS has good performances also in a dense urban environment, where its additional features play an important role. (paper)

  13. Multi-parameter observations in the Ibero-Moghrebian region: the Western Mediterranean seismic network (WM) and ROA GPS geodynamic network

    Science.gov (United States)

    Pazos, Antonio; Martín Davila, José; Buforn, Elisa; Gárate Pasquín, Jorge; Catalán Morollón, Manuel; Hanka, Winfried; Udías, Agustín.; Benzzeghoud, Mourad; Harnafi, Mimoun

    2010-05-01

    The plate boundary between Eurasia and Africa plates crosses the called "Ibero-Maghrebian" region from the San Vicente Cape (SW Portugal) to Tunisia including the South of Iberia, Alboran Sea, and northern Morocco and Algeria. In this area, the convergence, with a low rate, is accommodated over a wide and diffuse deformation zone, characterized by a significant and widespread moderate seismic activity [Buforn et al., 1995], and the occurrence of large earthquakes is separated by long time intervals. Since more than hundred years ago San Fernando Naval Observatory (ROA), in collaboration with other Institutes, has deployed different geophysical and geodetic equipment in the Southern Spain - North-western Africa area in order to study this broad deformation zone. Currently a Broad Band seismic net (Western Mediterranean, WM net) is deployed, in collaboration with other institutions, around the Gulf of Cádiz and the Alboran sea, with stations in the South of Iberia and in North Africa (at Spanish places and Morocco), together with the seismic stations a permanent geodetic GPS net is co-installed at the same sites. Also, other geophysical instruments have been installed: a Satellite Laser Ranging (SLR) station at San Fernando Observatory Headquarter, a Geomagnetic Observatory in Cádiz bay area and some meteorological stations. These networks have been recently improved with the deployment of a new submarine and on-land geophysical observatory in the Alboran island (ALBO Observatory), where a permanent GPS, a meteorological station were installed on land and a permanent submarine observatory in 50 meters depth was also deploy in last October (with a broad band seismic sensor, a 3 C accelerometer and a DPG). This work shows the present status and the future plans of these networks and some results.

  14. An estimation of the height system bias parameter N (0) using least squares collocation from observed gravity and GPS-levelling data

    DEFF Research Database (Denmark)

    Sadiq, Muhammad; Tscherning, Carl C.; Ahmad, Zulfiqar

    2009-01-01

    This paper deals with the analysis of gravity anomaly and precise levelling in conjunction with GPS-Levelling data for the computation of a gravimetric geoid and an estimate of the height system bias parameter N-o for the vertical datum in Pakistan by means of least squares collocation technique...... covariance parameters has facilitated to achieve gravimetric height anomalies in a global geocentric datum. Residual terrain modeling (RTM) technique has been used in combination with the EGM96 for the reduction and smoothing of the gravity data. A value for the bias parameter N-o has been estimated...... with reference to the local GPS-Levelling datum that appears to be 0.705 m with 0.07 m mean square error. The gravimetric height anomalies were compared with height anomalies obtained from GPS-Levelling stations using least square collocation with and without bias adjustment. The bias adjustment minimizes...

  15. Inversion of GPS-measured coseismic displacements for source parameters of Taiwan earthquake

    Science.gov (United States)

    Lin, J. T.; Chang, W. L.; Hung, H. K.; Yu, W. C.

    2016-12-01

    We performed a method of determining earthquake location, focal mechanism, and centroid moment tensor by coseismic surface displacements from daily and high-rate GPS measurements. Unlike commonly used dislocation model where fault geometry is calculated nonlinearly, our method makes a point source approach to evaluate these parameters in a solid and efficient way without a priori fault information and can thus provide constrains to subsequent finite source modeling of fault slip. In this study, we focus on the resolving ability of GPS data for moderate (Mw=6.0 7.0) earthquakes in Taiwan, and four earthquakes were investigated in detail: the March 27 2013 Nantou (Mw=6.0), the June 2 2013 Nantou (Mw=6.3) , the October 31 2013 Ruisui (Mw=6.3), and the March 31 2002 Hualien (ML=6.8) earthquakes. All these events were recorded by the Taiwan continuous GPS network with data sampling rates of 30-second and 1 Hz, where the Mw6.3 Ruisui earthquake was additionally recorded by another local GPS network with a sampling rate of 20 Hz. Our inverted focal mechanisms of all these earthquakes are consistent with the results of GCMT and USGS that evaluates source parameters by dynamic information from seismic waves. We also successfully resolved source parameters of the Mw6.3 Ruisui earthquake within only 10 seconds following the earthquake occurrence, demonstrating the potential of high-rate GPS data on earthquake early warning and real-time determination of earthquake source parameters.

  16. Enabling UAV Navigation with Sensor and Environmental Uncertainty in Cluttered and GPS-Denied Environments

    Directory of Open Access Journals (Sweden)

    Fernando Vanegas

    2016-05-01

    Full Text Available Unmanned Aerial Vehicles (UAV can navigate with low risk in obstacle-free environments using ground control stations that plan a series of GPS waypoints as a path to follow. This GPS waypoint navigation does however become dangerous in environments where the GPS signal is faulty or is only present in some places and when the airspace is filled with obstacles. UAV navigation then becomes challenging because the UAV uses other sensors, which in turn generate uncertainty about its localisation and motion systems, especially if the UAV is a low cost platform. Additional uncertainty affects the mission when the UAV goal location is only partially known and can only be discovered by exploring and detecting a target. This navigation problem is established in this research as a Partially-Observable Markov Decision Process (POMDP, so as to produce a policy that maps a set of motion commands to belief states and observations. The policy is calculated and updated on-line while flying with a newly-developed system for UAV Uncertainty-Based Navigation (UBNAV, to navigate in cluttered and GPS-denied environments using observations and executing motion commands instead of waypoints. Experimental results in both simulation and real flight tests show that the UAV finds a path on-line to a region where it can explore and detect a target without colliding with obstacles. UBNAV provides a new method and an enabling technology for scientists to implement and test UAV navigation missions with uncertainty where targets must be detected using on-line POMDP in real flight scenarios.

  17. Enabling UAV Navigation with Sensor and Environmental Uncertainty in Cluttered and GPS-Denied Environments.

    Science.gov (United States)

    Vanegas, Fernando; Gonzalez, Felipe

    2016-05-10

    Unmanned Aerial Vehicles (UAV) can navigate with low risk in obstacle-free environments using ground control stations that plan a series of GPS waypoints as a path to follow. This GPS waypoint navigation does however become dangerous in environments where the GPS signal is faulty or is only present in some places and when the airspace is filled with obstacles. UAV navigation then becomes challenging because the UAV uses other sensors, which in turn generate uncertainty about its localisation and motion systems, especially if the UAV is a low cost platform. Additional uncertainty affects the mission when the UAV goal location is only partially known and can only be discovered by exploring and detecting a target. This navigation problem is established in this research as a Partially-Observable Markov Decision Process (POMDP), so as to produce a policy that maps a set of motion commands to belief states and observations. The policy is calculated and updated on-line while flying with a newly-developed system for UAV Uncertainty-Based Navigation (UBNAV), to navigate in cluttered and GPS-denied environments using observations and executing motion commands instead of waypoints. Experimental results in both simulation and real flight tests show that the UAV finds a path on-line to a region where it can explore and detect a target without colliding with obstacles. UBNAV provides a new method and an enabling technology for scientists to implement and test UAV navigation missions with uncertainty where targets must be detected using on-line POMDP in real flight scenarios.

  18. The GPS odograph user's guide

    Science.gov (United States)

    The GPS-based Odograph Prototype (GOP or GPS Odograph) was developed in an effort sponsored by The Federal Highway Administration (FHWA). The purpose of this effort was to develop a means of using inexpensive commercial off-the-self laptop (or notebo...

  19. High Gain Advanced GPS Receiver

    National Research Council Canada - National Science Library

    Brown, Alison; Zhang, Gengsheng

    2006-01-01

    NAVSYS High Gain Advanced GPS Receiver (HAGR) uses a digital beam-steering antenna array to enable up to eight GPS satellites to be tracked, each with up to 10 dBi of additional antenna gain over a conventional receiver solution...

  20. Self-monitoring blood pressure in patients with hypertension: an internet-based survey of UK GPs.

    Science.gov (United States)

    Fletcher, Benjamin R; Hinton, Lisa; Bray, Emma P; Hayen, Andrew; Hobbs, Fd Richard; Mant, Jonathan; Potter, John F; McManus, Richard J

    2016-11-01

    Previous research suggests that most GPs in the UK use self-monitoring of blood pressure (SMBP) to monitor the control of hypertension rather than for diagnosis. This study sought to assess current practice in the use of self-monitoring and any changes in practice following more recent guideline recommendations. To survey the views and practice of UK GPs in 2015 with regard to SMBP and compare them with a previous survey carried out in 2011. Web-based survey of a regionally representative sample of 300 UK GPs. GPs completed an online questionnaire concerning the use of SMBP in the management of hypertension. Analyses comprised descriptive statistics, tests for between-group differences (z, Wilcoxon signed-rank, and χ 2 tests), and multivariate logistic regression. Results were available for 300 GPs (94% of those who started the survey). GPs reported using self-monitoring to diagnose hypertension (169/291; 58%; 95% confidence interval (CI) = 52 to 64) and to monitor control (245/291; 84%; 95% CI = 80 to 88), the former having significantly increased since 2011 (from 37%; 95% CI = 33 to 41; Pmonitoring for control. More than half of GPs used higher systolic thresholds for diagnosis (118/169; 70%; 95% CI = 63 to 77) and treatment (168/225; 75%; 95% CI = 69 to 80) than recommended in guidelines, and under half (120/289; 42%; 95% CI = 36 to 47) adjusted the SMBP results to guide treatment decisions. Since new UK national guidance in 2011, GPs are more likely to use SMBP to diagnose hypertension. However, significant proportions of GPs continue to use non-standard diagnostic and monitoring thresholds. The use of out-of-office methods to improve the accuracy of diagnosis is unlikely to be beneficial if suboptimal thresholds are used. © British Journal of General Practice 2016.

  1. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS

    Science.gov (United States)

    Yuan, Y.; Tscherning, C. C.; Knudsen, P.; Xu, G.; Ou, J.

    2008-01-01

    A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) λ of the ionospheric pierce point (IPP) and the IEF’s influence factor (IFF) bar{λ}. The IEF can be used to make a relatively precise distinction between ionospheric daytime and nighttime, whereas the IFF is advantageous for describing the IEF’s variations with day, month, season and year, associated with seasonal variations of total electron content (TEC) of the ionosphere. By combining λ and bar{λ} with the local time t of IPP, the IEFM has the ability to precisely distinguish between ionospheric daytime and nighttime, as well as efficiently combine them during different seasons or months over a year at the IPP. The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM may further improve ionospheric delay modeling using GPS data.

  2. Constraining earthquake source inversions with GPS data: 1. Resolution-based removal of artifacts

    Science.gov (United States)

    Page, M.T.; Custodio, S.; Archuleta, R.J.; Carlson, J.M.

    2009-01-01

    We present a resolution analysis of an inversion of GPS data from the 2004 Mw 6.0 Parkfield earthquake. This earthquake was recorded at thirteen 1-Hz GPS receivers, which provides for a truly coseismic data set that can be used to infer the static slip field. We find that the resolution of our inverted slip model is poor at depth and near the edges of the modeled fault plane that are far from GPS receivers. The spatial heterogeneity of the model resolution in the static field inversion leads to artifacts in poorly resolved areas of the fault plane. These artifacts look qualitatively similar to asperities commonly seen in the final slip models of earthquake source inversions, but in this inversion they are caused by a surplus of free parameters. The location of the artifacts depends on the station geometry and the assumed velocity structure. We demonstrate that a nonuniform gridding of model parameters on the fault can remove these artifacts from the inversion. We generate a nonuniform grid with a grid spacing that matches the local resolution length on the fault and show that it outperforms uniform grids, which either generate spurious structure in poorly resolved regions or lose recoverable information in well-resolved areas of the fault. In a synthetic test, the nonuniform grid correctly averages slip in poorly resolved areas of the fault while recovering small-scale structure near the surface. Finally, we present an inversion of the Parkfield GPS data set on the nonuniform grid and analyze the errors in the final model. Copyright 2009 by the American Geophysical Union.

  3. Miniaturized GPS/MEMS IMU integrated board

    Science.gov (United States)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  4. Comparison of global positioning system (GPS) tracking and parent-report diaries to characterize children's time-location patterns.

    Science.gov (United States)

    Elgethun, Kai; Yost, Michael G; Fitzpatrick, Cole T E; Nyerges, Timothy L; Fenske, Richard A

    2007-03-01

    Respondent error, low resolution, and study participant burden are known limitations of diary timelines used in exposure studies such as the National Human Exposure Assessment Survey (NHEXAS). Recent advances in global positioning system (GPS) technology have produced tracking devices sufficiently portable, functional and affordable to utilize in exposure assessment science. In this study, a differentially corrected GPS (dGPS) tracking device was compared to the NHEXAS diary timeline. The study also explored how GPS can be used to evaluate and improve such diary timelines by determining which location categories and which respondents are least likely to record "correct" time-location responses. A total of 31 children ages 3-5 years old wore a dGPS device for all waking hours on a weekend day while their parents completed the NHEXAS diary timeline to document the child's time-location pattern. Parents misclassified child time-location approximately 48% of the time using the NHEXAS timeline in comparison to dGPS. Overall concordance between methods was marginal (kappa=0.33-0.35). The dGPS device found that on average, children spent 76% of the 24-h study period in the home. The diary underestimated time the child spent in the home by 17%, while overestimating time spent inside other locations, outside at home, outside in other locations, and time spent in transit. Diary data for time spent outside at home and time in transit had the lowest response concordance with dGPS. The diaries of stay-at-home mothers and mothers working unskilled labor jobs had lower concordance with dGPS than did those of the other participants. The ability of dGPS tracking to collect continuous rather than categorical (ordinal) data was also demonstrated. It is concluded that automated GPS tracking measurements can improve the quality and collection efficiency of time-location data in exposure assessment studies, albeit for small cohorts.

  5. Hastighedskort for Danmark vha. GPS

    DEFF Research Database (Denmark)

    Andersen, Ove; Lahrmann, Harry; Torp, Kristian

    2011-01-01

    Hastighed på vejnettet er en central metrik indenfor trafikplanlægning og trafikoptimering. I denne artikel beskrives, hvorledes et hastighedskort for hele Danmark er skabt udelukkende vha. GPS data. To tilgangsvinkler til at beregne hastigheder vha. GPS data er præsenteret. Dette er hhv. en....... Opsummeret anses den turbaseret for at beregne det mest akkurate estimat, men metoden er meget datakrævende. Det er derfor nødvendigt at have den punktbaserede at falde tilbage på. Generelt mangler metoder til beregning af hastigheder vha. GPS data at blive valideret. Hvordan en sådan validering kan...

  6. Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements

    Directory of Open Access Journals (Sweden)

    C. Suresh Raju

    2007-10-01

    Full Text Available Estimation of precipitable water (PW in the atmosphere from ground-based Global Positioning System (GPS essentially involves modeling the zenith hydrostatic delay (ZHD in terms of surface Pressure (Ps and subtracting it from the corresponding values of zenith tropospheric delay (ZTD to estimate the zenith wet (non-hydrostatic delay (ZWD. This further involves establishing an appropriate model connecting PW and ZWD, which in its simplest case assumed to be similar to that of ZHD. But when the temperature variations are large, for the accurate estimate of PW the variation of the proportionality constant connecting PW and ZWD is to be accounted. For this a water vapor weighted mean temperature (Tm has been defined by many investigations, which has to be modeled on a regional basis. For estimating PW over the Indian region from GPS data, a region specific model for Tm in terms of surface temperature (Ts is developed using the radiosonde measurements from eight India Meteorological Department (IMD stations spread over the sub-continent within a latitude range of 8.5°–32.6° N. Following a similar procedure Tm-based models are also evolved for each of these stations and the features of these site-specific models are compared with those of the region-specific model. Applicability of the region-specific and site-specific Tm-based models in retrieving PW from GPS data recorded at the IGS sites Bangalore and Hyderabad, is tested by comparing the retrieved values of PW with those estimated from the altitude profile of water vapor measured using radiosonde. The values of ZWD estimated at 00:00 UTC and 12:00 UTC are used to test the validity of the models by estimating the PW using the models and comparing it with those obtained from radiosonde data. The region specific Tm-based model is found to be in par with if not better than a

  7. Contemporary Surface Seasonal Oscillation and Vertical Deformation in Tibetan Plateau and Nepal Derived from the GPS, Leveling and GRACE Data

    Science.gov (United States)

    Shen, W.; Pan, Y.; Hwang, C.; Ding, H.

    2015-12-01

    We use 168 Continuous Global Positioning System (CGPS) stations distributed in the Tibetan Plateau (TP) and Nepal from lengths of 2.5 to 14 years to estimate the present-day velocity field in this area, including the horizontal and vertical deformations under the frame ITRF2008. We estimate and remove common mode errors in regional GPS time series using the principal component analysis (PCA), obtaining a time series with high signal to noise ratio. Following the maximum estimation analysis, a power law plus white noise stochastic model are adopted to estimate the velocity field. The highlight of Tibetan region is the crust vertical deformation. GPS vertical time series present seasonal oscillations caused by temporal mass loads, hence GRACE data from CSR are used to study the mass loads change. After removing the mass load deformations from GPS vertical rates, the results are improved. Leveling data about 48 years in this region are also used to estimate the rates of vertical movements. Our study suggests that the boundary of south Nepal is still sinking due to the fact that the India plate is crashing into the Eurasian plate. The uplift rates from south to north of TP reduce gradually. Himalayas region and north Nepal uplift around 6 mm/yr in average. The uplift rate along East TP in Qinhai is around 2.7 mm/yr in average. In contrast, the southeast of Tibetan Plateau, south Yunnan and Tarim in Xinjiang sink with different magnitudes. Our observation results suggest complicated mechanism of the mass migration in TP. This study is supported by National 973 Project China (grant Nos. 2013CB733302 and 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).

  8. Continuing professional development for general practitioners

    DEFF Research Database (Denmark)

    Tulinius, Charlotte; Hølge-Hazelton, Bibi

    2010-01-01

    OBJECTIVES: The profession of medicine has long been characterised by virtues such as authorisation, specialisation, autonomy, self-regulation and adherence to an ethical code of practice, and its complexity has granted it the privilege of self-regulation. Studies have shown continuing professional...... development (CPD) for general practitioners (GPs) to be most effective when it is set up within a multi-method design. This paper reports a research-based evaluation of a 2-year educational CPD project for 21 GPs. METHODS: The project focused on the issue of 'children in need' and was delivered through group...

  9. Review of the GPS deformation monitoring studies commissioned by Posiva Oy on the Olkiluoto, Kivetty and Romuvaara sites, 1994-2000

    International Nuclear Information System (INIS)

    Vermeer, M.

    2002-05-01

    This report reviews the work done by scientists from the Finnish Geodetic Institute at the three sites Olkiluoto, Kivetty and Romuvaara over the years 1994-2000, with a view to detecting and measuring possible local crustal movements by means of geodetic GPS. The work, which consisted of measurements, computations and analysis, was reported in seven technical reports of Posiva Oy. Reviewed was also the work related to the three permanent stations established in these three sites, which have operated as part of the twelve-station national FinnRef network. The conclusion was that on the whole, the work has been performed professionally using state of the art equipment, measurement and analysis techniques by competent and experienced personnel. A number of suggestions for improvement and future work are given, mainly concerning the way the modelling of atmospheric propagation effects was done and how that affects the scale of the network computation, a proposal for monitoring the absolute scale, as well as remarks concerning the regular re-measurement of reserve marker ties, and the importance of continuing monitoring for a full solar activity cycle. The importance of interdisciplinarity is stressed. This review report is an outcome of the Bedrock Movements Investigations Group which supports STUKs regulatory activities related to confirming site investigations at Olkiluoto. (orig.)

  10. Novel Hybrid of LS-SVM and Kalman Filter for GPS/INS Integration

    Science.gov (United States)

    Xu, Zhenkai; Li, Yong; Rizos, Chris; Xu, Xiaosu

    Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) technologies can overcome the drawbacks of the individual systems. One of the advantages is that the integrated solution can provide continuous navigation capability even during GPS outages. However, bridging the GPS outages is still a challenge when Micro-Electro-Mechanical System (MEMS) inertial sensors are used. Methods being currently explored by the research community include applying vehicle motion constraints, optimal smoother, and artificial intelligence (AI) techniques. In the research area of AI, the neural network (NN) approach has been extensively utilised up to the present. In an NN-based integrated system, a Kalman filter (KF) estimates position, velocity and attitude errors, as well as the inertial sensor errors, to output navigation solutions while GPS signals are available. At the same time, an NN is trained to map the vehicle dynamics with corresponding KF states, and to correct INS measurements when GPS measurements are unavailable. To achieve good performance it is critical to select suitable quality and an optimal number of samples for the NN. This is sometimes too rigorous a requirement which limits real world application of NN-based methods.The support vector machine (SVM) approach is based on the structural risk minimisation principle, instead of the minimised empirical error principle that is commonly implemented in an NN. The SVM can avoid local minimisation and over-fitting problems in an NN, and therefore potentially can achieve a higher level of global performance. This paper focuses on the least squares support vector machine (LS-SVM), which can solve highly nonlinear and noisy black-box modelling problems. This paper explores the application of the LS-SVM to aid the GPS/INS integrated system, especially during GPS outages. The paper describes the principles of the LS-SVM and of the KF hybrid method, and introduces the LS-SVM regression algorithm. Field

  11. A GPS-based Real-time Road Traffic Monitoring System

    Science.gov (United States)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  12. Sensing human activity : GPS tracking

    NARCIS (Netherlands)

    van der Spek, Stefan; van Schaick, Jeroen; de Bois, P.G.; de Haan, Remco

    2009-01-01

    The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for

  13. GPS User Devices Parameter Control Methods

    OpenAIRE

    Klūga, A; Kuļikovs, M; Beļinska, V; Zeļenkovs, A

    2007-01-01

    In our day’s wide assortment of GPS user devices is manufacture. How to verify that parameters of the real device corresponds to parameters that manufacture shows. How to verify that parameters have not been changed during the operation time. The last one is very important for aviation GPS systems, which must be verified before the flight, but the values of parameter in time of repair works. This work analyses GPS user devices parameters control methods.

  14. The Permanent GPS Network In The Iberian Peninsula

    Science.gov (United States)

    Fernandes, R. M. S.; Bastos, L.; Ambrosius, B. A. C.; Noomen, R.

    In recent years, the number of permanent GPS sites in the Iberia Peninsula has in- creased significantly: in the beginning of 1996 there were just 2 sites with publicly available data. This number had risen to 15 by the end of 1999, and recently (end of 2001), it has reached 18. For many sites, the observation time-span is already suffi- ciently long to derive a reliable estimate of the motion of the stations. Combined with the relatively good geographical distribution of the sites, this velocity field contains unique information to study the tectonics of the Iberian Peninsula, both internally and with respect to the rest of Europe. In the framework of a combined DEOS-AOUP research project called GIN (GPS Iberian Network), the data of all available GPS sites in the region (including some in North Africa, the Azores Archipelago and France) are being processed on a daily basis since the middle of 2000 (with backward processing extending to January 1996). Following this project, DEOS became an official LAC (Local Analysis Centre) of EU- REF in the beginning of 2001. The DEOS weekly solutions are included in the official EUREF analysis chain, resulting in weekly coordinate solutions for the entire EU- REF network. The two solutions (GIN &EUREF) are computed by the DEOS-AOUP group using the same software, but applying different strategies. The differences in the solutions are analysed in order to pinpoint data problems and processing errors. Furthermore, the GIN velocity field is compared with the one derived from the offi- cial EUREF solution. Special attention is paid to the different procedures to link the solutions into a unified reference frame. Finally, this paper presents a preliminary interpretation of the contemporary tectonics of the Iberian Peninsula based on the derived velocity fields. There is evidence of significant intra-plate deformation in the Iberia region and there are indications that the Iberian block exhibits a differential motion with respect to

  15. The Effect of Improved Sub-Daily Earth Rotation Models on Global GPS Data Processing

    Science.gov (United States)

    Yoon, S.; Choi, K. K.

    2017-12-01

    Throughout the various International GNSS Service (IGS) products, strong periodic signals have been observed around the 14 day period. This signal is clearly visible in all IGS time-series such as those related to orbit ephemerides, Earth rotation parameters (ERP) and ground station coordinates. Recent studies show that errors in the sub-daily Earth rotation models are the main factors that induce such noise. Current IGS orbit processing standards adopted the IERS 2010 convention and its sub-daily Earth rotation model. Since the IERS convention had published, recent advances in the VLBI analysis have made contributions to update the sub-daily Earth rotation models. We have compared several proposed sub-daily Earth rotation models and show the effect of using those models on orbit ephemeris, Earth rotation parameters and ground station coordinates generated by the NGS global GPS data processing strategy.

  16. Detecting seasonal and long-term vertical displacement in the North China Plain using GRACE and GPS

    Directory of Open Access Journals (Sweden)

    L. Wang

    2017-06-01

    Full Text Available In total, 29 continuous Global Positioning System (GPS time series data together with data from Gravity Recovery and Climate Experiment (GRACE are analysed to determine the seasonal displacements of surface loadings in the North China Plain (NCP. Results show significant seasonal variations and a strong correlation between GPS and GRACE results in the vertical displacement component; the average correlation and weighted root-mean-squares (WRMS reduction between GPS and GRACE are 75.6 and 28.9 % respectively, when atmospheric and non-tidal ocean effects were removed, but the annual peak-to-peak amplitude of GPS (1.2–6.3 mm is greater than the data (1.0–2.2 mm derived from GRACE. We also calculate the trend rate as well as the seasonal signal caused by the mass load change from GRACE data; the rate of GRACE-derived terrestrial water storage (TWS loss (after multiplying by the scaling factor in the NCP was 3.39 cm yr−1 (equivalent to 12.42 km3 yr−1 from 2003 to 2009. For a 10-year time span (2003 to 2012, the rate loss of TWS was 2.57 cm yr−1 (equivalent to 9.41 km3 yr−1, which is consistent with the groundwater storage (GWS depletion rate (the rate losses of GWS were 2.49 and 2.72 cm yr−1 during 2003–2009 and 2003–2012 respectively estimated from GRACE-derived results after removing simulated soil moisture (SM data from the Global Land Data Assimilation System (GLDAS/Noah model. We also found that GRACE-derived GWS changes are in disagreement with the groundwater level changes from observations of shallow aquifers from 2003 to 2009, especially between 2010 and 2013. Although the shallow groundwater can be recharged from the annual climate-driven rainfall, the important facts indicate that GWS depletion is more serious in deep aquifers. The GRACE-derived result shows an overall uplift in the whole region at the 0.37–0.95 mm yr−1 level from 2004 to 2009, but the rate of change direction is

  17. Recruiting and retaining GPs and patients in intervention studies: the DEPS-GP project as a case study

    Directory of Open Access Journals (Sweden)

    Lautenschlager Nicola T

    2007-09-01

    Full Text Available Abstract Background Recruiting and retaining GPs for research can prove difficult, and may result in sub-optimal patient participation where GPs are required to recruit patients. Low participation rates may affect the validity of research. This paper describes a multi-faceted approach to maximise participation of GPs and their patients in intervention studies, using an Australian randomised controlled trial of a depression/suicidality management intervention as a case study. The paper aims to outline experiences that may be of interest to others considering engaging GPs and/or their patients in primary care studies. Methods A case study approach is used to describe strategies for: (a recruiting GPs; (b encouraging GPs to recruit patients to complete a postal questionnaire; and (c encouraging GPs to recruit patients as part of a practice audit. Participant retention strategies are discussed in light of reasons for withdrawal. Results The strategies described, led to the recruitment of a higher than expected number of GPs (n = 772. Three hundred and eighty three GPs (49.6% followed through with the intent to participate by sending out a total of 77,820 postal questionnaires, 22,251 (28.6% of which were returned. Three hundred and three GPs (37.0% participated in the practice audit, which aimed to recruit 20 patients per participating GP (i.e., a total of 6,060 older adults. In total, 5,143 patients (84.9% were represented in the audit. Conclusion Inexpensive methods were chosen to identify and recruit GPs; these relied on an existing database, minor promotion and a letter of invitation. Anecdotally, participating GPs agreed to be involved because they had an interest in the topic, believed the study would not impinge too greatly on their time, and appreciated the professional recognition afforded by the Continuing Professional Development (CPD points associated with study participation. The study team established a strong rapport with GPs and

  18. Development and deployment of a Desktop and Mobile application on grid for GPS studie

    Science.gov (United States)

    Ntumba, Patient; Lotoy, Vianney; Djungu, Saint Jean; Fleury, Rolland; Petitdidier, Monique; Gemünd, André; Schwichtenberg, Horst

    2013-04-01

    GPS networks for scientific studies are developed all other the world and large databases, regularly updated, like IGS are also available. Many GPS have been installed in West and Central Africa during AMMA (African Monsoon Multiplidisciplinary Analysis), IHY (International heliophysical Year)and many other projects since 2005. African scientists have been educated to use those data especially for meteorological and ionospheric studies. The annual variations of ionospheric parameters for a given station or map of a given region are very intensive computing. Then grid or cloud computing may be a solution to obtain results in a relatively short time. Real time At the University of Kinshasa the chosen solution is a grid of several PCs. It has been deployed by using Globus Toolkit on a Condor pool in order to support the processing of GPS data for ionospheric studies. To be user-friendly, graphical user interfaces(GUI) have been developed to help the user to prepare and submit jobs. One is a java GUI for desktop client, the other is an Android GUI for mobile client. The interest of a grid is the possibility to send a bunch of jobs with an adequate agent control in order to survey the job execution and result storage. After the feasibility study the grid will be extended to a larger number of PCs. Other solutions will be in parallel explored.

  19. Analysis of web-based online services for GPS relative and precise point positioning techniques

    Directory of Open Access Journals (Sweden)

    Taylan Ocalan

    Full Text Available Nowadays, Global Positioning System (GPS has been used effectively in several engineering applications for the survey purposes by multiple disciplines. Web-based online services developed by several organizations; which are user friendly, unlimited and most of them are free; have become a significant alternative against the high-cost scientific and commercial software on achievement of post processing and analyzing the GPS data. When centimeter (cm or decimeter (dm level accuracies are desired, that can be obtained easily regarding different quality engineering applications through these services. In this paper, a test study was conducted at ISKI-CORS network; Istanbul-Turkey in order to figure out the accuracy analysis of the most used web based online services around the world (namely OPUS, AUSPOS, SCOUT, CSRS-PPP, GAPS, APPS, magicGNSS. These services use relative and precise point positioning (PPP solution approaches. In this test study, the coordinates of eight stations were estimated by using of both online services and Bernese 5.0 scientific GPS processing software from 24-hour GPS data set and then the coordinate differences between the online services and Bernese processing software were computed. From the evaluations, it was seen that the results for each individual differences were less than 10 mm regarding relative online service, and less than 20 mm regarding precise point positioning service. The accuracy analysis was gathered from these coordinate differences and standard deviations of the obtained coordinates from different techniques and then online services were compared to each other. The results show that the position accuracies obtained by associated online services provide high accurate solutions that may be used in many engineering applications and geodetic analysis.

  20. 47 CFR 22.313 - Station identification.

    Science.gov (United States)

    2010-10-01

    ... Telephone Radio Systems in the Rural Radiotelephone Service; (5) [Reserved] (6) Stations operating pursuant... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES... of each station in the Public Mobile Services must ensure that the transmissions of that station are...

  1. A Nonlinear Observer for Integration of GPS and Inertial Navigation Systems

    Directory of Open Access Journals (Sweden)

    Bjørnar Vik

    2000-10-01

    Full Text Available GPS and INS have complementary properties and they are therefore well suited for integration. The integrated solution offers better long term accuracy than a stand-alone INS, and better integrity, availability and continuity than a stand-alone GPS receiver, making it suitable for demanding applications. The integrated filter is nonlinear both in state and measurements, and the extended Kalman-filter has been used with good results, but it has not been proven globally stable, and it is also computationally intensive, especially within a direct integration architecture. In this work a nonlinear observer suitable for direct integration is presented. Global exponent ial stability of the origin of the combined attitude and velocity error systems is proven along with robust stability in the presence of noise and unmodelled dynamics.

  2. Análisis de consistencia de caminos bidireccionales usando mediciones continuas de velocidad de operación obtenidas con GPS Two-lane rural highways consistency analysis using continuous operating speed measurements obtained with GPS

    Directory of Open Access Journals (Sweden)

    Tomás Echaveguren

    2012-08-01

    segments of roads.Therefore, continuous speed profiles are needed. In that case, speed-geometry models for single elements are not suitable. Today satellite positioning technology is an efficient way to develop continuous speed profile for long sectors of roads, particularly useful for aggregated consistency assessement. This paper study the Polus' consistency assesment model, which need as input continuous speed profiles. First, Polus' model is discussed. After a method for speed data collection and processing using in-field measurements and models is discussed. Method was applied to 5 roads using a GPS device. Data were processed with Kalman filter and smoothed with loess smoother. With the speed profile processed, filtered and smoothed, Polus' consistency method was used to estimate consistency index in each road. It was concluded that Polus' method and continuous speed profiles are suitables to rate consistency of long road segments. However, special attention should be given to road segmentation to avoid under or over-estimation of the road consistency, particularly in straight and steeped segments.

  3. GPS Interference Mitigation Using Derivative-free Kalman Filter-based RNN

    Directory of Open Access Journals (Sweden)

    W. L. Mao

    2016-09-01

    Full Text Available The global positioning system (GPS with accurate positioning and timing properties has become integral part of all applications around the world. Radio frequency interference can significantly decrease the performance of GPS receivers or even completely prohibit the acquisition or tracking of satellites. The approaches of system performances that can be further enhanced by preprocessing to reject the jamming signal will be investigated. A recurrent neural network (RNN predictor for the GPS anti-jamming applications will be proposed. The adaptive RNN predictor is utilized to accurately predict the narrowband waveform based on an unscented Kalman filter (UKF-based algorithm. The UKF algorithm as a derivative-free alternative to the extended Kalman filter (EKF in the framework of state-estimation is adopted to achieve better performance in terms of convergence rate and quality of solution. The adaptive RNN filter can be successfully applied for the suppression of interference with a number of different narrowband formats, i.e. continuous wave interference (CWI, multi-tone CWI, swept CWI and pulsed CWI, to emulate realistic circumstances. Simulation results show that the proposed UKF-based scheme can offer the superior performances to suppress the interference over the conventional methods by computing mean squared prediction error (MSPE and signal-to-noise ratio (SNR improvements.

  4. Briefing highlights space weather risks to GPS

    Science.gov (United States)

    Tretkoff, Ernie

    2011-07-01

    Solar storms, which are expected to increase as the Sun nears the most active phase of the solar cycle, can disrupt a variety of technologies on which society relies. Speakers at a 22 June briefing on Capitol Hill in Washington, D. C., focused on how space weather can affect the Global Positioning System (GPS), which is used in a wide range of industries, including commercial air travel, agriculture, national security, and emergency response. Rocky Stone, chief technical pilot for United Airlines, noted that GPS allows more aircraft to be in airspace, saves fuel, and helps aircraft move safely on runways. “Improvements in space weather forecasting need to be pursued,” he said. Precision GPS has also “changed the whole nature of farming,” said Ron Hatch, Director of Navigation Systems, NavCom Technology/John Deere. GPS makes it possible for tractors to be driven in the most efficient paths and for fertilizer and water to be applied precisely to the areas that most need them. Space weather-induced degradation of GPS signals can cause significant loss to farms that rely on GPS. Elizabeth Zimmerman, Deputy Associate Administrator for the Office of Response and Recovery at the Federal Emergency Management Agency (FEMA), described how FEMA relies on GPS for disaster recovery. The agency is developing an operations plan for dealing with space weather, she said.

  5. Development of GPS survey data management protocols/policy.

    Science.gov (United States)

    2010-08-01

    This project developed a statewide policy and criteria for collecting, analyzing, and managing global position system (GPS) survey data. The research project determined the needs of the Department in adopting the GPS real time kinetic (GPS RTK) stake...

  6. GPS Usage in a Population of Low-Vision Drivers.

    Science.gov (United States)

    Cucuras, Maria; Chun, Robert; Lee, Patrick; Jay, Walter M; Pusateri, Gregg

    2017-01-01

    We surveyed bioptic and non-bioptic low-vision drivers in Illinois, USA, to determine their usage of global positioning system (GPS) devices. Low-vision patients completed an IRB-approved phone survey regarding driving demographics and usage of GPS while driving. Participants were required to be active drivers with an Illinois driver's license, and met one of the following criteria: best-corrected visual acuity (BCVA) less than or equal to 20/40, central or significant peripheral visual field defects, or a combination of both. Of 27 low-vision drivers, 10 (37%) used GPS while driving. The average age for GPS users was 54.3 and for non-users was 77.6. All 10 drivers who used GPS while driving reported increased comfort or safety level. Since non-GPS users were significantly older than GPS users, it is likely that older participants would benefit from GPS technology training from their low-vision eye care professionals.

  7. Different deformation patterns using GPS in the volcanic process of El Hierro (Canary Island) 2011-2013

    Science.gov (United States)

    García-Cañada, Laura; José García-Arias, María; Pereda de Pablo, Jorge; Lamolda, Héctor; López, Carmen

    2014-05-01

    Ground deformation is one of the most important parameter in volcano monitoring. The detected deformations in volcanic areas can be precursors of a volcanic activity and contribute with useful information to study the evolution of an unrest, eruption or any volcanic process. GPS is the most common technique used to measure volcano deformations. It can be used to detect slow displacement rates or much larger and faster deformations associated with any volcanic process. In volcanoes the deformation is expected to be a mixed of nature; during periods of quiescence it will be slow or not present, while increased activity slow displacement rates can be detected or much larger and faster deformations can be measure due to magma intrusion, for example in the hours to days prior a eruption beginning. In response to the anomalous seismicity detected at El Hierro in July 2011, the Instituto Geográfico Nacional (IGN) improved its volcano monitoring network in the island with continuous GPS that had been used to measure the ground deformation associated with the precursory unrest since summer 2011, submarine eruption (October 2011-March 2012) and the following unrest periods (2012-2013). The continuous GPS time series, together with other techniques, had been used to evaluate the activity and to detect changes in the process. We investigate changes in the direction and module of the deformation obtained by GPS and they show different patterns in every unrest period, very close to the seismicity locations and migrations.

  8. Transportation mode recognition using GPS and accelerometer data

    NARCIS (Netherlands)

    Feng, T.; Timmermans, H.J.P.

    2013-01-01

    Potential advantages of global positioning systems (GPS) in collecting travel behavior data have been discussed in several publications and evidenced in many recent studies. Most applications depend on GPS information only. However, transportation mode detection that relies only on GPS information

  9. Gestió mapes i GPS

    OpenAIRE

    Díaz Sañudo, Daniel

    2013-01-01

    El projecte denominat "Gestor de mapes i GPS" és una aplicació per a dispositius mòbils Android que utilitza l'API v.1 de Google Maps. El proyecto denominado "Gestor de mapas y GPS" es una aplicación para dispositivos móviles Android que utiliza la API v.1 de Google Maps.

  10. Nowcasting the lightning activity in Peninsular Malaysia using the GPS PWV during the 2009 inter-monsoons

    Directory of Open Access Journals (Sweden)

    Wayan Suparta

    2014-05-01

    Full Text Available The spatial and temporal radio wave delay of the Global Positioning System (GPS signal can be manipulated to estimate the precipitable water vapor (PWV which favorable for meteorological applications. A rapid change of the water vapor amount was a precondition for the unbalanced atmospheric charges, which noticeably associated with the development of convective cloud as a lightning chamber. According to this fact, GPS derived PWV will be utilized to nowcasting the lightning event for the next couple of hours. The variances of PWV of four-selected station of the Peninsular Malaysia during the past two inter-monsoons events in May and November 2009 were analyzed. To clarify the response, the changes of PWV in hourly Δ (max-min before the lightning event was investigated with minimum value 2 mm and is maintained at least three consecutive hours. There are 177 samples were extracted from this method and 69% of the sample showed the lightning occurrence with an average duration was after the six consecutive hours. The lightning day with 2 mm Δ was also higher than the fair weather of 6.3%. These findings suggest that the GPS data can be proposed further as a guide to nowcast the occurrence of lightning activity.

  11. Location - Global Positioning System (GPS) Photos

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — Digital photos tagged with GPS location information. The St. Paul District maintains a digital library of over 10,000 GPS photos. Photos are often associated with...

  12. An estimation of tropospheric corrections using GPS and synoptic data: Improving Urmia Lake water level time series from Jason-2 and SARAL/AltiKa satellite altimetry

    Science.gov (United States)

    Arabsahebi, Reza; Voosoghi, Behzad; Tourian, Mohammad J.

    2018-05-01

    Tropospheric correction is one of the most important corrections in satellite altimetry measurements. Tropospheric wet and dry path delays have strong dependence on temperature, pressure and humidity. Tropospheric layer has particularly high variability over coastal regions due to humidity, wind and temperature gradients. Depending on the extent of water body and wind conditions over an inland water, Wet Tropospheric Correction (WTC) is within the ranges from a few centimeters to tens of centimeters. Therefore, an extra care is needed to estimate tropospheric corrections on the altimetric measurements over inland waters. This study assesses the role of tropospheric correction on the altimetric measurements over the Urmia Lake in Iran. For this purpose, four types of tropospheric corrections have been used: (i) microwave radiometer (MWR) observations, (ii) tropospheric corrections computed from meteorological models, (iii) GPS observations and (iv) synoptic station data. They have been applied to Jason-2 track no. 133 and SARAL/AltiKa track no. 741 and 356 corresponding to 117-153 and the 23-34 cycles, respectively. In addition, the corresponding measurements of PISTACH and PEACHI, include new retracking method and an innovative wet tropospheric correction, have also been used. Our results show that GPS observation leads to the most accurate tropospheric correction. The results obtained from the PISTACH and PEACHI projects confirm those obtained with the standard SGDR, i.e., the role of GPS in improving the tropospheric corrections. It is inferred that the MWR data from Jason-2 mission is appropriate for the tropospheric corrections, however the SARAL/AltiKa one is not proper because Jason-2 possesses an enhanced WTC near the coast. Furthermore, virtual stations are defined for assessment of the results in terms of time series of Water Level Height (WLH). The results show that GPS tropospheric corrections lead to the most accurate WLH estimation for the selected

  13. A New Velocity Field from a Dense GPS Array in the Southernmost Longitudinal Valley, Southeastern Taiwan

    Directory of Open Access Journals (Sweden)

    Horng-Yue Chen

    2013-01-01

    Full Text Available In the southernmost Longitudinal Valley (LV, Taiwan, we analyzed a dense GPS array composed of 10 continuous stations and 86 campaign-mode stations. By removing the effects of the four major earthquakes (one regional and three local occurred during the 1992 - 2010 observation period, we derived a new horizontal velocity field in this area, which then allows better locating the surface traces of the major active faults, including the Longitudinal Valley Fault (LVF system and the Central Range Fault, and characterizing the slip behaviors along the faults. Note that LVF reveals two sub-parallel strands in the study area: the Luyeh Fault to the west and the Lichi Fault to the east. Based on the results of strain analyses, including dilatation and shear strain, and projected vectors of station velocities across the major faults, we came to the following geological interpretations. During the inter-seismic periods, the surface deformation of the southernmost LV is mainly accommodated by the faulting on the two branches of the LVF; there is very little surface deformation on the Central Range Fault. The Luyeh River appears to act as a boundary to divide the LVF to behave differently to its northern and southern sides. The Lichi Fault reveals a change of slip kinematics from an oblique shearing/thrusting in the north to a nearly pure shearing with minor extension to the south. Regarding the slip behavior of the Luyeh Fault, it exhibits a creeping behavior in the north and a partially near-surface-locked faulting behavior in the south. We interpret that the two strands of the LVF merge together in the northern Taitung alluvial plain and turns to E-W trend toward the offshore area.

  14. Accommodation of missing shear strain in the Central Walker Lane, western North America: Constraints from dense GPS measurements

    Science.gov (United States)

    Bormann, Jayne M.; Hammond, William C.; Kreemer, Corné; Blewitt, Geoffrey

    2016-04-01

    We present 264 new interseismic GPS velocities from the Mobile Array of GPS for Nevada Transtension (MAGNET) and continuous GPS networks that measure Pacific-North American plate boundary deformation in the Central Walker Lane. Relative to a North America-fixed reference frame, northwestward velocities increase smoothly from ∼4 mm/yr in the Basin and Range province to 12.2 mm/yr in the central Sierra Nevada resulting in a Central Walker Lane deformation budget of ∼8 mm/yr. We use an elastic block model to estimate fault slip and block rotation rates and patterns of deformation from the GPS velocities. Right-lateral shear is distributed throughout the Central Walker Lane with strike-slip rates generally Bodie Hills, Carson Domain, and Mina Deflection are between 1-4°/Myr, lower than published paleomagnetic rotation rates, suggesting that block rotation rates have decreased since the Late to Middle Miocene.

  15. Tracking down a solution: exploring the acceptability and value of wearable GPS devices for older persons, individuals with a disability and their support persons.

    Science.gov (United States)

    Williamson, Brittany; Aplin, Tammy; de Jonge, Desleigh; Goyne, Matthew

    2017-11-01

    To explore the acceptability and value of three wearable GPS devices for older persons and individuals with a disability and safety concerns when accessing the community. This pilot study explored six wearers' and their support persons' experience of using three different wearable GPS devices (a pendant, watch, and mini GPS phone), each for a two-week period. Participants identified safety as the main value of using a wearable GPS device. The acceptability and value of these devices was strongly influenced by device features, ease of use, cost, appearance, the reliability of the GPS coordinates, the wearer's health condition and the users familiarity with technology. Overall, participants indicated that they preferred the pendant. Wearable GPS devices are potentially useful in providing individuals who have safety concerns with reassurance and access to assistance as required. To ensure successful utilization, future device design and device selection should consider the user's familiarity with technology and their health condition. This study also revealed that not all wearable GPS devices provide continuous location tracking. It is therefore critical to ensure that the device's location tracking functions address the wearer's requirements and reason for using the device. Implications for Rehabilitation The acceptability and usability of wearable GPS devices is strongly influenced by the device features, ease of use, cost, appearance, the reliability of the device to provide accurate and timely GPS coordinates, as well as the health condition of the wearer and their familiarity with technology. Wearable GPS devices need to be simple to use and support and training is essential to ensure they are successfully utilized. Not all wearable GPS devices provide continuous location tracking and accuracy of location is impacted by line of sight to satellites. Therefore, care needs to be taken when choosing a suitable device, to ensure that the device's location tracking

  16. Comparison of time series of integrated water vapor measured using radiosonde, GPS and microwave radiometer at the CNR-IMAA Atmospheric Observatory

    Science.gov (United States)

    Amato, Franceso; Rosoldi, Marco; Madonna, Fabio

    2015-04-01

    Information about the amount and spatial distribution of atmospheric water vapor is essential to improve our knowledge of weather forecasting and climate change. Water vapor is highly variable in space and time depending on the complex interplay of several phenomena like convection, precipitation, turbulence, etc. It remains one of the most poorly characterized meteorological parameters. Remarkable progress in using of Global Navigation Satellite Systems (GNSS), in particular GPS, for the monitoring of atmospheric water vapor has been achieved during the last decades. Various studies have demonstrated that GPS could provide accurate water vapor estimates for the study of the atmosphere. Different GPS data processing provided within the scientific community made use of various tropospheric models that primarily differs for the assumptions on the vertical refractivity profiles and the mapping of the vertical delay with elevation angles. This works compares several models based on the use of surface meteorological data. In order to calculate the Integrated Water Vapour (IWV), an algorithm for calculating the zenith tropospheric delay was implemented. It is based upon different mapping functions (Niell, Saastamoinen, Chao and Herring Mapping Functions). Observations are performed at the Istituto di Metodologie per l'Analisi Ambientale (IMAA) GPS station located in Tito Scalo, Potenza (40.60N, 15.72E), from July to December 2014, in the framework of OSCAR project (Observation System for Climate Application at Regional scale). The retrieved values of the IWV using the GPS are systematically compared with the other estimation of IWV collected at CIAO (CNR-IMAA Atmospheric Observatory) using the other available measurement techniques. In particular, in this work the compared IWV are retrieved from: 1. a Trimble GPS antenna (data processed by the GPS-Met network, see gpsmet.nooa.gov); 2. a Novatel GPS antenna (data locally processed using a software developed at CIAO); 3

  17. The effect of tracking network configuration on GPS baseline estimates for the CASA Uno experiment

    Science.gov (United States)

    Wolf, S. Kornreich; Dixon, T. H.; Freymueller, J. T.

    1990-01-01

    The effect of the tracking network on long (greater than 100 km) GPS baseline estimates was estimated using various subsets of the global tracking network initiated by the first Central and South America (CASA Uno) experiment. It was found that best results could be obtained with a global tacking network consisting of three U.S. stations, two sites in the southwestern Pacific, and two sites in Europe. In comparison with smaller subsets, this global network improved the baseline repeatability, the resolution of carrier phase cycle ambiguities, and formal errors of the orbit estimates.

  18. GPS-based system for satellite tracking and geodesy

    Science.gov (United States)

    Bertiger, Willy I.; Thornton, Catherine L.

    1989-01-01

    High-performance receivers and data processing systems developed for GPS are reviewed. The GPS Inferred Positioning System (GIPSY) and the Orbiter Analysis and Simulation Software (OASIS) are described. The OASIS software is used to assess GPS system performance using GIPSY for data processing. Consideration is given to parameter estimation for multiday arcs, orbit repeatability, orbit prediction, daily baseline repeatability, agreement with VLBI, and ambiguity resolution. Also, the dual-frequency Rogue receiver, which can track up to eight GPS satellites simultaneously, is discussed.

  19. Active landslide monitoring using remote sensing data, GPS measurements and cameras on board UAV

    Science.gov (United States)

    Nikolakopoulos, Konstantinos G.; Kavoura, Katerina; Depountis, Nikolaos; Argyropoulos, Nikolaos; Koukouvelas, Ioannis; Sabatakakis, Nikolaos

    2015-10-01

    An active landslide can be monitored using many different methods: Classical geotechnical measurements like inclinometer, topographical survey measurements with total stations or GPS and photogrammetric techniques using airphotos or high resolution satellite images. As the cost of the aerial photo campaign and the acquisition of very high resolution satellite data is quite expensive the use of cameras on board UAV could be an identical solution. Small UAVs (Unmanned Aerial Vehicles) have started their development as expensive toys but they currently became a very valuable tool in remote sensing monitoring of small areas. The purpose of this work is to demonstrate a cheap but effective solution for an active landslide monitoring. We present the first experimental results of the synergistic use of UAV, GPS measurements and remote sensing data. A six-rotor aircraft with a total weight of 6 kg carrying two small cameras has been used. Very accurate digital airphotos, high accuracy DSM, DGPS measurements and the data captured from the UAV are combined and the results are presented in the current study.

  20. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  1. Analyzing the Impact of Different Pcv Calibration Models on Height Determination Using Gps/Glonass Observations from Asg-Eupos Network

    Science.gov (United States)

    Dawidowicz, Karol

    2014-12-01

    The integration of GPS with GLONASS is very important in satellite-based positioning because it can clearly improve reliability and availability. However, unlike GPS, GLONASS satellites transmit signals at different frequencies. This results in significant difficulties in modeling and ambiguity resolution for integrated GNSS positioning. There are also some difficulties related to the antenna Phase Center Variations (PCV) problem because, as is well known, the PCV is dependent on the received signal frequency dependent. Thus, processing simultaneous observations from different positioning systems, e.g. GPS and GLONASS, we can expect complications resulting from the different structure of signals and differences in satellite constellations. The ASG-EUPOS multifunctional system for precise satellite positioning is a part of the EUPOS project involving countries of Central and Eastern Europe. The number of its users is increasing rapidly. Currently 31 of 101 reference stations are equipped with GPS/GLONASS receivers and the number is still increasing. The aim of this paper is to study the height solution differences caused by using different PCV calibration models in integrated GPS/GLONASS observation processing. Studies were conducted based on the datasets from the ASG-EUPOS network. Since the study was intended to evaluate the impact on height determination from the users' point of view, a so-called "commercial" software was chosen for post-processing. The analysis was done in a baseline mode: 3 days of GNSS data collected with three different receivers and antennas were used. For the purposes of research the daily observations were divided into different sessions with a session length of one hour. The results show that switching between relative and absolute PCV models may cause an obvious effect on height determination. This issue is particularly important when mixed GPS/GLONASS observations are post-processed.

  2. Derivation of GPS TEC and receiver bias for Langkawi station in Malaysia

    International Nuclear Information System (INIS)

    Teh, W L; Abdullah, M; Chen, W S

    2017-01-01

    This paper presents the polynomial-type TEC model to derive total electron content (TEC) and receiver bias for Langkawi (LGKW) station in Malaysia at geographic latitude of 6.32° and longitude of 99.85°. The model uses a polynomial function of coordinates of the ionospheric piercing point to describe the TEC distribution in space. In the model, six polynomial coefficients and a receiver bias are unknown which can be solved by the least squares method. A reasonable agreement is achieved for the derivation of TEC and receiver bias for IENG station in Italy, as compared with that derived by the IGS analysis center, CODE. We process one year of LGKW data in 2010 and show the monthly receiver bias and the seasonal TEC variation. The monthly receiver bias varies between −48 and −24 TECu (10 16 electrons/m 2 ), with the mean value at −37 TECu. Large variations happen in the monthly receiver biases due to the low data coverage of high satellite elevation angle (60° < α ≤ 90°). Post-processing TEC approach is implemented which can resolve the wavy pattern of the monthly TEC baseline resulted from the large variation of the receiver bias. The seasonal TEC variation at LGKW exhibits a semi-annual variation, where the peak occurs during equinoctial months, and the trough during summer and winter months. (paper)

  3. Using GPS, tide gauge and altimetry data to constrain subduction parameters at the Vanuatu plate boundary.

    Science.gov (United States)

    Ballu, V.; Bouin, M.; Baillard, C.; Calmant, S.; Pelletier, B.; Crawford, W. C.; Kanas, T.; Garaebiti, E.

    2012-12-01

    The Vanuatu subduction zone, Southwest Pacific, combines several features that makes it a particularly useful place to study seismic cycles. The convergence rate is high - approximately 12 cm/yr - and the seismic cycle relatively short. Measurements of interseismic motions are helped by relatively high vertical rates, the close proximity of some islands to the plate interface and the existence of very shallow seamounts on either side of the plate interface. The Vanuatu archipelago is part of the Pacific Ring of Fire: the Australian plate subducts eastward beneath the North Fiji basin, on the western border of the Pacific Plate. High topographic features on the diving plate may contribute to locking of the plates, which can play a major role in the genesis of destructive earthquakes. GPS network points were installed in the early 1990s and the geodesy network has been densified through the years, enabling us to map interseismic horizontal and vertical deformation rates throughout the archipelago. More recently, 8 continuous GPS stations were installed, along with 3 continuous seafloor pressure gauges very near to the plate interface. We show results from GPS data collected from 1996 to 2011, that we re-processed and combined into the ITRF2008 reference frame, and altimetry and seafloor pressure data from 1999 to 2010. The GPS results show that vertical deformation rates vary both across and along the archipelago. We believe that these variations result from variable distance to the plate limit and variable locking parameters. In some areas, subsidence rates are close to one centimeter per year. In the Torres islands (at the northern end of the archipelago) where villagers face recurrent coastal flooding, we showed that this flooding is due more to ground motion than to rise in the absolute sea level, even though the sea-level rise rates are locally high and the islands uplift over the long term. In the Central area of Vanuatu, we augmented the on-land network with

  4. Contents of GPS Data Files

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carver, Matthew Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Norman, Benjamin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-09

    There are no very detailed descriptions of most of these instruments in the literature – we will attempt to fix that problem in the future. The BDD instruments are described in [1]. One of the dosimeter instruments on CXD boxes is described in [2]. These documents (or web links to them) and a few others are in this directory tree. The cross calibration of the CXD electron data with RBSP is described in [3]. Each row in the data file contains the data from one time bin from a CXD or BDD instrument along with a variety of parameters derived from the data. Time steps are commandable but 4 minutes is a typical setting. These instruments are on many (but not all) GPS satellites which are currently in operation. The data come from either BDD instruments on GPS Block IIR satellites (SVN41 and 48), or else CXD-IIR instruments on GPS Block IIR and IIR-M satellites (SVN53-61) or CXD-IIF instruments on GPS block IIF satellites (SVN62-73). The CXD-IIR instruments on block IIR and IIR(M) satellites use the same design.

  5. Why GPS makes distances bigger than they are.

    Science.gov (United States)

    Ranacher, Peter; Brunauer, Richard; Trutschnig, Wolfgang; Van der Spek, Stefan; Reich, Siegfried

    2016-02-01

    Global navigation satellite systems such as the Global Positioning System (GPS) is one of the most important sensors for movement analysis. GPS is widely used to record the trajectories of vehicles, animals and human beings. However, all GPS movement data are affected by both measurement and interpolation errors. In this article we show that measurement error causes a systematic bias in distances recorded with a GPS; the distance between two points recorded with a GPS is - on average - bigger than the true distance between these points. This systematic 'overestimation of distance' becomes relevant if the influence of interpolation error can be neglected, which in practice is the case for movement sampled at high frequencies. We provide a mathematical explanation of this phenomenon and illustrate that it functionally depends on the autocorrelation of GPS measurement error ( C ). We argue that C can be interpreted as a quality measure for movement data recorded with a GPS. If there is a strong autocorrelation between any two consecutive position estimates, they have very similar error. This error cancels out when average speed, distance or direction is calculated along the trajectory. Based on our theoretical findings we introduce a novel approach to determine C in real-world GPS movement data sampled at high frequencies. We apply our approach to pedestrian trajectories and car trajectories. We found that the measurement error in the data was strongly spatially and temporally autocorrelated and give a quality estimate of the data. Most importantly, our findings are not limited to GPS alone. The systematic bias and its implications are bound to occur in any movement data collected with absolute positioning if interpolation error can be neglected.

  6. Assessing fitness for work: GPs judgment making.

    Science.gov (United States)

    Foley, Michelle; Thorley, Kevan; Van Hout, Marie-Claire

    2013-12-01

    The complexity of a fitness for work consultation is well documented. General practitioners (GPs) find that such consultations often create conflict and they feel ill-prepared for the task. We aimed to examine the consultation process in the fitness for work consultation and to report on the response of GPs to two hypothetical consultations of work related sickness absence, one of a psychological and one of a physical nature. Three areas of the consultation were examined; social/family circumstances, workplace history and information required assessing the severity of the condition. We used a randomized design using an online questionnaire completed by 62 GPs located in the Republic of Ireland. Analysis was conducted in NVivo 8 qualitative software using thematic and content analysis techniques. GPs may be expected to collect and consider information relating to social, domestic, financial, lifestyle and workplace factors, including workload, job satisfaction, job strain, work ethic, inter staff relationships and employee support mechanisms. The mode of presentation may trigger specific information seeking in the consultation. GPs may evaluate fitness for work in a variety of ways depending on medical and non-medical factors. Further research should further examine the factors that may influence the GPs decision to prescribe sickness leave.

  7. GPS satellite clock determination in case of inter-frequency clock biases for triple-frequency precise point positioning

    Science.gov (United States)

    Guo, Jiang; Geng, Jianghui

    2017-12-01

    Significant time-varying inter-frequency clock biases (IFCBs) within GPS observations prevent the application of the legacy L1/L2 ionosphere-free clock products on L5 signals. Conventional approaches overcoming this problem are to estimate L1/L5 ionosphere-free clocks in addition to their L1/L2 counterparts or to compute IFCBs between the L1/L2 and L1/L5 clocks which are later modeled through a harmonic analysis. In contrast, we start from the undifferenced uncombined GNSS model and propose an alternative approach where a second satellite clock parameter dedicated to the L5 signals is estimated along with the legacy L1/L2 clock. In this manner, we do not need to rely on the correlated L1/L2 and L1/L5 ionosphere-free observables which complicates triple-frequency GPS stochastic models, or account for the unfavorable time-varying hardware biases in undifferenced GPS functional models since they can be absorbed by the L5 clocks. An extra advantage over the ionosphere-free model is that external ionosphere constraints can potentially be introduced to improve PPP. With 27 days of triple-frequency GPS data from globally distributed stations, we find that the RMS of the positioning differences between our GPS model and all conventional models is below 1 mm for all east, north and up components, demonstrating the effectiveness of our model in addressing triple-frequency observations and time-varying IFCBs. Moreover, we can combine the L1/L2 and L5 clocks derived from our model to calculate precisely the L1/L5 clocks which in practice only depart from their legacy counterparts by less than 0.006 ns in RMS. Our triple-frequency GPS model proves convenient and efficient in combating time-varying IFCBs and can be generalized to more than three frequency signals for satellite clock determination.

  8. The crustal uplift determined at the Jakobshavn glacier (West Greenland) using ATM and GPS data

    DEFF Research Database (Denmark)

    Muresan, Ioana Stefania; Frumosu, Flavia Dalia; Khan, Shfaqat Abbas

    present both a predicted and observed crustal upliftfor the Jakobshavn glacier using ATM data (Airborne Topographic Mapper) from NASA ATM flights during 1997, 2005 and 2010 supplemented with data provided from continuous Global Positioning System (GPS), measurements made on bedrock between 2005...

  9. Azimuth selection for sea level measurements using geodetic GPS receivers

    Science.gov (United States)

    Wang, Xiaolei; Zhang, Qin; Zhang, Shuangcheng

    2018-03-01

    Based on analysis of Global Positioning System (GPS) multipath signals recorded by a geodetic GPS receiver, GPS Reflectometry (GPS-R) has demonstrated unique advantages in relation to sea level monitoring. Founded on multipath reflectometry theory, sea level changes can be measured by GPS-R through spectral analysis of recorded signal-to-noise ratio data. However, prior to estimating multipath parameters, it is necessary to define azimuth and elevation angle mask to ensure the reflecting zones are on water. Here, a method is presented to address azimuth selection, a topic currently under active development in the field of GPS-R. Data from three test sites: the Kachemak Bay GPS site PBAY in Alaska (USA), Friday Harbor GPS site SC02 in the San Juan Islands (USA), and Brest Harbor GPS site BRST in Brest (France) are analyzed. These sites are located in different multipath environments, from a rural coastal area to a busy harbor, and they experience different tidal ranges. Estimates by the GPS tide gauges at azimuths selected by the presented method are compared with measurements from physical tide gauges and acceptable correspondence found for all three sites.

  10. The Evolution of Global Positioning System (GPS) Technology.

    Science.gov (United States)

    Kumar, Sameer; Moore, Kevin B.

    2002-01-01

    Describes technological advances in the Global Positioning System (GPS), which is also known as the NAVSTAR GPS satellite constellation program developed in 1937, and changes in the nature of our world by GPS in the areas of agriculture, health, military, transportation, environment, wildlife biology, surveying and mapping, space applications, and…

  11. 22 July 2009 total solar eclipse induced gravity waves in ionosphere as inferred from GPS observations over EIA

    Science.gov (United States)

    Kumar, K. Vijay; Maurya, Ajeet K.; Kumar, Sanjay; Singh, Rajesh

    2016-11-01

    In the present contribution we investigate the variation in the Global Positioning System (GPS) derived ionospheric Total Electron Content (TEC) over Equatorial Ionization Anomaly (EIA) region on the rare occasional astronomical phenomenon of total solar eclipse of 22 July 2009. The aim is to study and identify the wave like structure enumerated due to solar eclipse induced gravity waves in the F-region ionosphere altitude. The work is aimed to understand features of horizontal and vertical variation of atmospheric gravity waves (AGWs) properties over the Equatorial Ionization Anomaly (EIA) region in Indian low latitude region. The ionospheric observations is from the site of Allahabad (lat 25.4° N; lon. 81.9° E; dip 38.6° N) located at the fringe of eclipse totality path. The estimated vertical electron density profile from FORMOSAT-3/COSMIC GPS-RO satellite, considering all the satellite line of sight around the time of eclipse totality shows maximum depletion of 43%. The fast fourier transform and wavelet transform of GPS DTEC data from Allahabad station (Allahabad: lat 25.4 N; lon. 81.9 E) shows the presence of periodic waves of ∼20 to 45 min and ∼70 to 90 min period at F-region altitude. The shorter period correspond to the sunrise time morning terminator and longer period can be associated with solar eclipse generated AGWs. The most important result obtained is that our results along with previous result for wave like signatures in D-region ionosphere from Allahabad station show that AGWs generated by sunrise time terminator have similarity in the D and F region of the ionosphere but solar eclipse induced AGWs show higher period in the F-region compared to D-region ionosphere.

  12. Inversion of GPS meteorology data

    Directory of Open Access Journals (Sweden)

    K. Hocke

    Full Text Available The GPS meteorology (GPS/MET experiment, led by the Universities Corporation for Atmospheric Research (UCAR, consists of a GPS receiver aboard a low earth orbit (LEO satellite which was launched on 3 April 1995. During a radio occultation the LEO satellite rises or sets relative to one of the 24 GPS satellites at the Earth's horizon. Thereby the atmospheric layers are successively sounded by radio waves which propagate from the GPS satellite to the LEO satellite. From the observed phase path increases, which are due to refraction of the radio waves by the ionosphere and the neutral atmosphere, the atmospheric parameter refractivity, density, pressure and temperature are calculated with high accuracy and resolution (0.5–1.5 km. In the present study, practical aspects of the GPS/MET data analysis are discussed. The retrieval is based on the Abelian integral inversion of the atmospheric bending angle profile into the refractivity index profile. The problem of the upper boundary condition of the Abelian integral is described by examples. The statistical optimization approach which is applied to the data above 40 km and the use of topside bending angle profiles from model atmospheres stabilize the inversion. The retrieved temperature profiles are compared with corresponding profiles which have already been calculated by scientists of UCAR and Jet Propulsion Laboratory (JPL, using Abelian integral inversion too. The comparison shows that in some cases large differences occur (5 K and more. This is probably due to different treatment of the upper boundary condition, data runaways and noise. Several temperature profiles with wavelike structures at tropospheric and stratospheric heights are shown. While the periodic structures at upper stratospheric heights could be caused by residual errors of the ionospheric correction method, the periodic temperature fluctuations at heights below 30 km are most likely caused by atmospheric waves (vertically

  13. 47 CFR 80.1121 - Receipt and acknowledgement of distress alerts by ship stations and ship earth stations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Receipt and acknowledgement of distress alerts by ship stations and ship earth stations. 80.1121 Section 80.1121 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS)...

  14. Evaluation of Integration Degree of the ASG-EUPOS Polish Reference Networks With Ukrainian GeoTerrace Network Stations in the Border Area

    Science.gov (United States)

    Siejka, Zbigniew

    2017-09-01

    GNSS systems are currently the basic tools for determination of the highest precision station coordinates (e.g. basic control network stations or stations used in the networks for geodynamic studies) as well as for land, maritime and air navigation. All of these tasks are carried out using active, large scale, satellite geodetic networks which are complex, intelligent teleinformatic systems offering post processing services along with corrections delivered in real-time for kinematic measurements. Many countries in the world, also in Europe, have built their own multifunctional networks and enhance them with their own GNSS augmentation systems. Nowadays however, in the era of international integration, there is a necessity to consider collective actions in order to build a unified system, covering e.g. the whole Europe or at least some of its regions. Such actions have already been undertaken in many regions of the world. In Europe such an example is the development for EUPOS which consists of active national networks built in central eastern European countries. So far experience and research show, that the critical areas for connecting these networks are border areas, in which the positioning accuracy decreases (Krzeszowski and Bosy, 2011). This study attempts to evaluate the border area compatibility of Polish ASG-EUPOS (European Position Determination System) reference stations and Ukrainian GeoTerrace system reference stations in the context of their future incorporation into the EUPOS. The two networks analyzed in work feature similar hardware parameters. In the ASG-EUPOS reference stations network, during the analyzed period, 2 stations (WLDW and CHEL) used only one system (GPS), while, in the GeoTerrace network, all the stations were equipped with both GPS and GLONASS receivers. The ASG EUPOS reference station network (95.6%) has its average completeness greater by about 6% when compared to the GeoTerrace network (89.8%).

  15. GPS queues with heterogeneous traffic classes

    NARCIS (Netherlands)

    Borst, Sem; Mandjes, M.R.H.; van Uitert, Miranda

    2002-01-01

    We consider a queue fed by a mixture of light-tailed and heavy-tailed traffic. The two traffic classes are served in accordance with the generalized processor sharing (GPS) discipline. GPS-based scheduling algorithms, such as weighted fair queueing (WFQ), have emerged as an important mechanism for

  16. Comparison of GPS and Quaternary slip rates: Insights from a new Quaternary fault database for Central Asia

    Science.gov (United States)

    Mohadjer, Solmaz; Ehlers, Todd; Bendick, Rebecca; Mutz, Sebastian

    2016-04-01

    ). Other factors such as a low density in the GPS network (e.g., GPS rate based on data from a single station for the Karakorum fault) appear to also contribute to the mismatch observed between the slip rates. Taken together, these results suggest that GPS-derived slip rates are often (but not always) representative of Quaternary slip rates and that the dating methods and sampling approaches used to identify transients in a fault slip rate history should be heavily scrutinized before interpreting the seismic hazards for a region.

  17. Performance of GPS-devices for environmental exposure assessment.

    Science.gov (United States)

    Beekhuizen, Johan; Kromhout, Hans; Huss, Anke; Vermeulen, Roel

    2013-01-01

    Integration of individual time-location patterns with spatially resolved exposure maps enables a more accurate estimation of personal exposures to environmental pollutants than using estimates at fixed locations. Current global positioning system (GPS) devices can be used to track an individual's location. However, information on GPS-performance in environmental exposure assessment is largely missing. We therefore performed two studies. First, a commute-study, where the commute of 12 individuals was tracked twice, testing GPS-performance for five transport modes and two wearing modes. Second, an urban-tracking study, where one individual was tracked repeatedly through different areas, focused on the effect of building obstruction on GPS-performance. The median error from the true path for walking was 3.7 m, biking 2.9 m, train 4.8 m, bus 4.9 m, and car 3.3 m. Errors were larger in a high-rise commercial area (median error=7.1 m) compared with a low-rise residential area (median error=2.2 m). Thus, GPS-performance largely depends on the transport mode and urban built-up. Although ~85% of all errors were 50 m. Modern GPS-devices are useful tools for environmental exposure assessment, but large GPS-errors might affect estimates of exposures with high spatial variability.

  18. GPS tomography. Validation of reconstructed 3-D humidity fields with radiosonde profiles

    Energy Technology Data Exchange (ETDEWEB)

    Shangguan, M.; Bender, M.; Ramatschi, M.; Dick, G.; Wickert, J. [Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ), Potsdam (Germany); Raabe, A. [Leipzig Institute for Meteorology (LIM), Leipzig (Germany); Galas, R. [Technische Univ. Berlin (Germany). Dept. for Geodesy and Geoinformation Sciences

    2013-11-01

    Water vapor plays an important role in meteorological applications; GeoForschungsZentrum (GFZ) therefore developed a tomographic system to derive 3-D distributions of the tropospheric water vapor above Germany using GPS data from about 300 ground stations. Input data for the tomographic reconstructions are generated by the Earth Parameter and Orbit determination System (EPOS) software of the GFZ, which provides zenith total delay (ZTD), integrated water vapor (IWV) and slant total delay (STD) data operationally with a temporal resolution of 2.5 min (STD) and 15 min (ZTD, IWV). The water vapor distribution in the atmosphere is derived by tomographic reconstruction techniques. The quality of the solution is dependent on many factors such as the spatial coverage of the atmosphere with slant paths, the spatial distribution of their intersections and the accuracy of the input observations. Independent observations are required to validate the tomographic reconstructions and to get precise information on the accuracy of the derived 3-D water vapor fields. To determine the quality of the GPS tomography, more than 8000 vertical water vapor profiles at 13 German radiosonde stations were used for the comparison. The radiosondes were launched twice a day (at 00:00 UTC and 12:00 UTC) in 2007. In this paper, parameters of the entire profiles such as the wet refractivity, and the zenith wet delay have been compared. Before the validation the temporal and spatial distribution of the slant paths, serving as a basis for tomographic reconstruction, as well as their angular distribution were studied. The mean wet refractivity differences between tomography and radiosonde data for all points vary from -1.3 to 0.3, and the root mean square is within the range of 6.5-9. About 32% of 6803 profiles match well, 23% match badly and 45% are difficult to classify as they match only in parts.

  19. Using GPS TEC measurements to probe ionospheric spatial spectra at mid-latitudes

    Science.gov (United States)

    Lay, E. H.; Parker, P. A.; Light, M. E.; Carrano, C. S.; Debchoudhury, S.; Haaser, R. A.

    2017-12-01

    The physics of how random ionospheric structure causes signal degradation is well understood as weak forward scattering through an effective diffraction grating created by plasma irregularities in the ionosphere. However, the spatial scale spectrum of those irregularities required for input into scintillation models and models of traveling ionospheric disturbances is poorly characterized, particularly at the kilometer to tens of kilometer scale lengths important for very-high-frequency (VHF) scintillation prediction. Furthermore, the majority of characterization studies have been performed in low-latitude or high-latitude regions where geomagnetic activity dominates the physical processes. At mid-latitudes, tropospheric and geomagnetic phenomena compete in disturbing the ionosphere, and it is not well understood how these multiple sources affect the drivers that influence the spatial spectrum. In this study, we are interested in mid-latitude electron density irregularities on the order of 10s of kilometers that would affect VHF signals. Data from the GPS networks Japan GEONET and the Plate Boundary Observatory (PBO, UNAVCO) in the western United States were analyzed for this study. Japan GEONET is a dense network of GPS receivers (station spacing of tens of km), with fairly evenly spaced positions over all of Japan. The PBO, on the other hand, has several pockets of extremely dense coverage (station spacing within a few km), but is less dense on average. We analyze a day with a large solar storm (2015/03/17, St. Patrick's Day Storm) to allow high scintillation potential at mid-latitudes, a day with low geomagnetic activity and low thunderstorm activity (2016/01/31), and a day with low geomagnetic activity and high thunderstorm activity (2015/08/02). We then perform two-dimensional spatial analyses on the TEC data from these two networks on scale lengths of 20 to 200 km to infer the spatial scale spectra.

  20. Volcano Popocatepetl, Mexico: ULF geomagnetic anomalies observed at Tlamacas station during March–July, 2005

    Directory of Open Access Journals (Sweden)

    A. Kotsarenko

    2007-01-01

    Full Text Available In this paper the first results of ULF (Ultra Low Frequency geomagnetic anomalies observed at Tlamacas station (Long. 261.37, Lat. 19.07 located at 4 km near the volcano Popocatepetl (active volcano, Long. 261.37, Lat. 19.02 for the period March–July, 2005 and their analysis are presented. The geomagnetic data were collected with a 3-axial fluxgate magnetometer designed at UCLA (University of California, Los Angeles, 1 Hz sampling rate frequency, GPS. Our analysis reveals some anomalies which are suspected to be generated by local volcanic origin: the EM background in the vicinity of the volcano is significantly noisier than in other reference stations; the sporadic strong noise-like geomagnetic activity observed in the H-component; locally generated geomagnetic pulsations (without preferred polarization are detected only at Tlamacas station.

  1. Crustal block structure by GPS data using neural network in the Northern Tien Shan

    Science.gov (United States)

    Kostuk, A.; Carmenate, D.

    2010-05-01

    For over ten years regular GPS measurements have been carried out by Research Station RAS in the Central Asia. The results of these measurements have not only proved the conclusion that the Earth's crust meridional compression equals in total about 17 mm/year from the Tarim massif to the Kazakh shield, but have also allowed estimating deformation behavior in the region. As is known, deformation behavior of continental crust is an actively discussed issue. On the one hand, the Earth's crust is presented as a set of microplates (blocks) and deformation here is a result of shifting along the blocks boundaries, on the other hand, lithospheric deformation is distributed by volume and meets the rheological model of nonlinear viscous fluid. This work represents an attempt to detect the block structure of the surface of the Northern Tien Shan using GPS velocity fields. As a significant difference from analogous works, appears the vector field clustering with the help of neural network used as a classifier by many criteria that allows dividing input space into areas and using of all three components of GPS velocity. In this case, we use such a feature of neural networks as self-organization. Among the mechanisms of self-organization there are two main classes: self-organization based on the Hebb associative rule and the mechanism of neuronal competition based on the generalized Kohonen rule. In this case, we use an approach of self-organizing networks in which we take neuronal competition as an algorithm for their training. As a rule, these are single-layer networks where each neuron is connected to all components of m-dimensional input vector. GPS vectors of the Central Asian velocity field located within the territory of the Northern Tien Shan were used as input patterns. Measurements at GPS sites were fulfilled in 36 hour-long sessions by double-frequency receivers Trimble and Topcon. In so doing, measurement discreteness equaled 30 seconds; the data were processed by

  2. GPS detection of ionospheric perturbation before the 13 February 2001, El Salvador earthquake

    Science.gov (United States)

    Plotkin, V. V.

    A large earthquake of M6.6 occurred on 13 February 2001 at 14:22:05 UT in El Salvador. We detected ionospheric perturbation before this earthquake using GPS data received from CORS network. Systematic decreases of ionospheric total electron content during two days before the earthquake onset were observed at set of stations near the earthquake location and probably in region of about 1000 km from epicenter. This result is consistent with that of investigators, which studied these phenomena with several observational techniques. However it is possible, that such TEC changes are simultaneously accompanied by changes due to solar wind parameters and Kp -index.

  3. GPS detection of ionospheric perturbation before the 13 February 2001, El Salvador earthquake

    Directory of Open Access Journals (Sweden)

    V. V. Plotkin

    2003-01-01

    Full Text Available A large earthquake of M6.6 occurred on 13 February 2001 at 14:22:05 UT in El Salvador. We detected ionospheric perturbation before this earthquake using GPS data received from CORS network. Systematic decreases of ionospheric total electron content during two days before the earthquake onset were observed at set of stations near the earthquake location and probably in region of about 1000 km from epicenter. This result is consistent with that of investigators, which studied these phenomena with several observational techniques. However it is possible, that such TEC changes are simultaneously accompanied by changes due to solar wind parameters and Kp -index.

  4. Precise orbit determination and point positioning using GPS, Glonass, Galileo and BeiDou

    Directory of Open Access Journals (Sweden)

    Tegedor J.

    2014-04-01

    Full Text Available State of the art Precise Point Positioning (PPP is currently based on dual-frequency processing of GPS and Glonass navigation systems. The International GNSS Service (IGS is routinely providing the most accurate orbit and clock products for these constellations, allowing point positioning at centimeter-level accuracy. At the same time, the GNSS landscape is evolving rapidly, with the deployment of new constellations, such as Galileo and BeiDou. The BeiDou constellation currently consists of 14 operational satellites, and the 4 Galileo In-Orbit Validation (IOV satellites are transmitting initial Galileo signals. This paper focuses on the integration of Galileo and BeiDou in PPP, together with GPS and Glonass. Satellite orbits and clocks for all constellations are generated using a network adjustment with observation data collected by the IGS Multi-GNSS Experiment (MGEX, as well as from Fugro proprietary reference station network. The orbit processing strategy is described, and orbit accuracy for Galileo and BeiDou is assessed via orbit overlaps, for different arc lengths. Kinematic post-processed multi-GNSS positioning results are presented. The benefits of multiconstellation PPP are discussed in terms of enhanced availability and positioning accuracy.

  5. Application of GPS systems on a mobile robot

    Science.gov (United States)

    Cao, Peter; Saxena, Mayank; Tedder, Maurice; Mischalske, Steve; Hall, Ernest L.

    2001-10-01

    The purpose of this paper is to describe the use of Global Positioning Systems (GPS) as geographic information and navigational system for a ground based mobile robot. Several low cost wireless systems are now available for a variety of innovative automobile applications including location, messaging and tracking and security. Experiments were conducted with a test bed mobile robot, Bearcat II, for point-to-point motion using a Motorola GPS in June 2001. The Motorola M12 Oncore GPS system is connected to the Bearcat II main control computer through a RS232 interface. A mapping program is used to define a desired route. Then GPS information may be displayed for verification. However, the GPS information is also used to update the control points of the mobile robot using a reinforcement learning method. Local position updates are also used when found in the environment. The significance of the method is in extending the use of GPS to local vehicle control that requires more resolution that is available from the raw data using the adaptive control method.

  6. Investigation of correlation of the variations in land subsidence (detected by continuous GPS measurements and methodological data in the surrounding areas of Lake Urmia

    Directory of Open Access Journals (Sweden)

    K. Moghtased-Azar

    2012-11-01

    Full Text Available Lake Urmia, a salt lake in the north-west of Iran, plays a valuable role in the environment, wildlife and economy of Iran and the region, but now faces great challenges for survival. The Lake is in immediate and great danger and is rapidly going to become barren desert. As a result, the increasing demands upon groundwater resources due to expanding metropolitan and agricultural areas are a serious challenge in the surrounding regions of Lake Urmia. The continuous GPS measurements around the lake illustrate significant subsidence rate between 2005 and 2009. The objective of this study was to detect and specify the non-linear correlation of land subsidence and temperature activities in the region from 2005 to 2009. For this purpose, the cross wavelet transform (XWT was carried out between the two types of time series, namely vertical components of GPS measurements and daily temperature time series. The significant common patterns are illustrated in the high period bands from 180–218 days band (~6–7 months from September 2007 to February 2009. Consequently, the satellite altimetry data confirmed that the maximum rate of linear trend of water variation in the lake from 2005 to 2009, is associated with time interval from September 2007 to February 2009. This event was detected by XWT as a critical interval to be holding the strong correlation between the land subsidence phenomena and surface temperature. Eventually the analysis can be used for modeling and prediction purposes and probably stave off the damage from subsidence phenomena.

  7. Investigation of correlation of the variations in land subsidence (detected by continuous GPS measurements) and methodological data in the surrounding areas of Lake Urmia

    Science.gov (United States)

    Moghtased-Azar, K.; Mirzaei, A.; Nankali, H. R.; Tavakoli, F.

    2012-11-01

    Lake Urmia, a salt lake in the north-west of Iran, plays a valuable role in the environment, wildlife and economy of Iran and the region, but now faces great challenges for survival. The Lake is in immediate and great danger and is rapidly going to become barren desert. As a result, the increasing demands upon groundwater resources due to expanding metropolitan and agricultural areas are a serious challenge in the surrounding regions of Lake Urmia. The continuous GPS measurements around the lake illustrate significant subsidence rate between 2005 and 2009. The objective of this study was to detect and specify the non-linear correlation of land subsidence and temperature activities in the region from 2005 to 2009. For this purpose, the cross wavelet transform (XWT) was carried out between the two types of time series, namely vertical components of GPS measurements and daily temperature time series. The significant common patterns are illustrated in the high period bands from 180-218 days band (~6-7 months) from September 2007 to February 2009. Consequently, the satellite altimetry data confirmed that the maximum rate of linear trend of water variation in the lake from 2005 to 2009, is associated with time interval from September 2007 to February 2009. This event was detected by XWT as a critical interval to be holding the strong correlation between the land subsidence phenomena and surface temperature. Eventually the analysis can be used for modeling and prediction purposes and probably stave off the damage from subsidence phenomena.

  8. A straightness error measurement method matched new generation GPS

    International Nuclear Information System (INIS)

    Zhang, X B; Lu, H; Jiang, X Q; Li, Z

    2005-01-01

    The axis of the non-diffracting beam produced by an axicon is very stable and can be adopted as the datum line to measure the spatial straightness error in continuous working distance, which may be short, medium or long. Though combining the non-diffracting beam datum-line with LVDT displace detector, a new straightness error measurement method is developed. Because the non-diffracting beam datum-line amends the straightness error gauged by LVDT, the straightness error is reliable and this method is matchs new generation GPS

  9. Comparing land surface phenology derived from satellite and GPS network microwave remote sensing.

    Science.gov (United States)

    Jones, Matthew O; Kimball, John S; Small, Eric E; Larson, Kristine M

    2014-08-01

    The land surface phenology (LSP) start of season (SOS) metric signals the seasonal onset of vegetation activity, including canopy growth and associated increases in land-atmosphere water, energy and carbon (CO2) exchanges influencing weather and climate variability. The vegetation optical depth (VOD) parameter determined from satellite passive microwave remote sensing provides for global LSP monitoring that is sensitive to changes in vegetation canopy water content and biomass, and insensitive to atmosphere and solar illumination constraints. Direct field measures of canopy water content and biomass changes desired for LSP validation are generally lacking due to the prohibitive costs of maintaining regional monitoring networks. Alternatively, a normalized microwave reflectance index (NMRI) derived from GPS base station measurements is sensitive to daily vegetation water content changes and may provide for effective microwave LSP validation. We compared multiyear (2007-2011) NMRI and satellite VOD records at over 300 GPS sites in North America, and their derived SOS metrics for a subset of 24 homogenous land cover sites to investigate VOD and NMRI correspondence, and potential NMRI utility for LSP validation. Significant correlations (P<0.05) were found at 276 of 305 sites (90.5 %), with generally favorable correspondence in the resulting SOS metrics (r (2)=0.73, P<0.001, RMSE=36.8 days). This study is the first attempt to compare satellite microwave LSP metrics to a GPS network derived reflectance index and highlights both the utility and limitations of the NMRI data for LSP validation, including spatial scale discrepancies between local NMRI measurements and relatively coarse satellite VOD retrievals.

  10. The 2001 January 13th M {W}7.7 and February 13th M {W}6.6 El Salvador Earthquakes: Deformation and Stress Triggering

    Science.gov (United States)

    Hreinsdóttir, S.; Freymueller, J. T.

    2001-12-01

    On the 13th of January 2001, an M {W} 7.7 normal fault earthquake occurred offshore El Salvador. The earthquake occurred in the subducting Cocos plate and was followed by high seismic activity and several earthquakes exceeding magnitude 5. On the 13th of February, an M {W} 6.6 strike slip earthquake occurred in the overriding Caribbean plate, about 75 km NNW from the epicenter of the large January earthquake. Deformation due to these earthquakes was observed at six continuous CORS GPS stations in Central America. In the M {W} 7.7 earthquake about 10 mm displacement was measured at GPS stations in El Salvador and Honduras. A smaller but significant dispacement was also observed at GPS stations in Nicaragua, more then 200 km from the earthquake's epicenter. In the M {W} 6.6 earthquake 41+/- 1 mm displacement in direction N111oE was measured at the GPS station in San Salvador, El Salvador. Other CORS GPS stations were not affected by that earthquake. A postsesmic signal is detectable at the San Salvador GPS station, strongest right after the earthquake and then decays. On average we see 0.3 +/- 0.1 mm/day of SSW motion of the station in the first twenty days following the earthquake. Using seismic and geodetic data, we calculated Coulomb stress changes following the January 13th, M {W} 7.7 earthquake. Of special interest were six 5.4 earthquake that occurred in the overriding Caribean plate. The location and focal mechanism of these earthquakes correlate with areas of calculated increase in static stress thus indicating stress triggering. The thrust events occurred 2 to 20 days after the M {W} 7.7 earthquake, in increasing distance from the M {W} 7.7 event with time.

  11. Newly velocity field of Sulawesi Island from GPS observation

    Science.gov (United States)

    Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.

    2017-07-01

    Sulawesi microplate Island is located at famous triple junction area of the Eurasian, India-Australian, and Philippine Sea plates. Under the influence of the northward moving Australian plate and the westward motion of the Philippine plate, the island at Eastern part of Indonesia is collide and with the Eurasian plate and Sunda Block. Those recent microplate tectonic motions can be quantitatively determine by GNSS-GPS measurement. We use combine GNSS-GPS observation types (campaign type and continuous type) from 1997 to 2015 to derive newly velocity field of the area. Several strategies are applied and tested to get the optimum result, and finally we choose regional strategy to reduce error propagation contribution from global multi baseline processing using GAMIT/GLOBK 10.5. Velocity field are analyzed in global reference frame ITRF 2008 and local reference frame by fixing with respect alternatively to Eurasian plate - Sunda block, India-Australian plate and Philippine Sea plates. Newly results show dense distribution of velocity field. This information is useful for tectonic deformation studying in geospatial era.

  12. GPS-Aided Video Tracking

    Directory of Open Access Journals (Sweden)

    Udo Feuerhake

    2015-08-01

    Full Text Available Tracking moving objects is both challenging and important for a large variety of applications. Different technologies based on the global positioning system (GPS and video or radio data are used to obtain the trajectories of the observed objects. However, in some use cases, they fail to provide sufficiently accurate, complete and correct data at the same time. In this work we present an approach for fusing GPS- and video-based tracking in order to exploit their individual advantages. In this way we aim to combine the reliability of GPS tracking with the high geometric accuracy of camera detection. For the fusion of the movement data provided by the different devices we use a hidden Markov model (HMM formulation and the Viterbi algorithm to extract the most probable trajectories. In three experiments, we show that our approach is able to deal with challenging situations like occlusions or objects which are temporarily outside the monitored area. The results show the desired increase in terms of accuracy, completeness and correctness.

  13. Geomagnetic storm effects on GPS based navigation

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao

    2009-05-01

    Full Text Available The energetic events on the sun, solar wind and subsequent effects on the Earth's geomagnetic field and upper atmosphere (ionosphere comprise space weather. Modern navigation systems that use radio-wave signals, reflecting from or propagating through the ionosphere as a means of determining range or distance, are vulnerable to a variety of effects that can degrade the performance of the navigational systems. In particular, the Global Positioning System (GPS that uses a constellation of earth orbiting satellites are affected due to the space weather phenomena.

    Studies made during two successive geomagnetic storms that occurred during the period from 8 to 12 November 2004, have clearly revealed the adverse affects on the GPS range delay as inferred from the Total Electron Content (TEC measurements made from a chain of seven dual frequency GPS receivers installed in the Indian sector. Significant increases in TEC at the Equatorial Ionization anomaly crest region are observed, resulting in increased range delay during the periods of the storm activity. Further, the storm time rapid changes occurring in TEC resulted in a number of phase slips in the GPS signal compared to those on quiet days. These phase slips often result in the loss of lock of the GPS receivers, similar to those that occur during strong(>10 dB L-band scintillation events, adversely affecting the GPS based navigation.

  14. Tightly coupled low cost 3D RISS/GPS integration using a mixture particle filter for vehicular navigation.

    Science.gov (United States)

    Georgy, Jacques; Noureldin, Aboelmagd

    2011-01-01

    Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle's odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are

  15. Tightly Coupled Low Cost 3D RISS/GPS Integration Using a Mixture Particle Filter for Vehicular Navigation

    Directory of Open Access Journals (Sweden)

    Jacques Georgy

    2011-04-01

    Full Text Available Satellite navigation systems such as the global positioning system (GPS are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF. Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D reduced inertial sensors system (RISS with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle’s odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift

  16. High-sensitivity modified Glasgow prognostic score (HS-mGPS) Is superior to the mGPS in esophageal cancer patients treated with chemoradiotherapy

    OpenAIRE

    Chen, Peng; Fang, Min; Wan, Qiuyan; Zhang, Xuebang; Song, Tao; Wu, Shixiu

    2017-01-01

    The present study compared the prognostic value of the modified Glasgow prognostic score (mGPS) and high-sensitivity mGPS (HS-mGPS) in unresectable locally advanced esophageal squamous cell carcimona (LAESCC) patients treated with concurrent chemoradiotherapy (CCRT). The baseline data of 163 eligible patients were retrospectively collected. Patients with a C-reactive protein (CRP) ≤ 10 mg/l and albumin ≥ 35 g/l were allocated to mGPS-0 group. Patients with only elevated CRP (> 10 mg/l) were a...

  17. Geophysics and Texas History: Teachers Utilize GPS and GPR Technology to Help Restore an Abandoned Cemetery

    Science.gov (United States)

    Henning, A. T.; Sawyer, D. S.; Wallace, D.; Kahera, A.

    2009-12-01

    In July 2009, a group of twenty-six K-12 teachers investigated an abandoned cemetery in Prairie View, Texas, utilizing ground-penetrating radar (GPR) to image the subsurface and handheld global positioning system (GPS) units and a total station to record surface positions. The teachers were participants in a summer course at Rice University, ESCI 515: Geophysical Field Work for Educators. The course met for 8 full days over a two week period. During this time, the group acquired and interpreted 53 GPR profiles and over 700 GPS positions. The results of the study were presented to the Prairie View community at the end of the two weeks, and our data will be used in their effort to obtain a historical site designation for the cemetery. Wyatt Chapel Cemetery is located adjacent to the campus of Prairie View A&M University in Prairie View, TX, and is thought to have originated as a slave burial ground in the 1850’s. There are very few markers remaining, but a previous ESCI 515 course (in summer 2007) discovered multiple unmarked burials using GPR, which were confirmed by subsequent excavations. This past summer, ESCI 515 participants acquired GPR profiles in previously unexplored areas, used a total station to accurately record the positions of surface features such as headstones, and used handheld GPS units to map the location of a nearby stream bed. Participants were in-service K-12 teachers from urban Houston school districts where the majority of students are members of historically underrepresented minority groups. Recruitment efforts targeted educators who are currently teaching science without a science degree. Participants included elementary, middle and high school teachers. This summer experience is followed by a content-intensive academic year course in Physical Geology. Participants experienced the process of science first-hand and used science for community service (i.e. restoring an abandoned cemetery). Through background research, they derived a rich

  18. Estimering af brændstofforbrug vha. GPS Data

    DEFF Research Database (Denmark)

    Andersen, Ove; Lahrmann, Harry; Torp, Kristian

    2010-01-01

    Det er simpelt og billigt at opsamle GPS målinger fra køretøjer. Når større mængder GPS data indsamles fra et passende antal køretøjer kan dataen bruges til at beregne f.eks. køretider. Det er ligeledes muligt ud fra GPS data at estimere miljøindikatorer så som, hvor aggressivt kører bilister og er...... der nogle vejstrækninger, der har en højere (negativ) miljø påvirkning end andre? I denne artikel præsenterer et forsøg, hvor GPS data anvendes til at estimere brændstofforbruget ved en enkelt tur og for vejnettet generelt. Dette gøres ved at opbygge en database med GPS data. Ud fra disse data gives...

  19. Survei Topografi Untuk Menentukan Garis Tampak Pandang Base Transceiver Station (Bts)

    OpenAIRE

    Laila Nugraha, Arief; Sudarsono, Bambang

    2008-01-01

    Base Transceiver Station (BTS) representation one of appliance of supporter of telecommunicationsnetwork. The development of BTS have to each other in circuit by other BTS or which have been planned.The situation BTS in circuit between other BTS without obstacle are called Line of Sight (LoS). Thetopographic survey is method of survey work to make sure the Line of Sight BTS. The topographic surveyconsist of GPS survey and study map for determination of high of BTS antenna and the Line of Sigh...

  20. Development of a GPS buoy system for monitoring tsunami, sea waves, ocean bottom crustal deformation and atmospheric water vapor

    Science.gov (United States)

    Kato, Teruyuki; Terada, Yukihiro; Nagai, Toshihiko; Koshimura, Shun'ichi

    2010-05-01

    bottom positions with a few centimeters in accuracy. The system is now operational for more than ten sites along the Japanese coasts. Currently, however, the measurements are not continuous but have been done once to several times a year using a boat. If a GPS and acoustic system is placed on a buoy, ocean bottom position could be monitored in near real-time and continuous manner. This will allow us to monitor more detailed and short term crustal deformations at the sea bottom. Another application plan is for an atmospheric research. Previous researchers have shown that GPS is capable of measuring atmospheric water vapor through estimating tropospheric zenith delay measurements of GPS at the sea surface. Information of water vapor content and its temporal variation over sea surface will much contribute to weather forecast on land which has mostly been conducted only by land observations. Considering that the atmospheric mass moves from west to east in general in and around Japanese islands, information of water vapor together with other atmospheric data from an array of GPS buoy placed in the west of Japanese Islands, will much improve weather forecast. We try to examine if this is also feasible. As a conclusion of a series of GPS buoy experiments, we could assert that GPS buoy system will be a powerful tool to monitor ocean surface and much contribute to provide safe and secure life of people.

  1. The structure of mid- and high-latitude ionosphere during September 1999 storm event obtained from GPS observations

    Directory of Open Access Journals (Sweden)

    I. I. Shagimuratov

    Full Text Available TEC data, obtained from over 60 GPS stations, were used to study the ionospheric effects of the 12–16 September 1999 magnetic storm over Europe. The spatial and temporal changes of the ionosphere were analysed as a time series of TEC maps, which present 15 min averages of TEC. The data set consisting of GPS observations, collected by a dense network of European stations, with sampling rate of 30 s, enable the creation of TEC maps with high spatial and temporal resolution. The storm included the positive as well as the negative phase. The positive phase took place during the first storm day of 12 September 1999. The short-lived daytime TEC enhancement was observed at all latitudes. The maximal enhancement reached a factor of 1.3–1.5. On the second and third days, the negative phase of the storm developed. The TEC decrease was registered regardless of time of the day. The TEC depression exceeded 70% relative to quiet days. On the following days (15 and 16 September, a significant daytime enhancement of TEC was observed once again. The complex occurrence of the ionospheric storm was probably related to the features of development of the magnetic storm. We found out that during the storm the large and medium-scale irregularities developed in the high-latitude ionosphere. The multi-stations technique, employed to create TEC maps, was particularly successful while studying the mid-latitude ionospheric trough. We found out that the essential changes of TEC during the storm, which were registered at the auroral and sub-auroral ionosphere, were connected with the effect of the trough and its dynamics, which depends on geomagnetic activity.

    Key words. Ionosphere (ionospheric disturbances; auroral ionosphere; mid-latitude ionosphere

  2. How and Why to Do VLBI on GPS

    Science.gov (United States)

    Dickey, J. M.

    2010-01-01

    In order to establish the position of the center of mass of the Earth in the International Celestial Reference Frame, observations of the Global Positioning Satellite (GPS) constellation using the IVS network are important. With a good frame-tie between the coordinates of the IVS telescopes and nearby GPS receivers, plus a common local oscillator reference signal, it should be possible to observe and record simultaneously signals from the astrometric calibration sources and the GPS satellites. The standard IVS solution would give the atmospheric delay and clock offsets to use in analysis of the GPS data. Correlation of the GPS signals would then give accurate orbital parameters of the satellites in the ICRF reference frame, i.e., relative to the positions of the astrometric sources. This is particularly needed to determine motion of the center of mass of the earth along the rotation axis.

  3. Localization system for use in GPS denied environments

    Energy Technology Data Exchange (ETDEWEB)

    Trueblood, J. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-01

    The military uses to autonomous platforms to complete missions to provide standoff for the warfighters. However autonomous platforms rely on GPS to provide their global position. In many missions spaces the autonomous platforms may encounter GPS denied environments which limits where the platform operates and requires the warfighters to takes its place. GPS denied environments can occur due to tall building, trees, canyon wall blocking the GPS satellite signals or a lack of coverage. An Inertial Navigation System (INS) uses sensors to detect the vehicle movement and direction its traveling to calculate the vehicle. One of biggest challenges with an INS system is the accuracy and accumulation of errors over time of the sensors. If these challenges can be overcome the INS would provide accurate positioning information to the autonomous vehicle in GPS denied environments and allow them to provide the desired standoff for the warfighters.

  4. Observational study of ionospheric irregularities and GPS scintillations associated with the 2012 tropical cyclone Tembin passing Hong Kong

    Science.gov (United States)

    Yang, Zhe; Liu, Zhizhao

    2016-05-01

    This study presents the ionospheric responses observed in Hong Kong to a Typhoon, namely, Tembin, from the aspects of the occurrence of ionospheric irregularities and scintillations, using Global Positioning System (GPS) observations from a ground-based GPS scintillation monitoring station in Hong Kong and from GPS receivers on board the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. The ionospheric irregularities and scintillations are characterized by the rate of total electron content variation index (ROTI) and the amplitude scintillation index S4, respectively. The typhoon Tembin formed over the western North Pacific during 18-30 August 2012 and approached Hong Kong during 24-27 August 2012 with the closest distance 290 km from Hong Kong at around 17 universal time (UT) on 25 August 2012. The ground-based observations indicate that in the nighttime period of 20:00-02:00 local time (LT = UT + 8 h) on 26 August when Tembin passed closely to Hong Kong, the ionospheric irregularities and scintillations of GPS signals were observed in the south of Hong Kong, over the area of 13°N ~ 23°N in latitude and 110°E ~ 120°E in longitude. From the COSMIC observations, it shows that the number of radio occultation scintillation events peaks on 26 August 2012 during the passage of Tembin. Without the presence of strong geomagnetic or solar activity, it is suspected that gravity waves might be generated in the lower atmosphere and likely seed the formation of ionospheric plasma irregularities. This work for the first time from Hong Kong observes the sign of coupling between the lower atmosphere and ionosphere in a tropical cyclone event, combining both ground- and space-based GPS observation data.

  5. Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station

    Directory of Open Access Journals (Sweden)

    Seongkyun Jeong

    2008-06-01

    Full Text Available GNSS (Global Navigation Satellite System Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

  6. Feasibility study of using a 'travelling' CO2 and CH4 instrument to validate continuous in-situ measurement stations

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, S.; Konrad, G.; Levin, I. [Institut fuer Umweltphysik IUP, Heidelberg University (Germany); Vermeulen, A.T. [Energy research Center of the Netherlands ECN, Petten (Netherlands); Laurent, O.; Delmotte, M.; Hazan, L. [Laboratoire des Sciences du Climat et de l' Environnement LSCE, Gif-sur-Yvette (France); Jordan, A. [Max Planck Institute for Biogeochemistry, Jena (Germany); Conil, S. [Agence Nationale pour la gestion des Dechets Radioactifs ANDRA, Bure (France)

    2012-09-24

    In the course of the ICOS (Integrated Carbon Observation System) Demo Experiment a feasibility study on the usefulness of a Travelling Comparison Instrument (TCI) was conducted in order to evaluate continuous atmospheric CO2 and CH4 measurements at two European stations. The aim of the TCI is to independently measure ambient air in parallel to the standard station instrumentation, thus providing a comprehensive comparison that includes the sample intake system, the instrument itself as well as its calibration and data evaluation. Observed differences between the TCI and the Heidelberg gas chromatographic system, which acted as a reference for the TCI, were -0.02{+-}0.08{mu}mol mol{sup -1} for CO2 and -0.3{+-}2.3{mu}mol mol{sup -1} for CH4. Over a period of two weeks each, the continuous CO2 and CH4 measurements at two ICOS field stations, Cabauw and OPE, were compared to co-located TCI measurements. At Cabauw mean differences of 0.21{+-}0.06{mu}mol mol{sup -1} for CO2 and 0.41{+-}0.50{mu}mol mol{sup -1} for CH4 were found. For OPE the mean differences were 0.13{+-}0.07{mu}mol mol{sup -1} for CO2 and 0.44{+-}0.36{mu}mol mol{sup -1} for CH4. Potential causes of these observed differences are leakages or contaminations in the intake lines and/or there flushing pumps. At Cabauw station an additional error contribution originates from insufficient flushing of standard gases. Offsets arising from differences in the working standard calibrations or leakages/ contaminations in the drying systems are too small to explain the observed differences. Finally a comprehensive quality management strategy for atmospheric monitoring networks is proposed.

  7. GPS antenna designs

    Science.gov (United States)

    Laube, Samuel J. P.

    1987-05-01

    Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.

  8. Uporaba satelitskih sistemov GPS in GLONASS v geodetski izmeri

    OpenAIRE

    Oset, Klemen

    2015-01-01

    V geodetski izmeri GNSS se že nekaj časa za določanje položaja uporabljata hkrati sistema GLONASS in GPS. V diplomski nalogi sta predstavljena GNSS sistema GPS in GLONASS, podobnosti in razlike obeh sistemov ter njune značilnosti pri določitvi položaja. V praktičnem delu naloge so predstavljeni potek meritev, obdelava opazovanj in analiza kakovosti koordinat določenih na osnovi opazovanj GPS, opazovanj GLONASS in skupne uporabe opazovanj GPS in GLONASS.

  9. Mining Significant Semantic Locations from GPS Data

    DEFF Research Database (Denmark)

    Cao, Xin; Cong, Gao; Jensen, Christian Søndergaard

    2010-01-01

    With the increasing deployment and use of GPS-enabled devices, massive amounts of GPS data are becoming available. We propose a general framework for the mining of semantically meaningful, significant locations, e.g., shopping malls and restaurants, from such data. We present techniques capable...... of extracting semantic locations from GPS data. We capture the relationships between locations and between locations and users with a graph. Significance is then assigned to locations using random walks over the graph that propagates significance among the locations. In doing so, mutual reinforcement between...

  10. Arctic Tides from GPS on sea-ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2013-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea-ice dampens the ocean tide amplitude with the result that global tidal models perform less accurately in the polar regions. This paper presents, a kinematic processing of global positioning system (GPS....... The results show coherence between the GPS buoy measurements, and the tide model. Furthermore, we have proved that the reference ellipsoid of WGS84, can be interpolated to the tidal defined zero level by applying geophysical corrections to the GPS data....

  11. Mining significant semantic locations from GPS data

    DEFF Research Database (Denmark)

    Cao, Xin; Cong, Gao; Jensen, Christian S.

    2010-01-01

    With the increasing deployment and use of GPS-enabled devices, massive amounts of GPS data are becoming available. We propose a general framework for the mining of semantically meaningful, significant locations, e.g., shopping malls and restaurants, from such data. We present techniques capable...... of extracting semantic locations from GPS data. We capture the relationships between locations and between locations and users with a graph. Significance is then assigned to locations using random walks over the graph that propagates significance among the locations. In doing so, mutual reinforcement between...

  12. Contemporary Rigidity of Precambrian and Paleosoic Platform on the Area of Poland on the Base of GPS Data

    Science.gov (United States)

    Kontny, B.; Grzempowski, P.; Bogusz, J.; Jarosinski, M.; Klos, A.

    2012-12-01

    Now it became obvious in the world literature that Cenozoic intraplate deformations of the Northwestern Eurasia were connected with the Alpine plate collision. However, relations of the Cenozoic intraplate deformations with the contemporary spreading in the north and transcontinental shears along the Tornquist line and Urals must be taken into account as well. On the contrary, in East Europe, periods of the activity being coincident with those in the Caucasus and the phases of the Red Sea opening. It is also evidence that the southern East European craton belongs to the Periarabian collision area. A compression axis orientation was sub latitudinal there, this allows suggestion that the deformations were originated under pressure of the adjacent Urals. According to some authors the present view of unity and rigidity of the Cenozoic Eurasian plate is correct only at the first approximation. In reality, the Eurasian plate represented a time varying kaleidoscope of sub plates that moved at different velocities from the Atlantic-Arctic spreading axis. Contemporary image of the intraplate deformation can be verified on the basis of observations of permanent stations GPS at present. Density the IGS and EPN station on the North-East Eurasian area isn't sufficient to the credible estimation of geokinematics parameters of every sub plates (platforms). But national networks of the GBAS stations, as for example a Polish network ASG-EUPOS, are ensuring the much higher density of measuring stations (average distance between stations of the c 70 km). Stations are located on both sides of the Teisseyre - Tornquist zone, both on East-European Precambrian platform (East European Craton) as well as on West-European Paleozoic platform. Three-year period of permanent GPS observation on ASG-EUPOS stations enabled the estimation of the velocities of the stations with the sufficing accuracy for the geodynamic purposes. It gave the possibility of the evaluation of contemporary rigidity of

  13. Tether applications for space station

    Science.gov (United States)

    Nobles, W.

    1986-01-01

    A wide variety of space station applications for tethers were reviewed. Many will affect the operation of the station itself while others are in the category of research or scientific platforms. One of the most expensive aspects of operating the space station will be the continuing shuttle traffic to transport logistic supplies and payloads to the space station. If a means can be found to use tethers to improve the efficiency of that transportation operation, it will increase the operating efficiency of the system and reduce the overall cost of the space station. The concept studied consists of using a tether to lower the shuttle from the space station. This results in a transfer of angular momentum and energy from the orbiter to the space station. The consequences of this transfer is studied and how beneficial use can be made of it.

  14. Status of NGS CORS Network and Its Contribution to the GGOS Infrastructure

    Science.gov (United States)

    Choi, K. K.; Haw, D.; Sun, L.

    2017-12-01

    Recent advancement of Satellite Geodesy techniques can now contribute to the global frame realization needed to improve worldwide accuracies. These techniques rely on coordinates computed using continuously observed GPS data and corresponding satellite orbits. The GPS-based reference system continues to depend on the physical stability of a ground-based network of points as the primary foundation for these observations. NOAA's National Geodetic Survey (NGS) has been operating Continuously Operating Reference Stations (CORS) to provide direct access to the National Spatial Reference System (NSRS). By virtue of NGS' scientific reputation and leadership in national and international geospatial issues, NGS has determined to increase its participation in the maintenance of the U.S. component of the global GPS tracking network in order to realize a long-term stable national terrestrial reference frame. NGS can do so by leveraging its national leadership role coupled with NGS' scientific expertise, in designating and upgrading a subset of the current tracking network for this purpose. This subset of stations must have the highest operational standards to serve the dual functions: being the U.S. contribution to the international frame, along with providing the link to the national datum. These stations deserve special attention to ensure that the highest possible levels of quality and stability are maintained. To meet this need, NGS is working with the international scientific groups to add and designate these reference stations based on scientific merit such as: colocation with other geodetic techniques, geographic area, and monumentation stability.

  15. Quantifying movement demands of AFL football using GPS tracking.

    Science.gov (United States)

    Wisbey, Ben; Montgomery, Paul G; Pyne, David B; Rattray, Ben

    2010-09-01

    Global positioning system (GPS) monitoring of movement patterns is widespread in elite football including the Australian Football League (AFL). However documented analysis of this activity is lacking. We quantified the movement patterns of AFL football and differences between nomadic (midfield), forward and defender playing positions, and determined whether the physical demands have increased over a four season period. Selected premiership games were monitored during the 2005 (n=80 game files), 2006 (n=244), 2007 (n=632) and 2008 (n=793) AFL seasons. Players were fitted with a shoulder harness containing a GPS unit. GPS data were downloaded after games and the following measures extracted: total distance (km), time in various speed zones, maximum speed, number of surges, accelerations, longest continuous efforts and a derived exertion index representing playing intensity. In 2008 nomadic players covered per game 3.4% more total distance (km), had 4.8% less playing time (min), a 17% higher exertion index (per min), and 23% more time running >18kmh(-1) than forwards and defenders (all p<0.05). Physical demands were substantially higher in the 2008 season compared with 2005: an 8.4% increase in mean speed, a 14% increase in intensity (exertion index) and a 9.0% decrease in playing time (all p<0.05). Nomadic players in AFL work substantially harder than forwards and defenders in covering more ground and at higher running intensities. Increases in the physical demands of AFL football were evident between 2005 and 2008. The increasing speed of the game has implications for game authorities, players and coaching staff.

  16. Secular changes in Earth's shape and surface mass loading derived from combinations of reprocessed global GPS networks

    Science.gov (United States)

    Booker, David; Clarke, Peter J.; Lavallée, David A.

    2014-09-01

    The changing distribution of surface mass (oceans, atmospheric pressure, continental water storage, groundwater, lakes, snow and ice) causes detectable changes in the shape of the solid Earth, on time scales ranging from hours to millennia. Transient changes in the Earth's shape can, regardless of cause, be readily separated from steady secular variation in surface mass loading, but other secular changes due to plate tectonics and glacial isostatic adjustment (GIA) cannot. We estimate secular station velocities from almost 11 years of high quality combined GPS position solutions (GPS weeks 1,000-1,570) submitted as part of the first international global navigation satellite system service reprocessing campaign. Individual station velocities are estimated as a linear fit, paying careful attention to outliers and offsets. We remove a suite of a priori GIA models, each with an associated set of plate tectonic Euler vectors estimated by us; the latter are shown to be insensitive to the a priori GIA model. From the coordinate time series residuals after removing the GIA models and corresponding plate tectonic velocities, we use mass-conserving continental basis functions to estimate surface mass loading including the secular term. The different GIA models lead to significant differences in the estimates of loading in selected regions. Although our loading estimates are broadly comparable with independent estimates from other satellite missions, their range highlights the need for better, more robust GIA models that incorporate 3D Earth structure and accurately represent 3D surface displacements.

  17. 2004 Deformation of Okmok Volcano,Alaska, USA

    Science.gov (United States)

    Fournier, T. J.; Freymueller, J. T.

    2004-12-01

    Okmok Volcano is a basaltic shield volcano with a 10km diameter caldera located on Umnak Island in the Aleutian Arc, Alaska. Okmok has had frequent effusive eruptions, the latest in 1997. In 2002 the Alaska Volcano Observatory installed a seismic network and three continuous GPS stations. Two stations are located in the caldera and one is located at the base of the volcano at Fort Glenn. Because of instrumentation problems the GPS network was not fully operational until August 2003. A fourth GPS site, located on the south flank of the volcano, came online in September 2004. The three continuous GPS instruments captured a rapid inflation event at Okmok Volcano spanning 6 months from March to August 2004. The instruments give a wonderful time-series of the episode but poor spatial coverage. Modeling the deformation is accomplished by supplementing the continuous data with campaign surveys conducted in the summers of 2002, 2003 and 2004. Displacements between the 2002 and 2003 campaigns show a large inflation event between those time periods. The continuous and campaign data suggest that deformation at Okmok is characterized by short-lived rapid inflation interspersed with periods of moderate inflation. Velocities during the 2004 event reached a maximum of 31cm/yr in the vertical direction and 15cm/yr eastward at the station OKCD, compared with the pre-inflation velocities of 4cm/yr in the vertical and 2.5cm/yr southeastward. Using a Mogi point source model both prior to and during the inflation gives a source location in the center of the caldera and a depth of about 3km. The source strength rate is three times larger during the inflation event than the period preceding it. Based on the full time series of campaign and continuous GPS data, it appears that the variation in inflation rate results from changes in the magma supply rate and not from changes in the depth of the source.

  18. Logistical Support for the Installation of the Plate Boundary Observatory GPS and Borehole Strainmeter Networks

    Science.gov (United States)

    Kurnik, C.; Austin, K.; Coyle, B.; Dittmann, T.; Feaux, K.; Friesen, B.; Johnson, W.; Mencin, D.; Pauk, B.; Walls, C.

    2007-12-01

    The Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project, is designed to study the three- dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, UNAVCO will install 880 continuous GPS stations, 103 borehole strainmeter stations, 28 tiltmeters, and five laser strainmeters by October 2008. Such a broad network presents significant logisitical challenges, including moving supplies, equipment, and personnel around 6 million square kilometers, and this requires accurate tracking and careful planning. The PBO logistics chain includes the PBO headquarters at UNAVCO in Boulder, Colorado and five regional offices in the continental United States and Alaska, served by dozens of suppliers spread across the globe. These offices are responsible for building and maintaining sites in their region. Most equipment and supplies first arrive in Boulder, where they are tagged and entered into a UNAVCO-wide equipment database, assembled and quality checked as necessary, and sent on to the appropriate regional office. Larger items which are costly to store and ship from Boulder, such as batteries or long sections of stainless steel pipe and bar required for monuments, are shipped directly from the supplier to each region as needed. These supplies and equipment are also tracked through the ordering, delivery, installation, and maintenance cycle via Earned Value Management techniques which allow us to meet NSF and other Federal procurement rules. Early prototypes and assembly configurations aid the development of material and supply budgets. A thorough understanding of Federal procurement rules at project start up is critical as the project moves forward.

  19. Towards better GNSS observations at the new IGS reference station BRUX: multipath mitigation and individual antenna calibration

    Science.gov (United States)

    Aerts, W.; Baire, Q.; Bruyninx, C.; Legrand, J.; Pottiaux, E.

    2012-12-01

    A new multi-GNSS IGS reference station, BRUX, has been installed at Brussels. It replaces the former IGS reference station BRUS, which had to be dismantled because of construction works. The antenna of BRUX is sited on top of a telescope dome. Although this might be an unfortunate choice from an electromagnetic point of view, the siting is very convenient for other reasons. Being close to the time lab hosting the atomic clocks, the cable length is within acceptable and affordable limits, both for cost and signal loss reasons. Moreover, the site offers open sky view, which can indeed be expected from a former telescope siting. The dome is entirely metal, hence shielding of the dome was required in order to mitigate multipath propagation. This was achieved using a metal shield topped with RF absorbing material and respecting a certain antenna-to-absorber spacing in order not to alter the antenna phase center offset (PCO) and variations (PCVs) too much. This would otherwise render the individual calibration of the antenna, in an anechoic chamber in the case of BRUX, invalid. But even taking all precautions, the PCO and PCVs of the calibration do not exactly equal those after installation. Moreover, different calibrations, in an anechoic chamber and by an outdoor robot, of the same antenna have shown to result in PCO and PCVs that differ up to several mm at certain azimuths and elevations. A test set-up with 6 such redundantly calibrated GNSS antennas revealed that the calibration differences can reach 8 mm on the ionosphere-free frequency, which amplifies the calibration differences by a factor three compared to L1 and L2 only. The use of different receiver antenna calibration models can impact position at almost the centimeter level. In an attempt to align the historical time series for BRUS with the (future) data for BRUX, the tie between the new station BRUX and the old IGS station BRUS was determined using terrestrial measurements as well as GPS. In the case of

  20. PDOP values for simulated GPS/Galileo positioning

    DEFF Research Database (Denmark)

    Cederholm, Jens Peter

    2005-01-01

    The paper illustrates satellite coverage and PDOP values for a simulated combined GPS/Galileo system. The designed GPS satellite constellation and the planned Galileo satellite constellation are presented. The combined system is simulated and the number of visible satellites and PDOP values...